mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2024-12-09 04:21:49 +08:00
6c2659886f
100019 Commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
Simon Marchi
|
6c2659886f |
gdb: add back declarations for _initialize functions
I'd like to enable the -Wmissing-declarations warning. However, it
warns for every _initialize function, for example:
CXX dcache.o
/home/smarchi/src/binutils-gdb/gdb/dcache.c: In function ‘void _initialize_dcache()’:
/home/smarchi/src/binutils-gdb/gdb/dcache.c:688:1: error: no previous declaration for ‘void _initialize_dcache()’ [-Werror=missing-declarations]
_initialize_dcache (void)
^~~~~~~~~~~~~~~~~~
The only practical way forward I found is to add back the declarations,
which were removed by this commit:
commit
|
||
Simon Marchi
|
e2de1eec22 |
gdb: make regformats output a declaration for the init function
When compiling gdbserver for an architecture that uses the regdat.sh script (such as m68k) and the -Wmissing-declarations compiler flag, I get: REGDAT reg-m68k-generated.c CXX reg-m68k.o reg-m68k-generated.c:30:1: error: no previous declaration for 'void init_registers_m68k()' [-Werror=missing-declarations] 30 | init_registers_m68k (void) | ^~~~~~~~~~~~~~~~~~~ The same happens with other architectures, such as s390, but I'll be using 68k as an example. The init_registers_m68k function is defined in reg-m68k-generated.c, which is produced by the regformats/regdat.sh script. This script reads the regformats/reg-m68k.dat file, containing a register description, and produces C code that creates a corresponding target description at runtime. The init_registers_m68k function is invoked at initialization time in linux-m68k-low.c. The function must therefore be non-static, but does not have a declaration at the moment. The real clean way of fixing this would be to make regdat.sh generate a .h file (in addition to the .c file) with declarations for whatever is in the .c file. The generated .c file would include the .h file, and therefore the definition would have a corresponding declaration. The linux-m68k-low.c file would also include this .h file, instead of having its own declaration of init_registers_m68k, like it does now. However, this would be a quite big change for not much gain. As far as I understand, some common architectures (i386, x86-64, ARM, AArch64) have been moved to dynamically building target descriptions based on features (the linux-*-tdesc.c files in gdbserver) and don't use regdat.sh anymore. Logically (and given infinite development resources), the other architectures would be migrated to this system too and the regdat.sh script would be dropped. A new architecture would probably not use regdat.sh either. So I therefore propose this simpler patch instead, which just adds a local declaration in the generated file. gdb/ChangeLog: * regformats/regdat.sh: Generate declaration for init function. |
||
Simon Marchi
|
4025fa094d |
gdbserver: fix Makefile dependency of regformat-generated files on regdat.sh
The intent of the rules modified by this patch is that the *-generated.c files generated by regdat.sh are re-generated in the event that regdat.sh is modified. However, if I build, touch regdat.sh, and build again, the files are not re-generated during the second build. This is because regdat.sh is specified as an order-only dependency [1], after the pipe. Make therefore only ensures that regdat.sh exists before generating the target file, it doesn't check the timestamp of regdat.sh. This patch changes it to be a regular prerequisite. The rules use the $< variable, which is substituted by the first prerequisite only, so the command lines won't change. [1] https://www.gnu.org/software/make/manual/html_node/Prerequisite-Types.html gdb/gdbserver/ChangeLog: * Makefile.in (%-generated.c): Make $(regdat_sh) a regular prerequisite. |
||
Nick Clifton
|
c87c17c1c2 |
Moev declaration of loop variable outside of the loop.
* objdump.c (disassemble_bytes): Remove C99-ism. |
||
Simon Marchi
|
e0037b4cc7 |
gdb: adjust remote-sim.c to multi-target
The remote-sim.c file doesn't build since the main multi-target patch
(
|
||
Matthew Malcomson
|
82e9597c9e |
[gas][aarch64] Turn on SVE when using f32mm or f64mm extensions
There are no instructions under these matrix multiply extensions that can be used without having SVE enabled. Since these extensions require SVE, we make that explicit in the options table. Tested on aarch64-none-elf without regressions. gas/ChangeLog: 2020-01-13 Matthew Malcomson <matthew.malcomson@arm.com> * config/tc-aarch64.c (f64mm, f32mm): Add sve as a feature dependency. |
||
Nick Clifton
|
6a1939f577 |
Add test driver for the debuginfod support in the binutils sub-directory.
* testsuite/binutils-all/debuginfod.exp: New tests. |
||
Thomas Troeger
|
1d67fe3b6e |
Add an option to objdump's disassembler to generate ascii art diagrams showing the destinations of flow control instructions.
binutils* objdump.c (visualize_jumps, color_output, extended_color_output) (detected_jumps): New variables. (usage): Add the new jump visualization options. (option_values): Add new option value. (long_options): Add the new option. (jump_info_new, jump_info_free): New functions. (jump_info_min_address, jump_info_max_address): Likewise. (jump_info_end_address, jump_info_is_start_address): Likewise. (jump_info_is_end_address, jump_info_size): Likewise. (jump_info_unlink, jump_info_insert): Likewise. (jump_info_add_front, jump_info_move_linked): Likewise. (jump_info_intersect, jump_info_merge): Likewise. (jump_info_sort, jump_info_visualize_address): Likewise. (disassemble_jumps): New function - used to locate jumps. (disassemble_bytes): Add ascii art generation. (disassemble_section): Add scan to locate jumps. (main): Parse the new visualization option. * doc/binutils.texi: Document the new feature. * NEWS: Mention the new feature. opcodes * arm-dis.c (print_insn_arm): Fill in insn info fields for control flow instructions. (print_insn_thumb16, print_insn_thumb32): Likewise. (print_insn): Initialize the insn info. * i386-dis.c (print_insn): Initialize the insn info fields, and detect jumps. |
||
Alan Modra
|
a4f2b7c5d9 |
Re: PR23560, PR23561, readelf memory leaks
PR 25360
PR 25361
Dyslexia strikes again.
Fix git commit
|
||
Alan Modra
|
8c7e1c0421 |
Regen ld BLD-POTFILES.in
* po/BLD-POTFILES.in: Regenerate. |
||
Alan Modra
|
a788aedd86 |
PR23560, PR23561, readelf memory leaks
PR 23560 PR 23561 * dwarf.c (display_debug_frames): Move fde_fc earlier. Free fde_fc col_type and col_offset. * readelf.c (apply_relocations): Move symsec check earlier. (free_debug_section): Free reloc_info. (process_notes_at): Free pnotes on error path. (process_object): Free dump_sects here.. (process_archive): ..not here. |
||
Alan Modra
|
805f38bc55 |
PR25362, memory leak in nm
PR 25362 * nm.c (display_rel_file): Free dyn_syms. |
||
Claudiu Zissulescu
|
4f18d7423c |
[ARC][committed] Update test matching pattern.
xxxx-xx-xx Claudiu Zissulescu <claziss@gmail.com> * testsuite/ld-arc/relax-local-pic.d: Improve matching patterns. |
||
Claudiu Zissulescu
|
5e4f7e0518 |
[ARC][committed] Code cleanup and improvements.
Code clean up and improvements when changing the cpu from command line. Also, remove unused/old emulations. gas/ xxxx-xx-xx Claudiu Zissulescu <claziss@synopsys.com> * config/tc-arc.c (arc_select_cpu): Re-init the bfd if we change the CPU. * config/tc-arc.h: Add header if/defs. * testsuite/gas/arc/pseudos.d: Improve matching pattern. ls/ xxxx-xx-xx Claudiu Zissulescu <claziss@synopsys.com> * Makefile.am: Remove earcelf_prof.c and earclinux_prof.c emulations. * Makefile.in: Regenerate. * configure.tgt: Likewise. * emulparams/arcelf_prof.sh: Remove file. * emulparams/arclinux_prof.sh: Likewise. opcodes/ xxxx-xx-xx Claudiu Zissulescu <claziss@synopsys.com> * arc-opc.c (C_NE): Make it required. |
||
Claudiu Zissulescu
|
39fe16e078 |
[ARC][committed] Update ARC cpu list
include/ xxxx-xx-xx Claudiu Zissulescu <claziss@synopsys.com> * elf/arc-cpu.def: Update ARC cpu list. |
||
Claudiu Zissulescu
|
8cb31badff |
[ARC][committed] Use DWARF.sc in elf linker script templates.
xxxx-xx-xx Claudiu Zissulescu <claziss@synopsys.com> * elfarcv2.sc : Allow interrupt vector table to be located at an arbitrary address. Use DWARF.sc file. * elfarc.sc: Use DWARF.sc file. |
||
Claudiu Zissulescu
|
b9fe6b8aa6 |
[ARC] [COMMITTED] Change ACCL/ACCH reg name to generic.
ACCL/ACCH register names are only available for ARCv2 architecture, leading to a confusion when disassembling for any other ARC variants. This patch is changing the default names for ACCL/ACCH to generic r58/r59. 2012-01-13 Claudiu Zissulescu <claziss@gmail.com> * opcode/arc-dis.c (regnames): Correct ACCL/ACCH naming, fix typo reserved register name. |
||
Alan Modra
|
90dee485e5 |
asan: ns32k: wild memory write
index_offset isn't set up for "sfsr", resulting in a random offset being used when trying to disassemble the following. .byte 0x3e, 0xf7, 0x07, 0x00 * ns32k-dis.c (Is_gen): Use strchr, add 'f'. (print_insn_ns32k): Adjust ioffset for 'f' index_offset. |
||
Alan Modra
|
febda64f15 |
ubsan: wasm32: signed integer overflow
The signed integer overflow occurred when adding one to target_count for (i = 0; i < target_count + 1; i++) but that's the least of the worries here. target_count was long and i int, leading to the possibility of a loop that never ended. So to avoid this type of vulnerability, this patch uses what I believe to be the proper types for arguments of various wasm32 opcodes, rather than using "long" which may change in size. gas/ * testsuite/gas/wasm32/allinsn.d: Update expected output. opcodes/ * wasm32-dis.c (print_insn_wasm32): Localise variables. Store result of wasm_read_leb128 in a uint64_t and check that bits are not lost when copying to other locals. Use uint32_t for most locals. Use PRId64 when printing int64_t. |
||
Alan Modra
|
df08b5881b |
score formatting
* score-dis.c: Formatting. * score7-dis.c: Formatting. |
||
Alan Modra
|
b2c759ce68 |
ubsan: score: left shift of negative value
* score-dis.c (print_insn_score48): Use unsigned variables for unsigned values. Don't left shift negative values. (print_insn_score32): Likewise. * score7-dis.c (print_insn_score32, print_insn_score16): Likewise. |
||
Alan Modra
|
b50ef514ff |
ubsan: alpha-vma: timeout
* vms-alpha.c (_bfd_vms_slurp_egsd): Ensure minimum size even for "ignored" records. |
||
Alan Modra
|
0c0adcc524 |
Memory leaks and ineffective bounds checking in wasm_scan
It's always a bad idea to perform arithmetic on an unknown value read from an object file before comparing against bounds. Code like the following attempting to bounds check "len", a 64-bit value, isn't effective because the pointer arithmetic ignores the high 32 bits when compiled for a 32-bit host. READ_LEB128 (len, p, end); if (p + len < p || p + len > end) goto error_return; Instead, perform any arithmetic on known values where we don't need to worry about overflows: READ_LEB128 (len, p, end); if (len > (size_t) (end - p)) goto error_return; I'll note that this check does do things the right way: READ_LEB128 (symcount, p, end); /* Sanity check: each symbol has at least two bytes. */ if (symcount > payload_size / 2) return FALSE; "symcount * 2 > payload_size" would be wrong since the multiply could overflow. * wasm-module.c (wasm_scan_name_function_section): Formatting. Delete asect name check. Move asect NULL check to wasm_object_p. Correct bounds check of sizes against end. Replace uses of bfd_zalloc with bfd_alloc, zeroing only necessary bytes. Use just one bfd_release. (wasm_scan): Don't use malloc/strdup for section names, bfd_alloc instead. Simplify code prefixing section name. Formatting. Don't attempt to free memory here.. (wasm_object_p): ..do so here. Formatting. |
||
Alan Modra
|
5496abe1c5 |
tic4x: sign extension using shifts
Don't do that. Especially don't use shift counts that assume the type being shifted is 32 bits when the type is long/unsigned long. Also reverts part of a change I made on 2019-12-11 to tic4x_print_register that on closer inspection turns out to be unnecessary. include/ * opcode/tic4x.h (EXTR): Delete. (EXTRU, EXTRS, INSERTU, INSERTS): Rewrite without zero/sign extension using shifts. Do trim INSERTU value to specified bitfield. opcodes/ * tic4x-dis.c (tic4x_print_register): Remove dead code. gas/ * config/tc-tic4x.c (tic4x_operands_match): Correct tic3x trap insertion. |
||
Alan Modra
|
202e762b32 |
ubsan: fr30: left shift of negative value
cpu/ * fr30.cpu (f-disp9, f-disp10, f-s10, f-rel9, f-rel12): Don't left shift signed values. opcodes/ * fr30-ibld.c: Regenerate. |
||
Alan Modra
|
7ef412cf72 |
ubsan: xgate: left shift of negative value
* xgate-dis.c (print_insn): Don't left shift signed value. (ripBits): Formatting, use 1u. |
||
GDB Administrator
|
aa1f7fb133 | Automatic date update in version.in | ||
Simon Marchi
|
58920b5be0 |
gdb: include gdb_wait.h in gdb_wait.c
When building for mingw with -Wmissing-declarations, I get: CXX gdbsupport/gdb_wait.o /binutils-gdb/gdb/gdbsupport/gdb_wait.c:52:1: error: no previous declaration for 'int windows_status_to_termsig(long unsigned int)' [-Wer ror=missing-declarations] 52 | windows_status_to_termsig (unsigned long status) | ^~~~~~~~~~~~~~~~~~~~~~~~~ Make gdb_wait.c include gdb_wait.h to fix it. gdb/ChangeLog: * gdbsupport/gdb_wait.c: Include gdb_wait.h. |
||
Simon Marchi
|
c0b0a14290 |
gdbserver: include linux-arm-tdesc.h in linux-arm-tdesc.c
When building with -Wmissing-declarations, I get: CXX linux-arm-tdesc.o /binutils-gdb/gdb/gdbserver/linux-arm-tdesc.c:29:1: error: no previous declaration for 'const target_desc* arm_linux_read_description(arm_fp_type)' [-Werror=missing-declarations] 29 | arm_linux_read_description (arm_fp_type fp_type) | ^~~~~~~~~~~~~~~~~~~~~~~~~~ /binutils-gdb/gdb/gdbserver/linux-arm-tdesc.c:49:1: error: no previous declaration for 'arm_fp_type arm_linux_get_tdesc_fp_type(const target_desc*)' [-Werror=missing-declarations] 49 | arm_linux_get_tdesc_fp_type (const target_desc *tdesc) | ^~~~~~~~~~~~~~~~~~~~~~~~~~~ Include linux-arm-tdesc.h in linux-arm-tdesc.c to fix it. And because linux-arm-tdesc.h uses the arm_fp_type, it should include arch/arm.h as well. gdb/gdbserver/ChangeLog: * linux-arm-tdesc.c: Include linux-arm-tdesc.h. * linux-arm-tdesc.h: Include arch/arm.h. |
||
Simon Marchi
|
bb1183e25a |
gdbserver: make aarch64_write_goto_address static
This function is only used in this file, so make it static. It fixes this error, when building with -Wmissing-declarations: CXX linux-aarch64-low.o /home/simark/src/binutils-gdb/gdb/gdbserver/linux-aarch64-low.c:2642:1: error: no previous declaration for 'void aarch64_write_goto_address(CORE_ADDR, CORE_ADDR, int)' [-Werror=missing-declarations] aarch64_write_goto_address (CORE_ADDR from, CORE_ADDR to, int size) ^~~~~~~~~~~~~~~~~~~~~~~~~~ gdb/gdbserver/ChangeLog: * linux-aarch64-low.c (aarch64_write_goto_address): Make static. |
||
Simon Marchi
|
f5df0b5f08 |
gdbserver: include aarch32/aarch64 header file in corresponding source file
When building gdbserver for an aarch64 host with -Wmissing-declarations, I see: CXX linux-aarch32-tdesc.o /home/simark/src/binutils-gdb/gdb/gdbserver/linux-aarch32-tdesc.c:28:1: error: no previous declaration for 'const target_desc* aarch32_linux_read_description()' [-Werror=missing-declarations] aarch32_linux_read_description () ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ /home/simark/src/binutils-gdb/gdb/gdbserver/linux-aarch32-tdesc.c:43:1: error: no previous declaration for 'bool is_aarch32_linux_description(const target_desc*)' [-Werror=missing-declarations] is_aarch32_linux_description (const target_desc *tdesc) ^~~~~~~~~~~~~~~~~~~~~~~~~~~~ CXX linux-aarch64-tdesc.o /home/simark/src/binutils-gdb/gdb/gdbserver/linux-aarch64-tdesc.c:32:1: error: no previous declaration for 'const target_desc* aarch64_linux_read_description(uint64_t, bool)' [-Werror=missing-declarations] aarch64_linux_read_description (uint64_t vq, bool pauth_p) ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Fix it by including linux-aarch32-tdesc.h in linux-aarch32-tdesc.c and linux-aarch64-tdesc.h in linux-aarch64-tdesc.c. gdb/gdbserver/ChangeLog: * linux-aarch32-tdesc.c: Include linux-aarch32-tdesc.h. * linux-aarch64-tdesc.c: Include linux-aarch64-tdesc.h. |
||
Pedro Alves
|
4ec89149dd |
Remove last traces of discard_all_inferiors
The multi-target patch should have removed all traces of discard_all_inferiors, but somehow one use stayed behind along with the definition of the function. discard_all_inferiors is bad now because it blindly exits inferiors of all target connections. It's best to remove it. gdb/ChangeLog: 2020-01-12 Pedro Alves <palves@redhat.com> * bsd-kvm.c (bsd_kvm_target::close): Call exit_inferior_silent directly for the current inferior instead of discard_all_inferiors. (discard_all_inferiors): Delete. |
||
GDB Administrator
|
57d87c09a3 | Automatic date update in version.in | ||
Tom Tromey
|
7c392d1de1 |
Make TUI borders respect "set style enabled"
When adding support for styling the TUI borders, I neglected to have this code check cli_styling. As a result, "set style enabled off" does not affect the borders. This patch fixes this oversight. While doing this, I found that running gdb without an executable, enabling the TUI, and then trying "set style enabled off" would fail with the mysterious "No registers". The fix for this is to use deprecated_safe_get_selected_frame in tui_source_window_base::refill. gdb/ChangeLog 2020-01-11 Tom Tromey <tom@tromey.com> * tui/tui-wingeneral.c (box_win): Check cli_styling. * tui/tui-winsource.c (tui_source_window_base::refill): Use deprecated_safe_get_selected_frame. Change-Id: I36acda25dd9014d994d366b4a0e8faee9d95d0f8 |
||
GDB Administrator
|
ef96a356b8 | Automatic date update in version.in | ||
Tankut Baris Aktemur
|
d9ebdab754 |
Switch the inferior before outputting its id in "info inferiors"
GDB uses the 'current_top_target' when displaying the description of an inferior. This leads to same target being used for each inferior and, in turn, yields incorrect output when the inferior has a target that is supposed to give a specialized output. For instance, the remote target outputs "Remote target" instead of "process XYZ" as the description if the multi-process feature is not supported or turned off. E.g.: Suppose we have a native and a remote target, and the native is the current inferior. The remote target does not support multi-process. For "info inferiors", we would expect to see: ~~~ (gdb) i inferiors Num Description Connection Executable * 1 process 29060 1 (native) /a/path 2 Remote target 2 (remote ...) ~~~ but instead we get ~~~ (gdb) i inferiors Num Description Connection Executable * 1 process 29060 1 (native) /a/path 2 process 42000 2 (remote ...) ~~~ Similarly, if the current inferior is the remote one, we would expect to see ~~~ (gdb) i inferiors Num Description Connection Executable 1 process 29060 1 (native) /a/path * 2 Remote target 2 (remote ...) ~~~ but we get ~~~ (gdb) i inferiors Num Description Connection Executable * 1 Remote target 1 (native) /a/path 2 Remote target 2 (remote ...) ~~~ With this patch, we switch to the inferior when outputting its description, so that the current_top_target will be aligned to the inferior we are displaying. For testing, this patch expands the "info inferiors" test for the multi-target feature. The test was checking for the output of the info commands after setup, only when the current inferior is the last added inferior. This patch does the following to the testcase: 1. The "info inferiors" and "info connections" test is extracted out from the "setup" procedure to a separate procedure. 2. The test is enriched to check the output after switching to each inferior, not just the last one. 3. The test is performed twice; one for when the multi-process feature is turned on, one for off. gdb/ChangeLog: 2020-01-10 Tankut Baris Aktemur <tankut.baris.aktemur@intel.com> * inferior.c (print_inferior): Switch inferior before printing it. gdb/testsuite/ChangeLog: 2020-01-10 Tankut Baris Aktemur <tankut.baris.aktemur@intel.com> * gdb.multi/multi-target.exp (setup): Factor out "info connections" and "info inferiors" tests to ... (test_info_inferiors): ... this new procedure. (top level): Run new "info-inferiors" tests. |
||
Pedro Alves
|
f3c469b95b |
Switch the inferior too in switch_to_program_space_and_thread
With multi-target, each inferior now has its own target connection. The problem in switch_to_program_space_and_thread is that in the current state GDB switches to "no thread" and also sets the program space but because the inferior is not switched, potentially an incorrect target remains selected. Here is a sample scenario that exploits this flow: On terminal 1, start a gdbserver on a program named foo: $ gdbserver :1234 ./foo On terminal 2, start gdb on a program named bar. Suppose foo and bar are compiled from foo.c and bar.c. They are completely separate. So, bar.c:2 has no meaning for foo. $ gdb -q ./bar Reading symbols from ./bar... (gdb) add-inferior [New inferior 2] Added inferior 2 (gdb) inferior 2 [Switching to inferior 2 [<null>] (<noexec>)] (gdb) target remote :1234 ... (gdb) set debug remote 2 (gdb) break bar.c:2 Sending packet: $Hgp0.0#ad...Packet received: OK Sending packet: $m5fa,12#f8...Packet received: E01 Sending packet: $m5fa,1#c6...Packet received: E01 Sending packet: $m5fb,3#c9...Packet received: E01 Sending packet: $m5fe,1#ca...Packet received: E01 Breakpoint 1 at 0x5fe: file bar.c, line 2. (gdb) Here we have an unnecessary sending of the packets to the gdbserver. With this fix in progspace-and-thread.c, we'll get this: (gdb) break bar.c:2 Breakpoint 1 at 0x5fe: file bar.c, line 2. (gdb) Now there is no sending of the packets to gdbserver. The changes around clear_symtab_users calls are necessary because otherwise we regress gdb.base/step-over-exit.exp, hitting the new assertion in switch_to_program_space_and_thread. The problem is, a forked child terminates, and when GDB decides to auto-purge that inferior, GDB tries to switch to the pspace of that no-longer-existing inferior. The root of the problem is within the program_space destructor: program_space::~program_space () { ... set_current_program_space (this); # (1) ... breakpoint_program_space_exit (this); # (2) ... free_all_objfiles (); # (3) ... } We get here from delete_inferior -> delete_program_space. So we're deleting an inferior, and the inferior to be deleted is no longer in the inferior list. At (2), we've deleted all the breakpoints and locations for the program space being deleted. The crash happens while doing a breakpoint re-set, called by clear_symtab_users at the tail end of (3). That is, while recreating breakpoints for the current program space, which is the program space we're tearing down. During breakpoint re-set, we try to switch to the new location's pspace (the current pspace set in (1), so the pspace we're tearing down) with switch_to_program_space_and_thread, and that hits the failed assertion. It's the fact that we recreate breakpoints in the program_space destructor that is the latent bug here. Just don't do that, and we don't end up in the crash situation. My first approach to fix this added a symfile_add_flags parameter to program_space::free_all_objfiles, and then passed that down to clear_symtab_users. The program_space dtor would then pass down SYMFILE_DEFER_BP_RESET to free_all_objfiles. I couldn't help feeling that adding that parameter to free_all_objfiles looked a little awkward, so I settled on something a little different -- hoist the clear_symtab_users call to the callers. There are only two callers. I felt that that didn't look as odd, particularly since remove_symbol_file_command also does: objf->unlink (); clear_symtab_users (0); I.e., objfile deletion is already separate from calling clear_symtab_users in some places. gdb/ChangeLog: 2020-01-10 Aleksandar Paunovic <aleksandar.paunovic@intel.com> Pedro Alves <palves@redhat.com> * progspace-and-thread.c (switch_to_program_space_and_thread): Assert there's an inferior for PSPACE. Use switch_to_inferior_no_thread to switch the inferior too. * progspace.c (program_space::~program_space): Call clear_symtab_users here, with SYMFILE_DEFER_BP_RESET. (program_space::free_all_objfiles): Don't call clear_symtab_users here. * symfile.c (symbol_file_clear): Call clear_symtab_users here. gdb/testsuite/ChangeLog: 2020-01-10 Pedro Alves <palves@redhat.com> * gdb.server/bkpt-other-inferior.exp: New file. |
||
Pedro Alves
|
65c574f6dd |
Multi-target: NEWS and user manual
This commit documents the new multi-target features in both NEWS and user manual. gdb/ChangeLog: 2020-01-10 Pedro Alves <palves@redhat.com> * NEWS: Mention multi-target debugging, "info connections", and "add-inferior -no-connection". gdb/doc/ChangeLog: 2020-01-10 Pedro Alves <palves@redhat.com> * gdb.texinfo (Starting): Say "current inferior not connected" instead of "GDB not connected". (Inferiors and Programs): Rename node to ... (Inferiors Connections and Programs): ... this. Update all references. Talk about multiple target connections. Update "info inferiors" info to mention the connections column. Describe "info connections". Document "add-inferior -no-connection". * guile.texi, python.texi: Update cross references. |
||
Pedro Alves
|
2f4fcf0039 |
Require always-non-stop for multi-target resumptions
Currently, we can only support resuming multiple targets at the same time if all targets are in non-stop mode (or user-visible all-stop mode with target backend in non-stop mode). This patch makes GDB error out if the user tries to resume more than one target at the same time and one of the resumed targets isn't in non-stop mode: (gdb) info inferiors Num Description Connection Executable 1 process 15303 1 (native) a.out * 2 process 15286 2 (extended-remote :9999) a.out (gdb) set schedule-multiple on (gdb) c Continuing. Connection 2 (extended-remote :9999) does not support multi-target resumption. This is here later in the series instead of in the main multi-target patch because it depends the previous patch, which added process_stratum_target::connection_string(). gdb/ChangeLog: 2020-01-10 Pedro Alves <palves@redhat.com> * infrun.c: Include "target-connection.h". (check_multi_target_resumption): New. (proceed): Call it. * target-connection.c (make_target_connection_string): Make extern. * target-connection.h (make_target_connection_string): Declare. |
||
Pedro Alves
|
121b3efd49 |
Add "info connections" command, "info inferiors" connection number/string
This commit extends the CLI a bit for multi-target, in three ways. #1 - New "info connections" command. This is a new command that lists the open connections (process_stratum targets). For example, if you're debugging two remote connections, a couple local/native processes, and a core dump, all at the same time, you might see something like this: (gdb) info connections Num What Description 1 remote 192.168.0.1:9999 Remote serial target in gdb-specific protocol 2 remote 192.168.0.2:9998 Remote serial target in gdb-specific protocol * 3 native Native process 4 core Local core dump file #2 - New "info inferiors" "Connection" column You'll also see a new matching "Connection" column in "info inferiors", showing you which connection an inferior is bound to: (gdb) info inferiors Num Description Connection Executable 1 process 18526 1 (remote 192.168.0.1:9999) target:/tmp/a.out 2 process 18531 2 (remote 192.168.0.2:9998) target:/tmp/a.out 3 process 19115 3 (native) /tmp/prog1 4 process 6286 4 (core) myprogram * 5 process 19122 3 (native) /bin/hello #3 - Makes "add-inferior" show the inferior's target connection "add-inferior" now shows you the connection you've just bound the inferior to, which is the current process_stratum target: (gdb) add-inferior [New inferior 2] Added inferior 2 on connection 1 (extended-remote localhost:2346) gdb/ChangeLog: 2020-01-10 Pedro Alves <palves@redhat.com> * Makefile.in (COMMON_SFILES): Add target-connection.c. * inferior.c (uiout_field_connection): New function. (print_inferior): Add new "connection-id" column. (add_inferior_command): Show connection number/string of added inferior. * process-stratum-target.h (process_stratum_target::connection_string): New virtual method. (process_stratum_target::connection_number): New field. * remote.c (remote_target::connection_string): New override. * target-connection.c: New file. * target-connection.h: New file. * target.c (decref_target): Remove process_stratum targets from the connection list. (target_stack::push): Add process_stratum targets to the connection list. gdb/testsuite/ChangeLog: 2020-01-10 Pedro Alves <palves@redhat.com> * gdb.base/kill-detach-inferiors-cmd.exp: Adjust expected output of "add-inferior". * gdb.base/quit-live.exp: Likewise. * gdb.base/remote-exec-file.exp: Likewise. * gdb.guile/scm-progspace.exp: Likewise. * gdb.linespec/linespec.exp: Likewise. * gdb.mi/new-ui-mi-sync.exp: Likewise. * gdb.mi/user-selected-context-sync.exp: Likewise. * gdb.multi/multi-target.exp (setup): Add "info connection" and "info inferiors" tests. * gdb.multi/remove-inferiors.exp: Adjust expected output of "add-inferior". * gdb.multi/watchpoint-multi.exp: Likewise. * gdb.python/py-inferior.exp: Likewise. * gdb.server/extended-remote-restart.exp: Likewise. * gdb.threads/fork-plus-threads.exp: Adjust expected output of "info inferiors". * gdb.threads/forking-threads-plus-breakpoint.exp: Likewise. * gdb.trace/report.exp: Likewise. |
||
Pedro Alves
|
4f83758119 |
Revert 'Remove unused struct serial::name field'
This commit reverts:
commit
|
||
Pedro Alves
|
f4ec508eae |
gdbarch-selftests.c: No longer error out if debugging something
Since each inferior has its own target stack, the stratum condition for the "error out if debugging something" check is always false. gdb/ChangeLog: 2020-01-10 Pedro Alves <palves@redhat.com> * gdbarch-selftests.c (register_to_value_test): Remove "target already pushed" check. |
||
Pedro Alves
|
1dadb1dd71 |
Add multi-target tests
This adds a testcase exercising multi-target features. It spawns 6 inferiors, like this: inferior 1 -> native inferior 2 -> extended-remote 1 inferior 3 -> core inferior 4 -> native inferior 5 -> extended-remote 2 inferior 6 -> core and then tests various details, including: - running to breakpoints - interrupting with Ctrl-C and "interrupt -a" - "next" bouncing between two breakpoints in two threads running in different targets. - since we have cores and live inferiors mixed in the same session, this makes sure that gdb doesn't try to remove a core dump's threads. - all-stop and non-stop modes. This testcase caught a _lot_ of bugs in development. gdb/testsuite/ChangeLog: 2020-01-10 Pedro Alves <palves@redhat.com> * gdb.multi/multi-target.c: New file. * gdb.multi/multi-target.exp: New file. * lib/gdbserver-support.exp (gdb_target_cmd): Handle "Non-stop mode requested, but remote does not support non-stop". |
||
Pedro Alves
|
5b6d1e4fa4 |
Multi-target support
This commit adds multi-target support to GDB. What this means is that with this commit, GDB can now be connected to different targets at the same time. E.g., you can debug a live native process and a core dump at the same time, connect to multiple gdbservers, etc. Actually, the word "target" is overloaded in gdb. We already have a target stack, with pushes several target_ops instances on top of one another. We also have "info target" already, which means something completely different to what this patch does. So from here on, I'll be using the "target connections" term, to mean an open process_stratum target, pushed on a target stack. This patch makes gdb have multiple target stacks, and multiple process_stratum targets open simultaneously. The user-visible changes / commands will also use this terminology, but of course it's all open to debate. User-interface-wise, not that much changes. The main difference is that each inferior may have its own target connection. A target connection (e.g., a target extended-remote connection) may support debugging multiple processes, just as before. Say you're debugging against gdbserver in extended-remote mode, and you do "add-inferior" to prepare to spawn a new process, like: (gdb) target extended-remote :9999 ... (gdb) start ... (gdb) add-inferior Added inferior 2 (gdb) inferior 2 [Switching to inferior 2 [<null>] (<noexec>)] (gdb) file a.out ... (gdb) start ... At this point, you have two inferiors connected to the same gdbserver. With this commit, GDB will maintain a target stack per inferior, instead of a global target stack. To preserve the behavior above, by default, "add-inferior" makes the new inferior inherit a copy of the target stack of the current inferior. Same across a fork - the child inherits a copy of the target stack of the parent. While the target stacks are copied, the targets themselves are not. Instead, target_ops is made a refcounted_object, which means that target_ops instances are refcounted, which each inferior counting for a reference. What if you want to create an inferior and connect it to some _other_ target? For that, this commit introduces a new "add-inferior -no-connection" option that makes the new inferior not share the current inferior's target. So you could do: (gdb) target extended-remote :9999 Remote debugging using :9999 ... (gdb) add-inferior -no-connection [New inferior 2] Added inferior 2 (gdb) inferior 2 [Switching to inferior 2 [<null>] (<noexec>)] (gdb) info inferiors Num Description Executable 1 process 18401 target:/home/pedro/tmp/main * 2 <null> (gdb) tar extended-remote :10000 Remote debugging using :10000 ... (gdb) info inferiors Num Description Executable 1 process 18401 target:/home/pedro/tmp/main * 2 process 18450 target:/home/pedro/tmp/main (gdb) A following patch will extended "info inferiors" to include a column indicating which connection an inferior is bound to, along with a couple other UI tweaks. Other than that, debugging is the same as before. Users interact with inferiors and threads as before. The only difference is that inferiors may be bound to processes running in different machines. That's pretty much all there is to it in terms of noticeable UI changes. On to implementation. Since we can be connected to different systems at the same time, a ptid_t is no longer a unique identifier. Instead a thread can be identified by a pair of ptid_t and 'process_stratum_target *', the later being the instance of the process_stratum target that owns the process/thread. Note that process_stratum_target inherits from target_ops, and all process_stratum targets inherit from process_stratum_target. In earlier patches, many places in gdb were converted to refer to threads by thread_info pointer instead of ptid_t, but there are still places in gdb where we start with a pid/tid and need to find the corresponding inferior or thread_info objects. So you'll see in the patch many places adding a process_stratum_target parameter to functions that used to take only a ptid_t. Since each inferior has its own target stack now, we can always find the process_stratum target for an inferior. That is done via a inf->process_target() convenience method. Since each inferior has its own target stack, we need to handle the "beneath" calls when servicing target calls. The solution I settled with is just to make sure to switch the current inferior to the inferior you want before making a target call. Not relying on global context is just not feasible in current GDB. Fortunately, there aren't that many places that need to do that, because generally most code that calls target methods already has the current context pointing to the right inferior/thread. Note, to emphasize -- there's no method to "switch to this target stack". Instead, you switch the current inferior, and that implicitly switches the target stack. In some spots, we need to iterate over all inferiors so that we reach all target stacks. Native targets are still singletons. There's always only a single instance of such targets. Remote targets however, we'll have one instance per remote connection. The exec target is still a singleton. There's only one instance. I did not see the point of instanciating more than one exec_target object. After vfork, we need to make sure to push the exec target on the new inferior. See exec_on_vfork. For type safety, functions that need a {target, ptid} pair to identify a thread, take a process_stratum_target pointer for target parameter instead of target_ops *. Some shared code in gdb/nat/ also need to gain a target pointer parameter. This poses an issue, since gdbserver doesn't have process_stratum_target, only target_ops. To fix this, this commit renames gdbserver's target_ops to process_stratum_target. I think this makes sense. There's no concept of target stack in gdbserver, and gdbserver's target_ops really implements a process_stratum-like target. The thread and inferior iterator functions also gain process_stratum_target parameters. These are used to be able to iterate over threads and inferiors of a given target. Following usual conventions, if the target pointer is null, then we iterate over threads and inferiors of all targets. I tried converting "add-inferior" to the gdb::option framework, as a preparatory patch, but that stumbled on the fact that gdb::option does not support file options yet, for "add-inferior -exec". I have a WIP patchset that adds that, but it's not a trivial patch, mainly due to need to integrate readline's filename completion, so I deferred that to some other time. In infrun.c/infcmd.c, the main change is that we need to poll events out of all targets. See do_target_wait. Right after collecting an event, we switch the current inferior to an inferior bound to the target that reported the event, so that target methods can be used while handling the event. This makes most of the code transparent to multi-targets. See fetch_inferior_event. infrun.c:stop_all_threads is interesting -- in this function we need to stop all threads of all targets. What the function does is send an asynchronous stop request to all threads, and then synchronously waits for events, with target_wait, rinse repeat, until all it finds are stopped threads. Now that we have multiple targets, it's not efficient to synchronously block in target_wait waiting for events out of one target. Instead, we implement a mini event loop, with interruptible_select, select'ing on one file descriptor per target. For this to work, we need to be able to ask the target for a waitable file descriptor. Such file descriptors already exist, they are the descriptors registered in the main event loop with add_file_handler, inside the target_async implementations. This commit adds a new target_async_wait_fd target method that just returns the file descriptor in question. See wait_one / stop_all_threads in infrun.c. The 'threads_executing' global is made a per-target variable. Since it is only relevant to process_stratum_target targets, this is where it is put, instead of in target_ops. You'll notice that remote.c includes some FIXME notes. These refer to the fact that the global arrays that hold data for the remote packets supported are still globals. For example, if we connect to two different servers/stubs, then each might support different remote protocol features. They might even be different architectures, like e.g., one ARM baremetal stub, and a x86 gdbserver, to debug a host/controller scenario as a single program. That isn't going to work correctly today, because of said globals. I'm leaving fixing that for another pass, since it does not appear to be trivial, and I'd rather land the base work first. It's already useful to be able to debug multiple instances of the same server (e.g., a distributed cluster, where you have full control over the servers installed), so I think as is it's already reasonable incremental progress. Current limitations: - You can only resume more that one target at the same time if all targets support asynchronous debugging, and support non-stop mode. It should be possible to support mixed all-stop + non-stop backends, but that is left for another time. This means that currently in order to do multi-target with gdbserver you need to issue "maint set target-non-stop on". I would like to make that mode be the default, but we're not there yet. Note that I'm talking about how the target backend works, only. User-visible all-stop mode works just fine. - As explained above, connecting to different remote servers at the same time is likely to produce bad results if they don't support the exact set of RSP features. FreeBSD updates courtesy of John Baldwin. gdb/ChangeLog: 2020-01-10 Pedro Alves <palves@redhat.com> John Baldwin <jhb@FreeBSD.org> * aarch64-linux-nat.c (aarch64_linux_nat_target::thread_architecture): Adjust. * ada-tasks.c (print_ada_task_info): Adjust find_thread_ptid call. (task_command_1): Likewise. * aix-thread.c (sync_threadlists, aix_thread_target::resume) (aix_thread_target::wait, aix_thread_target::fetch_registers) (aix_thread_target::store_registers) (aix_thread_target::thread_alive): Adjust. * amd64-fbsd-tdep.c: Include "inferior.h". (amd64fbsd_get_thread_local_address): Pass down target. * amd64-linux-nat.c (ps_get_thread_area): Use ps_prochandle thread's gdbarch instead of target_gdbarch. * break-catch-sig.c (signal_catchpoint_print_it): Adjust call to get_last_target_status. * break-catch-syscall.c (print_it_catch_syscall): Likewise. * breakpoint.c (breakpoints_should_be_inserted_now): Consider all inferiors. (update_inserted_breakpoint_locations): Skip if inferiors with no execution. (update_global_location_list): When handling moribund locations, find representative inferior for location's pspace, and use thread count of its process_stratum target. * bsd-kvm.c (bsd_kvm_target_open): Pass target down. * bsd-uthread.c (bsd_uthread_target::wait): Use as_process_stratum_target and adjust thread_change_ptid and add_thread calls. (bsd_uthread_target::update_thread_list): Use as_process_stratum_target and adjust find_thread_ptid, thread_change_ptid and add_thread calls. * btrace.c (maint_btrace_packet_history_cmd): Adjust find_thread_ptid call. * corelow.c (add_to_thread_list): Adjust add_thread call. (core_target_open): Adjust add_thread_silent and thread_count calls. (core_target::pid_to_str): Adjust find_inferior_ptid call. * ctf.c (ctf_target_open): Adjust add_thread_silent call. * event-top.c (async_disconnect): Pop targets from all inferiors. * exec.c (add_target_sections): Push exec target on all inferiors sharing the program space. (remove_target_sections): Remove the exec target from all inferiors sharing the program space. (exec_on_vfork): New. * exec.h (exec_on_vfork): Declare. * fbsd-nat.c (fbsd_add_threads): Add fbsd_nat_target parameter. Pass it down. (fbsd_nat_target::update_thread_list): Adjust. (fbsd_nat_target::resume): Adjust. (fbsd_handle_debug_trap): Add fbsd_nat_target parameter. Pass it down. (fbsd_nat_target::wait, fbsd_nat_target::post_attach): Adjust. * fbsd-tdep.c (fbsd_corefile_thread): Adjust get_thread_arch_regcache call. * fork-child.c (gdb_startup_inferior): Pass target down to startup_inferior and set_executing. * gdbthread.h (struct process_stratum_target): Forward declare. (add_thread, add_thread_silent, add_thread_with_info) (in_thread_list): Add process_stratum_target parameter. (find_thread_ptid(inferior*, ptid_t)): New overload. (find_thread_ptid, thread_change_ptid): Add process_stratum_target parameter. (all_threads()): Delete overload. (all_threads, all_non_exited_threads): Add process_stratum_target parameter. (all_threads_safe): Use brace initialization. (thread_count): Add process_stratum_target parameter. (set_resumed, set_running, set_stop_requested, set_executing) (threads_are_executing, finish_thread_state): Add process_stratum_target parameter. (switch_to_thread): Use is_current_thread. * i386-fbsd-tdep.c: Include "inferior.h". (i386fbsd_get_thread_local_address): Pass down target. * i386-linux-nat.c (i386_linux_nat_target::low_resume): Adjust. * inf-child.c (inf_child_target::maybe_unpush_target): Remove have_inferiors check. * inf-ptrace.c (inf_ptrace_target::create_inferior) (inf_ptrace_target::attach): Adjust. * infcall.c (run_inferior_call): Adjust. * infcmd.c (run_command_1): Pass target to scoped_finish_thread_state. (proceed_thread_callback): Skip inferiors with no execution. (continue_command): Rename 'all_threads' local to avoid hiding 'all_threads' function. Adjust get_last_target_status call. (prepare_one_step): Adjust set_running call. (signal_command): Use user_visible_resume_target. Compare thread pointers instead of inferior_ptid. (info_program_command): Adjust to pass down target. (attach_command): Mark target's 'thread_executing' flag. (stop_current_target_threads_ns): New, factored out from ... (interrupt_target_1): ... this. Switch inferior before making target calls. * inferior-iter.h (struct all_inferiors_iterator, struct all_inferiors_range) (struct all_inferiors_safe_range) (struct all_non_exited_inferiors_range): Filter on process_stratum_target too. Remove explicit. * inferior.c (inferior::inferior): Push dummy target on target stack. (find_inferior_pid, find_inferior_ptid, number_of_live_inferiors): Add process_stratum_target parameter, and pass it down. (have_live_inferiors): Adjust. (switch_to_inferior_and_push_target): New. (add_inferior_command, clone_inferior_command): Handle "-no-connection" parameter. Use switch_to_inferior_and_push_target. (_initialize_inferior): Mention "-no-connection" option in the help of "add-inferior" and "clone-inferior" commands. * inferior.h: Include "process-stratum-target.h". (interrupt_target_1): Use bool. (struct inferior) <push_target, unpush_target, target_is_pushed, find_target_beneath, top_target, process_target, target_at, m_stack>: New. (discard_all_inferiors): Delete. (find_inferior_pid, find_inferior_ptid, number_of_live_inferiors) (all_inferiors, all_non_exited_inferiors): Add process_stratum_target parameter. * infrun.c: Include "gdb_select.h" and <unordered_map>. (target_last_proc_target): New global. (follow_fork_inferior): Push target on new inferior. Pass target to add_thread_silent. Call exec_on_vfork. Handle target's reference count. (follow_fork): Adjust get_last_target_status call. Also consider target. (follow_exec): Push target on new inferior. (struct execution_control_state) <target>: New field. (user_visible_resume_target): New. (do_target_resume): Call target_async. (resume_1): Set target's threads_executing flag. Consider resume target. (commit_resume_all_targets): New. (proceed): Also consider resume target. Skip threads of inferiors with no execution. Commit resumtion in all targets. (start_remote): Pass current inferior to wait_for_inferior. (infrun_thread_stop_requested): Consider target as well. Pass thread_info pointer to clear_inline_frame_state instead of ptid. (infrun_thread_thread_exit): Consider target as well. (random_pending_event_thread): New inferior parameter. Use it. (do_target_wait): Rename to ... (do_target_wait_1): ... this. Add inferior parameter, and pass it down. (threads_are_resumed_pending_p, do_target_wait): New. (prepare_for_detach): Adjust calls. (wait_for_inferior): New inferior parameter. Handle it. Use do_target_wait_1 instead of do_target_wait. (fetch_inferior_event): Adjust. Switch to representative inferior. Pass target down. (set_last_target_status): Add process_stratum_target parameter. Save target in global. (get_last_target_status): Add process_stratum_target parameter and handle it. (nullify_last_target_wait_ptid): Clear 'target_last_proc_target'. (context_switch): Check inferior_ptid == null_ptid before calling inferior_thread(). (get_inferior_stop_soon): Pass down target. (wait_one): Rename to ... (poll_one_curr_target): ... this. (struct wait_one_event): New. (wait_one): New. (stop_all_threads): Adjust. (handle_no_resumed, handle_inferior_event): Adjust to consider the event's target. (switch_back_to_stepped_thread): Also consider target. (print_stop_event): Update. (normal_stop): Update. Also consider the resume target. * infrun.h (wait_for_inferior): Remove declaration. (user_visible_resume_target): New declaration. (get_last_target_status, set_last_target_status): New process_stratum_target parameter. * inline-frame.c (clear_inline_frame_state(ptid_t)): Add process_stratum_target parameter, and use it. (clear_inline_frame_state (thread_info*)): New. * inline-frame.c (clear_inline_frame_state(ptid_t)): Add process_stratum_target parameter. (clear_inline_frame_state (thread_info*)): Declare. * linux-fork.c (delete_checkpoint_command): Pass target down to find_thread_ptid. (checkpoint_command): Adjust. * linux-nat.c (linux_nat_target::follow_fork): Switch to thread instead of just tweaking inferior_ptid. (linux_nat_switch_fork): Pass target down to thread_change_ptid. (exit_lwp): Pass target down to find_thread_ptid. (attach_proc_task_lwp_callback): Pass target down to add_thread/set_running/set_executing. (linux_nat_target::attach): Pass target down to thread_change_ptid. (get_detach_signal): Pass target down to find_thread_ptid. Consider last target status's target. (linux_resume_one_lwp_throw, resume_lwp) (linux_handle_syscall_trap, linux_handle_extended_wait, wait_lwp) (stop_wait_callback, save_stop_reason, linux_nat_filter_event) (linux_nat_wait_1, resume_stopped_resumed_lwps): Pass target down. (linux_nat_target::async_wait_fd): New. (linux_nat_stop_lwp, linux_nat_target::thread_address_space): Pass target down. * linux-nat.h (linux_nat_target::async_wait_fd): Declare. * linux-tdep.c (get_thread_arch_regcache): Pass target down. * linux-thread-db.c (struct thread_db_info::process_target): New field. (add_thread_db_info): Save target. (get_thread_db_info): New process_stratum_target parameter. Also match target. (delete_thread_db_info): New process_stratum_target parameter. Also match target. (thread_from_lwp): Adjust to pass down target. (thread_db_notice_clone): Pass down target. (check_thread_db_callback): Pass down target. (try_thread_db_load_1): Always push the thread_db target. (try_thread_db_load, record_thread): Pass target down. (thread_db_target::detach): Pass target down. Always unpush the thread_db target. (thread_db_target::wait, thread_db_target::mourn_inferior): Pass target down. Always unpush the thread_db target. (find_new_threads_callback, thread_db_find_new_threads_2) (thread_db_target::update_thread_list): Pass target down. (thread_db_target::pid_to_str): Pass current inferior down. (thread_db_target::get_thread_local_address): Pass target down. (thread_db_target::resume, maintenance_check_libthread_db): Pass target down. * nto-procfs.c (nto_procfs_target::update_thread_list): Adjust. * procfs.c (procfs_target::procfs_init_inferior): Declare. (proc_set_current_signal, do_attach, procfs_target::wait): Adjust. (procfs_init_inferior): Rename to ... (procfs_target::procfs_init_inferior): ... this and adjust. (procfs_target::create_inferior, procfs_notice_thread) (procfs_do_thread_registers): Adjust. * ppc-fbsd-tdep.c: Include "inferior.h". (ppcfbsd_get_thread_local_address): Pass down target. * proc-service.c (ps_xfer_memory): Switch current inferior and program space as well. (get_ps_regcache): Pass target down. * process-stratum-target.c (process_stratum_target::thread_address_space) (process_stratum_target::thread_architecture): Pass target down. * process-stratum-target.h (process_stratum_target::threads_executing): New field. (as_process_stratum_target): New. * ravenscar-thread.c (ravenscar_thread_target::update_inferior_ptid): Pass target down. (ravenscar_thread_target::wait, ravenscar_add_thread): Pass target down. * record-btrace.c (record_btrace_target::info_record): Adjust. (record_btrace_target::record_method) (record_btrace_target::record_is_replaying) (record_btrace_target::fetch_registers) (get_thread_current_frame_id, record_btrace_target::resume) (record_btrace_target::wait, record_btrace_target::stop): Pass target down. * record-full.c (record_full_wait_1): Switch to event thread. Pass target down. * regcache.c (regcache::regcache) (get_thread_arch_aspace_regcache, get_thread_arch_regcache): Add process_stratum_target parameter and handle it. (current_thread_target): New global. (get_thread_regcache): Add process_stratum_target parameter and handle it. Switch inferior before calling target method. (get_thread_regcache): Pass target down. (get_thread_regcache_for_ptid): Pass target down. (registers_changed_ptid): Add process_stratum_target parameter and handle it. (registers_changed_thread, registers_changed): Pass target down. (test_get_thread_arch_aspace_regcache): New. (current_regcache_test): Define a couple local test_target_ops instances and use them for testing. (readwrite_regcache): Pass process_stratum_target parameter. (cooked_read_test, cooked_write_test): Pass mock_target down. * regcache.h (get_thread_regcache, get_thread_arch_regcache) (get_thread_arch_aspace_regcache): Add process_stratum_target parameter. (regcache::target): New method. (regcache::regcache, regcache::get_thread_arch_aspace_regcache) (regcache::registers_changed_ptid): Add process_stratum_target parameter. (regcache::m_target): New field. (registers_changed_ptid): Add process_stratum_target parameter. * remote.c (remote_state::supports_vCont_probed): New field. (remote_target::async_wait_fd): New method. (remote_unpush_and_throw): Add remote_target parameter. (get_current_remote_target): Adjust. (remote_target::remote_add_inferior): Push target. (remote_target::remote_add_thread) (remote_target::remote_notice_new_inferior) (get_remote_thread_info): Pass target down. (remote_target::update_thread_list): Skip threads of inferiors bound to other targets. (remote_target::close): Don't discard inferiors. (remote_target::add_current_inferior_and_thread) (remote_target::process_initial_stop_replies) (remote_target::start_remote) (remote_target::remote_serial_quit_handler): Pass down target. (remote_target::remote_unpush_target): New remote_target parameter. Unpush the target from all inferiors. (remote_target::remote_unpush_and_throw): New remote_target parameter. Pass it down. (remote_target::open_1): Check whether the current inferior has execution instead of checking whether any inferior is live. Pass target down. (remote_target::remote_detach_1): Pass down target. Use remote_unpush_target. (extended_remote_target::attach): Pass down target. (remote_target::remote_vcont_probe): Set supports_vCont_probed. (remote_target::append_resumption): Pass down target. (remote_target::append_pending_thread_resumptions) (remote_target::remote_resume_with_hc, remote_target::resume) (remote_target::commit_resume): Pass down target. (remote_target::remote_stop_ns): Check supports_vCont_probed. (remote_target::interrupt_query) (remote_target::remove_new_fork_children) (remote_target::check_pending_events_prevent_wildcard_vcont) (remote_target::remote_parse_stop_reply) (remote_target::process_stop_reply): Pass down target. (first_remote_resumed_thread): New remote_target parameter. Pass it down. (remote_target::wait_as): Pass down target. (unpush_and_perror): New remote_target parameter. Pass it down. (remote_target::readchar, remote_target::remote_serial_write) (remote_target::getpkt_or_notif_sane_1) (remote_target::kill_new_fork_children, remote_target::kill): Pass down target. (remote_target::mourn_inferior): Pass down target. Use remote_unpush_target. (remote_target::core_of_thread) (remote_target::remote_btrace_maybe_reopen): Pass down target. (remote_target::pid_to_exec_file) (remote_target::thread_handle_to_thread_info): Pass down target. (remote_target::async_wait_fd): New. * riscv-fbsd-tdep.c: Include "inferior.h". (riscv_fbsd_get_thread_local_address): Pass down target. * sol2-tdep.c (sol2_core_pid_to_str): Pass down target. * sol-thread.c (sol_thread_target::wait, ps_lgetregs, ps_lsetregs) (ps_lgetfpregs, ps_lsetfpregs, sol_update_thread_list_callback): Adjust. * solib-spu.c (spu_skip_standalone_loader): Pass down target. * solib-svr4.c (enable_break): Pass down target. * spu-multiarch.c (parse_spufs_run): Pass down target. * spu-tdep.c (spu2ppu_sniffer): Pass down target. * target-delegates.c: Regenerate. * target.c (g_target_stack): Delete. (current_top_target): Return the current inferior's top target. (target_has_execution_1): Refer to the passed-in inferior's top target. (target_supports_terminal_ours): Check whether the initial inferior was already created. (decref_target): New. (target_stack::push): Incref/decref the target. (push_target, push_target, unpush_target): Adjust. (target_stack::unpush): Defref target. (target_is_pushed): Return bool. Adjust to refer to the current inferior's target stack. (dispose_inferior): Delete, and inline parts ... (target_preopen): ... here. Only dispose of the current inferior. (target_detach): Hold strong target reference while detaching. Pass target down. (target_thread_name): Add assertion. (target_resume): Pass down target. (target_ops::beneath, find_target_at): Adjust to refer to the current inferior's target stack. (get_dummy_target): New. (target_pass_ctrlc): Pass the Ctrl-C to the first inferior that has a thread running. (initialize_targets): Rename to ... (_initialize_target): ... this. * target.h: Include "gdbsupport/refcounted-object.h". (struct target_ops): Inherit refcounted_object. (target_ops::shortname, target_ops::longname): Make const. (target_ops::async_wait_fd): New method. (decref_target): Declare. (struct target_ops_ref_policy): New. (target_ops_ref): New typedef. (get_dummy_target): Declare function. (target_is_pushed): Return bool. * thread-iter.c (all_matching_threads_iterator::m_inf_matches) (all_matching_threads_iterator::all_matching_threads_iterator): Handle filter target. * thread-iter.h (struct all_matching_threads_iterator, struct all_matching_threads_range, class all_non_exited_threads_range): Filter by target too. Remove explicit. * thread.c (threads_executing): Delete. (inferior_thread): Pass down current inferior. (clear_thread_inferior_resources): Pass down thread pointer instead of ptid_t. (add_thread_silent, add_thread_with_info, add_thread): Add process_stratum_target parameter. Use it for thread and inferior searches. (is_current_thread): New. (thread_info::deletable): Use it. (find_thread_ptid, thread_count, in_thread_list) (thread_change_ptid, set_resumed, set_running): New process_stratum_target parameter. Pass it down. (set_executing): New process_stratum_target parameter. Pass it down. Adjust reference to 'threads_executing'. (threads_are_executing): New process_stratum_target parameter. Adjust reference to 'threads_executing'. (set_stop_requested, finish_thread_state): New process_stratum_target parameter. Pass it down. (switch_to_thread): Also match inferior. (switch_to_thread): New process_stratum_target parameter. Pass it down. (update_threads_executing): Reimplement. * top.c (quit_force): Pop targets from all inferior. (gdb_init): Don't call initialize_targets. * windows-nat.c (windows_nat_target) <get_windows_debug_event>: Declare. (windows_add_thread, windows_delete_thread): Adjust. (get_windows_debug_event): Rename to ... (windows_nat_target::get_windows_debug_event): ... this. Adjust. * tracefile-tfile.c (tfile_target_open): Pass down target. * gdbsupport/common-gdbthread.h (struct process_stratum_target): Forward declare. (switch_to_thread): Add process_stratum_target parameter. * mi/mi-interp.c (mi_on_resume_1): Add process_stratum_target parameter. Use it. (mi_on_resume): Pass target down. * nat/fork-inferior.c (startup_inferior): Add process_stratum_target parameter. Pass it down. * nat/fork-inferior.h (startup_inferior): Add process_stratum_target parameter. * python/py-threadevent.c (py_get_event_thread): Pass target down. gdb/gdbserver/ChangeLog: 2020-01-10 Pedro Alves <palves@redhat.com> * fork-child.c (post_fork_inferior): Pass target down to startup_inferior. * inferiors.c (switch_to_thread): Add process_stratum_target parameter. * lynx-low.c (lynx_target_ops): Now a process_stratum_target. * nto-low.c (nto_target_ops): Now a process_stratum_target. * linux-low.c (linux_target_ops): Now a process_stratum_target. * remote-utils.c (prepare_resume_reply): Pass the target to switch_to_thread. * target.c (the_target): Now a process_stratum_target. (done_accessing_memory): Pass the target to switch_to_thread. (set_target_ops): Ajust to use process_stratum_target. * target.h (struct target_ops): Rename to ... (struct process_stratum_target): ... this. (the_target, set_target_ops): Adjust. (prepare_to_access_memory): Adjust comment. * win32-low.c (child_xfer_memory): Adjust to use process_stratum_target. (win32_target_ops): Now a process_stratum_target. |
||
Pedro Alves
|
75c6c844d9 |
Fix reconnecting to a gdbserver already debugging multiple processes, II
Another bug exposed by gdb.server/extended-remote-restart.exp in the multi-target work is that remote_target::start_remote can leave inferior_ptid and current_inferior() out of sync: (top-gdb) p current_inferior_->pid $1 = 29541 (top-gdb) p inferior_ptid $2 = {m_pid = 29540, m_lwp = 29540, m_tid = 0} This is caused by writing to inferior_ptid directly instead of using switch_to_thread. Also, "inferior_list->thread_list->ptid" assumes that we want the first thread of the first inferior, but that inferior may not have threads, or with multi-target, that target may be connected to some other target. gdb/ChangeLog: 2020-01-10 Pedro Alves <palves@redhat.com> * remote.c (remote_target::start_remote): Don't set inferior_ptid directly. Instead find the first thread in the thread list and use switch_to_thread. |
||
Pedro Alves
|
78f2c40a12 |
Fix reconnecting to a gdbserver already debugging multiple processes, I
The multi-target patch will change the remote target's behavior when:
- the current inferior is connected to an extended-remote target.
- the current inferior is attached to any process.
- some other inferior than than the current one is live.
In current master, we get:
(gdb) tar extended-remote :9999
A program is being debugged already. Kill it? (y or n)
While after multi-target, since each inferior may have its own target
connection, we'll get:
(gdb) tar extended-remote :9999
Already connected to a remote target. Disconnect? (y or n)
That change made gdb.server/extended-remote-restart.exp expose a gdb
bug, because it made "target remote", via gdb_reconnect, just
disconnect from the previous connection, while in current master that
command would kill the inferior before disconnecting. In turn, that
would make a multi-target gdb find processes already running under
control of gdbserver as soon as it reconnects, while in current master
there is never any process around when gdb reconnects, since they'd
all been killed prior to disconnection.
The bug this exposed is that remote_target::remote_add_inferior was
always reusing current_inferior() for the new process, even if the
current inferior was already bound to a process. In the testcase's
case, when we reconnect, the remote is debugging two processes. So
we'd bind the first remote process to the empty current inferior the
first time, and then bind the second remote process to the same
inferior again, essencially losing track of the first process. That
resulted in failed assertions when we look up the inferior for the
first process by PID. The fix is to still prefer binding to the
current inferior (so that plain "target remote" keeps doing what you'd
expect), but not reuse the current inferior if it is already bound to
a process.
This patch tweaks the test to explicitly disconnect before
reconnecting, to avoid GDB killing processes, thus making current GDB
behave the same as it will behave when the multi-target work lands.
That change alone without the GDB fix exposes the bug like so:
(gdb) PASS: gdb.server/extended-remote-restart.exp: kill: 0, follow-child 0: disconnect
target extended-remote localhost:2350
Remote debugging using localhost:2350
src/gdb/thread.c:93: internal-error: thread_info* inferior_thread(): Assertion `tp' failed.
A problem internal to GDB has been detected,
further debugging may prove unreliable.
Quit this debugging session? (y or n)
The original bug that the testcase was written for was related to
killing, (git
|
||
Tankut Baris Aktemur
|
e7af6c702d |
Avoid another inferior_ptid reference in gdb/remote.c
The multi-target patch makes inferior_ptid point to null_ptid before calling into target_wait, which catches bad uses of inferior_ptid, since the current selected thread in gdb shouldn't have much relation to the thread that reports an event. One such bad use is found in remote_target::remote_parse_stop_reply, where we handle the 'W' or 'X' packets (process exit), and the remote target does not support the multi-process extensions, i.e., it does not report the PID of the process that exited. With the multi-target patch, that would result in a failed assertion, trying to find the inferior for process pid 0. gdb/ChangeLog: 2020-01-10 Tankut Baris Aktemur <tankut.baris.aktemur@intel.com> Pedro Alves <palves@redhat.com> * remote.c (remote_target::remote_parse_stop_reply) <W/X packets>: If no process is specified, return null_ptid instead of inferior_ptid. (remote_target::wait_as): Handle TARGET_WAITKIND_EXITED / TARGET_WAITKIND_SIGNALLED with no pid. gdb/testsuite/ChangeLog: 2020-01-10 Tankut Baris Aktemur <tankut.baris.aktemur@intel.com> Pedro Alves <palves@redhat.com> * gdb.server/connect-without-multi-process.exp: Also test continuing to end. |
||
Pedro Alves
|
31ba933ec6 |
Tweak handling of remote errors in response to resumption packet
With current master, on a Fedora 27 machine with a kernel with buggy watchpoint support, I see: (gdb) PASS: gdb.threads/watchpoint-fork.exp: parent: singlethreaded: hardware breakpoints work continue Continuing. warning: Remote failure reply: E01 Remote communication error. Target disconnected.: Connection reset by peer. (gdb) FAIL: gdb.threads/watchpoint-fork.exp: parent: singlethreaded: watchpoints work continue The program is not being run. (gdb) FAIL: gdb.threads/watchpoint-fork.exp: parent: singlethreaded: breakpoint after the first fork (the program is no longer running) The FAILs themselves aren't what's interesting here. What is interesting is that with the main multi-target patch applied, I was getting this: (gdb) PASS: gdb.threads/watchpoint-fork.exp: parent: singlethreaded: hardware breakpoints work continue Continuing. warning: Remote failure reply: E01 /home/pedro/brno/pedro/gdb/binutils-gdb-2/build/../src/gdb/inferior.c:285: internal-error: inferior* find_inferior_pid(process_stratum_target*, int): Assertion `pid != 0' failed. A problem internal to GDB has been detected, further debugging may prove unreliable. Quit this debugging session? (y or n) FAIL: gdb.threads/watchpoint-fork.exp: parent: singlethreaded: watchpoints work (GDB internal error) The problem is that in remote_target::wait_as, we're hitting this: switch (buf[0]) { case 'E': /* Error of some sort. */ /* We're out of sync with the target now. Did it continue or not? Not is more likely, so report a stop. */ rs->waiting_for_stop_reply = 0; warning (_("Remote failure reply: %s"), buf); status->kind = TARGET_WAITKIND_STOPPED; status->value.sig = GDB_SIGNAL_0; break; which leaves event_ptid as null_ptid. At the end of the function, we then reach: else if (status->kind != TARGET_WAITKIND_EXITED && status->kind != TARGET_WAITKIND_SIGNALLED) { if (event_ptid != null_ptid) record_currthread (rs, event_ptid); else event_ptid = inferior_ptid; <<<<< here } and the trouble is that with the multi-target patch, we'll get here with inferior_ptid as null_ptid too. That is done exactly to find these implicit assumptions that inferior_ptid is a good choice for default thread, which isn't generaly true. I first thought of fixing this in the "case 'E'" path, but, given that this "event_ptid = inferior_ptid" path is also taken when the remote target does not support threads at all, no thread-related packets or extensions, it's better to fix it in latter path, to handle all scenarios that miss reporting a thread. That's what this patch does. gdb/ChangeLog: 2020-01-10 Pedro Alves <palves@redhat.com> * remote.c (first_remote_resumed_thread): New. (remote_target::wait_as): Use it as default event_ptid instead of inferior_ptid. |
||
Pedro Alves
|
735fc2ca68 |
Use all_non_exited_inferiors in infrun.c
gdb/ChangeLog: 2020-01-10 Pedro Alves <palves@redhat.com> * infrun.c (handle_no_resumed): Use all_non_exited_inferiors. |
||
Pedro Alves
|
c17e02e1b5 |
tfile_target::close: trace_fd can't be -1
It's not possible to open a tfile target with an invalid trace_fd, and it's not possible to close a closed target, so this early return is dead. gdb/ChangeLog: 2020-01-10 Pedro Alves <palves@redhat.com> * tracefile-tfile.c (tfile_target::close): Assert that trace_fd is not -1. |