Writing to a potentially read-only source directory is not good.
* testsuite/gas/m68hc11/m68hc11.exp (gas_m68hc11_message): Don't
write to $srcdir. Use gas_host_run and read output file rather
than gas_start/gas_finish.
This patch adds a floating point 128-bit composite field to the vsx
register type. When printing the register with p/f the float128 field will
be printed as a 128-bit floating point value. A test case to verify the new
vsx register field is visible and correctly prints out the value of a 128-bit
floating point value is also added.
gdb/ChangeLog:
* rs6000-tdep.c (rs6000_builtin_type_vec128): Add t_float128 variable.
(rs6000_builtin_type_vec128): Add append_composite_type_field for
float128.
gdb/testsuite/ChangeLog:
* gdb.arch/vsx-vsr-float128.c: New test file.
* gdb.arch/vsx-vsr-float128.exp: New expect file.
The support for WinCE was removed with commit 84b300de36 ("gdbserver:
remove support for ARM/WinCE"). There is some leftover code for WinCE
support, guarded by the _WIN32_WCE macro, which I didn't know of at the
time.
I didn't remove the _WIN32_WCE references in the tests, because in
theory we still support the WinCE architecture in GDB (when debugging
remotely). So someone could run a test with that (although I'd be
really surprised).
gdb/ChangeLog:
* nat/windows-nat.c: Remove all code guarded by _WIN32_WCE.
* nat/windows-nat.h: Likewise.
gdbserver/ChangeLog:
* win32-low.cc: Remove all code guarded by _WIN32_WCE.
* win32-low.h: Likewise.
Change-Id: I7a871b897e2135dc195b10690bff2a01d9fac05a
In gdb.btrace/reconnect.exp, we test that we can disconnect and reconnect
again to a GDB session that is recording with the btrace recording format.
It does not really matter what we are recording.
The test assumed that stepping from _start will bring us into an area
without debug information. This is not correct on all systems.
Relax the expected output to also support systems where we do have debug
information for that code.
elf_backend_archive_symbol_lookup might be called when the linker hash
table has entries of type generic_link_hash_entry. This happens for
instance when running the mmix target linker testsuite where the
output is mmo but input is elf64-mmix.
* elf-bfd.h (struct elf_backend_data): Return bfd_link_hash_entry*
from elf_backend_archive_symbol_lookup.
(_bfd_elf_archive_symbol_lookup): Return bfd_link_hash_entry*.
* elf64-ppc.c (ppc64_elf_archive_symbol_lookup): Likewise. Check
we have a ppc_hash_table before accessing ppc_link_hash_entry
fields.
* elflink.c (_bfd_elf_archive_symbol_lookup): Return
bfd_link_hash_entry*.
(elf_link_add_archive_symbols): Adjust to suit.
Fix the wrong version of i-ext when expanding g-ext. This was changed by
the previous patch accidently.
bfd/
* elfxx-riscv.c (riscv_parse_std_ext): Fixed the wrong versions of
i-ext when expanding g-ext.
The linker does not care the default versions of the extensions, since
it does not have the default ISA spec setting. Therefore, linker won't
insert the implicit extensions for the input objects. But we used to
insert the i-ext as the explicit extension, even if the e-ext is set.
This causes linker to report "cannot find default versions of the ISA
extension `i'" errors when linking the input objects with e-ext.
This patch fixes the above linker problem, and also remove the confused
riscv_ext_dont_care_version function. Unless these "dont care" extensions
are set in the input architecture explicitly, otherwise we always insert
them as the implicit ones. Afterwards, let riscv_arch_str1 surpress them
not to output to the architecture string if their versions are
RISCV_UNKNOWN_VERSION.
bfd/
* elfxx-riscv.c (riscv_ext_dont_care_version): Removed.
(riscv_parse_add_subset): Always add the implicit extensions, even if
their versions are RISCV_UNKNOWN_VERSION.
(riscv_parse_std_ext): Delay to add i-ext as the implicit extension
in the riscv_parse_add_implicit_subsets. Besides, add g-ext as the
implicit extension after it has been expanded.
(riscv_parse_add_implicit_subsets): Updated.
When built on a 32-bit host without --enable-64-bit-bfd, powerpc-linux
and other 32-bit powerpc targeted binutils fail to assemble some
power10 prefixed instructions with 34-bit fields. A typical error
seen when running the testsuite is
.../gas/testsuite/gas/ppc/prefix-pcrel.s:10: Error: bignum invalid
In practice this doesn't matter for addresses: 32-bit programs don't
need or use the top 2 bits of a d34 field when calculating addresses.
However it may matter when loading or adding 64-bit constants with
paddi. A power10 processor in 32-bit mode still has 64-bit wide GPRs.
So this patch enables limited support for O_big PowerPC operands, and
corrects sign extension of 32-bit constants using X_extrabit.
* config/tc-ppc.c (insn_validate): Use uint64_t for operand values.
(md_assemble): Likewise. Handle bignum operands.
(ppc_elf_suffix): Handle O_big. Remove unnecessary input_line_pointer
check.
* expr.c: Delete unnecessary forward declarations.
(generic_bignum_to_int32): Return uint32_t.
(generic_bignum_to_int64): Return uint64_t. Compile always.
(operand): Twiddle X_extrabit for unary '~'. Set X_unsigned and
clear X_extrabit for unary '!'.
* expr.h (generic_bignum_to_int32): Declare.
(generic_bignum_to_int64): Declare.
* testsuite/gas/ppc/prefix-pcrel.s,
* testsuite/gas/ppc/prefix-pcrel.d: Add more instructions.
It's not enough to test that the output is ELF before casting
bfd_link_hash_entry to elf_link_hash_entry. Some ELF targets (d30v,
dlx, pj, s12z, xgate) use the generic linker support in bfd/linker.c
and thus their symbols are of type generic_link_hash_entry.
Not all of the places this patch touches can result in wrong accesses,
but I thought it worth ensuring that all occurrences of
elf_link_hash_entry in ld/ were obviously correct.
PR 27719
* ldlang.c (lang_mark_undefineds, undef_start_stop): Test that
the symbol hash table is the correct type before accessing
elf_link_hash_entry symbols.
* plugin.c (is_visible_from_outside): Likewise.
* emultempl/armelf.em (ld${EMULATION_NAME}_finish): Likewise.
* emultempl/solaris2.em (elf_solaris2_before_allocation): Likewise.
The original discussion is as follows,
https://github.com/riscv/riscv-isa-manual/issues/637
I never considered the prefixes may have multiple letters, like zxm.
But the ISA spec has been updated for a long time that I haven't noticed.
This patch rewrites the part of architecture parser to support parsing
the multi-letter prefixes. Besides, I also improve the parser to report
errors in details. One of the most obvious improvement is - Do not parse
the prefixed extensions according to the orders in the parse_config.
If we do so, then we used to get "unexpected ISA string at end" errors,
but the message is a little bit hard to know what is happening. I Remove
the confused message, and let riscv_parse_prefixed_ext to report the details.
bfd/
* elfxx-riscv.c (riscv_std_z_ext_strtab): Moved forward.
(riscv_std_s_ext_strtab): Likewise.
(riscv_std_h_ext_strtab): Likewise.
(riscv_std_zxm_ext_strtab): Added for the zxm prefix.
(enum riscv_prefix_ext_class): Moved forward and renamed from
riscv_isa_ext_class. Reorder them according to the parsing order,
since the enum values are used to check the orders in the
riscv_compare_subsets.
(struct riscv_parse_prefix_config): Moved forward and renamed from
riscv_parse_config_t. Also removed the ext_valid_p field, the
related functions are replaced by riscv_valid_prefixed_ext.
(parse_config): Moved forward and updated. The more letters of the
prefix string, the more forward it must be defined. Otherwise, we
will get the wrong mapping when using strncmp in riscv_get_prefix_class.
(riscv_get_prefix_class): Moved forward. Support to parse the
multi-letter prefix, like zxm.
(riscv_known_prefixed_ext): New function, check if the prefixed
extension is supported according to the right riscv_std_*_ext_strtab.
(riscv_valid_prefixed_ext): New function, used to replace the
riscv_ext_*_valid_p functions.
(riscv_init_ext_order): Do not set the values for prefix keywords
since they may have multiple letters for now.
(riscv_compare_subsets): Set the order values of prefix keywords
to negative numbers according to the riscv_prefix_ext_class.
(riscv_parse_std_ext): Call riscv_get_prefix_class to see if we
have parsed the prefixed extensions.
(riscv_parse_prefixed_ext): Updated and removed the parameter config.
Report error when the prefix is unknown.
(riscv_parse_subset): Do not parse the prefixed extensions according
to the orders in the parse_config. Remove the confused message and
let riscv_parse_prefixed_ext to report the details.
* elfxx-riscv.h (enum riscv_isa_ext_class): Moved to elfxx-riscv.c.
(riscv_get_prefix_class): Removed to static.
gas/
* testsuite/gas/riscv/march-fail-order-x-std.d: Renamed from
march-fail-porder-x-std.d.
* testsuite/gas/riscv/march-fail-order-z-std.d: Renamed from
march-fail-porder-z-std.d.
* testsuite/gas/riscv/march-fail-order-x-z.d: Renamed from
march-fail-porder-x-z.d.
* testsuite/gas/riscv/march-fail-order-zx-std.l: Added to replace
march-fail-porder.l.
* testsuite/gas/riscv/march-fail-order-x-z.l: Likewise.
* testsuite/gas/riscv/march-fail-order-x.l: Updated.
* testsuite/gas/riscv/march-fail-order-z.l: Likewise.
* testsuite/gas/riscv/march-fail-single-prefix-h.d: Renamed from
march-fail-single-char-h.d.
* testsuite/gas/riscv/march-fail-single-prefix-s.d: Renamed from
march-fail-single-char-s.d.
* testsuite/gas/riscv/march-fail-single-prefix-x.d: Renamed from
march-fail-single-char-x.d.
* testsuite/gas/riscv/march-fail-single-prefix-z.d: Renamed from
march-fail-single-char-z.d.
* testsuite/gas/riscv/march-fail-single-prefix-zmx.d: Added.
* testsuite/gas/riscv/march-fail-single-prefix.l: Added to replace
march-fail-single-prefix.l.
* testsuite/gas/riscv/march-fail-unknown-zxm.d: Added.
* testsuite/gas/riscv/march-fail-unknown-std.l: Updated.
* testsuite/gas/riscv/march-fail-unknown.l: Likewise.
This fixes win32-low.cc in the same way as a recent change in
windows-nat.c did for GDB: if the lpImageName member of the load-DLL
debug event doesn't allow us to find the file name of the DLL, then
loop over all the DLLs mapped into the inferior to find the one loaded
at the same base address as given by the lpBaseOfDll member of the
debug event.
gdbserver/ChangeLog:
2021-04-11 Eli Zaretskii <eliz@gnu.org>
* win32-low.cc (win32_add_dll): New function, with body almost
identical to what win32_add_all_dlls did. Accepts one argument;
if that is non-NULL, returns the file name of the DLL that is
loaded at the base address equal to that argument, or NULL if not
found. If the argument is NULL, add all the DLLs loaded by the
inferior to the list of solibs and return NULL.
(win32_add_all_dlls): Now a thin wrapper around win32_add_dll.
(windows_nat::handle_load_dll) [!_WIN32_WCE]: If get_image_name
failed to glean the file name of the DLL, call win32_add_dll to
try harder using the lpBaseOfDll member of the load-DLL event.
This patch makes handling a DLL load at run time (using LoadLibrary)
much more reliable when its file name cannot be obtained using the
lpImageName pointer provided by the DLL load debug event. The
solution is to enumerate all the DLLs loaded by the inferior, looking
for the DLL that's loaded at base address provided by the lpBaseOfDll
pointer of the debug event. Correctly resolving the DLL file name is
important, because without that GDB doesn't record the DLL in the list
of solibs, and then later is unable to show functions in that DLL in
the backtraces, which produces corrupted and truncated backtraces.
See this thread for the problems that causes:
https://sourceware.org/pipermail/gdb-patches/2021-March/177022.html
gdb/ChangeLog:
2021-04-10 Eli Zaretskii <eliz@gnu.org>
* windows-nat.c (windows_nat::handle_load_dll): Call
windows_add_dll if get_image_name failed to glean the name of the
DLL by using the lpImageName pointer.
(windows_add_all_dlls): Now a thin wrapper around windows_add_dll.
(windows_add_dll): Now does what windows_add_all_dlls did before,
but also accepts an argument LOAD_ADDR, which, if non-NULL,
specifies the address where the DLL was loaded into the inferior,
and looks for the single DLL loaded at that address.
Similarly to commit 665af52ec2, fix a build
failure seen with an updated glibc, due to the enum/constant mismatch.
The old include file order eventually makes asm/ptrace.h get included before
sys/ptrace.h.
This patch fixes it. Seems fairly obvious and I'll push it shortly.
gdb/ChangeLog:
2021-04-09 Luis Machado <luis.machado@linaro.org>
* nat/aarch64-mte-linux-ptrace.c: Update include file order.
On a 32-bit build, I ran into the following:
sim/rx/fpu.c:789:6: error: "*((void *)&a+8)" may be used uninitialized in this function [-Werror=maybe-uninitialized]
rv = fp_implode (&a);
To silence this, just initialize the struct with 0's.
sim/rx/ChangeLog:
2021-04-09 Luis Machado <luis.machado@linaro.org>
* fpu.c (rxfp_itof): Initialize structure.
A summary of what this patch set fixes:
For instructions
STXR w0,x2,[x0]
STLXR w0,x2,[x0]
The warning we emit currently is misleading:
Warning: unpredictable: identical transfer and status registers --`stlxr w0,x2,[x0]'
Warning: unpredictable: identical transfer and status registers --`stxr w0,x2,[x0]'
it ought to be:
Warning: unpredictable: identical base and status registers --`stlxr w0,x2,[x0]'
Warning: unpredictable: identical base and status registers --`stxr w0,x2,[x0]'
For instructions:
ldaxp x0,x0,[x0]
ldxp x0,x0,[x0]
The warning we emit is incorrect
Warning: unpredictable: identical transfer and status registers --`ldaxp x0,x0,[x0]'
Warning: unpredictable: identical transfer and status registers --`ldxp x0,x0,[x0]'
it ought to be:
Warning: unpredictable load of register pair -- `ldaxp x0,x0,[x0]'
Warning: unpredictable load of register pair -- `ldxp x0,x0,[x0]'
For instructions
stlxp w0, x2, x2, [x0]
stxp w0, x2, x2, [x0]
We don't emit any warning when it ought to be:
Warning: unpredictable: identical base and status registers --`stlxp w0,x2,x2,[x0]'
Warning: unpredictable: identical base and status registers --`stxp w0,x2,x2,[x0]'
gas/ChangeLog:
2021-04-09 Tejas Belagod <tejas.belagod@arm.com>
* config/tc-aarch64.c (warn_unpredictable_ldst): Clean-up diagnostic messages
for LD/ST Exclusive instructions.
* testsuite/gas/aarch64/diagnostic.s: Add a diagnostic test for STLXP.
* testsuite/gas/aarch64/diagnostic.l: Fix-up test after message clean-up.
Patch 1: Fix diagnostics for exclusive load/stores and reclassify
Armv8.7-A ST/LD64 Atomics.
Following upstream pointing out some inconsistencies in diagnostics,
https://sourceware.org/pipermail/binutils/2021-February/115356.html
attached is a patch set that fixes the issues. I believe a combination
of two patches mainly contributed to these bugs:
https://sourceware.org/pipermail/binutils/2020-November/113961.htmlhttps://sourceware.org/pipermail/binutils/2018-June/103322.html
A summary of what this patch set fixes:
For instructions
STXR w0,x2,[x0]
STLXR w0,x2,[x0]
The warning we emit currently is misleading:
Warning: unpredictable: identical transfer and status registers --`stlxr w0,x2,[x0]'
Warning: unpredictable: identical transfer and status registers --`stxr w0,x2,[x0]'
it ought to be:
Warning: unpredictable: identical base and status registers --`stlxr w0,x2,[x0]'
Warning: unpredictable: identical base and status registers --`stxr w0,x2,[x0]'
For instructions:
ldaxp x0,x0,[x0]
ldxp x0,x0,[x0]
The warning we emit is incorrect
Warning: unpredictable: identical transfer and status registers --`ldaxp x0,x0,[x0]'
Warning: unpredictable: identical transfer and status registers --`ldxp x0,x0,[x0]'
it ought to be:
Warning: unpredictable load of register pair -- `ldaxp x0,x0,[x0]'
Warning: unpredictable load of register pair -- `ldxp x0,x0,[x0]'
For instructions
stlxp w0, x2, x2, [x0]
stxp w0, x2, x2, [x0]
We don't emit any warning when it ought to be:
Warning: unpredictable: identical base and status registers --`stlxp w0,x2,x2,[x0]'
Warning: unpredictable: identical base and status registers --`stxp w0,x2,x2,[x0]'
For instructions:
st64bv x0, x2, [x0]
st64bv x2, x0, [x0]
We incorrectly warn when its not necessary. This is because we classify them
incorrectly as ldstexcl when it should be lse_atomics in the opcode table.
The incorrect classification makes it pick up the warnings from warning on
exclusive load/stores.
Patch 2: Reclassify Armv8.7-A ST/LD64 Atomics.
This patch reclassifies ST64B{V,V0}, LD64B as lse_atomics rather than ldstexcl
according to their encoding class as specified in the architecture. This also
has the fortunate side-effect of spurious unpredictable warnings getting
eliminated.
For eg. For instruction:
st64bv x0, x2, [x0]
We incorrectly warn when its not necessary:
Warning: unpredictable: identical transfer and status registers --`st64bv x0,x2,[x0]'
This is because we classify them incorrectly as ldstexcl when it should be
lse_atomics in the opcode table. The incorrect classification makes it pick
up the warnings from warning on exclusive load/stores. This patch fixes it
by reclassifying it and no warnings are issued for this instruction.
opcodes/ChangeLog:
2021-04-09 Tejas Belagod <tejas.belagod@arm.com>
* aarch64-tbl.h (struct aarch64_opcode aarch64_opcode_table): Reclassify
LD64/ST64 instructions to lse_atomic instead of ldstexcl.
This adds some annotation to Power10 pcrel instructions, displaying
the target address (ie. pc + D34 field) plus a symbol if there is one
at exactly that target address. pld from the .got or .plt will also
look up the entry and display it, symbolically if there is a dynamic
relocation on the entry.
include/
* dis-asm.h (struct disassemble_info): Add dynrelbuf and dynrelcount.
binutils/
* objdump.c (struct objdump_disasm_info): Delete dynrelbuf and
dynrelcount.
(find_symbol_for_address): Adjust for dynrelbuf and dynrelcount move.
(disassemble_section, disassemble_data): Likewise.
opcodes/
* ppc-dis.c (struct dis_private): Add "special".
(POWERPC_DIALECT): Delete. Replace uses with..
(private_data): ..this. New inline function.
(disassemble_init_powerpc): Init "special" names.
(skip_optional_operands): Add is_pcrel arg, set when detecting R
field of prefix instructions.
(bsearch_reloc, print_got_plt): New functions.
(print_insn_powerpc): For pcrel instructions, print target address
and symbol if known, and decode plt and got loads too.
gas/
* testsuite/gas/ppc/prefix-pcrel.d: Update expected output.
* testsuite/gas/ppc/prefix-reloc.d: Likewise.
* gas/testsuite/gas/ppc/vsx_32byte.d: Likewise.
ld/
* testsuite/ld-powerpc/inlinepcrel-1.d: Update expected output.
* testsuite/ld-powerpc/inlinepcrel-2.d: Likewise.
* testsuite/ld-powerpc/notoc2.d: Likewise.
* testsuite/ld-powerpc/notoc3.d: Likewise.
* testsuite/ld-powerpc/pcrelopt.d: Likewise.
* testsuite/ld-powerpc/startstop.d: Likewise.
* testsuite/ld-powerpc/tlsget.d: Likewise.
* testsuite/ld-powerpc/tlsget2.d: Likewise.
* testsuite/ld-powerpc/tlsld.d: Likewise.
* testsuite/ld-powerpc/weak1.d: Likewise.
* testsuite/ld-powerpc/weak1so.d: Likewise.
GCC gives a -Wsequence-point warning for this code in the h8300 sim.
The bug is that memory_size is both assigned and used in the same
expression. The fix is to assign after the print.
sim/h8300/ChangeLog
2021-04-08 Tom Tromey <tom@tromey.com>
* compile.c (init_pointers): Fix sequence point warning.
This updates various parts of the sim to include missing system
headers. I made the includes unconditional, because other parts of
the tree are already doing this.
2021-04-08 Tom Tromey <tom@tromey.com>
* traps.c: Include stdlib.h.
* cris-tmpl.c: Include stdlib.h.
sim/erc32/ChangeLog
2021-04-08 Tom Tromey <tom@tromey.com>
* func.c: Include sys/time.h.
sim/frv/ChangeLog
2021-04-08 Tom Tromey <tom@tromey.com>
* traps.c: Include stdlib.h.
* registers.c: Include stdlib.h.
* profile.c: Include stdlib.h.
* memory.c: Include stdlib.h.
* interrupts.c: Include stdlib.h.
* frv.c: Include stdlib.h.
* cache.c: Include stdlib.h.
sim/iq2000/ChangeLog
2021-04-08 Tom Tromey <tom@tromey.com>
* iq2000.c: Include stdlib.h.
sim/m32r/ChangeLog
2021-04-08 Tom Tromey <tom@tromey.com>
* traps.c: Include stdlib.h.
* m32r.c: Include stdlib.h.
sim/ppc/ChangeLog
2021-04-08 Tom Tromey <tom@tromey.com>
* emul_unix.c: Include time.h.
I ran into a build failure with --enable-targets=all due to the fact that
the moxie sim expects to be able to use the dtc tool. If it isn't available,
the builds fails.
The following patch adds a prebuilt dtb file to the tree. That file is the one
that is used for installations.
The patch also enables (re-)generation of the dtb file through maintainer
mode, if it needs to be updated due to a change in the dts file.
Tested on aarch64-linux/x86_64-linux.
sim/moxie/ChangeLog:
2021-04-08 Luis Machado <luis.machado@linaro.org>
* Makefile.in (moxie-gdb.dtb): Add maintainer mode dependency.
(install-dtb): Install prebuilt dtb file.
* moxie-gdb.dtb: New prebuilt file.
The igen/dgen and opc2c tools leak their heap-allocated memory (on
purpose) at program exit, which makes AddressSanitizer fail the tool
execution. This breaks the build, as it makes the tool return a
non-zero exit code.
Fix that by disabling leak detection through the setting of that
environment variable.
I also changed the opc2c rules for m32c to go through a temporary file.
What happened is that the failing opc2c would produce an incomplete file
(probably because ASan exits the process before stdout is flushed).
This meant that further make attempts didn't try to re-create the file,
as it already existed. A "clean" was therefore necessary. This can
also happen in regular builds if the user interrupts the build (^C) in
the middle of the opc2c execution and tries to resume it. Going to a
temporary file avoids this issue.
sim/m32c/ChangeLog:
* Makefile.in: Set ASAN_OPTIONS when running opc2c.
sim/mips/ChangeLog:
* Makefile.in: Set ASAN_OPTIONS when running igen.
sim/mn10300/ChangeLog:
* Makefile.in: Set ASAN_OPTIONS when running igen.
sim/ppc/ChangeLog:
* Makefile.in: Set ASAN_OPTIONS when running igen.
sim/v850/ChangeLog:
* Makefile.in: Set ASAN_OPTIONS when running igen.
Change-Id: I00f21d4dc1aff0ef73471925d41ce7c23e83e082
The next-gen Intel Fortran compiler isn't flang-based, but emits
prologue_end in the same manner. As do the newer Intel C/C++ compilers.
This allows prologue detection based on dwarf for all newer Intel compilers.
The cut-off version was not chosen for any specific reason other than the
effort to test this.
gdb/Changelog:
2021-04-08 Felix Willgerodt <felix.willgerodt@intel.com>
* i386-tdep.c (i386_skip_prologue): Use symbol table to find the
prologue end for Intel compilers.
* amd64-tdep.c (amd64_skip_prologue): Likewise.
* producer.c (producer_is_icc_ge_19): New function.
* producer.h (producer_is_icc_ge_19): New declaration.
The main goal of this patch is to get rid of a warning for the new Fortran
compiler:
(gdb) b 9
warning: Could not recognize version of Intel Compiler in: "Intel(R) Fortran 21.0-2087b"
Breakpoint 1 at 0x4048cf: file comp.f90, line 9.
While trying to fix this I analyzed DW_AT_producer of all latest Intel
compilers for C, C++ and Fortran. They do no longer necessarily start with
"Intel (R)" nor do they follow the internal and external version number
scheme that the original patch for this check assumed. Some newer compilers
even contradict the "intermediate" digit in the old version scheme and have
the MINOR number as the second digit, even when having 3 or 4 digits overall.
Therefore I rewrote the check to consider the first MAJOR.MINOR string found
as the version number. This might not be 100% correct for some older
internal compilers, but the only current user of this function is only
checking for the major version anyway. Hence this should be reliable enough
and extendable enough going forward.
gdb/ChangeLog:
2021-04-08 Felix Willgerodt <felix.willgerodt@intel.com>
* producer.c: (producer_is_icc): Update for new version scheme.
(producer_parsing_tests): Update names and expected results.
* producer.h: (producer_is_icc): Update comment accordingly.
Exit status 77 is common (including the autotools world) to indicate
"skip this test". Add support for mapping that to "unsupported" as
that's the closest in the dejagnu world.
If the port hasn't been enabled, don't try to run its tests. Making
this dynamic simplifies the test harnesses and avoids duplicating a
bunch of target tuple checks.
This fixes a problem that occurs when compiled by gcc-10, as the code
is relying on undefined overflow behavior. This is fixed by replacing
compares between 32-bit and 64-bit results with compares that just use
the 64-bit results with a cast.
PR sim/27483
* simulator.c (set_flags_for_add32): Compare uresult against
itself. Compare sresult against itself.
Note that this doesn't implement the ISA to the letter regarding
dcbtds (and dcbtstds), which says that the TH field may be zero. That
doesn't make sense because allowing TH=0 would mean you no long have a
dcbtds but rather a dcbtct instruction. I'm interpreting the ISA
wording about allowing TH=0 to mean that the TH field of dcbtds is
optional (in which case the TH value is 0b1000).
opcodes/
PR 27676
* ppc-opc.c (DCBT_EO): Move earlier.
(insert_thct, extract_thct, insert_thds, extract_thds): New functions.
(powerpc_operands): Add THCT and THDS entries.
(powerpc_opcodes): Add dcbtstct, dcbtstds, dcbna, dcbtct, dcbtds.
gas/
* testsuite/gas/ppc/pr27676.d,
* testsuite/gas/ppc/pr27676.s: New test.
* testsuite/gas/ppc/ppc.exp: Run it.
* testsuite/gas/ppc/dcbt.d: Update.
* testsuite/gas/ppc/power4_32.d: Update.
Added function fetch_tid_type which calls get_tid_type and will set up
the type, associated with a tid, if it is not read in yet. Also implement
function read_forward_type which handles the CTF_K_FORWARD kind.
Expanded gdb.base/ctf-ptype.exp to add cases with forward references.
gdb/ChangeLog:
* ctfread.c (fetch_tid_type): New function, use throughout file.
(read_forward_type): New function.
(read_type_record): Call read_forward_type.
gdb/testsuite/ChangeLog:
* gdb.base/ctf-ptype.c: Add struct link containing a forward
reference type.
* gdb.base/ctf-ptype.exp: Add "ptype struct link".
This commit replaces this patch:
https://sourceware.org/pipermail/gdb-patches/2021-January/174933.html
which was itself a replacement for this patch:
https://sourceware.org/pipermail/gdb-patches/2020-July/170335.html
The motivation behind the original patch can be seen in the new test,
which currently gives a GDB session like this:
(gdb) ptype var8
type = Type type6
PTR TO -> ( Type type2 :: ptr_1 )
PTR TO -> ( Type type2 :: ptr_2 )
End Type type6
(gdb) ptype var8%ptr_2
type = PTR TO -> ( Type type2
integer(kind=4) :: spacer
Type type1, allocatable :: t2_array(:) <------ Issue #1
End Type type2 )
(gdb) ptype var8%ptr_2%t2_array
Cannot access memory at address 0x38 <------ Issue #2
(gdb)
Issue #1: Here we see the abstract dynamic type, rather than the
resolved concrete type. Though in some cases the user might be
interested in the abstract dynamic type, I think that in most cases
showing the resolved concrete type will be of more use. Plus, the
user can always figure out the dynamic type (by source code inspection
if nothing else) given the concrete type, but it is much harder to
figure out the concrete type given only the dynamic type.
Issue #2: In this example, GDB evaluates the expression in
EVAL_AVOID_SIDE_EFFECTS mode (due to ptype). The value returned for
var8%ptr_2 will be a non-lazy, zero value of the correct dynamic
type. However, when GDB asks about the type of t2_array this requires
GDB to access the value of var8%ptr_2 in order to read the dynamic
properties. As this value was forced to zero (thanks to the use of
EVAL_AVOID_SIDE_EFFECTS) then GDB ends up accessing memory at a base
of zero plus some offset.
Both this patch, and my previous two attempts, have all tried to
resolve this problem by stopping EVAL_AVOID_SIDE_EFFECTS replacing the
result value with a zero value in some cases.
This new patch is influenced by how Ada handles its tagged typed.
There are plenty of examples in ada-lang.c, but one specific case is
ada_structop_operation::evaluate. When GDB spots that we are dealing
with a tagged (dynamic) type, and we're in EVAL_AVOID_SIDE_EFFECTS
mode, then GDB re-evaluates the child operation in EVAL_NORMAL mode.
This commit handles two cases like this specifically for Fortran, a
new fortran_structop_operation, and the already existing
fortran_undetermined, which is where we handle array accesses.
In these two locations we spot when we are dealing with a dynamic type
and re-evaluate the child operation in EVAL_NORMAL mode so that we
are able to access the dynamic properties of the type.
The rest of this commit message is my attempt to record why my
previous patches failed.
To understand my second patch, and why it failed lets consider two
expressions, this Fortran expression:
(gdb) ptype var8%ptr_2%t2_array --<A>
Operation: STRUCTOP_STRUCT --(1)
Operation: STRUCTOP_STRUCT --(2)
Operation: OP_VAR_VALUE --(3)
Symbol: var8
Block: 0x3980ac0
String: ptr_2
String: t2_array
And this C expression:
(gdb) ptype ptr && ptr->a == 3 --<B>
Operation: BINOP_LOGICAL_AND --(4)
Operation: OP_VAR_VALUE --(5)
Symbol: ptr
Block: 0x45a2a00
Operation: BINOP_EQUAL --(6)
Operation: STRUCTOP_PTR --(7)
Operation: OP_VAR_VALUE --(8)
Symbol: ptr
Block: 0x45a2a00
String: a
Operation: OP_LONG --(9)
Type: int
Constant: 0x0000000000000003
In expression <A> we should assume that t2_array is of dynamic type.
Nothing has dynamic type in expression <B>.
This is how GDB currently handles expression <A>, in all cases,
EVAL_AVOID_SIDE_EFFECTS or EVAL_NORMAL, an OP_VAR_VALUE operation
always returns the real value of the symbol, this is not forced to a
zero value even in EVAL_AVOID_SIDE_EFFECTS mode. This means that (3),
(5), and (8) will always return a real lazy value for the symbol.
However a STRUCTOP_STRUCT will always replace its result with a
non-lazy, zero value with the same type as its result. So (2) will
lookup the field ptr_2 and create a zero value with that type. In
this case the type is a pointer to a dynamic type.
Then, when we evaluate (1) to figure out the resolved type of
t2_array, we need to read the types dynamic properties. These
properties are stored in memory relative to the objects base address,
and the base address is in var8%ptr_2, which we already figured out
has the value zero. GDB then evaluates the DWARF expressions that
take the base address, add an offset and dereference. GDB then ends
up trying to access addresses like 0x16, 0x8, etc.
To fix this, I proposed changing STRUCTOP_STRUCT so that instead of
returning a zero value we instead returned the actual value
representing the structure's field in the target. My thinking was
that GDB would not try to access the value's contents unless it needed
it to resolve a dynamic type. This belief was incorrect.
Consider expression <B>. We already know that (5) and (8) will return
real values for the symbols being referenced. The BINOP_LOGICAL_AND,
operation (4) will evaluate both of its children in
EVAL_AVOID_SIDE_EFFECTS in order to get the types, this is required
for C++ operator lookup. This means that even if the value of (5)
would result in the BINOP_LOGICAL_AND returning false (say, ptr is
NULL), we still evaluate (6) in EVAL_AVOID_SIDE_EFFECTS mode.
Operation (6) will evaluate both children in EVAL_AVOID_SIDE_EFFECTS
mode, operation (9) is easy, it just returns a value with the constant
packed into it, but (7) is where the problem lies. Currently in GDB
this STRUCTOP_STRUCT will always return a non-lazy zero value of the
correct type.
When the results of (7) and (9) are back in the BINOP_LOGICAL_AND
operation (6), the two values are passed to value_equal which performs
the comparison and returns a result. Note, the two things compared
here are the immediate value (9), and a non-lazy zero value from (7).
However, with my proposed patch operation (7) no longer returns a zero
value, instead it returns a lazy value representing the actual value
in target memory. When we call value_equal in (6) this code causes
GDB to try and fetch the actual value from target memory. If `ptr` is
NULL then this will cause GDB to access some invalid address at an
offset from zero, this will most likely fail, and cause GDB to throw
an error instead of returning the expected type.
And so, we can now describe the problem that we're facing. The way
GDB's expression evaluator is currently written we assume, when in
EVAL_AVOID_SIDE_EFFECTS mode, that any value returned from a child
operation can safely have its content read without throwing an
error. If child operations start returning real values (instead of
the fake zero values), then this is simply not true.
If we wanted to work around this then we would need to rewrite almost
all operations (I would guess) so that EVAL_AVOID_SIDE_EFFECTS mode
does not cause evaluation of an operation to try and read the value of
a child operation. As an example, consider this current GDB code from
eval.c:
struct value *
eval_op_equal (struct type *expect_type, struct expression *exp,
enum noside noside, enum exp_opcode op,
struct value *arg1, struct value *arg2)
{
if (binop_user_defined_p (op, arg1, arg2))
{
return value_x_binop (arg1, arg2, op, OP_NULL, noside);
}
else
{
binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
int tem = value_equal (arg1, arg2);
struct type *type = language_bool_type (exp->language_defn,
exp->gdbarch);
return value_from_longest (type, (LONGEST) tem);
}
}
We could change this function to be this:
struct value *
eval_op_equal (struct type *expect_type, struct expression *exp,
enum noside noside, enum exp_opcode op,
struct value *arg1, struct value *arg2)
{
if (binop_user_defined_p (op, arg1, arg2))
{
return value_x_binop (arg1, arg2, op, OP_NULL, noside);
}
else
{
struct type *type = language_bool_type (exp->language_defn,
exp->gdbarch);
if (noside == EVAL_AVOID_SIDE_EFFECTS)
return value_zero (type, VALUE_LVAL (arg1));
else
{
binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
int tem = value_equal (arg1, arg2);
return value_from_longest (type, (LONGEST) tem);
}
}
}
Now we don't call value_equal unless we really need to. However, we
would need to make the same, or similar change to almost all
operations, which would be a big task, and might not be a direction we
wanted to take GDB in.
So, for now, I'm proposing we go with the more targeted, Fortran
specific solution, that does the minimal required in order to
correctly resolve the dynamic types.
gdb/ChangeLog:
* f-exp.h (class fortran_structop_operation): New class.
* f-exp.y (exp): Create fortran_structop_operation instead of the
generic structop_operation.
* f-lang.c (fortran_undetermined::evaluate): Re-evaluate
expression as EVAL_NORMAL if the result type was dynamic so we can
extract the actual array bounds.
(fortran_structop_operation::evaluate): New function.
gdb/testsuite/ChangeLog:
* gdb.fortran/dynamic-ptype-whatis.exp: New file.
* gdb.fortran/dynamic-ptype-whatis.f90: New file.
It is not currently possible to cast some values to an rvaule
reference. This happens when simple scalar values are cast to an
rvalue reference of the same type, e.g.:
int global_var;
Then in GDB:
(gdb) p static_cast<int&&> (global_var)
Attempt to take address of value not located in memory.
Which is clearly silly.
The problem is that as part of the cast an intermediate value is
created within GDB that becomes an lval_none rather than the original
lval_memory. The casting logic basically goes like this:
The call tree that leads to the error looks like this:
value_cast
value_cast
value_ref
value_addr
error
The first value_cast call is casting the value for 'global_var' to
type 'int&&'. GDB spots that the target type is a reference, and so
calls value_cast again, this time casting 'global_var' to type 'int'.
We then call value_ref to convert the result of the second value_cast
into a reference.
Unfortunately, the second cast results in the value (for global_var)
changing from an lval_memory to an lval_none. This is because int to
int casting calls extract_unsigned_integer and then
value_from_longest.
In theory value_cast has a check at its head that should help in this
case, the code is:
if (value_type (arg2) == type)
return arg2;
However, this only works in some cases. In our case
'value_type (arg2)' will be an objfile owned type, while the type from
the expression parser 'int&&' will be gdbarch owned. The pointers
will not be equal, but the meaning of the type will be equal.
I did consider making the int to int casting case smarter, but this
obviously is only one example. We must also consider things like
float to float, or pointer to pointer....
So, I instead decided to try and make the initial check smarter.
Instead of a straight pointer comparison, I now propose that we use
types_deeply_equal. If this is true then we are casting something
back to its current type, in which case we can preserve the lval
setting by using value_copy.
gdb/ChangeLog:
* valops.c (value_cast): Call value_deeply_equal before performing
any cast.
gdb/testsuite/ChangeLog:
* gdb.cp/rvalue-ref-params.cc (f3): New function.
(f4): New function.
(global_int): New global variable.
(global_float): Likeiwse.
(main): Call both new functions.
* gdb.cp/rvalue-ref-params.exp: Add new tests.
I noticed that in types equal we start with a cheap pointer equality
check, then resolve typedefs, then do a series of (semi-)expensive
checks, including checking type names, before, finally performing
another pointer equality check.
We should hoist the second pointer equality check to immediately after
we have resolved typedefs. This would save performing the more
expensive checks.
This isn't going to give any noticable performance improvement, I just
spotted this in passing and figured I might as well commit the fix.
There should be no user visible changes after this commit.
gdb/ChangeLog:
* gdbtypes.c (types_equal): Move pointer equality check earlier in
the function.
When building with AddressSanitizer, sim/m32c fails with:
./opc2c -l r8c.out /home/simark/src/binutils-gdb/sim/m32c/r8c.opc > r8c.c
sim_log: r8c.out
=================================================================
==3919390==ERROR: LeakSanitizer: detected memory leaks
Direct leak of 4 byte(s) in 1 object(s) allocated from:
#0 0x7ffff7677459 in __interceptor_malloc /build/gcc/src/gcc/libsanitizer/asan/asan_malloc_linux.cpp:145
#1 0x55555555b3df in main /home/simark/src/binutils-gdb/sim/m32c/opc2c.c:658
#2 0x7ffff741fb24 in __libc_start_main (/usr/lib/libc.so.6+0x27b24)
Fix the leak in main by removing the vlist variable, which seems unused.
DWARF allows .dwo file paths to be relative rather than absolute.
When they are relative, DWARF uses DW_AT_comp_dir to find the .dwo
file. DW_AT_comp_dir can also be relative, making the entire search
patch for the .dwo file relative.
In this case, GDB currently searches relative to its current working
directory, i.e. the directory from which the debugger was launched,
but not relative to the directory containing the built binary. This
cannot be right, as the compiler, when generating the relative paths,
knows where it's building the binary but can have no idea where the
debugger will be launched.
The correct thing is to add the directory containing the binary to the
search paths used for resolving relative locations of dwo files. That
is what this patch does.
gdb/ChangeLog:
* dwarf2/read.c (try_open_dwop_file): Add path for the binary to
the search paths used resolve relative location of .dwo file.
gdb/testsuite/ChangeLog:
* gdb.dwarf2/fission-relative-dwo.c: New file.
* gdb.dwarf2/fission-relative-dwo.exp: New file.
This commit fixes fission support in the Dwarf assembler. I added the
new test gdb.dwarf2/fission-absolute-dwo.exp which is a simple example
of using the fission support. I also rewrote the existing test
gdb.dwarf2/fission-multi-cu.exp to use the new functionality (instead
of using an x86-64 only assembler file).
To better support compiling the assembler files produced by the Dwarf
assembler I have added the new proc build_executable_and_dwo_files in
lib/dwarf.exp, this replaces build_executable_from_fission_assembler,
all the tests that used the old proc have been updated. Where the old
proc assumed a single .S source file which contained the entire test,
the new proc allows for multiple source files.
The Dwarf assembler already had some fission support, however, this
was not actually used in any tests, and when I tried using it there
were a few issues.
The biggest change is that we now generate DW_FORM_GNU_addr_index
instead of DW_FORM_addr for the low and high pc in
_handle_macro_at_range, support for the DW_FORM_GNU_addr_index is new
in this commit.
gdb/testsuite/ChangeLog:
* gdb.dwarf2/fission-absolute-dwo.c: New file.
* gdb.dwarf2/fission-absolute-dwo.exp: New file.
* gdb.dwarf2/fission-base.exp: Use build_executable_and_dwo_files
instead of build_executable_from_fission_assembler.
* gdb.dwarf2/fission-loclists-pie.exp: Likewise.
* gdb.dwarf2/fission-loclists.exp: Likewise.