Use the `bfd_size_type' data type for dynamic symbol table indices in
the MIPS backend, in line with generic code and removing the need to use
a cast.
bfd/
* elfxx-mips.c (mips_elf_hash_sort_data): Convert the
`min_got_dynindx', `max_unref_got_dynindx' and
`max_non_got_dynindx' members to the `bfd_size_type' data type.
(mips_elf_sort_hash_table): Adjust accordingly.
Make all hash table references throughout `mips_elf_sort_hash_table' use
`htab', simplifying code and improving readability.
bfd/
* elfxx-mips.c (mips_elf_sort_hash_table): Use `htab' throughout
to access the hash table.
Move the assertion on non-NULL `htab' in `mips_elf_sort_hash_table' to
the beginning, before the pointer is dereferenced (`mips_elf_hash_table
(info)' and `elf_hash_table (info)' both point to the same memory
location, differently typed).
bfd/
* elfxx-mips.c (mips_elf_sort_hash_table): Move assertion on
non-NULL `htab' to the beginning.
Complement commit 9d862524f6 ("MIPS: Verify the ISA mode and alignment
of branch and jump targets") and add GAS and LD options to control the
checks for invalid branches between ISA modes introduced there, to help
with some handwritten code lacking `.insn' annotation for labels used as
branch targets and code produced by older versions of GCC which suffers
from the issue with branches to code that has been optimized away,
addressed with GCC commit 242424 ("MIPS/GCC: Mark trailing labels with
`.insn'"), <https://gcc.gnu.org/ml/gcc-patches/2016-11/msg01061.html>.
bfd/
* elfxx-mips.h (_bfd_mips_elf_insn32): Rename prototype to...
(_bfd_mips_elf_linker_flags): ... this. Add another parameter.
* elfxx-mips.c (mips_elf_link_hash_table): Add
`ignore_branch_isa' member.
(mips_elf_perform_relocation): Do not treat an ISA mode mismatch
in branch relocation calculation as an error if
`ignore_branch_isa' has been set.
(_bfd_mips_elf_insn32): Rename to...
(_bfd_mips_elf_linker_flags): ... this. Rename the `on'
parameter to `insn32' and add an `ignore_branch_isa' parameter.
Handle the new parameter.
gas/
* config/tc-mips.c (mips_ignore_branch_isa): New variable.
(options): Add OPTION_IGNORE_BRANCH_ISA and
OPTION_NO_IGNORE_BRANCH_ISA enum values.
(md_longopts): Add "mignore-branch-isa" and
"mno-ignore-branch-isa" options.
(md_parse_option): Handle OPTION_IGNORE_BRANCH_ISA and
OPTION_NO_IGNORE_BRANCH_ISA.
(fix_bad_cross_mode_branch_p): Return FALSE if
`mips_ignore_branch_isa' has been set.
(md_show_usage): Add `-mignore-branch-isa' and
`-mno-ignore-branch-isa'.
* doc/as.texinfo (Target MIPS options): Add
`-mignore-branch-isa' and `-mno-ignore-branch-isa' options.
(-mignore-branch-isa, -mno-ignore-branch-isa): New options.
* doc/c-mips.texi (MIPS Options): Add `-mignore-branch-isa' and
`-mno-ignore-branch-isa' options.
* testsuite/gas/mips/branch-local-ignore-2.d: New test.
* testsuite/gas/mips/branch-local-ignore-3.d: New test.
* testsuite/gas/mips/branch-local-ignore-n32-2.d: New test.
* testsuite/gas/mips/branch-local-ignore-n32-3.d: New test.
* testsuite/gas/mips/branch-local-ignore-n64-2.d: New test.
* testsuite/gas/mips/branch-local-ignore-n64-3.d: New test.
* testsuite/gas/mips/mips.exp: Run the new tests.
ld/
* emultempl/mipself.em (ignore_branch_isa): New variable.
(mips_create_output_section_statements): Rename
`_bfd_mips_elf_insn32' called to `_bfd_mips_elf_linker_flags',
add `ignore_branch_isa' argument.
(PARSE_AND_LIST_PROLOGUE): Add OPTION_IGNORE_BRANCH_ISA and
OPTION_NO_IGNORE_BRANCH_ISA enum values.
(PARSE_AND_LIST_LONGOPTS): Add "ignore-branch-isa" and
"no-ignore-branch-isa" options.
(PARSE_AND_LIST_OPTIONS): Add `--ignore-branch-isa' and
`--no-ignore-branch-isa'.
(PARSE_AND_LIST_ARGS_CASES): Handle OPTION_IGNORE_BRANCH_ISA and
OPTION_NO_IGNORE_BRANCH_ISA.
* ld.texinfo (Options specific to MIPS targets): Add
`--ignore-branch-isa' and `--no-ignore-branch-isa' options.
(ld and the MIPS family): Likewise.
* testsuite/ld-mips-elf/bal-jalx-pic-ignore.d: New test.
* testsuite/ld-mips-elf/bal-jalx-pic-ignore-n32.d: New test.
* testsuite/ld-mips-elf/bal-jalx-pic-ignore-n64.d: New test.
* testsuite/ld-mips-elf/unaligned-branch-ignore-2.d: New test.
* testsuite/ld-mips-elf/unaligned-branch-ignore-r6-1: New test.
* testsuite/ld-mips-elf/unaligned-branch-ignore-mips16: New
test.
* testsuite/ld-mips-elf/unaligned-branch-ignore-micromips: New
test.
* testsuite/ld-mips-elf/mips-elf.exp: Run the new tests.
PR ld/20995
* elf32-cris.c (elf_cris_size_dynamic_sections): Handle sdynrelro.
(elf_cris_adjust_dynamic_symbol): Place variables copied into the
executable from read-only sections into sdynrelro.
(elf_cris_finish_dynamic_symbol): Select sreldynrelro for
dynamic relocs in sdynrelro.
(elf_backend_want_dynrelro): Define.
bfd/
* config.bfd (powerpcle-*-rtems*): Do not mark as removed.
(arm-*-rtems*): Move to (arm*-*-eabi*).
(i[3-7]86-*-rtems*): Move to (i[3-7]86-*-elf*).
(m68-*-rtems*): Move to (m68*-*-elf*).
ld/
* configure.tgt (arm-*-rtems*): Move to (arm*-*-eabi*).
(bfin-*-rtems*): Move to (bfin*-*-elf*).
(i[3-7]86-*-rtems*): Move to (i[3-7]86*-*-elf*).
(m68*-*-rtems*): Move to (m68*-*-elf*).
(mips*-*-rtems*): Move to (mips*-*-elf*).
(or1k*-*-rtems*): Move to (or1k*-*-elf*).
(powerpc*-*-rtems*): Move to (powerpc*-*-elf*).
(sparc*-*-rtems*): Move to (sparc*-*-elf*).
(sparc64*-*-rtems*): Move to (sparc64*-*-elf*).
Complement commit 81ff47b3a5 ("PR ld/20828: Fix linker script symbols
wrongly forced local with section GC") and move the symbol sweep stage
of section GC from `elf_gc_sweep' to `bfd_elf_size_dynamic_sections',
avoiding the need to clear the `forced_local' marker, problematic for
targets that have special processing in their `elf_backend_hide_symbol'
handler. Set `mark' instead in `bfd_elf_record_link_assignment' and,
matching changes from commit 3bd43ebcb6 ("ld --gc-sections fail with
__tls_get_addr_opt"), also in PowerPC `__tls_get_addr_opt' handling
code, removing a:
FAIL: PR ld/20828 dynamic symbols with section GC (version script)
test suite failure with the `score-elf' target.
The rationale is it is enough if symbols are swept at the beginning of
`bfd_elf_size_dynamic_sections' as it is only in this function that the
size of the GOT, the dynamic symbol table and other dynamic sections is
determined, which will depend on the number of symbols making it to the
dynamic symbol table. It is also appropriate to do the sweep at this
point as it is already after any changes have been made to symbols with
`bfd_elf_record_link_assignment', and not possible any earlier as calls
to that function are only made just beforehand -- barring audit entry
processing -- via `gld${EMULATION_NAME}_find_statement_assignment'
invoked from `gld${EMULATION_NAME}_before_allocation' which is the ELF
handler for `ldemul_before_allocation'.
bfd/
PR ld/20828
* elflink.c (bfd_elf_record_link_assignment): Revert last
change and don't ever clear `forced_local'. Set `mark'
unconditionally.
(elf_gc_sweep_symbol_info, elf_gc_sweep_symbol): Reorder within
file.
(elf_gc_sweep): Move the call to `elf_gc_sweep_symbol'...
(bfd_elf_size_dynamic_sections): ... here.
* elf32-ppc.c (ppc_elf_tls_setup): Don't clear `forced_local'
and set `mark' instead in `__tls_get_addr_opt' processing.
* elf64-ppc.c (ppc64_elf_tls_setup): Likewise.
This patch fixes a number of issues with powerpc dynamic relocations.
1) Both ppc and ppc64 were emitting more dynamic symbols and
relocations than necessary, due to not supporting static linker
resolution of tls_index entries for __tls_get_addr_opt. This meant
that any @got@tlsgd or @got@tlsld reloc needed to make their symbols
dynamic and generate dptmod and dtprel relocs for the dynamic linker.
That would have been passable, but what happened was that practically
all @got relocations resulted in their symbols being made dynamic and
dynamic relocations emitted against the GOT entries. (Mostly visible
on ppc32 executables since ppc64 gcc really only uses @got style
relocs for TLS.)
2) The PowerOpen syntax was not supported with __tls_get_addr_opt.
DTPMOD/DTPREL relocs on tls_index TOC entries did not use the trick of
forcing dynamic symbols and relocations so those entries always
resulted in the full __tls_get_addr processing. gcc doesn't use the
PowerOpen syntax for TLS, and normally such code would be optimized to
TLS IE or LE so the impact of missing this support was minimal.
3) In an executable, relocations against GNU indirect functions always
used the value of their PLT stub. While this is correct, it is
better in some cases to use a dynamic relocation. An extra dynamic
relocation can mean that calls via function pointers need not bounce
through the PLT stub at runtime.
The patch also tidies the PLT handling code in ppc32
allocate_dynrelocs. Allocating PLT entries after other dynamic relocs
allows the PLT loop to omit special handling for undefined weak
symbols, and that in turn allows the loop to be simplified.
bfd/
* elf32-ppc.c (ppc_elf_adjust_dynamic_symbol): Merge two cases
where dynamic relocs are preferable. Allow ifunc too.
(ensure_undefweak_dynamic): New function.
(allocate_dynrelocs): Use it here. Move plt handling last and
don't make symbols dynamic, simplifying loop. Only make undef
weak symbols with GOT entries dynamic. Correct condition
for GOT relocs. Handle dynamic relocs on ifuncs. Correct
comments. Remove goto.
(ppc_elf_relocate_section): Correct test for using dynamic
symbol on GOT relocs. Rearrange test for emitting GOT relocs
to suit. Set up explicit tls_index entries and implicit GOT
tls_index entries resolvable at link time for
__tls_get_addr_opt. Simplify test to clear mem for prelink.
* elf64-ppc.c (allocate_got): Correct condition for GOT relocs.
(ensure_undefweak_dynamic): New function.
(allocate_dynrelocs): Use it here. Only make undef weak symbols
with GOT entries dynamic. Remove unnecessary test of
WILL_CALL_FINISH_DYNAMIC_SYMBOL in PLT handling.
(ppc64_elf_relocate_section): Correct test for using dynamic
symbol on GOT relocs. Rearrange test for emitting GOT relocs
to suit. Set up explicit tls_index entries and implicit GOT
tls_index entries resolvable at link time for __tls_get_addr_opt.
Simplify expression to clear mem for prelink.
ld/
* testsuite/ld-powerpc/tlsexe.r: Update for fewer dynamic relocs
and symbols.
* testsuite/ld-powerpc/tlsexe.d: Likewise.
* testsuite/ld-powerpc/tlsexe.g: Likewise.
bfd * elfnn-aarch64.c: Fix relaxations for ILP32 mode.
ld * testsuite/ld-aarch64/aarch64-elf.exp: Run new tests.
* testsuite/ld-aarch64/tls-desc-ie-ilp32.d: New test.
* testsuite/ld-aarch64/tls-relax-all-ilp32.d: New test.
* testsuite/ld-aarch64/tls-relax-gd-le-ilp32.d: New test.
* testsuite/ld-aarch64/tls-relax-gdesc-le-2-ilp32.d: New test.
* testsuite/ld-aarch64/tls-relax-gdesc-le-ilp32.d: New test.
* testsuite/ld-aarch64/tls-relax-ie-le-2-ilp32.d: New test.
* testsuite/ld-aarch64/tls-relax-ie-le-3-ilp32.d: New test.
* testsuite/ld-aarch64/tls-relax-ie-le-ilp32.d: New test.
* testsuite/ld-aarch64/tls-tiny-desc-ie-ilp32.d: New test.
* testsuite/ld-aarch64/tls-tiny-desc-le-ilp32.d: New test.
* testsuite/ld-aarch64/tls-tiny-gd-ie-ilp32.d: New test.
* testsuite/ld-aarch64/tls-tiny-gd-le-ilp32.d: New test.
bfd/
* elfnn-aarch64.c (elf_aarch64_hash_symbol): New function.
(elf_backend_hash_symbol): Define.
ld/
* testsuite/ld-aarch64/aarch64-elf.exp (aarch64elflinktests): New tests.
* testsuite/ld-aarch64/func-in-so.s: New test source file.
* testsuite/ld-aarch64/func-sym-hash-opt.s: Likewise.
* testsuite/ld-aarch64/func-sym-hash-opt.d: New expected test result.
Fix a generic ELF linker regression introduced with a chain of changes
made to unused input section garbage collection:
- commit 1a766c6843 ("Also hide symbols without PLT nor GOT
references."),
<https://sourceware.org/ml/binutils/2011-09/msg00076.html>,
- commit 1d5316ab67 ("PR ld/13177: garbage collector retains zombie
references to external libraries"),
<https://sourceware.org/ml/binutils/2011-10/msg00161.html>,
- commit 6673f753c0 ("Fix PR 12772, garbage collection of dynamic
syms"), <https://sourceware.org/ml/binutils/2011-12/msg00077.html>,
causing the garbage collection of unused symbols present in a DSO
involved in a link to make identically named symbols ordinarily defined
(i.e. not hidden or PROVIDEd) by a linker script local, even though the
latter symbols are supposed to be global as if no DSO defined them as
well.
This is because linker script assignments are processed very late as
`lang_process' proceeds, down in the call to `ldemul_before_allocation',
which is made after the call to `lang_gc_sections' to do input section
garbage collecting. Consequently if unused, then any such DSO-defined
symbol has already been garbage-collected and internally marked local.
It would ordinarily be removed from dynamic symbol table output, however
a linker script assignment correctly replaces its original definition
with the new one and enters it into the dynamic symbol table produced as
it is supposed to be exported. The original local marking is however
retained making the symbol local in the dynamic symbol table and
therefore not available externally. This also causes a sorting problem
with the MIPS target, which does not expect non-section local dynamic
symbols to be output and produces an invalid binary.
Fix the problem then, by removing the `forced_local' marking for the
offending case and add suitable test cases. First to verify that unused
symbols ordinarily defined with linker script assignments remain
exported in the context of input section garbage collection whether or
not a DSO defining identically named symbols is present in the link.
Second that a linker version script still correctly retains or removes
such symbols as requested.
bfd/
PR ld/20828
* elflink.c (bfd_elf_record_link_assignment): Clear any
`forced_local' marking for DSO symbols that are not being
provided.
ld/
PR ld/20828
* testsuite/ld-elf/pr20828-1.sd: New test.
* testsuite/ld-elf/pr20828-2a.sd: New test.
* testsuite/ld-elf/pr20828-2b.sd: New test.
* testsuite/ld-elf/pr20828.ld: New test linker script.
* testsuite/ld-elf/pr20828.ver: New test version script.
* testsuite/ld-elf/pr20828.s: New test source.
* testsuite/ld-elf/shared.exp: Run the new test.
Also generate unwind info for the .plt.bnd section. Sine it is the same
as unwind info for the .plt.got section, we use unwind info for the
.plt.got section to cover the the .plt.bnd section.
bfd/
PR ld/21038
* elf64-x86-64.c (elf_x86_64_link_hash_table): Add
plt_bnd_eh_frame.
(elf_x86_64_check_relocs): Create .eh_frame section for the
.plt.bnd section.
(elf_x86_64_size_dynamic_sections): Allocate and initialize
.eh_frame section for the .plt.bnd section.
(elf_x86_64_finish_dynamic_sections): Adjust .eh_frame section
for the .plt.bnd section.
ld/
PR ld/21038
* testsuite/ld-x86-64/pr21038b.d: Updated.
* testsuite/ld-x86-64/pr21038c.d: New file.
* testsuite/ld-x86-64/pr21038c.s: Likewise.
* testsuite/ld-x86-64/x86-64.exp: Run pr21038c.
PR binutils/20876
bfd * opncls.c (find_separate_debug_file): Add include_dirs
parameter. Only include the directory part of the bfd's filename
in search paths if include_dirs is true. Add a couple of extra
locations for looking for debug files.
( bfd_follow_gnu_debuglink): Update invocation of
find_separate_debug_file.
(bfd_follow_gnu_debugaltlink): Likewise.
(get_build_id): New function: Finds the build-id of the given bfd.
(get_build_id_name): New function: Computes the name of the
separate debug info file for a bfd, based upon its build-id.
(check_build_id_file): New function: Checks to see if a separate
debug info file exists at the given location, and that its
build-id matches that of the original bfd.
(bfd_follow_build_id_debuglink): New function: Finds a separate
debug info file for a given bfd by using the build-id method.
* dwarf2.c (_bfd_dwarf2_slurp_debug_info): Try using the build-id
method of locating a separate debug info file before using the
debuglink method.
* bfd-in2.h: Regenerate.
binutils * NEWS: Mention the new feature.
* testsuite/binutils-all/objdump.exp (test_build_id_debuglink):
New proc to test the location of separate debug info files using
the build-id method.
bfd * config.bfd: Add entries for i686-redox and x86_64-redox.
gas * configure.tgt: Add entry for i386-redox.
ld * configure.tgt: Add entries for x86-redox and x86_64-redox.
When there are both PLT and GOT references to the same function symbol,
linker combines GOTPLT and GOT slots into a single GOT slot and create
an entry in .plt.got section for PLT access via the GOT slot. This
patch adds unwind info for .plt.got section.
bfd/
PR ld/20830
* elf32-i386.c (elf_i386_eh_frame_plt_got): New.
(PLT_GOT_FDE_LENGTH): Likewise.
(elf_i386_plt_layout): Add eh_frame_plt_got and
eh_frame_plt_got_size.
(elf_i386_plt): Updated.
(elf_i386_link_hash_table): Add plt_got_eh_frame.
(elf_i386_check_relocs): Create .eh_frame section for .plt.got.
(elf_i386_size_dynamic_sections): Allocate and initialize
.eh_frame section for .plt.got.
(elf_i386_finish_dynamic_sections): Adjust .eh_frame section for
.plt.got.
(elf_i386_nacl_plt): Add FIXME for eh_frame_plt_got and
eh_frame_plt_got_size.
* elf64-x86-64.c (elf_x86_64_eh_frame_plt_got): New.
(PLT_GOT_FDE_LENGTH): Likewise.
(elf_x86_64_backend_data): Add eh_frame_plt_got and
eh_frame_plt_got_size.
(elf_x86_64_arch_bed): Updated.
(elf_x86_64_bnd_arch_bed): Add FIXME for eh_frame_plt_got and
eh_frame_plt_got_size.
(elf_x86_64_nacl_arch_bed): Likewise.
(elf_x86_64_link_hash_table): Add plt_got_eh_frame.
(elf_x86_64_check_relocs): Create .eh_frame section for .plt.got.
(elf_x86_64_size_dynamic_sections): Allocate and initialize
.eh_frame section for .plt.got.
(elf_x86_64_finish_dynamic_sections): Adjust .eh_frame section
for .plt.got.
ld/
PR ld/20830
* testsuite/ld-i386/i386.exp: Run pr20830.
* testsuite/ld-x86-64/x86-64.exp: Likewise.
* testsuite/ld-i386/pr20830.d: New file.
* testsuite/ld-i386/pr20830.s: Likewise.
* testsuite/ld-x86-64/pr20830.d: Likewise.
* testsuite/ld-x86-64/pr20830.s: Likewise.
Use eh_frame_plt_size and eh_frame_plt from elf_i386_plt_layout for
.eh_frame covering the .plt section.
* elf32-i386.c (elf_i386_size_dynamic_sections): Set
plt_eh_frame->size to eh_frame_plt_size and use eh_frame_plt.
bfd * dwarf2.c (lookup_address_in_function_table): Return early if
there are no functions in the given comp unit, or if the high
address of the last function in the comp unit is less than the
desired address.
binutils * objdump.c (display_file): Add new parameter 'last_file'. If
last_file is true, do not call bfd_close at the end of the
function.
(main): Set the value of the last_file parameter when calling
display_file.
Without this, ld has been seen to crash in libc when freeing tsec_free:
*** Error in `/usr/bin/ld': double free or corruption (!prev): 0x0000000120ceb6a0 ***
_bfd_elf_link_read_relocs will always return the cached value if
present, even if keep_memory is false, therefore setting tsec_free to
NULL only when keep_memory is true is not sufficient.
* elf64-alpha.c (elf64_alpha_relax_opt_call): Don't set tsec_free
if relocs are cached.
Fixes: tmpdir/pr14525: symbol lookup error: tmpdir/pr14525: undefined
symbol: __executable_start
FAIL: PIE PR ld/14525
* elf32-hppa.c (ensure_undef_weak_dynamic): New function.
(allocate_plt_static, allocate_dynrelocs): Use it.
This flag should be set for any section header using sh_info to
point to another section.
Fixes a readelf warning about an unexpected value in info field,
resulting in FAIL: Build warn libbar.so
* elf-hppa.h (elf_hppa_fake_sections): Set SHF_INFO_LINK for
.PARISC.unwind section.
PR ld/20989
* elfxx-sparc.c (gdop_relative_offset_ok): New function.
(_bfd_sparc_elf_relocate_section): Use it to validate GOT
indirect to GOT pointer relative code edit.
A while ago HJ fixed PR ld/18720 with commit 6e33951ed, which, among
other things, modified _bfd_elf_link_hash_copy_indirect to not copy
ref_dynamic, ref_regular, ref_regular_nonweak, non_got_ref, needs_plt
and pointer_equality_needed when setting up an indirect non-versioned
symbol pointing to a non-default versioned symbol. I didn't notice at
the time, but the pr18720 testcase fails on hppa-linux with
"internal error, aborting at binutils-gdb-2.28/bfd/elf32-hppa.c:3933
in elf32_hppa_relocate_section".
Now hppa-linux creates entries in the plt even for local functions, if
they are referenced using plabel (function pointer) relocations. So
needs_plt is set for foo when processing pr18720a.o. When the aliases
in pr28720b.o are processed, we get an indirection from foo to
foo@FOO, but don't copy needs_plt. Since foo@FOO is the "real" symbol
that is used after that point, no plt entry is made for foo and we
bomb when relocating the plabel.
As shown by the hppa-linux scenario, needs_plt should be copied even
for non-default versioned symbols. I believe all of the others ought
to be copied too, with the exception of ref_dynamic. Not copying
ref_dynamic is right because if a shared lib references "foo" it
should not be satisfied by any non-default version "foo@FOO".
* elflink.c (_bfd_elf_link_hash_copy_indirect): Only omit
copying one flag, ref_dynamic, when versioned_hidden.
* elf64-ppc.c (ppc64_elf_copy_indirect_symbol): Likewise.
* elf32-hppa.c (elf32_hppa_copy_indirect_symbol): Use same
logic for copying weakdef flags. Copy plabel flag and merge
tls_type.
* elf32-i386.c (elf_i386_copy_indirect_symbol): Use same logic
for copying weakdef flags.
* elf32-ppc.c (ppc_elf_copy_indirect_symbol): Likewise.
* elf32-s390.c (elf_s390_copy_indirect_symbol): Likewise.
* elf32-sh.c (sh_elf_copy_indirect_symbol): Likewise.
* elf64-s390.c (elf_s390_copy_indirect_symbol): Likewise.
* elfnn-ia64.c (elfNN_ia64_hash_copy_indirect): Likewise.
* elf64-x86-64.c (elf_x86_64_copy_indirect_symbol): Likewise.
Simplify.
PR ld/20995
bfd/
* elflink.c (elf_link_add_object_symbols): Mark relro sections
in dynamic objects SEC_READONLY.
ld/
* testsuite/ld-elf/pr20995c.s: New test file.
* testsuite/ld-elf/pr20995-2so.r: Likewise.
* testsuite/ld-elf/elf.exp: Run it.
Variables defined in shared libraries are copied into an executable's
.bss section when code in the executable is non-PIC and thus would
require dynamic text relocations to access the variable directly in
the shared library. Recent x86 toolchains also copy variables into
the executable to gain a small speed improvement.
The problem is that if the variable was originally read-only, the copy
in .bss is writable, potentially opening a security hole. This patch
cures that problem by putting the copy in a section that becomes
read-only after ld.so relocation, provided -z relro is in force.
The patch also fixes a microblaze linker segfault on attempting to
use dynamic bss variables.
bfd/
PR ld/20995
* elf-bfd.h (struct elf_link_hash_table): Add sdynrelro and
sreldynrelro.
(struct elf_backend_data): Add want_dynrelro.
* elfxx-target.h (elf_backend_want_dynrelro): Define.
(elfNN_bed): Update initializer.
* elflink.c (_bfd_elf_create_dynamic_sections): Create
sdynrelro and sreldynrelro sections.
* elf32-arm.c (elf32_arm_adjust_dynamic_symbol): Place variables
copied into the executable from read-only sections into sdynrelro.
(elf32_arm_size_dynamic_sections): Handle sdynrelro.
(elf32_arm_finish_dynamic_symbol): Select sreldynrelro for
dynamic relocs in sdynrelro.
(elf_backend_want_dynrelro): Define.
* elf32-hppa.c (elf32_hppa_adjust_dynamic_symbol)
(elf32_hppa_size_dynamic_sections, elf32_hppa_finish_dynamic_symbol)
(elf_backend_want_dynrelro): As above.
* elf32-i386.c (elf_i386_adjust_dynamic_symbol)
(elf_i386_size_dynamic_sections, elf_i386_finish_dynamic_symbol)
(elf_backend_want_dynrelro): As above.
* elf32-metag.c (elf_metag_adjust_dynamic_symbol)
(elf_metag_size_dynamic_sections, elf_metag_finish_dynamic_symbol)
(elf_backend_want_dynrelro): As above.
* elf32-microblaze.c (microblaze_elf_adjust_dynamic_symbol)
(microblaze_elf_size_dynamic_sections)
(microblaze_elf_finish_dynamic_symbol)
(elf_backend_want_dynrelro): As above.
* elf32-nios2.c (nios2_elf32_finish_dynamic_symbol)
(nios2_elf32_adjust_dynamic_symbol)
(nios2_elf32_size_dynamic_sections)
(elf_backend_want_dynrelro): As above.
* elf32-or1k.c (or1k_elf_finish_dynamic_symbol)
(or1k_elf_adjust_dynamic_symbol, or1k_elf_size_dynamic_sections)
(elf_backend_want_dynrelro): As above.
* elf32-ppc.c (ppc_elf_adjust_dynamic_symbol)
(ppc_elf_size_dynamic_sections, ppc_elf_finish_dynamic_symbol)
(elf_backend_want_dynrelro): As above.
* elf32-s390.c (elf_s390_adjust_dynamic_symbol)
(elf_s390_size_dynamic_sections, elf_s390_finish_dynamic_symbol)
(elf_backend_want_dynrelro): As above.
* elf32-tic6x.c (elf32_tic6x_adjust_dynamic_symbol)
(elf32_tic6x_size_dynamic_sections)
(elf32_tic6x_finish_dynamic_symbol)
(elf_backend_want_dynrelro): As above.
* elf32-tilepro.c (tilepro_elf_adjust_dynamic_symbol)
(tilepro_elf_size_dynamic_sections)
(tilepro_elf_finish_dynamic_symbol)
(elf_backend_want_dynrelro): As above.
* elf64-ppc.c (ppc64_elf_adjust_dynamic_symbol)
(ppc64_elf_size_dynamic_sections, ppc64_elf_finish_dynamic_symbol)
(elf_backend_want_dynrelro): As above.
* elf64-s390.c (elf_s390_adjust_dynamic_symbol)
(elf_s390_size_dynamic_sections, elf_s390_finish_dynamic_symbol)
(elf_backend_want_dynrelro): As above.
* elf64-x86-64.c (elf_x86_64_adjust_dynamic_symbol)
(elf_x86_64_size_dynamic_sections)
(elf_x86_64_finish_dynamic_symbol)
(elf_backend_want_dynrelro): As above.
* elfnn-aarch64.c (elfNN_aarch64_adjust_dynamic_symbol)
(elfNN_aarch64_size_dynamic_sections)
(elfNN_aarch64_finish_dynamic_symbol)
(elf_backend_want_dynrelro): As above.
* elfnn-riscv.c (riscv_elf_adjust_dynamic_symbol)
(riscv_elf_size_dynamic_sections, riscv_elf_finish_dynamic_symbol)
(elf_backend_want_dynrelro): As above.
* elfxx-mips.c (_bfd_mips_elf_adjust_dynamic_symbol)
(_bfd_mips_elf_size_dynamic_sections)
(_bfd_mips_vxworks_finish_dynamic_symbol): As above.
* elfxx-sparc.c (_bfd_sparc_elf_adjust_dynamic_symbol)
(_bfd_sparc_elf_size_dynamic_sections)
(_bfd_sparc_elf_finish_dynamic_symbol): As above.
* elfxx-tilegx.c (tilegx_elf_adjust_dynamic_symbol)
(tilegx_elf_size_dynamic_sections)
(tilegx_elf_finish_dynamic_symbol): As above.
* elf32-mips.c (elf_backend_want_dynrelro): Define.
* elf64-mips.c (elf_backend_want_dynrelro): Define.
* elf32-sparc.c (elf_backend_want_dynrelro): Define.
* elf64-sparc.c (elf_backend_want_dynrelro): Define.
* elf32-tilegx.c (elf_backend_want_dynrelro): Define.
* elf64-tilegx.c (elf_backend_want_dynrelro): Define.
* elf32-microblaze.c (microblaze_elf_adjust_dynamic_symbol): Tidy.
(microblaze_elf_size_dynamic_sections): Handle sdynbss.
* elf32-nios2.c (nios2_elf32_size_dynamic_sections): Make use
of linker shortcuts to dynamic sections rather than comparing
names. Correctly set "got" flag.
ld/
PR ld/20995
* testsuite/ld-arm/farcall-mixed-app-v5.d: Update to suit changed
stub hash table traversal caused by section id increment. Accept
the previous output too.
* testsuite/ld-arm/farcall-mixed-app.d: Likewise.
* testsuite/ld-arm/farcall-mixed-lib-v4t.d: Likewise.
* testsuite/ld-arm/farcall-mixed-lib.d: Likewise.
* testsuite/ld-elf/pr20995a.s, * testsuite/ld-elf/pr20995b.s,
* testsuite/ld-elf/pr20995.r: New test.
* testsuite/ld-elf/elf.exp: Run it.
Revert commit 17733f5be9 ("Increment the ABIVERSION to 5 for MIPS
objects with non-executable stacks.") and remove EI_ABIVERSION 5
allocation for PT_GNU_STACK support, which has not made it to glibc
and will be reassigned.
bfd/
* bfd/elfxx-mips.c (_bfd_mips_post_process_headers): Revert
2016-02-23 change and remove EI_ABIVERSION 5 support.
This allows targets that have target specific code to add object
symbols to make use of the generic archive handling.
* linker.c (generic_link_check_archive_element): Call target
bfd_link_add_symbols to add element symbols.
Nothing calls them and they were in the way of a bug fix.
* linker.c (generic_link_add_symbols): Delete. Merge into..
(_bfd_generic_link_add_symbols): ..here.
(generic_link_check_archive_element_no_collect): Delete.
(generic_link_check_archive_element_collect): Likewise.
(generic_link_add_object_symbols): Remove "collect" param. Update
callers.
(generic_link_add_symbol_list): Likewise.
(generic_link_check_archive_element): Likewise. Call
bfd_link_add_symbols rather than generic_link_add_object_symbols.
* libbfd-in.h (_bfd_generic_link_add_symbols_collect): Delete.
* libbfd.h: Regenerate.
This stops an --enable-targets selection affecting the main target in
regards to forcing 64-bit archives. It also means mips64 and s390x
will revert to binutils-2.25 and binutils-2.26 behaviour of not
forcing 64-bit archives at least in the common case when plugins were
enabled.
PR binutils/20464
PR binutils/14625
* configure.ac: Revert 2016-05-25 configure change setting
want_64_bit_archive for mips64 and s390x. Revise USE_64_BIT_ARCHIVE
description.
* configure: Regenerate.
* config.in: Regenerate.
Contrary to the comment, they can in fact be called.
* libbfd-in.h (_bfd_vms_lib_slurp_armap): Use _bfd_noarchive function.
(_bfd_vms_lib_slurp_extended_name_table: Likewise.
(_bfd_vms_lib_construct_extended_name_table: Likewise.
(_bfd_vms_lib_truncate_arname: Likewise.
(_bfd_vms_lib_write_armap: Likewise.
(_bfd_vms_lib_read_ar_hdr: Likewise.
(_bfd_vms_lib_write_ar_hdr: Likewise.
* libbfd.h: Regenerate.
ILP32 has 32-bit word and address, but currently they declared as 64-bit in
bfd_aarch64_arch_ilp32, which breaks further logic of bfd. This patch fixes it.
Glibc testsuite build with patched binutils shows that next tests stop to fail:
iconvdata/mtrace-tst-loading
iconvdata/tst-loading
iconvdata/tst-tables
localedata/mtrace-tst-leaks
localedata/tst-leaks
posix/tst-getaddrinfo4
posix/tst-getaddrinfo5
posix/tst-regex2
We've decided to standardize on two flags for RISC-V: "-march" sets the
target architecture (which determines which instructions can be
generated), and "-mabi" sets the target ABI. We needed to rework this
because the old flag set didn't support soft-float or single-float ABIs,
and didn't support an x32-style ABI on RISC-V.
Additionally, we've changed the behavior of the -march flag: it's now a
lot stricter and only parses things we can actually understand.
Additionally, it's now lowercase-only: the rationale is that while the
RISC-V ISA manual specifies that ISA strings are case-insensitive, in
Linux-land things are usually case-sensitive. Since this flag can be
used to determine library paths, we didn't want to bake some
case-insensitivity in there that would case trouble later.
This patch implements these two new flags and removes the old flags that
could conflict with these. There wasn't a RISC-V release before, so we
want to just support a clean flag set.
include/
* elf/riscv.h (EF_RISCV_SOFT_FLOAT): Don't define.
(EF_RISCV_FLOAT_ABI, EF_RISCV_FLOAT_ABI_SOFT): Define.
(EF_RISCV_FLOAT_ABI_SINGLE, EF_RISCV_FLOAT_ABI_DOUBLE): Define.
(EF_RISCV_FLOAT_ABI_QUAD): Define.
bfd/
* elfnn-riscv.c (_bfd_riscv_elf_merge_private_bfd_data): Use
EF_RISCV_FLOAT_ABI_SOFT instead of EF_RISCV_SOFT_FLOAT.
binutils/
* readelf.c (get_machine_flags): Use
EF_RISCV_FLOAT_ABI_{SOFT,SINGLE,DOBULE,QUAD) instead of
EF_RISCV_{SOFT,HARD}_FLOAT.
gas/
* config/tc-riscv.h (xlen): Delete.
* config/tc-riscv.c (xlen): Make static.
(abi_xlen): New variable.
(options): Replace OPTION_{M32,M64,MSOFT_FLOAT,MHARD_FLOAT,MRVC}
with OPTION_MABI.
(md_longopts): Likewise.
(md_parse_option): Likewise.
(riscv_elf_final_processing): Likewise.
* doc/as.texinfo (Target RISC-V options): Likewise.
* doc/c-riscv.texi (OPTIONS): Likewise.
* config/tc-riscv.c (float_mode): Removed.
(float_abi): New type, specifies the floating-point ABI.
(riscv_set_abi): New function.
(riscv_add_subset): Only allow lower-case ISA names and require
them to start with "rv".
(riscv_after_parse_args): Likewise.
opcodes/
* riscv-dis.c (riscv_disassemble_insn): Default to the ELF's
XLEN when none is provided.
Before this commit we didn't cleanly support CFI directives because the
internal offsets used to get relaxed which broke them. This patch
significantly reworks how we handle linker relaxations:
* DWARF is now properly supported
* There is a ".option norelax" to disable relaxations, for when users
write assembly that can't be relaxed (if it's to be later patched up,
for example).
* There is an additional _RELAX relocation that specifies when previous
relocations can be relaxed.
We're in the process of documenting the RISC-V ELF ABI, which will
include documentation of our relocations
https://github.com/riscv/riscv-elf-psabi-doc/blob/master/riscv-elf.md
but we expect that this relocation set will remain ABI compatible in the
future (ie, it's safe to release).
Thanks to Kuan-Lin Chen for figuring out how to correctly relax the
debug info!
include/
* elf/riscv.h: Add R_RISCV_TPREL_I through R_RISCV_SET32.
bfd/
* reloc.c (BFD_RELOC_RISCV_TPREL_I): New relocation.
(BFD_RELOC_RISCV_TPREL_S): Likewise.
(BFD_RELOC_RISCV_RELAX): Likewise.
(BFD_RELOC_RISCV_CFA): Likewise.
(BFD_RELOC_RISCV_SUB6): Likewise.
(BFD_RELOC_RISCV_SET8): Likewise.
(BFD_RELOC_RISCV_SET8): Likewise.
(BFD_RELOC_RISCV_SET16): Likewise.
(BFD_RELOC_RISCV_SET32): Likewise.
* elfnn-riscv.c (perform_relocation): Handle the new
relocations.
(_bfd_riscv_relax_tls_le): Likewise.
(_bfd_riscv_relax_align): Likewise.
(_bfd_riscv_relax_section): Likewise.
(howto_table): Likewise.
(riscv_reloc_map): Likewise.
(relax_func_t): New type.
(_bfd_riscv_relax_call): Add reserve_size argument, which
controls the maximal offset pessimism. Correct type of max_alignment.
(_bfd_riscv_relax_lui): Likewise.
(_bfd_riscv_relax_tls_le): Likewise.
(_bfd_riscv_relax_align): Likewise.
(_bfd_riscv_relax_section): Compute the required reserve size
when relocating and use it to when calling relax_func.
* bfd-in2.h: Regenerate.
* libbfd.h: Likewise.
gas/
* config/tc-riscv.c (riscv_set_options): Add relax.
(riscv_opts): Likewise.
(s_riscv_option): Add relax and norelax.
(riscv_apply_const_reloc): New function.
(append_insn): Move constant relocation handling to
riscv_apply_const_reloc.
(md_pcrel_from): Likewise.
(parse_relocation): Skip BFD_RELOC_UNUSED.
(md_pcrel_from): Handle BFD_RELOC_RISCV_SUB6,
BFD_RELOC_RISCV_RELAX, BFD_RELOC_RISCV_CFA.
(md_apply_fix): Likewise.
(riscv_pre_output_hook): New function.
* config/tc-riscv.h (md_pre_output_hook): Define.
(riscv_pre_output_hook): Declare.
(DWARF_CIE_DATA_ALIGNMENT): Always -4.