This commit is the result of the following actions:
- Running gdb/copyright.py to update all of the copyright headers to
include 2024,
- Manually updating a few files the copyright.py script told me to
update, these files had copyright headers embedded within the
file,
- Regenerating gdbsupport/Makefile.in to refresh it's copyright
date,
- Using grep to find other files that still mentioned 2023. If
these files were updated last year from 2022 to 2023 then I've
updated them this year to 2024.
I'm sure I've probably missed some dates. Feel free to fix them up as
you spot them.
I noticed a comment by an include and remembered that I think these
don't really provide much value -- sometimes they are just editorial,
and sometimes they are obsolete. I think it's better to just remove
them. Tested by rebuilding.
Approved-By: Andrew Burgess <aburgess@redhat.com>
I ran across this very old code in gdb's Ada support. After a bit of
archaeology, we couldn't determine what bug this might have been
working around. It is no longer needed, so this patch removes it.
As this is entirely Ada-specific and was reviewed and tested at
AdaCore, I'm checking it in.
Two functions use the argument name bounds_prefered_p.
This misspells "preferred".
Fix this by using bounds_preferred_p instead.
Tested on x86_64-linux.
Reviewed-By: Tom Tromey <tom@tromey.com>
Currently, printing the type of an internal function in Ada shows
double <>s, like:
(gdb) with language ada -- ptype $_isvoid
type = <<internal function>>
while all other languages print it with a single <>, like:
(gdb) with language c -- ptype $_isvoid
type = <internal function>
I don't think there's a reason that Ada needs to be different. We
currently print the double <>s because we take this path in
ada_print_type:
switch (type->code ())
{
default:
gdb_printf (stream, "<");
c_print_type (type, "", stream, show, level, language_ada, flags);
gdb_printf (stream, ">");
break;
... and the type's name already has the <>s.
Fix this by simply adding an early check for
TYPE_CODE_INTERNAL_FUNCTION.
Approved-By: Andrew Burgess <aburgess@redhat.com>
Approved-By: Tom Tromey <tom@tromey.com>
Change-Id: Ic2b6527b9240a367471431023f6e27e6daed5501
Bug: https://sourceware.org/bugzilla/show_bug.cgi?id=30105
This commit is the result of running the gdb/copyright.py script,
which automated the update of the copyright year range for all
source files managed by the GDB project to be updated to include
year 2023.
The "varstring" paramter to ada_print_type can be null, but one spot
failed to check this. This could cause a crash in some situations.
As this is Ada-specific, and we've been using it internally at AdaCore
for a while, I am going to push it.
Currently the Ada code assumes that it can distinguish between a
multi-dimensional array and an array of arrays by looking for an
intervening typedef -- that is, for an array of arrays, there will be
a typedef wrapping the innermost array type.
A recent compiler change removes this typedef, which causes a gdb
failure in the internal AdaCore test suite.
This patch handles this case by checking whether the array type in
question has a name.
The next patch will want to do language->print_type(type, ...), to
print a type in a given language, avoiding a dependency on the current
language. That doesn't work correctly currently, however, because
most language implementations of language_defn::print_type call
c_print_type without passing down the language. There are two
overloads of c_print_type, one that takes a language, and one that
does not. The one that does not uses the current language, defeating
the point of calling language->print_type()...
This commit removes the c_print_type overload that does not take a
language, and adjusts the codebase throughout to always pass down a
language. In most places, there's already an enum language handy.
language_defn::print_type implementations naturally pass down
this->la_language. In a couple spots, like in ada-typeprint.c and
rust-lang.c there's no enum language handy, but the code is written
for a specific language, so we just hardcode the language.
In gnuv3_print_method_ptr, I wasn't sure whether we could hardcode C++
here, and we don't have an enum language handy, so I made it use the
current language, just like today. Can always be improved later.
Change-Id: Ib54fab4cf0fd307bfd55bf1dd5056830096a653b
Now that filtered and unfiltered output can be treated identically, we
can unify the printf family of functions. This is done under the name
"gdb_printf". Most of this patch was written by script.
Now that filtered and unfiltered output can be treated identically, we
can unify the puts family of functions. This is done under the name
"gdb_puts". Most of this patch was written by script.
Currently, "ptype" of an Ada unchecked union may show a
compiler-generated wrapper structure in its output. It's more
Ada-like to elide this structure, which is what this patch implements.
It turned out to be simplest to reuse a part of print_variant_clauses
for this.
As this is Ada-specific, and Joel already reviewed it internally, I am
going to check it in.
I think it only really makes sense to call wrap_here with an argument
consisting solely of spaces. Given this, it seemed better to me that
the argument be an int, rather than a string. This patch is the
result. Much of it was written by a script.
This commit brings all the changes made by running gdb/copyright.py
as per GDB's Start of New Year Procedure.
For the avoidance of doubt, all changes in this commits were
performed by the script.
Remove the `TYPE_FIELD_NAME` and `FIELD_NAME` macros, changing all the
call sites to use field::name directly.
Change-Id: I6900ae4e1ffab1396e24fb3298e94bf123826ca6
gdb currently supports two different styles of fixed-point. The
original style, where fixed point types are "GNAT encoded", is handled
primarily in the Ada code. The newer style, encoded using DWARF, is
handled by the core of gdb.
This patch changes gdb to read the GNAT encodings in the DWARF reader
as well. This removes some code and unifies the two paths. As a
result, GNAT-encoded fixed-point now works a bit better.
One possible drawback of this change is that, if someone uses stabs,
then fixed-point might now stop working. I consider stabs to be fully
obsolete, though, so I don't intend to address this.
gdb/ChangeLog
2021-03-02 Tom Tromey <tromey@adacore.com>
* ada-lang.c (cast_from_gnat_encoded_fixed_point_type)
(cast_to_gnat_encoded_fixed_point_type): Remove.
(ada_value_cast, ada_evaluate_subexp): Update.
(gnat_encoded_fixed_point_type_info)
(ada_is_gnat_encoded_fixed_point_type)
(gnat_encoded_fixed_point_delta)
(gnat_encoded_fixed_point_scaling_factor): Remove.
* ada-lang.h (ada_is_gnat_encoded_fixed_point_type)
(gnat_encoded_fixed_point_delta)
(gnat_encoded_fixed_point_scaling_factor): Don't declare.
* ada-typeprint.c (print_gnat_encoded_fixed_point_type): Remove.
(ada_print_type): Update.
* ada-valprint.c (ada_value_print_num): Update.
* dwarf2/read.c (ada_get_gnat_encoded_number)
(ada_get_gnat_encoded_ratio): New functions.
(finish_fixed_point_type): Use them. Add parameters.
(GNAT_FIXED_POINT_SUFFIX): New define.
(gnat_encoded_fixed_point_type_info): New function.
(read_base_type): Handle gnat encodings.
gdb/testsuite/ChangeLog
2021-03-02 Tom Tromey <tromey@adacore.com>
* gdb.ada/fixed_points.exp: Remove most special cases for minimal
encodings.
This commits the result of running gdb/copyright.py as per our Start
of New Year procedure...
gdb/ChangeLog
Update copyright year range in copyright header of all GDB files.
Note that the ptype information printed for types described
via pure DWARF debug info is slightly less informative as
the one printed when the information is encoded in the type's
name, via the GNAT encoding. As a result, the output in
the case of DWARF-described fixed point types is slightly
different. In pratice, this is no real loss because the information
not available in DWARF has no bearing on how the type is actually
stored in memory.
gdb/ChangeLog:
* ada-typeprint.c (ada_print_type): Add handing of fixed-point
range types.
* c-typeprint.c (c_type_print_varspec_prefix)
(c_type_print_varspec_suffix, c_type_print_base_1): Add
TYPE_CODE_FIXED_POINT handling.
* p-typeprint.c (pascal_type_print_varspec_prefix)
(pascal_type_print_varspec_suffix): Likewise.
* typeprint.c (print_type_fixed_point): New function.
* typeprint.h (print_type_fixed_point): Add declaration.
gdb/testsuite/ChangeLog:
* gdb.ada/fixed_points.exp: Add ptype tests.
* gdb.dwarf2/dw2-fixed-point.exp: Likewise.
Sometimes the Ada compiler will emit an "__XVL" name for a field. The
Ada compiler describes:
-- Second, the variable-length fields themselves are represented by
-- replacing the type by a special access type. The designated type of
-- this access type is the original variable-length type, and the fact
-- that this field has been transformed in this way is signalled by
-- encoding the field name as:
-- field___XVL
Currently gdb describes such fields as having "access" type, but this
is inaccurate. This patch changes gdb to avoid printing "access" in
this case.
gdb/ChangeLog
2020-11-04 Tom Tromey <tromey@adacore.com>
* ada-typeprint.c (ada_print_type): Handle __XVL fields.
gdb/testsuite/ChangeLog
2020-11-04 Tom Tromey <tromey@adacore.com>
* gdb.ada/funcall_ref.exp: Update.
* gdb.ada/var_rec_arr.exp: Update.
In some cases the name of an Ada type cannot be decoded by
decoded_type_name. For example, the name
"p__complex_variable_record_type__T9s" in the included test case is
rejected due to the "T". This causes ptype to display the full
contents of a record type -- when in fact the name is available and
ought to be printed.
Fixing this in decoded_type_name isn't possible because the "__T" name
is not the real name of the type -- it is just a compiler-assigned
name of convenience.
This patch fixes the problem by using the resolved type's name when
the original type's name isn't suitable.
gdb/ChangeLog
2020-11-04 Tom Tromey <tromey@adacore.com>
* ada-typeprint.c (ada_print_type): Handle __T types.
gdb/testsuite/ChangeLog
2020-11-04 Tom Tromey <tromey@adacore.com>
* gdb.ada/rec_ptype.exp: New file.
* gdb.ada/rec_ptype/main.adb: New file.
* gdb.ada/rec_ptype/p.ads: New file.
This patch renames some of the fixed-point-related subprograms in ada-lang.c
so as to make it obvious that those routines only handle the case where
the types are encoded using the GNAT encoding.
No function change; this patch is preparation work for adding support
for fixed-point types purely based on standard DWARF debug info.
gdb/ChangeLog:
* ada-lang.c (cast_from_gnat_encoded_fixed_point_type): Renames
cast_from_fixed. Update all callers.
(cast_to_gnat_encoded_fixed_point_type): Renames cast_to_fixed.
Update all callers.
(gnat_encoded_fixed_point_scaling_factor): Renames ada_scaling_factor.
Update all callers.
* ada-lang.h (gnat_encoded_fixed_point_scaling_factor): Renames
ada_scaling_factor.
* ada-typeprint.c: Replace call to ada_scaling_factor by call
to print_gnat_encoded_fixed_point_type.
* ada-valprint.c: Likewise.
This commit removes a call to ada_check_typedef which has already
been done a few lines earlier in the same function, so the second one
is superfluous.
gdb/ChangeLog:
* ada-typeprint.c (ada_print_type): Remove superfluous second call
to ada_check_typedef.
Add setters, to ensure that the kind and value of the property are
always kept in sync (a caller can't forget one or the other). Add
getters, such that we can assert that when a caller accesses a data bit
of the property, the property is indeed of the corresponding kind.
Note that because of the way `struct dynamic_prop` is allocated
currently, we can't make the `m_kind` and `m_data` fields private. That
would make the type non-default-constructible, and we would have to call
the constructor when allocating them. However, I still prefixed them
with `m_` to indicate that they should not be accessed from outside the
class (and also to be able to use the name `kind` for the method).
gdb/ChangeLog:
* gdbtypes.h (struct dynamic_prop) <kind, set_undefined,
const_val, set_const_val, baton, set_locexpr, set_loclist,
set_addr_offset, variant_parts, set_variant_parts,
original_type, set_original_type>: New methods.
<kind>: Rename to...
<m_kind>: ... this. Update all users to use the new methods
instead.
<data>: Rename to...
<m_data>: ... this. Update all users to use the new methods
instead.
Change-Id: Ib72a8eb440dfeb1a5421d0933334230d7f2478f9
Remove the `TYPE_FIELD_TYPE` macro, changing all the call sites to use
`type::field` and `field::type` directly.
gdb/ChangeLog:
* gdbtypes.h (TYPE_FIELD_TYPE): Remove. Change all call sites
to use type::field and field::type instead.
Change-Id: Ifda6226a25c811cfd334a756a9fbc5c0afdddff3
Remove `TYPE_INDEX_TYPE` macro, changing all the call sites to use
`type::index_type` directly.
gdb/ChangeLog:
* gdbtypes.h (TYPE_INDEX_TYPE): Remove. Change all call sites
to use type::index_type instead.
Change-Id: I56715df0bdec89463cda6bd341dac0e01b2faf84
Remove `TYPE_NFIELDS`, changing all the call sites to use
`type::num_fields` directly. This is quite a big diff, but this was
mostly done using sed and coccinelle. A few call sites were done by
hand.
gdb/ChangeLog:
* gdbtypes.h (TYPE_NFIELDS): Remove. Change all cal sites to use
type::num_fields instead.
Change-Id: Ib73be4c36f9e770e0f729bac3b5257d7cb2f9591
Remove `TYPE_NAME`, changing all the call sites to use `type::name`
directly. This is quite a big diff, but this was mostly done using sed
and coccinelle. A few call sites were done by hand.
gdb/ChangeLog:
* gdbtypes.h (TYPE_NAME): Remove. Change all cal sites to use
type::name instead.
The purpose of this patch is to prepare for the future where
fixed point types become described using standard DWARF info,
rather than GNAT encodings. For that, we rename a number of
routines manipulating Ada fixed point types to make it explicit
from their new names that they rely on the GNAT encodings to work.
This will allow us, when we introduce support for fixed point types
from standard DWARF to use names that are not ambiguous with
the functions that do similar work, but only for GNAT encodings.
gdb/ChangeLog:
* ada-lang.h: (ada_is_gnat_encoded_fixed_point_type): Renames
ada_is_fixed_point_type. Update all callers.
(gnat_encoded_fixed_point_delta): Renames ada_delta. Update
all callers.
* ada-lang.c (gnat_encoded_fixed_type_info): Renames fixed_type_info.
Update all callers.
* ada-typeprint.c (print_gnat_encoded_fixed_point_type): Renames
print_fixed_point_type. Update all callers.
* ada-valprint.c (ada_value_print_num): Replace call to
ada_is_fixed_point_type by ada_is_gnat_encoded_fixed_point_type.
Remove TYPE_CODE, changing all the call sites to use type::code
directly. This is quite a big diff, but this was mostly done using sed
and coccinelle. A few call sites were done by hand.
gdb/ChangeLog:
* gdbtypes.h (TYPE_CODE): Remove. Change all call sites to use
type::code instead.
Move get_dyn_prop, currently a free function, to be a method on struct
type.
gdb/ChangeLog:
* gdbtypes.h (struct type) <get_dyn_prop>: New method.
(get_dyn_prop): Remove. Update all users to use
type::dyn_prop.
* gdbtypes.c (get_dyn_prop): Rename to...
(type::dyn_prop): ... this.
The DWARF reader was updated to handle variant parts and some other
selected features for Ada; but the Ada "ptype" code was not touched.
This patch changes the Ada ptype code to handle the new types
properly.
Test cases for this and for some of the other code in this series are
in a separate patch.
gdb/ChangeLog
2020-04-24 Tom Tromey <tromey@adacore.com>
* ada-typeprint.c (print_choices, print_variant_part)
(print_record_field_types_dynamic): New functions.
(print_record_field_types): Use print_record_field_types_dynamic.
A comment in ada-typeprint.c mentions the Unchecked_Variant pragma.
However, this does not exist, and the comment should actually mention
Unchecked_Union.
gdb/ChangeLog
2020-03-11 Tom Tromey <tromey@adacore.com>
* ada-typeprint.c (print_choices): Fix comment.
This changes gdb to use the "variable" style when printing field
names. I've added new tests for C and Rust, but not other languages.
I chose "variable" because that seemed most straightforward. However,
another option would be to introduce a new "field" style. Similarly,
this patch uses the variable style for enumerator constants -- but
again, a new style could be used if that's preferred.
gdb/ChangeLog
2020-02-22 Tom Tromey <tom@tromey.com>
* valprint.c (generic_val_print_enum_1)
(val_print_type_code_flags): Style member names.
* rust-lang.c (val_print_struct, rust_print_enum)
(rust_print_struct_def, rust_internal_print_type): Style member
names.
* p-valprint.c (pascal_object_print_value_fields): Style member
names. Only call fprintf_symbol_filtered for static members.
* m2-typeprint.c (m2_record_fields, m2_enum): Style member names.
* f-valprint.c (f_val_print): Style member names.
* f-typeprint.c (f_type_print_base): Style member names.
* cp-valprint.c (cp_print_value_fields): Style member names. Only
call fprintf_symbol_filtered for static members.
(cp_print_class_member): Style member names.
* c-typeprint.c (c_print_type_1, c_type_print_base_1): Style
member names.
* ada-valprint.c (ada_print_scalar): Style enum names.
(ada_val_print_enum): Likewise.
* ada-typeprint.c (print_enum_type): Style enum names.
gdb/testsuite/ChangeLog
2020-02-22 Tom Tromey <tom@tromey.com>
* gdb.rust/rust-style.rs: New file.
* gdb.rust/rust-style.exp: New file.
* gdb.base/style.exp: Test structure printing.
* gdb.base/style.c (struct some_struct): New type.
(enum etype): New type.
(struct_value): New global.
Change-Id: I070e1293c6cc830c9ea916af8243410aa384e944
Sometimes -- notably with unchecked unions -- the Ada "ptype" code
will print a "?" or "??" to indicate something unknown. The choice of
what was printed was somewhat arbitrary, and in one case, Ada would
print an empty string rather than "?".
This patch normalizes the Ada code to use "?" rather than an empty
string or "??". My reasoning here is that a single question mark is
enough to convey unknown-ness.
gdb/ChangeLog
2019-12-10 Tom Tromey <tromey@adacore.com>
* ada-typeprint.c (print_choices): Use a single "?".
(print_variant_part): Print "?" if the discriminant name
is not known.
gdb/testsuite/ChangeLog
2019-12-10 Tom Tromey <tromey@adacore.com>
* gdb.ada/unchecked_union.exp: New file.
* gdb.ada/unchecked_union/pck.adb: New file.
* gdb.ada/unchecked_union/pck.ads: New file.
* gdb.ada/unchecked_union/unchecked_union.adb: New file.
* gdb-utils.exp (string_to_regexp): Also quote "?".
Change-Id: I3403040780a155ffa2c44c8e6a04ba86bc810e29
When calling the language la_print_typedef method, don't include a
newline at the end, instead print the newline from the users of
la_print_typedef.
This change will be useful in a later commit when the output from
la_print_typedef will be placed into an MI output field, in which case
the trailing newline is not required.
There should be no user visible changes after this commit.
gdb/ChangeLog:
* ada-typeprint.c (ada_print_typedef): Don't print newline at the
end.
* c-typeprint.c (c_print_typedef): Likewise.
* f-typeprint.c (f_print_typedef): Likewise.
* m2-typeprint.c (m2_print_typedef): Likewise.
* p-typeprint.c (pascal_print_typedef): Likewise.
* rust-lang.c (rust_print_typedef): Likewise.
* symtab.c (print_symbol_info): Print a newline after calling
typedef_print.
Change-Id: I6e697ea1ec0eadaa31aefaea959b2055188d680d
This introduces a new "metadata" style and changes many places in gdb
to use it. The idea here is to let the user distinguish gdb output
from output that (conceptually at least) comes directly from the
inferior. The newly-styled category includes text that gdb
traditionally surrounds in "<...>", like "<unavailable>".
I only added a single test for this. In many cases this output is
difficult to test. Also, while developing this errors in the
implementation of the new printf formats showed up as regressions.
gdb/ChangeLog
2019-10-01 Tom Tromey <tom@tromey.com>
* p-lang.c (pascal_printstr): Use metadata style.
* value.c (show_convenience): Use metadata style.
* valprint.c (valprint_check_validity, val_print_optimized_out)
(val_print_not_saved, val_print_unavailable)
(val_print_invalid_address, generic_val_print, val_print)
(value_check_printable, val_print_array_elements): Use metadata
style.
* ui-out.h (class ui_out) <field_fmt>: New overload.
<do_field_fmt>: Add style parameter.
* ui-out.c (ui_out::field_fmt): New overload.
* typeprint.c (type_print_unknown_return_type)
(val_print_not_allocated, val_print_not_associated): Use metadata
style.
* tui/tui-out.h (class tui_ui_out) <do_field_fmt>: Add style
parameter.
* tui/tui-out.c (tui_ui_out::do_field_fmt): Update.
* tracepoint.c (tvariables_info_1): Use metadata style.
* stack.c (print_frame_arg, print_frame_info, print_frame)
(info_frame_command_core): Use metadata style.
* skip.c (info_skip_command): Use metadata style.
* rust-lang.c (rust_print_enum): Use metadata style.
* python/py-prettyprint.c (print_stack_unless_memory_error): Use
metadata style.
* python/py-framefilter.c (py_print_single_arg): Use metadata
style.
* printcmd.c (do_one_display, print_variable_and_value): Use
metadata style.
* p-valprint.c (pascal_val_print)
(pascal_object_print_value_fields): Use metadata style.
* p-typeprint.c (pascal_type_print_base): Use metadata style.
* mi/mi-out.h (class mi_ui_out) <do_field_fmt>: Add style
parameter.
* mi/mi-out.c (mi_ui_out::do_field_fmt): Update.
* m2-valprint.c (m2_print_long_set): Use metadata style.
* m2-typeprint.c (m2_print_type): Use metadata style.
* infcmd.c (print_return_value_1): Use metadata style.
* gnu-v3-abi.c (print_one_vtable): Use metadata style.
* f-valprint.c (info_common_command_for_block): Use metadata
style.
* f-typeprint.c (f_type_print_base): Use metadata style.
* expprint.c (print_subexp_standard): Use metadata style.
* cp-valprint.c (cp_print_value_fields): Use metadata style.
* cli/cli-style.h (class cli_style_option): Add constructor.
(metadata_style): Declare.
* cli/cli-style.c (metadata_style): New global.
(_initialize_cli_style): Register metadata style.
* cli-out.h (class cli_ui_out) <do_field_fmt>: Add style
parameter.
* cli-out.c (cli_ui_out::do_field_fmt): Update.
* c-typeprint.c (c_type_print_base_struct_union)
(c_type_print_base_1): Use metadata style.
* breakpoint.c (watchpoint_value_print)
(print_one_breakpoint_location): Use metadata style.
* break-catch-syscall.c (print_one_catch_syscall): Use metadata
style.
* break-catch-sig.c (signal_catchpoint_print_one): Use metadata
style.
* ada-valprint.c (val_print_packed_array_elements, printstr)
(print_field_values, ada_val_print_ref, ada_val_print): Use
metadata style.
* ada-typeprint.c (print_array_type, ada_print_type): Use metadata
style.
* ada-tasks.c (print_ada_task_info, info_task): Use metadata
style.
* ada-lang.c (user_select_syms): Use metadata style.
gdb/testsuite/ChangeLog
2019-10-01 Tom Tromey <tom@tromey.com>
* lib/gdb-utils.exp (style): Handle "metadata" argument.
* gdb.base/style.exp: Add metadata style test.
This rewrites gdb's TRY/CATCH to plain C++ try/catch. The patch was
largely written by script, though one change (to a comment in
common-exceptions.h) was reverted by hand.
gdb/ChangeLog
2019-04-08 Tom Tromey <tom@tromey.com>
* xml-support.c: Use C++ exception handling.
* x86-linux-nat.c: Use C++ exception handling.
* windows-nat.c: Use C++ exception handling.
* varobj.c: Use C++ exception handling.
* value.c: Use C++ exception handling.
* valprint.c: Use C++ exception handling.
* valops.c: Use C++ exception handling.
* unittests/parse-connection-spec-selftests.c: Use C++ exception
handling.
* unittests/cli-utils-selftests.c: Use C++ exception handling.
* typeprint.c: Use C++ exception handling.
* tui/tui.c: Use C++ exception handling.
* tracefile-tfile.c: Use C++ exception handling.
* top.c: Use C++ exception handling.
* thread.c: Use C++ exception handling.
* target.c: Use C++ exception handling.
* symmisc.c: Use C++ exception handling.
* symfile-mem.c: Use C++ exception handling.
* stack.c: Use C++ exception handling.
* sparc64-linux-tdep.c: Use C++ exception handling.
* solib.c: Use C++ exception handling.
* solib-svr4.c: Use C++ exception handling.
* solib-spu.c: Use C++ exception handling.
* solib-frv.c: Use C++ exception handling.
* solib-dsbt.c: Use C++ exception handling.
* selftest-arch.c: Use C++ exception handling.
* s390-tdep.c: Use C++ exception handling.
* rust-lang.c: Use C++ exception handling.
* rust-exp.y: Use C++ exception handling.
* rs6000-tdep.c: Use C++ exception handling.
* rs6000-aix-tdep.c: Use C++ exception handling.
* riscv-tdep.c: Use C++ exception handling.
* remote.c: Use C++ exception handling.
* remote-fileio.c: Use C++ exception handling.
* record-full.c: Use C++ exception handling.
* record-btrace.c: Use C++ exception handling.
* python/python.c: Use C++ exception handling.
* python/py-value.c: Use C++ exception handling.
* python/py-utils.c: Use C++ exception handling.
* python/py-unwind.c: Use C++ exception handling.
* python/py-type.c: Use C++ exception handling.
* python/py-symbol.c: Use C++ exception handling.
* python/py-record.c: Use C++ exception handling.
* python/py-record-btrace.c: Use C++ exception handling.
* python/py-progspace.c: Use C++ exception handling.
* python/py-prettyprint.c: Use C++ exception handling.
* python/py-param.c: Use C++ exception handling.
* python/py-objfile.c: Use C++ exception handling.
* python/py-linetable.c: Use C++ exception handling.
* python/py-lazy-string.c: Use C++ exception handling.
* python/py-infthread.c: Use C++ exception handling.
* python/py-inferior.c: Use C++ exception handling.
* python/py-gdb-readline.c: Use C++ exception handling.
* python/py-framefilter.c: Use C++ exception handling.
* python/py-frame.c: Use C++ exception handling.
* python/py-finishbreakpoint.c: Use C++ exception handling.
* python/py-cmd.c: Use C++ exception handling.
* python/py-breakpoint.c: Use C++ exception handling.
* python/py-arch.c: Use C++ exception handling.
* printcmd.c: Use C++ exception handling.
* ppc-linux-tdep.c: Use C++ exception handling.
* parse.c: Use C++ exception handling.
* p-valprint.c: Use C++ exception handling.
* objc-lang.c: Use C++ exception handling.
* mi/mi-main.c: Use C++ exception handling.
* mi/mi-interp.c: Use C++ exception handling.
* mi/mi-cmd-stack.c: Use C++ exception handling.
* mi/mi-cmd-break.c: Use C++ exception handling.
* main.c: Use C++ exception handling.
* linux-thread-db.c: Use C++ exception handling.
* linux-tdep.c: Use C++ exception handling.
* linux-nat.c: Use C++ exception handling.
* linux-fork.c: Use C++ exception handling.
* linespec.c: Use C++ exception handling.
* language.c: Use C++ exception handling.
* jit.c: Use C++ exception handling.
* infrun.c: Use C++ exception handling.
* infcmd.c: Use C++ exception handling.
* infcall.c: Use C++ exception handling.
* inf-loop.c: Use C++ exception handling.
* i386-tdep.c: Use C++ exception handling.
* i386-linux-tdep.c: Use C++ exception handling.
* guile/scm-value.c: Use C++ exception handling.
* guile/scm-type.c: Use C++ exception handling.
* guile/scm-symtab.c: Use C++ exception handling.
* guile/scm-symbol.c: Use C++ exception handling.
* guile/scm-pretty-print.c: Use C++ exception handling.
* guile/scm-ports.c: Use C++ exception handling.
* guile/scm-param.c: Use C++ exception handling.
* guile/scm-math.c: Use C++ exception handling.
* guile/scm-lazy-string.c: Use C++ exception handling.
* guile/scm-frame.c: Use C++ exception handling.
* guile/scm-disasm.c: Use C++ exception handling.
* guile/scm-cmd.c: Use C++ exception handling.
* guile/scm-breakpoint.c: Use C++ exception handling.
* guile/scm-block.c: Use C++ exception handling.
* guile/guile-internal.h: Use C++ exception handling.
* gnu-v3-abi.c: Use C++ exception handling.
* gdbtypes.c: Use C++ exception handling.
* frame.c: Use C++ exception handling.
* frame-unwind.c: Use C++ exception handling.
* fbsd-tdep.c: Use C++ exception handling.
* f-valprint.c: Use C++ exception handling.
* exec.c: Use C++ exception handling.
* event-top.c: Use C++ exception handling.
* event-loop.c: Use C++ exception handling.
* eval.c: Use C++ exception handling.
* dwarf2read.c: Use C++ exception handling.
* dwarf2loc.c: Use C++ exception handling.
* dwarf2-frame.c: Use C++ exception handling.
* dwarf2-frame-tailcall.c: Use C++ exception handling.
* dwarf-index-write.c: Use C++ exception handling.
* dwarf-index-cache.c: Use C++ exception handling.
* dtrace-probe.c: Use C++ exception handling.
* disasm-selftests.c: Use C++ exception handling.
* darwin-nat.c: Use C++ exception handling.
* cp-valprint.c: Use C++ exception handling.
* cp-support.c: Use C++ exception handling.
* cp-abi.c: Use C++ exception handling.
* corelow.c: Use C++ exception handling.
* completer.c: Use C++ exception handling.
* compile/compile-object-run.c: Use C++ exception handling.
* compile/compile-object-load.c: Use C++ exception handling.
* compile/compile-cplus-symbols.c: Use C++ exception handling.
* compile/compile-c-symbols.c: Use C++ exception handling.
* common/selftest.c: Use C++ exception handling.
* common/new-op.c: Use C++ exception handling.
* cli/cli-script.c: Use C++ exception handling.
* cli/cli-interp.c: Use C++ exception handling.
* cli/cli-cmds.c: Use C++ exception handling.
* c-varobj.c: Use C++ exception handling.
* btrace.c: Use C++ exception handling.
* breakpoint.c: Use C++ exception handling.
* break-catch-throw.c: Use C++ exception handling.
* arch-utils.c: Use C++ exception handling.
* amd64-tdep.c: Use C++ exception handling.
* ada-valprint.c: Use C++ exception handling.
* ada-typeprint.c: Use C++ exception handling.
* ada-lang.c: Use C++ exception handling.
* aarch64-tdep.c: Use C++ exception handling.
gdb/gdbserver/ChangeLog
2019-04-08 Tom Tromey <tom@tromey.com>
* server.c: Use C++ exception handling.
* linux-low.c: Use C++ exception handling.
* gdbreplay.c: Use C++ exception handling.
This series is revisit of Siddhesh Poyarekar's patch from back in
2012. The last status on the patch is in the following gdb-patches
thread:
https://sourceware.org/ml/gdb-patches/2012-08/msg00562.html
It appears that Tom approved the patch, but Jan had some issues
with a compiler error that made the test fail on -m32 test runs.
He wrote up a hand-tweaked .S file to deal with it. Siddesh said
he would update tests. Then nothing.
Siddesh and Jan have both moved on since.
The patch originally required a large precursor patch to work.
I have whittled this down to/rewritten the bare minimum, and this
first patch is the result, changing the type of TYPE_LENGTH
to ULONGEST from unsigned int.
The majority of the changes involve changing printf format
strings to use %s and pulongest instead of %d.
gdb/ChangeLog:
* ada-lang.c (ada_template_to_fixed_record_type_1): Use
%s/pulongest for TYPE_LENGTH instead of %d in format
strings.
* ada-typerint.c (ada_print_type): Likewise.
* amd64-windows-tdep.c (amd64_windows_store_arg_in_reg): Likewise.
* compile/compile-c-support.c (generate_register_struct): Likewise.
* gdbtypes.c (recursive_dump_type): Likewise.
* gdbtypes.h (struct type) <length>: Change type to ULONGEST.
* m2-typeprint.c (m2_array): Use %s/pulongest for TYPE_LENGTH
instead of %d in format strings.
* riscv-tdep.c (riscv_type_alignment): Cast second argument
to std::min to ULONGEST.
* symmisc.c (print_symbol): Use %s/pulongest for TYPE_LENGTH
instead of %d in format strings.
* tracepoint.c (info_scope_command): Likewise.
* typeprint.c (print_offset_data::update)
(print_offset_data::finish): Likewise.
* xtensa-tdep.c (xtensa_store_return_value)
(xtensa_push_dummy_call): Likewise.