Since x86 elf_*_check_relocs is called after all symbols have been
resolved, there is no need to check undefined symbols for relocations
against IFUNC symbols.
bfd/
* elf32-i386.c (elf_i386_check_relocs): Don't check undefined
symbols for relocations against IFUNC symbols.
* elf64-x86-64.c (elf_x86_64_check_relocs): Likewise.
ld/
* testsuite/ld-i386/i386.exp: Run pr19636-2e-nacl.
* testsuite/ld-i386/pr19636-2e.d: Skip for NaCl targets.
Remove .rel.plt section.
* testsuite/ld-i386/pr19636-2e-nacl.d: New file.
Add the GOT base for R_386_GOT32/R_386_GOT32X relocations against IFUNC
symbols if there is no base register and disallow them for PIC.
bfd/
PR ld/20244
* elf32-i386.c (elf_i386_relocate_section): Add the .got.plt
section address for R_386_GOT32/R_386_GOT32X relocations against
IFUNC symbols if there is no base register and return error for
PIC.
ld/
PR ld/20244
* testsuite/ld-i386/i386.exp: Run pr20244-2a, pr20244-2b,
pr20244-2c and pr20244-2d.
* testsuite/ld-i386/no-plt.exp: Run pr20244-3a and pr20244-3b.
* testsuite/ld-i386/pr20244-2.s: New file.
* testsuite/ld-i386/pr20244-2a.d: Likewise.
* testsuite/ld-i386/pr20244-2b.d: Likewise.
* testsuite/ld-i386/pr20244-2c.d: Likewise.
* testsuite/ld-i386/pr20244-2d.d: Likewise.
* testsuite/ld-i386/pr20244-3a.c: Likewise.
* testsuite/ld-i386/pr20244-3b.S: Likewise.
* testsuite/ld-i386/pr20244-3c.S: Likewise.
* testsuite/ld-i386/pr20244-3d.S: Likewise.
When relocating R_386_GOT32 in "op $0, bar@GOT", we shouldn't subtract
GOT base without a base register and we should disallow it without a
base register for PIC.
bfd/
PR ld/20244
* elf32-i386.c (elf_i386_relocate_section): When relocating
R_386_GOT32, return error without a base register for PIC and
subtract the .got.plt section address only with a base register.
ld/
PR ld/20244
* testsuite/ld-i386/i386.exp: Run pr20244-1a and pr20244-1b.
* testsuite/ld-i386/pr20244-1.s: New file.
* testsuite/ld-i386/pr20244-1a.d: Likewise.
* testsuite/ld-i386/pr20244-1b.d: Likewise.
* testsuite/ld-i386/pr20244-1c.d: Likewise.
We can generate i386 TLS code sequences for general and local dynamic
models without PLT, which uses indirect call via GOT:
call *___tls_get_addr@GOT(%reg)
where EBX register isn't required as GOT base, instead of direct call:
call ___tls_get_addr[@PLT]
which requires EBX register as GOT base.
Since direct call is 4-byte long and indirect call, is 5-byte long, the
extra one byte must be handled properly.
For general dynamic model, 7-byte lea instruction before call instruction
is replaced by 6-byte one to make room for indirect call. For local
dynamic model, we simply use 5-byte indirect call.
TLS linker optimization is updated to recognize new instruction patterns.
For local dynamic model to local exec model transition, we generate
a 6-byte lea instruction as nop, instead of a 1-byte nop plus a 4-byte
lea instruction. Since linker may convert
call ___tls_get_addr[@PLT]
to
addr32 call ____tls_get_addr
when producing static executable, both patterns are recognized.
bfd/
* elf64-i386.c (elf_i386_link_hash_entry): Add tls_get_addr.
(elf_i386_link_hash_newfunc): Initialize tls_get_addr to 2.
(elf_i386_check_tls_transition): Check indirect call and direct
call with the addr32 prefix for general and local dynamic models.
Set the tls_get_addr feild.
(elf_i386_convert_load_reloc): Always use addr32 prefix for
indirect ___tls_get_addr call via GOT.
(elf_i386_relocate_section): Handle GD->LE, GD->IE and LD->LE
transitions with indirect call and direct call with the addr32
prefix.
ld/
* testsuite/ld-i386/i386.exp: Run libtlspic2.so, tlsbin2,
tlsgd3, tlsld2, tlsgd4, tlspie3a, tlspie3b and tlspie3c.
* testsuite/ld-i386/pass.out: New file.
* testsuite/ld-i386/tls-def1.c: Likewise.
* testsuite/ld-i386/tls-gd1.S: Likewise.
* testsuite/ld-i386/tls-ld1.S: Likewise.
* testsuite/ld-i386/tls-main1.c: Likewise.
* testsuite/ld-i386/tls.exp: Likewise.
* testsuite/ld-i386/tlsbin2-nacl.rd: Likewise.
* testsuite/ld-i386/tlsbin2.dd: Likewise.
* testsuite/ld-i386/tlsbin2.rd: Likewise.
* testsuite/ld-i386/tlsbin2.sd: Likewise.
* testsuite/ld-i386/tlsbin2.td: Likewise.
* testsuite/ld-i386/tlsbinpic2.s: Likewise.
* testsuite/ld-i386/tlsgd3.dd: Likewise.
* testsuite/ld-i386/tlsgd3.s: Likewise.
* testsuite/ld-i386/tlsgd4.d: Likewise.
* testsuite/ld-i386/tlsgd4.s: Likewise.
* testsuite/ld-i386/tlsld2.s: Likewise.
* testsuite/ld-i386/tlspic2-nacl.rd: Likewise.
* testsuite/ld-i386/tlspic2.dd: Likewise.
* testsuite/ld-i386/tlspic2.rd: Likewise.
* testsuite/ld-i386/tlspic2.sd: Likewise.
* testsuite/ld-i386/tlspic2.td: Likewise.
* testsuite/ld-i386/tlspic3.s: Likewise.
* testsuite/ld-i386/tlspie3.s: Likewise.
* testsuite/ld-i386/tlspie3a.d: Likewise.
* testsuite/ld-i386/tlspie3b.d: Likewise.
* testsuite/ld-i386/tlspie3c.d: Likewise.
Don't convert R_386_GOT32 since we can't tell if it is applied
to "mov $foo@GOT, %reg" which isn't a load via GOT.
bfd/
PR ld/20117
* elf32-i386.c (elf_i386_convert_load_reloc): Don't check
R_386_GOT32X.
(elf_i386_convert_load): Don't convert R_386_GOT32.
ld/
PR ld/20117
* testsuite/ld-i386/i386.exp: Run pr20117.
* testsuite/ld-i386/pr19609-1i.d: Updated.
* testsuite/ld-i386/pr20117.d: New file.
* testsuite/ld-i386/pr20117.s: Likewise.
We shouldn't issue an error for read-only segment with dynamic IFUNC
relocations when dynamic relocations are against normal symbols.
bfd/
PR ld/19939
* elf-bfd.h (_bfd_elf_allocate_ifunc_dyn_relocs): Add a pointer
to bfd_boolean.
* elf-ifunc.c (_bfd_elf_allocate_ifunc_dyn_relocs): Updated.
Set *readonly_dynrelocs_against_ifunc_p to TRUE if dynamic reloc
applies to read-only section.
* elf32-i386.c (elf_i386_link_hash_table): Add
readonly_dynrelocs_against_ifunc.
(elf_i386_allocate_dynrelocs): Updated.
(elf_i386_size_dynamic_sections): Issue an error for read-only
segment with dynamic IFUNC relocations only if
readonly_dynrelocs_against_ifunc is TRUE.
* elf64-x86-64.c (elf_x86_64_link_hash_table): Add
readonly_dynrelocs_against_ifunc.
(elf_x86_64_allocate_dynrelocs): Updated.
(elf_x86_64_size_dynamic_sections): Issue an error for read-only
segment with dynamic IFUNC relocations only if
readonly_dynrelocs_against_ifunc is TRUE.
* elfnn-aarch64.c (elfNN_aarch64_allocate_ifunc_dynrelocs):
Updated.
ld/
PR ld/19939
* testsuite/ld-i386/i386.exp: Run PR ld/19939 tests.
* testsuite/ld-x86-64/x86-64.exp: Likewise.
* testsuite/ld-i386/pr19939.s: New file.
* testsuite/ld-i386/pr19939a.d: Likewise.
* testsuite/ld-i386/pr19939b.d: Likewise.
* testsuite/ld-x86-64/pr19939.s: Likewise.
* testsuite/ld-x86-64/pr19939a.d: Likewise.
* testsuite/ld-x86-64/pr19939b.d: Likewise.
Symbols defined in PIE should be bound locally, the same as -shared
-Bsymbolic.
bfd/
PR ld/19827
* elf32-i386.c (elf_i386_check_relocs): Bind defined symbol
locally in PIE.
(elf_i386_relocate_section): Likewise.
* elf64-x86-64.c (elf_x86_64_check_relocs): Likewise.
(elf_x86_64_relocate_section): Likewise.
ld/
PR ld/19827
* testsuite/ld-i386/i386.exp: Run PR ld/19827 tests.
* testsuite/ld-x86-64/x86-64.exp: Likewise.
* testsuite/ld-i386/pr19827.rd: New file.
* testsuite/ld-i386/pr19827a.S: Likewise.
* testsuite/ld-i386/pr19827b.S: Likewise.
* testsuite/ld-x86-64/pr19827.rd: Likewise.
* testsuite/ld-x86-64/pr19827a.S: Likewise.
* testsuite/ld-x86-64/pr19827b.S: Likewise.
Increment PLT reference count for locally defined local IFUNC symbols
in shared object since STT_GNU_IFUNC symbol must go through PLT even
if it is locally defined and undefined symbol may turn out to be a
STT_GNU_IFUNC symbol later.
bfd/
PR ld/19784
* elf32-i386.c (elf_i386_check_relocs): Increment PLT reference
count for locally defined local IFUNC symbols in shared object.
* elf64-x86-64.c (elf_x86_64_check_relocs): Likewise.
ld/
PR ld/19784
* testsuite/ld-i386/i386.exp: Remove pr19636-2e-nacl test.
* testsuite/ld-i386/pr19636-2e-nacl.d: Moved to ...
* testsuite/ld-i386/pr19636-2e.d: Here. Remove notarget.
* testsuite/ld-ifunc/ifunc.exp: Run PR ld/19784 tests.
* testsuite/ld-ifunc/pass.out: New file.
* testsuite/ld-ifunc/pr19784a.c: Likewise.
* testsuite/ld-ifunc/pr19784b.c: Likewise.
* testsuite/ld-ifunc/pr19784c.c: Likewise.
Since compiler may pass --as-needed to ld by default, link .o file
before .so file in i386/x86-64 tests.
PR ld/19774
* testsuite/ld-i386/i386.exp: Link tmpdir/pr18900.o before
tmpdir/pr18900.so and test --as-needed. Link tmpdir/gotpc1.o
before tmpdir/got1d.so and test --as-needed.
* testsuite/ld-x86-64/x86-64.exp: Link tmpdir/pr18900.o before
tmpdir/pr18900.so and test --as-needed.
Since compiler may pass --as-needed to ld by default, link
tmpdir/copyreloc-main.o before tmpdir/copyreloc-lib.so.
* testsuite/ld-i386/i386.exp: Link tmpdir/copyreloc-main.o
before tmpdir/copyreloc-lib.so and test --as-needed.
* testsuite/ld-x86-64/x86-64.exp: Likewise.
R_386_GOT32X, R_X86_64_GOTPCRELX and R_X86_64_REX_GOTPCRELX relocations
retrieve the symbol address via its GOT slot. If the symbol address is
known at the link-time, we can use it directly by changing instruction
encoding. Indirect branch can only be converted to PC relative direct
branch. MOV can be changed to LEA or encoded differently with signed
address. The subset of binary operations can be encoded only with
signed address.
If undefined weak symbol is resolved to zero link-time, we can use it
as address. Zero addresss can't used with PC relative direct branch
when PIC is true since the current PC is unknown. In 64-bit, 32-bit
relocation for PC relatiave direct branch to zero may also overflow.
If this optimization causes relocation overflow, --no-relax can be used
to work around it.
bfd/
PR ld/19609
* elf32-i386.c (elf_i386_convert_load): Convert to R_386_32 for
load with locally bound symbols if PIC is false or there is no
base register. Optimize branch to 0 if PIC is false.
(elf_i386_relocate_section): Don't generate dynamic relocations
against undefined weak symbols if PIC is false.
* elf64-x86-64.c (elf_x86_64_convert_load): Disable optimization
if we can't estimate relocation overflow with --no-relax.
Convert to R_X86_64_32S/R_X86_64_32 for load with locally bound
symbols if PIC is false. Optimize branch to 0 if PIC is false.
(elf_x86_64_relocate_section): Don't generate dynamic relocations
against undefined weak symbols if PIC is false.
ld/
PR ld/19609
* testsuite/ld-i386/got1.dd: Updated.
* testsuite/ld-i386/lea1c.d: Likewise.
* testsuite/ld-i386/load1-nacl.d: Likewise.
* testsuite/ld-i386/load1.d: Likewise.
* testsuite/ld-i386/load4b.d: Likewise.
* testsuite/ld-i386/load5b.d: Likewise.
* testsuite/ld-i386/mov1b.d: Likewise.
* testsuite/ld-x86-64/mov1b.d: Likewise.
* testsuite/ld-x86-64/mov1d.d: Likewise.
* testsuite/ld-ifunc/ifunc-21-i386.d: Likewise.
* testsuite/ld-ifunc/ifunc-21-x86-64.d: Likewise.
* testsuite/ld-ifunc/ifunc-22-i386.d: Likewise.
* testsuite/ld-ifunc/ifunc-22-x86-64.d: Likewise.
* testsuite/ld-x86-64/gotpcrel1.dd: Likewise.
* testsuite/ld-x86-64/lea1a.d: Likewise.
* testsuite/ld-x86-64/lea1b.d: Likewise.
* testsuite/ld-x86-64/lea1c.d: Likewise.
* testsuite/ld-x86-64/lea1d.d: Likewise.
* testsuite/ld-x86-64/lea1e.d: Likewise.
* testsuite/ld-x86-64/lea1f.d: Likewise.
* testsuite/ld-x86-64/mov1b.d: Likewise.
* testsuite/ld-x86-64/mov1d.d: Likewise.
* testsuite/ld-x86-64/pr13082-3b.d: Likewise.
* testsuite/ld-x86-64/pr13082-4b.d: Likewise.
* testsuite/ld-x86-64/lea1.s: Add tests for 32-bit registers.
* testsuite/ld-i386/pr19609-1.s: New file.
* testsuite/ld-i386/pr19609-1a.d: Likewise.
* testsuite/ld-i386/pr19609-1b.d: Likewise.
* testsuite/ld-i386/pr19609-1c.d: Likewise.
* testsuite/ld-i386/pr19609-1d.d: Likewise.
* testsuite/ld-i386/pr19609-1e.d: Likewise.
* testsuite/ld-i386/pr19609-1f.d: Likewise.
* testsuite/ld-i386/pr19609-1g.d: Likewise.
* testsuite/ld-i386/pr19609-1h.d: Likewise.
* testsuite/ld-i386/pr19609-1i.d: Likewise.
* testsuite/ld-i386/pr19609-2.s: Likewise.
* testsuite/ld-i386/pr19609-2a.d: Likewise.
* testsuite/ld-i386/pr19609-2b.d: Likewise.
* testsuite/ld-i386/pr19609-2c.d: Likewise.
* testsuite/ld-i386/undefweak.s: Likewise.
* testsuite/ld-i386/undefweaka.d: Likewise.
* testsuite/ld-i386/undefweakb.d: Likewise.
* testsuite/ld-x86-64/pr13082-3c.d: Likewise.
* testsuite/ld-x86-64/pr13082-3d.d: Likewise.
* testsuite/ld-x86-64/pr19609-1.s: Likewise.
* testsuite/ld-x86-64/pr19609-1a.d: Likewise.
* testsuite/ld-x86-64/pr19609-1b.d: Likewise.
* testsuite/ld-x86-64/pr19609-1c.d: Likewise.
* testsuite/ld-x86-64/pr19609-1d.d: Likewise.
* testsuite/ld-x86-64/pr19609-1e.d: Likewise.
* testsuite/ld-x86-64/pr19609-1f.d: Likewise.
* testsuite/ld-x86-64/pr19609-1g.d: Likewise.
* testsuite/ld-x86-64/pr19609-1h.d: Likewise.
* testsuite/ld-x86-64/pr19609-1i.d: Likewise.
* testsuite/ld-x86-64/pr19609-1j.d: Likewise.
* testsuite/ld-x86-64/pr19609-1k.d: Likewise.
* testsuite/ld-x86-64/pr19609-1l.d: Likewise.
* testsuite/ld-x86-64/pr19609-1m.d: Likewise.
* testsuite/ld-x86-64/pr19609-2.s: Likewise.
* testsuite/ld-x86-64/pr19609-2a.d: Likewise.
* testsuite/ld-x86-64/pr19609-2b.d: Likewise.
* testsuite/ld-x86-64/pr19609-2c.d: Likewise.
* testsuite/ld-x86-64/pr19609-2d.d: Likewise.
* testsuite/ld-x86-64/pr19609-3.s: Likewise.
* testsuite/ld-x86-64/pr19609-3a.d: Likewise.
* testsuite/ld-x86-64/pr19609-3b.d: Likewise.
* testsuite/ld-x86-64/pr19609-4.s: Likewise.
* testsuite/ld-x86-64/pr19609-4a.d: Likewise.
* testsuite/ld-x86-64/pr19609-4b.d: Likewise.
* testsuite/ld-x86-64/pr19609-4c.d: Likewise.
* testsuite/ld-x86-64/pr19609-4d.d: Likewise.
* testsuite/ld-x86-64/pr19609-4e.d: Likewise.
* testsuite/ld-x86-64/pr19609-5.s: Likewise.
* testsuite/ld-x86-64/pr19609-5a.d: Likewise.
* testsuite/ld-x86-64/pr19609-5b.d: Likewise.
* testsuite/ld-x86-64/pr19609-5c.d: Likewise.
* testsuite/ld-x86-64/pr19609-5d.d: Likewise.
* testsuite/ld-x86-64/pr19609-5e.d: Likewise.
* testsuite/ld-x86-64/pr19609-6.s: Likewise.
* testsuite/ld-x86-64/pr19609-6a.d: Likewise.
* testsuite/ld-x86-64/pr19609-6b.d: Likewise.
* testsuite/ld-x86-64/pr19609-6c.d: Likewise.
* testsuite/ld-x86-64/pr19609-6d.d: Likewise.
* testsuite/ld-x86-64/pr19609-7.s: Likewise.
* testsuite/ld-x86-64/pr19609-7a.d: Likewise.
* testsuite/ld-x86-64/pr19609-7b.d: Likewise.
* testsuite/ld-x86-64/pr19609-7c.d: Likewise.
* testsuite/ld-x86-64/pr19609-7d.d: Likewise.
* testsuite/ld-i386/i386.exp: Run undefweak tests and tests for
PR ld/19609.
* testsuite/ld-x86-64/x86-64.exp: Run pr13082-3c, pr13082-3d
and tests for PR ld/19609.
Before binutils 2.26, -Bsymbolic and -Bsymbolic-functions were also
applied to PIE so that "ld -pie -Bsymbolic -E" can be used to export
symbols in PIE with local binding. This patch re-enables -Bsymbolic
and -Bsymbolic-functions for PIE.
PR ld/19615
* ld.texinfo: Document -Bsymbolic and -Bsymbolic-functions for
PIE.
* lexsup.c (parse_args): Enable -Bsymbolic and
-Bsymbolic-functions for PIE.
* testsuite/ld-i386/i386.exp: Run pr19175.
* testsuite/ld-i386/pr19615.d: New file.
* testsuite/ld-i386/pr19615.s: Likewise.
* testsuite/ld-x86-64/pr19615.d: Likewise.
* testsuite/ld-x86-64/pr19615.s: Likewise.
Linker can't optimize R_386_GOT32 and R_386_GOT32X relocations if addend
isn't 0. It isn't valid to convert
movl foo@GOT+1(%ecx), %eax
to
leal foo@GOTOFF+1(%ecx), %eax
nor to convert
movq foo@GOTPCREL+1(%rip), %rax
to
leaq foo(%rip), %rax
for x86-64. We should check if addend is 0 before optimizing R_386_GOT32
and R_386_GOT32X relocations. Testcases are added for i386 and x86-64.
bfd/
* elf32-i386.c (elf_i386_convert_load): Skip if addend isn't 0.
(elf_i386_relocate_section): Skip R_386_GOT32X optimization if
addend isn't 0.
ld/testsuite/
* ld-i386/i386.exp: Run mov2a, mov2b and mov3.
* ld-i386/mov2.s: New file.
* ld-i386/mov2a.d: Likewise.
* ld-i386/mov2b.d: Likewise.
* ld-i386/mov3.d: Likewise.
* ld-i386/mov3.s: Likewise.
* ld-x86-64/mov2.s: Likewise.
* ld-x86-64/mov2a.d: Likewise.
* ld-x86-64/mov2b.d: Likewise.
* ld-x86-64/mov2c.d: Likewise.
* ld-x86-64/mov2d.d: Likewise.
* ld-x86-64/x86-64.exp: Run mov2a, mov2b, mov2c and mov2d.
Symbol defined by a linker assignment may have type bfd_link_hash_new
or bfd_link_hash_undefined. And h->def_regular is always set.
elf_i386_convert_load and elf_x86_64_convert_load should check
h->def_regular as well as bfd_link_hash_undefined and bfd_link_hash_new
to see if a symbol is defined by a linker script.
bfd/
PR ld/19319
* elf32-i386.c (elf_i386_convert_load): Check h->def_regular
instead of bfd_link_hash_new.
* elf64-x86-64.c (elf_x86_64_convert_load): Likewise. Skip
relocation overflow for bfd_link_hash_undefined and
bfd_link_hash_new if h->def_regular is set.
ld/testsuite/
PR ld/19319
* ld-i386/i386.exp: Run pr19319 test.
* ld-x86-64/x86-64.exp: Likewise.
* ld-i386/pr19319.dd: New file.
* ld-i386/pr19319a.S: Likewise.
* ld-i386/pr19319b.S: Likewise.
* ld-x86-64/pr19319.dd: Likewise.
* ld-x86-64/pr19319a.S: Likewise.
* ld-x86-64/pr19319b.S: Likewise.
Symbol symbol defined by an assignment in a linker script has type
bfd_link_hash_new. elf_i386_convert_load and elf_x86_64_convert_load
should check bfd_link_hash_new to see if a symbol is defined by a linker
script.
bfd/
PR ld/19175
* elf32-i386.c (elf_i386_convert_load): Check bfd_link_hash_new
instead of calling bfd_link_get_defined_symbol.
* elf64-x86-64.c (elf_x86_64_convert_load): Likewise. Skip
relocation overflow for bfd_link_hash_new.
* linker.c (bfd_link_get_defined_symbol): Removed.
* bfd-in2.h: Regenerated.
ld/testsuite/
PR ld/19175
* ld-i386/i386.exp: Run pr19175.
* ld-x86-64/x86-64.exp: Likewise.
* ld-i386/pr19175.d: New file.
* ld-i386/pr19175.s: Likewise.
* ld-i386/pr19175.t: Likewise.
* ld-x86-64/pr19175.d: Likewise.
* ld-x86-64/pr19175.s: Likewise.
* ld-x86-64/pr19175.t: Likewise.
This patch adds support for the R_386_GOT32X relocation proposed in
https://groups.google.com/forum/#!topic/ia32-abi/GbJJskkid4I
to gas and ld. It updates gas to generate R_386_GOT32X relocation for
memory operand, foo@GOT[(%reg)]. We must encode "mov foo@GOT, %eax"
with the 0x8b opcode, instead of the 0xb8 opcode, so that it can be
transformed to "lea foo, %eax". With the locally defined symbol, foo,
we convert
mov foo@GOT[(%reg1)], %reg2
to
lea foo[@GOTOFF(%reg1)], %reg2
and convert
call/jmp *foo@GOT[(%reg)]
to
nop call foo/jmp foo nop
When PIC is false, convert
test %reg1, foo@GOT[(%reg2)]
to
test $foo, %reg1
and convert
binop foo@GOT[(%reg1)], %reg2
to
binop $foo, %reg2
where binop is one of adc, add, and, cmp, or, sbb, sub, xor instructions.
bfd/
* elf32-i386.c: Include opcode/i386.h.
(elf_howto_table): Add R_386_GOT32X.
(R_386_ext2): Replace R_386_IRELATIVE with R_386_GOT32X.
(elf_i386_reloc_type_lookup): Handle BFD_RELOC_386_GOT32X.
(need_convert_mov_to_lea): Renamed to ...
(need_convert_load): This.
(elf_i386_check_relocs): Handle R_386_GOT32X. Replace
need_convert_mov_to_lea with need_convert_load.
(elf_i386_gc_sweep_hook): Handle R_386_GOT32X.
(elf_i386_size_dynamic_sections): Likewise.
(elf_i386_relocate_section): Likewise.
(elf_i386_convert_mov_to_lea): Renamed to ...
(elf_i386_convert_load): This. Replace need_convert_mov_to_lea
with need_convert_load. Support R_386_GOT32X transformations.
* reloc.c (BFD_RELOC_386_GOT32X): New.
* bfd-in2.h: Regenerated.
* libbfd.h: Likewise.
gas/
* config/tc-i386.c (tc_i386_fix_adjustable): Handle
BFD_RELOC_386_GOT32X.
(tc_gen_reloc): Likewise.
(match_template): Force 0x8b encoding for "mov foo@GOT, %eax".
(output_disp): Check for "call/jmp *mem", "mov mem, %reg",
"test %reg, mem" and "binop mem, %reg" where binop is one of
adc, add, and, cmp, or, sbb, sub, xor instructions. Set
fx_tcbit if the REX prefix is generated. Set fx_tcbit2 if
BFD_RELOC_386_GOT32X should be generated.
(i386_validate_fix): Generate BFD_RELOC_386_GOT32X if fx_tcbit2
is set.
gas/testsuite/
* gas/i386/got.d: New file.
* gas/i386/got.s: Likewise.
* gas/i386/i386.exp: Run got.
* gas/i386/localpic.d: Replace R_386_GOT32 with R_386_GOT32X.
* gas/i386/mixed-mode-reloc32.d: Likewise.
* gas/i386/reloc32.d: Likewise.
include/elf/
* i386.h (R_386_GOT32X): New relocation.
ld/testsuite/
* ld-i386/branch1.d: New file.
* ld-i386/branch1.s: Likewise.
* ld-i386/call1.d: Likewise.
* ld-i386/call1.s: Likewise.
* ld-i386/call2.d: Likewise.
* ld-i386/call2.s: Likewise.
* ld-i386/got1.dd: Likewise.
* ld-i386/got1.out: Likewise.
* ld-i386/got1a.S: Likewise.
* ld-i386/got1b.c: Likewise.
* ld-i386/got1c.c: Likewise.
* ld-i386/got1d.S: Likewise.
* ld-i386/jmp1.d: Likewise.
* ld-i386/jmp1.s: Likewise.
* ld-i386/jmp2.d: Likewise.
* ld-i386/jmp2.s: Likewise.
* ld-i386/load1.d: Likewise.
* ld-i386/load1.s: Likewise.
* ld-i386/load2.d: Likewise.
* ld-i386/load2.s: Likewise.
* ld-i386/load3.d: Likewise.
* ld-i386/load3.s: Likewise.
* ld-i386/load4.s: Likewise.
* ld-i386/load4a.d: Likewise.
* ld-i386/load4b.d: Likewise.
* ld-i386/load5.s: Likewise.
* ld-i386/load5a.d: Likewise.
* ld-i386/load5b.d: Likewise.
* ld-i386/load6.d: Likewise.
* ld-i386/load6.s: Likewise.
* ld-i386/i386.exp: Run branch1, call1, call2, jmp1, jmp2,
load1, load2, load3, load4a, load4b, load5a, load5b and load6
tests. Run got1 test.
Since something like ".long foo - ." may be used as pointer, we make
sure that PLT is used if foo is a function defined in a shared library.
bfd/
PR ld/19031
* elf32-i386.c (elf_i386_check_relocs): Set
pointer_equality_needed for R_386_PC32 reloc in non-code
sections.
ld/testsuite/
PR ld/19031
* ld-i386/i386.exp: Run PR ld/19031 test.
* ld/testsuite/ld-i386/pr19031.out: New file.
* ld/testsuite/ld-i386/pr19031a.c: Likewise.
* ld/testsuite/ld-i386/pr19031b.S: Likewise.
* ld/testsuite/ld-i386/pr19031c.c: Likewise.
We use its PLT entry to initialize function pointer at run-time. If
there is no other usage for the PLT entry, we can generate run-time
function pointer relocations in read-write section, which can be
resolved by dynamic linker, to initialize function pointers. It avoids
the extra indirect branch overhead in PLT.
bfd/
PR ld/18900
* elf32-i386.c (elf_i386_link_hash_entry): Add
func_pointer_refcount.
(elf_i386_link_hash_newfunc): Clear func_pointer_refcount.
(elf_i386_get_local_sym_hash): Likewise.
(elf_i386_copy_indirect_symbol): Also copy
func_pointer_refcount.
(elf_i386_check_relocs): Increment func_pointer_refcount.
(elf_i386_gc_sweep_hook): Decrement func_pointer_refcount.
(elf_i386_allocate_dynrelocs): Don't create the PLT entry if
there are only function pointer relocations which can be
resolved at run-time. Keep dynanamic relocations for run-time
function pointer initialization.
(elf_i386_relocate_section): Copy dynamic function pointer
relocations.
* elf64-x86-64.c (elf_x86_64_link_hash_entry): Add
func_pointer_refcount.
(elf_x86_64_link_hash_newfunc): Clear func_pointer_refcount.
(elf_x86_64_get_local_sym_hash): Likewise.
(elf_x86_64_copy_indirect_symbol): Also copy
func_pointer_refcount.
(elf_x86_64_check_relocs): Increment func_pointer_refcount.
(elf_x86_64_gc_sweep_hook): Decrement func_pointer_refcount.
(elf_x86_64_allocate_dynrelocs): Don't create the PLT entry if
there are only function pointer relocations which can be
resolved at run-time. Keep dynanamic relocations for run-time
function pointer initialization.
(elf_x86_64_relocate_section): Copy dynamic function pointer
relocations.
ld/testsuite/
PR ld/18900
* ld-i386/i386.exp: Run tests for PR ld/18900.
* ld-x86-64/x86-64.exp: Likewise.
* ld-i386/pr18900.out: New file.
* ld-i386/pr18900a.c: Likewise.
* ld-i386/pr18900a.c: Likewise.
* ld-i386/pr18900a.rd: Likewise.
* ld-i386/pr18900b.c: Likewise.
* ld-i386/pr18900b.rd: Likewise.
* ld-i386/pr18900c.c: Likewise.
* ld-x86-64/pr18900.out: Likewise.
* ld-x86-64/pr18900a.c: Likewise.
* ld-x86-64/pr18900a.rd: Likewise.
* ld-x86-64/pr18900b.c: Likewise.
* ld-x86-64/pr18900b.rd: Likewise.
* ld-x86-64/pr18900c.c: Likewise.
* ld-x86-64/mpx3.dd: Updated.
To load an ELF binary with DT_TEXTREL tag, the dynamic linker calls
__mprotect on the read-only segment with PROT_READ|PROT_WRITE before
applying dynamic relocation. It leads to segfault when performing
IFUNC relocations since the read-only segment has no execute permission.
This patch changes x86 linker to issue an error for read-only segment
with dynamic IFUNC relocations. Other backends with IFUNC support
may need a similar change.
bfd/
PR ld/18801
* elf32-i386.c (elf_i386_size_dynamic_sections): Issue an error
for read-only segment with dynamic IFUNC relocations.
* elf64-x86-64.c (elf_x86_64_size_dynamic_sections): Likewise.
ld/testsuite/
PR ld/18801
* ld-i386/i386.exp: Run pr18801.
* ld-x86-64/x86-64.exp: Likewise.
* ld-i386/pr18801.d: New file.
* ld-i386/pr18801.s: Likewise.
* ld-x86-64/pr18801.d: Likewise.
* ld-x86-64/pr18801.s: Likewise.
Since the backend elf_add_symbol_hook isn't called on local symbols,
the EI_OSABI field isn't to ELFOSABI_GNU where are local IFUNC symbols.
This patch changes the x86 backends to set has_gnu_symbols if there are
relocations against IFUNC symbols. Other backends with IFUNC support
may need a similar change.
This patch also changes the type of has_gnu_symbols from bfd_boolean to
enum elf_gnu_symbols.
bfd/
PR ld/18815
* elf-bfd.h (elf_gnu_symbols): New enum.
(elf_obj_tdata): Use elf_gnu_symbols on has_gnu_symbols.
* elf-s390-common.c (elf_s390_add_symbol_hook): Set
has_gnu_symbols to elf_gnu_symbol_any.
* elf32-arm.c (elf32_arm_add_symbol_hook): Likewise.
* elf32-m68k.c (elf_m68k_add_symbol_hook): Likewise.
* elf32-ppc.c (ppc_elf_add_symbol_hook): Likewise.
* elf32-sparc.c (elf32_sparc_add_symbol_hook): Likewise.
* elf64-ppc.c (ppc64_elf_add_symbol_hook): Likewise.
* elf64-sparc.c (elf64_sparc_add_symbol_hook): Likewise.
* lfxx-aarch64.c (_bfd_aarch64_elf_add_symbol_hook): Likewise.
* elf32-i386.c (elf_i386_check_relocs): Update has_gnu_symbols
if there are relocations against IFUNC symbols.
(elf_i386_add_symbol_hook): Don't check STT_GNU_IFUNC here.
* elf64-x86-64. (elf_x86_64_check_relocs): Update has_gnu_symbols
if there are relocations against IFUNC symbols.
(elf_x86_64_add_symbol_hook): Don't check STT_GNU_IFUNC here.
ld/testsuite/
PR ld/18815
* ld-i386/i386.exp: Run pr18815.
* ld-x86-64/x86-64.exp: Likewise.
* ld-i386/pr18815.d: New file.
* ld-i386/pr18815.s: Likewise.
* ld-x86-64/pr18815.d: Likewise.
* ld-x86-64/pr18815.s: Likewise.
Some x86 linker tests expect PLT. This patch adds $PLT_CFLAGS to -fPIC
for run_cc_link_tests.
* ld-i386/i386.exp (run_cc_link_tests): Add $PLT_CFLAGS to
-fPIC if needed.
* ld-x86-64/mpx.exp (run_cc_link_tests): Likewise.
* ld-x86-64/x86-64.exp (run_cc_link_tests): Likewise.
Since the .plt section and DT_PLTGOT are used by prelink to undo
prelinking for dynamic relocations, we must keep them even if there is
no PLT relocation. This patch reverted commit a3747075a.
bfd/
* elf32-i386.c (elf_i386_allocate_dynrelocs): Always allocate
space for the first .plt entry.
(elf_i386_size_dynamic_sections): Always add DT_PLTGOT for .plt
section. Add DT_PLTRELSZ, DT_PLTREL and DT_JMPREL only if
there are PLT relocations.
* elf64-x86-64.c (elf_x86_64_allocate_dynrelocs): Always
allocate space for the first .plt entry.
(elf_x86_64_size_dynamic_sections): Always add DT_PLTGOT for
.plt section. Add DT_PLTRELSZ, DT_PLTREL and DT_JMPREL only if
there are PLT relocations.
ld/testsuite/
* ld-i386/i386.exp: Run pltgot-2 for Linux targets.
* ld-x86-64/x86-64.exp: Likewise.
* ld-i386/pltgot-1.d: Updated.
* ld-x86-64/pltgot-1.d: Likewise.
* ld-i386/pltgot-2.d: New file.
* ld-x86-64/pltgot-2.d: Likewise.
There is no need for PLT relocations with -z now. We can use GOT
relocations, which take less space, instead and replace 16-byte .plt
entres with 8-byte .plt.got entries.
bfd/
* elf32-i386.c (elf_i386_check_relocs): Create .plt.got section
for now binding.
(elf_i386_allocate_dynrelocs): Use .plt.got section for now
binding.
* elf64-x86-64.c (elf_x86_64_check_relocs): Create .plt.got
section for now binding.
(elf_x86_64_allocate_dynrelocs): Use .plt.got section for now
binding.
ld/testsuite/
* ld-i386/i386.exp: Run PR ld/17689 tests with -z now.
* ld-x86-64/x86-64.exp: Likewise
* ld-i386/pr17689now.rd: New file.
* ld-x86-64/pr17689now.rd: Likewise
Commit dd7e64d45b may optimize out
i386/x86-64 JUMP_SLOT relocation. If there is no JUMP_SLOT relocation
left, we don't need to the first .plt entry. This patch allocates
space for the first .plt entry only if we also reserve space for a PLT
slot for JUMP_SLOT relocation.
bfd/
* elf32-i386.c (elf_i386_allocate_dynrelocs): Allocate space
for the first .plt entry only if needed.
* elf64-x86-64.c (elf_x86_64_allocate_dynrelocs): Likewise.
ld/testsuite/
* ld-i386/i386.exp: Run pltgot-1 for Linux targets.
* ld-x86-64/x86-64.exp: Likewise.
* ld-i386/pltgot-1.d: New file.
* ld-i386/pltgot-1.s: Likewise.
* ld-x86-64/pltgot-1.d: Likewise.
* ld-x86-64/pltgot-1.s: Likewise.
This patch sets the default ELF output format of assembler and linker to
EM_IAMCU when binutils is configured to i?86-*-elfiamcu target.
gas/
* configure.tgt (arch): Set to iamcu for i386-*-elfiamcu target.
* config/tc-i386.c (i386_mach): Support iamcu.
(i386_target_format): Likewise.
ld/
* configure.tgt: Support i[3-7]86-*-elfiamcu target.
ld/testsuite/
* ld-i386/i386.exp (iamcu_tests): Run iamcu-4.
* ld-i386/iamcu-4.d: New file.
Address of protected data defined in the shared library may be external,
i.e., due to copy relocation. By default, linker backend checks if
relocations against protected data symbols are valid for building shared
library and issues an error if relocation isn't allowed. The new option
override linker backend default. When -z noextern-protected-data is used,
updates on protected data symbols by another module won't be visibile
to the resulting shared library. This option is specific to ELF/i386
and ELF/x86-64.
bfd/
PR ld/pr17709
* elflink.c (_bfd_elf_adjust_dynamic_copy): Check
info->extern_protected_data when warning copy relocs against
protected symbols.
(_bfd_elf_symbol_refs_local_p): Check info->extern_protected_data
when checking protected non-function symbols.
include/
PR ld/pr17709
* bfdlink.h (bfd_link_info): Add extern_protected_data.
ld/
PR ld/pr17709
* ld.texinfo: Document "-z noextern-protected-data".
* ldmain.c (main): Initialize link_info.extern_protected_data
to -1.
* lexsup.c (elf_shlib_list_options): Add
"-z [no]extern-protected-data".
* emulparams/elf32_x86_64.sh: Source extern_protected_data.sh.
* emulparams/elf_i386.sh: Likewise.
* emulparams/elf_i386_be.sh: Likewise.
* emulparams/elf_i386_chaos.sh: Likewise.
* emulparams/elf_i386_ldso.sh: Likewise.
* emulparams/elf_i386_vxworks.sh: Likewise.
* emulparams/elf_k1om.sh: Likewise.
* emulparams/elf_l1om.sh: Likewise.
* emulparams/elf_x86_64.sh: Source extern_protected_data.sh.
(PARSE_AND_LIST_OPTIONS): Renamed to ...
(PARSE_AND_LIST_OPTIONS_BNDPLT): This.
(PARSE_AND_LIST_ARGS_CASE_Z): Renamed to ...
(PARSE_AND_LIST_ARGS_CASE_Z_BNDPLT): This.
(PARSE_AND_LIST_OPTIONS): Append $PARSE_AND_LIST_OPTIONS_BNDPLT.
(PARSE_AND_LIST_ARGS_CASE_Z): Append
$PARSE_AND_LIST_ARGS_CASE_Z_BNDPLT.
* emulparams/extern_protected_data.sh: New file.
ld/testsuite/
PR ld/pr17709
* ld-i386/i386.exp: Run protected6b.
* ld-i386/protected6b.d: New file.
* ld-x86-64/protected6b.d: Likewise.
* ld-x86-64/x86-64.exp: Run protected6b.
When checking R_386_GOTOFF/R_X86_64_GOTOFF64 for building shared library,
we should check SYMBOL_REFERENCES_LOCAL instead of SYMBOLIC_BIND to cover
more cases.
bfd/
* elf32-i386.c (elf_i386_relocate_section): Replace SYMBOLIC_BIND
with SYMBOL_REFERENCES_LOCAL when checking R_386_GOTOFF against
protected data symbol when building shared library.
* elf64-x86-64.c (elf_x86_64_relocate_section): Check
R_X86_64_GOTOFF64 against undefined symbol and replace
SYMBOLIC_BIND with SYMBOL_REFERENCES_LOCAL when checking
R_X86_64_GOTOFF64 against protected data symbol when building
shared library.
ld/testsuite/
* ld-i386/i386.exp: Run protected6a.
* ld-i386/protected6.d: Renamed to ...
* ld-i386/protected6a.d: This.
* ld-x86-64/hidden4.d: New file.
* ld-x86-64/hidden4.s: Likewise.
* ld-x86-64/hidden5.d: Likewise.
* ld-x86-64/hidden5.s: Likewise.
* ld-x86-64/protected6.d: Renamed to ...
* ld-x86-64/protected6a.d: This.
* ld-x86-64/x86-64.exp: Run hidden4, hidden5, protected6a,
protected7a and protected7b.
R_386_GOTOFF/R_X86_64_GOTOFF64 relocation shouldn't be used against
protected data symbol on x86 since with copy relocation, address of
protected data defined in the shared library may be external.
This patch will break building shared libraries with protected data
symbols using GCCs older than GCC 5 without the bug fix for
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=65248
GCC backport request should be made in the GCC bug report above.
bfd/
PR ld/pr17709
* elf32-i386.c (elf_i386_relocate_section): Also check R_386_GOTOFF
against protected data symbol when building shared library.
* elf64-x86-64.c (elf_x86_64_relocate_section): Also check
R_X86_64_GOTOFF64 against protected data symbol when building
shared library.
ld/testsuite/
PR ld/pr17709
* ld-i386/protected6.d: New file.
* ld-i386/protected6.s: Likewise.
* ld-x86-64/protected6.d: Likewise.
* ld-x86-64/protected6.s: Likewise.
* ld-x86-64/protected7.d: Likewise.
* ld-x86-64/protected7.s: Likewise.
* ld-x86-64/protected7a.d: Likewise.
* ld-x86-64/protected7b.d: Likewise.
Re-apply: commit ca3fe95e46
With copy relocation, address of protected data defined in the shared
library may be external. This patch adds extern_protected_data and
changes _bfd_elf_symbol_refs_local_p to return false for protected data
if extern_protected_data is true.
This patch will break building shared libraries with protected data
symbols using GCCs older than GCC 5 without the bug fix for
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=65248
GCC backport request should be made in the GCC bug report above.
To get correct run-time behavior on Linux, glibc 2.22 or above are
required, which have the bug fix for
https://sourceware.org/bugzilla/show_bug.cgi?id=17711
Backports for glibc 2.21, 2.20, 2.19 and 2.18 are on hjl/pr17711/2.21,
hjl/pr17711/2.20, hjl/pr17711/2.19 and hjl/pr17711/2.18 branches,
respectively, at
https://sourceware.org/git/?p=glibc.git;a=summary
bfd/
PR ld/pr15228
PR ld/pr17709
* elf-bfd.h (elf_backend_data): Add extern_protected_data.
* elf32-i386.c (elf_backend_extern_protected_data): New.
Defined to 1.
* elf64-x86-64.c (elf_backend_extern_protected_data): Likewise.
* elflink.c (_bfd_elf_adjust_dynamic_copy): Don't error on
copy relocs against protected symbols if extern_protected_data
is true.
(_bfd_elf_symbol_refs_local_p): Don't return true on protected
non-function symbols if extern_protected_data is true.
* elfxx-target.h (elf_backend_extern_protected_data): New.
Default to 0.
(elfNN_bed): Initialize extern_protected_data with
elf_backend_extern_protected_data.
ld/testsuite/
PR ld/pr15228
PR ld/pr17709
* ld-i386/i386.exp (i386tests): Add a test for PR ld/17709.
* ld-i386/pr17709-nacl.rd: New file.
* ld-i386/pr17709.rd: Likewise.
* ld-i386/pr17709a.s: Likewise.
* ld-i386/pr17709b.s: Likewise.
* ld-i386/protected3.d: Updated.
* ld-i386/protected3.s: Likewise.
* ld-x86-64/pr17709-nacl.rd: New file.
* ld-x86-64/pr17709.rd: Likewise.
* ld-x86-64/pr17709a.s: Likewise.
* ld-x86-64/pr17709b.s: Likewise.
* ld-x86-64/protected3.d: Updated.
* ld-x86-64/protected3.s: Likewise.
* ld-x86-64/x86-64.exp (x86_64tests): Add a test for PR ld/17709.
With copy relocation, address of protected data defined in the shared
library may be external. This patch adds extern_protected_data and
changes _bfd_elf_symbol_refs_local_p to return false for protected data
if extern_protected_data is true.
bfd/
PR ld/pr15228
PR ld/pr17709
* elf-bfd.h (elf_backend_data): Add extern_protected_data.
* elf32-i386.c (elf_backend_extern_protected_data): New.
Defined to 1.
* elf64-x86-64.c (elf_backend_extern_protected_data): Likewise.
* elflink.c (_bfd_elf_adjust_dynamic_copy): Don't error on
copy relocs against protected symbols if extern_protected_data
is true.
(_bfd_elf_symbol_refs_local_p): Don't return true on protected
non-function symbols if extern_protected_data is true.
* elfxx-target.h (elf_backend_extern_protected_data): New.
Default to 0.
(elfNN_bed): Initialize extern_protected_data with
elf_backend_extern_protected_data.
ld/testsuite/
PR ld/pr15228
PR ld/pr17709
* ld-i386/i386.exp (i386tests): Add a test for PR ld/17709.
* ld-i386/pr17709-nacl.rd: New file.
* ld-i386/pr17709.rd: Likewise.
* ld-i386/pr17709a.s: Likewise.
* ld-i386/pr17709b.s: Likewise.
* ld-i386/protected3.d: Updated.
* ld-i386/protected3.s: Likewise.
* ld-x86-64/pr17709-nacl.rd: New file.
* ld-x86-64/pr17709.rd: Likewise.
* ld-x86-64/pr17709a.s: Likewise.
* ld-x86-64/pr17709b.s: Likewise.
* ld-x86-64/protected3.d: Updated.
* ld-x86-64/protected3.s: Likewise.
* ld-x86-64/x86-64.exp (x86_64tests): Add a test for PR ld/17709.
When there are both PLT and GOT references to the same function symbol,
linker will create a GOTPLT slot for PLT entry and a GOT slot for GOT
reference. A run-time JUMP_SLOT relocation is created to update the
GOTPLT slot and a run-time GLOB_DAT relocation is created to update the
GOT slot. Both JUMP_SLOT and GLOB_DAT relocations will apply the same
symbol value to GOTPLT and GOT slots, respectively, at run-time.
This optimization combines GOTPLT and GOT slots into a single GOT slot
and removes the run-time JUMP_SLOT relocation. It replaces the regular
PLT entry:
indirect jump [GOTPLT slot]
push relocation index
jump PLT0
with an GOT PLT entry with an indirect jump via the GOT slot:
indirect jump [GOT slot]
nop
and resolves PLT reference to the GOT PLT entry.
We must avoid this optimization if pointer equality is needed since
we don't clear symbol value in this case and the dynamic linker won't
update the GOT slot. Otherwise, the resulting binary will get into an
infinite loop at run-time.
bfd/
* elf32-i386.c (elf_i386_got_plt_entry): New.
(elf_i386_pic_got_plt_entry): Likewise.
(elf_i386_link_hash_entry): Add plt_got.
(elf_i386_link_hash_table): Likewise.
(elf_i386_link_hash_newfunc): Initialize plt_got.offset to -1.
(elf_i386_get_local_sym_hash): Likewise.
(elf_i386_check_relocs): Create the GOT PLT if there are both
PLT and GOT references when the regular PLT is used.
(elf_i386_allocate_dynrelocs): Use the GOT PLT if there are
both PLT and GOT references unless pointer equality is needed.
(elf_i386_relocate_section): Also check the GOT PLT when
resolving R_386_PLT32.
(elf_i386_finish_dynamic_symbol): Use the GOT PLT if it is
available.
* elf64-x86-64.c (elf_x86_64_link_hash_entry): Add plt_got.
(elf_x86_64_link_hash_table): Likewise.
(elf_x86_64_link_hash_newfunc): Initialize plt_got.offset to -1.
(elf_x86_64_get_local_sym_hash): Likewise.
(elf_x86_64_check_relocs): Create the GOT PLT if there are both
PLT and GOT references when the regular PLT is used.
(elf_x86_64_allocate_dynrelocs): Use the GOT PLT if there are
both PLT and GOT references unless pointer equality is needed.
(elf_x86_64_relocate_section): Also check the GOT PLT when
resolving R_X86_64_PLT32.
(elf_x86_64_finish_dynamic_symbol): Use the GOT PLT if it is
available.
ld/
* emulparams/elf_i386.sh (TINY_READONLY_SECTION): New.
* emulparams/elf_x86_64.sh (TINY_READONLY_SECTION): Add .plt.got.
ld/testsuite/
* ld-i386/i386.exp: Add run-time relocation tests for plt-main.
* ld-i386/plt-main.rd: New file.
* ld-x86-64/plt-main-bnd.dd: Likewise.
* ld-x86-64/plt-main.rd: Likewise.
* ld-x86-64/x86-64.exp: Add run-time relocation tests for
plt-main.