mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2025-02-11 13:02:10 +08:00
46c7fd95fc
230 Commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
Andrew Burgess
|
ac16b09d7e |
gdb: move setbuf calls out of gdb_readline_no_editing_callback
After this commit:
commit
|
||
Andrew Burgess
|
91395d97d9 |
gdb: handle bracketed-paste-mode and EOF correctly
This commit replaces an earlier commit that worked around the issues reported in bug PR gdb/28833. The previous commit just implemented a work around in order to avoid the worst results of the bug, but was not a complete solution. The full solution was considered too risky to merge close to branching GDB 12. This improved fix has been applied after GDB 12 branched. See this thread for more details: https://sourceware.org/pipermail/gdb-patches/2022-March/186391.html This commit replaces this earlier commit: commit 74a159a420d4b466cc81061c16d444568e36740c Date: Fri Mar 11 14:44:03 2022 +0000 gdb: work around prompt corruption caused by bracketed-paste-mode Please read that commit for a full description of the bug, and why is occurs. In this commit I extend GDB to use readline's rl_deprep_term_function hook to call a new function gdb_rl_deprep_term_function. From this new function we can now print the 'quit' message, this replaces the old printing of 'quit' in command_line_handler. Of course, we only print 'quit' in gdb_rl_deprep_term_function when we are handling EOF, but thanks to the previous commit (to readline) we now know when this is. There are two aspects of this commit that are worth further discussion, the first is in the new gdb_rl_deprep_term_function function. In here I have used a scoped_restore_tmpl to disable the readline global variable rl_eof_found. The reason for this is that, in rl_deprep_terminal, readline will print an extra '\n' character before printing the escape sequence to leave bracketed paste mode. You might then think that in the gdb_rl_deprep_term_function function, we could simply print "quit" and rely on rl_deprep_terminal to print the trailing '\n'. However, rl_deprep_terminal only prints the '\n' when bracketed paste mode is on. If the user has turned this feature off, no '\n' is printed. This means that in gdb_rl_deprep_term_function we need to print "quit" when bracketed paste mode is on, and "quit\n" when bracketed paste mode is off. We could absolutely do that, no problem, but given we know how rl_deprep_terminal is implemented, it's easier (I think) to just temporarily clear rl_eof_found, this prevents the '\n' being printed from rl_deprep_terminal, and so in gdb_rl_deprep_term_function, we can now always print "quit\n" and this works for all cases. The second issue that should be discussed is backwards compatibility with older versions of readline. GDB can be built against the system readline, which might be older than the version contained within GDB's tree. If this is the case then the system readline might not contain the fixes needed to support correctly printing the 'quit' string. To handle this situation I have retained the existing code in command_line_handler for printing 'quit', however, this code is only used now if the version of readline we are using doesn't not include the required fixes. And so, if a user is using an older version of readline, and they have bracketed paste mode on, then they will see the 'quit' sting printed on the line below the prompt, like this: (gdb) quit I think this is the best we can do when someone builds GDB against an older version of readline. Using a newer version of readline, or the patched version of readline that is in-tree, will now give a result like this in all cases: (gdb) quit Which is what we want. Bug: https://sourceware.org/bugzilla/show_bug.cgi?id=28833 |
||
Andrew Burgess
|
b913bd98ce |
gdb: improved EOF handling when using readline 7
In this commit:
commit
|
||
Tom Tromey
|
6cb06a8cda |
Unify gdb printf functions
Now that filtered and unfiltered output can be treated identically, we can unify the printf family of functions. This is done under the name "gdb_printf". Most of this patch was written by script. |
||
Tom Tromey
|
0426ad513f |
Unify gdb puts functions
Now that filtered and unfiltered output can be treated identically, we can unify the puts family of functions. This is done under the name "gdb_puts". Most of this patch was written by script. |
||
Tom Tromey
|
3cd5229387 |
Change the pager to a ui_file
This rewrites the output pager as a ui_file implementation. A new header is introduced to declare the pager class. The implementation remains in utils.c for the time being, because there are some static globals there that must be used by this code. (This could be cleaned up at some future date.) I went through all the text output in gdb to ensure that this change should be ok. There are a few cases: * Any existing call to printf_unfiltered is required to be avoid the pager. This is ensured directly in the implementation. * All remaining calls to the f*_unfiltered functions -- the ones that take an explicit ui_file -- either send to an unfiltered stream (e.g., gdb_stderr), which is obviously ok; or conditionally send to gdb_stdout I investigated all such calls by searching for: grep -e '\bf[a-z0-9_]*_unfiltered' *.[chyl] */*.[ch] | grep -v gdb_stdlog | grep -v gdb_stderr This yields a number of candidates to check. * The breakpoint _print_recreate family, and save_trace_state_variables. These are used for "save" commands and so are fine. * Things printing to a temporary stream. Obviously ok. * Disassembly selftests. * print_gdb_help - this is non-obvious, but ok because paging isn't yet enabled at this point during startup. * serial.c - doens't use gdb_stdout * The code in compile/. This is all printing to a file. * DWARF DIE dumping - doesn't reference gdb_stdout. * Calls to the _filtered form -- these are all clearly ok, because if they are using gdb_stdout, then filtering will still apply; and if not, then filtering never applied and still will not. Therefore, at this point, there is no longer any distinction between all the other _filtered and _unfiltered calls, and they can be unified. In this patch, take special note of the vfprintf_maybe_filtered and ui_file::vprintf change. This is one instance of the above idea, erasing the distinction between filtered and unfiltered -- in this part of the change, the "unfiltered_output" flag is never passe to cli_ui_out. Subsequent patches will go much further in this direction. Also note the can_emit_style_escape changes in ui-file.c. Checking against gdb_stdout or gdb_stderr was always a bit of a hack; and now it is no longer needed, because this is decision can be more fully delegated to the particular ui_file implementation. ui_file::can_page is removed, because this patch removed the only call to it. I think this is the main part of fixing PR cli/7234. Bug: https://sourceware.org/bugzilla/show_bug.cgi?id=7234 |
||
Tom Tromey
|
dcf1a2c8d2 |
Only have one API for unfiltered output
At the end of this series, the use of unfiltered output will be very restricted -- only places that definitely need it will use it. To this end, I thought it would be good to reduce the number of _unfiltered APIs that are exposed. This patch changes gdb so that only printf_unfiltered exists. (After this patch, the f* variants still exist as well, but those will be removed later.) |
||
Tom Tromey
|
52a4a5885a |
Switch gdb_stdlog to use timestamped_file
Currently, timestamps for logging are done by looking for the use of gdb_stdlog in vfprintf_unfiltered. This seems potentially buggy, in that during logging or other redirects (like execute_fn_to_ui_file) we might have gdb_stdout==gdb_stdlog and so, conceivably, wind up with timestamps in a log when they were not desired. It seems better, instead, for timestamps to be a property of the ui_file itself. This patch changes gdb to use the new timestamped_file for gdb_stdlog where appropriate, and removes the special case from vfprintf_unfiltered. Note that this may somewhat change the output in some cases -- in particular, when going through execute_fn_to_ui_file (or the _string variant), timestamps won't be emitted. This could be fixed in those functions, but it wasn't clear to me whether this is really desirable. Note also that this changes the TUI to send gdb_stdlog to gdb_stderr. I imagine that the previous use of gdb_stdout here was inadvertent. (And in any case it probably doesn't matter.) |
||
Andrew Burgess
|
a6b413d24c |
gdb: work around prompt corruption caused by bracketed-paste-mode
In this commit:
commit
|
||
Andrew Burgess
|
868d1834ce |
gdb: convert callback_handler_installed from int to bool
Simple int to bool conversion on callback_handler_installed in event-top.c. There should be no user visible changes after this commit. |
||
Andrew Burgess
|
d08cbc5d32 |
gdb: unbuffer all input streams when not using readline
This commit should fix PR gdb/28711. What's actually going on is pretty involved, and there's still a bit of the story that I don't understand completely, however, from my observed results, I think that the change I propose making here (or something very similar) is going to be needed. The original bug report involves using eclipse to drive gdb using mi commands. A separate tty is spun off in which to send gdb the mi commands, this tty is created using the new-ui command. The behaviour observed is that, given a particular set of mi commands being sent to gdb, we sometimes see an ESPIPE error from a lseek call, which ultimately results in gdb terminating. The problems all originate from gdb_readline_no_editing_callback in gdb/event-top.c, where we can (sometimes) perform calls to fgetc, and allow glibc to perform buffering on the FILE object being used. I say sometime, because, gdb_readline_no_editing_callback already includes a call to disable the glibc buffering, but this is only done if the input stream is not a tty. In our case the input stream is a tty, so the buffering is left in place. The first step to understanding why this problem occurs is to understand that eclipse sends multiple commands to gdb very quickly without waiting for and answer to each command, eclipse plans to collect all of the command results after sending all the commands to gdb. In fact, eclipse sends the commands to gdb that they appear to arrive in the gdb process as a single block of data. When reproducing this issue within the testsuite I find it necessary to send multiple commands using a single write call. The next bit of the story gets a little involved, and this is where my understanding is not complete. I can describe the behaviour that I observe, and (for me at least) I'm happy that what I'm seeing, if a little strange, is consistent. In order to fully understand what's going on I think I would likely need to dive into kernel code, which currently seems unnecessary given that I'm happy with the solution I'm proposing. The following description all relates to input from a tty in which I'm not using readline. I see the same problems either when using a new-ui tty, or with gdb's standard, non-readline, mi tty. Here's what I observe happening when I send multiple commands to gdb using a single write, if I send gdb this: command_1\ncommand_2\ncommand_3 then gdb's event loop will wake up (from its select) as it sees there is input available. We call into gdb_readline_no_editing_callback, where we call fgetc, glibc will do a single big read, and get back just: command_1\n that is, despite there being multiple lines of input available, I consistently get just a single line. From glibc a single character is returned from the fgetc call, and within gdb we accumulate characters, one at a time, into our own buffer. Eventually gdb sees the '\n' character, and dispatches the whole 'command_1' into gdb's command handler, which processes the command and prints the result. We then return to gdb_readline_no_editing_callback, which in turn returns to gdb's event loop where we re-enter the select. Inside the select we immediately see that there is more input waiting on the input stream, drop out of the select, and call back into gdb_readline_no_editing_callback. In this function we again call fgetc where glibc performs another big read. This time glibc gets: command_2\n that is, we once again get just a single line, despite there being a third line available. Just like the first command we copy the whole string, character by character into gdb's buffer, then handle the command. After handling the command we go to the event loop, enter, and then exit the select, and call back to the function gdb_readline_no_editing_callback. In gdb_readline_no_editing_callback we again call fgetc, this time glibc gets the string: command_3\n like before, we copy this to gdb's buffer and handle the command, then we return to the event loop. At this point the select blocks while we wait for more input to arrive. The important bit of this is that someone, somewhere is, it appears, taking care to split the incoming write into lines. My next experiment is to try something like: this_is_a_very_long_command\nshort_command\n However, I actually make 'this_is_a_very_long_command' very long, as in many hundreds of characters long. One way to do this is: echo xxxxxx.....xxxxx and just adding more and more 'x' characters as needed. What I'm aiming for is to have the first command be longer than glibc's internal read buffer, which, on my machine, is 1024 characters. However, for this discussion, lets imagine that glibc's buffer is just 8 characters (we can create just this situation by adding a suitable setbuf call into gdb_readline_no_editing_callback). Now, if I send gdb this data: abcdefghij\nkl\n The first read from glibc will get 'abcdefgh', that is a full 8 character buffer. Once gdb has copied these to its buffer we call fgetc again, and now glibc will get 'ij\n', that is, just like before, multiple lines are split at the '\n' character. The full command, which is now in gdb's buffer can be handled 'abcdefghij', after which we go (via the event loop) back to gdb_readline_no_editing_callback. Now we call fgetc, and glibc will get 'kl\n', which is then handled in the normal way. So far, so good. However, there is, apparently, one edge case where the above rules don't apply. If the '\n' character is the first character read from the kernel, then the incoming lines are not split up. So, given glibc's 8 character buffer, if I send gdb this: abcdefgh\nkl\n that is the first command is 8 characters plus a newline, then, on the first read (from within glibc) we get 'abcdefgh' in a single buffer. As there's no newline gdb calls fgetc again, and glibc does another large read, now we get: \nkl\n which doesn't follow the above pattern - the lines are not split into separate buffers! So, gdb reads the first character from glibc using fgetc, this is the newline. Now gdb has a complete command, and so the command is handled. We then return to the event loop and enter the select. The problem is that, as far as the kernel is concerned, there is no more input pending, it's all been read into glibc's buffer, and so the select doesn't return. The second command is basically stuck in glibc's buffer. If I send another command to gdb, or even just send an empty command (a lone newline) then the select returns, we call into gdb_readline_no_editing_callback, and now gdb sees the second command. OK, so the above is interesting, but it doesn't explain the ESPIPE error. Well, that's a slightly different, but related issue. The ESPIPE case will _only_ show up when using new-ui to create the separate tty for mi commands, and is a consequence of this commit: commit |
||
Tom Tromey
|
d4396e0e97 |
Reduce explicit use of gdb_stdout
In an earlier version of the pager rewrite series, it was important to audit unfiltered output calls to see which were truly necessary. This is no longer necessary, but it still seems like a decent cleanup to change calls to avoid explicitly passing gdb_stdout. That is, rather than using something like fprintf_unfiltered with gdb_stdout, the code ought to use plain printf_unfiltered instead. This patch makes this change. I went ahead and converted all the _filtered calls I could find, as well, for the same clarity. |
||
Tom Tromey
|
1475b18b77 |
Send some error output to gdb_stderr
This changes some code to send some error messages to gdb_stderr rather than gdb_stdout. |
||
Joel Brobecker
|
4a94e36819 |
Automatic Copyright Year update after running gdb/copyright.py
This commit brings all the changes made by running gdb/copyright.py as per GDB's Start of New Year Procedure. For the avoidance of doubt, all changes in this commits were performed by the script. |
||
Simon Marchi
|
e0700ba44c |
gdb: make string-like set show commands use std::string variable
String-like settings (var_string, var_filename, var_optional_filename, var_string_noescape) currently take a pointer to a `char *` storage variable (typically global) that holds the setting's value. I'd like to "mordernize" this by changing them to use an std::string for storage. An obvious reason is that string operations on std::string are often easier to write than with C strings. And they avoid having to do any manual memory management. Another interesting reason is that, with `char *`, nullptr and an empty string often both have the same meaning of "no value". String settings are initially nullptr (unless initialized otherwise). But when doing "set foo" (where `foo` is a string setting), the setting now points to an empty string. For example, solib_search_path is nullptr at startup, but points to an empty string after doing "set solib-search-path". This leads to some code that needs to check for both to check for "no value". Or some code that converts back and forth between NULL and "" when getting or setting the value. I find this very error-prone, because it is very easy to forget one or the other. With std::string, we at least know that the variable is not "NULL". There is only one way of representing an empty string setting, that is with an empty string. I was wondering whether the distinction between NULL and "" would be important for some setting, but it doesn't seem so. If that ever happens, it would be more C++-y and self-descriptive to use optional<string> anyway. Actually, there's one spot where this distinction mattered, it's in init_history, for the test gdb.base/gdbinit-history.exp. init_history sets the history filename to the default ".gdb_history" if it sees that the setting was never set - if history_filename is nullptr. If history_filename is an empty string, it means the setting was explicitly cleared, so it leaves it as-is. With the change to std::string, this distinction doesn't exist anymore. This can be fixed by moving the code that chooses a good default value for history_filename to _initialize_top. This is ran before -ex commands are processed, so an -ex command can then clear that value if needed (what gdb.base/gdbinit-history.exp tests). Another small improvement, in my opinion is that we can now easily give string parameters initial values, by simply initializing the global variables, instead of xstrdup-ing it in the _initialize function. In Python and Guile, when registering a string-like parameter, we allocate (with new) an std::string that is owned by the param_smob (in Guile) and the parmpy_object (in Python) objects. This patch started by changing all relevant add_setshow_* commands to take an `std::string *` instead of a `char **` and fixing everything that failed to build. That includes of course all string setting variable and their uses. string_option_def now uses an std::string also, because there's a connection between options and settings (see add_setshow_cmds_for_options). The add_path function in source.c is really complex and twisted, I'd rather not try to change it to work on an std::string right now. Instead, I added an overload that copies the std:string to a `char *` and back. This means more copying, but this is not used in a hot path at all, so I think it is acceptable. Change-Id: I92c50a1bdd8307141cdbacb388248e4e4fc08c93 Co-authored-by: Lancelot SIX <lsix@lancelotsix.com> |
||
Andrew Burgess
|
abbbd4a3e0 |
gdb: use libbacktrace to create a better backtrace for fatal signals
GDB recently gained the ability to print a backtrace when a fatal signal is encountered. This backtrace is produced using the backtrace and backtrace_symbols_fd API available in glibc. However, in order for this API to actually map addresses to symbol names it is required that the application (GDB) be compiled with -rdynamic, which GDB is not by default. As a result, the backtrace produced often looks like this: Fatal signal: Bus error ----- Backtrace ----- ./gdb/gdb[0x80ec00] ./gdb/gdb[0x80ed56] /lib64/libc.so.6(+0x3c6b0)[0x7fc2ce1936b0] /lib64/libc.so.6(__poll+0x4f)[0x7fc2ce24da5f] ./gdb/gdb[0x15495ba] ./gdb/gdb[0x15489b8] ./gdb/gdb[0x9b794d] ./gdb/gdb[0x9b7a6d] ./gdb/gdb[0x9b943b] ./gdb/gdb[0x9b94a1] ./gdb/gdb[0x4175dd] /lib64/libc.so.6(__libc_start_main+0xf3)[0x7fc2ce17e1a3] ./gdb/gdb[0x4174de] --------------------- This is OK if you have access to the exact same build of GDB, you can manually map the addresses back to symbols, however, it is next to useless if all you have is a backtrace copied into a bug report. GCC uses libbacktrace for printing a backtrace when it encounters an error. In recent commits I added this library into the binutils-gdb repository, and in this commit I allow this library to be used by GDB. Now (when GDB is compiled with debug information) the backtrace looks like this: ----- Backtrace ----- 0x80ee08 gdb_internal_backtrace ../../src/gdb/event-top.c:989 0x80ef0b handle_fatal_signal ../../src/gdb/event-top.c:1036 0x7f24539dd6af ??? 0x7f2453a97a5f ??? 0x154976f gdb_wait_for_event ../../src/gdbsupport/event-loop.cc:613 0x1548b6d _Z16gdb_do_one_eventv ../../src/gdbsupport/event-loop.cc:237 0x9b7b02 start_event_loop ../../src/gdb/main.c:421 0x9b7c22 captured_command_loop ../../src/gdb/main.c:481 0x9b95f0 captured_main ../../src/gdb/main.c:1353 0x9b9656 _Z8gdb_mainP18captured_main_args ../../src/gdb/main.c:1368 0x4175ec main ../../src/gdb/gdb.c:32 --------------------- Which seems much more useful. Use of libbacktrace is optional. If GDB is configured with --disable-libbacktrace then the libbacktrace directory will not be built, and GDB will not try to use this library. In this case GDB would try to use the old backtrace and backtrace_symbols_fd API. All of the functions related to writing the backtrace of GDB itself have been moved into the new files gdb/by-utils.{c,h}. |
||
Andrew Burgess
|
d03277b797 |
gdb: register SIGBUS, SIGFPE, and SIGABRT handlers
Register handlers for SIGBUS, SIGFPE, and SIGABRT. All of these signals are setup as fatal signals that will cause GDB to terminate. However, by passing these signals through the handle_fatal_signal function, a user can arrange to see a backtrace when GDB terminates (see maint set backtrace-on-fatal-signal). In normal use of GDB there should be no user visible changes after this commit. Only if GDB terminates with one of the above signals will GDB change slightly, potentially printing a backtrace before aborting. I've added new tests for SIGFPE, SIGBUS, and SIGABRT. |
||
Andrew Burgess
|
6aa4f97c2b |
gdb: print backtrace on fatal SIGSEGV
This commit adds a new maintenance feature, the ability to print a (limited) backtrace if GDB dies due to a fatal signal. The backtrace is produced using the backtrace and backtrace_symbols_fd functions which are declared in the execinfo.h header, and both of which are async signal safe. A configure check has been added to check for these features, if they are not available then the new code is not compiled into GDB and the backtrace will not be printed. The motivation for this new feature is to aid in debugging GDB in situations where GDB has crashed at a users site, but the user is reluctant to share core files, possibly due to concerns about what might be in the memory image within the core file. Such a user might be happy to share a simple backtrace that was written to stderr. The production of the backtrace is on by default, but can switched off using the new commands: maintenance set backtrace-on-fatal-signal on|off maintenance show backtrace-on-fatal-signal Right now, I have hooked this feature in to GDB's existing handling of SIGSEGV only, but this will be extended to more signals in a later commit. One additional change I have made in this commit is that, when we decide GDB should terminate due to the fatal signal, we now raise the same fatal signal rather than raising SIGABRT. Currently, this is only effecting our handling of SIGSEGV. So, previously, if GDB hit a SEGV then we would terminate GDB with a SIGABRT. After this commit we will terminate GDB with a SIGSEGV. This feels like an improvement to me, we should still get a core dump, but in many shells, the user will see a more specific message once GDB exits, in bash for example "Segmentation fault" rather than "Aborted". Finally then, here is an example of the output a user would see if GDB should hit an internal SIGSEGV: Fatal signal: Segmentation fault ----- Backtrace ----- ./gdb/gdb[0x8078e6] ./gdb/gdb[0x807b20] /lib64/libpthread.so.0(+0x14b20)[0x7f6648c92b20] /lib64/libc.so.6(__poll+0x4f)[0x7f66484d3a5f] ./gdb/gdb[0x1540f4c] ./gdb/gdb[0x154034a] ./gdb/gdb[0x9b002d] ./gdb/gdb[0x9b014d] ./gdb/gdb[0x9b1aa6] ./gdb/gdb[0x9b1b0c] ./gdb/gdb[0x41756d] /lib64/libc.so.6(__libc_start_main+0xf3)[0x7f66484041a3] ./gdb/gdb[0x41746e] --------------------- A fatal error internal to GDB has been detected, further debugging is not possible. GDB will now terminate. This is a bug, please report it. For instructions, see: <https://www.gnu.org/software/gdb/bugs/>. Segmentation fault (core dumped) It is disappointing that backtrace_symbols_fd does not actually map the addresses back to symbols, this appears, in part, to be due to GDB not being built with -rdynamic as the manual page for backtrace_symbols_fd suggests, however, even when I do add -rdynamic to the build of GDB I only see symbols for some addresses. We could potentially look at alternative libraries to provide the backtrace (e.g. libunwind) however, the solution presented here, which is available as part of glibc is probably a good baseline from which we might improve things in future. |
||
Andrew Burgess
|
270135645b |
gdb: rename async_init_signals to gdb_init_signals
The async_init_signals has, for some time, dealt with async and sync signals, so removing the async prefix makes sense I think. Additionally, as pointed out by Pedro: ..... The comments relating to SIGTRAP and SIGQUIT within this function are out of date. The comments for SIGTRAP talk about the signal disposition (SIG_IGN) being passed to the inferior, meaning the signal disposition being inherited by GDB's fork children. However, we now call restore_original_signals_state prior to forking, so the comment on SIGTRAP is redundant. The comments for SIGQUIT are similarly out of date, further, the comment on SIGQUIT talks about problems with BSD4.3 and vfork, however, we have not supported BSD4.3 for several years now. Given the above, it seems that changing the disposition of SIGTRAP is no longer needed, so I've deleted the signal() call for SIGTRAP. Finally, the header comment on the function now called gdb_init_signals was getting quite out of date, so I've updated it to (hopefully) better reflect reality. There should be no user visible change after this commit. |
||
Andrew Burgess
|
bbefac7df9 |
gdb: register signal handler after setting up event token
This commit fixes the smallest of small possible bug related to signal handling. If we look in async_init_signals we see code like this: signal (SIGQUIT, handle_sigquit); sigquit_token = create_async_signal_handler (async_do_nothing, NULL, "sigquit"); Then if we look in handle_sigquit we see code like this: mark_async_signal_handler (sigquit_token); signal (sig, handle_sigquit); Finally, in mark_async_signal_handler we have: async_handler_ptr->ready = 1; Where async_handler_ptr will be sigquit_token. What this means is that if a SIGQUIT arrive in async_init_signals after handle_sigquit has been registered, but before sigquit_token has been initialised, then GDB will most likely crash. The chance of this happening is tiny, but fixing this is trivial, just ensure we call create_async_signal_handler before calling signal, so lets do that. There are no tests for this. Trying to land a signal in the right spot is pretty hit and miss. I did try changing the current HEAD GDB like this: signal (SIGQUIT, handle_sigquit); raise (SIGQUIT); sigquit_token = create_async_signal_handler (async_do_nothing, NULL, "sigquit"); And confirmed that this did result in a crash, after my change I tried this: sigquit_token = create_async_signal_handler (async_do_nothing, NULL, "sigquit"); signal (SIGQUIT, handle_sigquit); raise (SIGQUIT); And GDB now starts up just fine. gdb/ChangeLog: * event-top.c (async_init_signals): For each signal, call signal only after calling create_async_signal_handler. |
||
Andrew Burgess
|
fb550a919a |
gdb: terminate upon receipt of SIGFPE
GDB's SIGFPE handling is broken, this is PR gdb/16505 and PR gdb/17891. We currently try to use an async event token to process SIGFPE. So, when a SIGFPE arrives the signal handler calls mark_async_signal_handler then returns, effectively ignoring the signal (for now). The intention is that later the event loop will see that the async token associated with SIGFPE has been marked and will call the async handler, which just throws an error. The problem is that SIGFPE is not safe to ignore. Ignoring a SIGFPE (unless it is generated artificially, e.g. by raise()) is undefined behaviour, after ignoring the signal on many targets we return to the instruction that caused the SIGFPE to be raised, which immediately causes another SIGFPE to be raised, we get stuck in an infinite loop. The behaviour is certainly true on x86-64. To view this behaviour I simply added some dummy code to GDB that performed an integer divide by zero, compiled this on x86-64 GNU/Linux, ran GDB and saw GDB hang. In this commit, I propose to remove all special handling of SIGFPE and instead just let GDB make use of the default SIGFPE action, that is, to terminate the process. The only user visible change here should be: - If a user sends a SIGFPE to GDB using something like kill, previously GDB would just print an error and remain alive, now GDB will terminate. This is inline with what happens if the user sends GDB a SIGSEGV from kill though, so I don't see this as an issue. - If a bug in GDB causes a real SIGFPE, previously the users GDB session would hang. Now the GDB session will terminate. Again, this is inline with what happens if GDB receives a SIGSEGV due to an internal bug. In bug gdb/16505 there is mention that it would be nice if GDB did more than just terminate when receiving a fatal signal. I haven't done that in this commit, but later commits will move in that direction. Bug: https://sourceware.org/bugzilla/show_bug.cgi?id=16505 Bug: https://sourceware.org/bugzilla/show_bug.cgi?id=17891 |
||
Tankut Baris Aktemur
|
4efeb0d3e8 |
gdb/continuations: turn continuation functions into inferior methods
Turn continuations-related functions into methods of the inferior class. This is a refactoring. gdb/ChangeLog: 2021-04-22 Tankut Baris Aktemur <tankut.baris.aktemur@intel.com> * Makefile.in (COMMON_SFILES): Remove continuations.c. * inferior.c (inferior::add_continuation): New method, adapted from 'add_inferior_continuation'. (inferior::do_all_continuations): New method, adapted from 'do_all_inferior_continuations'. (inferior::~inferior): Clear the list of continuations directly. * inferior.h (class inferior) <continuations>: Rename into... <m_continuations>: ...this and make private. * continuations.c: Remove. * continuations.h: Remove. * event-top.c: Don't include "continuations.h". Update the users below. * inf-loop.c (inferior_event_handler) * infcmd.c (attach_command) (notice_new_inferior): Update. |
||
Christian Biesinger
|
fece451c2a |
Use RAII to set the per-thread SIGSEGV handler
This avoids using a thread-local extern variable, which causes link errors on some platforms, notably Cygwin. But I think this is a better pattern even outside of working around linker bugs because it encapsulates direct access to the variable inside the class, instead of having a global extern variable. The cygwin link error is: cp-support.o: in function `gdb_demangle(char const*, int)': /home/Christian/binutils-gdb/obj/gdb/../../gdb/cp-support.c:1619:(.text+0x6472): relocation truncated to fit: R_X86_64_PC32 against undefined symbol `TLS init function for thread_local_segv_handler' /home/Christian/binutils-gdb/obj/gdb/../../gdb/cp-support.c:1619:(.text+0x648b): relocation truncated to fit: R_X86_64_PC32 against undefined symbol `TLS init function for thread_local_segv_handler' collect2: error: ld returned 1 exit status 2021-03-12 Christian Biesinger <cbiesinger@google.com> PR threads/27239 * cp-support.c: Use scoped_segv_handler_restore. * event-top.c (thread_local_segv_handler): Made static. (scoped_segv_handler_restore::scoped_segv_handler_restore): New function. (scoped_segv_handler_restore::~scoped_segv_handler_restore): New function. * event-top.h (class scoped_segv_handler_restore): New class. (thread_local_segv_handler): Removed. |
||
Joel Brobecker
|
3666a04883 |
Update copyright year range in all GDB files
This commits the result of running gdb/copyright.py as per our Start of New Year procedure... gdb/ChangeLog Update copyright year range in copyright header of all GDB files. |
||
Simon Marchi
|
dda83cd783 |
gdb, gdbserver, gdbsupport: fix leading space vs tabs issues
Many spots incorrectly use only spaces for indentation (for example, there are a lot of spots in ada-lang.c). I've always found it awkward when I needed to edit one of these spots: do I keep the original wrong indentation, or do I fix it? What if the lines around it are also wrong, do I fix them too? I probably don't want to fix them in the same patch, to avoid adding noise to my patch. So I propose to fix as much as possible once and for all (hopefully). One typical counter argument for this is that it makes code archeology more difficult, because git-blame will show this commit as the last change for these lines. My counter counter argument is: when git-blaming, you often need to do "blame the file at the parent commit" anyway, to go past some other refactor that touched the line you are interested in, but is not the change you are looking for. So you already need a somewhat efficient way to do this. Using some interactive tool, rather than plain git-blame, makes this trivial. For example, I use "tig blame <file>", where going back past the commit that changed the currently selected line is one keystroke. It looks like Magit in Emacs does it too (though I've never used it). Web viewers of Github and Gitlab do it too. My point is that it won't really make archeology more difficult. The other typical counter argument is that it will cause conflicts with existing patches. That's true... but it's a one time cost, and those are not conflicts that are difficult to resolve. I have also tried "git rebase --ignore-whitespace", it seems to work well. Although that will re-introduce the faulty indentation, so one needs to take care of fixing the indentation in the patch after that (which is easy). gdb/ChangeLog: * aarch64-linux-tdep.c: Fix indentation. * aarch64-ravenscar-thread.c: Fix indentation. * aarch64-tdep.c: Fix indentation. * aarch64-tdep.h: Fix indentation. * ada-lang.c: Fix indentation. * ada-lang.h: Fix indentation. * ada-tasks.c: Fix indentation. * ada-typeprint.c: Fix indentation. * ada-valprint.c: Fix indentation. * ada-varobj.c: Fix indentation. * addrmap.c: Fix indentation. * addrmap.h: Fix indentation. * agent.c: Fix indentation. * aix-thread.c: Fix indentation. * alpha-bsd-nat.c: Fix indentation. * alpha-linux-tdep.c: Fix indentation. * alpha-mdebug-tdep.c: Fix indentation. * alpha-nbsd-tdep.c: Fix indentation. * alpha-obsd-tdep.c: Fix indentation. * alpha-tdep.c: Fix indentation. * amd64-bsd-nat.c: Fix indentation. * amd64-darwin-tdep.c: Fix indentation. * amd64-linux-nat.c: Fix indentation. * amd64-linux-tdep.c: Fix indentation. * amd64-nat.c: Fix indentation. * amd64-obsd-tdep.c: Fix indentation. * amd64-tdep.c: Fix indentation. * amd64-windows-tdep.c: Fix indentation. * annotate.c: Fix indentation. * arc-tdep.c: Fix indentation. * arch-utils.c: Fix indentation. * arch/arm-get-next-pcs.c: Fix indentation. * arch/arm.c: Fix indentation. * arm-linux-nat.c: Fix indentation. * arm-linux-tdep.c: Fix indentation. * arm-nbsd-tdep.c: Fix indentation. * arm-pikeos-tdep.c: Fix indentation. * arm-tdep.c: Fix indentation. * arm-tdep.h: Fix indentation. * arm-wince-tdep.c: Fix indentation. * auto-load.c: Fix indentation. * auxv.c: Fix indentation. * avr-tdep.c: Fix indentation. * ax-gdb.c: Fix indentation. * ax-general.c: Fix indentation. * bfin-linux-tdep.c: Fix indentation. * block.c: Fix indentation. * block.h: Fix indentation. * blockframe.c: Fix indentation. * bpf-tdep.c: Fix indentation. * break-catch-sig.c: Fix indentation. * break-catch-syscall.c: Fix indentation. * break-catch-throw.c: Fix indentation. * breakpoint.c: Fix indentation. * breakpoint.h: Fix indentation. * bsd-uthread.c: Fix indentation. * btrace.c: Fix indentation. * build-id.c: Fix indentation. * buildsym-legacy.h: Fix indentation. * buildsym.c: Fix indentation. * c-typeprint.c: Fix indentation. * c-valprint.c: Fix indentation. * c-varobj.c: Fix indentation. * charset.c: Fix indentation. * cli/cli-cmds.c: Fix indentation. * cli/cli-decode.c: Fix indentation. * cli/cli-decode.h: Fix indentation. * cli/cli-script.c: Fix indentation. * cli/cli-setshow.c: Fix indentation. * coff-pe-read.c: Fix indentation. * coffread.c: Fix indentation. * compile/compile-cplus-types.c: Fix indentation. * compile/compile-object-load.c: Fix indentation. * compile/compile-object-run.c: Fix indentation. * completer.c: Fix indentation. * corefile.c: Fix indentation. * corelow.c: Fix indentation. * cp-abi.h: Fix indentation. * cp-namespace.c: Fix indentation. * cp-support.c: Fix indentation. * cp-valprint.c: Fix indentation. * cris-linux-tdep.c: Fix indentation. * cris-tdep.c: Fix indentation. * darwin-nat-info.c: Fix indentation. * darwin-nat.c: Fix indentation. * darwin-nat.h: Fix indentation. * dbxread.c: Fix indentation. * dcache.c: Fix indentation. * disasm.c: Fix indentation. * dtrace-probe.c: Fix indentation. * dwarf2/abbrev.c: Fix indentation. * dwarf2/attribute.c: Fix indentation. * dwarf2/expr.c: Fix indentation. * dwarf2/frame.c: Fix indentation. * dwarf2/index-cache.c: Fix indentation. * dwarf2/index-write.c: Fix indentation. * dwarf2/line-header.c: Fix indentation. * dwarf2/loc.c: Fix indentation. * dwarf2/macro.c: Fix indentation. * dwarf2/read.c: Fix indentation. * dwarf2/read.h: Fix indentation. * elfread.c: Fix indentation. * eval.c: Fix indentation. * event-top.c: Fix indentation. * exec.c: Fix indentation. * exec.h: Fix indentation. * expprint.c: Fix indentation. * f-lang.c: Fix indentation. * f-typeprint.c: Fix indentation. * f-valprint.c: Fix indentation. * fbsd-nat.c: Fix indentation. * fbsd-tdep.c: Fix indentation. * findvar.c: Fix indentation. * fork-child.c: Fix indentation. * frame-unwind.c: Fix indentation. * frame-unwind.h: Fix indentation. * frame.c: Fix indentation. * frv-linux-tdep.c: Fix indentation. * frv-tdep.c: Fix indentation. * frv-tdep.h: Fix indentation. * ft32-tdep.c: Fix indentation. * gcore.c: Fix indentation. * gdb_bfd.c: Fix indentation. * gdbarch.sh: Fix indentation. * gdbarch.c: Re-generate * gdbarch.h: Re-generate. * gdbcore.h: Fix indentation. * gdbthread.h: Fix indentation. * gdbtypes.c: Fix indentation. * gdbtypes.h: Fix indentation. * glibc-tdep.c: Fix indentation. * gnu-nat.c: Fix indentation. * gnu-nat.h: Fix indentation. * gnu-v2-abi.c: Fix indentation. * gnu-v3-abi.c: Fix indentation. * go32-nat.c: Fix indentation. * guile/guile-internal.h: Fix indentation. * guile/scm-cmd.c: Fix indentation. * guile/scm-frame.c: Fix indentation. * guile/scm-iterator.c: Fix indentation. * guile/scm-math.c: Fix indentation. * guile/scm-ports.c: Fix indentation. * guile/scm-pretty-print.c: Fix indentation. * guile/scm-value.c: Fix indentation. * h8300-tdep.c: Fix indentation. * hppa-linux-nat.c: Fix indentation. * hppa-linux-tdep.c: Fix indentation. * hppa-nbsd-nat.c: Fix indentation. * hppa-nbsd-tdep.c: Fix indentation. * hppa-obsd-nat.c: Fix indentation. * hppa-tdep.c: Fix indentation. * hppa-tdep.h: Fix indentation. * i386-bsd-nat.c: Fix indentation. * i386-darwin-nat.c: Fix indentation. * i386-darwin-tdep.c: Fix indentation. * i386-dicos-tdep.c: Fix indentation. * i386-gnu-nat.c: Fix indentation. * i386-linux-nat.c: Fix indentation. * i386-linux-tdep.c: Fix indentation. * i386-nto-tdep.c: Fix indentation. * i386-obsd-tdep.c: Fix indentation. * i386-sol2-nat.c: Fix indentation. * i386-tdep.c: Fix indentation. * i386-tdep.h: Fix indentation. * i386-windows-tdep.c: Fix indentation. * i387-tdep.c: Fix indentation. * i387-tdep.h: Fix indentation. * ia64-libunwind-tdep.c: Fix indentation. * ia64-libunwind-tdep.h: Fix indentation. * ia64-linux-nat.c: Fix indentation. * ia64-linux-tdep.c: Fix indentation. * ia64-tdep.c: Fix indentation. * ia64-tdep.h: Fix indentation. * ia64-vms-tdep.c: Fix indentation. * infcall.c: Fix indentation. * infcmd.c: Fix indentation. * inferior.c: Fix indentation. * infrun.c: Fix indentation. * iq2000-tdep.c: Fix indentation. * language.c: Fix indentation. * linespec.c: Fix indentation. * linux-fork.c: Fix indentation. * linux-nat.c: Fix indentation. * linux-tdep.c: Fix indentation. * linux-thread-db.c: Fix indentation. * lm32-tdep.c: Fix indentation. * m2-lang.c: Fix indentation. * m2-typeprint.c: Fix indentation. * m2-valprint.c: Fix indentation. * m32c-tdep.c: Fix indentation. * m32r-linux-tdep.c: Fix indentation. * m32r-tdep.c: Fix indentation. * m68hc11-tdep.c: Fix indentation. * m68k-bsd-nat.c: Fix indentation. * m68k-linux-nat.c: Fix indentation. * m68k-linux-tdep.c: Fix indentation. * m68k-tdep.c: Fix indentation. * machoread.c: Fix indentation. * macrocmd.c: Fix indentation. * macroexp.c: Fix indentation. * macroscope.c: Fix indentation. * macrotab.c: Fix indentation. * macrotab.h: Fix indentation. * main.c: Fix indentation. * mdebugread.c: Fix indentation. * mep-tdep.c: Fix indentation. * mi/mi-cmd-catch.c: Fix indentation. * mi/mi-cmd-disas.c: Fix indentation. * mi/mi-cmd-env.c: Fix indentation. * mi/mi-cmd-stack.c: Fix indentation. * mi/mi-cmd-var.c: Fix indentation. * mi/mi-cmds.c: Fix indentation. * mi/mi-main.c: Fix indentation. * mi/mi-parse.c: Fix indentation. * microblaze-tdep.c: Fix indentation. * minidebug.c: Fix indentation. * minsyms.c: Fix indentation. * mips-linux-nat.c: Fix indentation. * mips-linux-tdep.c: Fix indentation. * mips-nbsd-tdep.c: Fix indentation. * mips-tdep.c: Fix indentation. * mn10300-linux-tdep.c: Fix indentation. * mn10300-tdep.c: Fix indentation. * moxie-tdep.c: Fix indentation. * msp430-tdep.c: Fix indentation. * namespace.h: Fix indentation. * nat/fork-inferior.c: Fix indentation. * nat/gdb_ptrace.h: Fix indentation. * nat/linux-namespaces.c: Fix indentation. * nat/linux-osdata.c: Fix indentation. * nat/netbsd-nat.c: Fix indentation. * nat/x86-dregs.c: Fix indentation. * nbsd-nat.c: Fix indentation. * nbsd-tdep.c: Fix indentation. * nios2-linux-tdep.c: Fix indentation. * nios2-tdep.c: Fix indentation. * nto-procfs.c: Fix indentation. * nto-tdep.c: Fix indentation. * objfiles.c: Fix indentation. * objfiles.h: Fix indentation. * opencl-lang.c: Fix indentation. * or1k-tdep.c: Fix indentation. * osabi.c: Fix indentation. * osabi.h: Fix indentation. * osdata.c: Fix indentation. * p-lang.c: Fix indentation. * p-typeprint.c: Fix indentation. * p-valprint.c: Fix indentation. * parse.c: Fix indentation. * ppc-linux-nat.c: Fix indentation. * ppc-linux-tdep.c: Fix indentation. * ppc-nbsd-nat.c: Fix indentation. * ppc-nbsd-tdep.c: Fix indentation. * ppc-obsd-nat.c: Fix indentation. * ppc-ravenscar-thread.c: Fix indentation. * ppc-sysv-tdep.c: Fix indentation. * ppc64-tdep.c: Fix indentation. * printcmd.c: Fix indentation. * proc-api.c: Fix indentation. * producer.c: Fix indentation. * producer.h: Fix indentation. * prologue-value.c: Fix indentation. * prologue-value.h: Fix indentation. * psymtab.c: Fix indentation. * python/py-arch.c: Fix indentation. * python/py-bpevent.c: Fix indentation. * python/py-event.c: Fix indentation. * python/py-event.h: Fix indentation. * python/py-finishbreakpoint.c: Fix indentation. * python/py-frame.c: Fix indentation. * python/py-framefilter.c: Fix indentation. * python/py-inferior.c: Fix indentation. * python/py-infthread.c: Fix indentation. * python/py-objfile.c: Fix indentation. * python/py-prettyprint.c: Fix indentation. * python/py-registers.c: Fix indentation. * python/py-signalevent.c: Fix indentation. * python/py-stopevent.c: Fix indentation. * python/py-stopevent.h: Fix indentation. * python/py-threadevent.c: Fix indentation. * python/py-tui.c: Fix indentation. * python/py-unwind.c: Fix indentation. * python/py-value.c: Fix indentation. * python/py-xmethods.c: Fix indentation. * python/python-internal.h: Fix indentation. * python/python.c: Fix indentation. * ravenscar-thread.c: Fix indentation. * record-btrace.c: Fix indentation. * record-full.c: Fix indentation. * record.c: Fix indentation. * reggroups.c: Fix indentation. * regset.h: Fix indentation. * remote-fileio.c: Fix indentation. * remote.c: Fix indentation. * reverse.c: Fix indentation. * riscv-linux-tdep.c: Fix indentation. * riscv-ravenscar-thread.c: Fix indentation. * riscv-tdep.c: Fix indentation. * rl78-tdep.c: Fix indentation. * rs6000-aix-tdep.c: Fix indentation. * rs6000-lynx178-tdep.c: Fix indentation. * rs6000-nat.c: Fix indentation. * rs6000-tdep.c: Fix indentation. * rust-lang.c: Fix indentation. * rx-tdep.c: Fix indentation. * s12z-tdep.c: Fix indentation. * s390-linux-tdep.c: Fix indentation. * score-tdep.c: Fix indentation. * ser-base.c: Fix indentation. * ser-mingw.c: Fix indentation. * ser-uds.c: Fix indentation. * ser-unix.c: Fix indentation. * serial.c: Fix indentation. * sh-linux-tdep.c: Fix indentation. * sh-nbsd-tdep.c: Fix indentation. * sh-tdep.c: Fix indentation. * skip.c: Fix indentation. * sol-thread.c: Fix indentation. * solib-aix.c: Fix indentation. * solib-darwin.c: Fix indentation. * solib-frv.c: Fix indentation. * solib-svr4.c: Fix indentation. * solib.c: Fix indentation. * source.c: Fix indentation. * sparc-linux-tdep.c: Fix indentation. * sparc-nbsd-tdep.c: Fix indentation. * sparc-obsd-tdep.c: Fix indentation. * sparc-ravenscar-thread.c: Fix indentation. * sparc-tdep.c: Fix indentation. * sparc64-linux-tdep.c: Fix indentation. * sparc64-nbsd-tdep.c: Fix indentation. * sparc64-obsd-tdep.c: Fix indentation. * sparc64-tdep.c: Fix indentation. * stabsread.c: Fix indentation. * stack.c: Fix indentation. * stap-probe.c: Fix indentation. * stubs/ia64vms-stub.c: Fix indentation. * stubs/m32r-stub.c: Fix indentation. * stubs/m68k-stub.c: Fix indentation. * stubs/sh-stub.c: Fix indentation. * stubs/sparc-stub.c: Fix indentation. * symfile-mem.c: Fix indentation. * symfile.c: Fix indentation. * symfile.h: Fix indentation. * symmisc.c: Fix indentation. * symtab.c: Fix indentation. * symtab.h: Fix indentation. * target-float.c: Fix indentation. * target.c: Fix indentation. * target.h: Fix indentation. * tic6x-tdep.c: Fix indentation. * tilegx-linux-tdep.c: Fix indentation. * tilegx-tdep.c: Fix indentation. * top.c: Fix indentation. * tracefile-tfile.c: Fix indentation. * tracepoint.c: Fix indentation. * tui/tui-disasm.c: Fix indentation. * tui/tui-io.c: Fix indentation. * tui/tui-regs.c: Fix indentation. * tui/tui-stack.c: Fix indentation. * tui/tui-win.c: Fix indentation. * tui/tui-winsource.c: Fix indentation. * tui/tui.c: Fix indentation. * typeprint.c: Fix indentation. * ui-out.h: Fix indentation. * unittests/copy_bitwise-selftests.c: Fix indentation. * unittests/memory-map-selftests.c: Fix indentation. * utils.c: Fix indentation. * v850-tdep.c: Fix indentation. * valarith.c: Fix indentation. * valops.c: Fix indentation. * valprint.c: Fix indentation. * valprint.h: Fix indentation. * value.c: Fix indentation. * value.h: Fix indentation. * varobj.c: Fix indentation. * vax-tdep.c: Fix indentation. * windows-nat.c: Fix indentation. * windows-tdep.c: Fix indentation. * xcoffread.c: Fix indentation. * xml-syscall.c: Fix indentation. * xml-tdesc.c: Fix indentation. * xstormy16-tdep.c: Fix indentation. * xtensa-config.c: Fix indentation. * xtensa-linux-nat.c: Fix indentation. * xtensa-linux-tdep.c: Fix indentation. * xtensa-tdep.c: Fix indentation. gdbserver/ChangeLog: * ax.cc: Fix indentation. * dll.cc: Fix indentation. * inferiors.h: Fix indentation. * linux-low.cc: Fix indentation. * linux-nios2-low.cc: Fix indentation. * linux-ppc-ipa.cc: Fix indentation. * linux-ppc-low.cc: Fix indentation. * linux-x86-low.cc: Fix indentation. * linux-xtensa-low.cc: Fix indentation. * regcache.cc: Fix indentation. * server.cc: Fix indentation. * tracepoint.cc: Fix indentation. gdbsupport/ChangeLog: * common-exceptions.h: Fix indentation. * event-loop.cc: Fix indentation. * fileio.cc: Fix indentation. * filestuff.cc: Fix indentation. * gdb-dlfcn.cc: Fix indentation. * gdb_string_view.h: Fix indentation. * job-control.cc: Fix indentation. * signals.cc: Fix indentation. Change-Id: I4bad7ae6be0fbe14168b8ebafb98ffe14964a695 |
||
Simon Marchi
|
6b01403b25 |
gdb: add debug prints in event loop
Add debug printouts about event loop-related events: - When a file descriptor handler gets invoked - When an async event/signal handler gets invoked gdb/ChangeLog: * async-event.c (invoke_async_signal_handlers): Add debug print. (check_async_event_handlers): Likewise. * event-top.c (show_debug_event_loop): New function. (_initialize_event_top): Register "set debug event-loop" setting. gdbserver/ChangeLog: * server.cc (handle_monitor_command): Handle "set debug-event-loop". (captured_main): Handle "--debug-event-loop". (monitor_show_help): Mention new setting. (gdbserver_usage): Mention new flag. gdbsupport/ChangeLog: * event-loop.h (debug_event_loop): New variable declaration. (event_loop_debug_printf_1): New function declaration. (event_loop_debug_printf): New macro. * event-loop.cc (debug_event_loop): New variable. (handle_file_event): Add debug print. (event_loop_debug_printf_1): New function. Change-Id: If78ed3a69179881368e7895b42940ce13b6a1a05 |
||
Simon Marchi
|
db20ebdfae |
gdb: give names to async event/signal handlers
Assign names to async event/signal handlers. They will be used in debug messages when file handlers are invoked. Unlike in the previous patch, the names are not copied in the structure, since we don't need to (all names are string literals for the moment). gdb/ChangeLog: * async-event.h (create_async_signal_handler): Add name parameter. (create_async_event_handler): Likewise. * async-event.c (struct async_signal_handler) <name>: New field. (struct async_event_handler) <name>: New field. (create_async_signal_handler): Assign name. (create_async_event_handler): Assign name. * event-top.c (async_init_signals): Pass name when creating handler. * infrun.c (_initialize_infrun): Likewise. * record-btrace.c (record_btrace_push_target): Likewise. * record-full.c (record_full_open): Likewise. * remote-notif.c (remote_notif_state_allocate): Likewise. * remote.c (remote_target::open_1): Likewise. * tui/tui-win.c (tui_initialize_win): Likewise. Change-Id: Icd9d9f775542ae5fc2cd148c12f481e7885936d5 |
||
Simon Marchi
|
2554f6f564 |
gdb: give names to event loop file handlers
Assign names to event loop file handlers. They will be used in debug
messages when file handlers are invoked.
In GDB, each UI used to get its own unique number, until commit
|
||
Tom Tromey
|
400b5eca00 |
Move event-loop.[ch] to gdbsupport/
This moves event-loop.[ch] to gdbsupport/ and updates the uses in gdb. gdb/ChangeLog 2020-04-13 Tom Tromey <tom@tromey.com> * run-on-main-thread.c: Update include. * unittests/main-thread-selftests.c: Update include. * tui/tui-win.c: Update include. * tui/tui-io.c: Update include. * tui/tui-interp.c: Update include. * tui/tui-hooks.c: Update include. * top.h: Update include. * top.c: Update include. * ser-base.c: Update include. * remote.c: Update include. * remote-notif.c: Update include. * remote-fileio.c: Update include. * record-full.c: Update include. * record-btrace.c: Update include. * python/python.c: Update include. * posix-hdep.c: Update include. * mingw-hdep.c: Update include. * mi/mi-main.c: Update include. * mi/mi-interp.c: Update include. * main.c: Update include. * linux-nat.c: Update include. * interps.c: Update include. * infrun.c: Update include. * inf-loop.c: Update include. * event-top.c: Update include. * event-loop.c: Move to ../gdbsupport/. * event-loop.h: Move to ../gdbsupport/. * async-event.h: Update include. * Makefile.in (COMMON_SFILES, HFILES_NO_SRCDIR): Update. gdbsupport/ChangeLog 2020-04-13 Tom Tromey <tom@tromey.com> * event-loop.h: Move from ../gdb/. * event-loop.cc: Move from ../gdb/. |
||
Tom Tromey
|
93b54c8ed3 |
Introduce async-event.[ch]
This patch splits out some gdb-specific code from event-loop, into new files async-event.[ch]. Strictly speaking this code could perhaps be put into gdbsupport/, but because gdbserver does not currently use it, it seemed better, for size reasons, to split it out. gdb/ChangeLog 2020-04-13 Tom Tromey <tom@tromey.com> * tui/tui-win.c: Include async-event.h. * remote.c: Include async-event.h. * remote-notif.c: Include async-event.h. * record-full.c: Include async-event.h. * record-btrace.c: Include async-event.h. * infrun.c: Include async-event.h. * event-top.c: Include async-event.h. * event-loop.h: Move some declarations to async-event.h. * event-loop.c: Don't include ser-event.h or top.h. Move some code to async-event.c. * async-event.h: New file. * async-event.c: New file. * Makefile.in (COMMON_SFILES): Add async-event.c. (HFILES_NO_SRCDIR): Add async-event.h. |
||
Tom Tromey
|
06cc9596e8 |
Move gdb_select.h to gdbsupport/
This moves gdb_select.h to gdbsupport/, so it can be used by other code there. gdb/ChangeLog 2020-04-13 Tom Tromey <tom@tromey.com> * gdb_select.h: Move to ../gdbsupport/. * event-loop.c: Update include path. * top.c: Update include path. * ser-base.c: Update include path. * ui-file.c: Update include path. * ser-tcp.c: Update include path. * guile/scm-ports.c: Update include path. * posix-hdep.c: Update include path. * ser-unix.c: Update include path. * gdb_usleep.c: Update include path. * mingw-hdep.c: Update include path. * inflow.c: Update include path. * infrun.c: Update include path. * event-top.c: Update include path. gdbsupport/ChangeLog 2020-04-13 Tom Tromey <tom@tromey.com> * gdb_select.h: Move from ../gdb/. |
||
Iain Buclaw
|
faa17681cc |
Make gdb_flush also flush the wrap buffer
This changes gdb_flush to also flush the internal wrap buffer. A few places needed to continue using the previous approach, so this also introduces ui_file_flush for those. 2020-02-05 Iain Buclaw <ibuclaw@gdcproject.org> * gdb/event-loop.c (gdb_wait_for_event): Update. * gdb/printcmd.c (printf_command): Update. * gdb/remote-fileio.c (remote_fileio_func_write): Update. * gdb/remote-sim.c (gdb_os_flush_stdout): Update. (gdb_os_flush_stderr): Update. * gdb/remote.c (remote_console_output): Update. * gdb/ui-file.c (gdb_flush): Rename to... (ui_file_flush): ...this. (stderr_file::write): Update. (stderr_file::puts): Update. * gdb/ui-file.h (gdb_flush): Rename to... (ui_file_flush): ...this. * gdb/utils.c (gdb_flush): Add function. * gdb/utils.h (gdb_flush): Add declaration. Change-Id: I7ca143d30f03dc39f218f6e880eb9bca9e15af39 |
||
Pedro Alves
|
5b6d1e4fa4 |
Multi-target support
This commit adds multi-target support to GDB. What this means is that with this commit, GDB can now be connected to different targets at the same time. E.g., you can debug a live native process and a core dump at the same time, connect to multiple gdbservers, etc. Actually, the word "target" is overloaded in gdb. We already have a target stack, with pushes several target_ops instances on top of one another. We also have "info target" already, which means something completely different to what this patch does. So from here on, I'll be using the "target connections" term, to mean an open process_stratum target, pushed on a target stack. This patch makes gdb have multiple target stacks, and multiple process_stratum targets open simultaneously. The user-visible changes / commands will also use this terminology, but of course it's all open to debate. User-interface-wise, not that much changes. The main difference is that each inferior may have its own target connection. A target connection (e.g., a target extended-remote connection) may support debugging multiple processes, just as before. Say you're debugging against gdbserver in extended-remote mode, and you do "add-inferior" to prepare to spawn a new process, like: (gdb) target extended-remote :9999 ... (gdb) start ... (gdb) add-inferior Added inferior 2 (gdb) inferior 2 [Switching to inferior 2 [<null>] (<noexec>)] (gdb) file a.out ... (gdb) start ... At this point, you have two inferiors connected to the same gdbserver. With this commit, GDB will maintain a target stack per inferior, instead of a global target stack. To preserve the behavior above, by default, "add-inferior" makes the new inferior inherit a copy of the target stack of the current inferior. Same across a fork - the child inherits a copy of the target stack of the parent. While the target stacks are copied, the targets themselves are not. Instead, target_ops is made a refcounted_object, which means that target_ops instances are refcounted, which each inferior counting for a reference. What if you want to create an inferior and connect it to some _other_ target? For that, this commit introduces a new "add-inferior -no-connection" option that makes the new inferior not share the current inferior's target. So you could do: (gdb) target extended-remote :9999 Remote debugging using :9999 ... (gdb) add-inferior -no-connection [New inferior 2] Added inferior 2 (gdb) inferior 2 [Switching to inferior 2 [<null>] (<noexec>)] (gdb) info inferiors Num Description Executable 1 process 18401 target:/home/pedro/tmp/main * 2 <null> (gdb) tar extended-remote :10000 Remote debugging using :10000 ... (gdb) info inferiors Num Description Executable 1 process 18401 target:/home/pedro/tmp/main * 2 process 18450 target:/home/pedro/tmp/main (gdb) A following patch will extended "info inferiors" to include a column indicating which connection an inferior is bound to, along with a couple other UI tweaks. Other than that, debugging is the same as before. Users interact with inferiors and threads as before. The only difference is that inferiors may be bound to processes running in different machines. That's pretty much all there is to it in terms of noticeable UI changes. On to implementation. Since we can be connected to different systems at the same time, a ptid_t is no longer a unique identifier. Instead a thread can be identified by a pair of ptid_t and 'process_stratum_target *', the later being the instance of the process_stratum target that owns the process/thread. Note that process_stratum_target inherits from target_ops, and all process_stratum targets inherit from process_stratum_target. In earlier patches, many places in gdb were converted to refer to threads by thread_info pointer instead of ptid_t, but there are still places in gdb where we start with a pid/tid and need to find the corresponding inferior or thread_info objects. So you'll see in the patch many places adding a process_stratum_target parameter to functions that used to take only a ptid_t. Since each inferior has its own target stack now, we can always find the process_stratum target for an inferior. That is done via a inf->process_target() convenience method. Since each inferior has its own target stack, we need to handle the "beneath" calls when servicing target calls. The solution I settled with is just to make sure to switch the current inferior to the inferior you want before making a target call. Not relying on global context is just not feasible in current GDB. Fortunately, there aren't that many places that need to do that, because generally most code that calls target methods already has the current context pointing to the right inferior/thread. Note, to emphasize -- there's no method to "switch to this target stack". Instead, you switch the current inferior, and that implicitly switches the target stack. In some spots, we need to iterate over all inferiors so that we reach all target stacks. Native targets are still singletons. There's always only a single instance of such targets. Remote targets however, we'll have one instance per remote connection. The exec target is still a singleton. There's only one instance. I did not see the point of instanciating more than one exec_target object. After vfork, we need to make sure to push the exec target on the new inferior. See exec_on_vfork. For type safety, functions that need a {target, ptid} pair to identify a thread, take a process_stratum_target pointer for target parameter instead of target_ops *. Some shared code in gdb/nat/ also need to gain a target pointer parameter. This poses an issue, since gdbserver doesn't have process_stratum_target, only target_ops. To fix this, this commit renames gdbserver's target_ops to process_stratum_target. I think this makes sense. There's no concept of target stack in gdbserver, and gdbserver's target_ops really implements a process_stratum-like target. The thread and inferior iterator functions also gain process_stratum_target parameters. These are used to be able to iterate over threads and inferiors of a given target. Following usual conventions, if the target pointer is null, then we iterate over threads and inferiors of all targets. I tried converting "add-inferior" to the gdb::option framework, as a preparatory patch, but that stumbled on the fact that gdb::option does not support file options yet, for "add-inferior -exec". I have a WIP patchset that adds that, but it's not a trivial patch, mainly due to need to integrate readline's filename completion, so I deferred that to some other time. In infrun.c/infcmd.c, the main change is that we need to poll events out of all targets. See do_target_wait. Right after collecting an event, we switch the current inferior to an inferior bound to the target that reported the event, so that target methods can be used while handling the event. This makes most of the code transparent to multi-targets. See fetch_inferior_event. infrun.c:stop_all_threads is interesting -- in this function we need to stop all threads of all targets. What the function does is send an asynchronous stop request to all threads, and then synchronously waits for events, with target_wait, rinse repeat, until all it finds are stopped threads. Now that we have multiple targets, it's not efficient to synchronously block in target_wait waiting for events out of one target. Instead, we implement a mini event loop, with interruptible_select, select'ing on one file descriptor per target. For this to work, we need to be able to ask the target for a waitable file descriptor. Such file descriptors already exist, they are the descriptors registered in the main event loop with add_file_handler, inside the target_async implementations. This commit adds a new target_async_wait_fd target method that just returns the file descriptor in question. See wait_one / stop_all_threads in infrun.c. The 'threads_executing' global is made a per-target variable. Since it is only relevant to process_stratum_target targets, this is where it is put, instead of in target_ops. You'll notice that remote.c includes some FIXME notes. These refer to the fact that the global arrays that hold data for the remote packets supported are still globals. For example, if we connect to two different servers/stubs, then each might support different remote protocol features. They might even be different architectures, like e.g., one ARM baremetal stub, and a x86 gdbserver, to debug a host/controller scenario as a single program. That isn't going to work correctly today, because of said globals. I'm leaving fixing that for another pass, since it does not appear to be trivial, and I'd rather land the base work first. It's already useful to be able to debug multiple instances of the same server (e.g., a distributed cluster, where you have full control over the servers installed), so I think as is it's already reasonable incremental progress. Current limitations: - You can only resume more that one target at the same time if all targets support asynchronous debugging, and support non-stop mode. It should be possible to support mixed all-stop + non-stop backends, but that is left for another time. This means that currently in order to do multi-target with gdbserver you need to issue "maint set target-non-stop on". I would like to make that mode be the default, but we're not there yet. Note that I'm talking about how the target backend works, only. User-visible all-stop mode works just fine. - As explained above, connecting to different remote servers at the same time is likely to produce bad results if they don't support the exact set of RSP features. FreeBSD updates courtesy of John Baldwin. gdb/ChangeLog: 2020-01-10 Pedro Alves <palves@redhat.com> John Baldwin <jhb@FreeBSD.org> * aarch64-linux-nat.c (aarch64_linux_nat_target::thread_architecture): Adjust. * ada-tasks.c (print_ada_task_info): Adjust find_thread_ptid call. (task_command_1): Likewise. * aix-thread.c (sync_threadlists, aix_thread_target::resume) (aix_thread_target::wait, aix_thread_target::fetch_registers) (aix_thread_target::store_registers) (aix_thread_target::thread_alive): Adjust. * amd64-fbsd-tdep.c: Include "inferior.h". (amd64fbsd_get_thread_local_address): Pass down target. * amd64-linux-nat.c (ps_get_thread_area): Use ps_prochandle thread's gdbarch instead of target_gdbarch. * break-catch-sig.c (signal_catchpoint_print_it): Adjust call to get_last_target_status. * break-catch-syscall.c (print_it_catch_syscall): Likewise. * breakpoint.c (breakpoints_should_be_inserted_now): Consider all inferiors. (update_inserted_breakpoint_locations): Skip if inferiors with no execution. (update_global_location_list): When handling moribund locations, find representative inferior for location's pspace, and use thread count of its process_stratum target. * bsd-kvm.c (bsd_kvm_target_open): Pass target down. * bsd-uthread.c (bsd_uthread_target::wait): Use as_process_stratum_target and adjust thread_change_ptid and add_thread calls. (bsd_uthread_target::update_thread_list): Use as_process_stratum_target and adjust find_thread_ptid, thread_change_ptid and add_thread calls. * btrace.c (maint_btrace_packet_history_cmd): Adjust find_thread_ptid call. * corelow.c (add_to_thread_list): Adjust add_thread call. (core_target_open): Adjust add_thread_silent and thread_count calls. (core_target::pid_to_str): Adjust find_inferior_ptid call. * ctf.c (ctf_target_open): Adjust add_thread_silent call. * event-top.c (async_disconnect): Pop targets from all inferiors. * exec.c (add_target_sections): Push exec target on all inferiors sharing the program space. (remove_target_sections): Remove the exec target from all inferiors sharing the program space. (exec_on_vfork): New. * exec.h (exec_on_vfork): Declare. * fbsd-nat.c (fbsd_add_threads): Add fbsd_nat_target parameter. Pass it down. (fbsd_nat_target::update_thread_list): Adjust. (fbsd_nat_target::resume): Adjust. (fbsd_handle_debug_trap): Add fbsd_nat_target parameter. Pass it down. (fbsd_nat_target::wait, fbsd_nat_target::post_attach): Adjust. * fbsd-tdep.c (fbsd_corefile_thread): Adjust get_thread_arch_regcache call. * fork-child.c (gdb_startup_inferior): Pass target down to startup_inferior and set_executing. * gdbthread.h (struct process_stratum_target): Forward declare. (add_thread, add_thread_silent, add_thread_with_info) (in_thread_list): Add process_stratum_target parameter. (find_thread_ptid(inferior*, ptid_t)): New overload. (find_thread_ptid, thread_change_ptid): Add process_stratum_target parameter. (all_threads()): Delete overload. (all_threads, all_non_exited_threads): Add process_stratum_target parameter. (all_threads_safe): Use brace initialization. (thread_count): Add process_stratum_target parameter. (set_resumed, set_running, set_stop_requested, set_executing) (threads_are_executing, finish_thread_state): Add process_stratum_target parameter. (switch_to_thread): Use is_current_thread. * i386-fbsd-tdep.c: Include "inferior.h". (i386fbsd_get_thread_local_address): Pass down target. * i386-linux-nat.c (i386_linux_nat_target::low_resume): Adjust. * inf-child.c (inf_child_target::maybe_unpush_target): Remove have_inferiors check. * inf-ptrace.c (inf_ptrace_target::create_inferior) (inf_ptrace_target::attach): Adjust. * infcall.c (run_inferior_call): Adjust. * infcmd.c (run_command_1): Pass target to scoped_finish_thread_state. (proceed_thread_callback): Skip inferiors with no execution. (continue_command): Rename 'all_threads' local to avoid hiding 'all_threads' function. Adjust get_last_target_status call. (prepare_one_step): Adjust set_running call. (signal_command): Use user_visible_resume_target. Compare thread pointers instead of inferior_ptid. (info_program_command): Adjust to pass down target. (attach_command): Mark target's 'thread_executing' flag. (stop_current_target_threads_ns): New, factored out from ... (interrupt_target_1): ... this. Switch inferior before making target calls. * inferior-iter.h (struct all_inferiors_iterator, struct all_inferiors_range) (struct all_inferiors_safe_range) (struct all_non_exited_inferiors_range): Filter on process_stratum_target too. Remove explicit. * inferior.c (inferior::inferior): Push dummy target on target stack. (find_inferior_pid, find_inferior_ptid, number_of_live_inferiors): Add process_stratum_target parameter, and pass it down. (have_live_inferiors): Adjust. (switch_to_inferior_and_push_target): New. (add_inferior_command, clone_inferior_command): Handle "-no-connection" parameter. Use switch_to_inferior_and_push_target. (_initialize_inferior): Mention "-no-connection" option in the help of "add-inferior" and "clone-inferior" commands. * inferior.h: Include "process-stratum-target.h". (interrupt_target_1): Use bool. (struct inferior) <push_target, unpush_target, target_is_pushed, find_target_beneath, top_target, process_target, target_at, m_stack>: New. (discard_all_inferiors): Delete. (find_inferior_pid, find_inferior_ptid, number_of_live_inferiors) (all_inferiors, all_non_exited_inferiors): Add process_stratum_target parameter. * infrun.c: Include "gdb_select.h" and <unordered_map>. (target_last_proc_target): New global. (follow_fork_inferior): Push target on new inferior. Pass target to add_thread_silent. Call exec_on_vfork. Handle target's reference count. (follow_fork): Adjust get_last_target_status call. Also consider target. (follow_exec): Push target on new inferior. (struct execution_control_state) <target>: New field. (user_visible_resume_target): New. (do_target_resume): Call target_async. (resume_1): Set target's threads_executing flag. Consider resume target. (commit_resume_all_targets): New. (proceed): Also consider resume target. Skip threads of inferiors with no execution. Commit resumtion in all targets. (start_remote): Pass current inferior to wait_for_inferior. (infrun_thread_stop_requested): Consider target as well. Pass thread_info pointer to clear_inline_frame_state instead of ptid. (infrun_thread_thread_exit): Consider target as well. (random_pending_event_thread): New inferior parameter. Use it. (do_target_wait): Rename to ... (do_target_wait_1): ... this. Add inferior parameter, and pass it down. (threads_are_resumed_pending_p, do_target_wait): New. (prepare_for_detach): Adjust calls. (wait_for_inferior): New inferior parameter. Handle it. Use do_target_wait_1 instead of do_target_wait. (fetch_inferior_event): Adjust. Switch to representative inferior. Pass target down. (set_last_target_status): Add process_stratum_target parameter. Save target in global. (get_last_target_status): Add process_stratum_target parameter and handle it. (nullify_last_target_wait_ptid): Clear 'target_last_proc_target'. (context_switch): Check inferior_ptid == null_ptid before calling inferior_thread(). (get_inferior_stop_soon): Pass down target. (wait_one): Rename to ... (poll_one_curr_target): ... this. (struct wait_one_event): New. (wait_one): New. (stop_all_threads): Adjust. (handle_no_resumed, handle_inferior_event): Adjust to consider the event's target. (switch_back_to_stepped_thread): Also consider target. (print_stop_event): Update. (normal_stop): Update. Also consider the resume target. * infrun.h (wait_for_inferior): Remove declaration. (user_visible_resume_target): New declaration. (get_last_target_status, set_last_target_status): New process_stratum_target parameter. * inline-frame.c (clear_inline_frame_state(ptid_t)): Add process_stratum_target parameter, and use it. (clear_inline_frame_state (thread_info*)): New. * inline-frame.c (clear_inline_frame_state(ptid_t)): Add process_stratum_target parameter. (clear_inline_frame_state (thread_info*)): Declare. * linux-fork.c (delete_checkpoint_command): Pass target down to find_thread_ptid. (checkpoint_command): Adjust. * linux-nat.c (linux_nat_target::follow_fork): Switch to thread instead of just tweaking inferior_ptid. (linux_nat_switch_fork): Pass target down to thread_change_ptid. (exit_lwp): Pass target down to find_thread_ptid. (attach_proc_task_lwp_callback): Pass target down to add_thread/set_running/set_executing. (linux_nat_target::attach): Pass target down to thread_change_ptid. (get_detach_signal): Pass target down to find_thread_ptid. Consider last target status's target. (linux_resume_one_lwp_throw, resume_lwp) (linux_handle_syscall_trap, linux_handle_extended_wait, wait_lwp) (stop_wait_callback, save_stop_reason, linux_nat_filter_event) (linux_nat_wait_1, resume_stopped_resumed_lwps): Pass target down. (linux_nat_target::async_wait_fd): New. (linux_nat_stop_lwp, linux_nat_target::thread_address_space): Pass target down. * linux-nat.h (linux_nat_target::async_wait_fd): Declare. * linux-tdep.c (get_thread_arch_regcache): Pass target down. * linux-thread-db.c (struct thread_db_info::process_target): New field. (add_thread_db_info): Save target. (get_thread_db_info): New process_stratum_target parameter. Also match target. (delete_thread_db_info): New process_stratum_target parameter. Also match target. (thread_from_lwp): Adjust to pass down target. (thread_db_notice_clone): Pass down target. (check_thread_db_callback): Pass down target. (try_thread_db_load_1): Always push the thread_db target. (try_thread_db_load, record_thread): Pass target down. (thread_db_target::detach): Pass target down. Always unpush the thread_db target. (thread_db_target::wait, thread_db_target::mourn_inferior): Pass target down. Always unpush the thread_db target. (find_new_threads_callback, thread_db_find_new_threads_2) (thread_db_target::update_thread_list): Pass target down. (thread_db_target::pid_to_str): Pass current inferior down. (thread_db_target::get_thread_local_address): Pass target down. (thread_db_target::resume, maintenance_check_libthread_db): Pass target down. * nto-procfs.c (nto_procfs_target::update_thread_list): Adjust. * procfs.c (procfs_target::procfs_init_inferior): Declare. (proc_set_current_signal, do_attach, procfs_target::wait): Adjust. (procfs_init_inferior): Rename to ... (procfs_target::procfs_init_inferior): ... this and adjust. (procfs_target::create_inferior, procfs_notice_thread) (procfs_do_thread_registers): Adjust. * ppc-fbsd-tdep.c: Include "inferior.h". (ppcfbsd_get_thread_local_address): Pass down target. * proc-service.c (ps_xfer_memory): Switch current inferior and program space as well. (get_ps_regcache): Pass target down. * process-stratum-target.c (process_stratum_target::thread_address_space) (process_stratum_target::thread_architecture): Pass target down. * process-stratum-target.h (process_stratum_target::threads_executing): New field. (as_process_stratum_target): New. * ravenscar-thread.c (ravenscar_thread_target::update_inferior_ptid): Pass target down. (ravenscar_thread_target::wait, ravenscar_add_thread): Pass target down. * record-btrace.c (record_btrace_target::info_record): Adjust. (record_btrace_target::record_method) (record_btrace_target::record_is_replaying) (record_btrace_target::fetch_registers) (get_thread_current_frame_id, record_btrace_target::resume) (record_btrace_target::wait, record_btrace_target::stop): Pass target down. * record-full.c (record_full_wait_1): Switch to event thread. Pass target down. * regcache.c (regcache::regcache) (get_thread_arch_aspace_regcache, get_thread_arch_regcache): Add process_stratum_target parameter and handle it. (current_thread_target): New global. (get_thread_regcache): Add process_stratum_target parameter and handle it. Switch inferior before calling target method. (get_thread_regcache): Pass target down. (get_thread_regcache_for_ptid): Pass target down. (registers_changed_ptid): Add process_stratum_target parameter and handle it. (registers_changed_thread, registers_changed): Pass target down. (test_get_thread_arch_aspace_regcache): New. (current_regcache_test): Define a couple local test_target_ops instances and use them for testing. (readwrite_regcache): Pass process_stratum_target parameter. (cooked_read_test, cooked_write_test): Pass mock_target down. * regcache.h (get_thread_regcache, get_thread_arch_regcache) (get_thread_arch_aspace_regcache): Add process_stratum_target parameter. (regcache::target): New method. (regcache::regcache, regcache::get_thread_arch_aspace_regcache) (regcache::registers_changed_ptid): Add process_stratum_target parameter. (regcache::m_target): New field. (registers_changed_ptid): Add process_stratum_target parameter. * remote.c (remote_state::supports_vCont_probed): New field. (remote_target::async_wait_fd): New method. (remote_unpush_and_throw): Add remote_target parameter. (get_current_remote_target): Adjust. (remote_target::remote_add_inferior): Push target. (remote_target::remote_add_thread) (remote_target::remote_notice_new_inferior) (get_remote_thread_info): Pass target down. (remote_target::update_thread_list): Skip threads of inferiors bound to other targets. (remote_target::close): Don't discard inferiors. (remote_target::add_current_inferior_and_thread) (remote_target::process_initial_stop_replies) (remote_target::start_remote) (remote_target::remote_serial_quit_handler): Pass down target. (remote_target::remote_unpush_target): New remote_target parameter. Unpush the target from all inferiors. (remote_target::remote_unpush_and_throw): New remote_target parameter. Pass it down. (remote_target::open_1): Check whether the current inferior has execution instead of checking whether any inferior is live. Pass target down. (remote_target::remote_detach_1): Pass down target. Use remote_unpush_target. (extended_remote_target::attach): Pass down target. (remote_target::remote_vcont_probe): Set supports_vCont_probed. (remote_target::append_resumption): Pass down target. (remote_target::append_pending_thread_resumptions) (remote_target::remote_resume_with_hc, remote_target::resume) (remote_target::commit_resume): Pass down target. (remote_target::remote_stop_ns): Check supports_vCont_probed. (remote_target::interrupt_query) (remote_target::remove_new_fork_children) (remote_target::check_pending_events_prevent_wildcard_vcont) (remote_target::remote_parse_stop_reply) (remote_target::process_stop_reply): Pass down target. (first_remote_resumed_thread): New remote_target parameter. Pass it down. (remote_target::wait_as): Pass down target. (unpush_and_perror): New remote_target parameter. Pass it down. (remote_target::readchar, remote_target::remote_serial_write) (remote_target::getpkt_or_notif_sane_1) (remote_target::kill_new_fork_children, remote_target::kill): Pass down target. (remote_target::mourn_inferior): Pass down target. Use remote_unpush_target. (remote_target::core_of_thread) (remote_target::remote_btrace_maybe_reopen): Pass down target. (remote_target::pid_to_exec_file) (remote_target::thread_handle_to_thread_info): Pass down target. (remote_target::async_wait_fd): New. * riscv-fbsd-tdep.c: Include "inferior.h". (riscv_fbsd_get_thread_local_address): Pass down target. * sol2-tdep.c (sol2_core_pid_to_str): Pass down target. * sol-thread.c (sol_thread_target::wait, ps_lgetregs, ps_lsetregs) (ps_lgetfpregs, ps_lsetfpregs, sol_update_thread_list_callback): Adjust. * solib-spu.c (spu_skip_standalone_loader): Pass down target. * solib-svr4.c (enable_break): Pass down target. * spu-multiarch.c (parse_spufs_run): Pass down target. * spu-tdep.c (spu2ppu_sniffer): Pass down target. * target-delegates.c: Regenerate. * target.c (g_target_stack): Delete. (current_top_target): Return the current inferior's top target. (target_has_execution_1): Refer to the passed-in inferior's top target. (target_supports_terminal_ours): Check whether the initial inferior was already created. (decref_target): New. (target_stack::push): Incref/decref the target. (push_target, push_target, unpush_target): Adjust. (target_stack::unpush): Defref target. (target_is_pushed): Return bool. Adjust to refer to the current inferior's target stack. (dispose_inferior): Delete, and inline parts ... (target_preopen): ... here. Only dispose of the current inferior. (target_detach): Hold strong target reference while detaching. Pass target down. (target_thread_name): Add assertion. (target_resume): Pass down target. (target_ops::beneath, find_target_at): Adjust to refer to the current inferior's target stack. (get_dummy_target): New. (target_pass_ctrlc): Pass the Ctrl-C to the first inferior that has a thread running. (initialize_targets): Rename to ... (_initialize_target): ... this. * target.h: Include "gdbsupport/refcounted-object.h". (struct target_ops): Inherit refcounted_object. (target_ops::shortname, target_ops::longname): Make const. (target_ops::async_wait_fd): New method. (decref_target): Declare. (struct target_ops_ref_policy): New. (target_ops_ref): New typedef. (get_dummy_target): Declare function. (target_is_pushed): Return bool. * thread-iter.c (all_matching_threads_iterator::m_inf_matches) (all_matching_threads_iterator::all_matching_threads_iterator): Handle filter target. * thread-iter.h (struct all_matching_threads_iterator, struct all_matching_threads_range, class all_non_exited_threads_range): Filter by target too. Remove explicit. * thread.c (threads_executing): Delete. (inferior_thread): Pass down current inferior. (clear_thread_inferior_resources): Pass down thread pointer instead of ptid_t. (add_thread_silent, add_thread_with_info, add_thread): Add process_stratum_target parameter. Use it for thread and inferior searches. (is_current_thread): New. (thread_info::deletable): Use it. (find_thread_ptid, thread_count, in_thread_list) (thread_change_ptid, set_resumed, set_running): New process_stratum_target parameter. Pass it down. (set_executing): New process_stratum_target parameter. Pass it down. Adjust reference to 'threads_executing'. (threads_are_executing): New process_stratum_target parameter. Adjust reference to 'threads_executing'. (set_stop_requested, finish_thread_state): New process_stratum_target parameter. Pass it down. (switch_to_thread): Also match inferior. (switch_to_thread): New process_stratum_target parameter. Pass it down. (update_threads_executing): Reimplement. * top.c (quit_force): Pop targets from all inferior. (gdb_init): Don't call initialize_targets. * windows-nat.c (windows_nat_target) <get_windows_debug_event>: Declare. (windows_add_thread, windows_delete_thread): Adjust. (get_windows_debug_event): Rename to ... (windows_nat_target::get_windows_debug_event): ... this. Adjust. * tracefile-tfile.c (tfile_target_open): Pass down target. * gdbsupport/common-gdbthread.h (struct process_stratum_target): Forward declare. (switch_to_thread): Add process_stratum_target parameter. * mi/mi-interp.c (mi_on_resume_1): Add process_stratum_target parameter. Use it. (mi_on_resume): Pass target down. * nat/fork-inferior.c (startup_inferior): Add process_stratum_target parameter. Pass it down. * nat/fork-inferior.h (startup_inferior): Add process_stratum_target parameter. * python/py-threadevent.c (py_get_event_thread): Pass target down. gdb/gdbserver/ChangeLog: 2020-01-10 Pedro Alves <palves@redhat.com> * fork-child.c (post_fork_inferior): Pass target down to startup_inferior. * inferiors.c (switch_to_thread): Add process_stratum_target parameter. * lynx-low.c (lynx_target_ops): Now a process_stratum_target. * nto-low.c (nto_target_ops): Now a process_stratum_target. * linux-low.c (linux_target_ops): Now a process_stratum_target. * remote-utils.c (prepare_resume_reply): Pass the target to switch_to_thread. * target.c (the_target): Now a process_stratum_target. (done_accessing_memory): Pass the target to switch_to_thread. (set_target_ops): Ajust to use process_stratum_target. * target.h (struct target_ops): Rename to ... (struct process_stratum_target): ... this. (the_target, set_target_ops): Adjust. (prepare_to_access_memory): Adjust comment. * win32-low.c (child_xfer_memory): Adjust to use process_stratum_target. (win32_target_ops): Now a process_stratum_target. |
||
Joel Brobecker
|
b811d2c292 |
Update copyright year range in all GDB files.
gdb/ChangeLog: Update copyright year range in all GDB files. |
||
Tom Tromey
|
036003a671 |
Silence ARI for valid calls to abort
There are a handful of spots in gdb that validly call abort. This patch adds the appropriate ARI marker to these lines, to silence the ARI report. This also removes the "fix" call for "abort" from gdb_ari.sh; it was incorrect and now is not needed. gdb/ChangeLog 2019-12-13 Tom Tromey <tromey@adacore.com> * contrib/ari/gdb_ari.sh: Remove "fix" call for abort. * utils.c (abort_with_message, dump_core, internal_vproblem): Add ARI marker to abort. * event-top.c (handle_sigsegv): Add ARI marker to abort. Change-Id: I09ce6aa5010bbe4e5bb73ffdb727481be39d34d6 |
||
Tom Tromey
|
3b3978bca2 |
Introduce thread-safe way to handle SIGSEGV
The gdb demangler installs a SIGSEGV handler in order to protect gdb from demangler bugs. However, this is not thread-safe, as signal handlers are global to the process. This patch changes gdb to always install a global SIGSEGV handler, and then lets threads indicate their interest in handling the signal by setting a thread-local variable. This patch then arranges for the demangler code to use this; being sure to arrange for calls to warning and the like to be done on the main thread. One thing I wondered while writing this patch is if there are any systems that do not have "sigaction". If gdb could assume this, it would simplify this code. gdb/ChangeLog 2019-11-26 Tom Tromey <tom@tromey.com> * event-top.h (thread_local_segv_handler): Declare. * event-top.c (thread_local_segv_handler): New global. (install_handle_sigsegv, handle_sigsegv): New functions. (async_init_signals): Install SIGSEGV handler. * cp-support.c (gdb_demangle_jmp_buf): Change type. Now thread-local. (report_failed_demangle): New function. (gdb_demangle): Make core_dump_allowed atomic. Remove signal handler-setting code, instead use segv_handler. Run warning code on main thread. Change-Id: Ic832bbb033b64744e4b44f14b41db7e4168ce427 |
||
Tom Tromey
|
21987b9c06 |
Add RAII class for blocking gdb signals
This adds configury support and an RAII class that can be used to temporarily block signals that are used by gdb. (This class is not used in this patch, but it split out for easier review.) The idea of this patch is that these signals should only be delivered to the main thread. So, when creating a background thread, they are temporarily blocked; the blocked state is inherited by the new thread. The sigprocmask man page says: The use of sigprocmask() is unspecified in a multithreaded process; see pthread_sigmask(3). This patch changes gdb to use pthread_sigmask when appropriate, by introducing a convenience define. I've updated gdbserver as well, because I had to touch gdbsupport, and because the threading patches will make it link against the thread library. I chose not to touch the NTO code, because I don't know anything about that platform and because I cannot test it. Finally, this modifies an existing spot in the Guile layer to use the new facility. gdb/ChangeLog 2019-11-26 Tom Tromey <tom@tromey.com> * gdbsupport/signals-state-save-restore.c (original_signal_mask): Remove comment. (save_original_signals_state, restore_original_signals_state): Use gdb_sigmask. * linux-nat.c (block_child_signals, restore_child_signals_mask) (_initialize_linux_nat): Use gdb_sigmask. * guile/guile.c (_initialize_guile): Use block_signals. * Makefile.in (HFILES_NO_SRCDIR): Add gdb-sigmask.h. * gdbsupport/gdb-sigmask.h: New file. * event-top.c (async_sigtstp_handler): Use gdb_sigmask. * cp-support.c (gdb_demangle): Use gdb_sigmask. * gdbsupport/common.m4 (GDB_AC_COMMON): Check for pthread_sigmask. * configure, config.in: Rebuild. * gdbsupport/block-signals.h: New file. gdb/gdbserver/ChangeLog 2019-11-26 Tom Tromey <tom@tromey.com> * remote-utils.c (block_unblock_async_io): Use gdb_sigmask. * linux-low.c (linux_wait_for_event_filtered, linux_async): Use gdb_sigmask. * configure, config.in: Rebuild. Change-Id: If3f37dc57dd859c226e9e4d79458a0514746e8c6 |
||
Tom de Vries
|
405feb71d4 |
[gdb] Fix typos in comments
Fix typos in comments. NFC. Tested on x86_64-linux. gdb/ChangeLog: 2019-10-17 Tom de Vries <tdevries@suse.de> * arm-nbsd-nat.c: Fix typos in comments. * arm-tdep.c: Same. * darwin-nat-info.c: Same. * dwarf2read.c: Same. * elfread.c: Same. * event-top.c: Same. * findvar.c: Same. * gdbtypes.c: Same. * hppa-tdep.c: Same. * i386-tdep.c: Same. * jit.c: Same. * main.c: Same. * mdebugread.c: Same. * moxie-tdep.c: Same. * nto-procfs.c: Same. * osabi.c: Same. * ppc-linux-tdep.c: Same. * remote.c: Same. * riscv-tdep.c: Same. * s390-tdep.c: Same. * sh-tdep.c: Same. * sparc-linux-tdep.c: Same. * sparc-nat.c: Same. * stack.c: Same. * target-descriptions.c: Same. * top.c: Same. * varobj.c: Same. Change-Id: I6047967abd2d51c9000dea15184d19f4e952c3ff |
||
Christian Biesinger
|
491144b5e2 |
Change boolean options to bool instead of int
This is for add_setshow_boolean_cmd as well as the gdb::option interface. gdb/ChangeLog: 2019-09-17 Christian Biesinger <cbiesinger@google.com> * ada-lang.c (ada_ignore_descriptive_types_p): Change to bool. (print_signatures): Likewise. (trust_pad_over_xvs): Likewise. * arch/aarch64-insn.c (aarch64_debug): Likewise. * arch/aarch64-insn.h (aarch64_debug): Likewise. * arm-linux-nat.c (arm_apcs_32): Likewise. * arm-linux-tdep.c (arm_apcs_32): Likewise. * arm-nbsd-nat.c (arm_apcs_32): Likewise. * arm-tdep.c (arm_debug): Likewise. (arm_apcs_32): Likewise. * auto-load.c (debug_auto_load): Likewise. (auto_load_gdb_scripts): Likewise. (global_auto_load): Likewise. (auto_load_local_gdbinit): Likewise. (auto_load_local_gdbinit_loaded): Likewise. * auto-load.h (global_auto_load): Likewise. (auto_load_local_gdbinit): Likewise. (auto_load_local_gdbinit_loaded): Likewise. * breakpoint.c (disconnected_dprintf): Likewise. (breakpoint_proceeded): Likewise. (automatic_hardware_breakpoints): Likewise. (always_inserted_mode): Likewise. (target_exact_watchpoints): Likewise. (_initialize_breakpoint): Update. * breakpoint.h (target_exact_watchpoints): Change to bool. * btrace.c (maint_btrace_pt_skip_pad): Likewise. * cli/cli-cmds.c (trace_commands): Likewise. * cli/cli-cmds.h (trace_commands): Likewise. * cli/cli-decode.c (add_setshow_boolean_cmd): Change int* argument to bool*. * cli/cli-logging.c (logging_overwrite): Change to bool. (logging_redirect): Likewise. (debug_redirect): Likewise. * cli/cli-option.h (option_def) <boolean>: Change return type to bool*. (struct boolean_option_def) <get_var_address_cb_>: Change return type to bool. <boolean_option_def>: Update. (struct flag_option_def): Change default type of Context to bool from int. <flag_option_def>: Change return type of var_address_cb_ to bool*. * cli/cli-setshow.c (do_set_command): Cast to bool* instead of int*. (get_setshow_command_value_string): Likewise. * cli/cli-style.c (cli_styling): Change to bool. (source_styling): Likewise. * cli/cli-style.h (source_styling): Likewise. (cli_styling): Likewise. * cli/cli-utils.h (struct qcs_flags) <quiet, cont, silent>: Change to bool. * command.h (var_types): Update comment. (add_setshow_boolean_cmd): Change int* var argument to bool*. * compile/compile-cplus-types.c (debug_compile_cplus_types): Change to bool. (debug_compile_cplus_scopes): Likewise. * compile/compile-internal.h (compile_debug): Likewise. * compile/compile.c (compile_debug): Likewise. (struct compile_options) <raw>: Likewise. * cp-support.c (catch_demangler_crashes): Likewise. * cris-tdep.c (usr_cmd_cris_version_valid): Likewise. (usr_cmd_cris_dwarf2_cfi): Likewise. * csky-tdep.c (csky_debug): Likewise. * darwin-nat.c (enable_mach_exceptions): Likewise. * dcache.c (dcache_enabled_p): Likewise. * defs.h (info_verbose): Likewise. * demangle.c (demangle): Likewise. (asm_demangle): Likewise. * dwarf-index-cache.c (debug_index_cache): Likewise. * dwarf2-frame.c (dwarf2_frame_unwinders_enabled_p): Likewise. * dwarf2-frame.h (dwarf2_frame_unwinders_enabled_p): Likewise. * dwarf2read.c (check_physname): Likewise. (use_deprecated_index_sections): Likewise. (dwarf_always_disassemble): Likewise. * eval.c (overload_resolution): Likewise. * event-top.c (set_editing_cmd_var): Likewise. (exec_done_display_p): Likewise. * event-top.h (set_editing_cmd_var): Likewise. (exec_done_display_p): Likewise. * exec.c (write_files): Likewise. * fbsd-nat.c (debug_fbsd_lwp): Likewise (debug_fbsd_nat): Likewise. * frame.h (struct frame_print_options) <print_raw_frame_arguments>: Likewise. (struct set_backtrace_options) <backtrace_past_main>: Likewise. <backtrace_past_entry> Likewise. * gdb-demangle.h (demangle): Likewise. (asm_demangle): Likewise. * gdb_bfd.c (bfd_sharing): Likewise. * gdbcore.h (write_files): Likewise. * gdbsupport/common-debug.c (show_debug_regs): Likewise. * gdbsupport/common-debug.h (show_debug_regs): Likewise. * gdbthread.h (print_thread_events): Likewise. * gdbtypes.c (opaque_type_resolution): Likewise. (strict_type_checking): Likewise. * gnu-nat.c (gnu_debug_flag): Likewise. * guile/scm-auto-load.c (auto_load_guile_scripts): Likewise. * guile/scm-param.c (pascm_variable): Add boolval. (add_setshow_generic): Update. (pascm_param_value): Update. (pascm_set_param_value_x): Update. * hppa-tdep.c (hppa_debug): Change to bool.. * infcall.c (may_call_functions_p): Likewise. (coerce_float_to_double_p): Likewise. (unwind_on_signal_p): Likewise. (unwind_on_terminating_exception_p): Likewise. * infcmd.c (startup_with_shell): Likewise. * inferior.c (print_inferior_events): Likewise. * inferior.h (startup_with_shell): Likewise. (print_inferior_events): Likewise. * infrun.c (step_stop_if_no_debug): Likewise. (detach_fork): Likewise. (debug_displaced): Likewise. (disable_randomization): Likewise. (non_stop): Likewise. (non_stop_1): Likewise. (observer_mode): Likewise. (observer_mode_1): Likewise. (set_observer_mode): Update. (sched_multi): Change to bool. * infrun.h (debug_displaced): Likewise. (sched_multi): Likewise. (step_stop_if_no_debug): Likewise. (non_stop): Likewise. (disable_randomization): Likewise. * linux-tdep.c (use_coredump_filter): Likewise. (dump_excluded_mappings): Likewise. * linux-thread-db.c (auto_load_thread_db): Likewise. (check_thread_db_on_load): Likewise. * main.c (captured_main_1): Update. * maint-test-options.c (struct test_options_opts) <flag_opt, xx1_opt, xx2_opt, boolean_opt>: Change to bool. * maint-test-settings.c (maintenance_test_settings_boolean): Likewise. * maint.c (maintenance_profile_p): Likewise. (per_command_time): Likewise. (per_command_space): Likewise. (per_command_symtab): Likewise. * memattr.c (inaccessible_by_default): Likewise. * mi/mi-main.c (mi_async): Likewise. (mi_async_1): Likewise. * mips-tdep.c (mips64_transfers_32bit_regs_p): Likewise. * nat/fork-inferior.h (startup_with_shell): Likewise. * nat/linux-namespaces.c (debug_linux_namespaces): Likewise. * nat/linux-namespaces.h (debug_linux_namespaces): Likewise. * nios2-tdep.c (nios2_debug): Likewise. * or1k-tdep.c (or1k_debug): Likewise. * parse.c (parser_debug): Likewise. * parser-defs.h (parser_debug): Likewise. * printcmd.c (print_symbol_filename): Likewise. * proc-api.c (procfs_trace): Likewise. * python/py-auto-load.c (auto_load_python_scripts): Likewise. * python/py-param.c (union parmpy_variable): Add "bool boolval" field. (set_parameter_value): Update. (add_setshow_generic): Update. * python/py-value.c (copy_py_bool_obj): Change argument from int* to bool*. * python/python.c (gdbpy_parameter_value): Cast to bool* instead of int*. * ravenscar-thread.c (ravenscar_task_support): Change to bool. * record-btrace.c (record_btrace_target::store_registers): Update. * record-full.c (record_full_memory_query): Change to bool. (record_full_stop_at_limit): Likewise. * record-full.h (record_full_memory_query): Likewise. * remote-notif.c (notif_debug): Likewise. * remote-notif.h (notif_debug): Likewise. * remote.c (use_range_stepping): Likewise. (interrupt_on_connect): Likewise. (remote_break): Likewise. * ser-tcp.c (tcp_auto_retry): Likewise. * ser-unix.c (serial_hwflow): Likewise. * skip.c (debug_skip): Likewise. * solib-aix.c (solib_aix_debug): Likewise. * spu-tdep.c (spu_stop_on_load_p): Likewise. (spu_auto_flush_cache_p): Likewise. * stack.c (struct backtrace_cmd_options) <full, no_filters, hide>: Likewise. (struct info_print_options) <quiet>: Likewise. * symfile-debug.c (debug_symfile): Likewise. * symfile.c (auto_solib_add): Likewise. (separate_debug_file_debug): Likewise. * symfile.h (auto_solib_add): Likewise. (separate_debug_file_debug): Likewise. * symtab.c (basenames_may_differ): Likewise. (struct filename_partial_match_opts) <dirname, basename>: Likewise. (struct info_print_options) <quiet, exclude_minsyms>: Likewise. (struct info_types_options) <quiet>: Likewise. * symtab.h (demangle): Likewise. (basenames_may_differ): Likewise. * target-dcache.c (stack_cache_enabled_1): Likewise. (code_cache_enabled_1): Likewise. * target.c (trust_readonly): Likewise. (may_write_registers): Likewise. (may_write_memory): Likewise. (may_insert_breakpoints): Likewise. (may_insert_tracepoints): Likewise. (may_insert_fast_tracepoints): Likewise. (may_stop): Likewise. (auto_connect_native_target): Likewise. (target_stop_and_wait): Update. (target_async_permitted): Change to bool. (target_async_permitted_1): Likewise. (may_write_registers_1): Likewise. (may_write_memory_1): Likewise. (may_insert_breakpoints_1): Likewise. (may_insert_tracepoints_1): Likewise. (may_insert_fast_tracepoints_1): Likewise. (may_stop_1): Likewise. * target.h (target_async_permitted): Likewise. (may_write_registers): Likewise. (may_write_memory): Likewise. (may_insert_breakpoints): Likewise. (may_insert_tracepoints): Likewise. (may_insert_fast_tracepoints): Likewise. (may_stop): Likewise. * thread.c (struct info_threads_opts) <show_global_ids>: Likewise. (make_thread_apply_all_options_def_group): Change argument from int* to bool*. (thread_apply_all_command): Update. (print_thread_events): Change to bool. * top.c (confirm): Likewise. (command_editing_p): Likewise. (history_expansion_p): Likewise. (write_history_p): Likewise. (info_verbose): Likewise. * top.h (confirm): Likewise. (history_expansion_p): Likewise. * tracepoint.c (disconnected_tracing): Likewise. (circular_trace_buffer): Likewise. * typeprint.c (print_methods): Likewise. (print_typedefs): Likewise. * utils.c (debug_timestamp): Likewise. (sevenbit_strings): Likewise. (pagination_enabled): Likewise. * utils.h (sevenbit_strings): Likewise. (pagination_enabled): Likewise. * valops.c (overload_resolution): Likewise. * valprint.h (struct value_print_options) <prettyformat_arrays, prettyformat_structs, vtblprint, unionprint, addressprint, objectprint, stop_print_at_null, print_array_indexes, deref_ref, static_field_print, pascal_static_field_print, raw, summary, symbol_print, finish_print>: Likewise. * windows-nat.c (new_console): Likewise. (cygwin_exceptions): Likewise. (new_group): Likewise. (debug_exec): Likewise. (debug_events): Likewise. (debug_memory): Likewise. (debug_exceptions): Likewise. (useshell): Likewise. * windows-tdep.c (maint_display_all_tib): Likewise. * xml-support.c (debug_xml): Likewise. |
||
Tom Tromey
|
268a13a5a3 |
Rename common to gdbsupport
This is the next patch in the ongoing series to move gdbsever to the top level. This patch just renames the "common" directory. The idea is to do this move in two parts: first rename the directory (this patch), then move the directory to the top. This approach makes the patches a bit more tractable. I chose the name "gdbsupport" for the directory. However, as this patch was largely written by sed, we could pick a new name without too much difficulty. Tested by the buildbot. gdb/ChangeLog 2019-07-09 Tom Tromey <tom@tromey.com> * contrib/ari/gdb_ari.sh: Change common to gdbsupport. * configure: Rebuild. * configure.ac: Change common to gdbsupport. * gdbsupport: Rename from common. * acinclude.m4: Change common to gdbsupport. * Makefile.in (CONFIG_SRC_SUBDIR, COMMON_SFILES) (HFILES_NO_SRCDIR, stamp-version, ALLDEPFILES): Change common to gdbsupport. * aarch64-tdep.c, ada-lang.c, ada-lang.h, agent.c, alloc.c, amd64-darwin-tdep.c, amd64-dicos-tdep.c, amd64-fbsd-nat.c, amd64-fbsd-tdep.c, amd64-linux-nat.c, amd64-linux-tdep.c, amd64-nbsd-tdep.c, amd64-obsd-tdep.c, amd64-sol2-tdep.c, amd64-tdep.c, amd64-windows-tdep.c, arch-utils.c, arch/aarch64-insn.c, arch/aarch64.c, arch/aarch64.h, arch/amd64.c, arch/amd64.h, arch/arm-get-next-pcs.c, arch/arm-linux.c, arch/arm.c, arch/i386.c, arch/i386.h, arch/ppc-linux-common.c, arch/riscv.c, arch/riscv.h, arch/tic6x.c, arm-tdep.c, auto-load.c, auxv.c, ax-gdb.c, ax-general.c, ax.h, breakpoint.c, breakpoint.h, btrace.c, btrace.h, build-id.c, build-id.h, c-lang.h, charset.c, charset.h, cli/cli-cmds.c, cli/cli-cmds.h, cli/cli-decode.c, cli/cli-dump.c, cli/cli-option.h, cli/cli-script.c, coff-pe-read.c, command.h, compile/compile-c-support.c, compile/compile-c.h, compile/compile-cplus-symbols.c, compile/compile-cplus-types.c, compile/compile-cplus.h, compile/compile-loc2c.c, compile/compile.c, completer.c, completer.h, contrib/ari/gdb_ari.sh, corefile.c, corelow.c, cp-support.c, cp-support.h, cp-valprint.c, csky-tdep.c, ctf.c, darwin-nat.c, debug.c, defs.h, disasm-selftests.c, disasm.c, disasm.h, dtrace-probe.c, dwarf-index-cache.c, dwarf-index-cache.h, dwarf-index-write.c, dwarf2-frame.c, dwarf2expr.c, dwarf2loc.c, dwarf2read.c, event-loop.c, event-top.c, exceptions.c, exec.c, extension.h, fbsd-nat.c, features/aarch64-core.c, features/aarch64-fpu.c, features/aarch64-pauth.c, features/aarch64-sve.c, features/i386/32bit-avx.c, features/i386/32bit-avx512.c, features/i386/32bit-core.c, features/i386/32bit-linux.c, features/i386/32bit-mpx.c, features/i386/32bit-pkeys.c, features/i386/32bit-segments.c, features/i386/32bit-sse.c, features/i386/64bit-avx.c, features/i386/64bit-avx512.c, features/i386/64bit-core.c, features/i386/64bit-linux.c, features/i386/64bit-mpx.c, features/i386/64bit-pkeys.c, features/i386/64bit-segments.c, features/i386/64bit-sse.c, features/i386/x32-core.c, features/riscv/32bit-cpu.c, features/riscv/32bit-csr.c, features/riscv/32bit-fpu.c, features/riscv/64bit-cpu.c, features/riscv/64bit-csr.c, features/riscv/64bit-fpu.c, features/tic6x-c6xp.c, features/tic6x-core.c, features/tic6x-gp.c, filename-seen-cache.h, findcmd.c, findvar.c, fork-child.c, gcore.c, gdb_bfd.c, gdb_bfd.h, gdb_proc_service.h, gdb_regex.c, gdb_select.h, gdb_usleep.c, gdbarch-selftests.c, gdbthread.h, gdbtypes.h, gnu-nat.c, go32-nat.c, guile/guile.c, guile/scm-ports.c, guile/scm-safe-call.c, guile/scm-type.c, i386-fbsd-nat.c, i386-fbsd-tdep.c, i386-go32-tdep.c, i386-linux-nat.c, i386-linux-tdep.c, i386-tdep.c, i387-tdep.c, ia64-libunwind-tdep.c, ia64-linux-nat.c, inf-child.c, inf-ptrace.c, infcall.c, infcall.h, infcmd.c, inferior-iter.h, inferior.c, inferior.h, inflow.c, inflow.h, infrun.c, infrun.h, inline-frame.c, language.h, linespec.c, linux-fork.c, linux-nat.c, linux-tdep.c, linux-thread-db.c, location.c, machoread.c, macrotab.h, main.c, maint.c, maint.h, memattr.c, memrange.h, mi/mi-cmd-break.h, mi/mi-cmd-env.c, mi/mi-cmd-stack.c, mi/mi-cmd-var.c, mi/mi-interp.c, mi/mi-main.c, mi/mi-parse.h, minsyms.c, mips-linux-tdep.c, namespace.h, nat/aarch64-linux-hw-point.c, nat/aarch64-linux-hw-point.h, nat/aarch64-linux.c, nat/aarch64-sve-linux-ptrace.c, nat/amd64-linux-siginfo.c, nat/fork-inferior.c, nat/linux-btrace.c, nat/linux-btrace.h, nat/linux-namespaces.c, nat/linux-nat.h, nat/linux-osdata.c, nat/linux-personality.c, nat/linux-procfs.c, nat/linux-ptrace.c, nat/linux-ptrace.h, nat/linux-waitpid.c, nat/mips-linux-watch.c, nat/mips-linux-watch.h, nat/ppc-linux.c, nat/x86-dregs.c, nat/x86-dregs.h, nat/x86-linux-dregs.c, nat/x86-linux.c, nto-procfs.c, nto-tdep.c, objfile-flags.h, objfiles.c, objfiles.h, obsd-nat.c, observable.h, osdata.c, p-valprint.c, parse.c, parser-defs.h, ppc-linux-nat.c, printcmd.c, probe.c, proc-api.c, procfs.c, producer.c, progspace.h, psymtab.h, python/py-framefilter.c, python/py-inferior.c, python/py-ref.h, python/py-type.c, python/python.c, record-btrace.c, record-full.c, record.c, record.h, regcache-dump.c, regcache.c, regcache.h, remote-fileio.c, remote-fileio.h, remote-sim.c, remote.c, riscv-tdep.c, rs6000-aix-tdep.c, rust-exp.y, s12z-tdep.c, selftest-arch.c, ser-base.c, ser-event.c, ser-pipe.c, ser-tcp.c, ser-unix.c, skip.c, solib-aix.c, solib-target.c, solib.c, source-cache.c, source.c, source.h, sparc-nat.c, spu-linux-nat.c, stack.c, stap-probe.c, symfile-add-flags.h, symfile.c, symfile.h, symtab.c, symtab.h, target-descriptions.c, target-descriptions.h, target-memory.c, target.c, target.h, target/waitstatus.c, target/waitstatus.h, thread-iter.h, thread.c, tilegx-tdep.c, top.c, top.h, tracefile-tfile.c, tracefile.c, tracepoint.c, tracepoint.h, tui/tui-io.c, ui-file.c, ui-out.h, unittests/array-view-selftests.c, unittests/child-path-selftests.c, unittests/cli-utils-selftests.c, unittests/common-utils-selftests.c, unittests/copy_bitwise-selftests.c, unittests/environ-selftests.c, unittests/format_pieces-selftests.c, unittests/function-view-selftests.c, unittests/lookup_name_info-selftests.c, unittests/memory-map-selftests.c, unittests/memrange-selftests.c, unittests/mkdir-recursive-selftests.c, unittests/observable-selftests.c, unittests/offset-type-selftests.c, unittests/optional-selftests.c, unittests/parse-connection-spec-selftests.c, unittests/ptid-selftests.c, unittests/rsp-low-selftests.c, unittests/scoped_fd-selftests.c, unittests/scoped_mmap-selftests.c, unittests/scoped_restore-selftests.c, unittests/string_view-selftests.c, unittests/style-selftests.c, unittests/tracepoint-selftests.c, unittests/unpack-selftests.c, unittests/utils-selftests.c, unittests/xml-utils-selftests.c, utils.c, utils.h, valarith.c, valops.c, valprint.c, value.c, value.h, varobj.c, varobj.h, windows-nat.c, x86-linux-nat.c, xml-support.c, xml-support.h, xml-tdesc.h, xstormy16-tdep.c, xtensa-linux-nat.c, dwarf2read.h: Change common to gdbsupport. gdb/gdbserver/ChangeLog 2019-07-09 Tom Tromey <tom@tromey.com> * configure: Rebuild. * configure.ac: Change common to gdbsupport. * acinclude.m4: Change common to gdbsupport. * Makefile.in (SFILES, OBS, GDBREPLAY_OBS, IPA_OBJS) (version-generated.c, gdbsupport/%-ipa.o, gdbsupport/%.o): Change common to gdbsupport. * ax.c, event-loop.c, fork-child.c, gdb_proc_service.h, gdbreplay.c, gdbthread.h, hostio-errno.c, hostio.c, i387-fp.c, inferiors.c, inferiors.h, linux-aarch64-tdesc-selftest.c, linux-amd64-ipa.c, linux-i386-ipa.c, linux-low.c, linux-tic6x-low.c, linux-x86-low.c, linux-x86-tdesc-selftest.c, linux-x86-tdesc.c, lynx-i386-low.c, lynx-low.c, mem-break.h, nto-x86-low.c, regcache.c, regcache.h, remote-utils.c, server.c, server.h, spu-low.c, symbol.c, target.h, tdesc.c, tdesc.h, thread-db.c, tracepoint.c, win32-i386-low.c, win32-low.c: Change common to gdbsupport. |
||
Philippe Waroquiers
|
68bb5386b8 |
Add previous_saved_command_line to allow a command to repeat a previous command.
Currently, a previous command can be repeated when the user types an empty line. This is implemented in handle_line_of_input by returning saved_command_line in case an empty line has been input. If we want a command to repeat the previous command, we need to save the previous saved_command_line, as when a command runs, the saved_command_line already contains the current command line of the command being executed. As suggested by Tom, the previous_saved_command_line is made static. At the same time, saved_command_line is also made static. The support functions/variables for the repeat command logic are now all located inside top.c. gdb/ChangeLog 2019-05-31 Philippe Waroquiers <philippe.waroquiers@skynet.be> * top.h (saved_command_line): Remove declaration. * top.c (previous_saved_command_line, previous_repeat_arguments): New variables. (saved_command_line): Make static, define together with other 'repeat variables'. (dont_repeat): Clear repeat_arguments. (repeat_previous, get_saved_command_line, save_command_line): New functions. (gdb_init): Initialize saved_command_line and previous_saved_command_line. * main.c (captured_main_1): Remove saved_command_line initialization. * event-top.c (handle_line_of_input): Update to use the new 'repeat' related functions instead of direct access to saved_command_line. * command.h (repeat_previous, get_saved_command_line, save_command_line): New declarations. (dont_repeat): Add comment. |
||
Alan Hayward
|
766f883622 |
Suppress SIGTTOU when handling errors
Calls to error () can cause SIGTTOU to send gdb to the background. For example, on an Arm build: (gdb) b main Breakpoint 1 at 0x10774: file /build/gdb/testsuite/../../../src/binutils-gdb/gdb/testsuite/gdb.base/watchpoint.c, line 174. (gdb) r Starting program: /build/gdb/testsuite/outputs/gdb.base/watchpoint/watchpoint [1]+ Stopped ../gdb ./outputs/gdb.base/watchpoint/watchpoint localhost$ fg ../gdb ./outputs/gdb.base/watchpoint/watchpoint Cannot parse expression `.L1199 4@r4'. warning: Probes-based dynamic linker interface failed. Reverting to original interface. The SIGTTOU is raised whilst inside a syscall during the call to tcdrain. Fix is to use scoped_ignore_sigttou to ensure SIGTTOU is blocked. In addition fix include comments - job_control is not included via terminal.h gdb/ChangeLog: * event-top.c: Remove include comment. * inflow.c (class scoped_ignore_sigttou): Move from here... * inflow.h (class scoped_ignore_sigttou): ...to here. * ser-unix.c (hardwire_drain_output): Block SIGTTOU during drain. * top.c: Remove include comment. |
||
Tom Tromey
|
3d1cbb7893 |
Fix memory leak in exception code
PR gdb/24475 concerns a memory leak coming from gdb's exception handling code. The leak occurs because throw_exception_sjlj does not arrange to destroy the exception object it is passed. However, because gdb_exception has a destructor, it's undefined to longjmp in this situation. This patch fixes the problem by avoiding the need to run any destructors in gdb_rl_callback_handler, by making the gdb_exception "static". gdb/ChangeLog 2019-04-25 Tom Tromey <tromey@adacore.com> PR gdb/24475: * event-top.c (gdb_rl_callback_handler): Make "gdb_rl_expt" static. |
||
Tom Tromey
|
94aeb44b00 |
Make exception handling more efficient
This makes exception handling more efficient in a few spots, through the use of const- and rvalue-references. I wrote this patch by commenting out the gdb_exception copy constructor and then examining the resulting error messages one by one, introducing the use of std::move where appropriate. gdb/ChangeLog 2019-04-25 Tom Tromey <tromey@adacore.com> * xml-support.c (struct gdb_xml_parser) <set_error>: Take an rvalue reference. (gdb_xml_start_element_wrapper, gdb_xml_end_element_wrapper) (gdb_xml_parser::parse): Use std::move. * python/python-internal.h (gdbpy_convert_exception): Take a const reference. * python/py-value.c (valpy_getitem, valpy_nonzero): Use std::move. * python/py-utils.c (gdbpy_convert_exception): Take a const reference. * python/py-inferior.c (infpy_write_memory, infpy_search_memory): Use std::move. * python/py-breakpoint.c (bppy_set_condition, bppy_set_commands): Use std::move. * mi/mi-main.c (mi_print_exception): Take a const reference. * main.c (handle_command_errors): Take a const reference. * linespec.c (parse_linespec): Use std::move. * infcall.c (run_inferior_call): Use std::move. (call_function_by_hand_dummy): Use std::move. * exec.c (try_open_exec_file): Use std::move. * exceptions.h (exception_print, exception_fprintf) (exception_print_same): Update. * exceptions.c (print_exception, exception_print) (exception_fprintf, exception_print_same): Change parameters to const reference. * event-top.c (gdb_rl_callback_read_char_wrapper): Update. * common/new-op.c: Use std::move. * common/common-exceptions.h (struct gdb_exception): Add move constructor. (struct gdb_exception_error, struct gdb_exception_quit, struct gdb_quit_bad_alloc): Change constructor to move constructor. (throw_exception): Change parameter to rvalue reference. * common/common-exceptions.c (throw_exception): Take rvalue reference. * cli/cli-interp.c (safe_execute_command): Use std::move. * breakpoint.c (insert_bp_location, location_to_sals): Use std::move. |
||
Tom Tromey
|
c6fdd8b205 |
Make SJLJ exceptions more efficient
This changes the SJLJ exception handling code to be a bit more efficient, by using rvalue references and move assignment when possible. Tested by the buildbot. gdb/ChangeLog 2019-04-25 Tom Tromey <tromey@adacore.com> * event-top.c (gdb_rl_callback_read_char_wrapper_noexcept) (gdb_rl_callback_handler): Use std::move. * common/common-exceptions.h (struct gdb_exception): Add move assignment operator. (throw_exception_sjlj): Change "exception" to const reference. * common/common-exceptions.c (exceptions_state_mc_catch): Update. (throw_exception_sjlj): Change "exception" to const reference. |
||
Tom Tromey
|
cc06b66897 |
Remove exception_none
Now that gdb_exception has a constructor, there's no need for exception_none. This patch removes it. gdb/ChangeLog 2019-04-25 Tom Tromey <tromey@adacore.com> * xml-support.c (gdb_xml_parser::gdb_xml_parser): Update. * python/py-value.c (valpy_getitem, valpy_nonzero): Update. * python/py-inferior.c (infpy_write_memory, infpy_search_memory): Update. * python/py-breakpoint.c (bppy_set_condition, bppy_set_commands): Update. * mi/mi-interp.c (mi_interp::exec): Update. * linespec.c (parse_linespec): Update. * infcall.c (run_inferior_call): Update. * guile/scm-value.c (gdbscm_value_to_lazy_string): Update. * guile/scm-symbol.c (gdbscm_lookup_symbol) (gdbscm_lookup_global_symbol): Update. * guile/scm-param.c (gdbscm_parameter_value): Update. * guile/scm-frame.c (gdbscm_frame_read_register) (gdbscm_frame_read_var): Update. * guile/scm-breakpoint.c (gdbscm_register_breakpoint_x): Update. * exec.c (try_open_exec_file): Update. * event-top.c (gdb_rl_callback_read_char_wrapper_noexcept) (gdb_rl_callback_handler): Update. * common/common-exceptions.h (exception_none): Don't declare. * common/common-exceptions.c (exception_none): Don't define. (struct catcher) <exception>: Update. * cli/cli-interp.c (safe_execute_command): Update. * breakpoint.c (insert_bp_location, location_to_sals): Update. |
||
Tom Tromey
|
230d2906b9 |
Rename gdb exception types
This renames the gdb exception types. The old types were only needed due to the macros in common-exception.h that are now gone. The intermediate layer of gdb_exception_RETURN_MASK_ALL did not seem needed, so this patch removes it entirely. gdb/ChangeLog 2019-04-08 Tom Tromey <tom@tromey.com> * common/common-exceptions.h (gdb_exception_RETURN_MASK_ALL): Remove. (gdb_exception_error): Rename from gdb_exception_RETURN_MASK_ERROR. (gdb_exception_quit): Rename from gdb_exception_RETURN_MASK_QUIT. (gdb_quit_bad_alloc): Update. * aarch64-tdep.c: Update. * ada-lang.c: Update. * ada-typeprint.c: Update. * ada-valprint.c: Update. * amd64-tdep.c: Update. * arch-utils.c: Update. * break-catch-throw.c: Update. * breakpoint.c: Update. * btrace.c: Update. * c-varobj.c: Update. * cli/cli-cmds.c: Update. * cli/cli-interp.c: Update. * cli/cli-script.c: Update. * common/common-exceptions.c: Update. * common/new-op.c: Update. * common/selftest.c: Update. * compile/compile-c-symbols.c: Update. * compile/compile-cplus-symbols.c: Update. * compile/compile-object-load.c: Update. * compile/compile-object-run.c: Update. * completer.c: Update. * corelow.c: Update. * cp-abi.c: Update. * cp-support.c: Update. * cp-valprint.c: Update. * darwin-nat.c: Update. * disasm-selftests.c: Update. * dtrace-probe.c: Update. * dwarf-index-cache.c: Update. * dwarf-index-write.c: Update. * dwarf2-frame-tailcall.c: Update. * dwarf2-frame.c: Update. * dwarf2loc.c: Update. * dwarf2read.c: Update. * eval.c: Update. * event-loop.c: Update. * event-top.c: Update. * exec.c: Update. * f-valprint.c: Update. * fbsd-tdep.c: Update. * frame-unwind.c: Update. * frame.c: Update. * gdbtypes.c: Update. * gnu-v3-abi.c: Update. * guile/guile-internal.h: Update. * guile/scm-block.c: Update. * guile/scm-breakpoint.c: Update. * guile/scm-cmd.c: Update. * guile/scm-disasm.c: Update. * guile/scm-frame.c: Update. * guile/scm-lazy-string.c: Update. * guile/scm-math.c: Update. * guile/scm-param.c: Update. * guile/scm-ports.c: Update. * guile/scm-pretty-print.c: Update. * guile/scm-symbol.c: Update. * guile/scm-symtab.c: Update. * guile/scm-type.c: Update. * guile/scm-value.c: Update. * i386-linux-tdep.c: Update. * i386-tdep.c: Update. * inf-loop.c: Update. * infcall.c: Update. * infcmd.c: Update. * infrun.c: Update. * jit.c: Update. * language.c: Update. * linespec.c: Update. * linux-fork.c: Update. * linux-nat.c: Update. * linux-tdep.c: Update. * linux-thread-db.c: Update. * main.c: Update. * mi/mi-cmd-break.c: Update. * mi/mi-cmd-stack.c: Update. * mi/mi-interp.c: Update. * mi/mi-main.c: Update. * objc-lang.c: Update. * p-valprint.c: Update. * parse.c: Update. * ppc-linux-tdep.c: Update. * printcmd.c: Update. * python/py-arch.c: Update. * python/py-breakpoint.c: Update. * python/py-cmd.c: Update. * python/py-finishbreakpoint.c: Update. * python/py-frame.c: Update. * python/py-framefilter.c: Update. * python/py-gdb-readline.c: Update. * python/py-inferior.c: Update. * python/py-infthread.c: Update. * python/py-lazy-string.c: Update. * python/py-linetable.c: Update. * python/py-objfile.c: Update. * python/py-param.c: Update. * python/py-prettyprint.c: Update. * python/py-progspace.c: Update. * python/py-record-btrace.c: Update. * python/py-record.c: Update. * python/py-symbol.c: Update. * python/py-type.c: Update. * python/py-unwind.c: Update. * python/py-utils.c: Update. * python/py-value.c: Update. * python/python.c: Update. * record-btrace.c: Update. * record-full.c: Update. * remote-fileio.c: Update. * remote.c: Update. * riscv-tdep.c: Update. * rs6000-aix-tdep.c: Update. * rs6000-tdep.c: Update. * rust-exp.y: Update. * rust-lang.c: Update. * s390-tdep.c: Update. * selftest-arch.c: Update. * solib-dsbt.c: Update. * solib-frv.c: Update. * solib-spu.c: Update. * solib-svr4.c: Update. * solib.c: Update. * sparc64-linux-tdep.c: Update. * stack.c: Update. * symfile-mem.c: Update. * symmisc.c: Update. * target.c: Update. * thread.c: Update. * top.c: Update. * tracefile-tfile.c: Update. * tui/tui.c: Update. * typeprint.c: Update. * unittests/cli-utils-selftests.c: Update. * unittests/parse-connection-spec-selftests.c: Update. * valops.c: Update. * valprint.c: Update. * value.c: Update. * varobj.c: Update. * windows-nat.c: Update. * x86-linux-nat.c: Update. * xml-support.c: Update. gdb/gdbserver/ChangeLog 2019-04-08 Tom Tromey <tom@tromey.com> * gdbreplay.c: Update. * linux-low.c: Update. * server.c: Update. |
||
Tom Tromey
|
a70b814420 |
Rewrite TRY/CATCH
This rewrites gdb's TRY/CATCH to plain C++ try/catch. The patch was largely written by script, though one change (to a comment in common-exceptions.h) was reverted by hand. gdb/ChangeLog 2019-04-08 Tom Tromey <tom@tromey.com> * xml-support.c: Use C++ exception handling. * x86-linux-nat.c: Use C++ exception handling. * windows-nat.c: Use C++ exception handling. * varobj.c: Use C++ exception handling. * value.c: Use C++ exception handling. * valprint.c: Use C++ exception handling. * valops.c: Use C++ exception handling. * unittests/parse-connection-spec-selftests.c: Use C++ exception handling. * unittests/cli-utils-selftests.c: Use C++ exception handling. * typeprint.c: Use C++ exception handling. * tui/tui.c: Use C++ exception handling. * tracefile-tfile.c: Use C++ exception handling. * top.c: Use C++ exception handling. * thread.c: Use C++ exception handling. * target.c: Use C++ exception handling. * symmisc.c: Use C++ exception handling. * symfile-mem.c: Use C++ exception handling. * stack.c: Use C++ exception handling. * sparc64-linux-tdep.c: Use C++ exception handling. * solib.c: Use C++ exception handling. * solib-svr4.c: Use C++ exception handling. * solib-spu.c: Use C++ exception handling. * solib-frv.c: Use C++ exception handling. * solib-dsbt.c: Use C++ exception handling. * selftest-arch.c: Use C++ exception handling. * s390-tdep.c: Use C++ exception handling. * rust-lang.c: Use C++ exception handling. * rust-exp.y: Use C++ exception handling. * rs6000-tdep.c: Use C++ exception handling. * rs6000-aix-tdep.c: Use C++ exception handling. * riscv-tdep.c: Use C++ exception handling. * remote.c: Use C++ exception handling. * remote-fileio.c: Use C++ exception handling. * record-full.c: Use C++ exception handling. * record-btrace.c: Use C++ exception handling. * python/python.c: Use C++ exception handling. * python/py-value.c: Use C++ exception handling. * python/py-utils.c: Use C++ exception handling. * python/py-unwind.c: Use C++ exception handling. * python/py-type.c: Use C++ exception handling. * python/py-symbol.c: Use C++ exception handling. * python/py-record.c: Use C++ exception handling. * python/py-record-btrace.c: Use C++ exception handling. * python/py-progspace.c: Use C++ exception handling. * python/py-prettyprint.c: Use C++ exception handling. * python/py-param.c: Use C++ exception handling. * python/py-objfile.c: Use C++ exception handling. * python/py-linetable.c: Use C++ exception handling. * python/py-lazy-string.c: Use C++ exception handling. * python/py-infthread.c: Use C++ exception handling. * python/py-inferior.c: Use C++ exception handling. * python/py-gdb-readline.c: Use C++ exception handling. * python/py-framefilter.c: Use C++ exception handling. * python/py-frame.c: Use C++ exception handling. * python/py-finishbreakpoint.c: Use C++ exception handling. * python/py-cmd.c: Use C++ exception handling. * python/py-breakpoint.c: Use C++ exception handling. * python/py-arch.c: Use C++ exception handling. * printcmd.c: Use C++ exception handling. * ppc-linux-tdep.c: Use C++ exception handling. * parse.c: Use C++ exception handling. * p-valprint.c: Use C++ exception handling. * objc-lang.c: Use C++ exception handling. * mi/mi-main.c: Use C++ exception handling. * mi/mi-interp.c: Use C++ exception handling. * mi/mi-cmd-stack.c: Use C++ exception handling. * mi/mi-cmd-break.c: Use C++ exception handling. * main.c: Use C++ exception handling. * linux-thread-db.c: Use C++ exception handling. * linux-tdep.c: Use C++ exception handling. * linux-nat.c: Use C++ exception handling. * linux-fork.c: Use C++ exception handling. * linespec.c: Use C++ exception handling. * language.c: Use C++ exception handling. * jit.c: Use C++ exception handling. * infrun.c: Use C++ exception handling. * infcmd.c: Use C++ exception handling. * infcall.c: Use C++ exception handling. * inf-loop.c: Use C++ exception handling. * i386-tdep.c: Use C++ exception handling. * i386-linux-tdep.c: Use C++ exception handling. * guile/scm-value.c: Use C++ exception handling. * guile/scm-type.c: Use C++ exception handling. * guile/scm-symtab.c: Use C++ exception handling. * guile/scm-symbol.c: Use C++ exception handling. * guile/scm-pretty-print.c: Use C++ exception handling. * guile/scm-ports.c: Use C++ exception handling. * guile/scm-param.c: Use C++ exception handling. * guile/scm-math.c: Use C++ exception handling. * guile/scm-lazy-string.c: Use C++ exception handling. * guile/scm-frame.c: Use C++ exception handling. * guile/scm-disasm.c: Use C++ exception handling. * guile/scm-cmd.c: Use C++ exception handling. * guile/scm-breakpoint.c: Use C++ exception handling. * guile/scm-block.c: Use C++ exception handling. * guile/guile-internal.h: Use C++ exception handling. * gnu-v3-abi.c: Use C++ exception handling. * gdbtypes.c: Use C++ exception handling. * frame.c: Use C++ exception handling. * frame-unwind.c: Use C++ exception handling. * fbsd-tdep.c: Use C++ exception handling. * f-valprint.c: Use C++ exception handling. * exec.c: Use C++ exception handling. * event-top.c: Use C++ exception handling. * event-loop.c: Use C++ exception handling. * eval.c: Use C++ exception handling. * dwarf2read.c: Use C++ exception handling. * dwarf2loc.c: Use C++ exception handling. * dwarf2-frame.c: Use C++ exception handling. * dwarf2-frame-tailcall.c: Use C++ exception handling. * dwarf-index-write.c: Use C++ exception handling. * dwarf-index-cache.c: Use C++ exception handling. * dtrace-probe.c: Use C++ exception handling. * disasm-selftests.c: Use C++ exception handling. * darwin-nat.c: Use C++ exception handling. * cp-valprint.c: Use C++ exception handling. * cp-support.c: Use C++ exception handling. * cp-abi.c: Use C++ exception handling. * corelow.c: Use C++ exception handling. * completer.c: Use C++ exception handling. * compile/compile-object-run.c: Use C++ exception handling. * compile/compile-object-load.c: Use C++ exception handling. * compile/compile-cplus-symbols.c: Use C++ exception handling. * compile/compile-c-symbols.c: Use C++ exception handling. * common/selftest.c: Use C++ exception handling. * common/new-op.c: Use C++ exception handling. * cli/cli-script.c: Use C++ exception handling. * cli/cli-interp.c: Use C++ exception handling. * cli/cli-cmds.c: Use C++ exception handling. * c-varobj.c: Use C++ exception handling. * btrace.c: Use C++ exception handling. * breakpoint.c: Use C++ exception handling. * break-catch-throw.c: Use C++ exception handling. * arch-utils.c: Use C++ exception handling. * amd64-tdep.c: Use C++ exception handling. * ada-valprint.c: Use C++ exception handling. * ada-typeprint.c: Use C++ exception handling. * ada-lang.c: Use C++ exception handling. * aarch64-tdep.c: Use C++ exception handling. gdb/gdbserver/ChangeLog 2019-04-08 Tom Tromey <tom@tromey.com> * server.c: Use C++ exception handling. * linux-low.c: Use C++ exception handling. * gdbreplay.c: Use C++ exception handling. |
||
Tom Tromey
|
4de283e4b5 |
Revert the header-sorting patch
Andreas Schwab and John Baldwin pointed out some bugs in the header sorting patch; and I noticed that the output was not correct when limited to a subset of files (a bug in my script). So, I'm reverting the patch. I may try again after fixing the issues pointed out. gdb/ChangeLog 2019-04-05 Tom Tromey <tom@tromey.com> Revert the header-sorting patch. * ft32-tdep.c: Revert. * frv-tdep.c: Revert. * frv-linux-tdep.c: Revert. * frame.c: Revert. * frame-unwind.c: Revert. * frame-base.c: Revert. * fork-child.c: Revert. * findvar.c: Revert. * findcmd.c: Revert. * filesystem.c: Revert. * filename-seen-cache.h: Revert. * filename-seen-cache.c: Revert. * fbsd-tdep.c: Revert. * fbsd-nat.h: Revert. * fbsd-nat.c: Revert. * f-valprint.c: Revert. * f-typeprint.c: Revert. * f-lang.c: Revert. * extension.h: Revert. * extension.c: Revert. * extension-priv.h: Revert. * expprint.c: Revert. * exec.h: Revert. * exec.c: Revert. * exceptions.c: Revert. * event-top.c: Revert. * event-loop.c: Revert. * eval.c: Revert. * elfread.c: Revert. * dwarf2read.h: Revert. * dwarf2read.c: Revert. * dwarf2loc.c: Revert. * dwarf2expr.h: Revert. * dwarf2expr.c: Revert. * dwarf2-frame.c: Revert. * dwarf2-frame-tailcall.c: Revert. * dwarf-index-write.h: Revert. * dwarf-index-write.c: Revert. * dwarf-index-common.c: Revert. * dwarf-index-cache.h: Revert. * dwarf-index-cache.c: Revert. * dummy-frame.c: Revert. * dtrace-probe.c: Revert. * disasm.h: Revert. * disasm.c: Revert. * disasm-selftests.c: Revert. * dictionary.c: Revert. * dicos-tdep.c: Revert. * demangle.c: Revert. * dcache.h: Revert. * dcache.c: Revert. * darwin-nat.h: Revert. * darwin-nat.c: Revert. * darwin-nat-info.c: Revert. * d-valprint.c: Revert. * d-namespace.c: Revert. * d-lang.c: Revert. * ctf.c: Revert. * csky-tdep.c: Revert. * csky-linux-tdep.c: Revert. * cris-tdep.c: Revert. * cris-linux-tdep.c: Revert. * cp-valprint.c: Revert. * cp-support.c: Revert. * cp-namespace.c: Revert. * cp-abi.c: Revert. * corelow.c: Revert. * corefile.c: Revert. * continuations.c: Revert. * completer.h: Revert. * completer.c: Revert. * complaints.c: Revert. * coffread.c: Revert. * coff-pe-read.c: Revert. * cli-out.h: Revert. * cli-out.c: Revert. * charset.c: Revert. * c-varobj.c: Revert. * c-valprint.c: Revert. * c-typeprint.c: Revert. * c-lang.c: Revert. * buildsym.c: Revert. * buildsym-legacy.c: Revert. * build-id.h: Revert. * build-id.c: Revert. * btrace.c: Revert. * bsd-uthread.c: Revert. * breakpoint.h: Revert. * breakpoint.c: Revert. * break-catch-throw.c: Revert. * break-catch-syscall.c: Revert. * break-catch-sig.c: Revert. * blockframe.c: Revert. * block.c: Revert. * bfin-tdep.c: Revert. * bfin-linux-tdep.c: Revert. * bfd-target.c: Revert. * bcache.c: Revert. * ax-general.c: Revert. * ax-gdb.h: Revert. * ax-gdb.c: Revert. * avr-tdep.c: Revert. * auxv.c: Revert. * auto-load.c: Revert. * arm-wince-tdep.c: Revert. * arm-tdep.c: Revert. * arm-symbian-tdep.c: Revert. * arm-pikeos-tdep.c: Revert. * arm-obsd-tdep.c: Revert. * arm-nbsd-tdep.c: Revert. * arm-nbsd-nat.c: Revert. * arm-linux-tdep.c: Revert. * arm-linux-nat.c: Revert. * arm-fbsd-tdep.c: Revert. * arm-fbsd-nat.c: Revert. * arm-bsd-tdep.c: Revert. * arch-utils.c: Revert. * arc-tdep.c: Revert. * arc-newlib-tdep.c: Revert. * annotate.h: Revert. * annotate.c: Revert. * amd64-windows-tdep.c: Revert. * amd64-windows-nat.c: Revert. * amd64-tdep.c: Revert. * amd64-sol2-tdep.c: Revert. * amd64-obsd-tdep.c: Revert. * amd64-obsd-nat.c: Revert. * amd64-nbsd-tdep.c: Revert. * amd64-nbsd-nat.c: Revert. * amd64-nat.c: Revert. * amd64-linux-tdep.c: Revert. * amd64-linux-nat.c: Revert. * amd64-fbsd-tdep.c: Revert. * amd64-fbsd-nat.c: Revert. * amd64-dicos-tdep.c: Revert. * amd64-darwin-tdep.c: Revert. * amd64-bsd-nat.c: Revert. * alpha-tdep.c: Revert. * alpha-obsd-tdep.c: Revert. * alpha-nbsd-tdep.c: Revert. * alpha-mdebug-tdep.c: Revert. * alpha-linux-tdep.c: Revert. * alpha-linux-nat.c: Revert. * alpha-bsd-tdep.c: Revert. * alpha-bsd-nat.c: Revert. * aix-thread.c: Revert. * agent.c: Revert. * addrmap.c: Revert. * ada-varobj.c: Revert. * ada-valprint.c: Revert. * ada-typeprint.c: Revert. * ada-tasks.c: Revert. * ada-lang.c: Revert. * aarch64-tdep.c: Revert. * aarch64-ravenscar-thread.c: Revert. * aarch64-newlib-tdep.c: Revert. * aarch64-linux-tdep.c: Revert. * aarch64-linux-nat.c: Revert. * aarch64-fbsd-tdep.c: Revert. * aarch64-fbsd-nat.c: Revert. * aarch32-linux-nat.c: Revert. |
||
Tom Tromey
|
d55e5aa6b2 |
Sort includes for files gdb/[a-f]*.[chyl].
This patch sorts the include files for the files [a-f]*.[chyl]. The patch was written by a script. Tested by the buildbot. I will follow up with patches to sort the remaining files, by sorting a subset, testing them, and then checking them in. gdb/ChangeLog 2019-04-05 Tom Tromey <tom@tromey.com> * ft32-tdep.c: Sort headers. * frv-tdep.c: Sort headers. * frv-linux-tdep.c: Sort headers. * frame.c: Sort headers. * frame-unwind.c: Sort headers. * frame-base.c: Sort headers. * fork-child.c: Sort headers. * findvar.c: Sort headers. * findcmd.c: Sort headers. * filesystem.c: Sort headers. * filename-seen-cache.h: Sort headers. * filename-seen-cache.c: Sort headers. * fbsd-tdep.c: Sort headers. * fbsd-nat.h: Sort headers. * fbsd-nat.c: Sort headers. * f-valprint.c: Sort headers. * f-typeprint.c: Sort headers. * f-lang.c: Sort headers. * extension.h: Sort headers. * extension.c: Sort headers. * extension-priv.h: Sort headers. * expprint.c: Sort headers. * exec.h: Sort headers. * exec.c: Sort headers. * exceptions.c: Sort headers. * event-top.c: Sort headers. * event-loop.c: Sort headers. * eval.c: Sort headers. * elfread.c: Sort headers. * dwarf2read.h: Sort headers. * dwarf2read.c: Sort headers. * dwarf2loc.c: Sort headers. * dwarf2expr.h: Sort headers. * dwarf2expr.c: Sort headers. * dwarf2-frame.c: Sort headers. * dwarf2-frame-tailcall.c: Sort headers. * dwarf-index-write.h: Sort headers. * dwarf-index-write.c: Sort headers. * dwarf-index-common.c: Sort headers. * dwarf-index-cache.h: Sort headers. * dwarf-index-cache.c: Sort headers. * dummy-frame.c: Sort headers. * dtrace-probe.c: Sort headers. * disasm.h: Sort headers. * disasm.c: Sort headers. * disasm-selftests.c: Sort headers. * dictionary.c: Sort headers. * dicos-tdep.c: Sort headers. * demangle.c: Sort headers. * dcache.h: Sort headers. * dcache.c: Sort headers. * darwin-nat.h: Sort headers. * darwin-nat.c: Sort headers. * darwin-nat-info.c: Sort headers. * d-valprint.c: Sort headers. * d-namespace.c: Sort headers. * d-lang.c: Sort headers. * ctf.c: Sort headers. * csky-tdep.c: Sort headers. * csky-linux-tdep.c: Sort headers. * cris-tdep.c: Sort headers. * cris-linux-tdep.c: Sort headers. * cp-valprint.c: Sort headers. * cp-support.c: Sort headers. * cp-namespace.c: Sort headers. * cp-abi.c: Sort headers. * corelow.c: Sort headers. * corefile.c: Sort headers. * continuations.c: Sort headers. * completer.h: Sort headers. * completer.c: Sort headers. * complaints.c: Sort headers. * coffread.c: Sort headers. * coff-pe-read.c: Sort headers. * cli-out.h: Sort headers. * cli-out.c: Sort headers. * charset.c: Sort headers. * c-varobj.c: Sort headers. * c-valprint.c: Sort headers. * c-typeprint.c: Sort headers. * c-lang.c: Sort headers. * buildsym.c: Sort headers. * buildsym-legacy.c: Sort headers. * build-id.h: Sort headers. * build-id.c: Sort headers. * btrace.c: Sort headers. * bsd-uthread.c: Sort headers. * breakpoint.h: Sort headers. * breakpoint.c: Sort headers. * break-catch-throw.c: Sort headers. * break-catch-syscall.c: Sort headers. * break-catch-sig.c: Sort headers. * blockframe.c: Sort headers. * block.c: Sort headers. * bfin-tdep.c: Sort headers. * bfin-linux-tdep.c: Sort headers. * bfd-target.c: Sort headers. * bcache.c: Sort headers. * ax-general.c: Sort headers. * ax-gdb.h: Sort headers. * ax-gdb.c: Sort headers. * avr-tdep.c: Sort headers. * auxv.c: Sort headers. * auto-load.c: Sort headers. * arm-wince-tdep.c: Sort headers. * arm-tdep.c: Sort headers. * arm-symbian-tdep.c: Sort headers. * arm-pikeos-tdep.c: Sort headers. * arm-obsd-tdep.c: Sort headers. * arm-nbsd-tdep.c: Sort headers. * arm-nbsd-nat.c: Sort headers. * arm-linux-tdep.c: Sort headers. * arm-linux-nat.c: Sort headers. * arm-fbsd-tdep.c: Sort headers. * arm-fbsd-nat.c: Sort headers. * arm-bsd-tdep.c: Sort headers. * arch-utils.c: Sort headers. * arc-tdep.c: Sort headers. * arc-newlib-tdep.c: Sort headers. * annotate.h: Sort headers. * annotate.c: Sort headers. * amd64-windows-tdep.c: Sort headers. * amd64-windows-nat.c: Sort headers. * amd64-tdep.c: Sort headers. * amd64-sol2-tdep.c: Sort headers. * amd64-obsd-tdep.c: Sort headers. * amd64-obsd-nat.c: Sort headers. * amd64-nbsd-tdep.c: Sort headers. * amd64-nbsd-nat.c: Sort headers. * amd64-nat.c: Sort headers. * amd64-linux-tdep.c: Sort headers. * amd64-linux-nat.c: Sort headers. * amd64-fbsd-tdep.c: Sort headers. * amd64-fbsd-nat.c: Sort headers. * amd64-dicos-tdep.c: Sort headers. * amd64-darwin-tdep.c: Sort headers. * amd64-bsd-nat.c: Sort headers. * alpha-tdep.c: Sort headers. * alpha-obsd-tdep.c: Sort headers. * alpha-nbsd-tdep.c: Sort headers. * alpha-mdebug-tdep.c: Sort headers. * alpha-linux-tdep.c: Sort headers. * alpha-linux-nat.c: Sort headers. * alpha-bsd-tdep.c: Sort headers. * alpha-bsd-nat.c: Sort headers. * aix-thread.c: Sort headers. * agent.c: Sort headers. * addrmap.c: Sort headers. * ada-varobj.c: Sort headers. * ada-valprint.c: Sort headers. * ada-typeprint.c: Sort headers. * ada-tasks.c: Sort headers. * ada-lang.c: Sort headers. * aarch64-tdep.c: Sort headers. * aarch64-ravenscar-thread.c: Sort headers. * aarch64-newlib-tdep.c: Sort headers. * aarch64-linux-tdep.c: Sort headers. * aarch64-linux-nat.c: Sort headers. * aarch64-fbsd-tdep.c: Sort headers. * aarch64-fbsd-nat.c: Sort headers. * aarch32-linux-nat.c: Sort headers. |