FreeBSD's kernel has recently added two new ELF auxiliary vector
entries to describe the location of the user stack for the initial
thread in a process.
This change displays the proper name and description of these entries
in 'info auxv'.
This patch support ZTSO extension. It will turn on the tso flag for elf_flags
once we have enabled Ztso extension. This is intended to implement v0.1 of
the proposed specification which can be found in Chapter 25 of,
https://github.com/riscv/riscv-isa-manual/releases/download/draft-20220723-10eea63/riscv-spec.pdf.
bfd\ChangeLog:
* elfnn-riscv.c (_bfd_riscv_elf_merge_private_bfd_data): Set TSO flag.
* elfxx-riscv.c: Add Ztso's arch.
binutils\ChangeLog:
* readelf.c (get_machine_flags): Set TSO flag.
gas\ChangeLog:
* config/tc-riscv.c (riscv_set_tso): Ditto.
(riscv_set_arch): Ditto.
* testsuite/gas/riscv/ztso.d: New test.
include\ChangeLog:
* elf/riscv.h (EF_RISCV_TSO): Ditto.
They were legacy relocation types copied from other ports. The related
-fvtable-gc was removed from GCC in 2003.
The associated assembler directives (.vtable_inherit and .vtable_entry)
have never been supported by the RISC-V port. Remove related ld code.
Link: https://github.com/riscv-non-isa/riscv-elf-psabi-doc/pull/323
Some R_LARCH_64 in section .eh_frame will to generate
R_LARCH_NONE, we change relocation to R_LARCH_32_PCREL
from R_LARCH_64 in setction .eh_frame and not generate
dynamic relocation for R_LARCH_32_PCREL.
Add New relocate type R_LARCH_32_PCREL for .eh_frame.
include/elf/
loongarch.h
bfd/
bfd/bfd-in2.h
libbfd.h
reloc.c
elfxx-loongarch.c
elfnn-loongarch.c
gas/config/
tc-loongarch.c
binutils/
readelf.c
ld/testsuite/ld-elf/
eh5.d
The Linux kernel can dump memory tag segments to a core file, one segment
per mapped range. The format and documentation can be found in the Linux
kernel tree [1].
The following patch adjusts bfd and binutils so they can handle this new
segment type and display it accordingly. It also adds code required so GDB
can properly read/dump core file data containing memory tags.
Upon reading, each segment that contains memory tags gets mapped to a
section named "memtag". These sections will be used by GDB to lookup the tag
data. There can be multiple such sections with the same name, and they are not
numbered to simplify GDB's handling and lookup.
There is another patch for GDB that enables both reading
and dumping of memory tag segments.
Tested on aarch64-linux Ubuntu 20.04.
[1] Documentation/arm64/memory-tagging-extension.rst (Core Dump Support)
Commit 04f096fb9e ("Move the xc16x target to the obsolete list") moved
the architecture from the "obsolete but still available" to the
"obsolete / support removed" list in config.bfd, making the architecture
impossible to enable (except maybe via "enable everything" options").
Note that I didn't touch */po/*.po{,t} on the assumption that these
would be updated by some (half)automatic means.
Requiring C99 means that uses of bfd_uint64_t can be replaced with
uint64_t, and similarly for bfd_int64_t, BFD_HOST_U_64_BIT, and
BFD_HOST_64_BIT. This patch does that, removes #ifdef BFD_HOST_*
and tidies a few places that print 64-bit values.
This core dump note contains the value of the base address of the %fs
and %gs segments for both i386 and amd64 core dumps. It is primarily
useful in resolving the address of TLS variables in core dumps.
binutils/ChangeLog:
* readelf.c (get_freebsd_elfcore_note_type): Handle
NT_FREEBSD_X86_SEGBASES.
include/ChangeLog:
* elf/common.h (NT_FREEBSD_X86_SEGBASES): Define.
Handle the NT_AMDGPU_METADATA note, which is described here:
https://llvm.org/docs/AMDGPUUsage.html#code-object-v3-note-records
As of this patch, just print out the name, not the contents, which is in
the msgpack format.
binutils/ChangeLog:
* readelf.c (get_amdgpu_elf_note_type): New.
(process_note): Handle "AMDGPU" notes.
include/ChangeLog:
* elf/amdgcn.h (NT_AMDGPU_METADATA): New.
Change-Id: Id2dba2e2aeaa55ef7464fb35aee9c7d5f96ddb23
Decode and print the AMDGPU-specific fields of e_flags, as documented
here:
https://llvm.org/docs/AMDGPUUsage.html#header
That is:
- The specific GPU model
- Whether the xnack and sramecc features are enabled
The result looks like:
- Flags: 0x52f
+ Flags: 0x52f, gfx906, xnack any, sramecc any
The flags for the "HSA" OS ABI are properly versioned and documented on
that page. But the NONE, PAL and MESA3D OS ABIs are not well documented
nor versioned. Taking a peek at the LLVM source code, we see that they
encode their flags the same way as HSA v3. For example, for PAL:
c8b614cd74/llvm/lib/Target/AMDGPU/MCTargetDesc/AMDGPUTargetStreamer.cpp (L601)
So for those other OS ABIs, we read them the same as HSA v3.
binutils/ChangeLog:
* readelf.c: Include elf/amdgcn.h.
(decode_AMDGPU_machine_flags): New.
(get_machine_flags): Handle flags for EM_AMDGPU machine type.
include/ChangeLog:
* elf/amdgcn.h: Add EF_AMDGPU_MACH_AMDGCN_* and
EF_AMDGPU_FEATURE_* defines.
Change-Id: Ib5b94df7cae0719a22cf4e4fd0629330e9485c12
When the machine is EM_AMDGPU, handle the various OS ABIs described
here:
https://llvm.org/docs/AMDGPUUsage.html#header
For a binary with the HSA OS ABI, the change looks like:
- OS/ABI: <unknown: 40>
+ OS/ABI: AMD HSA
binutils/ChangeLog:
* readelf.c (get_osabi_name): Handle EM_AMDGPU OS ABIs.
include/ChangeLog:
* elf/common.h (ELFOSABI_AMDGPU_PAL, ELFOSABI_AMDGPU_MESA3D):
New.
Change-Id: I383590c390f7dc2fe0f902f50038735626d71863
Add support for the AMDGCN architecture to BFD.
This is the bare minimum to get
$ ./configure --target=amdgcn-hsa-amdhsa --disable-gas
$ make all-binutils
working later in this series.
The specific AMDGCN models added here are a bit arbitrary, based on
what we intend to initially support in GDB. This list will need to be
updated in the future anyway. The complete up-to-date list of existing
AMDGPU models can be found here:
https://llvm.org/docs/AMDGPUUsage.html#processors
The ELF format for this architecture is documented here:
https://llvm.org/docs/AMDGPUUsage.html#elf-code-object
The flags for the "HSA" OS ABI are properly versioned and documented on
that page. But the NONE, PAL and MESA3D OS ABIs are not well documented
nor versioned. Taking a peek at the LLVM source code, we see that they
encode their flags the same way as HSA v3. For example, for PAL:
c8b614cd74/llvm/lib/Target/AMDGPU/MCTargetDesc/AMDGPUTargetStreamer.cpp (L601)
So at least, we know that all AMDGPU objects (of which AMDGCN objects
are a subset of) at the time of writing encode the specific GPU model in
the EF_AMDGPU_MACH field of e_flags.
bfd/ChangeLog:
* Makefile.am (ALL_MACHINES, ALL_MACHINES_CFILES):
Add cpu-amdgcn.c.
(BFD64_BACKENDS): Add elf64-amdgcn.lo.
(BFD64_BACKENDS_CFILES): Add elf64-amdgcn.c.
* Makefile.in: Re-generate.
* cpu-amdgcn.c: New.
* elf64-amdgcn.c: New.
* archures.c (bfd_architecture): Add bfd_arch_amdgcn and related
mach defines.
(bfd_amdgcn_arch): New.
(bfd_archures_list): Add bfd_amdgcn_arch.
* bfd-in2.h: Re-generate.
* config.bfd: Handle amdgcn* target.
* configure.ac: Handle amdgcn_elf64_le_vec.
* configure: Re-generate.
* elf-bfd.h (elf_target_id): Add AMDGCN_ELF_DATA.
* targets.c (amdgcn_elf64_le_vec): New.
(_bfd_target_vector): Add amdgcn_elf64_le_vec.
include/ChangeLog:
* elf/amdgpu.h: New.
* elf/common.h (ELFOSABI_AMDGPU_HSA): Add.
Change-Id: I969f7b14960797e88891c308749a6e341eece5b2
The result of running etc/update-copyright.py --this-year, fixing all
the files whose mode is changed by the script, plus a build with
--enable-maintainer-mode --enable-cgen-maint=yes, then checking
out */po/*.pot which we don't update frequently.
The copy of cgen was with commit d1dd5fcc38ead reverted as that commit
breaks building of bfp opcodes files.
FreeBSD's kernel has recently added two new ELF auxiliary vector
entries. AT_FXRNG points to a root seed version for the kernel's
PRNG. Userland can use this to reseed a userland PRNG after the
kernel's PRNG has reseeded. AT_KPRELOAD is the base address of a
kernel-provided vDSO.
This change displays the proper name and description of these entries
in 'info auxv'.
include/ChangeLog:
* elf/common.h (AT_FREEBSD_FXRNG, AT_FREEBSD_KPRELOAD): Define.
As defined on: https://systemd.io/COREDUMP_PACKAGE_METADATA/
this note will be used starting from Fedora 36. Allow
readelf --notes to pretty print it:
Displaying notes found in: .note.package
Owner Data size Description
FDO 0x00000039 FDO_PACKAGING_METADATA
Packaging Metadata: {"type":"deb","name":"fsverity-utils","version":"1.3-1"}
Signed-off-by: Luca Boccassi <luca.boccassi@microsoft.com>
This is the original discussion,
https://github.com/riscv/riscv-elf-psabi-doc/pull/190
And here is the glibc part,
https://sourceware.org/pipermail/libc-alpha/2021-August/129931.html
For binutils part, we need to support a new direcitve: .variant_cc.
The function symbol marked by .variant_cc means it need to be resolved
directly without resolver for dynamic linker. We also add a new dynamic
entry, STO_RISCV_VARIANT_CC, to indicate there are symbols with the
special attribute in the dynamic symbol table of the object.
I heard that llvm already have supported this in their mainline, so
I think it's time to commit this.
bfd/
* elfnn-riscv.c (riscv_elf_link_hash_table): Added variant_cc
flag. It is used to check if relocations for variant CC symbols
may be present.
(allocate_dynrelocs): If the symbol has STO_RISCV_VARIANT_CC
flag, then raise the variant_cc flag of riscv_elf_link_hash_table.
(riscv_elf_size_dynamic_sections): Added dynamic entry for
variant_cc.
(riscv_elf_merge_symbol_attribute): New function, used to merge
non-visibility st_other attributes, including STO_RISCV_VARIANT_CC.
binutils/
* readelf.c (get_riscv_dynamic_type): New function.
(get_dynamic_type): Called get_riscv_dynamic_type for riscv targets.
(get_riscv_symbol_other): New function.
(get_symbol_other): Called get_riscv_symbol_other for riscv targets.
gas/
* config/tc-riscv.c (s_variant_cc): Marked symbol that it follows a
variant CC convention.
(riscv_elf_copy_symbol_attributes): Same as elf_copy_symbol_attributes,
but without copying st_other. If a function symbol has special st_other
value set via directives, then attaching an IFUNC resolver to that symbol
should not override the st_other setting.
(riscv_pseudo_table): Support variant_cc diretive.
* config/tc-riscv.h (OBJ_COPY_SYMBOL_ATTRIBUTES): Defined.
* testsuite/gas/riscv/variant_cc-set.d: New testcase.
* testsuite/gas/riscv/variant_cc-set.s: Likewise.
* testsuite/gas/riscv/variant_cc.d: Likewise.
* testsuite/gas/riscv/variant_cc.s: Likewise.
include/
* elf/riscv.h (DT_RISCV_VARIANT_CC): Defined to (DT_LOPROC + 1).
(STO_RISCV_VARIANT_CC): Defined to 0x80.
ld/
* testsuite/ld-riscv-elf/variant_cc-1.s: New testcase.
* testsuite/ld-riscv-elf/variant_cc-2.s: Likewise.
* testsuite/ld-riscv-elf/variant_cc-now.d: Likewise.
* testsuite/ld-riscv-elf/variant_cc-r.d: Likewise.
* testsuite/ld-riscv-elf/variant_cc-shared.d: Likewise.
* testsuite/ld-riscv-elf/ld-riscv-elf.exp: Updated.
R_PPC64_REL24_P9NOTOC is a variant of R_PPC64_REL24_NOTOC for use on
@notoc cals from non-power10 code in the rare case that using such a
construct is useful. R_PPC64_REL24_P9NOTOC will be emitted by gas
rather than R_PPC64_REL24_NOTOC when @notoc is used in a branch
instruction if power10 instructions are not enabled at that point.
The new relocation tells the linker to not use power10 instructions on
any stub emitted for that branch, unless overridden by
--power10-stubs=yes.
The current linker heuristic of only generating power10 instructions
for stubs if power10-only relocations are detected, continues to be
used.
include/
* elf/ppc64.h (R_PPC64_REL24_P9NOTOC): Define.
bfd/
* reloc.c (BFD_RELOC_PPC64_REL24_P9NOTOC): Define.
* elf64-ppc.c (ppc64_elf_howto_raw): Add entry for new reloc.
(ppc64_elf_reloc_type_lookup): Handle it.
(enum ppc_stub_type): Delete.
(enum ppc_stub_main_type, ppc_stub_sub_type): New.
(struct ppc_stub_type): New.
(struct ppc_stub_hash_entry): Use the above new type.
(struct ppc_link_hash_table): Update stub_count.
(is_branch_reloc, ppc64_elf_check_relocs),
(toc_adjusting_stub_needed): Handle new reloc.
(stub_hash_newfunc, select_alt_stub, ppc_merge_stub),
(ppc_type_of_stub, plt_stub_size, build_plt_stub),
(build_tls_get_addr_head, build_tls_get_addr_tail),
(ppc_build_one_stub, ppc_size_one_stub, ppc64_elf_size_stubs),
(ppc64_elf_build_stubs, ppc64_elf_relocate_section): Handle new
reloc. Modify stub handling to suit new scheme.
* bfd-in2.h: Regenerate.
* libbfd.h: Regenerate.
gas/
* config/tc-ppc.c (ppc_elf_suffix): When power10 is not enabled
return BFD_RELOC_PPC64_REL24_P9NOTOC for @notoc.
(fixup_size, ppc_force_relocation, ppc_fix_adjustable): Handle
BFD_RELOC_PPC64_REL24_P9NOTOC.
ld/
* testsuite/ld-powerpc/callstub-2.s: Add .machine power10.
Add elfcore_grok_solaris_note function that enables to
obtain process status, register values, and program info
from Solaris's core files.
bfd/
* elf.c (elfcore_grok_solaris_note): Solaris specific ELF
note parser. Better GDB's coredump analysis on Solaris...
(elfcore_grok_solaris_note_impl): New function.
(elfcore_grok_solaris_prstatus): New function.
(elfcore_grok_solaris_info): New function.
(elfcore_grok_solaris_lwpstatus): New function.
(elf_parse_notes): Added "CORE" groker element.
include/
* elf/common.h: Add note segment constants for core files on
Solaris systems.
The following patch synchronizes includes/objdump/readelf with the Linux
Kernel in terms of ARM regset notes.
We're currently missing 3 of them:
NT_ARM_PACA_KEYS
NT_ARM_PACG_KEYS
NT_ARM_PAC_ENABLED_KEYS
We don't need GDB to bother with this at the moment, so this doesn't update
bfd/elf.c. If needed, we can do it in the future.
binutils/
* readelf.c (get_note_type): Handle new ARM PAC notes.
include/elf/
* common.h (NT_ARM_PACA_KEYS, NT_ARM_PACG_KEYS)
(NT_ARM_PAC_ENABLED_KEYS): New constants.
Add GNU_PROPERTY_1_NEEDED:
#define GNU_PROPERTY_1_NEEDED GNU_PROPERTY_UINT32_OR_LO
to indicate the needed properties by the object file.
Add GNU_PROPERTY_1_NEEDED_INDIRECT_EXTERN_ACCESS:
#define GNU_PROPERTY_1_NEEDED_INDIRECT_EXTERN_ACCESS (1U << 0)
to indicate that the object file requires canonical function pointers and
cannot be used with copy relocation.
binutils/
* readelf.c (decode_1_needed): New.
(print_gnu_property_note): Handle GNU_PROPERTY_1_NEEDED.
include/
* elf/common.h (GNU_PROPERTY_1_NEEDED): New.
(GNU_PROPERTY_1_NEEDED_INDIRECT_EXTERN_ACCESS): Likewise.
ld/
* testsuite/ld-elf/property-1_needed-1a.d: New file.
* testsuite/ld-elf/property-1_needed-1.s: Likewise.
Implement GNU_PROPERTY_UINT32_AND_XXX/GNU_PROPERTY_UINT32_OR_XXX:
https://sourceware.org/pipermail/gnu-gabi/2021q1/000467.html
1. GNU_PROPERTY_UINT32_AND_LO..GNU_PROPERTY_UINT32_AND_HI
#define GNU_PROPERTY_UINT32_AND_LO 0xb0000000
#define GNU_PROPERTY_UINT32_AND_HI 0xb0007fff
A bit in the output pr_data field is set only if it is set in all
relocatable input pr_data fields. If all bits in the the output
pr_data field are zero, this property should be removed from output.
If the bit is 1, all input relocatables have the feature. If the
bit is 0 or the property is missing, the info is unknown.
2. GNU_PROPERTY_UINT32_OR_LO..GNU_PROPERTY_UINT32_OR_HI
#define GNU_PROPERTY_UINT32_OR_LO 0xb0008000
#define GNU_PROPERTY_UINT32_OR_HI 0xb000ffff
A bit in the output pr_data field is set if it is set in any
relocatable input pr_data fields. If all bits in the the output
pr_data field are zero, this property should be removed from output.
If the bit is 1, some input relocatables have the feature. If the
bit is 0 or the property is missing, the info is unknown.
bfd/
* elf-properties.c (_bfd_elf_parse_gnu_properties): Handle
GNU_PROPERTY_UINT32_AND_LO, GNU_PROPERTY_UINT32_AND_HI,
GNU_PROPERTY_UINT32_OR_LO and GNU_PROPERTY_UINT32_OR_HI.
(elf_merge_gnu_properties): Likewise.
binutils/
* readelf.c (print_gnu_property_note): Handle
GNU_PROPERTY_UINT32_AND_LO, GNU_PROPERTY_UINT32_AND_HI,
GNU_PROPERTY_UINT32_OR_LO and GNU_PROPERTY_UINT32_OR_HI.
include/
* elf/common.h (GNU_PROPERTY_UINT32_AND_LO): New.
(GNU_PROPERTY_UINT32_AND_HI): Likewise.
(GNU_PROPERTY_UINT32_OR_LO): Likewise.
(GNU_PROPERTY_UINT32_OR_HI): Likewise.
ld/
* testsuite/ld-elf/property-and-1.d: New file.
* testsuite/ld-elf/property-and-1.s: Likewise.
* testsuite/ld-elf/property-and-2.d: Likewise.
* testsuite/ld-elf/property-and-2.s: Likewise.
* testsuite/ld-elf/property-and-3.d: Likewise.
* testsuite/ld-elf/property-and-3.s: Likewise.
* testsuite/ld-elf/property-and-4.d: Likewise.
* testsuite/ld-elf/property-and-empty.s: Likewise.
* testsuite/ld-elf/property-or-1.d: Likewise.
* testsuite/ld-elf/property-or-1.s: Likewise.
* testsuite/ld-elf/property-or-2.d: Likewise.
* testsuite/ld-elf/property-or-2.s: Likewise.
* testsuite/ld-elf/property-or-3.d: Likewise.
* testsuite/ld-elf/property-or-3.s: Likewise.
* testsuite/ld-elf/property-or-4.d: Likewise.
* testsuite/ld-elf/property-or-empty.s: Likewise.
commit a7664973b2
Author: Jan Beulich <jbeulich@suse.com>
Date: Mon Apr 26 10:41:35 2021 +0200
x86: correct overflow checking for 16-bit PC-relative relocs
caused linker failure when building 16-bit program in a 32-bit ELF
container. Update GNU_PROPERTY_X86_FEATURE_2_USED with
#define GNU_PROPERTY_X86_FEATURE_2_CODE16 (1U << 12)
to indicate that 16-bit mode instructions are used in the input object:
https://groups.google.com/g/x86-64-abi/c/UvvXWeHIGMA
to indicate that 16-bit mode instructions are used in the object to
allow linker to properly perform relocation overflow check for 16-bit
PC-relative relocations in 16-bit mode instructions.
1. Update x86 assembler to always generate the GNU property note with
GNU_PROPERTY_X86_FEATURE_2_CODE16 for .code16 in ELF object.
2. Update i386 and x86-64 linkers to use 16-bit PC16 relocations if
input object is marked with GNU_PROPERTY_X86_FEATURE_2_CODE16.
bfd/
PR ld/27905
* elf32-i386.c: Include "libiberty.h".
(elf_howto_table): Add 16-bit R_386_PC16 entry.
(elf_i386_rtype_to_howto): Add a BFD argument. Use 16-bit
R_386_PC16 if input has 16-bit mode instructions.
(elf_i386_info_to_howto_rel): Update elf_i386_rtype_to_howto
call.
(elf_i386_tls_transition): Likewise.
(elf_i386_relocate_section): Likewise.
* elf64-x86-64.c (x86_64_elf_howto_table): Add 16-bit
R_X86_64_PC16 entry.
(elf_x86_64_rtype_to_howto): Use 16-bit R_X86_64_PC16 if input
has 16-bit mode instructions.
* elfxx-x86.c (_bfd_x86_elf_parse_gnu_properties): Set
elf_x86_has_code16 if relocatable input is marked with
GNU_PROPERTY_X86_FEATURE_2_CODE16.
* elfxx-x86.h (elf_x86_obj_tdata): Add has_code16.
(elf_x86_has_code16): New.
binutils/
PR ld/27905
* readelf.c (decode_x86_feature_2): Support
GNU_PROPERTY_X86_FEATURE_2_CODE16.
gas/
PR ld/27905
* config/tc-i386.c (set_code_flag): Update x86_feature_2_used
with GNU_PROPERTY_X86_FEATURE_2_CODE16 for .code16 in ELF
object.
(set_16bit_gcc_code_flag): Likewise.
(x86_cleanup): Always generate the GNU property note if
x86_feature_2_used isn't 0.
* testsuite/gas/i386/code16-2.d: New file.
* testsuite/gas/i386/code16-2.s: Likewise.
* testsuite/gas/i386/x86-64-code16-2.d: Likewise.
* testsuite/gas/i386/i386.exp: Run code16-2 and x86-64-code16-2.
include/
PR ld/27905
* elf/common.h (GNU_PROPERTY_X86_FEATURE_2_CODE16): New.
ld/
PR ld/27905
* testsuite/ld-i386/code16.d: New file.
* testsuite/ld-i386/code16.t: Likewise.
* testsuite/ld-x86-64/code16.d: Likewise.
* testsuite/ld-x86-64/code16.t: Likewise.
* testsuite/ld-i386/i386.exp: Run code16.
* testsuite/ld-x86-64/x86-64.exp: Likewise.
The official name for Loongson Architecture is LoongArch, it is better
to use LoongArch instead of Loongson Loongarch for EM_LOONGARCH to avoid
confusion and keep consistent with the various of software in the future.
The official documentation in Chinese:
http://www.loongson.cn/uploadfile/cpu/LoongArch.pdf
The translated version in English:
https://loongson.github.io/LoongArch-Documentation/
binutils/
* readelf.c (get_machine_name): Change Loongson Loongarch to
LoongArch.
include/
* elf/common.h (EM_LOONGARCH): Change Loongson Loongarch to
LoongArch.
The gotha() relocation mnemonic will be outputted by OpenRISC GCC when
using the -mcmodel=large option. This relocation is used along with
got() to generate 32-bit GOT offsets. This increases the previous GOT
offset limit from the previous 16-bit (64K) limit.
This is needed on large binaries where the GOT grows larger than 64k.
bfd/ChangeLog:
PR 21464
* bfd-in2.h: Add BFD_RELOC_OR1K_GOT_AHI16 relocation.
* elf32-or1k.c (or1k_elf_howto_table, or1k_reloc_map): Likewise.
(or1k_final_link_relocate, or1k_elf_relocate_section,
or1k_elf_check_relocs): Likewise.
* libbfd.h (bfd_reloc_code_real_names): Likewise.
* reloc.c: Likewise.
cpu/ChangeLog:
PR 21464
* or1k.opc (or1k_imm16_relocs, parse_reloc): Define parse logic
for gotha() relocation.
include/ChangeLog:
PR 21464
* elf/or1k.h (elf_or1k_reloc_type): Define R_OR1K_GOT_AHI16 number.
opcodes/ChangeLog:
PR 21464
* or1k-asm.c: Regenerate.
gas/ChangeLog:
PR 21464
* testsuite/gas/or1k/reloc-1.s: Add test for new relocation.
* testsuite/gas/or1k/reloc-1.d: Add test result for new
relocation.
Cc: Giulio Benetti <giulio.benetti@benettiengineering.com>
fixup reloc, add tests