This patch adds a new S/390 specific segment type: PT_S390_PGSTE. For
binaries marked with that segment the kernel will allocate 4k page
tables. The only user so far will be qemu.
ld/ChangeLog:
2017-06-23 Andreas Krebbel <krebbel@linux.vnet.ibm.com>
* Makefile.in: Add s390.em as build dependency.
* emulparams/elf64_s390.sh (EXTRA_EM_FILE): Add s390.em.
* emultempl/s390.em: New file.
* gen-doc.texi: Add documentation for --s390-pgste option.
* ld.texinfo: Likewise.
include/ChangeLog:
2017-06-23 Andreas Krebbel <krebbel@linux.vnet.ibm.com>
* elf/s390.h (PT_S390_PGSTE): Define macro.
binutils/ChangeLog:
2017-06-23 Andreas Krebbel <krebbel@linux.vnet.ibm.com>
* readelf.c (get_s390_segment_type): Add support for the new
segment type PT_S390_PGSTE.
(get_segment_type): Call get_s390_segment_type.
elfcpp/ChangeLog:
2017-06-23 Andreas Krebbel <krebbel@linux.vnet.ibm.com>
* elfcpp.h (enum PT): Add PT_S390_PGSTE to enum.
bfd/ChangeLog:
2017-06-23 Andreas Krebbel <krebbel@linux.vnet.ibm.com>
* elf-s390.h: New file.
* elf64-s390.c (struct elf_s390_link_hash_table): Add params
field.
(elf_s390_additional_program_headers): New function.
(elf_s390_modify_segment_map): New function.
(bfd_elf_s390_set_options): New function.
(elf_backend_additional_program_headers)
(elf_backend_modify_segment_map): Add macro definitions.
To support IBT in Intel Control-flow Enforcement Technology (CET)
instructions:
https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-enforcement-technology-preview.pdf
#define GNU_PROPERTY_X86_FEATURE_1_AND 0xc0000002
#define GNU_PROPERTY_X86_FEATURE_1_IBT (1U << 0)
are added to GNU program properties to indicate that all executable
sections are compatible with IBT when ENDBR instruction starts each
valid target where an indirect branch instruction can land.
GNU_PROPERTY_X86_FEATURE_1_IBT is set on output only if it is set on
all relocatable inputs.
The followings changes are made to the Procedure Linkage Table (PLT):
1. For 64-bit x86-64, PLT is changed to
PLT0: push GOT[1]
bnd jmp *GOT[2]
nop
...
PLTn: endbr64
push namen_reloc_index
bnd jmp PLT0
together with the second PLT section:
PLTn: endbr64
bnd jmp *GOT[namen_index]
nop
BND prefix is also added so that IBT-enabled PLT is compatible with MPX.
2. For 32-bit x86-64 (x32) and i386, PLT is changed to
PLT0: push GOT[1]
jmp *GOT[2]
nop
...
PLTn: endbr64 # endbr32 for i386.
push namen_reloc_index
jmp PLT0
together with the second PLT section:
PLTn: endbr64 # endbr32 for i386.
jmp *GOT[namen_index]
nop
BND prefix isn't used since MPX isn't supported on x32 and BND registers
aren't used in parameter passing on i386.
GOT is an array of addresses. Initially, GOT[namen_index] is filled
with the address of the ENDBR instruction of the corresponding entry
in the first PLT section. The function, namen, is called via the
ENDBR instruction in the second PLT entry. GOT[namen_index] is updated
to the actual address of the function, namen, at run-time.
2 linker command line options are added:
1. -z ibtplt: Generate IBT-enabled PLT.
2. -z ibt: Generate GNU_PROPERTY_X86_FEATURE_1_IBT in GNU program
properties as well as IBT-enabled PLT.
bfd/
* elf32-i386.c (elf_i386_lazy_ibt_plt0_entry): New.
(elf_i386_lazy_ibt_plt_entry): Likewise.
(elf_i386_pic_lazy_ibt_plt0_entry): Likewise.
(elf_i386_non_lazy_ibt_plt_entry): Likewise.
(elf_i386_pic_non_lazy_ibt_plt_entry): Likewise.
(elf_i386_eh_frame_lazy_ibt_plt): Likewise.
(elf_i386_lazy_plt_layout): Likewise.
(elf_i386_non_lazy_plt_layout): Likewise.
(elf_i386_link_hash_entry): Add plt_second.
(elf_i386_link_hash_table): Add plt_second and
plt_second_eh_frame.
(elf_i386_allocate_dynrelocs): Use the second PLT if needed.
(elf_i386_size_dynamic_sections): Use .plt.got unwind info for
the second PLT. Check the second PLT.
(elf_i386_relocate_section): Use the second PLT to resolve
PLT reference if needed.
(elf_i386_finish_dynamic_symbol): Fill and use the second PLT if
needed.
(elf_i386_finish_dynamic_sections): Set sh_entsize on the
second PLT. Generate unwind info for the second PLT.
(elf_i386_plt_type): Add plt_second.
(elf_i386_get_synthetic_symtab): Support the second PLT.
(elf_i386_parse_gnu_properties): Support
GNU_PROPERTY_X86_FEATURE_1_AND.
(elf_i386_merge_gnu_properties): Support
GNU_PROPERTY_X86_FEATURE_1_AND. If info->ibt is set, turn
on GNU_PROPERTY_X86_FEATURE_1_IBT
(elf_i386_link_setup_gnu_properties): If info->ibt is set,
turn on GNU_PROPERTY_X86_FEATURE_1_IBT. Use IBT-enabled PLT
for info->ibtplt, info->ibt or GNU_PROPERTY_X86_FEATURE_1_IBT
is set on all relocatable inputs.
* elf64-x86-64.c (elf_x86_64_lazy_ibt_plt_entry): New.
(elf_x32_lazy_ibt_plt_entry): Likewise.
(elf_x86_64_non_lazy_ibt_plt_entry): Likewise.
(elf_x32_non_lazy_ibt_plt_entry): Likewise.
(elf_x86_64_eh_frame_lazy_ibt_plt): Likewise.
(elf_x32_eh_frame_lazy_ibt_plt): Likewise.
(elf_x86_64_lazy_ibt_plt): Likewise.
(elf_x32_lazy_ibt_plt): Likewise.
(elf_x86_64_non_lazy_ibt_plt): Likewise.
(elf_x32_non_lazy_ibt_plt): Likewise.
(elf_x86_64_get_synthetic_symtab): Support the second PLT.
(elf_x86_64_parse_gnu_properties): Support
GNU_PROPERTY_X86_FEATURE_1_AND.
(elf_x86_64_merge_gnu_properties): Support
GNU_PROPERTY_X86_FEATURE_1_AND. If info->ibt is set, turn
on GNU_PROPERTY_X86_FEATURE_1_IBT
(elf_x86_64_link_setup_gnu_properties): If info->ibt is set,
turn on GNU_PROPERTY_X86_FEATURE_1_IBT. Use IBT-enabled PLT
for info->ibtplt, info->ibt or GNU_PROPERTY_X86_FEATURE_1_IBT
is set on all relocatable inputs.
binutils/
* readelf.c (decode_x86_feature): New.
(print_gnu_property_note): Call decode_x86_feature on
GNU_PROPERTY_X86_FEATURE_1_AND.
* testsuite/binutils-all/i386/empty.d: New file.
* testsuite/binutils-all/i386/empty.s: Likewise.
* testsuite/binutils-all/i386/ibt.d: Likewise.
* testsuite/binutils-all/i386/ibt.s: Likewise.
* testsuite/binutils-all/x86-64/empty-x32.d: Likewise.
* testsuite/binutils-all/x86-64/empty.d: Likewise.
* testsuite/binutils-all/x86-64/empty.s: Likewise.
* testsuite/binutils-all/x86-64/ibt-x32.d: Likewise.
* testsuite/binutils-all/x86-64/ibt.d: Likewise.
* testsuite/binutils-all/x86-64/ibt.s: Likewise.
include/
* bfdlink.h (bfd_link_info): Add ibtplt and ibt.
* elf/common.h (GNU_PROPERTY_X86_FEATURE_1_AND): New.
(GNU_PROPERTY_X86_FEATURE_1_IBT): Likewise.
ld/
* Makefile.am (ELF_X86_DEPS): Add $(srcdir)/emulparams/cet.sh.
* Makefile.in: Regenerated.
* NEWS: Mention GNU_PROPERTY_X86_FEATURE_1_IBT, -z ibtplt
and -z ibt.
* emulparams/cet.sh: New file.
* testsuite/ld-i386/ibt-plt-1.d: Likewise.
* testsuite/ld-i386/ibt-plt-1.s: Likewise.
* testsuite/ld-i386/ibt-plt-2.s: Likewise.
* testsuite/ld-i386/ibt-plt-2a.d: Likewise.
* testsuite/ld-i386/ibt-plt-2b.d: Likewise.
* testsuite/ld-i386/ibt-plt-2c.d: Likewise.
* testsuite/ld-i386/ibt-plt-2d.d: Likewise.
* testsuite/ld-i386/ibt-plt-3.s: Likewise.
* testsuite/ld-i386/ibt-plt-3a.d: Likewise.
* testsuite/ld-i386/ibt-plt-3b.d: Likewise.
* testsuite/ld-i386/ibt-plt-3c.d: Likewise.
* testsuite/ld-i386/ibt-plt-3d.d: Likewise.
* testsuite/ld-i386/plt-main-ibt.dd: Likewise.
* testsuite/ld-i386/plt-pie-ibt.dd: Likewise.
* testsuite/ld-i386/property-x86-empty.s: Likewise.
* testsuite/ld-i386/property-x86-ibt.s: Likewise.
* testsuite/ld-i386/property-x86-ibt1a.d: Likewise.
* testsuite/ld-i386/property-x86-ibt1b.d: Likewise.
* testsuite/ld-i386/property-x86-ibt2.d: Likewise.
* testsuite/ld-i386/property-x86-ibt3a.d: Likewise.
* testsuite/ld-i386/property-x86-ibt3b.d: Likewise.
* testsuite/ld-i386/property-x86-ibt4.d: Likewise.
* testsuite/ld-i386/property-x86-ibt5.d: Likewise.
* testsuite/ld-x86-64/ibt-plt-1-x32.d: Likewise.
* testsuite/ld-x86-64/ibt-plt-1.d: Likewise.
* testsuite/ld-x86-64/ibt-plt-1.s: Likewise.
* testsuite/ld-x86-64/ibt-plt-2.s: Likewise.
* testsuite/ld-x86-64/ibt-plt-2a-x32.d: Likewise.
* testsuite/ld-x86-64/ibt-plt-2a.d: Likewise.
* testsuite/ld-x86-64/ibt-plt-2b-x32.d: Likewise.
* testsuite/ld-x86-64/ibt-plt-2b.d: Likewise.
* testsuite/ld-x86-64/ibt-plt-2c-x32.d: Likewise.
* testsuite/ld-x86-64/ibt-plt-2c.d: Likewise.
* testsuite/ld-x86-64/ibt-plt-2d-x32.d: Likewise.
* testsuite/ld-x86-64/ibt-plt-2d.d: Likewise.
* testsuite/ld-x86-64/ibt-plt-3.s: Likewise.
* testsuite/ld-x86-64/ibt-plt-3a-x32.d: Likewise.
* testsuite/ld-x86-64/ibt-plt-3a.d: Likewise.
* testsuite/ld-x86-64/ibt-plt-3b-x32.d: Likewise.
* testsuite/ld-x86-64/ibt-plt-3b.d: Likewise.
* testsuite/ld-x86-64/ibt-plt-3c-x32.d: Likewise.
* testsuite/ld-x86-64/ibt-plt-3c.d: Likewise.
* testsuite/ld-x86-64/ibt-plt-3d-x32.d: Likewise.
* testsuite/ld-x86-64/ibt-plt-3d.d: Likewise.
* testsuite/ld-x86-64/plt-main-ibt-now.rd: Likewise.
* testsuite/ld-x86-64/plt-main-ibt-x32.dd: Likewise.
* testsuite/ld-x86-64/plt-main-ibt.dd: Likewise.
* testsuite/ld-x86-64/property-x86-empty.s: Likewise.
* testsuite/ld-x86-64/property-x86-ibt.s: Likewise.
* testsuite/ld-x86-64/property-x86-ibt1a-x32.d: Likewise.
* testsuite/ld-x86-64/property-x86-ibt1a.d: Likewise.
* testsuite/ld-x86-64/property-x86-ibt1b-x32.d: Likewise.
* testsuite/ld-x86-64/property-x86-ibt1b.d: Likewise.
* testsuite/ld-x86-64/property-x86-ibt2-x32.d: Likewise.
* testsuite/ld-x86-64/property-x86-ibt2.d: Likewise.
* testsuite/ld-x86-64/property-x86-ibt3a-x32.d: Likewise.
* testsuite/ld-x86-64/property-x86-ibt3a.d: Likewise.
* testsuite/ld-x86-64/property-x86-ibt3b-x32.d: Likewise.
* testsuite/ld-x86-64/property-x86-ibt3b.d: Likewise.
* testsuite/ld-x86-64/property-x86-ibt4-x32.d: Likewise.
* testsuite/ld-x86-64/property-x86-ibt4.d: Likewise.
* testsuite/ld-x86-64/property-x86-ibt5-x32.d: Likewise.
* testsuite/ld-x86-64/property-x86-ibt5.d: Likewise.
* emulparams/elf32_x86_64.sh: Source emulparams/cet.sh.
(TINY_READONLY_SECTION): Add .plt.sec.
* emulparams/elf_i386.sh: Likewise.
* emulparams/elf_x86_64.sh: Source emulparams/cet.sh.
* ld.texinfo: Document -z ibtplt and -z ibt.
* testsuite/ld-i386/i386.exp: Run IBT and IBT PLT tests.
* testsuite/ld-x86-64/x86-64.exp: Likewise.
* testsuite/ld-x86-64/pr21481b.S (check): Updated for x32.
Since the BFD section count may not be cleared for shared objects during
linking, we should check the DYNAMIC bit for input shared objects.
bfd/
PR ld/21626
* elf-properties.c (_bfd_elf_link_setup_gnu_properties): Check
the DYNAMIC bit instead of bfd_count_sections.
ld/
PR ld/21626
* testsuite/ld-i386/i386.exp: Run ld/21626 tests.
* testsuite/ld-x86-64/x86-64.exp: Likewise.
For some pc-relative relocations we want to allow them under PIC mode while
a normal global symbol defined in the same dynamic object can still bind
externally through copy relocation. So, we should not allow pc-relative
relocation against such symbol.
SYMBOL_REFERENCES_LOCAL should be used and is more accurate than the original
individual checks.
bfd/
* elfnn-aarch64.c (elfNN_aarch64_final_link_relocate): Use
SYMBOL_REFERENCES_LOCAL.
ld/
* testsuite/ld-aarch64/aarch64-elf.exp: Update test name
* testsuite/ld-aarch64/pcrel.s: Add new testcases.
* testsuite/ld-aarch64/pcrel_pic_undefined.d: Update the expected
warnings.
* testsuite/ld-aarch64/pcrel_pic_defined_local.d: Rename ...
* testsuite/ld-aarch64/pcrel_pic_defined.d: ... to this.
Update expected warnings.
ELF Linker command line option to set stack size is "-z stack-size=SIZE",
not "-z stacksize=SIZE".
* exsup.c (elf_shlib_list_options): Display "-z stack-size=SIZE"
instead of "-z stacksize=SIZE".
As discussed at the PR, this patch tries to avoid COPY relocation generation
and propagate the original relocation into runtime if it was relocating on
writable section. The ELIMINATE_COPY_RELOCS has been set to true and it's
underlying infrastructure has been improved so that the COPY reloc elimination
at least working on absoluate relocations (ABS64) on AArch64.
BFD linker copy relocation elimination framwork requires the backend to always
allocate dynrelocs for all those relocation types that are possible to introduce
copy relocations. This is for adjust_dynamic_symbol hook to be able to get all
symbol reference information. Should one symbol is referenced by more than one
relocations, if there is any of them needs copy relocation then linker should
generate it.
bfd/
PR ld/21532
* elfnn-aarch64.c (ELIMINATE_COPY_RELOCS): Set to 1.
(elfNN_aarch64_final_link_relocate): Also propagate relocations to
runtime for if there needs copy relocation elimination.
(need_copy_relocation_p): New function. Return true for symbol with
pc-relative references and if it's against read-only sections.
(elfNN_aarch64_adjust_dynamic_symbol): Use need_copy_relocation_p.
(elfNN_aarch64_check_relocs): Allocate dynrelocs for relocation types
that are related with accessing external objects.
(elfNN_aarch64_gc_sweep_hook): Sync the relocation types with the change
in elfNN_aarch64_check_relocs.
ld/
* testsuite/ld-aarch64/copy-reloc-exe-2.s: New test source file.
* testsuite/ld-aarch64/copy-reloc-2.d: New test.
* testsuite/ld-aarch64/copy-reloc-exe-eliminate.s: New test source file.
* testsuite/ld-aarch64/copy-reloc-eliminate.d: New test.
* testsuite/ld-aarch64/copy-reloc-so.s: Define new global objects.
* testsuite/ld-aarch64/aarch64-elf.exp: Run new tests.
ld-gc/pr20022.d requires support for dynamic relocations in .text
section.
PR ld/20022
* testsuite/ld-gc/pr20022.d: Skip on targets without dynamic
relocations in .text section.
Symbol lookup in linker will always fail on targets with leading char
in symbol name since __start_SECNAME and __stop_SECNAME in C may be
___start_SECNAME and ___stop_SECNAME in assembly. Also tests with
--gc-sections always fails on targets without --gc-sections support.
* testsuite/ld-elf/pr21562a.d: Skip on targets with leading char
in in symbol name or without --gc-sections.
* testsuite/ld-elf/pr21562b.d: Likewise.
* testsuite/ld-elf/pr21562c.d: Likewise.
* testsuite/ld-elf/pr21562d.d: Likewise.
* testsuite/ld-elf/pr21562i.d: Likewise.
* testsuite/ld-elf/pr21562j.d: Likewise.
* testsuite/ld-elf/pr21562k.d: Likewise.
* testsuite/ld-elf/pr21562l.d: Likewise.
* testsuite/ld-elf/pr21562m.d: Likewise.
* testsuite/ld-elf/pr21562n.d: Likewise.
* testsuite/ld-elf/pr21562e.d: Skip on targets with leading char
in symbol name.
* testsuite/ld-elf/pr21562f.d: Likewise.
* testsuite/ld-elf/pr21562g.d: Likewise.
* testsuite/ld-elf/pr21562h.d: Likewise.
Symbol lookup in linker will always fail on targets with leading char
in symbol name since __start_SECNAME and __stop_SECNAME in C may be
___start_SECNAME and ___stop_SECNAME in assembly.
* testsuite/ld-elf/sizeofa.d: Skip on targets with leading char
in symbol name.
* testsuite/ld-elf/sizeofb.d: Likewise.
* testsuite/ld-elf/startofa.d: Likewise.
* testsuite/ld-elf/startofb.d: Likewise.
In particular this adds support for the epiphany-rtems target.
bfd/
* config.bfd (epiphany-*-elf): Accept epiphany-*-*.
ld/
* configure.tgt (epiphany-*-elf): Accept epiphany-*-*.
__start_SECNAME and __stop_SECNAME shouldn't be defined for "ld -r".
* ldlang.c (lang_set_startof): Skip if config.build_constructors
is FALSE.
* testsuite/ld-elf/sizeofc.d: New file.
* testsuite/ld-elf/startofc.d: Likewise.
Currently, linker will define __start_SECNAME and __stop_SECNAME symbols
only for orphaned sections.
However, during garbage collection, ELF linker marks all sections with
references to __start_SECNAME and __stop_SECNAME symbols as used even
when section SECNAME isn't an orphaned section and linker won't define
__start_SECNAME nor __stop_SECNAME. And ELF linker stores the first
input section whose name matches __start_SECNAME or __stop_SECNAME in
u.undef.section for garbage collection. If these symbols are provided
in linker script, u.undef.section is set to the section where they will
defined by linker script, which leads to the incorrect output.
This patch changes linker to always define referenced __start_SECNAME and
__stop_SECNAME if the input section name is the same as the output section
name, which is always true for orphaned sections, and SECNAME is a C
identifier. Also __start_SECNAME and __stop_SECNAME symbols are marked
as hidden by ELF linker so that __start_SECNAME and __stop_SECNAME symbols
for section SECNAME in different modules are unique. For garbage
collection, ELF linker stores the first matched input section in the
unused vtable field.
bfd/
PR ld/20022
PR ld/21557
PR ld/21562
PR ld/21571
* elf-bfd.h (elf_link_hash_entry): Add start_stop. Change the
vtable field to a union.
(_bfd_elf_is_start_stop): Removed.
* elf32-i386.c (elf_i386_convert_load_reloc): Also check for
__start_SECNAME and __stop_SECNAME symbols.
* elf64-x86-64.c (elf_x86_64_convert_load_reloc): Likewise.
* elflink.c (_bfd_elf_is_start_stop): Removed.
(_bfd_elf_gc_mark_rsec): Check start_stop instead of calling
_bfd_elf_is_start_stop.
(elf_gc_propagate_vtable_entries_used): Skip __start_SECNAME and
__stop_SECNAME symbols. Updated.
(elf_gc_smash_unused_vtentry_relocs): Likewise.
(bfd_elf_gc_record_vtinherit): Likewise.
(bfd_elf_gc_record_vtentry): Likewise.
ld/
PR ld/20022
PR ld/21557
PR ld/21562
PR ld/21571
* ld.texinfo: Update __start_SECNAME/__stop_SECNAME symbols.
* ldlang.c (lang_insert_orphan): Move handling of __start_SECNAME
and __stop_SECNAME symbols to ...
(lang_set_startof): Here. Also define __start_SECNAME and
__stop_SECNAME for -Ur.
* emultempl/elf32.em (gld${EMULATION_NAME}_after_open): Mark
referenced __start_SECNAME and __stop_SECNAME symbols as hidden
and set start_stop for garbage collection.
* testsuite/ld-elf/pr21562a.d: New file.
* testsuite/ld-elf/pr21562a.s: Likewise.
* testsuite/ld-elf/pr21562a.t: Likewise.
* testsuite/ld-elf/pr21562b.d: Likewise.
* testsuite/ld-elf/pr21562b.s: Likewise.
* testsuite/ld-elf/pr21562b.t: Likewise.
* testsuite/ld-elf/pr21562c.d: Likewise.
* testsuite/ld-elf/pr21562c.t: Likewise.
* testsuite/ld-elf/pr21562d.d: Likewise.
* testsuite/ld-elf/pr21562d.t: Likewise.
* testsuite/ld-elf/pr21562e.d: Likewise.
* testsuite/ld-elf/pr21562f.d: Likewise.
* testsuite/ld-elf/pr21562g.d: Likewise.
* testsuite/ld-elf/pr21562h.d: Likewise.
* testsuite/ld-elf/pr21562i.d: Likewise.
* testsuite/ld-elf/pr21562j.d: Likewise.
* testsuite/ld-elf/pr21562k.d: Likewise.
* testsuite/ld-elf/pr21562l.d: Likewise.
* testsuite/ld-elf/pr21562m.d: Likewise.
* testsuite/ld-elf/pr21562n.d: Likewise.
* testsuite/ld-gc/pr20022.d: Likewise.
* testsuite/ld-gc/pr20022a.s: Likewise.
* testsuite/ld-gc/pr20022b.s: Likewise.
* testsuite/ld-gc/gc.exp: Run PR ld/20022 tests.
* testsuite/ld-gc/pr19161.d: Also accept local __start_SECNAME
symbol.
* testsuite/ld-gc/start.d: Likewise.
* testsuite/ld-x86-64/lea1a.d: Updated.
* testsuite/ld-x86-64/lea1b.d: Updated.
* testsuite/ld-x86-64/lea1d.d: Updated.
* testsuite/ld-x86-64/lea1e.d: Likewise.
Test -Ur with __start_SECNAME, __stop_SECNAME, .startof.SECNAME and
.sizeof.SECNAME. __start_SECNAME and __stop_SECNAME should be defined
to the start and the end of section SECNAME. .startof.SECNAME and
.sizeof.SECNAME should be undefined.
* testsuite/ld-elf/sizeof.d: New file.
* testsuite/ld-elf/sizeof.s: Likewise.
* testsuite/ld-elf/startof.d: Likewise.
* testsuite/ld-elf/startof.s: Likewise.
arm-none-eabi-ld supports shared libraries. However, the toolchain may be
configured to generate statically linked executable by default.
It is required to have --no-dynamic-linker option before adding dynamic symbol
to static executable.
For dynamically linked executable, the behavior won't change.
ld/ChangeLog
2017-06-13 Renlin Li <renlin.li@arm.com>
* testsuite/ld-elf/shared.exp (build_tests): Add --no-dynamic-linker
option to rdynamic-1 and dynamic-1 tests.
This reverts commit bc327528fd.
This patch can only be committed after PC-relative relocation types
support on copy relocation elimination is also completed.
In the case of static relocation, the GOT entries are fixed at link time
and are set by the linker.
In order to compute the right TLS offset it is necessary to add TCB_SIZE
to the offset, just in case the dynamic linker is not expected to be
executed (static linked case).
This problem does appear in dynamic linked applications, as the dynamic
linker is adding this TCB_SIZE by operating the TCB block structure.
Problem revealed in GLIBC with static linking.
bfd/ChangeLog:
Cupertino Miranda <cmiranda@synopsys.com>
arc-got.h (relocate_fix_got_relocs_for_got_info): Added TCB_SIZE to
patched section contents for TLS IE reloc.
elf32-arc.c: Remove TCB_SIZE preprocessor macro.
Rebase to 0006
Dump local IFUNC functions in the map file when generating IRELATIVE
relocations if -Map is used.
bfd/
* elf32-i386.c (elf_i386_check_relocs): Set local IFUNC symbol
name. Use local IFUNC symbol name string to report unsupported
non-PIC call to IFUNC function.
(elf_i386_relocate_section): Dump local IFUNC name with minfo
when generating R_386_IRELATIVE relocation.
(elf_i386_finish_dynamic_symbol): Likewise.
* elf_x86_64_check_relocs (elf_x86_64_check_relocs): Set local
IFUNC symbol name.
(elf_x86_64_relocate_section): Dump local IFUNC name with minfo
when generating R_X86_64_IRELATIVE relocation.
(elf_x86_64_finish_dynamic_symbol): Likewise.
ld/
* testsuite/ld-ifunc/ifunc-1-local-x86.d: Pass
"-Map tmpdir/ifunc-1-local-x86.map" to ld and check
ifunc-1-local-x86.map.
* testsuite/ld-ifunc/ifunc-1-x86.d: Pass
"-Map tmpdir/ifunc-1-x86.map" to ld and check ifunc-1-x86.map.
* testsuite/ld-ifunc/ifunc-1-local-x86.map: New file.
* testsuite/ld-ifunc/ifunc-1-x86.map: Likewise.
As discussed at the PR, this patch tries to avoid COPY relocation generation
and propagate the original relocation into runtime if it was relocating on
writable section. The ELIMINATE_COPY_RELOCS has been set to true and it's
underlying infrastructure has been improved so that the COPY reloc elimination
at least working on absoluate relocations (ABS64) after this patch.
bfd/
PR ld/21532
* elfnn-aarch64.c (ELIMINATE_COPY_RELOCS): Set to 1.
(elfNN_aarch64_final_link_relocate): Also propagate relocations to
runtime for copy relocation elimination cases.
(alias_readonly_dynrelocs): New function.
(elfNN_aarch64_adjust_dynamic_symbol): Keep the dynamic relocs instead
of generating copy relocation if it is not against read-only sections.
(elfNN_aarch64_check_relocs): Likewise.
ld/
* testsuite/ld-aarch64/copy-reloc-eliminate.d: New test.
* testsuite/ld-aarch64/copy-reloc-exe-eliminate.s: New test source file.
* testsuite/ld-aarch64/aarch64-elf.exp: Run new testcase.
Various targets fail this testcase due to ld not supporting binary output.
* testsuite/ld-unique/pr21529.d: xfail aarch64, arm, hppa, ia64,
nds32, and score. Match any output.
This commit adds a new linker feature: the ability to resolve section
groups as part of a relocatable link.
Currently section groups are automatically resolved when performing a
final link, and are carried through when performing a relocatable link.
By carried through this means that one copy of each section group (from
all the copies that might be found in all the input files) is placed
into the output file. Sections that are part of a section group will
not match input section specifiers within a linker script and are
forcibly kept as separate sections.
There is a slight resemblance between section groups and common
section. Like section groups, common sections are carried through when
performing a relocatable link, and resolved (allocated actual space)
only at final link time.
However, with common sections there is an ability to force the linker to
allocate space for the common sections when performing a relocatable
link, there's currently no such ability for section groups.
This commit adds such a mechanism. This new facility can be accessed in
two ways, first there's a command line switch --force-group-allocation,
second, there's a new linker script command FORCE_GROUP_ALLOCATION. If
one of these is used when performing a relocatable link then the linker
will resolve the section groups as though it were performing a final
link, the section group will be deleted, and the members of the group
will be placed like normal input sections. If there are multiple copies
of the group (from multiple input files) then only one copy of the group
members will be placed, the duplicate copies will be discarded.
Unlike common sections that have the --no-define-common command line
flag, and INHIBIT_COMMON_ALLOCATION linker script command there is no
way to prevent group resolution during a final link, this is because the
ELF gABI specifically prohibits the presence of SHT_GROUP sections in a
fully linked executable. However, the code as written should make
adding such a feature trivial, setting the new resolve_section_groups
flag to false during a final link should work as you'd expect.
bfd/ChangeLog:
* elf.c (_bfd_elf_make_section_from_shdr): Don't initially mark
SEC_GROUP sections as SEC_EXCLUDE.
(bfd_elf_set_group_contents): Replace use of abort with an assert.
(assign_section_numbers): Use resolve_section_groups flag instead
of relocatable link type.
(_bfd_elf_init_private_section_data): Use resolve_section_groups
flag instead of checking the final_link flag for part of the
checks in here. Fix white space as a result.
* elflink.c (elf_link_input_bfd): Use resolve_section_groups flag
instead of relocatable link type.
(bfd_elf_final_link): Likewise.
include/ChangeLog:
* bfdlink.h (struct bfd_link_info): Add new resolve_section_groups
flag.
ld/ChangeLog:
* ld.h (struct args_type): Add force_group_allocation field.
* ldgram.y: Add support for FORCE_GROUP_ALLOCATION.
* ldlex.h: Likewise.
* ldlex.l: Likewise.
* lexsup.c: Likewise.
* ldlang.c (unique_section_p): Check resolve_section_groups flag
not the relaxable link flag.
(lang_add_section): Discard section groups when we're resolving
groups. Clear the SEC_LINK_ONCE flag if we're resolving section
groups.
* ldmain.c (main): Initialise resolve_section_groups flag in
link_info based on command line flags.
* testsuite/ld-elf/group11.d: New file.
* testsuite/ld-elf/group12.d: New file.
* testsuite/ld-elf/group12.ld: New file.
* NEWS: Mention new features.
* ld.texinfo (Options): Document --force-group-allocation.
(Miscellaneous Commands): Document FORCE_GROUP_ALLOCATION.
This option switches on ld.bfd --enable-new-dtags by default.
* configure.ac: Add --enable-new-dtags option.
* ldmain.c: Set link_info.new_dtags to 1 if when --enable-new-dtags is
switched on.
* configure: Regenerate.
* config.in: Regenerate.
Since it is incorrect to convert
bnd call *foo@GOTPCREL(%rip)
to
bnd nop
call foo
this patch removes the "-z prefix-nop" option from x86 linker.
* emulparams/call_nop.sh: Remove -z prefix-nop.
* ld.texinfo: Likewise.
* testsuite/ld-i386/call3c.d: Check for linker error.
* testsuite/ld-x86-64/call1c.d: Likewise.
ELFv2 functions with localentry:0 are those with a single entry point,
ie. global entry == local entry, and that have no requirement on r2 or
r12, and guarantee r2 is unchanged on return. Such an external
function can be called via the PLT without saving r2 or restoring it
on return, avoiding a common load-hit-store for small functions. The
optimization is attractive. The TOC pointer load-hit-store is a major
reason why calls to small functions that need no register saves, or
with shrink-wrap, no register saves on a fast path, are slow on
powerpc64le.
To be safe, this optimization needs ld.so support to check that the
run-time matches link-time function implementation. If a function
in a shared library with st_other localentry non-zero is called
without saving and restoring r2, r2 will be trashed on return, leading
to segfaults. For that reason the optimization does not happen for
weak functions since a weak definition is a fairly solid hint that the
function will likely be overridden. I'm also not enabling the
optimization by default unless glibc-2.26 is detected, which should
have the ld.so checks implemented.
bfd/
* elf64-ppc.c (struct ppc_link_hash_table): Add has_plt_localentry0.
(ppc64_elf_merge_symbol_attribute): Merge localentry bits from
dynamic objects.
(is_elfv2_localentry0): New function.
(ppc64_elf_tls_setup): Default params->plt_localentry0.
(plt_stub_size): Adjust size for tls_get_addr_opt stub.
(build_tls_get_addr_stub): Use a simpler stub when r2 is not saved.
(ppc64_elf_size_stubs): Leave stub_type as ppc_stub_plt_call for
optimized localentry:0 stubs.
(ppc64_elf_build_stubs): Save r2 in ELFv2 __glink_PLTresolve.
(ppc64_elf_relocate_section): Leave nop unchanged for optimized
localentry:0 stubs.
(ppc64_elf_finish_dynamic_sections): Set PPC64_OPT_LOCALENTRY in
DT_PPC64_OPT.
* elf64-ppc.h (struct ppc64_elf_params): Add plt_localentry0.
include/
* elf/ppc64.h (PPC64_OPT_LOCALENTRY): Define.
ld/
* emultempl/ppc64elf.em (params): Init plt_localentry0 field.
(enum ppc64_opt): New, replacing OPTION_* defines. Add
OPTION_PLT_LOCALENTRY, and OPTION_NO_PLT_LOCALENTRY.
(PARSE_AND_LIST_*): Support --plt-localentry and --no-plt-localentry.
* testsuite/ld-powerpc/elfv2so.d: Update.
* testsuite/ld-powerpc/powerpc.exp (TLS opt 5): Use --no-plt-localentry.
* testsuite/ld-powerpc/tlsopt5.d: Update.
This patch allows AArch64 LD defaulting to ILP32 if it is configured with
aarch64*-linux-gnu_ilp32.
ld/
* configure.tgt: Set "targ_emul" to "aarch64linux32b" for
aarch64_be-*-linux-gnu_ilp32. Set "targ_emul" to "aarch64linux32" for
aarch64-*-linux-gnu_ilp32.
Verify that debug section is removed by garbage collection when there
is a .note.gnu.property section.
* testsuite/ld-i386/i386.exp: Run property-x86-4a and
property-x86-4b.
* testsuite/ld-x86-64/x86-64.exp: Likewise.
* testsuite/ld-i386/property-x86-4a.d: New file.
* testsuite/ld-i386/property-x86-4a.s: Likewise.
* testsuite/ld-i386/property-x86-4b.d: Likewise.
* testsuite/ld-i386/property-x86-4b.s: Likewise.
* testsuite/ld-x86-64/property-x86-4a.d: Likewise.
* testsuite/ld-x86-64/property-x86-4a.s: Likewise.
* testsuite/ld-x86-64/property-x86-4b.d: Likewise.
* testsuite/ld-x86-64/property-x86-4b.s: Likewise.
PR ld/21472
ld * emulparams/avrxmega3.sh (RODATA_PM_OFFSET): Set to 0x8000.
* scripttempl/avr.sc
(__RODATA_PM_OFFSET__) [RODATA_PM_OFFSET]: Use RODATA_PM_OFFSET
as default if not already defined.
(.data) [!RODATA_PM_OFFSET]: Don't include .rodata and friends.
(.rodata) [RODATA_PM_OFFSET]: Put at an offset of
__RODATA_PM_OFFSET__.
gas * config/tc-avr.c (mcu_types): Add entries for: attiny416,
attiny417, attiny816, attiny817.
PR ld/21251
* ldfile.c (ldfile_add_library_path): If the path starts with
$SYSROOT then use the sysroot as the real prefix.
* ldlang.c (lang_add_input_file): Treat $SYSROOT in the same
way as =.
* ldlex.l: Add $SYSROOT as allow prefix for a filename.
* ld.texinfo (-L): Document that $SYSROOT acts like = when
prefixing a library search path.
(INPUT): Likewise.
* testsuite/ld-scripts/sysroot-prefix.exp: Add $SYSROOT prefix
tests.
-gdwarf-sections doesn't work on targets that lack support to emit
address size relative relocs. The testcase as it was avoided
-gdwarf-sections doing anything by providing a non-empty .debug_line.
It's better to not use -gdwarf-sections. Also, the testcase failed
to match the output for 16-bit address targets like avr.
PR ld/20882
* testsuite/ld-gc/pr20882.d: Don't pass -gdwarf-sections to gas.
Allow for 16-bit address targets and match expected data fully.
* testsuite/ld-gc/pr20882a.s: Delete .debug_line section.
* testsuite/ld-gc/pr20882b.s: Likewise.
* testsuite/ld-gc/pr20882c.s: Likewise.
If a debug section is referenced by a kept debug section, it should
also be kept.
Some targets, like mips, keep input files when there are some special
sections, like .gnu.attributes, even if input file is unused otherwise.
In this case, all debug sections are kept. The new test will fail on
such targets. We can either fix those targets or XFAIL the test.
bfd/
PR ld/20882
* elflink.c (elf_gc_mark_debug_section): New function.
(_bfd_elf_gc_mark_extra_sections): Mark any debug sections
referenced by kept debug sections.
ld/
PR ld/20882
* testsuite/ld-gc/gc.exp: Run pr20882.
* testsuite/ld-gc/pr20882.d: New file.
* testsuite/ld-gc/pr20882a.s: Likewise.
* testsuite/ld-gc/pr20882b.s: Likewise.
* testsuite/ld-gc/pr20882c.s: Likewise.
dynamic_ref_after_ir_def is a little odd compared to other symbol
flags in that as the name suggests, it is set only for certain
references after a definition. It turns out that setting a flag for
any non-ir reference from a dynamic object can be used to solve the
problem for which this flag was invented, which I think is a cleaner.
This patch does that, and sets non_ir_ref only for regular object
references.
include/
* bfdlink.h (struct bfd_link_hash_entry): Update non_ir_ref
comment. Rename dynamic_ref_after_ir_def to non_ir_ref_dynamic.
ld/
* plugin.c (is_visible_from_outside): Use non_ir_ref_dynamic.
(plugin_notice): Set non_ir_ref for references from regular
objects, non_ir_ref_dynamic for references from dynamic objects.
bfd/
* elf64-ppc.c (add_symbol_adjust): Transfer non_ir_ref_dynamic.
* elflink.c (elf_link_add_object_symbols): Update to use
non_ir_ref_dynamic.
(elf_link_input_bfd): Test non_ir_ref_dynamic in addition to
non_ir_ref.
* linker.c (_bfd_generic_link_add_one_symbol): Likewise.
If there are more than GNU property note in an input, we should merge
X86_ISA_1_USED and X86_ISA_1_NEEDED properties.
bfd/
* elf32-i386.c (elf_i386_parse_gnu_properties): Merge
GNU_PROPERTY_X86_ISA_1_USED and GNU_PROPERTY_X86_ISA_1_NEEDED
properties.
* elf64-x86-64.c (elf_x86_64_parse_gnu_properties): Likewise.
ld/
* testsuite/ld-i386/i386.exp: Run property-x86-3.
* testsuite/ld-x86-64/x86-64.exp: Likewise.
* testsuite/ld-i386/property-x86-3.d: New file.
* testsuite/ld-i386/property-x86-3.s: Likewise.
* testsuite/ld-x86-64/property-x86-3.d: Likewise.
* testsuite/ld-x86-64/property-x86-3.s: Likewise.
Rename .plt.bnd to .plt.sec to indicate that this is used as the second
PLT section. There is no change in run-time behavior. We also scan the
.plt.sec section to synthesize PLT symbols.
bfd/
* elf64-x86-64.c (elf_x86_64_link_hash_entry): Rename plt_bnd
to plt_second.
(elf_x86_64_link_hash_table): Rename plt_bnd/plt_bnd_eh_frame
to plt_second/plt_second_eh_frame.
(elf_x86_64_link_hash_newfunc): Updated.
(elf_x86_64_allocate_dynrelocs): Likewise.
(elf_x86_64_size_dynamic_sections): Likewise.
(elf_x86_64_relocate_section): Likewise.
(elf_x86_64_finish_dynamic_symbol): Likewise.
(elf_x86_64_finish_dynamic_sections): Likewise.
(elf_x86_64_plt_type): Rename plt_bnd to plt_second.
(elf_x86_64_get_synthetic_symtab): Updated. Also scan the
.plt.sec section.
(elf_backend_setup_gnu_properties): Updated. Create the
.plt.sec section instead of the .plt.sec section.
ld/
* emulparams/elf_x86_64.sh (TINY_READONLY_SECTION): Replace
.plt.bnd with .plt.sec.
* testsuite/ld-x86-64/bnd-ifunc-1-now.d: Likewise.
* testsuite/ld-x86-64/bnd-ifunc-2-now.d: Likewise.
* testsuite/ld-x86-64/bnd-ifunc-2.d: Likewise.
* testsuite/ld-x86-64/bnd-plt-1-now.d: Likewise.
* testsuite/ld-x86-64/bnd-plt-1.d: Likewise.
* testsuite/ld-x86-64/mpx3.dd: Likewise.
* testsuite/ld-x86-64/mpx3n.dd: Likewise.
* testsuite/ld-x86-64/mpx4.dd: Likewise.
* testsuite/ld-x86-64/mpx4n.dd: Likewise.
* testsuite/ld-x86-64/plt-main-bnd-now.rd: Likewise.
* testsuite/ld-x86-64/pr21038b-now.d: Likewise.
* testsuite/ld-x86-64/pr21038b.d: Likewise.
* testsuite/ld-x86-64/pr21038c-now.d: Likewise.
* testsuite/ld-x86-64/pr21038c.d: Likewise.
This patch partially reverses:
commit 25070364b0
Author: H.J. Lu <hjl.tools@gmail.com>
Date: Sat May 16 07:00:21 2015 -0700
Don't generate PLT relocations for now binding
to support LD_AUDIT and LD_PROFILE with -z now. If there is an existing
GOT relocation, it is still used to avoid PLT relocation against the same
function symbol.
bfd/
* elf32-i386.c (elf_i386_allocate_dynrelocs): Partially revert
commit 25070364b0.
* elf64-x86-64.c (elf_x86_64_allocate_dynrelocs): Likewse.
ld/
* testsuite/ld-i386/plt-pic2.dd: Updated.
* testsuite/ld-i386/plt2.dd: Likewise.
* testsuite/ld-i386/plt2.rd: Likewise.
* testsuite/ld-i386/pr17689now.rd: Likewise.
* testsuite/ld-ifunc/ifunc-16-i386-now.d: Likewise.
* testsuite/ld-ifunc/ifunc-16-x86-64-now.d: Likewise.
* testsuite/ld-ifunc/pr17154-i386-now.d: Likewise.
* testsuite/ld-ifunc/pr17154-x86-64-now.d: Likewise.
* testsuite/ld-x86-64/bnd-branch-1-now.d: Likewise.
* testsuite/ld-x86-64/bnd-ifunc-2-now.d: Likewise.
* testsuite/ld-x86-64/bnd-plt-1-now.d: Likewise.
* testsuite/ld-x86-64/plt2.dd: Likewise.
* testsuite/ld-x86-64/plt2.rd: Likewise.
* testsuite/ld-x86-64/pr17689now.rd: Likewise.
* testsuite/ld-x86-64/pr21038b-now.d: Likewise.
* testsuite/ld-x86-64/pr21038c-now.d: Likewise.
All linker targets based on elf32-i386 should check relocations after
opening all inputs since this is how elf32-i386 works.
* emulparams/i386lynx.sh (CHECK_RELOCS_AFTER_OPEN_INPUT): Set
to yes.
* emulparams/i386moss.sh (CHECK_RELOCS_AFTER_OPEN_INPUT):
Likewise.
* emulparams/i386nw.sh (CHECK_RELOCS_AFTER_OPEN_INPUT): Likewise.
When -z bndplt is used, we must use the .plt.bnd entry for IFUNC function
address.
bfd/
PR ld/21481
* elf64-x86-64.c (elf_x86_64_finish_dynamic_symbol): Use .plt.bnd
for IFUNC function address.
ld/
PR ld/21481
* testsuite/ld-x86-64/pr21481a.c: New file.
* testsuite/ld-x86-64/pr21481b.S: Likewise.
* testsuite/ld-x86-64/x86-64.exp: Run PR ld/21481 tests.
On x86-64, the procedure linkage table (PLT) is used to
1. Call external function.
2. Call internal IFUNC function. The best implementation is selected
for the target processor at run-time.
3. Act as the canonical function address.
4. Support LD_AUDIT to audit external function calls.
5. Support LD_PROFILE to profile external function calls.
PLT looks like:
PLT0: push GOT[1]
jmp *GOT[2]
nop
PLT1: jmp *GOT[name1_index]
push name1_reloc_index
jmp PLT0
GOT is an array of addresses. Initially the GOT entry of name1 is
filled with the address of the "push name1_reloc_index" instruction.
The function, name1, is called via "jmp *GOT[name1]" in the PLT entry.
Even when lazy binding is disabled by "-z now", the PLT0 entry may
still be used with LD_AUDIT or LD_PROFILE if PLT entry is used for
canonical function address.
When linker is invoked with "-z bndplt", a different PLT layout in .plt
is used:
PLT0: push GOT[1]
bnd jmp *GOT[2]
nop
PLT1: push name1_reloc_index
bnd jmp PLT0
nop
together with a second PLT section, .pl.bnd:
PLT1: bnd jmp *GOT[name1_index]
nop
where the GOT entry of name1 is filled with the address of the push
instruction of the corresponding entry in .plt.
1. With lazy binding, when the external function, name1, is called the
first time, dynamic linker is called via PLT0 to update GOT[name1_index]
with the actual address of name1 and transfers control to name1
afterwards.
2. PLT is also used to call a local IFUNC function, name1, run-time
loader updates GOT[name1_index] when loading the module.
This patch
1. Remove PLT layout configurations from x86-64 backend_data.
2. Add generic, lay and non-lazy PLT layout configurations to x86-64
link_hash_table. Generic PLT layout includes the PLT entry templates,
information how to update the first instruction in PLT and PLT eh_frame
informaton, which are initialized in x86-64 setup_gnu_properties, based
on "-z bndplt" and target selection. PLT section alignment is also set
to PLT entry size for non-NaCl target.
3. Remove elf_x86_64_create_dynamic_sections. create_dynamic_sections
isn't always called, but GOT relocations need GOT relocations. Instead,
create all x86-64 specific dynamic sections with alignment to their entry
size in x86-64 setup_gnu_properties, which initializes elf.dynobj, so
that x86-64 check_relocs can be simplified.
4. Rewrite elf_x86_64_get_synthetic_symtab to check PLT sections against
all dynamic relocations to support both lazy and non-lazy PLTs.
There is no change in PLT. The only externally visible change is the
improvement of synthetic PLT symbols for .plt.got.
bfd/
* elf64-x86-64.c (PLT_ENTRY_SIZE): Renamed to ...
(LAZY_PLT_ENTRY_SIZE): This.
(NON_LAZY_PLT_ENTRY_SIZE): New.
(elf_x86_64_plt0_entry): Renamed to ...
(elf_x86_64_lazy_plt0_entry): This.
(elf_x86_64_plt_entry): Renamed to ...
(elf_x86_64_lazy_plt_entry): This.
(elf_x86_64_bnd_plt0_entry): Renamed to ...
(elf_x86_64_lazy_bnd_plt0_entry): This.
(elf_x86_64_legacy_plt_entry): Removed.
(elf_x86_64_bnd_plt_entry): Renamed to ...
(elf_x86_64_lazy_bnd_plt_entry): This.
(elf_x86_64_legacy_plt2_entry): Renamed to ...
(elf_x86_64_non_lazy_plt_entry): This.
(elf_x86_64_bnd_plt2_entry): Renamed to ...
(elf_x86_64_non_lazy_bnd_plt_entry): This.
(elf_x86_64_eh_frame_plt): Renamed to ...
(elf_x86_64_eh_frame_lazy_plt): This.
(elf_x86_64_eh_frame_bnd_plt): Renamed to ...
(elf_x86_64_eh_frame_lazy_bnd_plt): This.
(elf_x86_64_eh_frame_plt_got): Renamed to ...
(elf_x86_64_eh_frame_non_lazy_plt): This.
(elf_x86_64_lazy_plt_layout): New.
(elf_x86_64_non_lazy_plt_layout): Likewise.
(elf_x86_64_plt_layout): Likewise.
(elf_x86_64_backend_data): Remove PLT layout information. Add
os for target system.
(GET_PLT_ENTRY_SIZE): Removed.
(elf_x86_64_lazy_plt): New.
(elf_x86_64_non_lazy_plt): Likewise.
(elf_x86_64_lazy_bnd_plt): Likewise.
(elf_x86_64_non_lazy_bnd_plt): Likewise.
(elf_x86-64_arch_bed): Updated.
(elf_x86_64_link_hash_table): Add plt, lazy_plt and non_lazy_plt.
(elf_x86_64_create_dynamic_sections): Removed.
(elf_x86_64_check_relocs): Don't check elf.dynobj. Don't call
_bfd_elf_create_ifunc_sections nor _bfd_elf_create_got_section.
(elf_x86-64_adjust_dynamic_symbol): Updated.
(elf_x86_64_allocate_dynrelocs): Updated. Pass 0 as PLT header
size to _bfd_elf_allocate_ifunc_dyn_relocs and don't allocate
size for PLT0 if there is no PLT0. Get plt_entry_size from
non_lazy_plt for non-lazy PLT entries.
(elf_x86_64_size_dynamic_sections): Updated. Get plt_entry_size
from non_lazy_plt for non-lazy PLT entries.
(elf_x86-64_relocate_section): Updated. Properly get PLT index
if there is no PLT0.
(elf_x86_64_finish_dynamic_symbol): Updated. Fill the first slot
in the PLT entry with generic PLT layout. Fill the non-lazy PLT
entries with non-lazy PLT layout. Don't fill the second and third
slots in the PLT entry if there is no PLT0.
(elf_x86_64_finish_dynamic_sections): Updated. Don't fill PLT0
if there is no PLT0. Set sh_entsize on the .plt.got section.
(compare_relocs): New.
(elf_x86_64_plt_type): Likewise.
(elf_x86_64_plt): Likewise.
(elf_x86_64_nacl_plt): New. Forward declaration.
(elf_x86_64_get_plt_sym_val): Removed.
(elf_x86_64_get_synthetic_symtab): Rewrite to check PLT sections
against all dynamic relocations.
(elf_x86_64_link_setup_gnu_properties): New function.
(elf_backend_create_dynamic_sections): Updated.
(elf_backend_setup_gnu_properties): New.
(elf_x86_64_nacl_plt): New.
(elf_x86_64_nacl_arch_bed): Updated.
ld/
* testsuite/ld-ifunc/ifunc-16-x86-64-now.d: New file.
* testsuite/ld-ifunc/ifunc-2-local-x86-64-now.d: Likewise.
* testsuite/ld-ifunc/ifunc-2-x86-64-now.d: Likewise.
* testsuite/ld-ifunc/pr17154-x86-64-now.d: Likewise.
* testsuite/ld-x86-64/bnd-branch-1-now.d: Likewise.
* testsuite/ld-x86-64/bnd-ifunc-1-now.d: Likewise.
* testsuite/ld-x86-64/bnd-ifunc-2-now.d: Likewise.
* testsuite/ld-x86-64/bnd-plt-1-now.d: Likewise.
* testsuite/ld-x86-64/mpx3n.dd: Likewise.
* testsuite/ld-x86-64/mpx4n.dd: Likewise.
* testsuite/ld-x86-64/plt-main-bnd-now.rd: Likewise.
* testsuite/ld-x86-64/plt2.dd: Likewise.
* testsuite/ld-x86-64/plt2.rd: Likewise.
* testsuite/ld-x86-64/plt2.s: Likewise.
* testsuite/ld-x86-64/pr20830a-now.d: Likewise.
* testsuite/ld-x86-64/pr20830b-now.d: Likewise.
* testsuite/ld-x86-64/pr21038a-now.d: Likewise.
* testsuite/ld-x86-64/pr21038b-now.d: Likewise.
* testsuite/ld-x86-64/pr21038c-now.d: Likewise.
* testsuite/ld-x86-64/load1b-nacl.d: Updated.
* testsuite/ld-x86-64/load1b.d: Likewise.
* testsuite/ld-x86-64/plt-main-bnd.dd: Likewise.
* testsuite/ld-x86-64/pr20253-1h.d: Likewise.
* testsuite/ld-x86-64/pr20830a.d: Update the .plt.got section
with func@plt.
* testsuite/ld-x86-64/pr20830b.d: Likewise.
* testsuite/ld-x86-64/pr21038a.d: Likewise.
* testsuite/ld-x86-64/pr21038c.d: Likewise.
* testsuite/ld-x86-64/mpx.exp: Add some -z now tests.
* testsuite/ld-x86-64/x86-64.exp: Likewise.
On i386, the procedure linkage table (PLT) is used to
1. Call external function.
2. Call internal IFUNC function. The best implementation is selected
for the target processor at run-time.
3. Act as the canonical function address.
4. Support LD_AUDIT to audit external function calls.
5. Support LD_PROFILE to profile external function calls.
PLT looks like:
PLT0: push GOT[1]
jmp *GOT[2]
nop
PLT1: jmp *GOT[name1_index]
push name1_reloc_index
jmp PLT0
GOT is an array of addresses. Initially the GOT entry of name1 is
filled with the address of the "push name1_reloc_index" instruction.
The function, name1, is called via "jmp *GOT[name1]" in the PLT entry.
Even when lazy binding is disabled by "-z now", the PLT0 entry may
still be used with LD_AUDIT or LD_PROFILE if PLT entry is used for
canonical function address.
1. With lazy binding, when the external function, name1, is called the
first time, dynamic linker is called via PLT0 to update GOT[name1_index]
with the actual address of name1 and transfers control to name1
afterwards.
2. PLT is also used to call a local IFUNC function, name1, run-time
loader updates GOT[name1_index] when loading the module.
This patch
1. Remove PLT layout configurations from i386 backend_data.
2. Add generic, lay and non-lazy PLT layout configurations to i386
link_hash_table. Generic PLT layout includes the PLT entry templates,
information how to update the first instruction in PLT and PLT eh_frame
informaton, which are initialized in i386 setup_gnu_properties, based
on PIC and target selection. PLT section alignment is also set to PLT
entry size for non-NaCl/VxWorks target.
3. Remove elf_i386_create_dynamic_sections. create_dynamic_sections
isn't always called, but GOT relocations need GOT relocations. Instead,
create all i386 specific dynamic sections in i386 setup_gnu_properties,
which initializes elf.dynobj, so that i386 check_relocs can be simplified.
4. Rewrite elf_i386_get_synthetic_symtab to check PLT sections against
all dynamic relocations to support both lazy and non-lazy PLTs.
bfd/
* elf32-i386.c (PLT_ENTRY_SIZE): Renamed to ...
(LAZY_PLT_ENTRY_SIZE): This.
(NON_LAZY_PLT_ENTRY_SIZE): New.
(elf_i386_plt0_entry): Renamed to ...
(elf_i386_lazy_plt0_entry): This.
(elf_i386_plt_entry): Renamed to ...
(elf_i386_lazy_plt_entry): This.
(elf_i386_pic_plt0_entry): Renamed to ...
(elf_i386_pic_lazy_plt0_entry): This.
(elf_i386_pic_plt_entry): Renamed to ...
(elf_i386_pic_lazy_plt_entry): This.
(elf_i386_got_plt_entry): Renamed to ...
(elf_i386_non_lazy_plt_entry): This.
(elf_i386_pic_got_plt_entry): Renamed to ...
(elf_i386_pic_non_lazy_plt_entry): This.
(elf_i386_eh_frame_plt): Renamed to ...
(elf_i386_eh_frame_lazy_plt): This.
(elf_i386_eh_frame_plt_got): Renamed to ...
(elf_i386_eh_frame_non_lazy_plt): This.
(elf_i386_plt_layout): Renamed to ...
(elf_i386_lazy_plt_layout): This. Remove eh_frame_plt_got and
eh_frame_plt_got_size.
(elf_i386_non_lazy_plt_layout): New.
(elf_i386_plt_layout): Likewise.
(elf_i386_non_lazy_plt): Likewise.
(GET_PLT_ENTRY_SIZE): Removed.
(elf_i386_plt): Renamed to ...
(elf_i386_lazy_plt): This.
(elf_i386_backend_data): Remove plt. Rename is_vxworks to os.
(elf_i386_arch_bed): Updated.
(elf_i386_link_hash_table): Add plt, lazy_plt and non_lazy_plt.
(elf_i386_create_dynamic_sections): Removed.
(elf_i386_check_relocs): Don't check elf.dynobj. Don't call
_bfd_elf_create_ifunc_sections nor _bfd_elf_create_got_section.
(elf_i386_adjust_dynamic_symbol): Updated.
(elf_i386_allocate_dynrelocs): Updated. Pass 0 as PLT header
size to _bfd_elf_allocate_ifunc_dyn_relocs and don't allocate
size for PLT0 if there is no PLT0.
(elf_i386_size_dynamic_sections): Updated. Check whether GOT
output section is discarded only if GOT isn't empty.
(elf_i386_relocate_section): Updated. Properly get PLT index
if there is no PLT0.
(elf_i386_finish_dynamic_symbol): Updated. Don't fill the
second and third slots in the PLT entry if there is no PLT0.
(elf_i386_finish_dynamic_sections): Updated. Don't fill PLT0
if there is no PLT0. Set sh_entsize on the .plt.got section.
(elf_i386_nacl_plt): Forward declaration.
(elf_i386_get_plt_sym_val): Removed.
(elf_i386_get_synthetic_symtab): Rewrite to check PLT sections
against all dynamic relocations.
(elf_i386_link_setup_gnu_properties): New function.
(elf_backend_create_dynamic_sections): Updated.
(elf_backend_setup_gnu_properties): New.
(elf_i386_nacl_plt): Updated.
(elf_i386_nacl_arch_bed): Likewise.
(elf_i386_vxworks_arch_bed): Likewise.
ld/
* testsuite/ld-i386/i386.exp: Add some -z now tests.
* testsuite/ld-i386/plt-pic2.dd: New file.
* testsuite/ld-i386/plt2.dd: Likewise.
* testsuite/ld-i386/plt2.rd: Likewise.
* testsuite/ld-i386/plt2.s: Likewise.
* testsuite/ld-ifunc/ifunc-16-i386-now.d: Likewise.
* testsuite/ld-ifunc/ifunc-2-i386-now.d: Likewise.
* testsuite/ld-ifunc/ifunc-2-local-i386-now.d: Likewise.
* testsuite/ld-ifunc/pr17154-i386-now.d: Likewise.
* testsuite/ld-i386/pr20830.d: Update the .plt.got section
with func@plt.
For ELF targets --out-implib currently generates an executable file
(e_type is ET_EXEC) despite the file being expected to be linked against
some other object file to make an executable later. It seems therefore
more sensible to make the import library a relocatable object file
(e_type set to ET_REL).
Incidentally, as dicted by requirement 8 of
"ARM v8-M Security Extensions: Requirements on Development Tools"
(document ARM-ECM-0359818) version 1.0, import libraries generated when
using --cmse-implib *must* be relocatable object file so this commit
also adds an assert there in case the type of ELF import library is
changed again in the future.
2017-05-08 Thomas Preud'homme <thomas.preudhomme@arm.com>
bfd/
* elflink.c (elf_output_implib): Remove executable flag from import
library bfd.
* elf32-arm.c (elf32_arm_filter_implib_symbols): Assert that the import
library is a relocatable object file.
ld/
* testsuite/ld-arm/arm-elf.exp
(Secure gateway import library generation): Check e_type field
of import library and executable produced.
* testsuite/ld-arm/cmse-implib.type: Expectations for e_type field.
Fix a host of problems related to adjustment of
symbol values and sizes when relaxing for avr.
1. Adjust symbol size first before adjusting symbol
value. Otherwise, a symbol whose value just got adjusted to the
relaxed address also ends up getting resized. See pr21404-1.s.
2. Reduce symbol sizes only if their span is below an
alignment boundary. Otherwise, the size gets decremented once when the
actual instruction is relaxed and padding bytes are added, and again
when the padding bytes are deleted (if padding ends up being unnecessary).
pr21404-2.s addresses that, and this bug is really the root cause of PR21404.
3. Adjust all symbol values before an alignment boundary.
Previous code did not adjust symbol values if they fell in the
would-be padded area, resulting in incorrect symbol values in some
cases (see pr21404-3.s).
4. Increase symbol sizes if alignment directives require so.
As pr21404-4.s shows
.global nonzero_sym
L1:
jmp L1
nonzero_sym:
nop
nop
.p2align 2
.size nonzero_sym, .-nonzero_sym
The two nops satisfy the 4 byte alignment at assembly time and
therefore the size of nonzero_sym is 4. Relaxation shortens
the 4 byte jmp to a 2 byte rjmp, and to satisfy 4 byte alignment
the code places 2 extra padding bytes after the nops, increasing
nonzero_sym's size by 2. This wasn't handled before.
If the assembly code does not have any align directives, then the
boundary is the section size, and symbol values and sizes == boundary
should also get adjusted. To handle that case, add a did_pad variable
and use that to determine whether it should use < boundary or <= boundary.
Also get rid of reloc_toaddr, which is now redundant. toaddr is now not
adjusted to handle the above case - the newly added
did_pad variable does the job.
pr21404-{5,6,7,8} are the same testcases written for local symbols, as
the code handles them slightly differently.
Implement the relaxation of MIPS16 PC-relative synthetic LA, DLA, LW and
LD instructions to an equivalent sequence of instructions produced where
the address operand requested is out of range, absolute or requires
linker relocation, for ABIs that use 32-bit addressing and non-PIC code.
The sequence generated uses the register specified for the destination
operand as a temporary and begins with LI to load the high 16-bit part
of the address, then continues with SLL by 16 bits to move that part
into place and finally completes with a suitable operation corresponding
to the synthetic instruction used, one of: 2-argument ADDIU, 2-argument
DADDIU, absolute LW, and absolute LD respectively, providing the low
16-bit part of the address. All instructions use the extended encoding.
As a special exception accept absolute addresses for relaxation even in
PIC code.
For example:
la $2, 0x12345678
produces code as:
li $2, 0x1234
sll $2, $2, 16
addiu $2, 0x5678
would.
Where linker relocation is required emit an R_MIPS16_HI16 relocation on
the initial LI instruction and an R_MIPS16_LO16 relocation on the final
operation.
For example (where `foo' is not local):
lw $3, foo
produces code as:
li $3, %hi(foo)
sll $3, $3, 16
lw $3, %lo(foo)($3)
would.
Emit assembly warnings as appropriate where this new relaxation triggers
in the `nomacro' mode or for an instruction manually placed in a branch
delay slot in the `noreorder' mode. Refrain from relaxation where an
explicit instruction size suffix has been used and in the `noautoextend'
mode.
gas/
* config/tc-mips.c (RELAX_MIPS16_ENCODE): Add `pic', `sym32' and
`nomacro' flags.
(RELAX_MIPS16_PIC, RELAX_MIPS16_SYM32, RELAX_MIPS16_NOMACRO):
New macros.
(RELAX_MIPS16_USER_SMALL, RELAX_MIPS16_USER_EXT)
(RELAX_MIPS16_DSLOT, RELAX_MIPS16_JAL_DSLOT)
(RELAX_MIPS16_EXTENDED, RELAX_MIPS16_MARK_EXTENDED)
(RELAX_MIPS16_CLEAR_EXTENDED, RELAX_MIPS16_ALWAYS_EXTENDED)
(RELAX_MIPS16_MARK_ALWAYS_EXTENDED)
(RELAX_MIPS16_CLEAR_ALWAYS_EXTENDED): Shift bits.
(RELAX_MIPS16_MACRO, RELAX_MIPS16_MARK_MACRO)
(RELAX_MIPS16_CLEAR_MACRO): New macros.
(append_insn): Pass `mips_pic', HAVE_32BIT_SYMBOLS and
`mips_opts.warn_about_macros' settings to RELAX_MIPS16_ENCODE.
(mips16_macro_frag): New function.
(md_estimate_size_before_relax): Handle HI16/LO16 relaxation.
(mips_relax_frag): Likewise.
(md_convert_frag): Likewise.
* testsuite/gas/mips/mips16@relax-swap3.d: Remove error output,
add dump patterns.
* testsuite/gas/mips/mips16e@relax-swap3.d: New test
subarchitecture.
* testsuite/gas/mips/micromips@relax-swap3.d: Remove trailing
NOP padding.
* testsuite/gas/mips/mips16-pcrel-reloc-2.d: Remove error
output, add dump patterns.
* testsuite/gas/mips/mips16-pcrel-reloc-3.d: Remove error
output, add dump patterns.
* testsuite/gas/mips/mips16-pcrel-reloc-6.d: Remove error
output, add dump patterns.
* testsuite/gas/mips/mips16-pcrel-reloc-7.d: Remove error
output, add dump patterns.
* testsuite/gas/mips/mips16-pcrel-addend-2.d: Remove error
output, add dump patterns.
* testsuite/gas/mips/mips16-pcrel-addend-3.d: Remove error
output, add dump patterns.
* testsuite/gas/mips/mips16-pcrel-absolute.d: Remove error
output, add dump patterns.
* testsuite/gas/mips/mips16-pcrel-absolute-1.d: Remove error
output, add dump patterns.
* testsuite/gas/mips/mips16@relax-swap3.l: Remove file.
* testsuite/gas/mips/mips16-pcrel-reloc-2.l: Remove file.
* testsuite/gas/mips/mips16-pcrel-reloc-3.l: Remove file.
* testsuite/gas/mips/mips16-pcrel-reloc-6.l: Remove file.
* testsuite/gas/mips/mips16-pcrel-reloc-7.l: Remove file.
* testsuite/gas/mips/mips16-pcrel-addend-2.l: Remove file.
* testsuite/gas/mips/mips16-pcrel-addend-3.l: Remove file.
* testsuite/gas/mips/mips16-pcrel-absolute.l: Remove file.
* testsuite/gas/mips/mips16-pcrel-absolute-1.l: Remove file.
* testsuite/gas/mips/relax-swap3.s: Adjust trailing padding.
* testsuite/gas/mips/mips16-pcrel-0.d: New test.
* testsuite/gas/mips/mips16-pcrel-1.d: New test.
* testsuite/gas/mips/mips16-pcrel-2.d: New test.
* testsuite/gas/mips/mips16-pcrel-3.d: New test.
* testsuite/gas/mips/mips16-pcrel-4.d: New test.
* testsuite/gas/mips/mips16-pcrel-5.d: New test.
* testsuite/gas/mips/mips16-pcrel-pic-0.d: New test.
* testsuite/gas/mips/mips16-pcrel-pic-1.d: New test.
* testsuite/gas/mips/mips16-pcrel-n32-0.d: New test.
* testsuite/gas/mips/mips16-pcrel-n32-1.d: New test.
* testsuite/gas/mips/mips16-pcrel-n64-sym32-0.d: New test.
* testsuite/gas/mips/mips16-pcrel-n64-sym32-1.d: New test.
* testsuite/gas/mips/mips16-pcrel-n64-0.d: New test.
* testsuite/gas/mips/mips16-pcrel-n64-1.d: New test.
* testsuite/gas/mips/mips16-pcrel-delay-0.d: New test.
* testsuite/gas/mips/mips16-pcrel-delay-1.d: New test.
* testsuite/gas/mips/mips16-pcrel-addend-4.d: New test.
* testsuite/gas/mips/mips16-pcrel-addend-5.d: New test.
* testsuite/gas/mips/mips16-pcrel-addend-6.d: New test.
* testsuite/gas/mips/mips16-pcrel-addend-7.d: New test.
* testsuite/gas/mips/mips16-pcrel-addend-8.d: New test.
* testsuite/gas/mips/mips16-pcrel-addend-9.d: New test.
* testsuite/gas/mips/mips16-pcrel-addend-pic-8.d: New test.
* testsuite/gas/mips/mips16-pcrel-addend-pic-9.d: New test.
* testsuite/gas/mips/mips16-pcrel-addend-n32-8.d: New test.
* testsuite/gas/mips/mips16-pcrel-addend-n32-9.d: New test.
* testsuite/gas/mips/mips16-pcrel-addend-n64-sym32-8.d: New test.
* testsuite/gas/mips/mips16-pcrel-addend-n64-sym32-9.d: New test.
* testsuite/gas/mips/mips16-pcrel-addend-n64-8.d: New test.
* testsuite/gas/mips/mips16-pcrel-addend-n64-9.d: New test.
* testsuite/gas/mips/mips16-pcrel-absolute-2.d: New test.
* testsuite/gas/mips/mips16-pcrel-absolute-3.d: New test.
* testsuite/gas/mips/mips16-pcrel-absolute-4.d: New test.
* testsuite/gas/mips/mips16-pcrel-absolute-5.d: New test.
* testsuite/gas/mips/mips16-pcrel-absolute-6.d: New test.
* testsuite/gas/mips/mips16-pcrel-absolute-7.d: New test.
* testsuite/gas/mips/mips16-pcrel-absolute-pic-4.d: New test.
* testsuite/gas/mips/mips16-pcrel-absolute-pic-6.d: New test.
* testsuite/gas/mips/mips16-pcrel-absolute-n32-4.d: New test.
* testsuite/gas/mips/mips16-pcrel-absolute-n32-6.d: New test.
* testsuite/gas/mips/mips16-pcrel-absolute-n64-4.d: New test.
* testsuite/gas/mips/mips16-pcrel-absolute-n64-6.d: New test.
* testsuite/gas/mips/mips16-pcrel-absolute-n64-sym32-4.d: New
test.
* testsuite/gas/mips/mips16-pcrel-absolute-n64-sym32-6.d: New
test.
* testsuite/gas/mips/mips16-pcrel-absolute-pic-n32-4.d: New
test.
* testsuite/gas/mips/mips16-pcrel-absolute-pic-n32-6.d: New
test.
* testsuite/gas/mips/mips16-pcrel-absolute-pic-n64-4.d: New
test.
* testsuite/gas/mips/mips16-pcrel-absolute-pic-n64-6.d: New
test.
* testsuite/gas/mips/mips16-pcrel-absolute-pic-n64-sym32-4.d:
New test.
* testsuite/gas/mips/mips16-pcrel-absolute-pic-n64-sym32-6.d:
New test.
* testsuite/gas/mips/mips16-pcrel-0.l: New stderr output.
* testsuite/gas/mips/mips16-pcrel-1.l: New stderr output.
* testsuite/gas/mips/mips16-pcrel-2.l: New stderr output.
* testsuite/gas/mips/mips16-pcrel-3.l: New stderr output.
* testsuite/gas/mips/mips16-pcrel-4.l: New stderr output.
* testsuite/gas/mips/mips16-pcrel-5.l: New stderr output.
* testsuite/gas/mips/mips16-pcrel-delay-0.l: New stderr output.
* testsuite/gas/mips/mips16-pcrel-delay-1.l: New stderr output.
* testsuite/gas/mips/mips16-pcrel-addend-8.l: New stderr output.
* testsuite/gas/mips/mips16-pcrel-addend-9.l: New stderr output.
* testsuite/gas/mips/mips16-pcrel-absolute-4.l: New stderr
output.
* testsuite/gas/mips/mips16-pcrel-absolute-6.l: New stderr
output.
* testsuite/gas/mips/mips16-pcrel-0.s: New test source.
* testsuite/gas/mips/mips16-pcrel-1.s: New test source.
* testsuite/gas/mips/mips16-pcrel-2.s: New test source.
* testsuite/gas/mips/mips16-pcrel-3.s: New test source.
* testsuite/gas/mips/mips16-pcrel-4.s: New test source.
* testsuite/gas/mips/mips16-pcrel-5.s: New test source.
* testsuite/gas/mips/mips16-pcrel-delay-0.s: New test source.
* testsuite/gas/mips/mips16-pcrel-delay-1.s: New test source.
* testsuite/gas/mips/mips16-pcrel-addend-4.s: New test source.
* testsuite/gas/mips/mips16-pcrel-addend-5.s: New test source.
* testsuite/gas/mips/mips16-pcrel-addend-6.s: New test source.
* testsuite/gas/mips/mips16-pcrel-addend-7.s: New test source.
* testsuite/gas/mips/mips16-pcrel-addend-8.s: New test source.
* testsuite/gas/mips/mips16-pcrel-addend-9.s: New test source.
* testsuite/gas/mips/mips16-pcrel-absolute-2.s: New test.
* testsuite/gas/mips/mips16-pcrel-absolute-3.s: New test.
* testsuite/gas/mips/mips16-pcrel-absolute-4.s: New test.
* testsuite/gas/mips/mips16-pcrel-absolute-5.s: New test.
* testsuite/gas/mips/mips16-pcrel-absolute-6.s: New test.
* testsuite/gas/mips/mips16-pcrel-absolute-7.s: New test.
* testsuite/gas/mips/mips.exp: Run the new tests.
ld/
* testsuite/ld-mips-elf/mips16-pcrel-0.d: New test.
* testsuite/ld-mips-elf/mips16-pcrel-1.d: New test.
* testsuite/ld-mips-elf/mips16-pcrel-addend-2.d: New test.
* testsuite/ld-mips-elf/mips16-pcrel-addend-6.d: New test.
* testsuite/ld-mips-elf/mips16-pcrel-n32-0.d: New test.
* testsuite/ld-mips-elf/mips16-pcrel-n32-1.d: New test.
* testsuite/ld-mips-elf/mips16-pcrel-n64-sym32-0.d: New test.
* testsuite/ld-mips-elf/mips16-pcrel-n64-sym32-1.d: New test.
* testsuite/ld-mips-elf/mips-elf.exp: Run the new tests.
Adjust testsuite/ld-elf/pr21384.d to accommodate additional dynamic
symbols on some targets.
* testsuite/ld-elf/pr21384.d: Adjusted to accommodate
additional dynamic symbols on some targets.
Complement commit 88a7ef1689 ("MIPS16/GAS: Restore unsupported
relocation diagnostics") and also propagate constant expressions, either
already reduced from absolute symbol references or created from literals
in the first place, used as a PC-relative operand with the MIPS16 LA,
LW, DLA and LD synthetic instructions to relaxation, matching the way
forward absolute symbol references have been handled as from the commit
referred and letting relaxation produce any necessary relocations, if
possible, for the absolute value requested to be reproduced at the run
time.
Call `symbol_append' for any expression symbol created for the purpose
of MIPS16 relaxation as with constant expressions now propagated from
earlier on such symbols may make it through and have R_MIPS16_PC16_S1
relocations emitted against, and therefore need to appear in the symbol
table produced.
gas/
* config/tc-mips.c (append_insn): Call `symbol_append' for any
expression symbol created for MIPS16 relaxation.
(match_mips16_insn): Don't encode a constant value as an
immediate with a PC-relative operand.
* testsuite/gas/mips/mips16-pcrel-absolute-1.d: New test.
* testsuite/gas/mips/mips16-branch-absolute-1.d: New test.
* testsuite/gas/mips/mips16-branch-absolute-2.d: New test.
* testsuite/gas/mips/mips16-branch-absolute-addend-1.d: New
test.
* testsuite/gas/mips/mips16-branch-absolute-n32-1.d: New test.
* testsuite/gas/mips/mips16-branch-absolute-n32-2.d: New test.
* testsuite/gas/mips/mips16-branch-absolute-addend-n32-1.d: New
test.
* testsuite/gas/mips/mips16-branch-absolute-n64-1.d: New test.
* testsuite/gas/mips/mips16-branch-absolute-n64-2.d: New test.
* testsuite/gas/mips/mips16-branch-absolute-addend-n64-1.d: New
test.
* testsuite/gas/mips/mips16-pcrel-absolute-1.l: New stderr
output.
* testsuite/gas/mips/mips16-pcrel-absolute-1.s: New test source.
* testsuite/gas/mips/mips16-branch-absolute-1.s: New test
source.
* testsuite/gas/mips/mips16-branch-absolute-2.s: New test
source.
* testsuite/gas/mips/mips16-branch-absolute-addend-1.s: New test
source.
* testsuite/gas/mips/mips.exp: Run the new tests.
ld/
* testsuite/ld-mips-elf/mips16-branch-absolute-1.d: New test.
* testsuite/ld-mips-elf/mips16-branch-absolute-2.d: New test.
* testsuite/ld-mips-elf/mips16-branch-absolute-addend-1.d: New
test.
* testsuite/ld-mips-elf/mips16-branch-absolute-n32-1.d: New
test.
* testsuite/ld-mips-elf/mips16-branch-absolute-n32-2.d: New
test.
* testsuite/ld-mips-elf/mips16-branch-absolute-addend-n32-1.d:
New test.
* testsuite/ld-mips-elf/mips16-branch-absolute-n64-1.d: New
test.
* testsuite/ld-mips-elf/mips16-branch-absolute-n64-2.d: New
test.
* testsuite/ld-mips-elf/mips16-branch-absolute-addend-n64-1.d:
New test.
* testsuite/ld-mips-elf/mips-elf.exp: Run the new tests.
* testsuite/ld-i386/tls.exp: Add -Wl,--no-as-needed to
"TLS without PLT (1)" and "TLS without PLT (3)".
* testsuite/ld-x86-64/tls.exp: Add -Wl,--no-as-needed to
to "TLS without PLT (3)".
Check if GNU2 TLS really works before running GNU2 TLS tests.
* testsuite/ld-i386/tls.exp: Run GNU2 TLS tests only if there
is working GNU2 TLS support.
* testsuite/ld-x86-64/tls.exp: Likewise.
* testsuite/lib/ld-lib.exp (check_gnu2_tls_available): New proc.
This patch creates dynamic sections in i386/x86-64 create_dynamic_sections
instead of creating them on demend. Linker will strip them if they are
empty. It changes order in x86-64 .eh_frame section. The extra DW_CFA_nop
paddings is due to
https://sourceware.org/bugzilla/show_bug.cgi?id=21441
bfd/
* elf32-i386.c (elf_i386_create_dynamic_sections): Create the
.plt.got section here.
(elf_i386_check_relocs): Don't create the .plt.got section.
* elf64-x86-64.c (elf_x86_64_create_dynamic_sections): Create
the .plt.got and .plt.bnd sections here.
(elf_x86_64_check_relocs): Don't create the .plt.got nor
.plt.bnd sections.
ld/
* testsuite/ld-x86-64/pr21038a.d: Update DW_CFA_nop paddings
in .eh_frame section.
* testsuite/ld-x86-64/pr21038c.d: Update .eh_frame order.
x86, PLT relocation may contain R_386_TLS_DESC or R_X86_64_TLSDESC
even though there is no real PLT. We need to add DT_PLTRELSZ, DT_PLTREL
and DT_JMPREL if there is a .rel.plt/.rela.plt section.
bfd/
* elf32-i386.c (elf_i386_size_dynamic_sections): Alwasys add
DT_PLTRELSZ, DT_PLTREL and DT_JMPREL for .rel.plt section.
* elf64-x86-64.c (elf_x86_64_size_dynamic_sections): Alwasys
add DT_PLTRELSZ, DT_PLTREL and DT_JMPREL for .rela.plt section.
ld/
* testsuite/ld-i386/tlsdesc2.d: New test.
* testsuite/ld-x86-64/tlsdesc2.d: Likewise.
Complement commit e17b0c351f ("MIPS/BFD: Respect the ELF gABI dynamic
symbol table sort requirement") and correct an inconsistency in dynamic
symbol accounting data causing an assertion failure in the MIPS backend:
ld: BFD (GNU Binutils) 2.28.51.20170330 assertion fail
../../binutils-gdb/bfd/elfxx-mips.c:3860
in the course of making a GOT entry in a static binary to satisfy a GOT
relocation present in input, due to the local dynamic symbol count not
having been established.
To do so let backends request `_bfd_elf_link_renumber_dynsyms' to be
always called, rather than where a dynamic binary is linked only, and
then make this request in the MIPS backend.
bfd/
PR ld/21334
* elf-bfd.h (elf_backend_data): Add `always_renumber_dynsyms'
member.
* elfxx-target.h [!elf_backend_always_renumber_dynsyms]
(elf_backend_always_renumber_dynsyms): Define.
(elfNN_bed): Initialize `always_renumber_dynsyms' member.
* elfxx-mips.h (elf_backend_always_renumber_dynsyms): Define.
* elflink.c (bfd_elf_size_dynamic_sections): Also call
`_bfd_elf_link_renumber_dynsyms' if the backend has requested
it.
(bfd_elf_size_dynsym_hash_dynstr): Likewise.
ld/
PR ld/21334
* testsuite/ld-mips-elf/pr21334.dd: New test.
* testsuite/ld-mips-elf/pr21334.gd: New test.
* testsuite/ld-mips-elf/pr21334.ld: New test linker script.
* testsuite/ld-mips-elf/pr21334.s: New test source.
* testsuite/ld-mips-elf/mips-elf.exp: Run the new tests.
Force symbol dynamic if it isn't undefined weak. Generate relative
relocation for GOT reference against non-dynamic symbol in PIC to
avoid unnecessary dynamic symbols.
bfd/
* elf64-x86-64.c (elf_x86_64_link_hash_entry): Add
no_finish_dynamic_symbol.
(elf_x86_64_link_hash_newfunc): Set no_finish_dynamic_symbol to
0.
(elf_x86_64_allocate_dynrelocs): If a symbol isn't undefined
weak symbol, don't make it dynamic.
(elf_x86_64_relocate_section): If a symbol isn't dynamic in PIC,
set no_finish_dynamic_symbol and generate R_X86_64_RELATIVE
relocation for GOT reference.
(elf_x86_64_finish_dynamic_symbol): Abort if
no_finish_dynamic_symbol isn't 0.
ld/
* testsuite/ld-x86-64/no-plt.exp: Also check no-plt-1e.nd.
* testsuite/ld-x86-64/no-plt-1e.nd: New file.
commit f129e49f4d
Author: H.J. Lu <hjl.tools@gmail.com>
Date: Tue Jan 10 11:30:25 2017 -0800
Don't use elf_i386_eh_frame_plt directly
fixed i386 PLT eh_frame generation. Skip pr12570 tests since they are
for non-nacl targets.
* testsuite/ld-i386/pr12570a.d: Skip for nacl targets.
* testsuite/ld-i386/pr12570b.d: Likewise.
commit a27e437177
Author: Roland McGrath <roland@gnu.org>
Date: Thu Jul 28 22:35:15 2011 +0000
BFD vector for elf32-i386-nacl:
changed ELF_MAXPAGESIZE to 0x10000 for VxWorks. This patch fixes it
and updated testsuite/ld-i386/vxworks2.sd to add space for program
headers.
bfd/
PR ld/21425
* elf32-i386.c (ELF_MAXPAGESIZE): Set to 0x1000 for VxWorks.
ld/
PR ld/20815
* testsuite/ld-i386/vxworks2.sd: Add space for program headers.
A few tests in the ld testsuite were expecting the disassembler to
emit `rett' instructions in V9. This patch updates the tests to
expect `return' instead.
ld/ChangeLog:
2017-04-24 Jose E. Marchesi <jose.marchesi@oracle.com>
* testsuite/ld-sparc/tlssunbin64.dd: Expect `return' instructions
instead of `rett' in V9.
* testsuite/ld-sparc/tlssunnopic64.dd: Likewise.
* testsuite/ld-sparc/tlssunpic64.dd: Likewise.
GOT reference to global symbol in PIE will lead to dynamic symbol. It
becomes a problem when "time" or "times" is defined as a variable in
an executable, clashing with functions of the same name in libc. If
a symbol isn't undefined weak symbol, don't make it dynamic in PIE and
generate R_386_RELATIVE relocation.
bfd/
PR ld/21402
* elf32-i386.c (elf_i386_link_hash_entry): Add
no_finish_dynamic_symbol.
(elf_i386_link_hash_newfunc): Set no_finish_dynamic_symbol to 0.
(elf_i386_allocate_dynrelocs): If a symbol isn't undefined weak
symbol, don't make it dynamic in PIE.
(elf_i386_relocate_section): If a symbol isn't dynamic in PIE,
set no_finish_dynamic_symbol and generate R_386_RELATIVE
relocation for R_386_GOT32
(elf_i386_finish_dynamic_symbol): Abort if no_finish_dynamic_symbol
isn't 0.
ld/
PR ld/21402
* testsuite/ld-elf/indirect.exp: Don't skip PIE indirect5 and
indirect6 tests on i386.
When -static -E/--dynamic-list are passed to linker, linker may create
executable with dynamic sections which aren't supported by run-time.
We require --no-dynamic-linker together with -static -E/--dynamic-list
before adding dynamic symbol table to static executable.
bfd/
PR ld/19617
PR ld/21086
* elflink.c (elf_link_add_object_symbols): Require
--no-dynamic-linker with -E/--dynamic-list when creating
dynamic sections.
ld/
PR ld/19617
PR ld/21086
* testsuite/ld-elf/pr19617a.d: Pass --no-dynamic-linker to ld.
* testsuite/ld-elf/pr19617b.d: Likewise.
* testsuite/ld-elf/pr19617c.d: Likewise.
*testsuite/ld-i386/pr19636-4d.d: Likewise.
* testsuite/ld-elf/readelf.exp: Pass --no-dynamic-linker to ld
with --export-dynamic.
* testsuite/ld-elf/shared.exp: Pass --no-dynamic-linker to ld
with -E.
On i386, since GOT reference is needed to access global symbols in PIE,
those symbols are made dynamic. Crash happens when there is a reference
to the same global symbol with a different symbol type in a shared
object. Since mixing different types of the same symbol doesn't work in
general, this patch skips those tests on i386 as well as compiles non-PIE
indirect5 and indirect6 tests with $NOPIE_LDFLAGS and $NOPIE_CFLAGS.
PR ld/21402
* testsuite/ld-elf/indirect.exp: Pass $NOPIE_LDFLAGS and
$NOPIE_CFLAGS to non-PIE indirect5 and indirect6 tests. Skip
PIE indirect5 and indirect6 tests on i386.
Complement commit 3807734dbe ("PR ld/15428: MIPS/LD/testsuite:
Un-KFAIL `__ehdr_start' test 2") and join tests that do not need to be
split anymore.
ld/
* testsuite/ld-mips-elf/mips-elf.exp: Join `__ehdr_start' tests.
We need to make an IR symbol visible if it is defined in an IR object
and referenced in a dynamic object. When --as-needed is used, since
linker removes the IR symbol reference of the dynamic object if the
dynamic object isn't needed in the first pass, the IR definition isn't
visible to the dynamic object even if the dynamic object becomes needed
in the second pass. Add dynamic_ref_after_ir_def to bfd_link_hash_entry
to track IR symbol which is defined in an IR object and later referenced
in a dynamic object. dynamic_ref_after_ir_def is preserved when restoring
the symbol table for unneeded dynamic object.
bfd/
PR ld/21382
* elflink.c (elf_link_add_object_symbols): Preserve
dynamic_ref_after_ir_def when restoring the symbol table for
unneeded dynamic object.
include/
PR ld/21382
* bfdlink.h (bfd_link_hash_entry): Add dynamic_ref_after_ir_def.
ld/
PR ld/21382
* plugin.c (is_visible_from_outside): Symbol may be visible
from outside if dynamic_ref_after_ir_def is set.
(plugin_notice): Set dynamic_ref_after_ir_def if the symbol is
defined in an IR object and referenced in a dynamic object.
* testsuite/ld-plugin/lto.exp: Run PR ld/21382 tests.
* testsuite/ld-plugin/pr21382a.c: New file.
* testsuite/ld-plugin/pr21382b.c: Likewise.
Since undefined IFUNC symbol is treated as normal FUNC symbol, don't
abort on undefined IFUNC symbol in the second PLT.
bfd/
PR ld/21401
* elf64-x86-64.c (elf_x86_64_finish_dynamic_symbol): Don't abort
on on undefined IFUNC symbol in the second PLT.
ld/
PR ld/21401
* testsuite/ld-ifunc/ifunc.exp: Add a libtest-2-now.so test with
-z now.
-z nodynamic-undefined-weak is only implemented for x86. (The sparc
backend has some support code but doesn't enable the option by
including ld/emulparams/dynamic_undefined_weak.sh, and since the
support looks like it may be broken I haven't enabled it.) This patch
adds the complementary -z dynamic-undefined-weak, extends both options
to affect building of shared libraries as well as executables, and
adds support for the option on powerpc.
include/
* bfdlink.h (struct bfd_link_info <dynamic_undefined_weak>):
Revise comment.
bfd/
* elflink.c (_bfd_elf_adjust_dynamic_symbol): Hide undefweak
or make dynamic for info->dynamic_undefined_weak 0 and 1.
* elf32-ppc.c:Formatting.
(ensure_undefweak_dynamic): Don't make dynamic when
info->dynamic_undefined_weak is zero.
(allocate_dynrelocs): Discard undefweak dyn_relocs for
info->dynamic_undefined_weak. Discard undef dyn_relocs when
not default visibility. Discard undef and undefweak
dyn_relocs earlier.
(ppc_elf_relocate_section): Adjust to suit.
* elf64-ppc.c: Formatting.
(ensure_undefweak_dynamic): Don't make dynamic when
info->dynamic_undefined_weak is zero.
(allocate_dynrelocs): Discard undefweak dyn_relocs for
info->dynamic_undefined_weak. Discard them earlier.
ld/
* ld.texinfo (dynamic-undefined-weak): Document.
(nodynamic-undefined-weak): Document that this option now can
be used with shared libs.
* emulparams/dynamic_undefined_weak.sh: Support -z
dynamic-undefined-weak.
* emulparams/elf32ppccommon.sh: Include dynamic_undefined_weak.sh.
* testsuite/ld-undefined/weak-undef.exp (undef_weak_so),
(undef_weak_exe): New. Use them. Add -z dynamic-undefined-weak
and -z nodynamic-undefined-weak tests.
* Makefile.am: Update powerpc dependencies.
* Makefile.in: Regenerate.
commit 902e9fc76a
Author: Maciej W. Rozycki <macro@imgtec.com>
Date: Tue Feb 21 01:46:42 2017 +0000
PR ld/20828: Move symbol version processing ahead of GC symbol sweep
breaks version definition with --version-script --soname. This patch
fixes it by getting soname index before generating the version definition
section.
bfd/
PR ld/21389
* elflink.c (bfd_elf_size_dynamic_sections): Get soname index
before generating the version definition section.
ld/
PR ld/21389
* testsuite/ld-elf/pr21389.map: New file.
* testsuite/ld-elf/pr21389.s: Likewise.
* testsuite/ld-elf/pr21389a.d: Likewise.
* testsuite/ld-elf/pr21389b.d: Likewise.
* testsuite/ld-elf/pr21389c.d: Likewise.
We already handle the case of an object file first defining a symbol
that a later shared library also defines where the symbol types are
incompatible. This patch handles the reverse, when a later object
file defines an incompatible symbol defined by an earlier shared
library.
bfd/
* elflink.c (_bfd_elf_merge_symbol): Undo dynamic linking
state when a regular object file defines a symbol with
incompatible type to that defined by an earlier shared lib.
ld/
* testsuite/ld-elf/indirect5a.c,
* testsuite/ld-elf/indirect5b.c,
* testsuite/ld-elf/indirect5.map,
* testsuite/ld-elf/indirect5.out: New test.
* testsuite/ld-elf/indirect6a.c: Likewise.
* testsuite/ld-elf/indirect.exp (check_dynamic_syms): New proc.
Run new tests and check dynsyms.
Don't use fixed size buffers for symbol names.
PR 21274
PR 18466
* emultempl/pe.em (pe_find_data_imports): Don't use fixed size
symbol buffer. Instead, xmalloc max size needed with space for
prefix. Wrap overlong lines. Formatting. Pass symbol buffer
copy of name to pe_walk_relocs_of_symbol.
(make_inport_fixup): Add "name" param, pass to pe_create_import_fixup.
* emultempl/pe.em (pep_find_data_imports): As for pe_find_data_imports.
(make_import_fixup): Add "name" param, pass to pep_create_import_fixup.
Use bfd_get_signed_* and remove unnecessary casts. Formatting.
* pe-dll.c (pe_walk_relocs_of_symbol): Add "name" param. Pass to
callback.
(make_import_fixup_mark): Add "name" param. Make use of prefix
space rather than xmalloc here.
(pe_create_import_fixup): Likewise.
* pe-dll.h (pe_walk_relocs_of_symbol): Update prototype.
(pe_create_import_fixup): Likewise.
* pep-dll.h (pep_walk_relocs_of_symbol): Likewise.
(pep_create_import_fixup): Likewise.
PR21287 notes that .init_array is correctly given a type of
SHT_INIT_ARRAY while .init_array.nnn gets SHT_PROGBITS. This patch
fixes that problem, and properly drops warnings from the compiler that
would cause the testsuite to fail. My a44d0bd78 change to check
ld_compile status, necessary to pick up compile errors, also meant
warnings were not ignored.
bfd/
PR 21287
* elf.c (special_sections_f): Match .fini_array and .fini_array.*.
(special_sections_i): Likewise for .init_array.
(special_sections_p): Likewise for .preinit_array.
ld/
PR 21287
* testsuite/ld-elf/init-fini-arrays.d: Match INIT_ARRAY and FINI_ARRAY.
* testsuite/ld-elf/init-fini-arrays.s: Use %init_array and %fini_array
section types.
* testsuite/lib/ld-lib.exp (default_ld_compile): Trim assembler
warnings about "ignoring incorrect section type".
(run_ld_link_exec_tests, run_cc_link_tests): Delete old comment.
My mips-linux and mips64-linux testsuite runs have been failing a
bunch of visibility tests, seemingly randomly. It turns out the
problem occurs when object files are left over in ld/tmpdir from a
previous run.
* testsuite/ld-elfvsb/elfvsb.exp (visibility_run): Delete
sh1p.o, sh2p.o, sh1np.o and sh2np.o before compiling. Use
remote_file host exists rather than file exists.
Since not all compilers support -no-pie, NOPIE_CFLAGS and NOPIE_LDFLAGS
should be used to disable PIE.
PR ld/21090
* testsuite/ld-x86-64/x86-64.exp (undefined_weak): Use
NOPIE_CFLAGS and NOPIE_LDFLAGS to disable PIE for the non-pie
version of the test.
Since common symbols that are turned into definitions don't have the
DEF_REGULAR flag set, we need to check ELF_COMMON_DEF_P for common
symbols.
bfd/
PR ld/19579
PR ld/21306
* elf32-s390.c (elf_s390_finish_dynamic_symbol): Check
ELF_COMMON_DEF_P for common symbols.
* elf64-s390.c (elf_s390_finish_dynamic_symbol): Likewise.
* elf64-x86-64.c (elf_x86_64_relocate_section): Likewise.
* elflink.c (_bfd_elf_merge_symbol): Revert commits
202ac193bb and
07492f668d.
ld/
PR ld/19579
PR ld/21306
* testsuite/ld-elf/pr19579a.c (main): Updated.
bfd/
* coffgen.c (_bfd_coff_gc_mark_hook): Handle PE weak
external symbols with a definition.
(_bfd_coff_gc_mark_extra_sections): Fix typo.
ld/
* testsuite/ld-pe/pe.exp: New test.
* testsuite/ld-pe/weakdef-1.s: New test source.
* testsuite/ld-pe/weakdef-1.d: New test.
On powerpc-linux, the second PT_LOAD header is RWE. On hppa64-linux,
only one PT_LOAD header is present. Since the tests are really about
the new GNU_MBIND headers, ignore PT_LOAD and its section mapping.
* testsuite/ld-elf/mbind1a.d: Remove matches for PT_LOAD segments.
* testsuite/ld-elf/mbind1b.d: Likewise.
* testsuite/ld-elf/mbind1c.d: Likewise.
Complement commit 902e9fc76a ("PR ld/20828: Move symbol version
processing ahead of GC symbol sweep"), commit b531344c34 ("PR
ld/20828: Reorder the symbol sweep stage of section GC") and commit
81ff47b3a5 ("PR ld/20828: Fix linker script symbols wrongly forced
local with section GC"), and prevent symbols forcibly entered in the
output file with the use of the `--undefined=' or `--require-defined='
linker command line options or the EXTERN linker script command from
being swept in section garbage collection and consequently recorded in
the dynamic symbol table as local entries. This happens in certain
circumstances, where a symbol reference also exists in one of the static
input files, however only in a section which is garbage-collected and
does not make it to the output file, and the symbol is defined in a
dynamic object present in the link.
For example with the `i386-linux' target and the `pr21233.s' and
`pr21233-l.s' sources, and the `pr21233.ld' linker script included with
this change we get:
$ as -o pr21233-l.o pr21233-l.s
$ ld -shared -T pr21233.ld -o libpr21233.so pr21233-l.o
$ as -o pr21233.o pr21233.s
$ ld --gc-sections -e foo --require-defined=bar -T pr21233.ld -o pr21233 pr21233.o libpr21233.so
$ readelf --dyn-syms pr21233
Symbol table '.dynsym' contains 2 entries:
Num: Value Size Type Bind Vis Ndx Name
0: 00000000 0 NOTYPE LOCAL DEFAULT UND
1: 00000000 0 OBJECT LOCAL DEFAULT UND bar
$
which makes the run-time `bar' dependency of the `pr21233' executable
different from its corresponding link-time dependency, i.e. the presence
of `libpr21233.so' and its `bar' symbol is required at the link time,
however at the run time a copy of `libpr21233.so' without `bar' will do.
Similarly with `--undefined=' and EXTERN which do not actually require
the reference to the symbol requested to be satisfied with a definition
at the link time, however once the definition has been pulled at the
link time, so it should at the dynamic load time.
Additionally with the `mips-linux' target we get:
$ ld --gc-sections -e foo --require-defined=bar -T pr21233.ld -o pr21233 pr21233.o libpr21233.so
ld: BFD (GNU Binutils) 2.28.51.20170324 assertion fail .../bfd/elfxx-mips.c:3861
$
as the target is not prepared to handle such a local dynamic symbol.
With this change in effect we get:
$ readelf --dyn-syms pr21233
Symbol table '.dynsym' contains 2 entries:
Num: Value Size Type Bind Vis Ndx Name
0: 00000000 0 NOTYPE LOCAL DEFAULT UND
1: 00000000 0 OBJECT GLOBAL DEFAULT UND bar
$
instead, for both targets.
ld/
PR ld/21233
* ldlang.c (insert_undefined): Set `mark' for ELF symbols.
* testsuite/ld-elf/pr21233.sd: New test.
* testsuite/ld-elf/pr21233-l.sd: New test.
* testsuite/ld-elf/pr21233.ld: New test linker script.
* testsuite/ld-elf/pr21233-e.ld: New test linker script.
* testsuite/ld-elf/pr21233.s: New test source.
* testsuite/ld-elf/pr21233-l.s: New test source.
* testsuite/ld-elf/shared.exp: Run the new tests.
Mark an ALLOC section, which should be placed in special memory area,
with SHF_GNU_MBIND. Its sh_info field indicates the special memory
type. GNU_MBIND section names start with ".mbind" so that they are
placed as orphan sections by linker. All input GNU_MBIND sections
with the same sh_type, sh_flags and sh_info are placed in one output
GNU_MBIND section. In executable and shared object, create a
GNU_MBIND segment for each GNU_MBIND section and its segment type is
PT_GNU_MBIND_LO plus the sh_info value. Each GNU_MBIND segment is
aligned at page boundary.
The assembler syntax:
.section .mbind.foo,"adx",%progbits
^ 0: Special memory type.
|
'd' for SHF_GNU_MBIND.
.section .mbind.foo,"adx",%progbits,0x1
^ 1: Special memory type.
|
'd' for SHF_GNU_MBIND.
.section .mbind.bar,"adG",%progbits,.foo_group,comdat,0x2
^ 2: Special memory type.
|
'd' for SHF_GNU_MBIND.
bfd/
* elf.c (get_program_header_size): Add a GNU_MBIND segment for
each GNU_MBIND section and align GNU_MBIND section to page size.
(_bfd_elf_map_sections_to_segments): Create a GNU_MBIND
segment for each GNU_MBIND section.
(_bfd_elf_init_private_section_data): Copy sh_info from input
for GNU_MBIND section.
binutils/
* NEWS: Mention support for ELF SHF_GNU_MBIND and
PT_GNU_MBIND_XXX.
* readelf.c (get_segment_type): Handle PT_GNU_MBIND_XXX.
(get_elf_section_flags): Handle SHF_GNU_MBIND.
(process_section_headers): Likewise.
* testsuite/binutils-all/mbind1.s: New file.
* testsuite/binutils-all/objcopy.exp: Run readelf test on
mbind1.s.
gas/
* NEWS: Mention support for ELF SHF_GNU_MBIND.
* config/obj-elf.c (section_match): New.
(get_section): Match both sh_info and group name.
(obj_elf_change_section): Add argument for sh_info. Pass both
sh_info and group name to get_section. Issue an error for
SHF_GNU_MBIND section without SHF_ALLOC. Set sh_info.
(obj_elf_parse_section_letters): Set SHF_GNU_MBIND for 'd'.
(obj_elf_section): Support SHF_GNU_MBIND section info.
* config/obj-elf.h (obj_elf_change_section): Add argument for
sh_info.
* config/tc-arm.c (start_unwind_section): Pass 0 as sh_info to
obj_elf_change_section.
* config/tc-ia64.c (obj_elf_vms_common): Likewise.
* config/tc-microblaze.c (microblaze_s_data): Likewise.
(microblaze_s_sdata): Likewise.
(microblaze_s_rdata): Likewise.
(microblaze_s_bss): Likewise.
* config/tc-mips.c (s_change_section): Likewise.
* config/tc-msp430.c (msp430_profiler): Likewise.
* config/tc-rx.c (parse_rx_section): Likewise.
* config/tc-tic6x.c (tic6x_start_unwind_section): Likewise.
* doc/as.texinfo: Document 'd' for SHF_GNU_MBIND.
* testsuite/gas/elf/elf.exp: Run section12a, section12b and
section13.
* testsuite/gas/elf/section10.d: Updated.
* testsuite/gas/elf/section10.s: Likewise.
* testsuite/gas/elf/section12.s: New file.
* testsuite/gas/elf/section12a.d: Likewise.
* testsuite/gas/elf/section12b.d: Likewise.
* testsuite/gas/elf/section13.l: Likewise.
* testsuite/gas/elf/section13.d: Likewise.
* testsuite/gas/elf/section13.s: Likewise.
include/
* elf/common.h (PT_GNU_MBIND_NUM): New.
(PT_GNU_MBIND_LO): Likewise.
(PT_GNU_MBIND_HI): Likewise.
(SHF_GNU_MBIND): Likewise.
ld/
* NEWS: Mention support for ELF SHF_GNU_MBIND and
PT_GNU_MBIND_XXX.
* emultempl/elf32.em (gld${EMULATION_NAME}_place_orphan): Place
input GNU_MBIND sections with the same type, attributes and
sh_info field into a single output GNU_MBIND section.
* testsuite/ld-elf/elf.exp: Run mbind2a and mbind2b.
* testsuite/ld-elf/mbind1.s: New file.
* testsuite/ld-elf/mbind1a.d: Likewise.
* testsuite/ld-elf/mbind1b.d: Likewise.
* testsuite/ld-elf/mbind1c.d: Likewise.
* testsuite/ld-elf/mbind2a.s: Likewise.
* testsuite/ld-elf/mbind2b.c: Likewise.
The Nios II processor documentation defines relocations for PIC and
shared libraries as part of the GNU/Linux ABI only; GCC rejects -fpic
on bare-metal.
2017-03-21 Sandra Loosemore <sandra@codesourcery.com>
ld/
* testsuite/lib/ld-lib.exp (check_shared_lib_support): Return
false for nios2-*-elf.
Since BFD64 may be used on 32-bit address, we need to apply addr_mask
to check VMA and LMA.
* ldlang.c (lang_check_section_addresses): Use addr_mask to
check VMA and LMA.
ld/
* ldlang.c (lang_check_section_addresses): Check for address space
overflow.
* testsuite/ld-checks/checks.exp (overflow_check): New procedure
* testsuite/ld-checks/over.s: New test source.
* testsuite/ld-checks/over.d: New test.
* testsuite/ld-checks/over2.s: New test source.
* testsuite/ld-checks/over2.d: New test.
First, need to match against just the CPU name, not the whole triplet.
Otherwise, the test picks up "*le-*" pattern from x86_64-apple-darwin
triplet.
Second, it should be testing for $target, not $host. Host may be
little endian by default, and the sysroot directory layout shouldn't
depend on whether it is built on LE or BE machine.
* emulparams/elf32ppccommon.sh (LIBPATH_SUFFIX): Set from target
cpu, not host.
Relative paths shouldn't have the sysroot prefix added. The patch
also makes some attempt at supporting DOS paths, and tidies code using
the new add_sysroot.
* emultempl/elf32.em (gld${EMULATION_NAME}_add_sysroot): Rewrite.
Only prefix absolute paths with sysroot. Handle DOS paths.
(gld${EMULATION_NAME}_check_ld_elf_hints): Constify variable.
(gld${EMULATION_NAME}_check_ld_so_conf): Likewise.
(gld${EMULATION_NAME}_after_open): Short-circuit NULL path
searches. Rename variable. Simplify get_runpath search.
This gcc option isn't well supported, so use the actual linker option
we want to test.
* testsuite/ld-elf/shared.exp: Use -Wl,-export-dynamic rather
than -rdynamic.
These targets use the generic ELF support, so don't handle orphans
well. The patch also updates the orphan doco to reflect this fact,
and deletes some ELF details that don't really add anything.
* ld.texinfo (Orphan Sections): Mention that not all targets
handle orphans well. Delete ELF details.
* testsuite/ld-elf/orphan-9.d: Don't run for i860 and i960.
* testsuite/ld-elf/orphan-10.d: Likewise.
Given a linker script fragment like this:
SECTIONS {
. = 0x1000;
.text : AT(0x100) { *(.text) }
.data : AT(0x200) { *(.data) }
.rodata : AT(0x300) { *(.rodata) }
}
and an input file containing sections, '.text', '.data.1', and
'.rodata', then we'd expect the linker to place '.text' and '.rodata' in
the obvious way, and the '.data.1' orphan section would be located after
the '.data' section (assuming similar section properties).
Further, I believe that the expectation would be that the LMA for the
orphan '.data.1' section would start from 0x200 (as there is no '.data'
content).
However, right now, the LMA for '.data.1' would be 0x101, following on
from the '.text' section, this is because the change in LMA for the
'.data' section is not noticed by the linker, if there's no content in
the '.data' section.
What can be even more confusing to a user (though the cause is obvious
once you understand what's going on) is that adding some content to
'.data' will cause the orphan '.data.1' to switch to an LMA based off of
0x200.
This commit changes the behaviour so that an empty section that is in
the default lma region, and sets its lma, will adjust the lma of the
default region, this change will then be reflected in following sections
within the default lma memory region.
There's a new test to cover this issue that passes on a range of
targets, however, some targets generate additional sections, or have
stricter memory region size requirements that make it harder to come
up with a generic pass pattern, that still tests the required
features. For now I've set the test to ignore these targets.
ld/ChangeLog:
* ldlang.c (lang_size_sections_1): Shortcut loop only after
tracking changes to the default regions LMA.
* testsuite/ld-elf/orphan-9.ld: Extend header comment.
* testsuite/ld-elf/orphan-10.d: New file.
* testsuite/ld-elf/orphan-10.s: New file.
* NEWS: Mention change in behaviour.
When picking an lma_region for an orphan section we currently create a
new lang_output_section_statement_type and then populate this with the
orphan section.
The problem is that the lang_output_section_statement_type has a prev
pointer that links back to the previous output section. For non-orphan
output sections, that are created in linker script order, the prev
pointer will point to the output section that appears previous in linker
script order, as you'd probably expect.
The problem is that orphan sections are placed after processing the
linker script, and so, in the case of an output section created for an
orphan input section, the prev pointer actually points to the last
output section created.
This causes some unexpected behaviour when the orphan section is not
placed after the last non-orphan section that was created.
For example, consider this linker script:
MEMORY {
TEXT : ORIGIN = 0x200, LENGTH = 0x10
RODATA : ORIGIN = 0x400, LENGTH = 0x10
}
SECTIONS {
.text : {*(.text) } AT>TEXT
.data : AT(0x300) { *(.data) }
.rodata : { *(.rodata) } AT>RODATA
}
If we are processing an orphan section '.data.1' and decide to place
this after '.data', then the output section created will have a prev
pointer that references the '.rodata' output section. The result of
this is that '.data.1' will actually be assigned to the RODATA lma
region, which is probably not the expected behaviour.
The reason why '.data.1' is placed into the lma region of the '.rodata'
section is that lma region propagation is done at the time we create the
output section, based on the previous output section pointer, which is
really just a last-output-section-created pointer at that point in time,
though the prev point is fixed up later to reflect the true order of the
output sections.
The solution I propose in this commit is to move the propagation of lma
regions into a separate pass of the linker, rather than performing this
as part of the enter/exit of output sections during linker script
parsing.
During this later phase we have all of the output sections to hand, and
the prev/next points have been fixed up by this point to reflect the
actual placement ordering.
There's a new test to cover this issue that passes on a range of
targets, however, some targets generate additional sections, or have
stricter memory region size requirements that make it harder to come
up with a generic pass pattern, that still tests the required
features. For now I've set the test to ignore these targets.
ld/ChangeLog:
* ldlang.c (lang_leave_output_section_statement): Move lma_region
logic to...
(lang_propagate_lma_regions): ...this new function.
(lang_process): Call new function.
* testsuite/ld-elf/orphan-9.d: New file.
* testsuite/ld-elf/orphan-9.ld: New file.
* testsuite/ld-elf/orphan-9.s: New file.
* NEWS: Mention change in behaviour.
Make more explicit mention of the fact that orphan sections can cause a
new output section to be created. Though this information is clearly
implied in the manual it might not be clear enough.
A user _might_ (incorrectly) think that orphan sections can only be
inserted into an existing output section.
ld/ChangeLog:
* ld.texinfo (Orphan Sections): Add more detail.
lang_assignment_statement serves both assignments and asserts.
* ldlang.c (open_input_bfds): Check that lang_assignment_statement
is not an assert before referencing defsym.
A number of places in elf32-nios.c created dynamic sections but didn't
set the hash table dynobj. That meant we could have duplicate dynamic
sections connected to a number of bfds, so size_dynamic_sections
didn't properly discard or allocate contents.
Also, the entire set of dynamic sections was created in check_relocs
on seeing GOT relocs, when only .got related sections are needed,
probably done to hide segfaults later in finish_dynamic_sections.
The patch fixes these issues and makes the assembler emit errors when
nios2 lacks the necessary pc-relative relocs for subtraction
expressions, rather than silently generating bad code.
eg. ld-elf/merge. I've also tidied uses of elf32_nios2_hash_table and
elf_hash_table.
bfd/
PR 20995
* elf32-nios2.c (nios2_elf32_relocate_section): Use htab
rather than elf32_nios2_hash_table or elf_hash_table.
(create_got_section): Likewise.
(nios2_elf32_finish_dynamic_symbol): Likewise.
(nios2_elf32_adjust_dynamic_symbol): Likewise.
(nios2_elf32_size_dynamic_sections): Likewise.
(nios2_elf32_check_relocs): Delete dynobj, sgot, and srelgot
vars. Use htab equivalents directly instead. Don't create
all dynamic sections on needing just the GOT. Use a goto
rather than a fall-through with reloc test. Ensure
htab->dynobj is set when making dynamic sreloc section.
(nios2_elf32_finish_dynamic_sections): Delete dynobj, use htab
equivalent directly instead. Don't segfault on looking for
.dynamic when dynamic sections have not been created. Don't
segfault on .got.plt being discarded.
(nios2_elf32_size_dynamic_sections): Delete plt and got vars.
Don't set "relocs" on .rela.plt. Do handle .sbss. Delete
fixme and another not so relevant comment.
(nios2_elf_add_symbol_hook): Delete dynobj var. If not
already set, set hash table dynobj on creating .sbss.
gas/
* config/tc-nios2.h (TC_FORCE_RELOCATION_SUB_LOCAL): Define.
ld/
* testsuite/ld-elf/merge.d: xfail for nios.
This came up because I was looking at ld/tmpdir/addpcis.o and noticed
the odd addends on REL16DX_HA. They ought to both be -4. The error
crept in due REL16DX_HA howto being pc-relative (as indeed it should
be), and code at gas/write.c:1001 after this comment
/* Make it pc-relative. If the back-end code has not
selected a pc-relative reloc, cancel the adjustment
we do later on all pc-relative relocs. */
*not* cancelling the pc-relative adjustment. So I've made a dummy
non-relative split reloc so that the generic code handles this, rather
than attempting to add hacks later in md_apply_fix which would not be
very robust. Having the new internal reloc also makes it easy to
support
addpcis rx,sym@ha
as an equivalent to
addpcis rx,(sym-0f)@ha
0:
The patch also fixes overflow checking, which must test whether the
addi will overflow too since @l relocs don't have any overflow check.
Lastly, since I was poking at md_apply_fix, I arranged to have the
generic gas/write.c code emit errors for subtraction expressions where
we lack reloc support.
include/
* elf/ppc64.h (R_PPC64_16DX_HA): New. Expand fake reloc comment.
* elf/ppc.h (R_PPC_16DX_HA): Likewise.
bfd/
* reloc.c (BFD_RELOC_PPC_16DX_HA): New.
* elf64-ppc.c (ppc64_elf_howto_raw <R_PPC64_16DX_HA>): New howto.
(ppc64_elf_reloc_type_lookup): Translate new bfd reloc.
(ppc64_elf_ha_reloc): Correct overflow test on REL16DX_HA.
(ppc64_elf_relocate_section): Likewise.
* elf32-ppc.c (ppc_elf_howto_raw <R_PPC_16DX_HA>): New howto.
(ppc_elf_reloc_type_lookup): Translate new bfd reloc.
(ppc_elf_check_relocs): Handle R_PPC_16DX_HA to pacify gcc.
* libbfd.h: Regenerate.
* bfd-in2.h: Regenerate.
gas/
* config/tc-ppc.c (md_assemble): Use BFD_RELOC_PPC_16DX_HA for addpcis.
(md_apply_fix): Remove fx_subsy check. Move code converting to
pcrel reloc earlier and handle BFD_RELOC_PPC_16DX_HA. Remove code
emiiting errors on seeing fx_pcrel set on unexpected relocs, as
that is done now by the generic code via..
* config/tc-ppc.h (TC_FORCE_RELOCATION_SUB_LOCAL): ..this. Define.
(TC_VALIDATE_FIX_SUB): Define.
ld/
* testsuite/ld-powerpc/addpcis.d: Define ext1 and ext2 at
limits of addpcis range.
Interpret the `jalr $0, $25' instruction encoding with an R_MIPS_JALR
relocation attached as an alias to `jr $25' and convert the jump to an
equivalent branch where possible, consequently covering the MIPSr6
architecture for the purpose of this optimization too.
bfd/
* elfxx-mips.c (mips_elf_perform_relocation): Also handle the
`jalr $0, $25' instruction encoding.
gas/
* testsuite/gas/mips/jalr4.s: Add `jalr $0, $25' instructions.
* testsuite/gas/mips/jalr4.d: Adjust accordingly. Remove MIPSr6
encoding patterns.
* testsuite/gas/mips/jalr4-n64.d: Likewise.
* testsuite/gas/mips/mipsr6@jalr4.d: New test.
* testsuite/gas/mips/mipsr6@jalr4-n32.d: New test.
* testsuite/gas/mips/mipsr6@jalr4-n64.d: New test.
ld/
* testsuite/ld-mips-elf/jalr4.dd: Adjust for `jalr $0, $25'
instructions.
* testsuite/ld-mips-elf/jalr4-r6.dd: New test.
* testsuite/ld-mips-elf/mips-elf.exp: Run the new test.
HPUX has a different .comm syntax, and anything in the first column
is a label.
gas/
* testsuite/gas/elf/strtab.s: Don't put directives on first
column or continuation with labels not in first column.
ld/
* testsuite/ld-elf/elf.exp: Xfail pr20995 tests on hppa64-hpux.
Set up HPUX defsym. Run pr14170 tests and build symbol3 objects,
defining HPUX where necessary. Define HPUX for implib tests.
* testsuite/ld-elf/comm-data4.d: Run for hpux.
* testsuite/ld-elf/endsym.d: Likewise.
* testsuite/ld-elf/linkoncerdiff.d: Likewise.
* testsuite/ld-elf/comm-data4.s: Add alternate .comm when HPUX.
* testsuite/ld-elf/comm-data5.s: Likewise.
* testsuite/ld-elf/endsym.s: Likewise.
* testsuite/ld-elf/pr14170c.s: Likewise.
* testsuite/ld-elf/symbol3.s: Likewise.
* testsuite/ld-elf/implib.s: Likewise. Don't start directives
in first column.
* testsuite/ld-elf/linkoncerdiff2.s: Don't use numeric labels.
* testsuite/ld-elf/warn3.d: Run for hpux.
* testsuite/ld-scripts/rgn-at10.d: Xfail for hpux.
* testsuite/ld-scripts/rgn-at11.d: Likewise.
* testsuite/ld-scripts/size-2.d: Remove xfail for hpux.
Fix a commit 74e1a04b97 ("More fixes for reading corrupt ELF files.")
`readelf --version-info' regression that caused "Version definition past
end of section" to be always printed at the end, even with good section
data.
For example with the `mips-linux' target we get:
$ cat ver_def.s
.data
.globl new_foo
.type new_foo, %object
new_foo:
.symver new_foo, foo@@ver_foo
$ cat ver_def.ver
{ global: *foo*; local: *; };
$ as -o ver_def.o ver_def.s
$ ld -e 0 --export-dynamic --version-script=ver_def.ver -o ver_def ver_def.o
$ readelf -V ver_def
Version symbols section '.gnu.version' contains 4 entries:
Addr: 000000000000007e Offset: 0x01007e Link: 2 (.dynsym)
000: 0 (*local*) 2 (ver_foo) 1 (*global*) 2 (ver_foo)
Version definition section '.gnu.version_d' contains 2 entries:
Addr: 0x0000000000000088 Offset: 0x010088 Link: 3 (.dynstr)
000000: Rev: 1 Flags: BASE Index: 1 Cnt: 1 Name: ver_def
0x001c: Rev: 1 Flags: none Index: 2 Cnt: 1 Name: ver_foo
Version definition past end of section
$
The cause is the `if (idx + ent.vd_next <= idx)' condition introduced to
ensure forward progress, which however always triggers for good version
definition section data as the last entry will have its `vd_next' value
set to 0.
Adjust the condition then, to say `if (idx + ent.vd_next < idx)' instead
and to ensure forward progress limit the number of entries processed to
the size of the version definition section, removing the problematic
message from output quoted above, while ensuring the original PR 17531
test case is still handled gracefully.
Add a suitable test case so that we have `readelf --version-info'
coverage; due to the lack of infrastructure needed to run the linker in
the `binutils' test suite and limited justification to implement it add
a new `readelf.exp' script to the `ld' test suite instead, intended to
gather any `readelf' test cases that require the linker to be run. If
ever we decide to have linker infrastructure added to the `binutils'
test suite, then the script can be moved between the test suites.
binutils/
* readelf.c (process_version_sections) <SHT_GNU_verdef>: Limit
the number of entries processed by the section size. Don't
break out of the loop if `ent.vd_next' is 0.
ld/
* testsuite/ld-elf/ver_def.d: New test.
* testsuite/ld-elf/ver_def.ld: New test linker script.
* testsuite/ld-elf/ver_def.ver: New test version script.
* testsuite/ld-elf/ver_def.s: New test source.
* testsuite/ld-elf/readelf.exp: New test script.
Remove separate original NewABI JALR relocation handling, introduced
with commit d06471104a ("relax jalr $t9 [R_MIPS_JALR symbol] to bal
symbol"), <https://sourceware.org/ml/binutils/2003-03/msg00394.html>,
and only used by LD with the `--relax' option specified, and rely solely
on `mips_elf_perform_relocation' code, which has been introduced with
commit 1367d393bb ("On the RM9000 convert jal to bal if in range"),
<https://www.sourceware.org/ml/binutils/2004-12/msg00088.html> and since
made more complete, across all the three ABIs.
Also remove the `--relax' option, now irrelevant, from the tests added
with the former commit.
bfd/
* elfxx-mips.h (_bfd_mips_relax_section): Remove prototype.
* elfxx-mips.c (_bfd_mips_relax_section): Remove function.
* elf64-mips.c (bfd_elf64_bfd_relax_section): Remove macro.
* elfn32-mips.c (bfd_elf32_bfd_relax_section): Likewise.
ld/
* testsuite/ld-mips-elf/relax-jalr-n32.d: Remove `--relax'
option.
* testsuite/ld-mips-elf/relax-jalr-n32-shared.d: Likewise.
* testsuite/ld-mips-elf/relax-jalr-n64.d: Likewise.
* testsuite/ld-mips-elf/relax-jalr-n64-shared.d: Likewise.
Discard R_MIPS_JALR and R_MICROMIPS_JALR relocations associated with
jumps that cannot be converted to an equivalent branch right away in
`mips_elf_calculate_relocation' rather than letting them through to
`mips_elf_perform_relocation'. This includes cross-mode jumps which
need to flip the ISA bit or jumps to a misaligned location that cannot
be encoded with a branch, in addition to preemptible symbol references
already handled.
Cross-mode jumps are actually already rejected as the conversion is made
in `mips_elf_perform_relocation', so in this case this change only saves
some processing. Jumps to a misaligned location are however converted,
with bits causing misalignment lost, making resulting code functionally
different even if the lone effect is avoiding an address error exception
with an instruction fetch at the jump destination requested.
Add test cases suitable, also including GAS verification to confirm that
the JALR relocations explicitly requested have indeed been output in the
intermediate objects used.
bfd/
* elfxx-mips.c (mips_elf_calculate_relocation) <R_MIPS_JALR>
<R_MICROMIPS_JALR>: Discard relocation if `cross_mode_jump_p'
or misaligned.
gas/
* testsuite/gas/mips/jalr4.d: New test.
* testsuite/gas/mips/jalr4-n32.d: New test.
* testsuite/gas/mips/jalr4-n64.d: New test.
* testsuite/gas/mips/jalr4.s: New test source.
* testsuite/gas/mips/mips.exp: Run the new tests.
ld/
* testsuite/ld-mips-elf/jalr4.dd: New test.
* testsuite/ld-mips-elf/mips-elf.exp: Run the new test.
PR 20744
bfd/
* elf32-ppc.c (ppc_elf_howto_raw): Correct dst_mask on all VLE
16D relocations.
(ppc_elf_vle_split16): Correct field mask and shift for 16D relocs.
(ppc_elf_relocate_section): Correct calculation for VLE SDAREL
relocs.
ld/
* testsuite/ld-powerpc/vle-reloc-2.s: Use r6 for last insn of
each group.
* testsuite/ld-powerpc/vle-reloc-2.d: Update for above change
and sdarel reloc fix.
Complement commit b531344c34 ("PR ld/20828: Reorder the symbol sweep
stage of section GC") and commit 81ff47b3a5 ("PR ld/20828: Fix linker
script symbols wrongly forced local with section GC") and move symbol
version processing ahead of the symbol sweep stage of section GC, all in
`bfd_elf_size_dynamic_sections', so that version symbols created stay in
the global scope and are not output as local symbols to the dynamic
symbol table in the presence of corresponding symbol definitions pulled
from a DSO involved in a link.
Consolidate the whole of symbol version processing into a single block
from all parts scattered across the function and rearranging the local
variables used as necessary, however leaving the setting of dynamic
entries associated with the DT_VERDEF, DT_VERDEFNUM, DT_VERNEED and
DT_VERNEEDNUM tags and the SEC_EXCLUDE flag for unused `.gnu.version'
section in the original places.
With the rearrangement of code blocks `Elf_Internal_Verneed *t' would
shadow the previous definition of `struct bfd_elf_version_tree *t', so
rename the former variable to `vn'.
bfd/
PR ld/20828
* elflink.c (bfd_elf_size_dynamic_sections): Move symbol version
processing ahead of the call to `elf_gc_sweep_symbol'.
ld/
PR ld/20828
* testsuite/ld-elf/pr20828-d.sd: New test.
* testsuite/ld-elf/pr20828-e.sd: New test.
* testsuite/ld-elf/pr20828-v.od: New test.
* testsuite/ld-elf/pr20828-v.ver: New test version script.
* testsuite/ld-elf/pr20828-v.ld: New test linker script.
* testsuite/ld-elf/pr20828.ld: Add `.gnu.version' and
`.gnu.version_d'.
* testsuite/ld-elf/shared.exp: Run the new tests.