When excluding SHF_LINK_ORDER sections that happen to have SEC_KEEP
set, we need to set SEC_EXCLUDE here to avoid a problem later.
* ldelf.c (ldelf_before_place_orphans): Set SEC_EXCLUDE for
discarded sections.
* ldlang.c (lang_check): Don't complain about relocs or merge
attributes from --just-symbols input.
* testsuite/ld-misc/just-symbols.exp: Just dump .data section.
Don't run test on a number of targets.
This ensures we don't match random data *before* the line we want to
see, ie. that --just-symbols has excluded section contents from
just-symbols-0.o. Oops, missed the ChangeLog entry before too.
* testsuite/ld-misc/just-symbols-1.dd: Revert last change.
* testsuite/ld-misc/just-symbols.exp: Run for x86_64 PE too.
Set LDFLAGS for PE and XCOFF.
* testsuite/ld-misc/just-symbols.ld: Accept XCOFF mapped .data.
Fix a regression from commit a87e1817a4 ("Have the linker fail if any
attempt to link in an executable is made.") and do not reject ET_EXEC
input supplied with the `--just-symbols' option. Such use is legitimate
as the file requested is not actually linked and only the symbols are
extracted. Furthermore it is often the most useful application, as
already observed in our documentation for the option, where it allows
"to refer symbolically to absolute locations of memory defined in other
programs."
Provide a set of tests for the use of ET_EXEC with `--just-symbols'.
These are excluded however for SH/PE targets because they complain if a
section's VMA is 0:
ld: zero vma section reloc detected: `.text' #0 f=32795
ld: zero vma section reloc detected: `.data' #1 f=291
and for x86_64/PE targets because they seem to hardwire the VMA:
100000000 12000000 01000000 00000000 00000000 ................
ld/
PR ld/26288
* ldelf.c (ldelf_after_open): Do not reject ET_EXEC input
supplied with `--just-symbols'.
* testsuite/ld-misc/just-symbols.exp: New test script.
* testsuite/ld-misc/just-symbols-1.dd: New test dump.
* testsuite/ld-misc/just-symbols.ld: New test linker script.
* testsuite/ld-misc/just-symbols-0.s: New test source.
* testsuite/ld-misc/just-symbols-1.s: New test source.
Revert commit a3fc941881 ("Stop the linker from accepting executable
ELF files as inputs to other links."), which has been made obsolete by
commit a87e1817a4 ("Have the linker fail if any attempt to link in an
executable is made."). An earlier check triggers added with the latter
commit making the piece of code removed dead.
ld/
PR ld/26288
Revert:
PR 26047
* ldelf.c (ldelf_after_open): Fail if attempting to link one
executable into another.
Right now, the linker is not emitting CTF sections on (at least some)
non-ELF platforms, because work similar to that done for ELF needs to be
done to each platform in turn to emit linker-generated sections whose
contents are programmatically derived. (Or something better needs to be
done.)
So, for now, the CTF tests will fail on non-ELF for lack of a .ctf
section in the output: so skip the CTF tests there temporarily.
(This is not the same as the permanent skip of the diags tests, which is
done because the input for those is assembler that depends on the ELF
syntax of pseudos like .section: this is only a temporary skip, until
the linker grows support for CTF on more targets.)
ld/
* testsuite/ld-ctf/ctf.exp: Skip on non-ELF for now.
The trick we use to prevent ld doing as it does for almost all other
sections and copying the input CTF section into the output has recently
broken, causing output to be produced with a valid CTF section followed
by massive numbers of CTF sections, one per .ctf in the input (minus
one, for the one that was filled out by ctf_link). Their size is being
forcibly set to zero, but they're still present, wasting space and
looking ridiculous.
This is not right:
ld/ld-new :
section size addr
.interp 28 4194984
[...]
.bss 21840 6788544
.comment 92 0
.ctf 87242 0
.ctf 0 0
.ctf 0 0
[snip 131 more empty sections]
.gnu.build.attributes 7704 6818576
.debug_aranges 6592 0
.debug_info 4488859 0
.debug_abbrev 150099 0
.debug_line 796759 0
.debug_str 237926 0
.debug_loc 2247302 0
.debug_ranges 237920 0
Total 10865285
The fix is to exclude these unwanted input sections from being present
in the output. We tried this before and it broke things, because if you
exclude all the .ctf sections there isn't going to be one in the output
so there is nowhere to put the deduplicated CTF. The solution to that is
really simple: set SEC_EXCLUDE on *all but one* CTF section. We don't
care which one (they're all the same once their size has been zeroed),
so just pick the first we see.
ld/
* ldlang.c (ldlang_open_ctf): Set SEC_EXCLUDE on all but the
first input .ctf section.
The CTF testsuite runs GCC to generate CTF that it knows matches the
input .c files before doing a run_dump_test over it. So we need a GCC
capable of doing that, and we need to always avoid running those tests
if libctf was disabled because the linker will never be capable of it.
ld/
* configure.ac (enable_libctf): Substitute it.
* Makefile.am (enablings.exp): New.
(EXTRA_DEJAGNU_SITE_CONFIG): Add it.
(DISTCLEANFILES): Likewise.
* Makefile.in: Regenerate.
* configure: Likewise.
* testsuite/lib/ld-lib.exp (compile_one_cc): New.
(check_ctf_available): Likewise.
(skip_ctf_tests): Likewise.
* testsuite/ld-ctf/ctf.exp: Call skip_ctf_tests.
Uses the new cc option to run_dump_test to compile most tests from C
code, ensuring that the types in the C code accurately describe what the
.d file is testing.
(Some tests, mostly those testing malformed CTF, run directly from .s,
or include both .s and .c.)
ld/
* testsuite/ld-ctf/ctf.exp: New file.
* testsuite/ld-ctf/A-2.c: New file.
* testsuite/ld-ctf/A.c: New file.
* testsuite/ld-ctf/B-2.c: New file.
* testsuite/ld-ctf/B.c: New file.
* testsuite/ld-ctf/C-2.c: New file.
* testsuite/ld-ctf/C.c: New file.
* testsuite/ld-ctf/array-char.c: New file.
* testsuite/ld-ctf/array-int.c: New file.
* testsuite/ld-ctf/array.d: New file.
* testsuite/ld-ctf/child-float.c: New file.
* testsuite/ld-ctf/child-int.c: New file.
* testsuite/ld-ctf/conflicting-cycle-1.B-1.d: New file.
* testsuite/ld-ctf/conflicting-cycle-1.B-2.d: New file.
* testsuite/ld-ctf/conflicting-cycle-1.parent.d: New file.
* testsuite/ld-ctf/conflicting-cycle-2.A-1.d: New file.
* testsuite/ld-ctf/conflicting-cycle-2.A-2.d: New file.
* testsuite/ld-ctf/conflicting-cycle-2.parent.d: New file.
* testsuite/ld-ctf/conflicting-cycle-3.C-1.d: New file.
* testsuite/ld-ctf/conflicting-cycle-3.C-2.d: New file.
* testsuite/ld-ctf/conflicting-cycle-3.parent.d: New file.
* testsuite/ld-ctf/conflicting-enums.d: New file.
* testsuite/ld-ctf/conflicting-typedefs.d: New file.
* testsuite/ld-ctf/cross-tu-1.c: New file.
* testsuite/ld-ctf/cross-tu-2.c: New file.
* testsuite/ld-ctf/cross-tu-conflicting-2.c: New file.
* testsuite/ld-ctf/cross-tu-cyclic-1.c: New file.
* testsuite/ld-ctf/cross-tu-cyclic-2.c: New file.
* testsuite/ld-ctf/cross-tu-cyclic-3.c: New file.
* testsuite/ld-ctf/cross-tu-cyclic-4.c: New file.
* testsuite/ld-ctf/cross-tu-cyclic-conflicting.d: New file.
* testsuite/ld-ctf/cross-tu-cyclic-nonconflicting.d: New file.
* testsuite/ld-ctf/cross-tu-into-cycle.d: New file.
* testsuite/ld-ctf/cross-tu-noncyclic.d: New file.
* testsuite/ld-ctf/cycle-1.c: New file.
* testsuite/ld-ctf/cycle-1.d: New file.
* testsuite/ld-ctf/cycle-2.A.d: New file.
* testsuite/ld-ctf/cycle-2.B.d: New file.
* testsuite/ld-ctf/cycle-2.C.d: New file.
* testsuite/ld-ctf/diag-ctf-version-0.d: New file.
* testsuite/ld-ctf/diag-ctf-version-0.s: New file.
* testsuite/ld-ctf/diag-ctf-version-2-unsupported-feature.d: New file.
* testsuite/ld-ctf/diag-ctf-version-2-unsupported-feature.s: New file.
* testsuite/ld-ctf/diag-ctf-version-f.d: New file.
* testsuite/ld-ctf/diag-ctf-version-f.s: New file.
* testsuite/ld-ctf/diag-cttname-invalid.d: New file.
* testsuite/ld-ctf/diag-cttname-invalid.s: New file.
* testsuite/ld-ctf/diag-cttname-null.d: New file.
* testsuite/ld-ctf/diag-cttname-null.s: New file.
* testsuite/ld-ctf/diag-cuname.d: New file.
* testsuite/ld-ctf/diag-cuname.s: New file.
* testsuite/ld-ctf/diag-decompression-failure.d: New file.
* testsuite/ld-ctf/diag-decompression-failure.s: New file.
* testsuite/ld-ctf/diag-parlabel.d: New file.
* testsuite/ld-ctf/diag-parlabel.s: New file.
* testsuite/ld-ctf/diag-parname.d: New file.
* testsuite/ld-ctf/diag-parname.s: New file.
* testsuite/ld-ctf/diag-unsupported-flag.d: New file.
* testsuite/ld-ctf/diag-unsupported-flag.s: New file.
* testsuite/ld-ctf/diag-wrong-magic-number-mixed.d: New file.
* testsuite/ld-ctf/diag-wrong-magic-number.d: New file.
* testsuite/ld-ctf/diag-wrong-magic-number.s: New file.
* testsuite/ld-ctf/enum-2.c: New file.
* testsuite/ld-ctf/enum.c: New file.
* testsuite/ld-ctf/function.c: New file.
* testsuite/ld-ctf/function.d: New file.
* testsuite/ld-ctf/slice.c: New file.
* testsuite/ld-ctf/slice.d: New file.
* testsuite/ld-ctf/super-sub-cycles.c: New file.
* testsuite/ld-ctf/super-sub-cycles.d: New file.
* testsuite/ld-ctf/typedef-int.c: New file.
* testsuite/ld-ctf/typedef-long.c: New file.
* testsuite/ld-ctf/union-1.c: New file.
libctf recently changed to make it possible to not emit the CTF
variables section. Make this the default for ld: the variables section
is a simple name -> type mapping, and the names can be quite voluminous.
Nothing in the variables section appears in the symbol table, by
definition, so GDB cannot make use of them: special-purpose projects
that implement their own analogues of symbol table lookup can do so, but
they'll need to tell the linker to emit the variables section after all.
The new --ctf-variables option does this.
The --ctf-share-types option (valid values "share-duplicated" and
"share-unconflicted") allow the caller to specify the CTF link mode.
Most users will want share-duplicated, since it allows for more
convenient debugging: but very large projects composed of many decoupled
components may want to use share-unconflicted mode, which places types
that appear in only one TU into per-TU dicts. (They may also want to
relink the CTF using the ctf_link API and cu-mapping, to make their
"components" larger than a single TU. Right now the linker does not
expose the CU-mapping machinery. Perhaps it should in future to make
this use case easier.)
For now, giving the linker the ability to emit share-duplicated CTF lets
us add testcases for that mode to the testsuite.
ld/
* ldlex.h (option_values) <OPTION_CTF_VARIABLES,
OPTION_NO_CTF_VARIABLES, OPTION_CTF_SHARE_TYPES>: New.
* ld.h (ld_config_type) <ctf_variables, ctf_share_duplicated>:
New fields.
* ldlang.c (lang_merge_ctf): Use them.
* lexsup.c (ld_options): Add ctf-variables, no-ctf-variables,
ctf-share-types.
(parse_args) <OPTION_CTF_VARIABLES, OPTION_NO_CTF_VARIABLES,
OPTION_CTF_SHARE_TYPES>: New cases.
* ld.texi: Document new options.
* NEWS: Likewise.
ld/
* ldlang.c (lang_merge_ctf): Turn errors into warnings.
Fix a comment typo.
(lang_write_ctf): Turn an error into a warning.
(ldlang_open_ctf): Reformat warnings. Fix printing file names.
Reviewed-by: Nick Alcock <nick.alcock@oracle.com>
This commit adds a long-missing piece of infrastructure to libctf: the
ability to report errors and warnings using all the power of printf,
rather than being restricted to one errno value. Internally, libctf
calls ctf_err_warn() to add errors and warnings to a list: a new
iterator ctf_errwarning_next() then consumes this list one by one and
hands it to the caller, which can free it. New errors and warnings are
added until the list is consumed by the caller or the ctf_file_t is
closed, so you can dump them at intervals. The caller can of course
choose to print only those warnings it wants. (I am not sure whether we
want objdump, readelf or ld to print warnings or not: right now I'm
printing them, but maybe we only want to print errors? This entirely
depends on whether warnings are voluminous things describing e.g. the
inability to emit single types because of name clashes or something.
There are no users of this infrastructure yet, so it's hard to say.)
There is no internationalization here yet, but this at least adds a
place where internationalization can be added, to one of
ctf_errwarning_next or ctf_err_warn.
We also provide a new ctf_assert() function which uses this
infrastructure to provide non-fatal assertion failures while emitting an
assert-like string to the caller: to save space and avoid needlessly
duplicating unchanging strings, the assertion test is inlined but the
print-things-out failure case is not. All assertions in libctf will be
converted to use this machinery in future commits and propagate
assertion-failure errors up, so that the linker in particular cannot be
killed by libctf assertion failures when it could perfectly well just
print warnings and drop the CTF section.
include/
* ctf-api.h (ECTF_INTERNAL): Adjust error text.
(ctf_errwarning_next): New.
libctf/
* ctf-impl.h (ctf_assert): New.
(ctf_err_warning_t): Likewise.
(ctf_file_t) <ctf_errs_warnings>: Likewise.
(ctf_err_warn): New prototype.
(ctf_assert_fail_internal): Likewise.
* ctf-inlines.h (ctf_assert_internal): Likewise.
* ctf-open.c (ctf_file_close): Free ctf_errs_warnings.
* ctf-create.c (ctf_serialize): Copy it on serialization.
* ctf-subr.c (ctf_err_warn): New, add an error/warning.
(ctf_errwarning_next): New iterator, free and pass back
errors/warnings in succession.
* libctf.ver (ctf_errwarning_next): Add.
ld/
* ldlang.c (lang_ctf_errs_warnings): New, print CTF errors
and warnings. Assert when libctf asserts.
(lang_merge_ctf): Call it.
(land_write_ctf): Likewise.
binutils/
* objdump.c (ctf_archive_member): Print CTF errors and warnings.
* readelf.c (dump_ctf_archive_member): Likewise.
We change the previous definition in the IR object to undefweak only
after all LTO symbols have been read.
include/
PR ld/26262
PR ld/26267
* bfdlink.h (bfd_link_info): Add lto_all_symbols_read.
ld/
PR ld/26262
PR ld/26267
* ldlang.c (lang_process): Set lto_all_symbols_read after all
LTO IR symbols have been read.
* plugin.c (plugin_notice): Override the IR definition only if
all LTO IR symbols have been read or the new definition is
non-weak and the the IR definition is weak
* testsuite/ld-plugin/lto.exp: Run PR ld/26262 and ld/26267
tests.
* testsuite/ld-plugin/pr26262a.c: New file.
* testsuite/ld-plugin/pr26262b.c: Likewise.
* testsuite/ld-plugin/pr26262c.c: Likewise.
* testsuite/ld-plugin/pr26267.err: Likewise.
* testsuite/ld-plugin/pr26267a.c: Likewise.
* testsuite/ld-plugin/pr26267b.c: Likewise.
* testsuite/ld-plugin/pr26267c.c: Likewise.
bfd/
* elflink.c (_bfd_elf_gc_keep): Use bfd_is_const_section.
ld/
PR 26265
* ldlang.c (undef_from_cmdline): Delete.
(ldlang_add_undef): Mark "cmdline" param unused.
(lang_end): Traverse gc_sym_list to determine whether a symbol root
has been specified. Update error message.
* testsuite/ld-gc/noent.d: Adjust for changed error message.
Update and run PR gas/26263 linker tests for all x86 ELF targets to
accept any program header layout.
PR gas/26263
* testsuite/ld-i386/pr26263.d: Updated.
* testsuite/ld-x86-64/pr26263.d: Likewise.
* testsuite/ld-x86-64/x86-64.exp: Run gas/26263 test for all ELF
targets.
So, here's my suggestion for making _init .. __etext cover .text +
.rodata (including things like the read-only exception tables) for
elf64mmix. A quick web search gives that __etext (and friends) isn't
well defined, so each target can interpret the "end of text segment"
to their own liking. It seems likely this change is also a better fit
than the default for other ports, at least those with .rodata after
.text in the same segment.
The presence of a separate rodata-segment is optional (and not true
for elf64mmix). This is reflected in the name as SEPARATE_TEXT /
SEPARATE_CODE isn't considered, to keep it simple; each target has to
make sure their settings of variables make sense.
ld:
* scripttempl/elf.sc (ETEXT_LAST_IN_RODATA_SEGMENT): New variable.
* emulparams/elf64mmix.sh (ETEXT_LAST_IN_RODATA_SEGMENT): Define.
* testsuite/ld-mmix/sec-1.d: Adjust.
This patch better supports mixing of power10 and non-power10 code,
as might be seen in a cpu-optimized library using ifuncs to select
functions optimized for a given cpu. Using -Wl,--no-power10-stubs
isn't that good in this situation since non-power10 notoc stubs are
slower and larger than the power10 variants, which you'd like to use
on power10 code paths.
With this change, power10 pc-relative code that makes calls marked
@notoc uses power10 stubs if stubs are necessary, and other calls use
non-power10 instructions in stubs. This will mean that if gcc is
generating code for -mcpu=power10 but with pc-rel disabled then you'll
get the older stubs even on power10 (unless you force with
-Wl,--power10-stubs). That shouldn't be too big a problem: stubs that
use r2 are reasonable. It's just the ones that set up addressing
using "mflr 12; bcl 20,31,.+4; mflr 11; mtlr 12" that should be
avoided if possible.
bfd/
* elf64-ppc.c (struct ppc_link_hash_table): Add has_power10_relocs.
(select_alt_stub): New function.
(ppc_get_stub_entry): Use it here.
(ppc64_elf_check_relocs): Set had_power10_relocs rather than
power10_stubs.
(ppc64_elf_size_stubs): Clear power10_stubs here instead. Don't
merge notoc stubs with other varieties when power10_stubs is "auto".
Instead dup the stub hash table entry.
(plt_stub_size, ppc_build_one_stub, ppc_size_one_stub): Adjust
tests of power10_stubs.
ld/
* emultempl/ppc64elf.em (power10-stubs): Accept optional "auto" arg.
* ld.texi (power10-stubs): Update.
* testsuite/ld-powerpc/callstub-1.d: Force --power10-stubs.
* testsuite/ld-powerpc/callstub-2.d: Relax branch offset comparison.
* testsuite/ld-powerpc/callstub-4.d: New test.
* testsuite/ld-powerpc/notoc.d: Force --no-power10-stubs.
* testsuite/ld-powerpc/notoc3.d,
* testsuite/ld-powerpc/notoc3.s,
* testsuite/ld-powerpc/notoc3.wf: New test.
* testsuite/ld-powerpc/powerpc.exp: Run new tests. Pass
--no-power10-stubs for notoc link.
This both makes the section layout more similar to that of the general
default for ELF and fixes (makes true) an assumption that code and
rodata is located between _init and __etext, in
libgcc/config/mmix/crti.S. Sadly, that's not actually true for ELF
(generally and for elf64mmix), where exception-tables and .rodata is
after _etext; I'm pondering what to do about that.
The original mmix simulator behavior is that memory magically appears
on access, initialized with 0, which is not preferable when chasing
bugs by throwing code the size of the gcc test-suite to the simulator.
The code in crti.S compatibly enables simulator machinery to identify
undefined memory and instead stopping the simulator with an error
(going to interactive mode for interactive runs). See
http://gcc.gnu.org/legacy-ml/gcc-patches/2012-10/msg01871.html for
more, including the mmix-sim.ch "patch file".
This fixes only one error in the gcc testsuite,
gcc.c-torture/execute/pr20621-1.c with LTO, where for some reason
gcc/lto chooses to move (writable) data that is only used to read 0 to
.rodata. An access (sufficiently far inside a block) in an
unregistered place is flagged as an invalid access.
The bpo-9m test that I had to adjust, actually exposes a wart: mmo
does not have the notion of symbol types (or sections) and the
test-case now has leading zeros at "Main" eventually leading to it
being misdiagnosed as being outside .text and .data, thus here mapped
to BFD as an absolute symbol. The test is not intended to check the
mmo symbol-type machinery, so I'm just tweaking it to be
symbol-type-neutral for "Main".
Since you have to jump through hoops to see the problem, I don't think
this commit is worth putting on the 2.35-branch.
ld:
* scripttempt/mmo.sc: Move .init first in .text output section.
* testsuite/ld-mmix/bpo-9m.d: Adjust accordingly.
"Unambiguous" is is in particular taking as reference the assembler,
which also accepts certain insns - despite them allowing for varying
operand size, and hence in principle being ambiguous - without any
suffix. For example, from the very beginning of the life of x86-64 I had
trouble understanding why a plain and simple RET had to be printed as
RETQ. In case someone really used the 16-bit form, RETW disambiguates
the two quite fine.
Spotted when inspecting gcc testsuite logs, but this already is
covered by the ld-mmix testsuite, it's just that the assert is ignored
since the regexp match is for a substring and not anchored.
With the anchors added but not the bugfix, the ld.log shows that the
asserts cause a non-match as intended:
Executing on host: sh -c {./ld-new -LX/src/ld/testsuite/ld-mmix -m elf64mmix -o tmpdir/dump tmpdir/undef-2.o tmpdir/start.o 2>&1} /dev/null dump.tmp (timeout = 300)
./ld-new: BFD (GNU Binutils) 2.34.50.20200629 assertion fail X/src/bfd/elf64-mmix.c:2845
./ld-new: BFD (GNU Binutils) 2.34.50.20200629 assertion fail X/src/bfd/elf64-mmix.c:2845
./ld-new: BFD (GNU Binutils) 2.34.50.20200629 assertion fail X/src/bfd/elf64-mmix.c:2845
./ld-new: tmpdir/undef-2.o:(.text+0x0): undefined reference to `undefd'
failed with: <./ld-new: BFD (GNU Binutils) 2.34.50.20200629 assertion fail X/src/bfd/elf64-mmix.c:2845
./ld-new: BFD (GNU Binutils) 2.34.50.20200629 assertion fail X/src/bfd/elf64-mmix.c:2845
./ld-new: BFD (GNU Binutils) 2.34.50.20200629 assertion fail X/src/bfd/elf64-mmix.c:2845
./ld-new: tmpdir/undef-2.o:(.text+0x0): undefined reference to `undefd'>, expected: <\A[^\n\r]*undefined reference to `undefd'\Z>
FAIL: ld-mmix/undef-2
Gone with the fix of course, leaving just the intended "undefined
reference" like.
I'm not going to add anchors manually for all the "error:" strings in
the test-suite, not even in the mmix parts. Sorry, but I'll just do
it for *these* specific undefined-reference tests.
Just a thought: maybe the run_dump_test "error:" string should
*automatically* get anchor marks prepended and appended for a single
line match as in the patch, "\A[^\n\r]*" prepended and \Z appended
unless either anchor mark or \r or \n is present in the regexp?
Committed.
bfd:
* elf64-mmix.c (mmix_elf_relax_section): Improve accounting for
R_MMIX_PUSHJ_STUBBABLE relocs against undefined symbols.
ld/testsuite:
* testsuite/ld-mmix/undef-1.d, testsuite/ld-mmix/undef-1m.d,
testsuite/ld-mmix/undef-2.d, testsuite/ld-mmix/undef-2m.d: Add
start- and end-anchors to error-string to match just a
single-line error-message.
Tests just having "xfail: x86_64-*-cygwin" aren't good, since
presumably if a test fails on x86_64-cygwin then it also fails on
x86_64-*-pe* and x86_64-*-mingw*.
binutils/
* testsuite/lib/binutils-common.exp (is_pecoff_format): Accept
optional machine-os arg.
ld/
* testsuite/ld-scripts/default-script1.d: Don't skip, xfail
using is_pecoff_format.
* testsuite/ld-scripts/default-script2.d: Likewise.
* testsuite/ld-scripts/default-script3.d: Likewise.
* testsuite/ld-scripts/default-script4.d: Likewise.
* testsuite/ld-scripts/pr20302.d: Remove x86_64-*-cygwin from notarget.
* testsuite/ld-scripts/provide-6.d: Remove x86_64-*-cygwin from xfail.
* testsuite/ld-scripts/provide-8.d: Likewise.
Needed for libraries that use ifuncs or other means to support
cpu-optimized versions of functions, some power10, some not, and those
functions make calls using linkage stubs.
bfd/
* elf64-ppc.h (struct ppc64_elf_params): Add power10_stubs.
* elf64-ppc.c (struct ppc_link_hash_table): Delete
power10_stubs.
(ppc64_elf_check_relocs): Adjust setting of power10_stubs.
(plt_stub_size, ppc_build_one_stub, ppc_size_one_stub): Adjust
uses of power10_stubs.
ld/
* emultempl/ppc64elf.em (params): Init new field.
(enum ppc64_opt): Add OPTION_POWER10_STUBS and OPTION_NO_POWER10_STUBS.
(PARSE_AND_LIST_LONGOPTS): Support --power10-stubs and
--no-power10-stubs.
(PARSE_AND_LIST_OPTIONS, PARSE_AND_LIST_ARGS_CASES): Likewise.
* testsuite/ld-powerpc/callstub-3.d: New test.
* testsuite/ld-powerpc/powerpc.exp: Run it.
ld's garbage collection test on powerpc64 catered for old compilers
(pre -mcmodel=medium support), setting options that caused the test to
fail. Which meant the test wasn't really testing anything. Get rid
of that old compiler support, and avoid -fPIE fails on ppc32.
* testsuite/ld-gc/gc.exp: Don't set -mminimal-toc for powerpc64,
and remove powerpc64 xfail. Use -fno-PIE for ppc32.
The PR18841 test does cross-module calls from within an ifunc
resolver, which is nasty, and not supported in general since the
called function may not be relocated. In this case the called
function (zoo) is just a stub so doesn't need relocating, but on ppc64
the function descriptor for zoo in the executable won't be relocated
at the time the shared library ifunc resolver runs. That means the
test will fail if your compiler generates PIEs by default.
PR 18841
* testsuite/ld-ifunc/ifunc.exp: Run pr18841 tests non-pie.
git commit 7193487fa8 took h8300 out of the notarget list, resulting in
h8300-elf +FAIL: ld-scripts/section-match-1
h8300-linux +FAIL: ld-scripts/section-match-1
* testsuite/ld-scripts/section-match-1.d: xfail h8300.
--image-base 0 is not just for x86_64 mingw. This patch fixes that,
and a case where a changed LDFLAGS leaked out of one script to the next.
* testsuite/ld-scripts/align.exp: Use is_pecoff_format.
* testsuite/ld-scripts/defined.exp: Likewise.
* testsuite/ld-scripts/provide.exp: Likewise.
* testsuite/ld-scripts/weak.exp: Likewise.
* testsuite/ld-scripts/empty-address.exp: Likewise. Reset LDFLAGS
on exit.
* testsuite/ld-scripts/expr.exp: Set LDFLAGS earlier, and with
--image-base for PE.
* testsuite/ld-scripts/include.exp: Set LDFLAGS for PE.
* testsuite/ld-scripts/script.exp: Use is_pecoff_format, and
set LDFLAGS as well as flags.
These tests were failing only due to not being updated for readelf
output changes.
* testsuite/ld-sh/vxworks1-lib.rd: Update expected output.
* testsuite/ld-sh/vxworks4.d: Likewise.
microblaze-linux uses the standard ELF script, microblaze-elf its own
script lacking an input section pattern needed to make this test pass.
Add the missing pattern for .data, in line with most other sections
that do have .* patterns.
* scripttempl/elfmicroblaze.sc (.data): Add .data.* entry.
* testsuite/ld-elf/var1.d: Don't xfail microblaze.
On x86_64-nacl we currently see
FAIL: Absolute non-overflowing relocs
FAIL: ld-x86-64/protected2-k1om
FAIL: ld-x86-64/protected3-k1om
This limits the tests as per the l1om variants.
* testsuite/ld-x86-64/abs-k1om.d: Run only on x86_64-*-linux*.
* testsuite/ld-x86-64/protected2-k1om.d: Likewise.
* testsuite/ld-x86-64/protected3-k1om.d: Likewise.
This unfortunately means conditionalizing out all the libctf code, but
the result is not too unbearably ugly, if a bit repetitive. I have
stubbed out code in the !ENABLE_LIBCTF path to avoid extra redundant
ifdefs where it seems that might be helpful. (The stubs are not too
disruptive, but I've tried to keep them on one line where possible to
avoid filling up the screen with stubs that nobody would care about.
If this is too much of a coding style violation I can change it.)
Changes since v2: use GCC_ENABLE rather than repeating all the
AC_ARG_ENABLE stuff over and over again.
ld/
* configure.ac [--enable-libctf]: New, default yes.
Set ENABLE_LIBCTF accordingly.
* Makefile.am [!ENABLE_LIBCTF]: Empty LIBCTF.
* configure: Regenerate.
* config.in: Regenerate.
* Makefile.in: Regenerate.
* aclocal.m4: Regenerate.
* ldlang.c (ctf_output): Conditionalize on ENABLE_LIBCTF.
(ldlang_open_ctf): Likewise.
(lang_merge_ctf): Likewise.
(ldlang_ctf_apply_strsym): Likewise.
(lang_write_ctf): Likewise.
(ldlang_write_ctf_late): Likewise.
(ldlang_open_ctf) [!ENABLE_LIBCTF]: Warn about the presence of CTF
sections.
(lang_merge_ctf) [!ENABLE_LIBCTF]: New stub.
(ldlang_ctf_apply_strsym) [!ENABLE_LIBCTF]: Likewise.
(lang_write_ctf) [!ENABLE_LIBCTF]: Likewise.
(ldlang_write_ctf_late) [!ENABLE_LIBCTF]: Likewise.
* ldelfgen.c (ldelf_emit_ctf_early): Conditionalize on
ENABLE_LIBCTF.
(struct ctf_strsym_iter_cb_arg): Likewise.
(ldelf_ctf_strtab_iter_cb): Likewise.
(ldelf_ctf_symbols_iter_cb): Likewise.
(ldelf_examine_strtab_for_ctf): Likewise.
(ldelf_emit_ctf_early) [!ENABLE_LIBCTF]: New stub.
(ldelf_examine_strtab_for_ctf) [!ENABLE_LIBCTF]: New stub.
binutils/
* configure.ac [--enable-libctf]: New, default yes.
Set ENABLE_LIBCTF accordingly.
* Makefile.am [!ENABLE_LIBCTF]: Empty LIBCTF and LIBCTF_NOBFD.
* configure: Regenerate.
* config.in: Regenerate.
* Makefile.in: Regenerate.
* aclocal.m4: Regenerate.
* objdump.c (usage): Conditionalize portions on ENABLE_LIBCTF.
(option_values): Likewise.
(long_options): Likewise.
(main): Likewise.
(dump_ctf_indent_lines): Conditionalize out when !ENABLE_LIBCTF.
(make_ctfsect): Likewise.
(dump_ctf_archive_member): Likewise.
(dump_ctf) [ENABLE_LIBCTF]: Likewise.
(dump_ctf) [!ENABLE_LIBCTF]: New empty stub.
* readelf.c (options): Conditionalize portions on ENABLE_LIBCTF.
(usage): Likewise.
(process_section_contents): Likewise.
(shdr_to_ctf_sect): Conditionalize out when !ENABLE_LIBCTF.
(dump_ctf_indent_lines): Likewise.
(dump_section_as_ctf) [ENABLE_LIBCTF]: Likewise.