Commit Graph

230 Commits

Author SHA1 Message Date
Andrew Burgess
ac16b09d7e gdb: move setbuf calls out of gdb_readline_no_editing_callback
After this commit:

  commit d08cbc5d32
  Date:   Wed Dec 22 12:57:44 2021 +0000

      gdb: unbuffer all input streams when not using readline

Issues were reported with some MS-Windows hosts, see the thread
starting here:

  https://sourceware.org/pipermail/gdb-patches/2022-March/187004.html

Filed in bugzilla as: PR mi/29002

The problem seems to be that calling setbuf on terminal file handles
is not always acceptable, see this mail for more details:

  https://sourceware.org/pipermail/gdb-patches/2022-April/187310.html

This commit does two things, first moving the setbuf calls out of
gdb_readline_no_editing_callback so that we don't end up calling
setbuf so often.

Then, for MS-Windows hosts, we don't call setbuf for terminals, this
appears to resolve the issues that have been reported.

Bug: https://sourceware.org/bugzilla/show_bug.cgi?id=29002
2022-04-24 08:39:19 -07:00
Andrew Burgess
91395d97d9 gdb: handle bracketed-paste-mode and EOF correctly
This commit replaces an earlier commit that worked around the issues
reported in bug PR gdb/28833.

The previous commit just implemented a work around in order to avoid
the worst results of the bug, but was not a complete solution.  The
full solution was considered too risky to merge close to branching GDB
12.  This improved fix has been applied after GDB 12 branched.  See
this thread for more details:

  https://sourceware.org/pipermail/gdb-patches/2022-March/186391.html

This commit replaces this earlier commit:

  commit 74a159a420d4b466cc81061c16d444568e36740c
  Date:   Fri Mar 11 14:44:03 2022 +0000

      gdb: work around prompt corruption caused by bracketed-paste-mode

Please read that commit for a full description of the bug, and why is
occurs.

In this commit I extend GDB to use readline's rl_deprep_term_function
hook to call a new function gdb_rl_deprep_term_function.  From this
new function we can now print the 'quit' message, this replaces the
old printing of 'quit' in command_line_handler.  Of course, we only
print 'quit' in gdb_rl_deprep_term_function when we are handling EOF,
but thanks to the previous commit (to readline) we now know when this
is.

There are two aspects of this commit that are worth further
discussion, the first is in the new gdb_rl_deprep_term_function
function.  In here I have used a scoped_restore_tmpl to disable the
readline global variable rl_eof_found.

The reason for this is that, in rl_deprep_terminal, readline will
print an extra '\n' character before printing the escape sequence to
leave bracketed paste mode.  You might then think that in the
gdb_rl_deprep_term_function function, we could simply print "quit" and
rely on rl_deprep_terminal to print the trailing '\n'.  However,
rl_deprep_terminal only prints the '\n' when bracketed paste mode is
on.  If the user has turned this feature off, no '\n' is printed.
This means that in gdb_rl_deprep_term_function we need to print
"quit" when bracketed paste mode is on, and "quit\n" when bracketed
paste mode is off.

We could absolutely do that, no problem, but given we know how
rl_deprep_terminal is implemented, it's easier (I think) to just
temporarily clear rl_eof_found, this prevents the '\n' being printed
from rl_deprep_terminal, and so in gdb_rl_deprep_term_function, we can
now always print "quit\n" and this works for all cases.

The second issue that should be discussed is backwards compatibility
with older versions of readline.  GDB can be built against the system
readline, which might be older than the version contained within GDB's
tree.  If this is the case then the system readline might not contain
the fixes needed to support correctly printing the 'quit' string.

To handle this situation I have retained the existing code in
command_line_handler for printing 'quit', however, this code is only
used now if the version of readline we are using doesn't not include
the required fixes.  And so, if a user is using an older version of
readline, and they have bracketed paste mode on, then they will see
the 'quit' sting printed on the line below the prompt, like this:

  (gdb)
  quit

I think this is the best we can do when someone builds GDB against an
older version of readline.

Using a newer version of readline, or the patched version of readline
that is in-tree, will now give a result like this in all cases:

  (gdb) quit

Which is what we want.

Bug: https://sourceware.org/bugzilla/show_bug.cgi?id=28833
2022-04-22 18:46:05 +01:00
Andrew Burgess
b913bd98ce gdb: improved EOF handling when using readline 7
In this commit:

  commit a6b413d24c
  Date:   Fri Mar 11 14:44:03 2022 +0000

      gdb: work around prompt corruption caused by bracketed-paste-mode

a change was made to GDB to work around bug PR gdb/28833.  The
consequence of this work around is that, when bracketed paste mode is
enabled in readline, and GDB is quit by sending EOF, then the output
will look like this:

  (gdb)
  quit

The ideal output, which is what we get when bracketed paste mode is
off, is this:

  (gdb) quit

The reason we need to make this change is explained in the original
commit referenced above.  What isn't mentioned in the above commit, is
that the change that motivated this work around was only added in
readline 8, older versions of readline don't require the change.

In later commits in this series I will add a fix to GDB's in-tree copy
of readline (this fix is back-ported from upstream readline), and then
I will change GDB so that, when using the (patched) in-tree readline,
we can have the ideal output in all cases.

However, GDB can be built against the system readline.  When this is
done, and the system readline is version 8, then we will still have to
use the work around (two line) style output.

But, if GDB is built against the system readline, and the system
readline is an older version 7 readline, then there's no reason why we
can't have the ideal output, after all, readline 7 doesn't include the
change that we need to work around.

This commit changes GDB so that, when using readline 7 we get the
ideal output in all cases.  This change is trivial (a simple check
against the readline version number) so I think this should be fine to
include.

For testing this commit, you need to configure GDB including the
'--with-system-readline' flag, and build GDB on a system that uses
readline 7, for example 'Ubuntu 18.04'.  Then run the test
'gdb.base/eof-exit.exp', you should expect everything to PASS.

Bug: https://sourceware.org/bugzilla/show_bug.cgi?id=28833
2022-04-22 18:46:04 +01:00
Tom Tromey
6cb06a8cda Unify gdb printf functions
Now that filtered and unfiltered output can be treated identically, we
can unify the printf family of functions.  This is done under the name
"gdb_printf".  Most of this patch was written by script.
2022-03-29 12:46:24 -06:00
Tom Tromey
0426ad513f Unify gdb puts functions
Now that filtered and unfiltered output can be treated identically, we
can unify the puts family of functions.  This is done under the name
"gdb_puts".  Most of this patch was written by script.
2022-03-29 12:46:24 -06:00
Tom Tromey
3cd5229387 Change the pager to a ui_file
This rewrites the output pager as a ui_file implementation.

A new header is introduced to declare the pager class.  The
implementation remains in utils.c for the time being, because there
are some static globals there that must be used by this code.  (This
could be cleaned up at some future date.)

I went through all the text output in gdb to ensure that this change
should be ok.  There are a few cases:

* Any existing call to printf_unfiltered is required to be avoid the
  pager.  This is ensured directly in the implementation.

* All remaining calls to the f*_unfiltered functions -- the ones that
  take an explicit ui_file -- either send to an unfiltered stream
  (e.g., gdb_stderr), which is obviously ok; or conditionally send to
  gdb_stdout

  I investigated all such calls by searching for:

    grep -e '\bf[a-z0-9_]*_unfiltered' *.[chyl] */*.[ch] | grep -v gdb_stdlog | grep -v gdb_stderr

  This yields a number of candidates to check.

  * The breakpoint _print_recreate family, and
    save_trace_state_variables.  These are used for "save" commands
    and so are fine.

  * Things printing to a temporary stream.  Obviously ok.

  * Disassembly selftests.

  * print_gdb_help - this is non-obvious, but ok because paging isn't
    yet enabled at this point during startup.

  * serial.c - doens't use gdb_stdout

  * The code in compile/.  This is all printing to a file.

  * DWARF DIE dumping - doesn't reference gdb_stdout.

* Calls to the _filtered form -- these are all clearly ok, because if
  they are using gdb_stdout, then filtering will still apply; and if
  not, then filtering never applied and still will not.

Therefore, at this point, there is no longer any distinction between
all the other _filtered and _unfiltered calls, and they can be
unified.

In this patch, take special note of the vfprintf_maybe_filtered and
ui_file::vprintf change.  This is one instance of the above idea,
erasing the distinction between filtered and unfiltered -- in this
part of the change, the "unfiltered_output" flag is never passe to
cli_ui_out.  Subsequent patches will go much further in this
direction.

Also note the can_emit_style_escape changes in ui-file.c.  Checking
against gdb_stdout or gdb_stderr was always a bit of a hack; and now
it is no longer needed, because this is decision can be more fully
delegated to the particular ui_file implementation.

ui_file::can_page is removed, because this patch removed the only call
to it.

I think this is the main part of fixing PR cli/7234.

Bug: https://sourceware.org/bugzilla/show_bug.cgi?id=7234
2022-03-29 12:46:24 -06:00
Tom Tromey
dcf1a2c8d2 Only have one API for unfiltered output
At the end of this series, the use of unfiltered output will be very
restricted -- only places that definitely need it will use it.  To
this end, I thought it would be good to reduce the number of
_unfiltered APIs that are exposed.  This patch changes gdb so that
only printf_unfiltered exists.  (After this patch, the f* variants
still exist as well, but those will be removed later.)
2022-03-29 12:46:24 -06:00
Tom Tromey
52a4a5885a Switch gdb_stdlog to use timestamped_file
Currently, timestamps for logging are done by looking for the use of
gdb_stdlog in vfprintf_unfiltered.  This seems potentially buggy, in
that during logging or other redirects (like execute_fn_to_ui_file) we
might have gdb_stdout==gdb_stdlog and so, conceivably, wind up with
timestamps in a log when they were not desired.

It seems better, instead, for timestamps to be a property of the
ui_file itself.

This patch changes gdb to use the new timestamped_file for gdb_stdlog
where appropriate, and removes the special case from
vfprintf_unfiltered.

Note that this may somewhat change the output in some cases -- in
particular, when going through execute_fn_to_ui_file (or the _string
variant), timestamps won't be emitted.  This could be fixed in those
functions, but it wasn't clear to me whether this is really desirable.

Note also that this changes the TUI to send gdb_stdlog to gdb_stderr.
I imagine that the previous use of gdb_stdout here was inadvertent.
(And in any case it probably doesn't matter.)
2022-03-28 14:13:28 -06:00
Andrew Burgess
a6b413d24c gdb: work around prompt corruption caused by bracketed-paste-mode
In this commit:

  commit b4f26d541a
  Date:   Tue Mar 2 13:42:37 2021 -0700

      Import GNU Readline 8.1

We imported readline 8.1 into GDB.  As a consequence bug PR cli/28833
was reported.  This bug spotted that, when the user terminated GDB by
sending EOF (usually bound to Ctrl+d), the last prompt would become
corrupted.  Here's what happens, the user is sat at a prompt like
this:

  (gdb)

And then the user sends EOF (Ctrl+d), we now see this:

  quit)
  ... gdb terminates, and we return to the shell ...

Notice the 'quit' was printed over the prompt.

This problem is a result of readline 8.1 enabling bracketed paste mode
by default.  This problem is present in readline 8.0 too, but in that
version of readline bracketed paste mode is off by default, so a user
will not see the bug unless they specifically enable the feature.

Bracketed paste mode is available in readline 7.0 too, but the bug
is not present in this version of readline, see below for why.

What causes this problem is how readline disables bracketed paste
mode.  Bracketed paste mode is a terminal feature that is enabled and
disabled by readline emitting a specific escape sequence.  The problem
for GDB is that the escape sequence to disable bracketed paste mode
includes a '\r' character at the end, see this thread for more
details:

  https://lists.gnu.org/archive/html/bug-bash/2018-01/msg00097.html

The change to add the '\r' character to the escape sequence used to
disable bracketed paste mode was introduced between readline 7.0 and
readline 8.0, this is why the bug would not occur when using older
versions of readline (note: I don't know if its even possible to build
GDB using readline 7.0.  That really isn't important, I'm just
documenting the history of this issue).

So, the escape sequence to disable bracketed paste mode is emitted
from the readline function rl_deprep_terminal, this is called after
the user has entered a complete command and pressed return, or, if the
user sends EOF.

However, these two cases are slightly different.  In the first case,
when the user has entered a command and pressed return, the cursor
will have moved to the next, empty, line, before readline emits the
escape sequence to leave bracketed paste mode.  The final '\r'
character moves the cursor back to the beginning of this empty line,
which is harmless.

For the EOF case though, this is not what happens.  Instead, the
escape sequence to leave bracketed paste mode is emitted on the same
line as the prompt.  The final '\r' moves the cursor back to the start
of the prompt line.  This leaves us ready to override the prompt.

It is worth noting, that this is not the intended behaviour of
readline, in rl_deprep_terminal, readline should emit a '\n' character
when EOF is seen.  However, due to a bug in readline this does not
happen (the _rl_eof_found flag is never set).  This is the first
readline bug that effects GDB.

GDB prints the 'quit' message from command_line_handler (in
event-top.c), this function is called (indirectly) from readline to
process the complete command line, but also in the EOF case (in which
case the command line is set to nullptr).  As this is part of the
callback to process a complete command, this is called after readline
has disabled bracketed paste mode (by calling rl_deprep_terminal).

And so, when bracketed paste mode is in use, rl_deprep_terminal leaves
the cursor at the start of the prompt line (in the EOF case), and
command_line_handler then prints 'quit', which overwrites the prompt.

The solution to this problem is to print the 'quit' message earlier,
before rl_deprep_terminal is called.  This is easy to do by using the
rl_deprep_term_function hook.  It is this hook that usually calls
rl_deprep_terminal, however, if we replace this with a new function,
we can print the 'quit' string, and then call rl_deprep_terminal
ourselves.  This allows the 'quit' to be printed before
rl_deprep_terminal is called.

The problem here is that there is no way in rl_deprep_terminal to know
if readline is processing EOF or not, and as a result, we don't know
when we should print 'quit'.  This is the second readline bug that
effects GDB.

Both of these readline issues are discussed in this thread:

  https://lists.gnu.org/archive/html/bug-readline/2022-02/msg00021.html

The result of that thread was that readline was patched to address
both of these issues.

Now it should be easy to backport the readline fix to GDB's in tree
copy of readline, and then change GDB to make use of these fixes to
correctly print the 'quit' string.

However, we are just about to branch GDB 12, and there is concern from
some that changing readline this close to a new release is a risky
idea, see this thread:

  https://sourceware.org/pipermail/gdb-patches/2022-March/186391.html

So, this commit doesn't change readline at all.  Instead, this commit
is the smallest possible GDB change in order to avoid the prompt
corruption.

In this commit I change GDB to print the 'quit' string on the line
after the prompt, but only when bracketed paste mode is on.  This
avoids the overwriting issue, the user sees this:

  (gdb)
  quit
  ... gdb terminates, and returns to the shell ...

This isn't ideal, but is better than the existing behaviour.  After
GDB 12 has branched, we can backport the readline fix, and apply a
real fix to GDB.

Bug: https://sourceware.org/bugzilla/show_bug.cgi?id=28833
2022-03-16 18:01:09 +00:00
Andrew Burgess
868d1834ce gdb: convert callback_handler_installed from int to bool
Simple int to bool conversion on callback_handler_installed in
event-top.c.  There should be no user visible changes after this
commit.
2022-02-16 11:52:49 +00:00
Andrew Burgess
d08cbc5d32 gdb: unbuffer all input streams when not using readline
This commit should fix PR gdb/28711.  What's actually going on is
pretty involved, and there's still a bit of the story that I don't
understand completely, however, from my observed results, I think that
the change I propose making here (or something very similar) is going
to be needed.

The original bug report involves using eclipse to drive gdb using mi
commands.  A separate tty is spun off in which to send gdb the mi
commands, this tty is created using the new-ui command.

The behaviour observed is that, given a particular set of mi commands
being sent to gdb, we sometimes see an ESPIPE error from a lseek
call, which ultimately results in gdb terminating.

The problems all originate from gdb_readline_no_editing_callback in
gdb/event-top.c, where we can (sometimes) perform calls to fgetc, and
allow glibc to perform buffering on the FILE object being used.

I say sometime, because, gdb_readline_no_editing_callback already
includes a call to disable the glibc buffering, but this is only done
if the input stream is not a tty.  In our case the input stream is a
tty, so the buffering is left in place.

The first step to understanding why this problem occurs is to
understand that eclipse sends multiple commands to gdb very quickly
without waiting for and answer to each command, eclipse plans to
collect all of the command results after sending all the commands to
gdb.  In fact, eclipse sends the commands to gdb that they appear to
arrive in the gdb process as a single block of data.  When reproducing
this issue within the testsuite I find it necessary to send multiple
commands using a single write call.

The next bit of the story gets a little involved, and this is where my
understanding is not complete.  I can describe the behaviour that I
observe, and (for me at least) I'm happy that what I'm seeing, if a
little strange, is consistent.  In order to fully understand what's
going on I think I would likely need to dive into kernel code, which
currently seems unnecessary given that I'm happy with the solution I'm
proposing.

The following description all relates to input from a tty in which I'm
not using readline.  I see the same problems either when using a
new-ui tty, or with gdb's standard, non-readline, mi tty.

Here's what I observe happening when I send multiple commands to gdb
using a single write, if I send gdb this:

  command_1\ncommand_2\ncommand_3

then gdb's event loop will wake up (from its select) as it sees there
is input available.  We call into gdb_readline_no_editing_callback,
where we call fgetc, glibc will do a single big read, and get back
just:

  command_1\n

that is, despite there being multiple lines of input available, I
consistently get just a single line.  From glibc a single character is
returned from the fgetc call, and within gdb we accumulate characters,
one at a time, into our own buffer.  Eventually gdb sees the '\n'
character, and dispatches the whole 'command_1' into gdb's command
handler, which processes the command and prints the result.  We then
return to gdb_readline_no_editing_callback, which in turn returns to
gdb's event loop where we re-enter the select.

Inside the select we immediately see that there is more input waiting
on the input stream, drop out of the select, and call back into
gdb_readline_no_editing_callback.  In this function we again call
fgetc where glibc performs another big read.  This time glibc gets:

  command_2\n

that is, we once again get just a single line, despite there being a
third line available.  Just like the first command we copy the whole
string, character by character into gdb's buffer, then handle the
command.  After handling the command we go to the event loop, enter,
and then exit the select, and call back to the function
gdb_readline_no_editing_callback.

In gdb_readline_no_editing_callback we again call fgetc, this time
glibc gets the string:

  command_3\n

like before, we copy this to gdb's buffer and handle the command, then
we return to the event loop.  At this point the select blocks while we
wait for more input to arrive.

The important bit of this is that someone, somewhere is, it appears,
taking care to split the incoming write into lines.

My next experiment is to try something like:

  this_is_a_very_long_command\nshort_command\n

However, I actually make 'this_is_a_very_long_command' very long, as
in many hundreds of characters long.  One way to do this is:

  echo xxxxxx.....xxxxx

and just adding more and more 'x' characters as needed.  What I'm
aiming for is to have the first command be longer than glibc's
internal read buffer, which, on my machine, is 1024 characters.

However, for this discussion, lets imagine that glibc's buffer is just
8 characters (we can create just this situation by adding a suitable
setbuf call into gdb_readline_no_editing_callback).

Now, if I send gdb this data:

  abcdefghij\nkl\n

The first read from glibc will get 'abcdefgh', that is a full 8
character buffer.  Once gdb has copied these to its buffer we call
fgetc again, and now glibc will get 'ij\n', that is, just like before,
multiple lines are split at the '\n' character.  The full command,
which is now in gdb's buffer can be handled 'abcdefghij', after which
we go (via the event loop) back to gdb_readline_no_editing_callback.
Now we call fgetc, and glibc will get 'kl\n', which is then handled in
the normal way.

So far, so good.  However, there is, apparently, one edge case where
the above rules don't apply.

If the '\n' character is the first character read from the kernel,
then the incoming lines are not split up.  So, given glibc's 8
character buffer, if I send gdb this:

  abcdefgh\nkl\n

that is the first command is 8 characters plus a newline, then, on the
first read (from within glibc) we get 'abcdefgh' in a single buffer.
As there's no newline gdb calls fgetc again, and glibc does another
large read, now we get:

  \nkl\n

which doesn't follow the above pattern - the lines are not split into
separate buffers!

So, gdb reads the first character from glibc using fgetc, this is the
newline.  Now gdb has a complete command, and so the command is
handled.  We then return to the event loop and enter the select.

The problem is that, as far as the kernel is concerned, there is no
more input pending, it's all been read into glibc's buffer, and so the
select doesn't return.  The second command is basically stuck in
glibc's buffer.

If I send another command to gdb, or even just send an empty
command (a lone newline) then the select returns, we call into
gdb_readline_no_editing_callback, and now gdb sees the second
command.

OK, so the above is interesting, but it doesn't explain the ESPIPE
error.

Well, that's a slightly different, but related issue.  The ESPIPE
case will _only_ show up when using new-ui to create the separate tty
for mi commands, and is a consequence of this commit:

  commit afe09f0b63
  Date:   Thu Jul 18 17:20:04 2019 +0100

      Fix for using named pipes on Windows

Prior to this commit, the new-ui command would open the tty three
times, once each for stdin, stderr, and stdout.  After this commit we
open the tty just once and reuse the FILE object for all three roles.

Consider the problem case, where glibc has (unexpectedly) read the
second command into its internal buffer.  When we handle the first
command we usually end up having to write something to the mi output
stream.

After the above commit the same FILE object represents both the input
and output streams, so, when gdb tries to write to the FILE object,
glibc spots that there is input pending within the input buffer, and
so assumes that we have read ahead of where we should be in the input
file.  To correct for this glibc tries to do an lseek call to
reposition the file offset of the output stream prior to writing to
it.  However, as the output stream is a tty, and seeking is not
supported on a tty, this lseek call fails, this results in the ESPIPE,
which ultimately causes gdb to terminate.

So, now we understand why the ESPIPE triggers (which was what caused
the gdb crash in the original bug report), and we also understand that
sometime gdb will not handle the second command in a timely
fashion (if the first command is just the wrong length). So, what to
do about all this?

We could revert the commit mentioned above (and implement its
functionality another way).  This would certainly resolve the ESPIPE
issue, the buffered input would now only be on the input stream, the
output stream would have no buffered input, and so glibc would never
try to lseek, and so we'd never get the ESPIPE error.

However, this only solves one of the two problems.  We would still
suffer from the problem where, if the first command is just the wrong
length, the second command will not (immediately) get handled.

The only solution I can see to this problem is to unbuffer the input
stream.  If glibc is not buffering the input, but instead, we read
incoming data character by character from the kernel, then everything
will be fine.  As soon as we see the newline at the end of the first
command we will handle the first command.  As glibc will have no
buffered input it will not be tempted to lseek, so no ESPIPE error.
When we go have to the event loop there will be more data pending in
the kernel, so the select will immediately return, and the second
command will be processed.

I'm tempted to suggest that we should move the unbuffering of the
input stream out of gdb_readline_no_editing_callback and do it
somewhere earlier, more like when we create the input streams.
However, I've not done that in this commit for a couple of reasons:

  1. By keeping the unbuffering in gdb_readline_no_editing_callback
  I'm making the smallest possible change that fixes the bug.  Moving
  the unbuffering somewhere better can be done as a refactor later, if
  that 's felt to be important,

  2. I don't think making repeated calls to unbuffer the input will
  have that much performance impact.  We only make the unbuffer call
  once per call to gdb_readline_no_editing_callback, and, if the input
  stream is already unbuffered we'll return pretty quickly, so I don't
  see this as being massively costly,

  3. Tom is currently doing lots of gdb stream management changes and
  I want to minimise the chances we'll conflict.

So, this commit just changes gdb_readline_no_editing_callback to
always unbuffer the input stream.

The test for this issue sends two commands in a loop, with the first
command growing bigger each time around the loop.  I actually make the
first command bigger by just adding whitespace to the front, as gdb
still has to read the complete command (including whitespace) via
glibc, so this is enough to trigger the bug.

The original bug was reported when using a virtual machine, and in
this situation we see this in the strace output:

  read(9, "70-var-info-path-expression var1.aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa", 1024) = 64
  read(9, "\n71-var-info-path-expression var1.aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa\n", 1024) = 67

I'm not completely sure what's going on here, but it appears that the
kernel on the virtual machine is delivering the input to glibc slower
than I see on my real hardware; glibc asks for 1024 bytes, but only
gets 64 bytes the first time.  In the second read we see the problem
case, the first character is the newline, but then the entire second
command is included.

If I run this exact example on my real hardware then the first command
would not be truncated at 64 bytes, instead, I'd expect to see the
newline included in the first read, with the second command split into
a second read.

So, for testing, I check cases where the first command is just a few
characters (starting at 8 character), all the way up to 2048
characters.  Hopefully, this should mean we hit the problem case for
most machine setups.

The only last question relates to commit afe09f0b63 that I
mentioned earlier.  That commit was intended to provide support for
Microsoft named pipes:

  https://docs.microsoft.com/en-us/windows/win32/ipc/named-pipes

I know next to nothing about this topic beyond a brief scan of the
above link, but I think these windows named pipe are closer in
behaviour to unix sockets than to unix named fifos.

I am a little nervous that, after the above commit, we now use the
same FILE for in, err, and out streams.  In contrast, in a vanilla C
program, I would expect different FILE objects for each stream.

Still, I'm reluctant to revert the above commit (and provide the same
functionality a different way) without a specific bug to point at,
and, now that the streams are unbuffered, I expect a lot of the read
and write calls are going straight to the kernel with minimal glibc
involvement, so maybe it doesn't really matter.  Anyway, I haven't
touched the above patch, but it is something to keep in mind when
working in this area.

Bug: https://sourceware.org/bugzilla/show_bug.cgi?id=28711
2022-02-07 10:24:27 +00:00
Tom Tromey
d4396e0e97 Reduce explicit use of gdb_stdout
In an earlier version of the pager rewrite series, it was important to
audit unfiltered output calls to see which were truly necessary.

This is no longer necessary, but it still seems like a decent cleanup
to change calls to avoid explicitly passing gdb_stdout.  That is,
rather than using something like fprintf_unfiltered with gdb_stdout,
the code ought to use plain printf_unfiltered instead.

This patch makes this change.  I went ahead and converted all the
_filtered calls I could find, as well, for the same clarity.
2022-01-25 15:22:49 -07:00
Tom Tromey
1475b18b77 Send some error output to gdb_stderr
This changes some code to send some error messages to gdb_stderr
rather than gdb_stdout.
2022-01-25 15:22:49 -07:00
Joel Brobecker
4a94e36819 Automatic Copyright Year update after running gdb/copyright.py
This commit brings all the changes made by running gdb/copyright.py
as per GDB's Start of New Year Procedure.

For the avoidance of doubt, all changes in this commits were
performed by the script.
2022-01-01 19:13:23 +04:00
Simon Marchi
e0700ba44c gdb: make string-like set show commands use std::string variable
String-like settings (var_string, var_filename, var_optional_filename,
var_string_noescape) currently take a pointer to a `char *` storage
variable (typically global) that holds the setting's value.  I'd like to
"mordernize" this by changing them to use an std::string for storage.

An obvious reason is that string operations on std::string are often
easier to write than with C strings.  And they avoid having to do any
manual memory management.

Another interesting reason is that, with `char *`, nullptr and an empty
string often both have the same meaning of "no value".  String settings
are initially nullptr (unless initialized otherwise).  But when doing
"set foo" (where `foo` is a string setting), the setting now points to
an empty string.  For example, solib_search_path is nullptr at startup,
but points to an empty string after doing "set solib-search-path".  This
leads to some code that needs to check for both to check for "no value".
Or some code that converts back and forth between NULL and "" when
getting or setting the value.  I find this very error-prone, because it
is very easy to forget one or the other.  With std::string, we at least
know that the variable is not "NULL".  There is only one way of
representing an empty string setting, that is with an empty string.

I was wondering whether the distinction between NULL and "" would be
important for some setting, but it doesn't seem so.  If that ever
happens, it would be more C++-y and self-descriptive to use
optional<string> anyway.

Actually, there's one spot where this distinction mattered, it's in
init_history, for the test gdb.base/gdbinit-history.exp.  init_history
sets the history filename to the default ".gdb_history" if it sees that
the setting was never set - if history_filename is nullptr.  If
history_filename is an empty string, it means the setting was explicitly
cleared, so it leaves it as-is.  With the change to std::string, this
distinction doesn't exist anymore.  This can be fixed by moving the code
that chooses a good default value for history_filename to
_initialize_top.  This is ran before -ex commands are processed, so an
-ex command can then clear that value if needed (what
gdb.base/gdbinit-history.exp tests).

Another small improvement, in my opinion is that we can now easily
give string parameters initial values, by simply initializing the global
variables, instead of xstrdup-ing it in the _initialize function.

In Python and Guile, when registering a string-like parameter, we
allocate (with new) an std::string that is owned by the param_smob (in
Guile) and the parmpy_object (in Python) objects.

This patch started by changing all relevant add_setshow_* commands to
take an `std::string *` instead of a `char **` and fixing everything
that failed to build.  That includes of course all string setting
variable and their uses.

string_option_def now uses an std::string also, because there's a
connection between options and settings (see
add_setshow_cmds_for_options).

The add_path function in source.c is really complex and twisted, I'd
rather not try to change it to work on an std::string right now.
Instead, I added an overload that copies the std:string to a `char *`
and back.  This means more copying, but this is not used in a hot path
at all, so I think it is acceptable.

Change-Id: I92c50a1bdd8307141cdbacb388248e4e4fc08c93
Co-authored-by: Lancelot SIX <lsix@lancelotsix.com>
2021-10-03 17:53:16 +01:00
Andrew Burgess
abbbd4a3e0 gdb: use libbacktrace to create a better backtrace for fatal signals
GDB recently gained the ability to print a backtrace when a fatal
signal is encountered.  This backtrace is produced using the backtrace
and backtrace_symbols_fd API available in glibc.

However, in order for this API to actually map addresses to symbol
names it is required that the application (GDB) be compiled with
-rdynamic, which GDB is not by default.

As a result, the backtrace produced often looks like this:

  Fatal signal: Bus error
  ----- Backtrace -----
  ./gdb/gdb[0x80ec00]
  ./gdb/gdb[0x80ed56]
  /lib64/libc.so.6(+0x3c6b0)[0x7fc2ce1936b0]
  /lib64/libc.so.6(__poll+0x4f)[0x7fc2ce24da5f]
  ./gdb/gdb[0x15495ba]
  ./gdb/gdb[0x15489b8]
  ./gdb/gdb[0x9b794d]
  ./gdb/gdb[0x9b7a6d]
  ./gdb/gdb[0x9b943b]
  ./gdb/gdb[0x9b94a1]
  ./gdb/gdb[0x4175dd]
  /lib64/libc.so.6(__libc_start_main+0xf3)[0x7fc2ce17e1a3]
  ./gdb/gdb[0x4174de]
  ---------------------

This is OK if you have access to the exact same build of GDB, you can
manually map the addresses back to symbols, however, it is next to
useless if all you have is a backtrace copied into a bug report.

GCC uses libbacktrace for printing a backtrace when it encounters an
error.  In recent commits I added this library into the binutils-gdb
repository, and in this commit I allow this library to be used by
GDB.  Now (when GDB is compiled with debug information) the backtrace
looks like this:

  ----- Backtrace -----
  0x80ee08 gdb_internal_backtrace
  	../../src/gdb/event-top.c:989
  0x80ef0b handle_fatal_signal
  	../../src/gdb/event-top.c:1036
  0x7f24539dd6af ???
  0x7f2453a97a5f ???
  0x154976f gdb_wait_for_event
  	../../src/gdbsupport/event-loop.cc:613
  0x1548b6d _Z16gdb_do_one_eventv
  	../../src/gdbsupport/event-loop.cc:237
  0x9b7b02 start_event_loop
  	../../src/gdb/main.c:421
  0x9b7c22 captured_command_loop
  	../../src/gdb/main.c:481
  0x9b95f0 captured_main
  	../../src/gdb/main.c:1353
  0x9b9656 _Z8gdb_mainP18captured_main_args
  	../../src/gdb/main.c:1368
  0x4175ec main
  	../../src/gdb/gdb.c:32
  ---------------------

Which seems much more useful.

Use of libbacktrace is optional.  If GDB is configured with
--disable-libbacktrace then the libbacktrace directory will not be
built, and GDB will not try to use this library.  In this case GDB
would try to use the old backtrace and backtrace_symbols_fd API.

All of the functions related to writing the backtrace of GDB itself
have been moved into the new files gdb/by-utils.{c,h}.
2021-09-28 12:21:22 +01:00
Andrew Burgess
d03277b797 gdb: register SIGBUS, SIGFPE, and SIGABRT handlers
Register handlers for SIGBUS, SIGFPE, and SIGABRT.  All of these
signals are setup as fatal signals that will cause GDB to terminate.
However, by passing these signals through the handle_fatal_signal
function, a user can arrange to see a backtrace when GDB
terminates (see maint set backtrace-on-fatal-signal).

In normal use of GDB there should be no user visible changes after
this commit.  Only if GDB terminates with one of the above signals
will GDB change slightly, potentially printing a backtrace before
aborting.

I've added new tests for SIGFPE, SIGBUS, and SIGABRT.
2021-08-11 12:35:14 +01:00
Andrew Burgess
6aa4f97c2b gdb: print backtrace on fatal SIGSEGV
This commit adds a new maintenance feature, the ability to print
a (limited) backtrace if GDB dies due to a fatal signal.

The backtrace is produced using the backtrace and backtrace_symbols_fd
functions which are declared in the execinfo.h header, and both of
which are async signal safe.  A configure check has been added to
check for these features, if they are not available then the new code
is not compiled into GDB and the backtrace will not be printed.

The motivation for this new feature is to aid in debugging GDB in
situations where GDB has crashed at a users site, but the user is
reluctant to share core files, possibly due to concerns about what
might be in the memory image within the core file.  Such a user might
be happy to share a simple backtrace that was written to stderr.

The production of the backtrace is on by default, but can switched off
using the new commands:

  maintenance set backtrace-on-fatal-signal on|off
  maintenance show backtrace-on-fatal-signal

Right now, I have hooked this feature in to GDB's existing handling of
SIGSEGV only, but this will be extended to more signals in a later
commit.

One additional change I have made in this commit is that, when we
decide GDB should terminate due to the fatal signal, we now
raise the same fatal signal rather than raising SIGABRT.

Currently, this is only effecting our handling of SIGSEGV.  So,
previously, if GDB hit a SEGV then we would terminate GDB with a
SIGABRT.  After this commit we will terminate GDB with a SIGSEGV.

This feels like an improvement to me, we should still get a core dump,
but in many shells, the user will see a more specific message once GDB
exits, in bash for example "Segmentation fault" rather than "Aborted".

Finally then, here is an example of the output a user would see if GDB
should hit an internal SIGSEGV:

  Fatal signal: Segmentation fault
  ----- Backtrace -----
  ./gdb/gdb[0x8078e6]
  ./gdb/gdb[0x807b20]
  /lib64/libpthread.so.0(+0x14b20)[0x7f6648c92b20]
  /lib64/libc.so.6(__poll+0x4f)[0x7f66484d3a5f]
  ./gdb/gdb[0x1540f4c]
  ./gdb/gdb[0x154034a]
  ./gdb/gdb[0x9b002d]
  ./gdb/gdb[0x9b014d]
  ./gdb/gdb[0x9b1aa6]
  ./gdb/gdb[0x9b1b0c]
  ./gdb/gdb[0x41756d]
  /lib64/libc.so.6(__libc_start_main+0xf3)[0x7f66484041a3]
  ./gdb/gdb[0x41746e]
  ---------------------
  A fatal error internal to GDB has been detected, further
  debugging is not possible.  GDB will now terminate.

  This is a bug, please report it.  For instructions, see:
  <https://www.gnu.org/software/gdb/bugs/>.

  Segmentation fault (core dumped)

It is disappointing that backtrace_symbols_fd does not actually map
the addresses back to symbols, this appears, in part, to be due to GDB
not being built with -rdynamic as the manual page for
backtrace_symbols_fd suggests, however, even when I do add -rdynamic
to the build of GDB I only see symbols for some addresses.

We could potentially look at alternative libraries to provide the
backtrace (e.g. libunwind) however, the solution presented here, which
is available as part of glibc is probably a good baseline from which
we might improve things in future.
2021-08-11 12:35:14 +01:00
Andrew Burgess
270135645b gdb: rename async_init_signals to gdb_init_signals
The async_init_signals has, for some time, dealt with async and sync
signals, so removing the async prefix makes sense I think.

Additionally, as pointed out by Pedro:

  .....

The comments relating to SIGTRAP and SIGQUIT within this function are
out of date.

The comments for SIGTRAP talk about the signal disposition (SIG_IGN)
being passed to the inferior, meaning the signal disposition being
inherited by GDB's fork children.  However, we now call
restore_original_signals_state prior to forking, so the comment on
SIGTRAP is redundant.

The comments for SIGQUIT are similarly out of date, further, the
comment on SIGQUIT talks about problems with BSD4.3 and vfork,
however, we have not supported BSD4.3 for several years now.

Given the above, it seems that changing the disposition of SIGTRAP is
no longer needed, so I've deleted the signal() call for SIGTRAP.

Finally, the header comment on the function now called
gdb_init_signals was getting quite out of date, so I've updated it
to (hopefully) better reflect reality.

There should be no user visible change after this commit.
2021-08-11 12:35:14 +01:00
Andrew Burgess
bbefac7df9 gdb: register signal handler after setting up event token
This commit fixes the smallest of small possible bug related to signal
handling.  If we look in async_init_signals we see code like this:

  signal (SIGQUIT, handle_sigquit);
  sigquit_token =
    create_async_signal_handler (async_do_nothing, NULL, "sigquit");

Then if we look in handle_sigquit we see code like this:

  mark_async_signal_handler (sigquit_token);
  signal (sig, handle_sigquit);

Finally, in mark_async_signal_handler we have:

  async_handler_ptr->ready = 1;

Where async_handler_ptr will be sigquit_token.

What this means is that if a SIGQUIT arrive in async_init_signals
after handle_sigquit has been registered, but before sigquit_token has
been initialised, then GDB will most likely crash.

The chance of this happening is tiny, but fixing this is trivial, just
ensure we call create_async_signal_handler before calling signal, so
lets do that.

There are no tests for this.  Trying to land a signal in the right
spot is pretty hit and miss.  I did try changing the current HEAD GDB
like this:

  signal (SIGQUIT, handle_sigquit);
  raise (SIGQUIT);
  sigquit_token =
    create_async_signal_handler (async_do_nothing, NULL, "sigquit");

And confirmed that this did result in a crash, after my change I tried
this:

  sigquit_token =
    create_async_signal_handler (async_do_nothing, NULL, "sigquit");
  signal (SIGQUIT, handle_sigquit);
  raise (SIGQUIT);

And GDB now starts up just fine.

gdb/ChangeLog:

	* event-top.c (async_init_signals): For each signal, call signal
	only after calling create_async_signal_handler.
2021-08-11 12:35:14 +01:00
Andrew Burgess
fb550a919a gdb: terminate upon receipt of SIGFPE
GDB's SIGFPE handling is broken, this is PR gdb/16505 and
PR gdb/17891.

We currently try to use an async event token to process SIGFPE.  So,
when a SIGFPE arrives the signal handler calls
mark_async_signal_handler then returns, effectively ignoring the
signal (for now).

The intention is that later the event loop will see that the async
token associated with SIGFPE has been marked and will call the async
handler, which just throws an error.

The problem is that SIGFPE is not safe to ignore.  Ignoring a
SIGFPE (unless it is generated artificially, e.g. by raise()) is
undefined behaviour, after ignoring the signal on many targets we
return to the instruction that caused the SIGFPE to be raised, which
immediately causes another SIGFPE to be raised, we get stuck in an
infinite loop.  The behaviour is certainly true on x86-64.

To view this behaviour I simply added some dummy code to GDB that
performed an integer divide by zero, compiled this on x86-64
GNU/Linux, ran GDB and saw GDB hang.

In this commit, I propose to remove all special handling of SIGFPE and
instead just let GDB make use of the default SIGFPE action, that is,
to terminate the process.

The only user visible change here should be:

  - If a user sends a SIGFPE to GDB using something like kill,
    previously GDB would just print an error and remain alive, now GDB
    will terminate.  This is inline with what happens if the user
    sends GDB a SIGSEGV from kill though, so I don't see this as an
    issue.

  - If a bug in GDB causes a real SIGFPE, previously the users GDB
    session would hang.  Now the GDB session will terminate.  Again,
    this is inline with what happens if GDB receives a SIGSEGV due to
    an internal bug.

In bug gdb/16505 there is mention that it would be nice if GDB did
more than just terminate when receiving a fatal signal.  I haven't
done that in this commit, but later commits will move in that
direction.

Bug: https://sourceware.org/bugzilla/show_bug.cgi?id=16505
Bug: https://sourceware.org/bugzilla/show_bug.cgi?id=17891
2021-08-11 12:35:14 +01:00
Tankut Baris Aktemur
4efeb0d3e8 gdb/continuations: turn continuation functions into inferior methods
Turn continuations-related functions into methods of the inferior
class.  This is a refactoring.

gdb/ChangeLog:
2021-04-22  Tankut Baris Aktemur  <tankut.baris.aktemur@intel.com>

	* Makefile.in (COMMON_SFILES): Remove continuations.c.
	* inferior.c (inferior::add_continuation): New method, adapted
	from 'add_inferior_continuation'.
	(inferior::do_all_continuations): New method, adapted from
	'do_all_inferior_continuations'.
	(inferior::~inferior): Clear the list of continuations directly.
	* inferior.h (class inferior) <continuations>: Rename into...
	<m_continuations>: ...this and make private.
	* continuations.c: Remove.
	* continuations.h: Remove.
	* event-top.c: Don't include "continuations.h".

	Update the users below.
	* inf-loop.c (inferior_event_handler)
	* infcmd.c (attach_command)
	(notice_new_inferior): Update.
2021-04-22 17:22:39 +02:00
Christian Biesinger
fece451c2a Use RAII to set the per-thread SIGSEGV handler
This avoids using a thread-local extern variable, which causes link errors
on some platforms, notably Cygwin.  But I think this is a better pattern
even outside of working around linker bugs because it encapsulates direct
access to the variable inside the class, instead of having a global extern
variable.

The cygwin link error is:
cp-support.o: in function `gdb_demangle(char const*, int)':
/home/Christian/binutils-gdb/obj/gdb/../../gdb/cp-support.c:1619:(.text+0x6472): relocation truncated to fit: R_X86_64_PC32 against undefined symbol `TLS init function for thread_local_segv_handler'
/home/Christian/binutils-gdb/obj/gdb/../../gdb/cp-support.c:1619:(.text+0x648b): relocation truncated to fit: R_X86_64_PC32 against undefined symbol `TLS init function for thread_local_segv_handler'
collect2: error: ld returned 1 exit status

2021-03-12  Christian Biesinger  <cbiesinger@google.com>

	PR threads/27239
	* cp-support.c: Use scoped_segv_handler_restore.
	* event-top.c (thread_local_segv_handler): Made static.
	(scoped_segv_handler_restore::scoped_segv_handler_restore):
	New function.
	(scoped_segv_handler_restore::~scoped_segv_handler_restore): New
	function.
	* event-top.h (class scoped_segv_handler_restore): New class.
	(thread_local_segv_handler): Removed.
2021-03-12 11:21:42 -06:00
Joel Brobecker
3666a04883 Update copyright year range in all GDB files
This commits the result of running gdb/copyright.py as per our Start
of New Year procedure...

gdb/ChangeLog

        Update copyright year range in copyright header of all GDB files.
2021-01-01 12:12:21 +04:00
Simon Marchi
dda83cd783 gdb, gdbserver, gdbsupport: fix leading space vs tabs issues
Many spots incorrectly use only spaces for indentation (for example,
there are a lot of spots in ada-lang.c).  I've always found it awkward
when I needed to edit one of these spots: do I keep the original wrong
indentation, or do I fix it?  What if the lines around it are also
wrong, do I fix them too?  I probably don't want to fix them in the same
patch, to avoid adding noise to my patch.

So I propose to fix as much as possible once and for all (hopefully).

One typical counter argument for this is that it makes code archeology
more difficult, because git-blame will show this commit as the last
change for these lines.  My counter counter argument is: when
git-blaming, you often need to do "blame the file at the parent commit"
anyway, to go past some other refactor that touched the line you are
interested in, but is not the change you are looking for.  So you
already need a somewhat efficient way to do this.

Using some interactive tool, rather than plain git-blame, makes this
trivial.  For example, I use "tig blame <file>", where going back past
the commit that changed the currently selected line is one keystroke.
It looks like Magit in Emacs does it too (though I've never used it).
Web viewers of Github and Gitlab do it too.  My point is that it won't
really make archeology more difficult.

The other typical counter argument is that it will cause conflicts with
existing patches.  That's true... but it's a one time cost, and those
are not conflicts that are difficult to resolve.  I have also tried "git
rebase --ignore-whitespace", it seems to work well.  Although that will
re-introduce the faulty indentation, so one needs to take care of fixing
the indentation in the patch after that (which is easy).

gdb/ChangeLog:

	* aarch64-linux-tdep.c: Fix indentation.
	* aarch64-ravenscar-thread.c: Fix indentation.
	* aarch64-tdep.c: Fix indentation.
	* aarch64-tdep.h: Fix indentation.
	* ada-lang.c: Fix indentation.
	* ada-lang.h: Fix indentation.
	* ada-tasks.c: Fix indentation.
	* ada-typeprint.c: Fix indentation.
	* ada-valprint.c: Fix indentation.
	* ada-varobj.c: Fix indentation.
	* addrmap.c: Fix indentation.
	* addrmap.h: Fix indentation.
	* agent.c: Fix indentation.
	* aix-thread.c: Fix indentation.
	* alpha-bsd-nat.c: Fix indentation.
	* alpha-linux-tdep.c: Fix indentation.
	* alpha-mdebug-tdep.c: Fix indentation.
	* alpha-nbsd-tdep.c: Fix indentation.
	* alpha-obsd-tdep.c: Fix indentation.
	* alpha-tdep.c: Fix indentation.
	* amd64-bsd-nat.c: Fix indentation.
	* amd64-darwin-tdep.c: Fix indentation.
	* amd64-linux-nat.c: Fix indentation.
	* amd64-linux-tdep.c: Fix indentation.
	* amd64-nat.c: Fix indentation.
	* amd64-obsd-tdep.c: Fix indentation.
	* amd64-tdep.c: Fix indentation.
	* amd64-windows-tdep.c: Fix indentation.
	* annotate.c: Fix indentation.
	* arc-tdep.c: Fix indentation.
	* arch-utils.c: Fix indentation.
	* arch/arm-get-next-pcs.c: Fix indentation.
	* arch/arm.c: Fix indentation.
	* arm-linux-nat.c: Fix indentation.
	* arm-linux-tdep.c: Fix indentation.
	* arm-nbsd-tdep.c: Fix indentation.
	* arm-pikeos-tdep.c: Fix indentation.
	* arm-tdep.c: Fix indentation.
	* arm-tdep.h: Fix indentation.
	* arm-wince-tdep.c: Fix indentation.
	* auto-load.c: Fix indentation.
	* auxv.c: Fix indentation.
	* avr-tdep.c: Fix indentation.
	* ax-gdb.c: Fix indentation.
	* ax-general.c: Fix indentation.
	* bfin-linux-tdep.c: Fix indentation.
	* block.c: Fix indentation.
	* block.h: Fix indentation.
	* blockframe.c: Fix indentation.
	* bpf-tdep.c: Fix indentation.
	* break-catch-sig.c: Fix indentation.
	* break-catch-syscall.c: Fix indentation.
	* break-catch-throw.c: Fix indentation.
	* breakpoint.c: Fix indentation.
	* breakpoint.h: Fix indentation.
	* bsd-uthread.c: Fix indentation.
	* btrace.c: Fix indentation.
	* build-id.c: Fix indentation.
	* buildsym-legacy.h: Fix indentation.
	* buildsym.c: Fix indentation.
	* c-typeprint.c: Fix indentation.
	* c-valprint.c: Fix indentation.
	* c-varobj.c: Fix indentation.
	* charset.c: Fix indentation.
	* cli/cli-cmds.c: Fix indentation.
	* cli/cli-decode.c: Fix indentation.
	* cli/cli-decode.h: Fix indentation.
	* cli/cli-script.c: Fix indentation.
	* cli/cli-setshow.c: Fix indentation.
	* coff-pe-read.c: Fix indentation.
	* coffread.c: Fix indentation.
	* compile/compile-cplus-types.c: Fix indentation.
	* compile/compile-object-load.c: Fix indentation.
	* compile/compile-object-run.c: Fix indentation.
	* completer.c: Fix indentation.
	* corefile.c: Fix indentation.
	* corelow.c: Fix indentation.
	* cp-abi.h: Fix indentation.
	* cp-namespace.c: Fix indentation.
	* cp-support.c: Fix indentation.
	* cp-valprint.c: Fix indentation.
	* cris-linux-tdep.c: Fix indentation.
	* cris-tdep.c: Fix indentation.
	* darwin-nat-info.c: Fix indentation.
	* darwin-nat.c: Fix indentation.
	* darwin-nat.h: Fix indentation.
	* dbxread.c: Fix indentation.
	* dcache.c: Fix indentation.
	* disasm.c: Fix indentation.
	* dtrace-probe.c: Fix indentation.
	* dwarf2/abbrev.c: Fix indentation.
	* dwarf2/attribute.c: Fix indentation.
	* dwarf2/expr.c: Fix indentation.
	* dwarf2/frame.c: Fix indentation.
	* dwarf2/index-cache.c: Fix indentation.
	* dwarf2/index-write.c: Fix indentation.
	* dwarf2/line-header.c: Fix indentation.
	* dwarf2/loc.c: Fix indentation.
	* dwarf2/macro.c: Fix indentation.
	* dwarf2/read.c: Fix indentation.
	* dwarf2/read.h: Fix indentation.
	* elfread.c: Fix indentation.
	* eval.c: Fix indentation.
	* event-top.c: Fix indentation.
	* exec.c: Fix indentation.
	* exec.h: Fix indentation.
	* expprint.c: Fix indentation.
	* f-lang.c: Fix indentation.
	* f-typeprint.c: Fix indentation.
	* f-valprint.c: Fix indentation.
	* fbsd-nat.c: Fix indentation.
	* fbsd-tdep.c: Fix indentation.
	* findvar.c: Fix indentation.
	* fork-child.c: Fix indentation.
	* frame-unwind.c: Fix indentation.
	* frame-unwind.h: Fix indentation.
	* frame.c: Fix indentation.
	* frv-linux-tdep.c: Fix indentation.
	* frv-tdep.c: Fix indentation.
	* frv-tdep.h: Fix indentation.
	* ft32-tdep.c: Fix indentation.
	* gcore.c: Fix indentation.
	* gdb_bfd.c: Fix indentation.
	* gdbarch.sh: Fix indentation.
	* gdbarch.c: Re-generate
	* gdbarch.h: Re-generate.
	* gdbcore.h: Fix indentation.
	* gdbthread.h: Fix indentation.
	* gdbtypes.c: Fix indentation.
	* gdbtypes.h: Fix indentation.
	* glibc-tdep.c: Fix indentation.
	* gnu-nat.c: Fix indentation.
	* gnu-nat.h: Fix indentation.
	* gnu-v2-abi.c: Fix indentation.
	* gnu-v3-abi.c: Fix indentation.
	* go32-nat.c: Fix indentation.
	* guile/guile-internal.h: Fix indentation.
	* guile/scm-cmd.c: Fix indentation.
	* guile/scm-frame.c: Fix indentation.
	* guile/scm-iterator.c: Fix indentation.
	* guile/scm-math.c: Fix indentation.
	* guile/scm-ports.c: Fix indentation.
	* guile/scm-pretty-print.c: Fix indentation.
	* guile/scm-value.c: Fix indentation.
	* h8300-tdep.c: Fix indentation.
	* hppa-linux-nat.c: Fix indentation.
	* hppa-linux-tdep.c: Fix indentation.
	* hppa-nbsd-nat.c: Fix indentation.
	* hppa-nbsd-tdep.c: Fix indentation.
	* hppa-obsd-nat.c: Fix indentation.
	* hppa-tdep.c: Fix indentation.
	* hppa-tdep.h: Fix indentation.
	* i386-bsd-nat.c: Fix indentation.
	* i386-darwin-nat.c: Fix indentation.
	* i386-darwin-tdep.c: Fix indentation.
	* i386-dicos-tdep.c: Fix indentation.
	* i386-gnu-nat.c: Fix indentation.
	* i386-linux-nat.c: Fix indentation.
	* i386-linux-tdep.c: Fix indentation.
	* i386-nto-tdep.c: Fix indentation.
	* i386-obsd-tdep.c: Fix indentation.
	* i386-sol2-nat.c: Fix indentation.
	* i386-tdep.c: Fix indentation.
	* i386-tdep.h: Fix indentation.
	* i386-windows-tdep.c: Fix indentation.
	* i387-tdep.c: Fix indentation.
	* i387-tdep.h: Fix indentation.
	* ia64-libunwind-tdep.c: Fix indentation.
	* ia64-libunwind-tdep.h: Fix indentation.
	* ia64-linux-nat.c: Fix indentation.
	* ia64-linux-tdep.c: Fix indentation.
	* ia64-tdep.c: Fix indentation.
	* ia64-tdep.h: Fix indentation.
	* ia64-vms-tdep.c: Fix indentation.
	* infcall.c: Fix indentation.
	* infcmd.c: Fix indentation.
	* inferior.c: Fix indentation.
	* infrun.c: Fix indentation.
	* iq2000-tdep.c: Fix indentation.
	* language.c: Fix indentation.
	* linespec.c: Fix indentation.
	* linux-fork.c: Fix indentation.
	* linux-nat.c: Fix indentation.
	* linux-tdep.c: Fix indentation.
	* linux-thread-db.c: Fix indentation.
	* lm32-tdep.c: Fix indentation.
	* m2-lang.c: Fix indentation.
	* m2-typeprint.c: Fix indentation.
	* m2-valprint.c: Fix indentation.
	* m32c-tdep.c: Fix indentation.
	* m32r-linux-tdep.c: Fix indentation.
	* m32r-tdep.c: Fix indentation.
	* m68hc11-tdep.c: Fix indentation.
	* m68k-bsd-nat.c: Fix indentation.
	* m68k-linux-nat.c: Fix indentation.
	* m68k-linux-tdep.c: Fix indentation.
	* m68k-tdep.c: Fix indentation.
	* machoread.c: Fix indentation.
	* macrocmd.c: Fix indentation.
	* macroexp.c: Fix indentation.
	* macroscope.c: Fix indentation.
	* macrotab.c: Fix indentation.
	* macrotab.h: Fix indentation.
	* main.c: Fix indentation.
	* mdebugread.c: Fix indentation.
	* mep-tdep.c: Fix indentation.
	* mi/mi-cmd-catch.c: Fix indentation.
	* mi/mi-cmd-disas.c: Fix indentation.
	* mi/mi-cmd-env.c: Fix indentation.
	* mi/mi-cmd-stack.c: Fix indentation.
	* mi/mi-cmd-var.c: Fix indentation.
	* mi/mi-cmds.c: Fix indentation.
	* mi/mi-main.c: Fix indentation.
	* mi/mi-parse.c: Fix indentation.
	* microblaze-tdep.c: Fix indentation.
	* minidebug.c: Fix indentation.
	* minsyms.c: Fix indentation.
	* mips-linux-nat.c: Fix indentation.
	* mips-linux-tdep.c: Fix indentation.
	* mips-nbsd-tdep.c: Fix indentation.
	* mips-tdep.c: Fix indentation.
	* mn10300-linux-tdep.c: Fix indentation.
	* mn10300-tdep.c: Fix indentation.
	* moxie-tdep.c: Fix indentation.
	* msp430-tdep.c: Fix indentation.
	* namespace.h: Fix indentation.
	* nat/fork-inferior.c: Fix indentation.
	* nat/gdb_ptrace.h: Fix indentation.
	* nat/linux-namespaces.c: Fix indentation.
	* nat/linux-osdata.c: Fix indentation.
	* nat/netbsd-nat.c: Fix indentation.
	* nat/x86-dregs.c: Fix indentation.
	* nbsd-nat.c: Fix indentation.
	* nbsd-tdep.c: Fix indentation.
	* nios2-linux-tdep.c: Fix indentation.
	* nios2-tdep.c: Fix indentation.
	* nto-procfs.c: Fix indentation.
	* nto-tdep.c: Fix indentation.
	* objfiles.c: Fix indentation.
	* objfiles.h: Fix indentation.
	* opencl-lang.c: Fix indentation.
	* or1k-tdep.c: Fix indentation.
	* osabi.c: Fix indentation.
	* osabi.h: Fix indentation.
	* osdata.c: Fix indentation.
	* p-lang.c: Fix indentation.
	* p-typeprint.c: Fix indentation.
	* p-valprint.c: Fix indentation.
	* parse.c: Fix indentation.
	* ppc-linux-nat.c: Fix indentation.
	* ppc-linux-tdep.c: Fix indentation.
	* ppc-nbsd-nat.c: Fix indentation.
	* ppc-nbsd-tdep.c: Fix indentation.
	* ppc-obsd-nat.c: Fix indentation.
	* ppc-ravenscar-thread.c: Fix indentation.
	* ppc-sysv-tdep.c: Fix indentation.
	* ppc64-tdep.c: Fix indentation.
	* printcmd.c: Fix indentation.
	* proc-api.c: Fix indentation.
	* producer.c: Fix indentation.
	* producer.h: Fix indentation.
	* prologue-value.c: Fix indentation.
	* prologue-value.h: Fix indentation.
	* psymtab.c: Fix indentation.
	* python/py-arch.c: Fix indentation.
	* python/py-bpevent.c: Fix indentation.
	* python/py-event.c: Fix indentation.
	* python/py-event.h: Fix indentation.
	* python/py-finishbreakpoint.c: Fix indentation.
	* python/py-frame.c: Fix indentation.
	* python/py-framefilter.c: Fix indentation.
	* python/py-inferior.c: Fix indentation.
	* python/py-infthread.c: Fix indentation.
	* python/py-objfile.c: Fix indentation.
	* python/py-prettyprint.c: Fix indentation.
	* python/py-registers.c: Fix indentation.
	* python/py-signalevent.c: Fix indentation.
	* python/py-stopevent.c: Fix indentation.
	* python/py-stopevent.h: Fix indentation.
	* python/py-threadevent.c: Fix indentation.
	* python/py-tui.c: Fix indentation.
	* python/py-unwind.c: Fix indentation.
	* python/py-value.c: Fix indentation.
	* python/py-xmethods.c: Fix indentation.
	* python/python-internal.h: Fix indentation.
	* python/python.c: Fix indentation.
	* ravenscar-thread.c: Fix indentation.
	* record-btrace.c: Fix indentation.
	* record-full.c: Fix indentation.
	* record.c: Fix indentation.
	* reggroups.c: Fix indentation.
	* regset.h: Fix indentation.
	* remote-fileio.c: Fix indentation.
	* remote.c: Fix indentation.
	* reverse.c: Fix indentation.
	* riscv-linux-tdep.c: Fix indentation.
	* riscv-ravenscar-thread.c: Fix indentation.
	* riscv-tdep.c: Fix indentation.
	* rl78-tdep.c: Fix indentation.
	* rs6000-aix-tdep.c: Fix indentation.
	* rs6000-lynx178-tdep.c: Fix indentation.
	* rs6000-nat.c: Fix indentation.
	* rs6000-tdep.c: Fix indentation.
	* rust-lang.c: Fix indentation.
	* rx-tdep.c: Fix indentation.
	* s12z-tdep.c: Fix indentation.
	* s390-linux-tdep.c: Fix indentation.
	* score-tdep.c: Fix indentation.
	* ser-base.c: Fix indentation.
	* ser-mingw.c: Fix indentation.
	* ser-uds.c: Fix indentation.
	* ser-unix.c: Fix indentation.
	* serial.c: Fix indentation.
	* sh-linux-tdep.c: Fix indentation.
	* sh-nbsd-tdep.c: Fix indentation.
	* sh-tdep.c: Fix indentation.
	* skip.c: Fix indentation.
	* sol-thread.c: Fix indentation.
	* solib-aix.c: Fix indentation.
	* solib-darwin.c: Fix indentation.
	* solib-frv.c: Fix indentation.
	* solib-svr4.c: Fix indentation.
	* solib.c: Fix indentation.
	* source.c: Fix indentation.
	* sparc-linux-tdep.c: Fix indentation.
	* sparc-nbsd-tdep.c: Fix indentation.
	* sparc-obsd-tdep.c: Fix indentation.
	* sparc-ravenscar-thread.c: Fix indentation.
	* sparc-tdep.c: Fix indentation.
	* sparc64-linux-tdep.c: Fix indentation.
	* sparc64-nbsd-tdep.c: Fix indentation.
	* sparc64-obsd-tdep.c: Fix indentation.
	* sparc64-tdep.c: Fix indentation.
	* stabsread.c: Fix indentation.
	* stack.c: Fix indentation.
	* stap-probe.c: Fix indentation.
	* stubs/ia64vms-stub.c: Fix indentation.
	* stubs/m32r-stub.c: Fix indentation.
	* stubs/m68k-stub.c: Fix indentation.
	* stubs/sh-stub.c: Fix indentation.
	* stubs/sparc-stub.c: Fix indentation.
	* symfile-mem.c: Fix indentation.
	* symfile.c: Fix indentation.
	* symfile.h: Fix indentation.
	* symmisc.c: Fix indentation.
	* symtab.c: Fix indentation.
	* symtab.h: Fix indentation.
	* target-float.c: Fix indentation.
	* target.c: Fix indentation.
	* target.h: Fix indentation.
	* tic6x-tdep.c: Fix indentation.
	* tilegx-linux-tdep.c: Fix indentation.
	* tilegx-tdep.c: Fix indentation.
	* top.c: Fix indentation.
	* tracefile-tfile.c: Fix indentation.
	* tracepoint.c: Fix indentation.
	* tui/tui-disasm.c: Fix indentation.
	* tui/tui-io.c: Fix indentation.
	* tui/tui-regs.c: Fix indentation.
	* tui/tui-stack.c: Fix indentation.
	* tui/tui-win.c: Fix indentation.
	* tui/tui-winsource.c: Fix indentation.
	* tui/tui.c: Fix indentation.
	* typeprint.c: Fix indentation.
	* ui-out.h: Fix indentation.
	* unittests/copy_bitwise-selftests.c: Fix indentation.
	* unittests/memory-map-selftests.c: Fix indentation.
	* utils.c: Fix indentation.
	* v850-tdep.c: Fix indentation.
	* valarith.c: Fix indentation.
	* valops.c: Fix indentation.
	* valprint.c: Fix indentation.
	* valprint.h: Fix indentation.
	* value.c: Fix indentation.
	* value.h: Fix indentation.
	* varobj.c: Fix indentation.
	* vax-tdep.c: Fix indentation.
	* windows-nat.c: Fix indentation.
	* windows-tdep.c: Fix indentation.
	* xcoffread.c: Fix indentation.
	* xml-syscall.c: Fix indentation.
	* xml-tdesc.c: Fix indentation.
	* xstormy16-tdep.c: Fix indentation.
	* xtensa-config.c: Fix indentation.
	* xtensa-linux-nat.c: Fix indentation.
	* xtensa-linux-tdep.c: Fix indentation.
	* xtensa-tdep.c: Fix indentation.

gdbserver/ChangeLog:

	* ax.cc: Fix indentation.
	* dll.cc: Fix indentation.
	* inferiors.h: Fix indentation.
	* linux-low.cc: Fix indentation.
	* linux-nios2-low.cc: Fix indentation.
	* linux-ppc-ipa.cc: Fix indentation.
	* linux-ppc-low.cc: Fix indentation.
	* linux-x86-low.cc: Fix indentation.
	* linux-xtensa-low.cc: Fix indentation.
	* regcache.cc: Fix indentation.
	* server.cc: Fix indentation.
	* tracepoint.cc: Fix indentation.

gdbsupport/ChangeLog:

	* common-exceptions.h: Fix indentation.
	* event-loop.cc: Fix indentation.
	* fileio.cc: Fix indentation.
	* filestuff.cc: Fix indentation.
	* gdb-dlfcn.cc: Fix indentation.
	* gdb_string_view.h: Fix indentation.
	* job-control.cc: Fix indentation.
	* signals.cc: Fix indentation.

Change-Id: I4bad7ae6be0fbe14168b8ebafb98ffe14964a695
2020-11-02 10:28:45 -05:00
Simon Marchi
6b01403b25 gdb: add debug prints in event loop
Add debug printouts about event loop-related events:

 - When a file descriptor handler gets invoked
 - When an async event/signal handler gets invoked

gdb/ChangeLog:

	* async-event.c (invoke_async_signal_handlers): Add debug
	print.
	(check_async_event_handlers): Likewise.
	* event-top.c (show_debug_event_loop): New function.
	(_initialize_event_top): Register "set debug event-loop"
	setting.

gdbserver/ChangeLog:

	* server.cc (handle_monitor_command): Handle "set
	debug-event-loop".
	(captured_main): Handle "--debug-event-loop".
	(monitor_show_help): Mention new setting.
	(gdbserver_usage): Mention new flag.

gdbsupport/ChangeLog:

	* event-loop.h (debug_event_loop): New variable declaration.
	(event_loop_debug_printf_1): New function declaration.
	(event_loop_debug_printf): New macro.
	* event-loop.cc (debug_event_loop): New variable.
	(handle_file_event): Add debug print.
	(event_loop_debug_printf_1): New function.

Change-Id: If78ed3a69179881368e7895b42940ce13b6a1a05
2020-10-02 14:47:42 -04:00
Simon Marchi
db20ebdfae gdb: give names to async event/signal handlers
Assign names to async event/signal handlers.  They will be used in debug
messages when file handlers are invoked.

Unlike in the previous patch, the names are not copied in the structure,
since we don't need to (all names are string literals for the moment).

gdb/ChangeLog:

	* async-event.h (create_async_signal_handler): Add name
	parameter.
	(create_async_event_handler): Likewise.
	* async-event.c (struct async_signal_handler) <name>: New field.
	(struct async_event_handler) <name>: New field.
	(create_async_signal_handler): Assign name.
	(create_async_event_handler): Assign name.
	* event-top.c (async_init_signals): Pass name when creating
	handler.
	* infrun.c (_initialize_infrun): Likewise.
	* record-btrace.c (record_btrace_push_target): Likewise.
	* record-full.c (record_full_open): Likewise.
	* remote-notif.c (remote_notif_state_allocate): Likewise.
	* remote.c (remote_target::open_1): Likewise.
	* tui/tui-win.c (tui_initialize_win): Likewise.

Change-Id: Icd9d9f775542ae5fc2cd148c12f481e7885936d5
2020-10-02 14:47:06 -04:00
Simon Marchi
2554f6f564 gdb: give names to event loop file handlers
Assign names to event loop file handlers.  They will be used in debug
messages when file handlers are invoked.

In GDB, each UI used to get its own unique number, until commit
cbe256847e ("Remove ui::num").  Re-introduce this field, and use it to
make a unique name for the handler.

I'm not too sure what goes on in ser-base.c, all I know is that it's
what is used when debugging remotely.  I've just named the main handler
"serial".  It would be good to have unique names there too.  For instance
when debugging with two different remote connections, we'd ideally want
the handlers to have unique names.  I didn't do it in this patch though.

gdb/ChangeLog:

	* async-event.c (initialize_async_signal_handlers): Pass name to
	add_file_handler
	* event-top.c (ui_register_input_event_handler): Likewise.
	* linux-nat.c (linux_nat_target::async): Likewise.
	* run-on-main-thread.c (_initialize_run_on_main_thread):
	Likewise
	* ser-base.c (reschedule): Likewise.
	(ser_base_async): Likewise.
	* tui/tui-io.c: Likewise.
	* top.h (struct ui) <num>: New field.
	* top.c (highest_ui_num): New variable.
	(ui::ui): Initialize num.

gdbserver/ChangeLog:

	* linux-low.cc (linux_process_target::async): Pass name to
	add_file_handler.
	* remote-utils.cc (handle_accept_event): Likewise.
	(remote_open): Likewise.

gdbsupport/ChangeLog:

	* event-loop.h (add_file_handler): Add "name" parameter.
	* event-loop.cc (struct file_handler) <name>: New field.
	(create_file_handler): Add "name" parameter, assign it to file
	handler.
	(add_file_handler): Add "name" parameter.

Change-Id: I9f1545f73888ebb6778eb653a618ca44d105f92c
2020-10-02 14:46:56 -04:00
Tom Tromey
400b5eca00 Move event-loop.[ch] to gdbsupport/
This moves event-loop.[ch] to gdbsupport/ and updates the uses in gdb.

gdb/ChangeLog
2020-04-13  Tom Tromey  <tom@tromey.com>

	* run-on-main-thread.c: Update include.
	* unittests/main-thread-selftests.c: Update include.
	* tui/tui-win.c: Update include.
	* tui/tui-io.c: Update include.
	* tui/tui-interp.c: Update include.
	* tui/tui-hooks.c: Update include.
	* top.h: Update include.
	* top.c: Update include.
	* ser-base.c: Update include.
	* remote.c: Update include.
	* remote-notif.c: Update include.
	* remote-fileio.c: Update include.
	* record-full.c: Update include.
	* record-btrace.c: Update include.
	* python/python.c: Update include.
	* posix-hdep.c: Update include.
	* mingw-hdep.c: Update include.
	* mi/mi-main.c: Update include.
	* mi/mi-interp.c: Update include.
	* main.c: Update include.
	* linux-nat.c: Update include.
	* interps.c: Update include.
	* infrun.c: Update include.
	* inf-loop.c: Update include.
	* event-top.c: Update include.
	* event-loop.c: Move to ../gdbsupport/.
	* event-loop.h: Move to ../gdbsupport/.
	* async-event.h: Update include.
	* Makefile.in (COMMON_SFILES, HFILES_NO_SRCDIR): Update.

gdbsupport/ChangeLog
2020-04-13  Tom Tromey  <tom@tromey.com>

	* event-loop.h: Move from ../gdb/.
	* event-loop.cc: Move from ../gdb/.
2020-04-13 14:10:04 -06:00
Tom Tromey
93b54c8ed3 Introduce async-event.[ch]
This patch splits out some gdb-specific code from event-loop, into new
files async-event.[ch].  Strictly speaking this code could perhaps be
put into gdbsupport/, but because gdbserver does not currently use it,
it seemed better, for size reasons, to split it out.

gdb/ChangeLog
2020-04-13  Tom Tromey  <tom@tromey.com>

	* tui/tui-win.c: Include async-event.h.
	* remote.c: Include async-event.h.
	* remote-notif.c: Include async-event.h.
	* record-full.c: Include async-event.h.
	* record-btrace.c: Include async-event.h.
	* infrun.c: Include async-event.h.
	* event-top.c: Include async-event.h.
	* event-loop.h: Move some declarations to async-event.h.
	* event-loop.c: Don't include ser-event.h or top.h.  Move some
	code to async-event.c.
	* async-event.h: New file.
	* async-event.c: New file.
	* Makefile.in (COMMON_SFILES): Add async-event.c.
	(HFILES_NO_SRCDIR): Add async-event.h.
2020-04-13 14:10:04 -06:00
Tom Tromey
06cc9596e8 Move gdb_select.h to gdbsupport/
This moves gdb_select.h to gdbsupport/, so it can be used by other
code there.

gdb/ChangeLog
2020-04-13  Tom Tromey  <tom@tromey.com>

	* gdb_select.h: Move to ../gdbsupport/.
	* event-loop.c: Update include path.
	* top.c: Update include path.
	* ser-base.c: Update include path.
	* ui-file.c: Update include path.
	* ser-tcp.c: Update include path.
	* guile/scm-ports.c: Update include path.
	* posix-hdep.c: Update include path.
	* ser-unix.c: Update include path.
	* gdb_usleep.c: Update include path.
	* mingw-hdep.c: Update include path.
	* inflow.c: Update include path.
	* infrun.c: Update include path.
	* event-top.c: Update include path.

gdbsupport/ChangeLog
2020-04-13  Tom Tromey  <tom@tromey.com>

	* gdb_select.h: Move from ../gdb/.
2020-04-13 14:10:03 -06:00
Iain Buclaw
faa17681cc Make gdb_flush also flush the wrap buffer
This changes gdb_flush to also flush the internal wrap buffer.  A few
places needed to continue using the previous approach, so this also
introduces ui_file_flush for those.

2020-02-05  Iain Buclaw  <ibuclaw@gdcproject.org>

        * gdb/event-loop.c (gdb_wait_for_event): Update.
        * gdb/printcmd.c (printf_command): Update.
        * gdb/remote-fileio.c (remote_fileio_func_write): Update.
        * gdb/remote-sim.c (gdb_os_flush_stdout): Update.
        (gdb_os_flush_stderr): Update.
        * gdb/remote.c (remote_console_output): Update.
        * gdb/ui-file.c (gdb_flush): Rename to...
        (ui_file_flush): ...this.
        (stderr_file::write): Update.
        (stderr_file::puts): Update.
        * gdb/ui-file.h (gdb_flush): Rename to...
        (ui_file_flush): ...this.
        * gdb/utils.c (gdb_flush): Add function.
        * gdb/utils.h (gdb_flush): Add declaration.

Change-Id: I7ca143d30f03dc39f218f6e880eb9bca9e15af39
2020-02-07 14:06:02 -07:00
Pedro Alves
5b6d1e4fa4 Multi-target support
This commit adds multi-target support to GDB.  What this means is that
with this commit, GDB can now be connected to different targets at the
same time.  E.g., you can debug a live native process and a core dump
at the same time, connect to multiple gdbservers, etc.

Actually, the word "target" is overloaded in gdb.  We already have a
target stack, with pushes several target_ops instances on top of one
another.  We also have "info target" already, which means something
completely different to what this patch does.

So from here on, I'll be using the "target connections" term, to mean
an open process_stratum target, pushed on a target stack.  This patch
makes gdb have multiple target stacks, and multiple process_stratum
targets open simultaneously.  The user-visible changes / commands will
also use this terminology, but of course it's all open to debate.

User-interface-wise, not that much changes.  The main difference is
that each inferior may have its own target connection.

A target connection (e.g., a target extended-remote connection) may
support debugging multiple processes, just as before.

Say you're debugging against gdbserver in extended-remote mode, and
you do "add-inferior" to prepare to spawn a new process, like:

 (gdb) target extended-remote :9999
 ...
 (gdb) start
 ...
 (gdb) add-inferior
 Added inferior 2
 (gdb) inferior 2
 [Switching to inferior 2 [<null>] (<noexec>)]
 (gdb) file a.out
 ...
 (gdb) start
 ...

At this point, you have two inferiors connected to the same gdbserver.

With this commit, GDB will maintain a target stack per inferior,
instead of a global target stack.

To preserve the behavior above, by default, "add-inferior" makes the
new inferior inherit a copy of the target stack of the current
inferior.  Same across a fork - the child inherits a copy of the
target stack of the parent.  While the target stacks are copied, the
targets themselves are not.  Instead, target_ops is made a
refcounted_object, which means that target_ops instances are
refcounted, which each inferior counting for a reference.

What if you want to create an inferior and connect it to some _other_
target?  For that, this commit introduces a new "add-inferior
-no-connection" option that makes the new inferior not share the
current inferior's target.  So you could do:

 (gdb) target extended-remote :9999
 Remote debugging using :9999
 ...
 (gdb) add-inferior -no-connection
 [New inferior 2]
 Added inferior 2
 (gdb) inferior 2
 [Switching to inferior 2 [<null>] (<noexec>)]
 (gdb) info inferiors
   Num  Description       Executable
   1    process 18401     target:/home/pedro/tmp/main
 * 2    <null>
 (gdb) tar extended-remote :10000
 Remote debugging using :10000
 ...
 (gdb) info inferiors
   Num  Description       Executable
   1    process 18401     target:/home/pedro/tmp/main
 * 2    process 18450     target:/home/pedro/tmp/main
 (gdb)

A following patch will extended "info inferiors" to include a column
indicating which connection an inferior is bound to, along with a
couple other UI tweaks.

Other than that, debugging is the same as before.  Users interact with
inferiors and threads as before.  The only difference is that
inferiors may be bound to processes running in different machines.

That's pretty much all there is to it in terms of noticeable UI
changes.

On to implementation.

Since we can be connected to different systems at the same time, a
ptid_t is no longer a unique identifier.  Instead a thread can be
identified by a pair of ptid_t and 'process_stratum_target *', the
later being the instance of the process_stratum target that owns the
process/thread.  Note that process_stratum_target inherits from
target_ops, and all process_stratum targets inherit from
process_stratum_target.  In earlier patches, many places in gdb were
converted to refer to threads by thread_info pointer instead of
ptid_t, but there are still places in gdb where we start with a
pid/tid and need to find the corresponding inferior or thread_info
objects.  So you'll see in the patch many places adding a
process_stratum_target parameter to functions that used to take only a
ptid_t.

Since each inferior has its own target stack now, we can always find
the process_stratum target for an inferior.  That is done via a
inf->process_target() convenience method.

Since each inferior has its own target stack, we need to handle the
"beneath" calls when servicing target calls.  The solution I settled
with is just to make sure to switch the current inferior to the
inferior you want before making a target call.  Not relying on global
context is just not feasible in current GDB.  Fortunately, there
aren't that many places that need to do that, because generally most
code that calls target methods already has the current context
pointing to the right inferior/thread.  Note, to emphasize -- there's
no method to "switch to this target stack".  Instead, you switch the
current inferior, and that implicitly switches the target stack.

In some spots, we need to iterate over all inferiors so that we reach
all target stacks.

Native targets are still singletons.  There's always only a single
instance of such targets.

Remote targets however, we'll have one instance per remote connection.

The exec target is still a singleton.  There's only one instance.  I
did not see the point of instanciating more than one exec_target
object.

After vfork, we need to make sure to push the exec target on the new
inferior.  See exec_on_vfork.

For type safety, functions that need a {target, ptid} pair to identify
a thread, take a process_stratum_target pointer for target parameter
instead of target_ops *.  Some shared code in gdb/nat/ also need to
gain a target pointer parameter.  This poses an issue, since gdbserver
doesn't have process_stratum_target, only target_ops.  To fix this,
this commit renames gdbserver's target_ops to process_stratum_target.
I think this makes sense.  There's no concept of target stack in
gdbserver, and gdbserver's target_ops really implements a
process_stratum-like target.

The thread and inferior iterator functions also gain
process_stratum_target parameters.  These are used to be able to
iterate over threads and inferiors of a given target.  Following usual
conventions, if the target pointer is null, then we iterate over
threads and inferiors of all targets.

I tried converting "add-inferior" to the gdb::option framework, as a
preparatory patch, but that stumbled on the fact that gdb::option does
not support file options yet, for "add-inferior -exec".  I have a WIP
patchset that adds that, but it's not a trivial patch, mainly due to
need to integrate readline's filename completion, so I deferred that
to some other time.

In infrun.c/infcmd.c, the main change is that we need to poll events
out of all targets.  See do_target_wait.  Right after collecting an
event, we switch the current inferior to an inferior bound to the
target that reported the event, so that target methods can be used
while handling the event.  This makes most of the code transparent to
multi-targets.  See fetch_inferior_event.

infrun.c:stop_all_threads is interesting -- in this function we need
to stop all threads of all targets.  What the function does is send an
asynchronous stop request to all threads, and then synchronously waits
for events, with target_wait, rinse repeat, until all it finds are
stopped threads.  Now that we have multiple targets, it's not
efficient to synchronously block in target_wait waiting for events out
of one target.  Instead, we implement a mini event loop, with
interruptible_select, select'ing on one file descriptor per target.
For this to work, we need to be able to ask the target for a waitable
file descriptor.  Such file descriptors already exist, they are the
descriptors registered in the main event loop with add_file_handler,
inside the target_async implementations.  This commit adds a new
target_async_wait_fd target method that just returns the file
descriptor in question.  See wait_one / stop_all_threads in infrun.c.

The 'threads_executing' global is made a per-target variable.  Since
it is only relevant to process_stratum_target targets, this is where
it is put, instead of in target_ops.

You'll notice that remote.c includes some FIXME notes.  These refer to
the fact that the global arrays that hold data for the remote packets
supported are still globals.  For example, if we connect to two
different servers/stubs, then each might support different remote
protocol features.  They might even be different architectures, like
e.g., one ARM baremetal stub, and a x86 gdbserver, to debug a
host/controller scenario as a single program.  That isn't going to
work correctly today, because of said globals.  I'm leaving fixing
that for another pass, since it does not appear to be trivial, and I'd
rather land the base work first.  It's already useful to be able to
debug multiple instances of the same server (e.g., a distributed
cluster, where you have full control over the servers installed), so I
think as is it's already reasonable incremental progress.

Current limitations:

 - You can only resume more that one target at the same time if all
   targets support asynchronous debugging, and support non-stop mode.
   It should be possible to support mixed all-stop + non-stop
   backends, but that is left for another time.  This means that
   currently in order to do multi-target with gdbserver you need to
   issue "maint set target-non-stop on".  I would like to make that
   mode be the default, but we're not there yet.  Note that I'm
   talking about how the target backend works, only.  User-visible
   all-stop mode works just fine.

 - As explained above, connecting to different remote servers at the
   same time is likely to produce bad results if they don't support the
   exact set of RSP features.

FreeBSD updates courtesy of John Baldwin.

gdb/ChangeLog:
2020-01-10  Pedro Alves  <palves@redhat.com>
	    John Baldwin  <jhb@FreeBSD.org>

	* aarch64-linux-nat.c
	(aarch64_linux_nat_target::thread_architecture): Adjust.
	* ada-tasks.c (print_ada_task_info): Adjust find_thread_ptid call.
	(task_command_1): Likewise.
	* aix-thread.c (sync_threadlists, aix_thread_target::resume)
	(aix_thread_target::wait, aix_thread_target::fetch_registers)
	(aix_thread_target::store_registers)
	(aix_thread_target::thread_alive): Adjust.
	* amd64-fbsd-tdep.c: Include "inferior.h".
	(amd64fbsd_get_thread_local_address): Pass down target.
	* amd64-linux-nat.c (ps_get_thread_area): Use ps_prochandle
	thread's gdbarch instead of target_gdbarch.
	* break-catch-sig.c (signal_catchpoint_print_it): Adjust call to
	get_last_target_status.
	* break-catch-syscall.c (print_it_catch_syscall): Likewise.
	* breakpoint.c (breakpoints_should_be_inserted_now): Consider all
	inferiors.
	(update_inserted_breakpoint_locations): Skip if inferiors with no
	execution.
	(update_global_location_list): When handling moribund locations,
	find representative inferior for location's pspace, and use thread
	count of its process_stratum target.
	* bsd-kvm.c (bsd_kvm_target_open): Pass target down.
	* bsd-uthread.c (bsd_uthread_target::wait): Use
	as_process_stratum_target and adjust thread_change_ptid and
	add_thread calls.
	(bsd_uthread_target::update_thread_list): Use
	as_process_stratum_target and adjust find_thread_ptid,
	thread_change_ptid and add_thread calls.
	* btrace.c (maint_btrace_packet_history_cmd): Adjust
	find_thread_ptid call.
	* corelow.c (add_to_thread_list): Adjust add_thread call.
	(core_target_open): Adjust add_thread_silent and thread_count
	calls.
	(core_target::pid_to_str): Adjust find_inferior_ptid call.
	* ctf.c (ctf_target_open): Adjust add_thread_silent call.
	* event-top.c (async_disconnect): Pop targets from all inferiors.
	* exec.c (add_target_sections): Push exec target on all inferiors
	sharing the program space.
	(remove_target_sections): Remove the exec target from all
	inferiors sharing the program space.
	(exec_on_vfork): New.
	* exec.h (exec_on_vfork): Declare.
	* fbsd-nat.c (fbsd_add_threads): Add fbsd_nat_target parameter.
	Pass it down.
	(fbsd_nat_target::update_thread_list): Adjust.
	(fbsd_nat_target::resume): Adjust.
	(fbsd_handle_debug_trap): Add fbsd_nat_target parameter.  Pass it
	down.
	(fbsd_nat_target::wait, fbsd_nat_target::post_attach): Adjust.
	* fbsd-tdep.c (fbsd_corefile_thread): Adjust
	get_thread_arch_regcache call.
	* fork-child.c (gdb_startup_inferior): Pass target down to
	startup_inferior and set_executing.
	* gdbthread.h (struct process_stratum_target): Forward declare.
	(add_thread, add_thread_silent, add_thread_with_info)
	(in_thread_list): Add process_stratum_target parameter.
	(find_thread_ptid(inferior*, ptid_t)): New overload.
	(find_thread_ptid, thread_change_ptid): Add process_stratum_target
	parameter.
	(all_threads()): Delete overload.
	(all_threads, all_non_exited_threads): Add process_stratum_target
	parameter.
	(all_threads_safe): Use brace initialization.
	(thread_count): Add process_stratum_target parameter.
	(set_resumed, set_running, set_stop_requested, set_executing)
	(threads_are_executing, finish_thread_state): Add
	process_stratum_target parameter.
	(switch_to_thread): Use is_current_thread.
	* i386-fbsd-tdep.c: Include "inferior.h".
	(i386fbsd_get_thread_local_address): Pass down target.
	* i386-linux-nat.c (i386_linux_nat_target::low_resume): Adjust.
	* inf-child.c (inf_child_target::maybe_unpush_target): Remove
	have_inferiors check.
	* inf-ptrace.c (inf_ptrace_target::create_inferior)
	(inf_ptrace_target::attach): Adjust.
	* infcall.c (run_inferior_call): Adjust.
	* infcmd.c (run_command_1): Pass target to
	scoped_finish_thread_state.
	(proceed_thread_callback): Skip inferiors with no execution.
	(continue_command): Rename 'all_threads' local to avoid hiding
	'all_threads' function.  Adjust get_last_target_status call.
	(prepare_one_step): Adjust set_running call.
	(signal_command): Use user_visible_resume_target.  Compare thread
	pointers instead of inferior_ptid.
	(info_program_command): Adjust to pass down target.
	(attach_command): Mark target's 'thread_executing' flag.
	(stop_current_target_threads_ns): New, factored out from ...
	(interrupt_target_1): ... this.  Switch inferior before making
	target calls.
	* inferior-iter.h
	(struct all_inferiors_iterator, struct all_inferiors_range)
	(struct all_inferiors_safe_range)
	(struct all_non_exited_inferiors_range): Filter on
	process_stratum_target too.  Remove explicit.
	* inferior.c (inferior::inferior): Push dummy target on target
	stack.
	(find_inferior_pid, find_inferior_ptid, number_of_live_inferiors):
	Add process_stratum_target parameter, and pass it down.
	(have_live_inferiors): Adjust.
	(switch_to_inferior_and_push_target): New.
	(add_inferior_command, clone_inferior_command): Handle
	"-no-connection" parameter.  Use
	switch_to_inferior_and_push_target.
	(_initialize_inferior): Mention "-no-connection" option in
	the help of "add-inferior" and "clone-inferior" commands.
	* inferior.h: Include "process-stratum-target.h".
	(interrupt_target_1): Use bool.
	(struct inferior) <push_target, unpush_target, target_is_pushed,
	find_target_beneath, top_target, process_target, target_at,
	m_stack>: New.
	(discard_all_inferiors): Delete.
	(find_inferior_pid, find_inferior_ptid, number_of_live_inferiors)
	(all_inferiors, all_non_exited_inferiors): Add
	process_stratum_target parameter.
	* infrun.c: Include "gdb_select.h" and <unordered_map>.
	(target_last_proc_target): New global.
	(follow_fork_inferior): Push target on new inferior.  Pass target
	to add_thread_silent.  Call exec_on_vfork.  Handle target's
	reference count.
	(follow_fork): Adjust get_last_target_status call.  Also consider
	target.
	(follow_exec): Push target on new inferior.
	(struct execution_control_state) <target>: New field.
	(user_visible_resume_target): New.
	(do_target_resume): Call target_async.
	(resume_1): Set target's threads_executing flag.  Consider resume
	target.
	(commit_resume_all_targets): New.
	(proceed): Also consider resume target.  Skip threads of inferiors
	with no execution.  Commit resumtion in all targets.
	(start_remote): Pass current inferior to wait_for_inferior.
	(infrun_thread_stop_requested): Consider target as well.  Pass
	thread_info pointer to clear_inline_frame_state instead of ptid.
	(infrun_thread_thread_exit): Consider target as well.
	(random_pending_event_thread): New inferior parameter.  Use it.
	(do_target_wait): Rename to ...
	(do_target_wait_1): ... this.  Add inferior parameter, and pass it
	down.
	(threads_are_resumed_pending_p, do_target_wait): New.
	(prepare_for_detach): Adjust calls.
	(wait_for_inferior): New inferior parameter.  Handle it.  Use
	do_target_wait_1 instead of do_target_wait.
	(fetch_inferior_event): Adjust.  Switch to representative
	inferior.  Pass target down.
	(set_last_target_status): Add process_stratum_target parameter.
	Save target in global.
	(get_last_target_status): Add process_stratum_target parameter and
	handle it.
	(nullify_last_target_wait_ptid): Clear 'target_last_proc_target'.
	(context_switch): Check inferior_ptid == null_ptid before calling
	inferior_thread().
	(get_inferior_stop_soon): Pass down target.
	(wait_one): Rename to ...
	(poll_one_curr_target): ... this.
	(struct wait_one_event): New.
	(wait_one): New.
	(stop_all_threads): Adjust.
	(handle_no_resumed, handle_inferior_event): Adjust to consider the
	event's target.
	(switch_back_to_stepped_thread): Also consider target.
	(print_stop_event): Update.
	(normal_stop): Update.  Also consider the resume target.
	* infrun.h (wait_for_inferior): Remove declaration.
	(user_visible_resume_target): New declaration.
	(get_last_target_status, set_last_target_status): New
	process_stratum_target parameter.
	* inline-frame.c (clear_inline_frame_state(ptid_t)): Add
	process_stratum_target parameter, and use it.
	(clear_inline_frame_state (thread_info*)): New.
	* inline-frame.c (clear_inline_frame_state(ptid_t)): Add
	process_stratum_target parameter.
	(clear_inline_frame_state (thread_info*)): Declare.
	* linux-fork.c (delete_checkpoint_command): Pass target down to
	find_thread_ptid.
	(checkpoint_command): Adjust.
	* linux-nat.c (linux_nat_target::follow_fork): Switch to thread
	instead of just tweaking inferior_ptid.
	(linux_nat_switch_fork): Pass target down to thread_change_ptid.
	(exit_lwp): Pass target down to find_thread_ptid.
	(attach_proc_task_lwp_callback): Pass target down to
	add_thread/set_running/set_executing.
	(linux_nat_target::attach): Pass target down to
	thread_change_ptid.
	(get_detach_signal): Pass target down to find_thread_ptid.
	Consider last target status's target.
	(linux_resume_one_lwp_throw, resume_lwp)
	(linux_handle_syscall_trap, linux_handle_extended_wait, wait_lwp)
	(stop_wait_callback, save_stop_reason, linux_nat_filter_event)
	(linux_nat_wait_1, resume_stopped_resumed_lwps): Pass target down.
	(linux_nat_target::async_wait_fd): New.
	(linux_nat_stop_lwp, linux_nat_target::thread_address_space): Pass
	target down.
	* linux-nat.h (linux_nat_target::async_wait_fd): Declare.
	* linux-tdep.c (get_thread_arch_regcache): Pass target down.
	* linux-thread-db.c (struct thread_db_info::process_target): New
	field.
	(add_thread_db_info): Save target.
	(get_thread_db_info): New process_stratum_target parameter.  Also
	match target.
	(delete_thread_db_info): New process_stratum_target parameter.
	Also match target.
	(thread_from_lwp): Adjust to pass down target.
	(thread_db_notice_clone): Pass down target.
	(check_thread_db_callback): Pass down target.
	(try_thread_db_load_1): Always push the thread_db target.
	(try_thread_db_load, record_thread): Pass target down.
	(thread_db_target::detach): Pass target down.  Always unpush the
	thread_db target.
	(thread_db_target::wait, thread_db_target::mourn_inferior): Pass
	target down.  Always unpush the thread_db target.
	(find_new_threads_callback, thread_db_find_new_threads_2)
	(thread_db_target::update_thread_list): Pass target down.
	(thread_db_target::pid_to_str): Pass current inferior down.
	(thread_db_target::get_thread_local_address): Pass target down.
	(thread_db_target::resume, maintenance_check_libthread_db): Pass
	target down.
	* nto-procfs.c (nto_procfs_target::update_thread_list): Adjust.
	* procfs.c (procfs_target::procfs_init_inferior): Declare.
	(proc_set_current_signal, do_attach, procfs_target::wait): Adjust.
	(procfs_init_inferior): Rename to ...
	(procfs_target::procfs_init_inferior): ... this and adjust.
	(procfs_target::create_inferior, procfs_notice_thread)
	(procfs_do_thread_registers): Adjust.
	* ppc-fbsd-tdep.c: Include "inferior.h".
	(ppcfbsd_get_thread_local_address): Pass down target.
	* proc-service.c (ps_xfer_memory): Switch current inferior and
	program space as well.
	(get_ps_regcache): Pass target down.
	* process-stratum-target.c
	(process_stratum_target::thread_address_space)
	(process_stratum_target::thread_architecture): Pass target down.
	* process-stratum-target.h
	(process_stratum_target::threads_executing): New field.
	(as_process_stratum_target): New.
	* ravenscar-thread.c
	(ravenscar_thread_target::update_inferior_ptid): Pass target down.
	(ravenscar_thread_target::wait, ravenscar_add_thread): Pass target
	down.
	* record-btrace.c (record_btrace_target::info_record): Adjust.
	(record_btrace_target::record_method)
	(record_btrace_target::record_is_replaying)
	(record_btrace_target::fetch_registers)
	(get_thread_current_frame_id, record_btrace_target::resume)
	(record_btrace_target::wait, record_btrace_target::stop): Pass
	target down.
	* record-full.c (record_full_wait_1): Switch to event thread.
	Pass target down.
	* regcache.c (regcache::regcache)
	(get_thread_arch_aspace_regcache, get_thread_arch_regcache): Add
	process_stratum_target parameter and handle it.
	(current_thread_target): New global.
	(get_thread_regcache): Add process_stratum_target parameter and
	handle it.  Switch inferior before calling target method.
	(get_thread_regcache): Pass target down.
	(get_thread_regcache_for_ptid): Pass target down.
	(registers_changed_ptid): Add process_stratum_target parameter and
	handle it.
	(registers_changed_thread, registers_changed): Pass target down.
	(test_get_thread_arch_aspace_regcache): New.
	(current_regcache_test): Define a couple local test_target_ops
	instances and use them for testing.
	(readwrite_regcache): Pass process_stratum_target parameter.
	(cooked_read_test, cooked_write_test): Pass mock_target down.
	* regcache.h (get_thread_regcache, get_thread_arch_regcache)
	(get_thread_arch_aspace_regcache): Add process_stratum_target
	parameter.
	(regcache::target): New method.
	(regcache::regcache, regcache::get_thread_arch_aspace_regcache)
	(regcache::registers_changed_ptid): Add process_stratum_target
	parameter.
	(regcache::m_target): New field.
	(registers_changed_ptid): Add process_stratum_target parameter.
	* remote.c (remote_state::supports_vCont_probed): New field.
	(remote_target::async_wait_fd): New method.
	(remote_unpush_and_throw): Add remote_target parameter.
	(get_current_remote_target): Adjust.
	(remote_target::remote_add_inferior): Push target.
	(remote_target::remote_add_thread)
	(remote_target::remote_notice_new_inferior)
	(get_remote_thread_info): Pass target down.
	(remote_target::update_thread_list): Skip threads of inferiors
	bound to other targets.  (remote_target::close): Don't discard
	inferiors.  (remote_target::add_current_inferior_and_thread)
	(remote_target::process_initial_stop_replies)
	(remote_target::start_remote)
	(remote_target::remote_serial_quit_handler): Pass down target.
	(remote_target::remote_unpush_target): New remote_target
	parameter.  Unpush the target from all inferiors.
	(remote_target::remote_unpush_and_throw): New remote_target
	parameter.  Pass it down.
	(remote_target::open_1): Check whether the current inferior has
	execution instead of checking whether any inferior is live.  Pass
	target down.
	(remote_target::remote_detach_1): Pass down target.  Use
	remote_unpush_target.
	(extended_remote_target::attach): Pass down target.
	(remote_target::remote_vcont_probe): Set supports_vCont_probed.
	(remote_target::append_resumption): Pass down target.
	(remote_target::append_pending_thread_resumptions)
	(remote_target::remote_resume_with_hc, remote_target::resume)
	(remote_target::commit_resume): Pass down target.
	(remote_target::remote_stop_ns): Check supports_vCont_probed.
	(remote_target::interrupt_query)
	(remote_target::remove_new_fork_children)
	(remote_target::check_pending_events_prevent_wildcard_vcont)
	(remote_target::remote_parse_stop_reply)
	(remote_target::process_stop_reply): Pass down target.
	(first_remote_resumed_thread): New remote_target parameter.  Pass
	it down.
	(remote_target::wait_as): Pass down target.
	(unpush_and_perror): New remote_target parameter.  Pass it down.
	(remote_target::readchar, remote_target::remote_serial_write)
	(remote_target::getpkt_or_notif_sane_1)
	(remote_target::kill_new_fork_children, remote_target::kill): Pass
	down target.
	(remote_target::mourn_inferior): Pass down target.  Use
	remote_unpush_target.
	(remote_target::core_of_thread)
	(remote_target::remote_btrace_maybe_reopen): Pass down target.
	(remote_target::pid_to_exec_file)
	(remote_target::thread_handle_to_thread_info): Pass down target.
	(remote_target::async_wait_fd): New.
	* riscv-fbsd-tdep.c: Include "inferior.h".
	(riscv_fbsd_get_thread_local_address): Pass down target.
	* sol2-tdep.c (sol2_core_pid_to_str): Pass down target.
	* sol-thread.c (sol_thread_target::wait, ps_lgetregs, ps_lsetregs)
	(ps_lgetfpregs, ps_lsetfpregs, sol_update_thread_list_callback):
	Adjust.
	* solib-spu.c (spu_skip_standalone_loader): Pass down target.
	* solib-svr4.c (enable_break): Pass down target.
	* spu-multiarch.c (parse_spufs_run): Pass down target.
	* spu-tdep.c (spu2ppu_sniffer): Pass down target.
	* target-delegates.c: Regenerate.
	* target.c (g_target_stack): Delete.
	(current_top_target): Return the current inferior's top target.
	(target_has_execution_1): Refer to the passed-in inferior's top
	target.
	(target_supports_terminal_ours): Check whether the initial
	inferior was already created.
	(decref_target): New.
	(target_stack::push): Incref/decref the target.
	(push_target, push_target, unpush_target): Adjust.
	(target_stack::unpush): Defref target.
	(target_is_pushed): Return bool.  Adjust to refer to the current
	inferior's target stack.
	(dispose_inferior): Delete, and inline parts ...
	(target_preopen): ... here.  Only dispose of the current inferior.
	(target_detach): Hold strong target reference while detaching.
	Pass target down.
	(target_thread_name): Add assertion.
	(target_resume): Pass down target.
	(target_ops::beneath, find_target_at): Adjust to refer to the
	current inferior's target stack.
	(get_dummy_target): New.
	(target_pass_ctrlc): Pass the Ctrl-C to the first inferior that
	has a thread running.
	(initialize_targets): Rename to ...
	(_initialize_target): ... this.
	* target.h: Include "gdbsupport/refcounted-object.h".
	(struct target_ops): Inherit refcounted_object.
	(target_ops::shortname, target_ops::longname): Make const.
	(target_ops::async_wait_fd): New method.
	(decref_target): Declare.
	(struct target_ops_ref_policy): New.
	(target_ops_ref): New typedef.
	(get_dummy_target): Declare function.
	(target_is_pushed): Return bool.
	* thread-iter.c (all_matching_threads_iterator::m_inf_matches)
	(all_matching_threads_iterator::all_matching_threads_iterator):
	Handle filter target.
	* thread-iter.h (struct all_matching_threads_iterator, struct
	all_matching_threads_range, class all_non_exited_threads_range):
	Filter by target too.  Remove explicit.
	* thread.c (threads_executing): Delete.
	(inferior_thread): Pass down current inferior.
	(clear_thread_inferior_resources): Pass down thread pointer
	instead of ptid_t.
	(add_thread_silent, add_thread_with_info, add_thread): Add
	process_stratum_target parameter.  Use it for thread and inferior
	searches.
	(is_current_thread): New.
	(thread_info::deletable): Use it.
	(find_thread_ptid, thread_count, in_thread_list)
	(thread_change_ptid, set_resumed, set_running): New
	process_stratum_target parameter.  Pass it down.
	(set_executing): New process_stratum_target parameter.  Pass it
	down.  Adjust reference to 'threads_executing'.
	(threads_are_executing): New process_stratum_target parameter.
	Adjust reference to 'threads_executing'.
	(set_stop_requested, finish_thread_state): New
	process_stratum_target parameter.  Pass it down.
	(switch_to_thread): Also match inferior.
	(switch_to_thread): New process_stratum_target parameter.  Pass it
	down.
	(update_threads_executing): Reimplement.
	* top.c (quit_force): Pop targets from all inferior.
	(gdb_init): Don't call initialize_targets.
	* windows-nat.c (windows_nat_target) <get_windows_debug_event>:
	Declare.
	(windows_add_thread, windows_delete_thread): Adjust.
	(get_windows_debug_event): Rename to ...
	(windows_nat_target::get_windows_debug_event): ... this.  Adjust.
	* tracefile-tfile.c (tfile_target_open): Pass down target.
	* gdbsupport/common-gdbthread.h (struct process_stratum_target):
	Forward declare.
	(switch_to_thread): Add process_stratum_target parameter.
	* mi/mi-interp.c (mi_on_resume_1): Add process_stratum_target
	parameter.  Use it.
	(mi_on_resume): Pass target down.
	* nat/fork-inferior.c (startup_inferior): Add
	process_stratum_target parameter.  Pass it down.
	* nat/fork-inferior.h (startup_inferior): Add
	process_stratum_target parameter.
	* python/py-threadevent.c (py_get_event_thread): Pass target down.

gdb/gdbserver/ChangeLog:
2020-01-10  Pedro Alves  <palves@redhat.com>

	* fork-child.c (post_fork_inferior): Pass target down to
	startup_inferior.
	* inferiors.c (switch_to_thread): Add process_stratum_target
	parameter.
	* lynx-low.c (lynx_target_ops): Now a process_stratum_target.
	* nto-low.c (nto_target_ops): Now a process_stratum_target.
	* linux-low.c (linux_target_ops): Now a process_stratum_target.
	* remote-utils.c (prepare_resume_reply): Pass the target to
	switch_to_thread.
	* target.c (the_target): Now a process_stratum_target.
	(done_accessing_memory): Pass the target to switch_to_thread.
	(set_target_ops): Ajust to use process_stratum_target.
	* target.h (struct target_ops): Rename to ...
	(struct process_stratum_target): ... this.
	(the_target, set_target_ops): Adjust.
	(prepare_to_access_memory): Adjust comment.
	* win32-low.c (child_xfer_memory): Adjust to use
	process_stratum_target.
	(win32_target_ops): Now a process_stratum_target.
2020-01-10 20:06:08 +00:00
Joel Brobecker
b811d2c292 Update copyright year range in all GDB files.
gdb/ChangeLog:

        Update copyright year range in all GDB files.
2020-01-01 10:20:53 +04:00
Tom Tromey
036003a671 Silence ARI for valid calls to abort
There are a handful of spots in gdb that validly call abort.  This
patch adds the appropriate ARI marker to these lines, to silence the
ARI report.  This also removes the "fix" call for "abort" from
gdb_ari.sh; it was incorrect and now is not needed.

gdb/ChangeLog
2019-12-13  Tom Tromey  <tromey@adacore.com>

	* contrib/ari/gdb_ari.sh: Remove "fix" call for abort.
	* utils.c (abort_with_message, dump_core, internal_vproblem): Add
	ARI marker to abort.
	* event-top.c (handle_sigsegv): Add ARI marker to abort.

Change-Id: I09ce6aa5010bbe4e5bb73ffdb727481be39d34d6
2019-12-13 15:15:31 -07:00
Tom Tromey
3b3978bca2 Introduce thread-safe way to handle SIGSEGV
The gdb demangler installs a SIGSEGV handler in order to protect gdb
from demangler bugs.  However, this is not thread-safe, as signal
handlers are global to the process.

This patch changes gdb to always install a global SIGSEGV handler, and
then lets threads indicate their interest in handling the signal by
setting a thread-local variable.

This patch then arranges for the demangler code to use this; being
sure to arrange for calls to warning and the like to be done on the
main thread.

One thing I wondered while writing this patch is if there are any
systems that do not have "sigaction".  If gdb could assume this, it
would simplify this code.

gdb/ChangeLog
2019-11-26  Tom Tromey  <tom@tromey.com>

	* event-top.h (thread_local_segv_handler): Declare.
	* event-top.c (thread_local_segv_handler): New global.
	(install_handle_sigsegv, handle_sigsegv): New functions.
	(async_init_signals): Install SIGSEGV handler.
	* cp-support.c (gdb_demangle_jmp_buf): Change type.  Now
	thread-local.
	(report_failed_demangle): New function.
	(gdb_demangle): Make core_dump_allowed atomic.  Remove signal
	handler-setting code, instead use segv_handler.  Run warning code
	on main thread.

Change-Id: Ic832bbb033b64744e4b44f14b41db7e4168ce427
2019-11-26 14:02:57 -07:00
Tom Tromey
21987b9c06 Add RAII class for blocking gdb signals
This adds configury support and an RAII class that can be used to
temporarily block signals that are used by gdb.  (This class is not
used in this patch, but it split out for easier review.)

The idea of this patch is that these signals should only be delivered
to the main thread.  So, when creating a background thread, they are
temporarily blocked; the blocked state is inherited by the new thread.

The sigprocmask man page says:

    The use of sigprocmask() is unspecified in a multithreaded
    process; see pthread_sigmask(3).

This patch changes gdb to use pthread_sigmask when appropriate, by
introducing a convenience define.

I've updated gdbserver as well, because I had to touch gdbsupport, and
because the threading patches will make it link against the thread
library.

I chose not to touch the NTO code, because I don't know anything about
that platform and because I cannot test it.

Finally, this modifies an existing spot in the Guile layer to use the
new facility.

gdb/ChangeLog
2019-11-26  Tom Tromey  <tom@tromey.com>

	* gdbsupport/signals-state-save-restore.c (original_signal_mask):
	Remove comment.
	(save_original_signals_state, restore_original_signals_state): Use
	gdb_sigmask.
	* linux-nat.c (block_child_signals, restore_child_signals_mask)
	(_initialize_linux_nat): Use gdb_sigmask.
	* guile/guile.c (_initialize_guile): Use block_signals.
	* Makefile.in (HFILES_NO_SRCDIR): Add gdb-sigmask.h.
	* gdbsupport/gdb-sigmask.h: New file.
	* event-top.c (async_sigtstp_handler): Use gdb_sigmask.
	* cp-support.c (gdb_demangle): Use gdb_sigmask.
	* gdbsupport/common.m4 (GDB_AC_COMMON): Check for
	pthread_sigmask.
	* configure, config.in: Rebuild.
	* gdbsupport/block-signals.h: New file.

gdb/gdbserver/ChangeLog
2019-11-26  Tom Tromey  <tom@tromey.com>

	* remote-utils.c (block_unblock_async_io): Use gdb_sigmask.
	* linux-low.c (linux_wait_for_event_filtered, linux_async): Use
	gdb_sigmask.
	* configure, config.in: Rebuild.

Change-Id: If3f37dc57dd859c226e9e4d79458a0514746e8c6
2019-11-26 14:02:57 -07:00
Tom de Vries
405feb71d4 [gdb] Fix typos in comments
Fix typos in comments.  NFC.

Tested on x86_64-linux.

gdb/ChangeLog:

2019-10-17  Tom de Vries  <tdevries@suse.de>

	* arm-nbsd-nat.c: Fix typos in comments.
	* arm-tdep.c: Same.
	* darwin-nat-info.c: Same.
	* dwarf2read.c: Same.
	* elfread.c: Same.
	* event-top.c: Same.
	* findvar.c: Same.
	* gdbtypes.c: Same.
	* hppa-tdep.c: Same.
	* i386-tdep.c: Same.
	* jit.c: Same.
	* main.c: Same.
	* mdebugread.c: Same.
	* moxie-tdep.c: Same.
	* nto-procfs.c: Same.
	* osabi.c: Same.
	* ppc-linux-tdep.c: Same.
	* remote.c: Same.
	* riscv-tdep.c: Same.
	* s390-tdep.c: Same.
	* sh-tdep.c: Same.
	* sparc-linux-tdep.c: Same.
	* sparc-nat.c: Same.
	* stack.c: Same.
	* target-descriptions.c: Same.
	* top.c: Same.
	* varobj.c: Same.

Change-Id: I6047967abd2d51c9000dea15184d19f4e952c3ff
2019-10-17 18:06:36 +02:00
Christian Biesinger
491144b5e2 Change boolean options to bool instead of int
This is for add_setshow_boolean_cmd as well as the gdb::option interface.

gdb/ChangeLog:

2019-09-17  Christian Biesinger  <cbiesinger@google.com>

	* ada-lang.c (ada_ignore_descriptive_types_p): Change to bool.
	(print_signatures): Likewise.
	(trust_pad_over_xvs): Likewise.
	* arch/aarch64-insn.c (aarch64_debug): Likewise.
	* arch/aarch64-insn.h (aarch64_debug): Likewise.
	* arm-linux-nat.c (arm_apcs_32): Likewise.
	* arm-linux-tdep.c (arm_apcs_32): Likewise.
	* arm-nbsd-nat.c (arm_apcs_32): Likewise.
	* arm-tdep.c (arm_debug): Likewise.
	(arm_apcs_32): Likewise.
	* auto-load.c (debug_auto_load): Likewise.
	(auto_load_gdb_scripts): Likewise.
	(global_auto_load): Likewise.
	(auto_load_local_gdbinit): Likewise.
	(auto_load_local_gdbinit_loaded): Likewise.
	* auto-load.h (global_auto_load): Likewise.
	(auto_load_local_gdbinit): Likewise.
	(auto_load_local_gdbinit_loaded): Likewise.
	* breakpoint.c (disconnected_dprintf): Likewise.
	(breakpoint_proceeded): Likewise.
	(automatic_hardware_breakpoints): Likewise.
	(always_inserted_mode): Likewise.
	(target_exact_watchpoints): Likewise.
	(_initialize_breakpoint): Update.
	* breakpoint.h (target_exact_watchpoints): Change to bool.
	* btrace.c (maint_btrace_pt_skip_pad): Likewise.
	* cli/cli-cmds.c (trace_commands): Likewise.
	* cli/cli-cmds.h (trace_commands): Likewise.
	* cli/cli-decode.c (add_setshow_boolean_cmd): Change int* argument
	to bool*.
	* cli/cli-logging.c (logging_overwrite): Change to bool.
	(logging_redirect): Likewise.
	(debug_redirect): Likewise.
	* cli/cli-option.h (option_def) <boolean>: Change return type to bool*.
	(struct boolean_option_def) <get_var_address_cb_>: Change return type
	to bool.
	<boolean_option_def>: Update.
	(struct flag_option_def): Change default type of Context to bool
	from int.
	<flag_option_def>: Change return type of var_address_cb_ to bool*.
	* cli/cli-setshow.c (do_set_command): Cast to bool* instead of int*.
	(get_setshow_command_value_string): Likewise.
	* cli/cli-style.c (cli_styling): Change to bool.
	(source_styling): Likewise.
	* cli/cli-style.h (source_styling): Likewise.
	(cli_styling): Likewise.
	* cli/cli-utils.h (struct qcs_flags) <quiet, cont, silent>: Change
	to bool.
	* command.h (var_types): Update comment.
	(add_setshow_boolean_cmd): Change int* var argument to bool*.
	* compile/compile-cplus-types.c (debug_compile_cplus_types): Change to
	bool.
	(debug_compile_cplus_scopes): Likewise.
	* compile/compile-internal.h (compile_debug): Likewise.
	* compile/compile.c (compile_debug): Likewise.
	(struct compile_options) <raw>: Likewise.
	* cp-support.c (catch_demangler_crashes): Likewise.
	* cris-tdep.c (usr_cmd_cris_version_valid): Likewise.
	(usr_cmd_cris_dwarf2_cfi): Likewise.
	* csky-tdep.c (csky_debug): Likewise.
	* darwin-nat.c (enable_mach_exceptions): Likewise.
	* dcache.c (dcache_enabled_p): Likewise.
	* defs.h (info_verbose): Likewise.
	* demangle.c (demangle): Likewise.
	(asm_demangle): Likewise.
	* dwarf-index-cache.c (debug_index_cache): Likewise.
	* dwarf2-frame.c (dwarf2_frame_unwinders_enabled_p): Likewise.
	* dwarf2-frame.h (dwarf2_frame_unwinders_enabled_p): Likewise.
	* dwarf2read.c (check_physname): Likewise.
	(use_deprecated_index_sections): Likewise.
	(dwarf_always_disassemble): Likewise.
	* eval.c (overload_resolution): Likewise.
	* event-top.c (set_editing_cmd_var): Likewise.
	(exec_done_display_p): Likewise.
	* event-top.h (set_editing_cmd_var): Likewise.
	(exec_done_display_p): Likewise.
	* exec.c (write_files): Likewise.
	* fbsd-nat.c (debug_fbsd_lwp): Likewise
	(debug_fbsd_nat): Likewise.
	* frame.h (struct frame_print_options) <print_raw_frame_arguments>:
	Likewise.
	(struct set_backtrace_options) <backtrace_past_main>: Likewise.
	<backtrace_past_entry> Likewise.
	* gdb-demangle.h (demangle): Likewise.
	(asm_demangle): Likewise.
	* gdb_bfd.c (bfd_sharing): Likewise.
	* gdbcore.h (write_files): Likewise.
	* gdbsupport/common-debug.c (show_debug_regs): Likewise.
	* gdbsupport/common-debug.h (show_debug_regs): Likewise.
	* gdbthread.h (print_thread_events): Likewise.
	* gdbtypes.c (opaque_type_resolution): Likewise.
	(strict_type_checking): Likewise.
	* gnu-nat.c (gnu_debug_flag): Likewise.
	* guile/scm-auto-load.c (auto_load_guile_scripts): Likewise.
	* guile/scm-param.c (pascm_variable): Add boolval.
	(add_setshow_generic): Update.
	(pascm_param_value): Update.
	(pascm_set_param_value_x): Update.
	* hppa-tdep.c (hppa_debug): Change to bool..
	* infcall.c (may_call_functions_p): Likewise.
	(coerce_float_to_double_p): Likewise.
	(unwind_on_signal_p): Likewise.
	(unwind_on_terminating_exception_p): Likewise.
	* infcmd.c (startup_with_shell): Likewise.
	* inferior.c (print_inferior_events): Likewise.
	* inferior.h (startup_with_shell): Likewise.
	(print_inferior_events): Likewise.
	* infrun.c (step_stop_if_no_debug): Likewise.
	(detach_fork): Likewise.
	(debug_displaced): Likewise.
	(disable_randomization): Likewise.
	(non_stop): Likewise.
	(non_stop_1): Likewise.
	(observer_mode): Likewise.
	(observer_mode_1): Likewise.
	(set_observer_mode): Update.
	(sched_multi): Change to bool.
	* infrun.h (debug_displaced): Likewise.
	(sched_multi): Likewise.
	(step_stop_if_no_debug): Likewise.
	(non_stop): Likewise.
	(disable_randomization): Likewise.
	* linux-tdep.c (use_coredump_filter): Likewise.
	(dump_excluded_mappings): Likewise.
	* linux-thread-db.c (auto_load_thread_db): Likewise.
	(check_thread_db_on_load): Likewise.
	* main.c (captured_main_1): Update.
	* maint-test-options.c (struct test_options_opts) <flag_opt, xx1_opt,
	xx2_opt, boolean_opt>: Change to bool.
	* maint-test-settings.c (maintenance_test_settings_boolean): Likewise.
	* maint.c (maintenance_profile_p): Likewise.
	(per_command_time): Likewise.
	(per_command_space): Likewise.
	(per_command_symtab): Likewise.
	* memattr.c (inaccessible_by_default): Likewise.
	* mi/mi-main.c (mi_async): Likewise.
	(mi_async_1): Likewise.
	* mips-tdep.c (mips64_transfers_32bit_regs_p): Likewise.
	* nat/fork-inferior.h (startup_with_shell): Likewise.
	* nat/linux-namespaces.c (debug_linux_namespaces): Likewise.
	* nat/linux-namespaces.h (debug_linux_namespaces): Likewise.
	* nios2-tdep.c (nios2_debug): Likewise.
	* or1k-tdep.c (or1k_debug): Likewise.
	* parse.c (parser_debug): Likewise.
	* parser-defs.h (parser_debug): Likewise.
	* printcmd.c (print_symbol_filename): Likewise.
	* proc-api.c (procfs_trace): Likewise.
	* python/py-auto-load.c (auto_load_python_scripts): Likewise.
	* python/py-param.c (union parmpy_variable): Add "bool boolval" field.
	(set_parameter_value): Update.
	(add_setshow_generic): Update.
	* python/py-value.c (copy_py_bool_obj): Change argument from int*
	to bool*.
	* python/python.c (gdbpy_parameter_value): Cast to bool* instead of
	int*.
	* ravenscar-thread.c (ravenscar_task_support): Change to bool.
	* record-btrace.c (record_btrace_target::store_registers): Update.
	* record-full.c (record_full_memory_query): Change to bool.
	(record_full_stop_at_limit): Likewise.
	* record-full.h (record_full_memory_query): Likewise.
	* remote-notif.c (notif_debug): Likewise.
	* remote-notif.h (notif_debug): Likewise.
	* remote.c (use_range_stepping): Likewise.
	(interrupt_on_connect): Likewise.
	(remote_break): Likewise.
	* ser-tcp.c (tcp_auto_retry): Likewise.
	* ser-unix.c (serial_hwflow): Likewise.
	* skip.c (debug_skip): Likewise.
	* solib-aix.c (solib_aix_debug): Likewise.
	* spu-tdep.c (spu_stop_on_load_p): Likewise.
	(spu_auto_flush_cache_p): Likewise.
	* stack.c (struct backtrace_cmd_options) <full, no_filters, hide>:
	Likewise.
	(struct info_print_options) <quiet>: Likewise.
	* symfile-debug.c (debug_symfile): Likewise.
	* symfile.c (auto_solib_add): Likewise.
	(separate_debug_file_debug): Likewise.
	* symfile.h (auto_solib_add): Likewise.
	(separate_debug_file_debug): Likewise.
	* symtab.c (basenames_may_differ): Likewise.
	(struct filename_partial_match_opts) <dirname, basename>: Likewise.
	(struct info_print_options) <quiet, exclude_minsyms>: Likewise.
	(struct info_types_options) <quiet>: Likewise.
	* symtab.h (demangle): Likewise.
	(basenames_may_differ): Likewise.
	* target-dcache.c (stack_cache_enabled_1): Likewise.
	(code_cache_enabled_1): Likewise.
	* target.c (trust_readonly): Likewise.
	(may_write_registers): Likewise.
	(may_write_memory): Likewise.
	(may_insert_breakpoints): Likewise.
	(may_insert_tracepoints): Likewise.
	(may_insert_fast_tracepoints): Likewise.
	(may_stop): Likewise.
	(auto_connect_native_target): Likewise.
	(target_stop_and_wait): Update.
	(target_async_permitted): Change to bool.
	(target_async_permitted_1): Likewise.
	(may_write_registers_1): Likewise.
	(may_write_memory_1): Likewise.
	(may_insert_breakpoints_1): Likewise.
	(may_insert_tracepoints_1): Likewise.
	(may_insert_fast_tracepoints_1): Likewise.
	(may_stop_1): Likewise.
	* target.h (target_async_permitted): Likewise.
	(may_write_registers): Likewise.
	(may_write_memory): Likewise.
	(may_insert_breakpoints): Likewise.
	(may_insert_tracepoints): Likewise.
	(may_insert_fast_tracepoints): Likewise.
	(may_stop): Likewise.
	* thread.c (struct info_threads_opts) <show_global_ids>: Likewise.
	(make_thread_apply_all_options_def_group): Change argument from int*
	to bool*.
	(thread_apply_all_command): Update.
	(print_thread_events): Change to bool.
	* top.c (confirm): Likewise.
	(command_editing_p): Likewise.
	(history_expansion_p): Likewise.
	(write_history_p): Likewise.
	(info_verbose): Likewise.
	* top.h (confirm): Likewise.
	(history_expansion_p): Likewise.
	* tracepoint.c (disconnected_tracing): Likewise.
	(circular_trace_buffer): Likewise.
	* typeprint.c (print_methods): Likewise.
	(print_typedefs): Likewise.
	* utils.c (debug_timestamp): Likewise.
	(sevenbit_strings): Likewise.
	(pagination_enabled): Likewise.
	* utils.h (sevenbit_strings): Likewise.
	(pagination_enabled): Likewise.
	* valops.c (overload_resolution): Likewise.
	* valprint.h (struct value_print_options) <prettyformat_arrays,
	prettyformat_structs, vtblprint, unionprint, addressprint, objectprint,
	stop_print_at_null, print_array_indexes, deref_ref, static_field_print,
	pascal_static_field_print, raw, summary, symbol_print, finish_print>:
	Likewise.
	* windows-nat.c (new_console): Likewise.
	(cygwin_exceptions): Likewise.
	(new_group): Likewise.
	(debug_exec): Likewise.
	(debug_events): Likewise.
	(debug_memory): Likewise.
	(debug_exceptions): Likewise.
	(useshell): Likewise.
	* windows-tdep.c (maint_display_all_tib): Likewise.
	* xml-support.c (debug_xml): Likewise.
2019-09-18 09:35:12 +09:00
Tom Tromey
268a13a5a3 Rename common to gdbsupport
This is the next patch in the ongoing series to move gdbsever to the
top level.

This patch just renames the "common" directory.  The idea is to do
this move in two parts: first rename the directory (this patch), then
move the directory to the top.  This approach makes the patches a bit
more tractable.

I chose the name "gdbsupport" for the directory.  However, as this
patch was largely written by sed, we could pick a new name without too
much difficulty.

Tested by the buildbot.

gdb/ChangeLog
2019-07-09  Tom Tromey  <tom@tromey.com>

	* contrib/ari/gdb_ari.sh: Change common to gdbsupport.
	* configure: Rebuild.
	* configure.ac: Change common to gdbsupport.
	* gdbsupport: Rename from common.
	* acinclude.m4: Change common to gdbsupport.
	* Makefile.in (CONFIG_SRC_SUBDIR, COMMON_SFILES)
	(HFILES_NO_SRCDIR, stamp-version, ALLDEPFILES): Change common to
	gdbsupport.
	* aarch64-tdep.c, ada-lang.c, ada-lang.h, agent.c, alloc.c,
	amd64-darwin-tdep.c, amd64-dicos-tdep.c, amd64-fbsd-nat.c,
	amd64-fbsd-tdep.c, amd64-linux-nat.c, amd64-linux-tdep.c,
	amd64-nbsd-tdep.c, amd64-obsd-tdep.c, amd64-sol2-tdep.c,
	amd64-tdep.c, amd64-windows-tdep.c, arch-utils.c,
	arch/aarch64-insn.c, arch/aarch64.c, arch/aarch64.h, arch/amd64.c,
	arch/amd64.h, arch/arm-get-next-pcs.c, arch/arm-linux.c,
	arch/arm.c, arch/i386.c, arch/i386.h, arch/ppc-linux-common.c,
	arch/riscv.c, arch/riscv.h, arch/tic6x.c, arm-tdep.c, auto-load.c,
	auxv.c, ax-gdb.c, ax-general.c, ax.h, breakpoint.c, breakpoint.h,
	btrace.c, btrace.h, build-id.c, build-id.h, c-lang.h, charset.c,
	charset.h, cli/cli-cmds.c, cli/cli-cmds.h, cli/cli-decode.c,
	cli/cli-dump.c, cli/cli-option.h, cli/cli-script.c,
	coff-pe-read.c, command.h, compile/compile-c-support.c,
	compile/compile-c.h, compile/compile-cplus-symbols.c,
	compile/compile-cplus-types.c, compile/compile-cplus.h,
	compile/compile-loc2c.c, compile/compile.c, completer.c,
	completer.h, contrib/ari/gdb_ari.sh, corefile.c, corelow.c,
	cp-support.c, cp-support.h, cp-valprint.c, csky-tdep.c, ctf.c,
	darwin-nat.c, debug.c, defs.h, disasm-selftests.c, disasm.c,
	disasm.h, dtrace-probe.c, dwarf-index-cache.c,
	dwarf-index-cache.h, dwarf-index-write.c, dwarf2-frame.c,
	dwarf2expr.c, dwarf2loc.c, dwarf2read.c, event-loop.c,
	event-top.c, exceptions.c, exec.c, extension.h, fbsd-nat.c,
	features/aarch64-core.c, features/aarch64-fpu.c,
	features/aarch64-pauth.c, features/aarch64-sve.c,
	features/i386/32bit-avx.c, features/i386/32bit-avx512.c,
	features/i386/32bit-core.c, features/i386/32bit-linux.c,
	features/i386/32bit-mpx.c, features/i386/32bit-pkeys.c,
	features/i386/32bit-segments.c, features/i386/32bit-sse.c,
	features/i386/64bit-avx.c, features/i386/64bit-avx512.c,
	features/i386/64bit-core.c, features/i386/64bit-linux.c,
	features/i386/64bit-mpx.c, features/i386/64bit-pkeys.c,
	features/i386/64bit-segments.c, features/i386/64bit-sse.c,
	features/i386/x32-core.c, features/riscv/32bit-cpu.c,
	features/riscv/32bit-csr.c, features/riscv/32bit-fpu.c,
	features/riscv/64bit-cpu.c, features/riscv/64bit-csr.c,
	features/riscv/64bit-fpu.c, features/tic6x-c6xp.c,
	features/tic6x-core.c, features/tic6x-gp.c, filename-seen-cache.h,
	findcmd.c, findvar.c, fork-child.c, gcore.c, gdb_bfd.c, gdb_bfd.h,
	gdb_proc_service.h, gdb_regex.c, gdb_select.h, gdb_usleep.c,
	gdbarch-selftests.c, gdbthread.h, gdbtypes.h, gnu-nat.c,
	go32-nat.c, guile/guile.c, guile/scm-ports.c,
	guile/scm-safe-call.c, guile/scm-type.c, i386-fbsd-nat.c,
	i386-fbsd-tdep.c, i386-go32-tdep.c, i386-linux-nat.c,
	i386-linux-tdep.c, i386-tdep.c, i387-tdep.c,
	ia64-libunwind-tdep.c, ia64-linux-nat.c, inf-child.c,
	inf-ptrace.c, infcall.c, infcall.h, infcmd.c, inferior-iter.h,
	inferior.c, inferior.h, inflow.c, inflow.h, infrun.c, infrun.h,
	inline-frame.c, language.h, linespec.c, linux-fork.c, linux-nat.c,
	linux-tdep.c, linux-thread-db.c, location.c, machoread.c,
	macrotab.h, main.c, maint.c, maint.h, memattr.c, memrange.h,
	mi/mi-cmd-break.h, mi/mi-cmd-env.c, mi/mi-cmd-stack.c,
	mi/mi-cmd-var.c, mi/mi-interp.c, mi/mi-main.c, mi/mi-parse.h,
	minsyms.c, mips-linux-tdep.c, namespace.h,
	nat/aarch64-linux-hw-point.c, nat/aarch64-linux-hw-point.h,
	nat/aarch64-linux.c, nat/aarch64-sve-linux-ptrace.c,
	nat/amd64-linux-siginfo.c, nat/fork-inferior.c,
	nat/linux-btrace.c, nat/linux-btrace.h, nat/linux-namespaces.c,
	nat/linux-nat.h, nat/linux-osdata.c, nat/linux-personality.c,
	nat/linux-procfs.c, nat/linux-ptrace.c, nat/linux-ptrace.h,
	nat/linux-waitpid.c, nat/mips-linux-watch.c,
	nat/mips-linux-watch.h, nat/ppc-linux.c, nat/x86-dregs.c,
	nat/x86-dregs.h, nat/x86-linux-dregs.c, nat/x86-linux.c,
	nto-procfs.c, nto-tdep.c, objfile-flags.h, objfiles.c, objfiles.h,
	obsd-nat.c, observable.h, osdata.c, p-valprint.c, parse.c,
	parser-defs.h, ppc-linux-nat.c, printcmd.c, probe.c, proc-api.c,
	procfs.c, producer.c, progspace.h, psymtab.h,
	python/py-framefilter.c, python/py-inferior.c, python/py-ref.h,
	python/py-type.c, python/python.c, record-btrace.c, record-full.c,
	record.c, record.h, regcache-dump.c, regcache.c, regcache.h,
	remote-fileio.c, remote-fileio.h, remote-sim.c, remote.c,
	riscv-tdep.c, rs6000-aix-tdep.c, rust-exp.y, s12z-tdep.c,
	selftest-arch.c, ser-base.c, ser-event.c, ser-pipe.c, ser-tcp.c,
	ser-unix.c, skip.c, solib-aix.c, solib-target.c, solib.c,
	source-cache.c, source.c, source.h, sparc-nat.c, spu-linux-nat.c,
	stack.c, stap-probe.c, symfile-add-flags.h, symfile.c, symfile.h,
	symtab.c, symtab.h, target-descriptions.c, target-descriptions.h,
	target-memory.c, target.c, target.h, target/waitstatus.c,
	target/waitstatus.h, thread-iter.h, thread.c, tilegx-tdep.c,
	top.c, top.h, tracefile-tfile.c, tracefile.c, tracepoint.c,
	tracepoint.h, tui/tui-io.c, ui-file.c, ui-out.h,
	unittests/array-view-selftests.c,
	unittests/child-path-selftests.c, unittests/cli-utils-selftests.c,
	unittests/common-utils-selftests.c,
	unittests/copy_bitwise-selftests.c, unittests/environ-selftests.c,
	unittests/format_pieces-selftests.c,
	unittests/function-view-selftests.c,
	unittests/lookup_name_info-selftests.c,
	unittests/memory-map-selftests.c, unittests/memrange-selftests.c,
	unittests/mkdir-recursive-selftests.c,
	unittests/observable-selftests.c,
	unittests/offset-type-selftests.c, unittests/optional-selftests.c,
	unittests/parse-connection-spec-selftests.c,
	unittests/ptid-selftests.c, unittests/rsp-low-selftests.c,
	unittests/scoped_fd-selftests.c,
	unittests/scoped_mmap-selftests.c,
	unittests/scoped_restore-selftests.c,
	unittests/string_view-selftests.c, unittests/style-selftests.c,
	unittests/tracepoint-selftests.c, unittests/unpack-selftests.c,
	unittests/utils-selftests.c, unittests/xml-utils-selftests.c,
	utils.c, utils.h, valarith.c, valops.c, valprint.c, value.c,
	value.h, varobj.c, varobj.h, windows-nat.c, x86-linux-nat.c,
	xml-support.c, xml-support.h, xml-tdesc.h, xstormy16-tdep.c,
	xtensa-linux-nat.c, dwarf2read.h: Change common to gdbsupport.

gdb/gdbserver/ChangeLog
2019-07-09  Tom Tromey  <tom@tromey.com>

	* configure: Rebuild.
	* configure.ac: Change common to gdbsupport.
	* acinclude.m4: Change common to gdbsupport.
	* Makefile.in (SFILES, OBS, GDBREPLAY_OBS, IPA_OBJS)
	(version-generated.c, gdbsupport/%-ipa.o, gdbsupport/%.o): Change
	common to gdbsupport.
	* ax.c, event-loop.c, fork-child.c, gdb_proc_service.h,
	gdbreplay.c, gdbthread.h, hostio-errno.c, hostio.c, i387-fp.c,
	inferiors.c, inferiors.h, linux-aarch64-tdesc-selftest.c,
	linux-amd64-ipa.c, linux-i386-ipa.c, linux-low.c,
	linux-tic6x-low.c, linux-x86-low.c, linux-x86-tdesc-selftest.c,
	linux-x86-tdesc.c, lynx-i386-low.c, lynx-low.c, mem-break.h,
	nto-x86-low.c, regcache.c, regcache.h, remote-utils.c, server.c,
	server.h, spu-low.c, symbol.c, target.h, tdesc.c, tdesc.h,
	thread-db.c, tracepoint.c, win32-i386-low.c, win32-low.c: Change
	common to gdbsupport.
2019-07-09 07:45:38 -06:00
Philippe Waroquiers
68bb5386b8 Add previous_saved_command_line to allow a command to repeat a previous command.
Currently, a previous command can be repeated when the user types an
empty line.  This is implemented in handle_line_of_input by
returning saved_command_line in case an empty line has been input.

If we want a command to repeat the previous command, we need to save
the previous saved_command_line, as when a command runs, the saved_command_line
already contains the current command line of the command being executed.

As suggested by Tom, the previous_saved_command_line is made static.
At the same time, saved_command_line is also made static.
The support functions/variables for the repeat command logic are now all
located inside top.c.

gdb/ChangeLog
2019-05-31  Philippe Waroquiers  <philippe.waroquiers@skynet.be>

	* top.h (saved_command_line): Remove declaration.
	* top.c (previous_saved_command_line, previous_repeat_arguments):
	New variables.
	(saved_command_line): Make static, define together with other
	'repeat variables'.
	(dont_repeat): Clear repeat_arguments.
	(repeat_previous, get_saved_command_line, save_command_line):
	New functions.
	(gdb_init): Initialize saved_command_line
	and previous_saved_command_line.
	* main.c (captured_main_1): Remove saved_command_line initialization.
	* event-top.c (handle_line_of_input): Update to use
	the new 'repeat' related functions instead of direct access to
	saved_command_line.
	* command.h (repeat_previous, get_saved_command_line,
	save_command_line): New declarations.
	(dont_repeat): Add comment.
2019-05-31 17:10:08 +02:00
Alan Hayward
766f883622 Suppress SIGTTOU when handling errors
Calls to error () can cause SIGTTOU to send gdb to the background.

For example, on an Arm build:
  (gdb) b main
  Breakpoint 1 at 0x10774: file /build/gdb/testsuite/../../../src/binutils-gdb/gdb/testsuite/gdb.base/watchpoint.c, line 174.
  (gdb) r
  Starting program: /build/gdb/testsuite/outputs/gdb.base/watchpoint/watchpoint

  [1]+  Stopped                 ../gdb ./outputs/gdb.base/watchpoint/watchpoint
  localhost$ fg
  ../gdb ./outputs/gdb.base/watchpoint/watchpoint
  Cannot parse expression `.L1199 4@r4'.
  warning: Probes-based dynamic linker interface failed.
  Reverting to original interface.

The SIGTTOU is raised whilst inside a syscall during the call to tcdrain.
Fix is to use scoped_ignore_sigttou to ensure SIGTTOU is blocked.

In addition fix include comments - job_control is not included via terminal.h

gdb/ChangeLog:

	* event-top.c: Remove include comment.
	* inflow.c (class scoped_ignore_sigttou): Move from here...
	* inflow.h (class scoped_ignore_sigttou): ...to here.
	* ser-unix.c (hardwire_drain_output): Block SIGTTOU during drain.
	* top.c:  Remove include comment.
2019-05-28 10:07:54 +01:00
Tom Tromey
3d1cbb7893 Fix memory leak in exception code
PR gdb/24475 concerns a memory leak coming from gdb's exception
handling code.

The leak occurs because throw_exception_sjlj does not arrange to
destroy the exception object it is passed.  However, because
gdb_exception has a destructor, it's undefined to longjmp in this
situation.

This patch fixes the problem by avoiding the need to run any
destructors in gdb_rl_callback_handler, by making the gdb_exception
"static".

gdb/ChangeLog
2019-04-25  Tom Tromey  <tromey@adacore.com>

	PR gdb/24475:
	* event-top.c (gdb_rl_callback_handler): Make "gdb_rl_expt"
	static.
2019-04-25 12:59:35 -06:00
Tom Tromey
94aeb44b00 Make exception handling more efficient
This makes exception handling more efficient in a few spots, through
the use of const- and rvalue-references.

I wrote this patch by commenting out the gdb_exception copy
constructor and then examining the resulting error messages one by
one, introducing the use of std::move where appropriate.

gdb/ChangeLog
2019-04-25  Tom Tromey  <tromey@adacore.com>

	* xml-support.c (struct gdb_xml_parser) <set_error>: Take an
	rvalue reference.
	(gdb_xml_start_element_wrapper, gdb_xml_end_element_wrapper)
	(gdb_xml_parser::parse): Use std::move.
	* python/python-internal.h (gdbpy_convert_exception): Take a const
	reference.
	* python/py-value.c (valpy_getitem, valpy_nonzero): Use
	std::move.
	* python/py-utils.c (gdbpy_convert_exception): Take a const
	reference.
	* python/py-inferior.c (infpy_write_memory, infpy_search_memory):
	Use std::move.
	* python/py-breakpoint.c (bppy_set_condition, bppy_set_commands):
	Use std::move.
	* mi/mi-main.c (mi_print_exception): Take a const reference.
	* main.c (handle_command_errors): Take a const reference.
	* linespec.c (parse_linespec): Use std::move.
	* infcall.c (run_inferior_call): Use std::move.
	(call_function_by_hand_dummy): Use std::move.
	* exec.c (try_open_exec_file): Use std::move.
	* exceptions.h (exception_print, exception_fprintf)
	(exception_print_same): Update.
	* exceptions.c (print_exception, exception_print)
	(exception_fprintf, exception_print_same): Change parameters to
	const reference.
	* event-top.c (gdb_rl_callback_read_char_wrapper): Update.
	* common/new-op.c: Use std::move.
	* common/common-exceptions.h (struct gdb_exception): Add move
	constructor.
	(struct gdb_exception_error, struct gdb_exception_quit, struct
	gdb_quit_bad_alloc): Change constructor to move constructor.
	(throw_exception): Change parameter to rvalue reference.
	* common/common-exceptions.c (throw_exception): Take rvalue
	reference.
	* cli/cli-interp.c (safe_execute_command): Use std::move.
	* breakpoint.c (insert_bp_location, location_to_sals): Use
	std::move.
2019-04-25 12:59:35 -06:00
Tom Tromey
c6fdd8b205 Make SJLJ exceptions more efficient
This changes the SJLJ exception handling code to be a bit more
efficient, by using rvalue references and move assignment when
possible.

Tested by the buildbot.

gdb/ChangeLog
2019-04-25  Tom Tromey  <tromey@adacore.com>

	* event-top.c (gdb_rl_callback_read_char_wrapper_noexcept)
	(gdb_rl_callback_handler): Use std::move.
	* common/common-exceptions.h (struct gdb_exception): Add move
	assignment operator.
	(throw_exception_sjlj): Change "exception" to const reference.
	* common/common-exceptions.c (exceptions_state_mc_catch): Update.
	(throw_exception_sjlj): Change "exception" to const reference.
2019-04-25 12:59:35 -06:00
Tom Tromey
cc06b66897 Remove exception_none
Now that gdb_exception has a constructor, there's no need for
exception_none.  This patch removes it.

gdb/ChangeLog
2019-04-25  Tom Tromey  <tromey@adacore.com>

	* xml-support.c (gdb_xml_parser::gdb_xml_parser): Update.
	* python/py-value.c (valpy_getitem, valpy_nonzero): Update.
	* python/py-inferior.c (infpy_write_memory, infpy_search_memory):
	Update.
	* python/py-breakpoint.c (bppy_set_condition, bppy_set_commands):
	Update.
	* mi/mi-interp.c (mi_interp::exec): Update.
	* linespec.c (parse_linespec): Update.
	* infcall.c (run_inferior_call): Update.
	* guile/scm-value.c (gdbscm_value_to_lazy_string): Update.
	* guile/scm-symbol.c (gdbscm_lookup_symbol)
	(gdbscm_lookup_global_symbol): Update.
	* guile/scm-param.c (gdbscm_parameter_value): Update.
	* guile/scm-frame.c (gdbscm_frame_read_register)
	(gdbscm_frame_read_var): Update.
	* guile/scm-breakpoint.c (gdbscm_register_breakpoint_x): Update.
	* exec.c (try_open_exec_file): Update.
	* event-top.c (gdb_rl_callback_read_char_wrapper_noexcept)
	(gdb_rl_callback_handler): Update.
	* common/common-exceptions.h (exception_none): Don't declare.
	* common/common-exceptions.c (exception_none): Don't define.
	(struct catcher) <exception>: Update.
	* cli/cli-interp.c (safe_execute_command): Update.
	* breakpoint.c (insert_bp_location, location_to_sals): Update.
2019-04-25 12:59:35 -06:00
Tom Tromey
230d2906b9 Rename gdb exception types
This renames the gdb exception types.  The old types were only needed
due to the macros in common-exception.h that are now gone.

The intermediate layer of gdb_exception_RETURN_MASK_ALL did not seem
needed, so this patch removes it entirely.

gdb/ChangeLog
2019-04-08  Tom Tromey  <tom@tromey.com>

	* common/common-exceptions.h (gdb_exception_RETURN_MASK_ALL):
	Remove.
	(gdb_exception_error): Rename from
	gdb_exception_RETURN_MASK_ERROR.
	(gdb_exception_quit): Rename from gdb_exception_RETURN_MASK_QUIT.
	(gdb_quit_bad_alloc): Update.
	* aarch64-tdep.c: Update.
	* ada-lang.c: Update.
	* ada-typeprint.c: Update.
	* ada-valprint.c: Update.
	* amd64-tdep.c: Update.
	* arch-utils.c: Update.
	* break-catch-throw.c: Update.
	* breakpoint.c: Update.
	* btrace.c: Update.
	* c-varobj.c: Update.
	* cli/cli-cmds.c: Update.
	* cli/cli-interp.c: Update.
	* cli/cli-script.c: Update.
	* common/common-exceptions.c: Update.
	* common/new-op.c: Update.
	* common/selftest.c: Update.
	* compile/compile-c-symbols.c: Update.
	* compile/compile-cplus-symbols.c: Update.
	* compile/compile-object-load.c: Update.
	* compile/compile-object-run.c: Update.
	* completer.c: Update.
	* corelow.c: Update.
	* cp-abi.c: Update.
	* cp-support.c: Update.
	* cp-valprint.c: Update.
	* darwin-nat.c: Update.
	* disasm-selftests.c: Update.
	* dtrace-probe.c: Update.
	* dwarf-index-cache.c: Update.
	* dwarf-index-write.c: Update.
	* dwarf2-frame-tailcall.c: Update.
	* dwarf2-frame.c: Update.
	* dwarf2loc.c: Update.
	* dwarf2read.c: Update.
	* eval.c: Update.
	* event-loop.c: Update.
	* event-top.c: Update.
	* exec.c: Update.
	* f-valprint.c: Update.
	* fbsd-tdep.c: Update.
	* frame-unwind.c: Update.
	* frame.c: Update.
	* gdbtypes.c: Update.
	* gnu-v3-abi.c: Update.
	* guile/guile-internal.h: Update.
	* guile/scm-block.c: Update.
	* guile/scm-breakpoint.c: Update.
	* guile/scm-cmd.c: Update.
	* guile/scm-disasm.c: Update.
	* guile/scm-frame.c: Update.
	* guile/scm-lazy-string.c: Update.
	* guile/scm-math.c: Update.
	* guile/scm-param.c: Update.
	* guile/scm-ports.c: Update.
	* guile/scm-pretty-print.c: Update.
	* guile/scm-symbol.c: Update.
	* guile/scm-symtab.c: Update.
	* guile/scm-type.c: Update.
	* guile/scm-value.c: Update.
	* i386-linux-tdep.c: Update.
	* i386-tdep.c: Update.
	* inf-loop.c: Update.
	* infcall.c: Update.
	* infcmd.c: Update.
	* infrun.c: Update.
	* jit.c: Update.
	* language.c: Update.
	* linespec.c: Update.
	* linux-fork.c: Update.
	* linux-nat.c: Update.
	* linux-tdep.c: Update.
	* linux-thread-db.c: Update.
	* main.c: Update.
	* mi/mi-cmd-break.c: Update.
	* mi/mi-cmd-stack.c: Update.
	* mi/mi-interp.c: Update.
	* mi/mi-main.c: Update.
	* objc-lang.c: Update.
	* p-valprint.c: Update.
	* parse.c: Update.
	* ppc-linux-tdep.c: Update.
	* printcmd.c: Update.
	* python/py-arch.c: Update.
	* python/py-breakpoint.c: Update.
	* python/py-cmd.c: Update.
	* python/py-finishbreakpoint.c: Update.
	* python/py-frame.c: Update.
	* python/py-framefilter.c: Update.
	* python/py-gdb-readline.c: Update.
	* python/py-inferior.c: Update.
	* python/py-infthread.c: Update.
	* python/py-lazy-string.c: Update.
	* python/py-linetable.c: Update.
	* python/py-objfile.c: Update.
	* python/py-param.c: Update.
	* python/py-prettyprint.c: Update.
	* python/py-progspace.c: Update.
	* python/py-record-btrace.c: Update.
	* python/py-record.c: Update.
	* python/py-symbol.c: Update.
	* python/py-type.c: Update.
	* python/py-unwind.c: Update.
	* python/py-utils.c: Update.
	* python/py-value.c: Update.
	* python/python.c: Update.
	* record-btrace.c: Update.
	* record-full.c: Update.
	* remote-fileio.c: Update.
	* remote.c: Update.
	* riscv-tdep.c: Update.
	* rs6000-aix-tdep.c: Update.
	* rs6000-tdep.c: Update.
	* rust-exp.y: Update.
	* rust-lang.c: Update.
	* s390-tdep.c: Update.
	* selftest-arch.c: Update.
	* solib-dsbt.c: Update.
	* solib-frv.c: Update.
	* solib-spu.c: Update.
	* solib-svr4.c: Update.
	* solib.c: Update.
	* sparc64-linux-tdep.c: Update.
	* stack.c: Update.
	* symfile-mem.c: Update.
	* symmisc.c: Update.
	* target.c: Update.
	* thread.c: Update.
	* top.c: Update.
	* tracefile-tfile.c: Update.
	* tui/tui.c: Update.
	* typeprint.c: Update.
	* unittests/cli-utils-selftests.c: Update.
	* unittests/parse-connection-spec-selftests.c: Update.
	* valops.c: Update.
	* valprint.c: Update.
	* value.c: Update.
	* varobj.c: Update.
	* windows-nat.c: Update.
	* x86-linux-nat.c: Update.
	* xml-support.c: Update.

gdb/gdbserver/ChangeLog
2019-04-08  Tom Tromey  <tom@tromey.com>

	* gdbreplay.c: Update.
	* linux-low.c: Update.
	* server.c: Update.
2019-04-08 09:05:40 -06:00
Tom Tromey
a70b814420 Rewrite TRY/CATCH
This rewrites gdb's TRY/CATCH to plain C++ try/catch.  The patch was
largely written by script, though one change (to a comment in
common-exceptions.h) was reverted by hand.

gdb/ChangeLog
2019-04-08  Tom Tromey  <tom@tromey.com>

	* xml-support.c: Use C++ exception handling.
	* x86-linux-nat.c: Use C++ exception handling.
	* windows-nat.c: Use C++ exception handling.
	* varobj.c: Use C++ exception handling.
	* value.c: Use C++ exception handling.
	* valprint.c: Use C++ exception handling.
	* valops.c: Use C++ exception handling.
	* unittests/parse-connection-spec-selftests.c: Use C++ exception
	handling.
	* unittests/cli-utils-selftests.c: Use C++ exception handling.
	* typeprint.c: Use C++ exception handling.
	* tui/tui.c: Use C++ exception handling.
	* tracefile-tfile.c: Use C++ exception handling.
	* top.c: Use C++ exception handling.
	* thread.c: Use C++ exception handling.
	* target.c: Use C++ exception handling.
	* symmisc.c: Use C++ exception handling.
	* symfile-mem.c: Use C++ exception handling.
	* stack.c: Use C++ exception handling.
	* sparc64-linux-tdep.c: Use C++ exception handling.
	* solib.c: Use C++ exception handling.
	* solib-svr4.c: Use C++ exception handling.
	* solib-spu.c: Use C++ exception handling.
	* solib-frv.c: Use C++ exception handling.
	* solib-dsbt.c: Use C++ exception handling.
	* selftest-arch.c: Use C++ exception handling.
	* s390-tdep.c: Use C++ exception handling.
	* rust-lang.c: Use C++ exception handling.
	* rust-exp.y: Use C++ exception handling.
	* rs6000-tdep.c: Use C++ exception handling.
	* rs6000-aix-tdep.c: Use C++ exception handling.
	* riscv-tdep.c: Use C++ exception handling.
	* remote.c: Use C++ exception handling.
	* remote-fileio.c: Use C++ exception handling.
	* record-full.c: Use C++ exception handling.
	* record-btrace.c: Use C++ exception handling.
	* python/python.c: Use C++ exception handling.
	* python/py-value.c: Use C++ exception handling.
	* python/py-utils.c: Use C++ exception handling.
	* python/py-unwind.c: Use C++ exception handling.
	* python/py-type.c: Use C++ exception handling.
	* python/py-symbol.c: Use C++ exception handling.
	* python/py-record.c: Use C++ exception handling.
	* python/py-record-btrace.c: Use C++ exception handling.
	* python/py-progspace.c: Use C++ exception handling.
	* python/py-prettyprint.c: Use C++ exception handling.
	* python/py-param.c: Use C++ exception handling.
	* python/py-objfile.c: Use C++ exception handling.
	* python/py-linetable.c: Use C++ exception handling.
	* python/py-lazy-string.c: Use C++ exception handling.
	* python/py-infthread.c: Use C++ exception handling.
	* python/py-inferior.c: Use C++ exception handling.
	* python/py-gdb-readline.c: Use C++ exception handling.
	* python/py-framefilter.c: Use C++ exception handling.
	* python/py-frame.c: Use C++ exception handling.
	* python/py-finishbreakpoint.c: Use C++ exception handling.
	* python/py-cmd.c: Use C++ exception handling.
	* python/py-breakpoint.c: Use C++ exception handling.
	* python/py-arch.c: Use C++ exception handling.
	* printcmd.c: Use C++ exception handling.
	* ppc-linux-tdep.c: Use C++ exception handling.
	* parse.c: Use C++ exception handling.
	* p-valprint.c: Use C++ exception handling.
	* objc-lang.c: Use C++ exception handling.
	* mi/mi-main.c: Use C++ exception handling.
	* mi/mi-interp.c: Use C++ exception handling.
	* mi/mi-cmd-stack.c: Use C++ exception handling.
	* mi/mi-cmd-break.c: Use C++ exception handling.
	* main.c: Use C++ exception handling.
	* linux-thread-db.c: Use C++ exception handling.
	* linux-tdep.c: Use C++ exception handling.
	* linux-nat.c: Use C++ exception handling.
	* linux-fork.c: Use C++ exception handling.
	* linespec.c: Use C++ exception handling.
	* language.c: Use C++ exception handling.
	* jit.c: Use C++ exception handling.
	* infrun.c: Use C++ exception handling.
	* infcmd.c: Use C++ exception handling.
	* infcall.c: Use C++ exception handling.
	* inf-loop.c: Use C++ exception handling.
	* i386-tdep.c: Use C++ exception handling.
	* i386-linux-tdep.c: Use C++ exception handling.
	* guile/scm-value.c: Use C++ exception handling.
	* guile/scm-type.c: Use C++ exception handling.
	* guile/scm-symtab.c: Use C++ exception handling.
	* guile/scm-symbol.c: Use C++ exception handling.
	* guile/scm-pretty-print.c: Use C++ exception handling.
	* guile/scm-ports.c: Use C++ exception handling.
	* guile/scm-param.c: Use C++ exception handling.
	* guile/scm-math.c: Use C++ exception handling.
	* guile/scm-lazy-string.c: Use C++ exception handling.
	* guile/scm-frame.c: Use C++ exception handling.
	* guile/scm-disasm.c: Use C++ exception handling.
	* guile/scm-cmd.c: Use C++ exception handling.
	* guile/scm-breakpoint.c: Use C++ exception handling.
	* guile/scm-block.c: Use C++ exception handling.
	* guile/guile-internal.h: Use C++ exception handling.
	* gnu-v3-abi.c: Use C++ exception handling.
	* gdbtypes.c: Use C++ exception handling.
	* frame.c: Use C++ exception handling.
	* frame-unwind.c: Use C++ exception handling.
	* fbsd-tdep.c: Use C++ exception handling.
	* f-valprint.c: Use C++ exception handling.
	* exec.c: Use C++ exception handling.
	* event-top.c: Use C++ exception handling.
	* event-loop.c: Use C++ exception handling.
	* eval.c: Use C++ exception handling.
	* dwarf2read.c: Use C++ exception handling.
	* dwarf2loc.c: Use C++ exception handling.
	* dwarf2-frame.c: Use C++ exception handling.
	* dwarf2-frame-tailcall.c: Use C++ exception handling.
	* dwarf-index-write.c: Use C++ exception handling.
	* dwarf-index-cache.c: Use C++ exception handling.
	* dtrace-probe.c: Use C++ exception handling.
	* disasm-selftests.c: Use C++ exception handling.
	* darwin-nat.c: Use C++ exception handling.
	* cp-valprint.c: Use C++ exception handling.
	* cp-support.c: Use C++ exception handling.
	* cp-abi.c: Use C++ exception handling.
	* corelow.c: Use C++ exception handling.
	* completer.c: Use C++ exception handling.
	* compile/compile-object-run.c: Use C++ exception handling.
	* compile/compile-object-load.c: Use C++ exception handling.
	* compile/compile-cplus-symbols.c: Use C++ exception handling.
	* compile/compile-c-symbols.c: Use C++ exception handling.
	* common/selftest.c: Use C++ exception handling.
	* common/new-op.c: Use C++ exception handling.
	* cli/cli-script.c: Use C++ exception handling.
	* cli/cli-interp.c: Use C++ exception handling.
	* cli/cli-cmds.c: Use C++ exception handling.
	* c-varobj.c: Use C++ exception handling.
	* btrace.c: Use C++ exception handling.
	* breakpoint.c: Use C++ exception handling.
	* break-catch-throw.c: Use C++ exception handling.
	* arch-utils.c: Use C++ exception handling.
	* amd64-tdep.c: Use C++ exception handling.
	* ada-valprint.c: Use C++ exception handling.
	* ada-typeprint.c: Use C++ exception handling.
	* ada-lang.c: Use C++ exception handling.
	* aarch64-tdep.c: Use C++ exception handling.

gdb/gdbserver/ChangeLog
2019-04-08  Tom Tromey  <tom@tromey.com>

	* server.c: Use C++ exception handling.
	* linux-low.c: Use C++ exception handling.
	* gdbreplay.c: Use C++ exception handling.
2019-04-08 09:05:39 -06:00
Tom Tromey
4de283e4b5 Revert the header-sorting patch
Andreas Schwab and John Baldwin pointed out some bugs in the header
sorting patch; and I noticed that the output was not correct when
limited to a subset of files (a bug in my script).

So, I'm reverting the patch.  I may try again after fixing the issues
pointed out.

gdb/ChangeLog
2019-04-05  Tom Tromey  <tom@tromey.com>

	Revert the header-sorting patch.
	* ft32-tdep.c: Revert.
	* frv-tdep.c: Revert.
	* frv-linux-tdep.c: Revert.
	* frame.c: Revert.
	* frame-unwind.c: Revert.
	* frame-base.c: Revert.
	* fork-child.c: Revert.
	* findvar.c: Revert.
	* findcmd.c: Revert.
	* filesystem.c: Revert.
	* filename-seen-cache.h: Revert.
	* filename-seen-cache.c: Revert.
	* fbsd-tdep.c: Revert.
	* fbsd-nat.h: Revert.
	* fbsd-nat.c: Revert.
	* f-valprint.c: Revert.
	* f-typeprint.c: Revert.
	* f-lang.c: Revert.
	* extension.h: Revert.
	* extension.c: Revert.
	* extension-priv.h: Revert.
	* expprint.c: Revert.
	* exec.h: Revert.
	* exec.c: Revert.
	* exceptions.c: Revert.
	* event-top.c: Revert.
	* event-loop.c: Revert.
	* eval.c: Revert.
	* elfread.c: Revert.
	* dwarf2read.h: Revert.
	* dwarf2read.c: Revert.
	* dwarf2loc.c: Revert.
	* dwarf2expr.h: Revert.
	* dwarf2expr.c: Revert.
	* dwarf2-frame.c: Revert.
	* dwarf2-frame-tailcall.c: Revert.
	* dwarf-index-write.h: Revert.
	* dwarf-index-write.c: Revert.
	* dwarf-index-common.c: Revert.
	* dwarf-index-cache.h: Revert.
	* dwarf-index-cache.c: Revert.
	* dummy-frame.c: Revert.
	* dtrace-probe.c: Revert.
	* disasm.h: Revert.
	* disasm.c: Revert.
	* disasm-selftests.c: Revert.
	* dictionary.c: Revert.
	* dicos-tdep.c: Revert.
	* demangle.c: Revert.
	* dcache.h: Revert.
	* dcache.c: Revert.
	* darwin-nat.h: Revert.
	* darwin-nat.c: Revert.
	* darwin-nat-info.c: Revert.
	* d-valprint.c: Revert.
	* d-namespace.c: Revert.
	* d-lang.c: Revert.
	* ctf.c: Revert.
	* csky-tdep.c: Revert.
	* csky-linux-tdep.c: Revert.
	* cris-tdep.c: Revert.
	* cris-linux-tdep.c: Revert.
	* cp-valprint.c: Revert.
	* cp-support.c: Revert.
	* cp-namespace.c: Revert.
	* cp-abi.c: Revert.
	* corelow.c: Revert.
	* corefile.c: Revert.
	* continuations.c: Revert.
	* completer.h: Revert.
	* completer.c: Revert.
	* complaints.c: Revert.
	* coffread.c: Revert.
	* coff-pe-read.c: Revert.
	* cli-out.h: Revert.
	* cli-out.c: Revert.
	* charset.c: Revert.
	* c-varobj.c: Revert.
	* c-valprint.c: Revert.
	* c-typeprint.c: Revert.
	* c-lang.c: Revert.
	* buildsym.c: Revert.
	* buildsym-legacy.c: Revert.
	* build-id.h: Revert.
	* build-id.c: Revert.
	* btrace.c: Revert.
	* bsd-uthread.c: Revert.
	* breakpoint.h: Revert.
	* breakpoint.c: Revert.
	* break-catch-throw.c: Revert.
	* break-catch-syscall.c: Revert.
	* break-catch-sig.c: Revert.
	* blockframe.c: Revert.
	* block.c: Revert.
	* bfin-tdep.c: Revert.
	* bfin-linux-tdep.c: Revert.
	* bfd-target.c: Revert.
	* bcache.c: Revert.
	* ax-general.c: Revert.
	* ax-gdb.h: Revert.
	* ax-gdb.c: Revert.
	* avr-tdep.c: Revert.
	* auxv.c: Revert.
	* auto-load.c: Revert.
	* arm-wince-tdep.c: Revert.
	* arm-tdep.c: Revert.
	* arm-symbian-tdep.c: Revert.
	* arm-pikeos-tdep.c: Revert.
	* arm-obsd-tdep.c: Revert.
	* arm-nbsd-tdep.c: Revert.
	* arm-nbsd-nat.c: Revert.
	* arm-linux-tdep.c: Revert.
	* arm-linux-nat.c: Revert.
	* arm-fbsd-tdep.c: Revert.
	* arm-fbsd-nat.c: Revert.
	* arm-bsd-tdep.c: Revert.
	* arch-utils.c: Revert.
	* arc-tdep.c: Revert.
	* arc-newlib-tdep.c: Revert.
	* annotate.h: Revert.
	* annotate.c: Revert.
	* amd64-windows-tdep.c: Revert.
	* amd64-windows-nat.c: Revert.
	* amd64-tdep.c: Revert.
	* amd64-sol2-tdep.c: Revert.
	* amd64-obsd-tdep.c: Revert.
	* amd64-obsd-nat.c: Revert.
	* amd64-nbsd-tdep.c: Revert.
	* amd64-nbsd-nat.c: Revert.
	* amd64-nat.c: Revert.
	* amd64-linux-tdep.c: Revert.
	* amd64-linux-nat.c: Revert.
	* amd64-fbsd-tdep.c: Revert.
	* amd64-fbsd-nat.c: Revert.
	* amd64-dicos-tdep.c: Revert.
	* amd64-darwin-tdep.c: Revert.
	* amd64-bsd-nat.c: Revert.
	* alpha-tdep.c: Revert.
	* alpha-obsd-tdep.c: Revert.
	* alpha-nbsd-tdep.c: Revert.
	* alpha-mdebug-tdep.c: Revert.
	* alpha-linux-tdep.c: Revert.
	* alpha-linux-nat.c: Revert.
	* alpha-bsd-tdep.c: Revert.
	* alpha-bsd-nat.c: Revert.
	* aix-thread.c: Revert.
	* agent.c: Revert.
	* addrmap.c: Revert.
	* ada-varobj.c: Revert.
	* ada-valprint.c: Revert.
	* ada-typeprint.c: Revert.
	* ada-tasks.c: Revert.
	* ada-lang.c: Revert.
	* aarch64-tdep.c: Revert.
	* aarch64-ravenscar-thread.c: Revert.
	* aarch64-newlib-tdep.c: Revert.
	* aarch64-linux-tdep.c: Revert.
	* aarch64-linux-nat.c: Revert.
	* aarch64-fbsd-tdep.c: Revert.
	* aarch64-fbsd-nat.c: Revert.
	* aarch32-linux-nat.c: Revert.
2019-04-06 13:47:34 -06:00
Tom Tromey
d55e5aa6b2 Sort includes for files gdb/[a-f]*.[chyl].
This patch sorts the include files for the files [a-f]*.[chyl].
The patch was written by a script.

Tested by the buildbot.

I will follow up with patches to sort the remaining files, by sorting
a subset, testing them, and then checking them in.

gdb/ChangeLog
2019-04-05  Tom Tromey  <tom@tromey.com>

	* ft32-tdep.c: Sort headers.
	* frv-tdep.c: Sort headers.
	* frv-linux-tdep.c: Sort headers.
	* frame.c: Sort headers.
	* frame-unwind.c: Sort headers.
	* frame-base.c: Sort headers.
	* fork-child.c: Sort headers.
	* findvar.c: Sort headers.
	* findcmd.c: Sort headers.
	* filesystem.c: Sort headers.
	* filename-seen-cache.h: Sort headers.
	* filename-seen-cache.c: Sort headers.
	* fbsd-tdep.c: Sort headers.
	* fbsd-nat.h: Sort headers.
	* fbsd-nat.c: Sort headers.
	* f-valprint.c: Sort headers.
	* f-typeprint.c: Sort headers.
	* f-lang.c: Sort headers.
	* extension.h: Sort headers.
	* extension.c: Sort headers.
	* extension-priv.h: Sort headers.
	* expprint.c: Sort headers.
	* exec.h: Sort headers.
	* exec.c: Sort headers.
	* exceptions.c: Sort headers.
	* event-top.c: Sort headers.
	* event-loop.c: Sort headers.
	* eval.c: Sort headers.
	* elfread.c: Sort headers.
	* dwarf2read.h: Sort headers.
	* dwarf2read.c: Sort headers.
	* dwarf2loc.c: Sort headers.
	* dwarf2expr.h: Sort headers.
	* dwarf2expr.c: Sort headers.
	* dwarf2-frame.c: Sort headers.
	* dwarf2-frame-tailcall.c: Sort headers.
	* dwarf-index-write.h: Sort headers.
	* dwarf-index-write.c: Sort headers.
	* dwarf-index-common.c: Sort headers.
	* dwarf-index-cache.h: Sort headers.
	* dwarf-index-cache.c: Sort headers.
	* dummy-frame.c: Sort headers.
	* dtrace-probe.c: Sort headers.
	* disasm.h: Sort headers.
	* disasm.c: Sort headers.
	* disasm-selftests.c: Sort headers.
	* dictionary.c: Sort headers.
	* dicos-tdep.c: Sort headers.
	* demangle.c: Sort headers.
	* dcache.h: Sort headers.
	* dcache.c: Sort headers.
	* darwin-nat.h: Sort headers.
	* darwin-nat.c: Sort headers.
	* darwin-nat-info.c: Sort headers.
	* d-valprint.c: Sort headers.
	* d-namespace.c: Sort headers.
	* d-lang.c: Sort headers.
	* ctf.c: Sort headers.
	* csky-tdep.c: Sort headers.
	* csky-linux-tdep.c: Sort headers.
	* cris-tdep.c: Sort headers.
	* cris-linux-tdep.c: Sort headers.
	* cp-valprint.c: Sort headers.
	* cp-support.c: Sort headers.
	* cp-namespace.c: Sort headers.
	* cp-abi.c: Sort headers.
	* corelow.c: Sort headers.
	* corefile.c: Sort headers.
	* continuations.c: Sort headers.
	* completer.h: Sort headers.
	* completer.c: Sort headers.
	* complaints.c: Sort headers.
	* coffread.c: Sort headers.
	* coff-pe-read.c: Sort headers.
	* cli-out.h: Sort headers.
	* cli-out.c: Sort headers.
	* charset.c: Sort headers.
	* c-varobj.c: Sort headers.
	* c-valprint.c: Sort headers.
	* c-typeprint.c: Sort headers.
	* c-lang.c: Sort headers.
	* buildsym.c: Sort headers.
	* buildsym-legacy.c: Sort headers.
	* build-id.h: Sort headers.
	* build-id.c: Sort headers.
	* btrace.c: Sort headers.
	* bsd-uthread.c: Sort headers.
	* breakpoint.h: Sort headers.
	* breakpoint.c: Sort headers.
	* break-catch-throw.c: Sort headers.
	* break-catch-syscall.c: Sort headers.
	* break-catch-sig.c: Sort headers.
	* blockframe.c: Sort headers.
	* block.c: Sort headers.
	* bfin-tdep.c: Sort headers.
	* bfin-linux-tdep.c: Sort headers.
	* bfd-target.c: Sort headers.
	* bcache.c: Sort headers.
	* ax-general.c: Sort headers.
	* ax-gdb.h: Sort headers.
	* ax-gdb.c: Sort headers.
	* avr-tdep.c: Sort headers.
	* auxv.c: Sort headers.
	* auto-load.c: Sort headers.
	* arm-wince-tdep.c: Sort headers.
	* arm-tdep.c: Sort headers.
	* arm-symbian-tdep.c: Sort headers.
	* arm-pikeos-tdep.c: Sort headers.
	* arm-obsd-tdep.c: Sort headers.
	* arm-nbsd-tdep.c: Sort headers.
	* arm-nbsd-nat.c: Sort headers.
	* arm-linux-tdep.c: Sort headers.
	* arm-linux-nat.c: Sort headers.
	* arm-fbsd-tdep.c: Sort headers.
	* arm-fbsd-nat.c: Sort headers.
	* arm-bsd-tdep.c: Sort headers.
	* arch-utils.c: Sort headers.
	* arc-tdep.c: Sort headers.
	* arc-newlib-tdep.c: Sort headers.
	* annotate.h: Sort headers.
	* annotate.c: Sort headers.
	* amd64-windows-tdep.c: Sort headers.
	* amd64-windows-nat.c: Sort headers.
	* amd64-tdep.c: Sort headers.
	* amd64-sol2-tdep.c: Sort headers.
	* amd64-obsd-tdep.c: Sort headers.
	* amd64-obsd-nat.c: Sort headers.
	* amd64-nbsd-tdep.c: Sort headers.
	* amd64-nbsd-nat.c: Sort headers.
	* amd64-nat.c: Sort headers.
	* amd64-linux-tdep.c: Sort headers.
	* amd64-linux-nat.c: Sort headers.
	* amd64-fbsd-tdep.c: Sort headers.
	* amd64-fbsd-nat.c: Sort headers.
	* amd64-dicos-tdep.c: Sort headers.
	* amd64-darwin-tdep.c: Sort headers.
	* amd64-bsd-nat.c: Sort headers.
	* alpha-tdep.c: Sort headers.
	* alpha-obsd-tdep.c: Sort headers.
	* alpha-nbsd-tdep.c: Sort headers.
	* alpha-mdebug-tdep.c: Sort headers.
	* alpha-linux-tdep.c: Sort headers.
	* alpha-linux-nat.c: Sort headers.
	* alpha-bsd-tdep.c: Sort headers.
	* alpha-bsd-nat.c: Sort headers.
	* aix-thread.c: Sort headers.
	* agent.c: Sort headers.
	* addrmap.c: Sort headers.
	* ada-varobj.c: Sort headers.
	* ada-valprint.c: Sort headers.
	* ada-typeprint.c: Sort headers.
	* ada-tasks.c: Sort headers.
	* ada-lang.c: Sort headers.
	* aarch64-tdep.c: Sort headers.
	* aarch64-ravenscar-thread.c: Sort headers.
	* aarch64-newlib-tdep.c: Sort headers.
	* aarch64-linux-tdep.c: Sort headers.
	* aarch64-linux-nat.c: Sort headers.
	* aarch64-fbsd-tdep.c: Sort headers.
	* aarch64-fbsd-nat.c: Sort headers.
	* aarch32-linux-nat.c: Sort headers.
2019-04-05 19:09:35 -06:00