A transient bug in the preceding change (fixed before commit) exposed a
new failure, of ld/testsuite/ld-ctf/diag-parname.d. This attempts to
ensure that if we link a dict with child type IDs but no attached
parent, we get a suitable ECTF_NOPARENT error. This was happening
before this commit, but only by chance, because ctf_variable_iter and
ctf_variable_next check to see if the dict they're passed is a child
dict without an associated parent. We forgot error-checking on the
ctf_variable_next call, and as a result this was concealed -- and
looking for the problem exposed a new bug.
If any of the lookups beneath ctf_dedup_hash_type fail, the CTF link
does *not* fail, but acts quite bizarrely, skipping the type but
emitting an error to the CTF error/warning log -- so the linker will
report an error, emit a partial CTF dict missing some types, and exit
with exitcode 0 as if nothing went wrong. Since ctf_dedup_hash_type is
never expected to fail in normal operation, this is surely wrong:
failures at emission time do not emit partial CTF dicts, so failures
at hashing time should not either.
So propagate the error back up.
Also fix a couple of smaller bugs where we fail to properly free things
and/or propagate error codes on various rare link-time errors and
out-of-memory conditions.
libctf/ChangeLog
2021-03-02 Nick Alcock <nick.alcock@oracle.com>
* ctf-dedup.c (ctf_dedup): Pass on errors from ctf_dedup_hash_type.
Call ctf_dedup_fini properly on other errors.
(ctf_dedup_emit_type): Set the errno on dynhash insertion failure.
* ctf-link.c (ctf_link_deduplicating_per_cu): Close outputs beyond
output 0 when asserting because >1 output is found.
(ctf_link_deduplicating): Likewise, when asserting because the
shared output is not the same as the passed-in fp.
When CTF linking is done, the linker has to track the association
between types in the inputs and types in the outputs. The deduplicator
does this via the cd_output_emission_hashes, which maps from hashes of
types (valid in both the input and output) to the IDs of types in the
specific dict in which the cd_emission_hashes is held. However, the
nondeduplicating linker and ctf_add_type used a different mechanism, a
dedicated hashtab stored in the ctf_link_type_mapping, populated via
ctf_add_type_mapping and queried via the ctf_type_mapping function. To
allow the same functions to be used for variable and symbol population
in both the deduplicating and nondeduplicating linker, the deduplicator
carefully transferred all its input->output mappings into this hashtab
before returning.
This is *expensive*. The number of entries in this hashtab scales as the
number of input types, and unlike the hashing machinery the type mapping
machinery (the only other thing which scales that way) has not been much
optimized.
Now the nondeduplicating linker is gone, we can throw this out, move
the existing type mapping machinery to ctf-create.c and dedicate it to
ctf_add_type alone, and add a new function ctf_dedup_type_mapping which
uses the deduplicator's built-in knowledge of type mappings directly,
without requiring an expensive repopulation phase.
This speeds up a test link of nouveau.ko (a good worst-case candidate
with a lot of types in each of a lot of input files) from 9.11s to 7.15s
in my testing, a speedup of over 20%.
libctf/ChangeLog
2021-03-02 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h (ctf_dict_t) <ctf_link_type_mapping>: No longer used
by the nondeduplicating linker.
(ctf_add_type_mapping): Removed, now static.
(ctf_type_mapping): Likewise.
(ctf_dedup_type_mapping): New.
(ctf_dedup_t) <cd_input_nums>: New.
* ctf-dedup.c (ctf_dedup_init): Populate it.
(ctf_dedup_fini): Free it again. Emphasise that this has to be
the last thing called.
(ctf_dedup): Populate it.
(ctf_dedup_populate_type_mapping): Removed.
(ctf_dedup_populate_type_mappings): Likewise.
(ctf_dedup_emit): No longer call it. No longer call
ctf_dedup_fini either.
(ctf_dedup_type_mapping): New.
* ctf-link.c (ctf_unnamed_cuname): New.
(ctf_create_per_cu): Arguments must be non-null now.
(ctf_in_member_cb_arg): Removed.
(ctf_link): No longer populate it. No longer discard the
mapping table.
(ctf_link_deduplicating_one_symtypetab): Use
ctf_dedup_type_mapping, not ctf_type_mapping. Use
ctf_unnamed_cuname.
(ctf_link_one_variable): Likewise. Pass in args individually: no
longer a ctf_variable_iter callback.
(empty_link_type_mapping): Removed.
(ctf_link_deduplicating_variables): Use ctf_variable_next, not
ctf_variable_iter. No longer pack arguments to
ctf_link_one_variable into a struct.
(ctf_link_deduplicating_per_cu): Call ctf_dedup_fini once
all link phases are done.
(ctf_link_deduplicating): Likewise.
(ctf_link_intern_extern_string): Improve comment.
(ctf_add_type_mapping): Migrate...
(ctf_type_mapping): ... these functions...
* ctf-create.c (ctf_add_type_mapping): ... here...
(ctf_type_mapping): ... and make static, for the sole use of
ctf_add_type.
There is no such thing, and the comment makes no sense, and doesn't
match what the code is doing. We always want to put variables in the
same dicts as the types they relate to if at all possible.
libctf/ChangeLog
2021-03-02 Nick Alcock <nick.alcock@oracle.com>
* ctf-link.c (ctf_link_one_variable): Remove reference to
"unconflicted link mode".
The nondeduplicating CTF linker was kept around when the deduplicating
one was added so that people had something to fall back to in case the
deduplicating linker turned out to be buggy. It's now much more stable
than the nondeduplicating linker, in addition to much faster, using much
less memory and producing much better output. In addition, while
libctf has a linker flag to invoke the nondeduplicating linker, ld does
not expose it: the only way to turn it on within ld is an intentionally-
undocumented environment variable. So we can remove it without any ABI
or user-visibility concerns (the only thing we leave around is the
CTF_LINK_NONDEDUP flag, which can easily be interpreted as "deduplicate
less", though right now it does nothing).
This lets us remove a lot of complexity associated with tracking
filenames and CU names separately (something the deduplcating linker
never bothered with, since the cunames are always reliable and ld never
hands us useful filenames anyway)
The biggest lacuna left behind is the ctf_type_mapping machinery, which
slows down deduplicating links quite a lot. We can't just ditch it
because ctf_add_type uses it: removing the slowdown from the
deduplicating linker is a job for another commit.
include/ChangeLog
2021-03-02 Nick Alcock <nick.alcock@oracle.com>
* ctf-api.h (CTF_LINK_SHARE_DUPLICATED): Note that this might
merely change how much deduplication is done.
libctf/ChangeLog
2021-03-02 Nick Alcock <nick.alcock@oracle.com>
* ctf-link.c (ctf_create_per_cu): Drop FILENAME now that it is
always identical to CUNAME.
(ctf_link_deduplicating_one_symtypetab): Adjust.
(ctf_link_one_type): Remove.
(ctf_link_one_input_archive_member): Likewise.
(ctf_link_close_one_input_archive): Likewise.
(ctf_link_one_input_archive): Likewise.
(ctf_link): No longer call it. Drop CTF_LINK_NONDEDUP path.
Improve header comment a bit (dicts, not files). Adjust
ctf_create_per_cu call.
(ctf_link_deduplicating_variables): Simplify.
(ctf_link_in_member_cb_arg_t) <cu_name>: Remove.
<in_input_cu_file>: Likewise.
<in_fp_parent>: Likewise.
<done_parent>: Likewise.
(ctf_link_one_variable): Turn uses of in_file_name to in_cuname.
Ever since the generator-style _next iterators were introduced, there
have been separate implementations of the functional-style _iter
iterators that do the same thing as _next.
This is annoying and adds more dependencies on the internal guts of the
file format. Rip them all out and replace them with the corresponding
_next iterators. Only ctf_archive_raw_iter and ctf_label_iter survive,
the former because there is no access to the raw binary data of archives
via any _next iterator, and the latter because ctf_label_next hasn't
been implemented (because labels are currently not used for anything).
Tested by reverting the change (already applied) that reimplemented
ctf_member_iter in terms of ctf_member_next, then verifying that the
_iter and _next iterators produced the same results for every iterable
entity within a large type archive.
libctf/ChangeLog
2021-03-02 Nick Alcock <nick.alcock@oracle.com>
* ctf-types.c (ctf_member_iter): Move 'rc' to an inner scope.
(ctf_enum_iter): Reimplement in terms of ctf_enum_next.
(ctf_type_iter): Reimplement in terms of ctf_type_next.
(ctf_type_iter_all): Likewise.
(ctf_variable_iter): Reimplement in terms of ctf_variable_next.
* ctf-archive.c (ctf_archive_iter_internal): Remove.
(ctf_archive_iter): Reimplement in terms of ctf_archive_next.
The top level of CTF containers is a "CTF archive", which contains a
collection of named members (each a CTF dictionary). In the serialized
file format, this is optional and skipped if the archive would have only
one member, as when no ambiguous types are present: so it is commonplace
to have a simple ctf_dict_t written out, with no archive container
wrapped around it.
But, unlike ctf_archive_iter, ctf_archive_next didn't quite handle this
case right. It should set the name of this fake "member" to
_CTF_SECTION, i.e. ".ctf", but it was failing to do so, so callers got
an unintialized variable back instead and were understandably confused.
So set the name properly.
libctf/ChangeLog
2021-03-02 Nick Alcock <nick.alcock@oracle.com>
* ctf-archive.c (ctf_archive_next): Set the name of parents in
single-member archives.
PowerPC64 has its own gc_mark_dynamic_ref.
bfd/
PR 27451
* elf64-ppc.c (ppc64_elf_gc_mark_dynamic_ref): Ignore synthesized
linker defined start/stop symbols when start_stop_gc.
ld/
* testsuite/ld-powerpc/startstop.d,
* testsuite/ld-powerpc/startstop.r,
* testsuite/ld-powerpc/startstop.s: New test.
* testsuite/ld-powerpc/powerpc.exp: Run it.
Undefined weak symbols with non-default visibility are seen as local
by SYMBOL_REFERENCES_LOCAL. This stops a got indirect to relative
optimisation for them, so that pies and dlls don't get non-zero values
when loading somewhere other than the address they are linked at
(which always happens). The optimisation could be allowed for pdes,
but I thought it best not to allow it there too.
bfd/
* elf64-ppc.c (ppc64_elf_relocate_section): Don't optimise got
indirect to pc-relative or toc-relative for undefined symbols.
ld/
* testsuite/ld-powerpc/weak1.d,
* testsuite/ld-powerpc/weak1.r,
* testsuite/ld-powerpc/weak1.s,
* testsuite/ld-powerpc/weak1so.d,
* testsuite/ld-powerpc/weak1so.r: New tests.
* testsuite/ld-powerpc/powerpc.exp: Run them.
We shouldn't warn missing separate debug files when debug info isn't
needed.
PR binutils/27486
* dwarf.c (load_separate_debug_info): Issue warning only if
do_debug_links is set.
* testsuite/binutils-all/compress.exp: Run objdump and readelf
with missing debug file.
When --gc-sections is in effect, a reference from a retained section
to __start_SECNAME or __stop_SECNAME causes all input sections named
SECNAME to also be retained, if SECNAME is representable as a C
identifier and either __start_SECNAME or __stop_SECNAME is synthesized
by the linker. Add an option to disable that feature, effectively
ignoring any relocation that references a synthesized linker defined
__start_ or __stop_ symbol.
PR 27451
include/
* bfdlink.h (struct bfd_link_info): Add start_stop_gc.
bfd/
* elflink.c (_bfd_elf_gc_mark_rsec): Ignore synthesized linker
defined start/stop symbols when start_stop_gc.
(bfd_elf_gc_mark_dynamic_ref_symbol): Likewise.
(bfd_elf_define_start_stop): Don't modify ldscript_def syms.
* linker.c (bfd_generic_define_start_stop): Likewise.
ld/
* emultempl/elf.em: Handle -z start-stop-gc and -z nostart-stop-gc.
* lexsup.c (elf_static_list_options): Display help for them. Move
help for -z stack-size to here from elf_shlib_list_options. Add
help for -z start-stop-visibility and -z undefs.
* ld.texi: Document -z start-stop-gc and -z nostart-stop-gc.
* NEWS: Mention -z start-stop-gc.
* testsuite/ld-gc/start2.s,
* testsuite/ld-gc/start2.d: New test.
* testsuite/ld-gc/gc.exp: Run it.
If a weak reference to a __start_foo or __stop_foo symbol ends up
having no definition due to all the foo sections being removed for
some reason, undef_start_stop currently makes the symbol strong
undefined. That risks a linker undefined symbol error. Fix that by
making the symbol undefweak and also undo some dynamic symbol state.
Note that saving the state of the symbol type at the time
lang_init_start_stop runs is not sufficient. The linker may have
merged in a shared library reference by that point and made what was
an undefweak in regular objects, a strong undefined. So it is
necessary to look at the ELF symbol flags to decide whether an
undefweak is the proper resolution.
Something probably should be done for COFF/PE too, but I'm unsure how
to do go about that.
* ldlang.c (undef_start_stop): For ELF make undefined start/stop
symbols undefweak if that was how they were referenced. Undo
dynamic state too.
Update Makefile.tpl to add missing changes in
commit af019bfde9
Author: H.J. Lu <hjl.tools@gmail.com>
Date: Sat Jan 9 06:51:15 2021 -0800
Support the PGO build for binutils+gdb
"autogen Makefile.def" showed no changes in Makefile.in.
PR binutils/26766
* Makefile.tpl (PGO_BUILD_TRAINING_FLAGS_TO_PASS): Add
PGO_BUILD_TRAINING=yes.
(PGO_BUILD_TRAINING_MFLAGS): New.
(all): Pass $(PGO_BUILD_TRAINING_MFLAGS) to the PGO build.
While the configure script was checking for a bunch of headers, only
one of them was conditionally included in the source (unistd.h). The
rest were always included. Based on those usage this whole time, we
can reasonably assume that the build also has unistd.h.
All the other files including config.h never actually used any defines
from the header.
Rather than require $AR be set and then default to `ar`, use the
standard AC_CHECK_TOOL helper to find a good prefixed tool. In
practice this shouldn't change much as we seem to have macros in
the tree that were already setting it up, but we shouldn't rely
on that implicitly.
All the scripts were using this implicitly already, so there's no real
change for them, but we want to call it explicitly as the CPP tool is
used to generate nltvals.def.
We don't need a variable to add a dependency to the "all" target, and
having one doesn't really add value. Switch to the target directly for
the few ports that actually use this.
As reported in gdb/27393, the 'directory' and 'set directories' commands
fail when parsing an empty dir name:
(gdb) set directories ""
/home/lsix/dev/gnu/binutils-gdb/gdbsupport/pathstuff.cc:132: internal-error: gdb::unique_xmalloc_ptr<char> gdb_abspath(const char*): Assertion `path != NULL && path[0] != '\0'' failed.
or
(gdb) dir :
/home/lsix/dev/gnu/binutils-gdb/gdbsupport/pathstuff.cc:132: internal-error: gdb::unique_xmalloc_ptr<char> gdb_abspath(const char*): Assertion `path != NULL && path[0] != '\0'' failed.
This patch fixes this issue by ignoring any attempt to add an empty
name to the source directories list. 'set dir ""' will reset the
directories list the same way 'set dir' would do it.
Tested on x86_64.
I noticed an oddity in skip_ctf_tests -- for me it ends up caching the
string "!0", because it ends with 'return ![...]'. In Tcl, this is
just string concatenation.
The result works because the users of this function have unbraced if
conditions, like:
if [skip_ctf_tests] {
... which works because "if" re-parses the returned string as an
expression, and evaluates that.
There's only a latent bug here, but this is also un-idiomatic, so I am
checking in this patch to fix it. This way, if someone in the future
uses a braced condition (which is what I normally recommend), it will
continue to work.
gdb/testsuite/ChangeLog
2021-02-26 Tom Tromey <tom@tromey.com>
* lib/gdb.exp (skip_ctf_tests): Use expr on result.
PR binutils/27408
* readelf.c (quiet): New option flag.
(enum long_option_values): New enum to hold long option value.
(long_options): Add --quiet.
(usage): Mention --quiet.
(display_rel_file): If quiet is enabled, suppress "no symbols".
(main): Handle the new option.
* NEWS: Mention --quiet.
* docs/binutils.texi: Document --quiet.
PR 27411
* config/tc-arm.c (do_t_add_sub): Correct error message.
* testsuite/gas/arm/pr27411.s: New test.
* testsuite/gas/arm/pr27411.d: New test driver.
* testsuite/gas/arm/pr27411.l: Expected error output for new test.
Commit 2450ad54 removed extra trailing \n from tsv notifications but
did not update gdb.trace/mi-tsv-changed.exp accordingly. This commit
removes the extra \n from expected output so gdb.trace/mi-tsv-changed.exp
passes again.
gdb/testsuite/ChangeLog:
* gdb.trace/mi-tsv-changed.exp (test_create_delete_modify_tsv):
Remove trailing \n from expected output.
I added the same comment for nat/aarch64-linux-hw-point.c yesterday.
Christian suggested adding the comment for the other file that I had
identified as including both <sys/ptrace.h> and <asm/ptrace.h>.
I searched the sources in gdb/, but found no other files which include
both of these headers.
If possible, I would prefer to see us use <sys/ptrace.h> when possible,
however, from past experience, I've found that this file does not always
contain all of the constants, etc. required by the particular source
file.
gdb/ChangeLog:
* nat/aarch64-sve-linux-ptrace.h: Add comment regarding include
order for <sys/ptrace.h> and <asm/ptrace.h>.
As reported in PR 26861, when killing an inferior on macOS, we hit the
assert:
../../gdb-10.1/gdb/target.c:2149: internal-error: void target_mourn_inferior(ptid_t): Assertion `ptid == inferior_ptid' failed.
This is because darwin_nat_target::kill passes a pid-only ptid to
target_mourn_inferior, with the pid of the current inferior:
target_mourn_inferior (ptid_t (inf->pid));
... which doesn't satisfy the assert in target_mourn_inferior:
gdb_assert (ptid == inferior_ptid);
The reason for this assertion is that target_mourn_inferior is a
prototype shared between GDB and GDBserver, so that shared code in
gdb/nat (used in both GDB and GDBserver) can call target_mourn_inferior.
In GDB's implementation, it is likely that some targets still rely on
inferior_ptid being set to "the current thread we are working on". So
until targets are completely decoupled from inferior_ptid (at least
their mourn_inferior implementations), we need to ensure the passed in
ptid matches inferior_ptid, to ensure the calling code called
target_mourn_inferior with the right global context.
However, I think the assert is a bit too restrictive. The
mourn_inferior operation works on an inferior, not a specific thread.
And by the time we call mourn_inferior, the threads of the inferior
don't exist anymore, the process is gone, so it doesn't really make
sense to require inferior_ptid to point a specific thread.
I looked at all the target_ops::mourn_inferior implementations, those
that read inferior_ptid only care about the pid field, which supports
the idea that only the inferior matters. Other implementations look at
the current inferior (call `current_inferior ()`).
I think it would make sense to change target_mourn_inferior to accept
only a pid rather than a ptid. It would then assert that the pid is the
same as the current inferior's pid. However, this would be a quite
involved change, so I'll keep it for later.
To fix the macOS issue immediately, I propose to relax the assert to
only compare the pids, as is done in this patch.
Another solution would obviously be to make darwin_nat_target::kill pass
inferior_ptid to target_mourn_inferior. However, the solution I propose
is more in line with where I think we want to go (passing a pid to
target_mourn_inferior).
gdb/ChangeLog:
PR gdb/26861
* target.c (target_mourn_inferior): Only compare pids in
target_mourn_inferior.
Change-Id: If2439ccc5aa67272ea16148a43c5362ef23fb2b8
This change fixes the initial state of the main thread of remote
targets which have no concept of threading. Such targets are
treated as single-threaded by gdb, and this single thread needs
to be initially set to the "resumed" state, in the same manner as
threads in thread-aware remote targets (see remote.c,
remote_target::remote_add_thread).
Without this fix, the following assert was triggered on thread-
unaware remote targets:
remote_target::select_thread_for_ambiguous_stop_reply(const target_waitstatus*): Assertion `first_resumed_thread != nullptr' failed.
The bug can be reproduced using gdbserver
* by disabling packets 'T' and 'qThreadInfo', or
* by disabling all thread-related packets.
The test suite has been updated to include these two scenarios, see
gdb.server/stop-reply-no-thread.exp.
Change-Id: I2c39c9de17e8d6922a8c1b9e259eb316a554a43d
* dwarf.c (get_type_abbrev_from_form): Accept but ignore sup
forms.
(read_and_display_attr_value): Handle sup forms.
(display_debug_sup): New function. Displays the contents of a
.debug_sup section.
(load_debug_sup_file): New function. Loads the contents of a file
referenced by a .debug_sup section.
(check_for_and_load_links): Call load_debug_sup_file.
(debug_displays): Add entry for .debug_sup.
* dwarf.h (enum dwarf_section_display_enum): Add debug_sup.
* readelf.c (process_section_headers): Add support for debug_sup.
* doc/debug.options.texi: Note that the =links option will display
the contents of .debug_sup sections.
* NEWS: Mention the new support.
In commit:
commit faeb9f13c1
Date: Wed Feb 24 12:50:00 2021 +0000
gdb/fortran: add support for ASSOCIATED builtin
A test was added that fails to process the trailing gdb prompt inside
a gdb_test_multiple call, this will cause a failure if the tests are
run with READ1=1, or randomly at other times depending on how the
expect buffers are read in.
Fixed by adding a -wrap argument.
gdb/testsuite/ChangeLog:
* gdb.fortran/associated.exp: Add missing '-wrap' argument.
An extra \n in calls to fprintf_unfiltered() caused invalid MI records
to be emitted:
> gdb -i mi3 -ex "target remote :7000"
=thread-group-added,id="i1"
~"GNU gdb (GDB) 11.0.50.20201019-git\n"
~"Copyright (C) 2020 Free Software Foundation, Inc.\n"
...
~"Remote debugging using :7001\n"
=tsv-created,name="trace_timestamp",initial="0"\n
=thread-group-started,id="i1",pid="304973"
This commit fixes the problem.
gdb/ChangeLog:
* gdb/mi/mi-interp.c (mi_traceframe_changed): Remove trailing \n from output.
(mi_tsv_created): Likewise.
(mi_tsv_deleted): Likewise.
When running test-case gdb.dwarf2/fission-mix.exp using gcc-11 (and using the
tentative fix for PR27353 to get past that assertion failure), I run into:
...
(gdb) file fission-mix^M
Reading symbols from fission-mix...^M
Dwarf Error: wrong unit_type in compilation unit header \
(is DW_UT_split_compile (0x05), should be DW_UT_type (0x02)) \
[in module fission-mix2.dwo]^M
(No debugging symbols found in fission-mix)^M
...
The compilation unit that is complained about is:
...
Contents of the .debug_info.dwo section (loaded from fission-mix2.dwo):
Compilation Unit @ offset 0x0:
Length: 0x57 (32-bit)
Version: 5
Unit Type: DW_UT_split_compile (5)
Abbrev Offset: 0x0
Pointer Size: 8
DWO ID: 0x3e3930d3cc1805df
<0><14>: Abbrev Number: 1 (DW_TAG_compile_unit)
...
And the dwarf error is triggered here in read_comp_unit_head:
...
case DW_UT_split_compile:
if (section_kind != rcuh_kind::COMPILE)
error (_("Dwarf Error: wrong unit_type in compilation unit header "
"(is %s, should be %s) [in module %s]"),
dwarf_unit_type_name (cu_header->unit_type),
dwarf_unit_type_name (DW_UT_type), filename);
break;
...
due to passing rcuh_kind::TYPE here in open_and_init_dwo_file:
...
create_debug_type_hash_table (per_objfile, dwo_file.get (),
&dwo_file->sections.info, dwo_file->tus,
rcuh_kind::TYPE);
...
Fix this by changing the section_kind argument to create_debug_type_hash_table
to rcuh_kind::COMPILE, to reflect that we're passing &dwo_file->sections.info
rather than &dwo_file->sections.types.
Tested on x86_64-linux.
gdb/ChangeLog:
2021-02-25 Tom de Vries <tdevries@suse.de>
PR symtab/27354
* dwarf2/read.c (open_and_init_dwo_file): Use rcuh_kind::COMPILE as
section_kind for &dwo_file->sections.info.
When attempting to call a Fortran function for which there is no debug
information we currently trigger undefined behaviour in GDB by
accessing non-existent type fields.
The reason is that in order to prepare the arguments, for a call to a
Fortran function, we need to know the type of each argument. If the
function being called has no debug information then obviously GDB
doesn't know about the argument types and we should either give the
user an error or pick a suitable default. What we currently do is
just assume the field exist and access undefined memory, which is
clearly wrong.
The reason GDB needs to know the argument type is to tell if the
argument is artificial or not, artificial arguments will be passed by
value while non-artificial arguments will be passed by reference.
An ideal solution for this problem would be to allow the user to cast
the function to the correct type, we already do this to some degree
with the return value, for example:
(gdb) print some_func_ ()
'some_func_' has unknown return type; cast the call to its declared return type
(gdb) print (integer) some_func_ ()
$1 = 1
But if we could extend this to allow casting to the full function
type, GDB could figure out from the signature what are real
parameters, and what are artificial parameters. Maybe something like
this:
(gdb) print ((integer () (integer, double)) some_other_func_ (1, 2.3)
Alas, right now the Fortran expression parser doesn't seem to support
parsing function signatures, and we certainly don't have support for
figuring out real vs artificial arguments from a signature.
Still, I think we can prevent GDB from accessing undefined memory and
provide a reasonable default behaviour.
In this commit I:
- Only ask if the argument is artificial if the type of the argument
is actually known.
- Unknown arguments are assumed to be artificial and passed by
value (non-artificial arguments are pass by reference).
- If an artificial argument is prefixed with '&' by the user then we
treat the argument as pass-by-reference.
With these three changes we avoid undefined behaviour in GDB, and
allow the user, in most cases, to get a reasonably natural default
behaviour.
gdb/ChangeLog:
PR fortran/26155
* f-lang.c (fortran_argument_convert): Delete declaration.
(fortran_prepare_argument): New function.
(evaluate_subexp_f): Move logic to new function
fortran_prepare_argument.
gdb/testsuite/ChangeLog:
PR fortran/26155
* gdb.fortran/call-no-debug-func.f90: New file.
* gdb.fortran/call-no-debug-prog.f90: New file.
* gdb.fortran/call-no-debug.exp: New file.
This commit adds support for the ASSOCIATED builtin to the Fortran
expression evaluator. The ASSOCIATED builtin takes one or two
arguments.
When passed a single pointer argument GDB returns a boolean indicating
if the pointer is associated with anything.
When passed two arguments the second argument should either be some a
pointer could point at or a second pointer.
If the second argument is a pointer target, then the result from
associated indicates if the pointer is pointing at this target.
If the second argument is another pointer, then the result from
associated indicates if the two pointers are pointing at the same
thing.
gdb/ChangeLog:
* f-exp.y (f77_keywords): Add 'associated'.
* f-lang.c (fortran_associated): New function.
(evaluate_subexp_f): Handle FORTRAN_ASSOCIATED.
(operator_length_f): Likewise.
(print_unop_or_binop_subexp_f): New function.
(print_subexp_f): Make use of print_unop_or_binop_subexp_f for
FORTRAN_ASSOCIATED, FORTRAN_LBOUND, and FORTRAN_UBOUND.
(dump_subexp_body_f): Handle FORTRAN_ASSOCIATED.
(operator_check_f): Likewise.
* std-operator.def: Add FORTRAN_ASSOCIATED.
gdb/testsuite/ChangeLog:
* gdb.fortran/associated.exp: New file.
* gdb.fortran/associated.f90: New file.
gfortran supports .xor. as an alias for .neqv., see:
https://gcc.gnu.org/onlinedocs/gfortran/_002eXOR_002e-operator.html
this commit adds support for this operator to GDB.
gdb/ChangeLog:
* f-exp.y (fortran_operators): Add ".xor.".
gdb/testsuite/ChangeLog:
* gdb.fortran/dot-ops.exp (dot_operations): Test ".xor.".