An issue was reported here related to building GDB on MinGW:
https://sourceware.org/pipermail/gdb/2020-September/048927.html
It was suggested here:
https://sourceware.org/pipermail/gdb/2020-September/048931.html
that the solution might be to make use of $(LIB_GETRANDOM), a variable
defined in the gnulib makefile, when linking GDB.
In fact I think the issue is bigger than just LIB_GETRANDOM. When
using the script binutils-gdb/gnulib/update-gnulib.sh to reimport
gnulib there is a lot of output from gnulib's gnulib-tool. Part of
that output is this:
You may need to use the following makefile variables when linking.
Use them in <program>_LDADD when linking a program, or
in <library>_a_LDFLAGS or <library>_la_LDFLAGS when linking a library.
$(FREXPL_LIBM)
$(FREXP_LIBM)
$(INET_NTOP_LIB)
$(LIBTHREAD)
$(LIB_GETLOGIN)
$(LIB_GETRANDOM)
$(LIB_HARD_LOCALE)
$(LIB_MBRTOWC)
$(LIB_SETLOCALE_NULL)
$(LTLIBINTL) when linking with libtool, $(LIBINTL) otherwise
What I think this is telling us is that we should be including the
value of all these variables on the link line for gdb and gdbserver.
The problem though is that these variables are define in gnulib's
makefile, but are not (necessarily) defined in GDB's makefile.
One solution would be to recreate the checks that gnulib performs in
order to recreate these variables in both gdb's and gdbserver's
makefile. Though this shouldn't be too hard, most (if not all) of
these checks are in the form macros defined in m4 files in the gnulib
tree, so we could just reference these as needed. However, in this
commit I propose a different solution.
Currently, in the top level makefile, we give gdb and gdbserver a
dependency on gnulib. Once gnulib has finished building gdb and
gdbserver can start, these projects then have a hard coded (relative)
path to the compiled gnulib library in their makefiles.
In this commit I extend the gnulib configure script to install a new
makefile fragment in the gnulib build directory. This new file will
have the usual variable substitutions applied to it, and so can
include the complete list (see above) of all the extra libraries that
are needed when linking against gnulib.
In fact the new makefile fragment defines three variables, these are:
LIBGNU: The path to the archive containing gnulib. Can be used as a
dependency as when this file changes gdb/gdbserver should be
relinked.
LIBGNU_EXTRA_LIBS: A list of linker -l.... flags that should be
included in the link line of gdb/gdbserver. These are
libraries that $(LIBGNU) depends on. This list is taken from
the output of gnulib-tool, which is run by our
gnulib/update-gnulib.sh script.
INCGNU: A list of -I.... include paths that should be passed to the
compiler, these are where the gnulib headers can be found.
Now both gdb and gdbserver can include the makefile fragment and make
use of these variables.
The makefile fragment relies on the variable GNULIB_BUILDDIR being
defined. This is checked for in the fragment, and was already defined
in the makefiles of gdb and gdbserver.
gdb/ChangeLog:
* Makefile.in: Include Makefile.gnulib.inc. Don't define LIBGNU
or INCGNU. Make use of LIBGNU_EXTRA_LIBS when linking.
gdbserver/ChangeLog:
* Makefile.in: Include Makefile.gnulib.inc. Don't define LIBGNU
or INCGNU. Make use of LIBGNU_EXTRA_LIBS when linking.
gnulib/ChangeLog:
* Makefile.gnulib.inc.in: New file.
* Makefile.in: Regenerate.
* configure: Regenerate.
* configure.ac: Install the new file.
handle_search_memory had some code after a call to error. This code
is dead, and this patch removes it.
gdbserver/ChangeLog
2020-10-07 Tom Tromey <tromey@adacore.com>
* server.cc (handle_search_memory): Remove dead code.
This replaces gdbserver's memory-searching function with
simple_search_memory.
gdbserver/ChangeLog
2020-10-07 Tom Tromey <tromey@adacore.com>
* server.cc (handle_search_memory_1): Remove.
(handle_search_memory): Use simple_search_memory.
GDB currently doesn't build cleanly with clang (a -Wdeprecated-copy-dtor
error). I configured my clang-based GDB build with
CXXFLAGS="-Wno-error=deprecated-copy-dtor", so I can use it despite that
problem. However, I found that it had no effect. This is because my
-Wno-error=Wdeprecated-copy-dtor switch is followed by -Werror in the
command line, which switches back all warnings to be errors.
If we want the user-supplied C(XX)FLAGS to be able to override flags
added by our configure script, the user-supplied C(XX)FLAGS should
appear after the configure-supplied flags.
This patch moves the user-supplied CXXFLAGS at the very end of the
compilation command line, which fixes the problem described above. This
means moving it out of INTERNAL_CFLAGS and inlining it in the users of
INTERNAL_CFLAGS.
I observed the problem when building GDB, but the same problem could
happen with GDBserver, so the change is done there too.
In GDBserver, INTERNAL_CFLAGS is passed when linking
gdb/ChangeLog:
* Makefile.in (COMPILE): Add CXXFLAGS.
(INTERNAL_CFLAGS_BASE): Remove CXXFLAGS.
(check-headers): Add CXXFLAGS.
gdbserver/ChangeLog:
* Makefile.in (COMPILE): Add CXXFLAGS.
(INTERNAL_CFLAGS_BASE): Remove CXXFLAGS.
(gdbserver$(EXEEXT)): Add CXXFLAGS.
(gdbreplay$(EXEEXT)): Add CXXFLAGS.
($(IPA_LIB)): Add CXXFLAGS.
(IPAGENT_COMPILE): Add CXXFLAGS.
Change-Id: I00e054506695e0e9536095c6d14827e48abd8f69
The support is on par with NetBSD/amd64, thus GPR works,
single step and software breakpoint are operational, and the
SVR4 r_debug integration is functional.
gdbserver/ChangeLog:
* netbsd-aarch64-low.cc: Add.
* Makefile.in (SFILES): Register "netbsd-aarch64-low.c".
* configure.srv: Add aarch64*-*-netbsd*.
Becausae of a copy/paste, I've put myself as the author of the
following patch which was not true:
6d2d7c5668 gdbserver: Add GNU/Linux support for ARC
This change will place the correct date and author in the ChangeLog.
This gdbserver implementation supports ARC ABI v3 and v4 (older ARC ABI
versions are not supported by other modern GNU tools or Linux itself).
Gdbserver supports inspection of ARC HS registers R30, R58 and R59 - feature
that has been added to Linux 4.12. Whether gdbserver build will actually
support this feature depends on the version of Linux headers used to build
the server.
v2 [1]:
- Use "this->read_memory ()" instead of "the_target->read_memory ()".
- Remove the unnecessary "arch-arc.o:" target from the "Makefile.in".
- Got rid of "ntohs()" function and added lots of comments about
endianness.
- Clarify why "pc" value is read from and saved to different fields
in user regs struct.
- In function "is_reg_name_available_p()", use a range-based iterator
to loop over the registers.
- Removed mentioning of issue number that was not related to sourceware.
- A few typo's fixed.
[1] Remarks
https://sourceware.org/pipermail/gdb-patches/2020-September/171911.htmlhttps://sourceware.org/pipermail/gdb-patches/2020-September/171919.html
gdbserver/ChangeLog:
* configure.srv: Support ARC architecture.
* Makefile.in: Add linux-arc-low.cc and arch/arc.o.
* linux-arc-low.cc: New file.
Switch from target->read_memory to netbsd_nat::read_memory and
cleanup the code.
No functional change.
gdbserver/ChangeLog:
* netbsd-low.cc (get_dynamic, get_r_debug, read_one_ptr)
(netbsd_qxfer_libraries_svr4): Remove "target" argument and update.
(netbsd_process_target::qxfer_libraries_svr4): Update.
Instead of sharing the native-only code with all BSDs with slightly
different semantics of the kernels, share the NetBSD-only behavior beteen
the NetBSD native and gdbserver setup.
NetBSD does not differentiate the address space I and D in the
operations (contrary to OpenBSD). NetBSD handles EACCES that integrates
with NetBSD specific PaX MPROTECT error handling.
Add a verbose message in the native client that an operation could be
cancelled due to PaX MPROTECT setup.
gdb/ChangeLog:
* nat/netbsd-nat.c (write_memory, read_memory): Add.
* nat/netbsd-nat.h (write_memory, read_memory): Likewise.
* nbsd-nat.c (nbsd_nat_target::xfer_partial): Update.
gdbserver/ChangeLog:
* netbsd-low.cc (netbsd_process_target::read_memory)
(netbsd_process_target::write_memory): Update.
The support is on par with NetBSD/amd64, thus GPR works,
single step and software breakpoint are operational, and the
SVR4 r_debug integration is functional.
gdbserver/ChangeLog:
* netbsd-aarch64-low.cc: Add.
* Makefile.in (SFILES): Register "netbsd-aarch64-low.c".
* configure.srv: Add aarch64*-*-netbsd*.
The support is on par with NetBSD/amd64, thus GPR works,
single step and software breakpoint are operational, and the
SVR4 r_debug integration is functional.
gdbserver/ChangeLog:
* netbsd-aarch64-low.cc: Add.
* Makefile.in (SFILES): Register "netbsd-aarch64-low.c".
* configure.srv: Add aarch64*-*-netbsd*.
The register_data() function in gdbserver/regcache.cc has an
input argument called "fetch". This argument is not used by this
static function at all. Therefore, it is time to get rid of it.
gdbserver/ChangeLog:
* regcache.cc (register_data): Remove unused "fetch" argument.
Assign names to event loop file handlers. They will be used in debug
messages when file handlers are invoked.
In GDB, each UI used to get its own unique number, until commit
cbe256847e ("Remove ui::num"). Re-introduce this field, and use it to
make a unique name for the handler.
I'm not too sure what goes on in ser-base.c, all I know is that it's
what is used when debugging remotely. I've just named the main handler
"serial". It would be good to have unique names there too. For instance
when debugging with two different remote connections, we'd ideally want
the handlers to have unique names. I didn't do it in this patch though.
gdb/ChangeLog:
* async-event.c (initialize_async_signal_handlers): Pass name to
add_file_handler
* event-top.c (ui_register_input_event_handler): Likewise.
* linux-nat.c (linux_nat_target::async): Likewise.
* run-on-main-thread.c (_initialize_run_on_main_thread):
Likewise
* ser-base.c (reschedule): Likewise.
(ser_base_async): Likewise.
* tui/tui-io.c: Likewise.
* top.h (struct ui) <num>: New field.
* top.c (highest_ui_num): New variable.
(ui::ui): Initialize num.
gdbserver/ChangeLog:
* linux-low.cc (linux_process_target::async): Pass name to
add_file_handler.
* remote-utils.cc (handle_accept_event): Likewise.
(remote_open): Likewise.
gdbsupport/ChangeLog:
* event-loop.h (add_file_handler): Add "name" parameter.
* event-loop.cc (struct file_handler) <name>: New field.
(create_file_handler): Add "name" parameter, assign it to file
handler.
(add_file_handler): Add "name" parameter.
Change-Id: I9f1545f73888ebb6778eb653a618ca44d105f92c
The support is on part with NetBSD/amd64, thus GPR works,
single step and software breakpoint are operational, and the
SVR4 r_debug integration is functional.
gdbserver/ChangeLog:
* netbsd-i386-low.cc: Add.
* Makefile.in (SFILES): Register "netbsd-i386-low.c".
* configure.srv: Add i[34567]86-*-netbsd*.
Replace the pre-C++ construct of netbsd_target_ops, netbsd_regset_info
and netbsd_tdesc with C++ inheritance approach found in the Linux
gdbserver code. Add netbsd_amd64_target, that inherits from the
netbsd_process_target class and add proper singleton object for
the_netbsd_target, initialized from netbsd_amd64_target.
Call low_arch_setup () on post process creation, which sets machine
specific properties of the traced process.
Remove global singleton the_netbsd_target object from the generic
gdbserver code.
This refactoring introduces no functional change from the end-user
point of view.
gdbserver/ChangeLog:
* netbsd-amd64-low.cc (netbsd_x86_64_arch_setup): Remove.
(netbsd_target_regsets): Now const.
(the_low_target): Remove.
(class netbsd_amd64_target, the_netbsd_amd64_target)
(the_netbsd_target): Add.
* netbsd-low.cc (netbsd_process_target::post_create_inferior): Call
low_arch_setup ().
(netbsd_process_target::fetch_registers)
(netbsd_process_target::store_registers, initialize_low): Update.
(the_netbsd_target): Remove.
* netbsd-low.h (netbsd_target_regsets, netbsd_target_ops)
(the_low_target, netbsd_tdesc): Remove.
(netbsd_process_target::get_regs_info)
(netbsd_process_target::low_arch_setup): Add.
When a WOW64 process triggers a breakpoint exception in 64bit code (which
happens when a 64bit gdb calls DebugBreakProcess for a 32bit target),
gdb ignores the breakpoint (because Wow64GetThreadContext can only report
the pc of 32bit code, and there is not int3 at this location).
But if these 64bit breakpoint exceptions are handled as SIGINT, gdb
doesn't check for int3, and always stops the target.
gdb/ChangeLog:
2020-09-23 Hannes Domani <ssbssa@yahoo.de>
* nat/windows-nat.c (handle_exception): Handle 64bit breakpoints
in WOW64 processes as SIGINT.
* nat/windows-nat.h: Make wow64_process a shared variable.
* windows-nat.c: Remove static wow64_process variable.
gdbserver/ChangeLog:
2020-09-23 Hannes Domani <ssbssa@yahoo.de>
* win32-low.cc: Remove local wow64_process variable.
* win32-low.h: Remove local wow64_process variable.
My understanding is that it's mildly better to use a static const
array, as opposed to a "const char *", for a global string constant,
when possible. This makes sense to me because the pointer requires a
load from an address, whereas the array is just the address.
So, I searched for these in gdb and gdbserver. This patch fixes the
ones I found.
gdb/ChangeLog
2020-09-15 Tom Tromey <tromey@adacore.com>
* unittests/memory-map-selftests.c (valid_mem_map): Now array.
* ui-style.c (ansi_regex_text): Now array.
* rust-exp.y (number_regex_text): Now array.
* linespec.c (linespec_quote_characters): Now array.
* jit.c (jit_break_name, jit_descriptor_name, reader_init_fn_sym):
Now arrays.
gdbserver/ChangeLog
2020-09-15 Tom Tromey <tromey@adacore.com>
* linux-x86-low.cc (xmltarget_i386_linux_no_xml)
(xmltarget_amd64_linux_no_xml): Now arrays.
Many global arrays in gdb could be marked "const" but are not. This
patch changes some of them. (There may be other arrays that could
benefit from this treatment. I only examined arrays of strings.)
This lets the linker move some symbols to the readonly data section.
For example, previously:
0000000000000000 d _ZL18can_use_agent_enum
is now:
0000000000000030 r _ZL18can_use_agent_enum
2020-09-14 Tom Tromey <tromey@adacore.com>
* x86-tdep.h (x86_in_indirect_branch_thunk): Update.
* x86-tdep.c (x86_is_thunk_register_name)
(x86_in_indirect_branch_thunk): Update.
* sparc64-tdep.c (sparc64_fpu_register_names)
(sparc64_cp0_register_names, sparc64_register_names)
(sparc64_pseudo_register_names): Now const.
* sparc-tdep.h (struct gdbarch_tdep) <fpu_register_names,
cp0_registers_num>: Now const.
* sparc-tdep.c (sparc_core_register_names)
(sparc32_fpu_register_names, sparc32_cp0_register_names)
(sparc32_pseudo_register_names): Now const.
(validate_tdesc_registers): Update.
* rust-lang.c (rust_extensions): Now const.
* p-lang.c (p_extensions): Now const.
* objc-lang.c (objc_extensions): Now const.
* nto-tdep.c (nto_thread_state_str): Now const.
* moxie-tdep.c (moxie_register_names): Now const.
* mips-tdep.h (struct gdbarch_tdep) <mips_processor_reg_names>:
Now const.
* mips-tdep.c (mips_generic_reg_names, mips_tx39_reg_names)
(mips_linux_reg_names): Now const.
(mips_gdbarch_init): Update.
* microblaze-tdep.c (microblaze_register_names): Now const.
* m68k-tdep.c (m68k_register_names): Now const.
* m32r-tdep.c (m32r_register_names): Now const.
* ia64-tdep.c (ia64_register_names): Now const.
* i386-tdep.h (struct gdbarch_tdep) <register_names,
ymmh_register_names, ymm16h_regnum, mpx_register_names,
k_register_names, zmmh_register_names, xmm_avx512_register_names,
ymm_avx512_register_names, pkeys_register_names>: Now const.
* i386-tdep.c (i386_register_names, i386_zmm_names)
(i386_zmmh_names, i386_k_names, i386_ymm_names, i386_ymmh_names)
(i386_mpx_names, i386_pkeys_names, i386_bnd_names)
(i386_mmx_names, i386_byte_names, i386_word_names): Now const.
* f-lang.c (f_extensions): Now const.
* d-lang.c (d_extensions): Now const.
* csky-tdep.c (csky_register_names): Now const.
* charset.c (default_charset_names, charset_enum): Now const.
(_initialize_charset): Update.
* c-lang.c (c_extensions, cplus_extensions, asm_extensions): Now
const.
* bsd-uthread.c (bsd_uthread_solib_names): Now const.
(bsd_uthread_solib_loaded): Update.
(bsd_uthread_state): Now const.
* amd64-tdep.c (amd64_register_names, amd64_ymm_names)
(amd64_ymm_avx512_names, amd64_ymmh_names)
(amd64_ymmh_avx512_names, amd64_mpx_names, amd64_k_names)
(amd64_zmmh_names, amd64_zmm_names, amd64_xmm_avx512_names)
(amd64_pkeys_names, amd64_byte_names, amd64_word_names)
(amd64_dword_names): Now const.
* agent.c (can_use_agent_enum): Now const.
* ada-tasks.c (task_states, long_task_states): Now const.
* ada-lang.c (known_runtime_file_name_patterns)
(known_auxiliary_function_name_patterns, attribute_names)
(standard_exc, ada_extensions): Now const.
gdbserver/ChangeLog
2020-09-14 Tom Tromey <tromey@adacore.com>
* tracepoint.cc (eval_result_names): Now const.
* ax.cc (gdb_agent_op_names): Now const.
I found myself wanting to run a few specific selftests while developing.
I thought it would be nice to be able to provide multiple test names
when running `maintenant selftests`. The arguments to that command is
currently interpreted as a single filter (not split by spaces), it now
becomes a list a filters, split by spaces. A test is executed when it
matches at least one filter.
Here's an example of the result in GDB:
(gdb) maintenance selftest xml
Running selftest xml_escape_text.
Running selftest xml_escape_text_append.
Ran 2 unit tests, 0 failed
(gdb) maintenance selftest xml unord
Running selftest unordered_remove.
Running selftest xml_escape_text.
Running selftest xml_escape_text_append.
Ran 3 unit tests, 0 failed
(gdb) maintenance selftest xml unord foobar
Running selftest unordered_remove.
Running selftest xml_escape_text.
Running selftest xml_escape_text_append.
Ran 3 unit tests, 0 failed
Since the selftest machinery is also shared with gdbserver, I also
adapted gdbserver. It accepts a `--selftest` switch, which accepts an
optional filter argument. I made it so you can now pass `--selftest`
multiple time to add filters.
It's not so useful right now though: there's only a single selftest
right now in GDB and it's for an architecture I can't compile. So I
tested by adding dummy tests, here's an example of the result:
$ ./gdbserver --selftest=foo
Running selftest foo.
foo
Running selftest foobar.
foobar
Ran 2 unit tests, 0 failed
$ ./gdbserver --selftest=foo --selftest=bar
Running selftest bar.
bar
Running selftest foo.
foo
Running selftest foobar.
foobar
Ran 3 unit tests, 0 failed
gdbsupport/ChangeLog:
* selftest.h (run_tests): Change parameter to array_view.
* selftest.c (run_tests): Change parameter to array_view and use
it.
gdb/ChangeLog:
* maint.c (maintenance_selftest): Split args and pass array_view
to run_tests.
gdbserver/ChangeLog:
* server.cc (captured_main): Accept multiple `--selftest=`
options. Pass all `--selftest=` arguments to run_tests.
Change-Id: I422bd49f08ea8095ae174c5d66a2dd502a59613a
GDB currently doesn't build on 32-bit Solaris:
* On Solaris 11.4/x86:
In file included from /usr/include/sys/procfs.h:26,
from /vol/src/gnu/gdb/hg/master/dist/gdb/i386-sol2-nat.c:24:
/usr/include/sys/old_procfs.h:31:2: error: #error "Cannot use procfs in the large file compilation environment"
#error "Cannot use procfs in the large file compilation environment"
^~~~~
* On Solaris 11.3/x86 there are several more instances of this.
The interaction between procfs and large-file support historically has
been a royal mess on Solaris:
* There are two versions of the procfs interface:
** The old ioctl-based /proc, deprecated and not used any longer in
either gdb or binutils.
** The `new' (introduced in Solaris 2.6, 1997) structured /proc.
* There are two headers one can possibly include:
** <procfs.h> which only provides the structured /proc, definining
_STRUCTURED_PROC=1 and then including ...
** <sys/procfs.h> which defaults to _STRUCTURED_PROC=0, the ioctl-based
/proc, but provides structured /proc if _STRUCTURED_PROC == 1.
* procfs and the large-file environment didn't go well together:
** Until Solaris 11.3, <sys/procfs.h> would always #error in 32-bit
compilations when the large-file environment was active
(_FILE_OFFSET_BITS == 64).
** In both Solaris 11.4 and Illumos, this restriction was lifted for
structured /proc.
So one has to be careful always to define _STRUCTURED_PROC=1 when
testing for or using <sys/procfs.h> on Solaris. As the errors above
show, this isn't always the case in binutils-gdb right now.
Also one may need to disable large-file support for 32-bit compilations
on Solaris. config/largefile.m4 meant to do this by wrapping the
AC_SYS_LARGEFILE autoconf macro with appropriate checks, yielding
ACX_LARGEFILE. Unfortunately the macro doesn't always succeed because
it neglects the _STRUCTURED_PROC part.
To make things even worse, since GCC 9 g++ predefines
_FILE_OFFSET_BITS=64 on Solaris. So even if largefile.m4 deciced not to
enable large-file support, this has no effect, breaking the gdb build.
This patch addresses all this as follows:
* All tests for the <sys/procfs.h> header are made with
_STRUCTURED_PROC=1, the definition going into the various config.h
files instead of having to make them (and sometimes failing) in the
affected sources.
* To cope with the g++ predefine of _FILE_OFFSET_BITS=64,
-U_FILE_OFFSET_BITS is added to various *_CPPFLAGS variables. It had
been far easier to have just
#undef _FILE_OFFSET_BITS
in config.h, but unfortunately such a construct in config.in is
commented by config.status irrespective of indentation and whitespace
if large-file support is disabled. I found no way around this and
putting the #undef in several global headers for bfd, binutils, ld,
and gdb seemed way more invasive.
* Last, the applicability check in largefile.m4 was modified only to
disable largefile support if really needed. To do so, it checks if
<sys/procfs.h> compiles with _FILE_OFFSET_BITS=64 defined. If it
doesn't, the disabling only happens if gdb exists in-tree and isn't
disabled, otherwise (building binutils from a tarball), there's no
conflict.
What initially confused me was the check for $plugins here, which
originally caused the disabling not to take place. Since AC_PLUGINGS
does enable plugin support if <dlfcn.h> exists (which it does on
Solaris), the disabling never happened.
I could find no explanation why the linker plugin needs large-file
support but thought it would be enough if gld and GCC's lto-plugin
agreed on the _FILE_OFFSET_BITS value. Unfortunately, that's not
enough: lto-plugin uses the simple-object interface from libiberty,
which includes off_t arguments. So to fully disable large-file
support would mean also disabling it in libiberty and its users: gcc
and libstdc++-v3. This seems highly undesirable, so I decided to
disable the linker plugin instead if large-file support won't work.
The patch allows binutils+gdb to build on i386-pc-solaris2.11 (both
Solaris 11.3 and 11.4, using GCC 9.3.0 which is the worst case due to
predefined _FILE_OFFSET_BITS=64). Also regtested on
amd64-pc-solaris2.11 (again on Solaris 11.3 and 11.4),
x86_64-pc-linux-gnu and i686-pc-linux-gnu.
config:
* largefile.m4 (ACX_LARGEFILE) <sparc-*-solaris*|i?86-*-solaris*>:
Check for <sys/procfs.h> incompatilibity with large-file support
on Solaris.
Only disable large-file support and perhaps plugins if needed.
Set, substitute LARGEFILE_CPPFLAGS if so.
bfd:
* bfd.m4 (BFD_SYS_PROCFS_H): New macro.
(BFD_HAVE_SYS_PROCFS_TYPE): Require BFD_SYS_PROCFS_H.
Don't define _STRUCTURED_PROC.
(BFD_HAVE_SYS_PROCFS_TYPE_MEMBER): Likewise.
* elf.c [HAVE_SYS_PROCFS_H] (_STRUCTURED_PROC): Don't define.
* configure.ac: Use BFD_SYS_PROCFS_H to check for <sys/procfs.h>.
* configure, config.in: Regenerate.
* Makefile.am (AM_CPPFLAGS): Add LARGEFILE_CPPFLAGS.
* Makefile.in, doc/Makefile.in: Regenerate.
binutils:
* Makefile.am (AM_CPPFLAGS): Add LARGEFILE_CPPFLAGS.
* Makefile.in, doc/Makefile.in: Regenerate.
* configure: Regenerate.
gas:
* Makefile.am (AM_CPPFLAGS): Add LARGEFILE_CPPFLAGS.
* Makefile.in, doc/Makefile.in: Regenerate.
* configure: Regenerate.
gdb:
* proc-api.c (_STRUCTURED_PROC): Don't define.
* proc-events.c: Likewise.
* proc-flags.c: Likewise.
* proc-why.c: Likewise.
* procfs.c: Likewise.
* Makefile.in (INTERNAL_CPPFLAGS): Add LARGEFILE_CPPFLAGS.
* configure, config.in: Regenerate.
gdbserver:
* configure, config.in: Regenerate.
gdbsupport:
* Makefile.am (AM_CPPFLAGS): Add LARGEFILE_CPPFLAGS.
* common.m4 (GDB_AC_COMMON): Use BFD_SYS_PROCFS_H to check for
<sys/procfs.h>.
* Makefile.in: Regenerate.
* configure, config.in: Regenerate.
gnulib:
* configure.ac: Run ACX_LARGEFILE before gl_EARLY.
* configure: Regenerate.
gprof:
* Makefile.am (AM_CPPFLAGS): Add LARGEFILE_CPPFLAGS.
* Makefile.in: Regenerate.
* configure: Regenerate.
ld:
* Makefile.am (AM_CPPFLAGS): Add LARGEFILE_CPPFLAGS.
* Makefile.in: Regenerate.
* configure: Regenerate.
The original configure-time tests in gdb/ and gdbserver/ failed to
detect that 'socklen_t' is defined in MinGW headers because the test
program included only sys/socket.h, which is absent in MinGW system
headers. However on MS-Windows this data type is declared in another
header, ws2tcpip.h. The modified test programs try using ws2tcpip.h
if sys/socket.h is unavailable.
Thanks to Joel Brobecker who helped me regenerate the configure
scripts and the config.in files.
gdb/ChangeLog:
2020-07-26 Eli Zaretskii <eliz@gnu.org>
* configure.ac (AC_CHECK_HEADERS): Check for sys/socket.h and
ws2tcpip.h. When checking whether socklen_t type is defined, use
ws2tcpip.h if it is available and sys/socket.h isn't.
* configure: Regenerate.
* config.in: Regenerate.
gdbserver/ChangeLog:
2020-07-26 Eli Zaretskii <eliz@gnu.org>
* configure.ac (AC_CHECK_HEADERS): Add ws2tcpip.h.
When checking whether socklen_t type is defined, use ws2tcpip.h if
it is available and sys/socket.h isn't.
* configure: Regenerate.
* config.in: Regenerate.
On some systems, the gdb.multi/multi-target.exp testcase occasionally
fails like so:
Running src/gdb/testsuite/gdb.multi/multi-target.exp ...
FAIL: gdb.multi/multi-target.exp: info-inferiors: multi_process=on: inferior 1: info connections
FAIL: gdb.multi/multi-target.exp: info-inferiors: multi_process=on: inferior 1: info inferiors
FAIL: gdb.multi/multi-target.exp: info-inferiors: multi_process=on: inferior 2: info connections
FAIL: gdb.multi/multi-target.exp: info-inferiors: multi_process=on: inferior 2: info inferiors
FAIL: gdb.multi/multi-target.exp: info-inferiors: multi_process=on: inferior 3: inferior 3
... many more cascading fails.
The problem starts when the testcase runs an inferior against GDBserver:
(gdb) run
Starting program: build/gdb/testsuite/outputs/gdb.multi/multi-target/multi-target
Reading /lib64/ld-linux-x86-64.so.2 from remote target...
warning: File transfers from remote targets can be slow. Use "set sysroot" to access files locally instead.
Reading /lib64/ld-linux-x86-64.so.2 from remote target...
Reading /lib64/ld-2.31.so from remote target...
Reading /lib64/.debug/ld-2.31.so from remote target...
Reading /usr/lib/debug//lib64/ld-2.31.so from remote target...
Reading /usr/lib/debug/lib64//ld-2.31.so from remote target...
Reading target:/usr/lib/debug/lib64//ld-2.31.so from remote target...
Reading /lib/x86_64-linux-gnu/libpthread.so.0 from remote target...
Reading /lib/x86_64-linux-gnu/libc.so.6 from remote target...
Reading /lib/x86_64-linux-gnu/libc-2.31.so from remote target...
Reading /lib/x86_64-linux-gnu/.debug/libc-2.31.so from remote target...
Reading /usr/lib/debug//lib/x86_64-linux-gnu/libc-2.31.so from remote target...
Reading /usr/lib/debug//lib/x86_64-linux-gnu/libc-2.31.so from remote target...
Remote connection closed
...
Note the "Remote connection closed" message. That means GDBserver
exited abruptly.
I traced it down to the fact that GDB fetches the thread list from
GDBserver while the main thread of the process is still running. On
my main system where I wrote the testcase, I have not observed the
failure because it is slow enough that the thread stops before
GDBserver fetches the thread list in the problem scenario which I'll
describe below.
With some --remote-debug logging from GDBserver side, we see the last
packets before the connection closes:
...
getpkt ("vCont;c"); [no ack sent]
putpkt ("$OK#9a"); [noack mode]
getpkt ("Tp10f9a.10f9a"); [no ack sent]
putpkt ("$OK#9a"); [noack mode]
getpkt ("Hgp0.0"); [no ack sent]
putpkt ("$OK#9a"); [noack mode]
getpkt ("qXfer:threads:read::0,1000"); [no ack sent]
Note the vCont;c , which sets the program running, and then a
qXfer:threads:read packet at the end.
The problem happens when the thread list refresh (qXfer:threads:read)
is sent just while the main thread is running and it still hasn't
initialized its libpthread id internally. In that state, the main
thread's lwp will remain with the thread_known flag clear. See in
find_one_thread:
/* If the new thread ID is zero, a final thread ID will be available
later. Do not enable thread debugging yet. */
if (ti.ti_tid == 0)
return 0;
Now, back in server.cc, to handle the qXfer:threads:read, we reach
handle_qxfer_threads -> handle_qxfer_threads_proper, and the latter
then calls handle_qxfer_threads_worker for each known thread. In
handle_qxfer_threads_worker, we call target_thread_handle. This ends
up in thread_db_thread_handle, here:
if (!lwp->thread_known && !find_one_thread (thread->id))
return false;
Since the thread ID isn't known yet, we call find_one_thread. This
calls into libthread_db.so, which accesses memory. Because the
current thread is running, that fails and we throw an error, here:
/* Get information about this thread. */
err = thread_db->td_ta_map_lwp2thr_p (thread_db->thread_agent, lwpid, &th);
if (err != TD_OK)
error ("Cannot get thread handle for LWP %d: %s",
lwpid, thread_db_err_str (err));
The current design is that whenever GDB-facing packets/requests need
to accesses memory, server.cc is supposed to prepare the target for
the access. See gdb_read_memory / gdb_write_memory. This preparation
means pausing threads if in non-stop mode (someday we could lift this
requirement, but we will still need to pause to access registers or do
other related ptrace accesses like PTRACE_GET_THREAD_AREA). Note that
the multi-target.exp testcase forces "maint set target-non-stop on".
So the fix here is to prepare the target to access memory when
handling qXfer:threads:read too.
gdbserver/ChangeLog:
* inferiors.cc (switch_to_process): New, moved here from
thread-db.cc, and made extern.
* inferiors.h (switch_to_process): Declare.
* server.cc: Include "gdbsupport/scoped_restore.h".
(handle_qxfer_threads_proper): Now returns bool. Prepare to
access memory around target calls.
(handle_qxfer_threads): Handle errors.
* thread-db.cc (switch_to_process): Moved to inferiors.cc.
I noticed that my IDE was confusing the two stopped_pids variables.
There is one in GDB and one in GDBserver. They should be static, make
them so.
gdb/ChangeLog:
* linux-nat.c (stopped_pids): Make static.
gdbserver/ChangeLog:
* linux-low.cc (stopped_pids): Make static.
Change-Id: If4a2bdcd45d32eb3a732d266a0f686a4e4c23672
It was pointed out on IRC that the RISC-V target allocates target
descriptions and stores them in a global map, and doesn't delete these
target descriptions when GDB shuts down.
This isn't a particular problem, the total number of target
descriptions we can create is very limited so creating these on demand
and holding them for the entire run on GDB seems reasonable.
However, not deleting these objects on GDB exit means extra warnings
are printed from tools like valgrind, and the address sanitiser,
making it harder to spot real issues. As it's reasonably easy to have
GDB correctly delete these objects on exit, lets just do that.
I started by noticing that we already have a target_desc_up type, a
wrapper around unique_ptr that calls a function that will correctly
delete target descriptions, so I want to use that, but....
...that type is declared in gdb/target-descriptions.h. If I try to
include that file in gdb/arch/riscv.c I run into a problem, that file
is compiled into both GDB and GDBServer.
OK, I could guard the include with #ifdef, but surely we can do
better.
So then I decided to move the target_desc_up type into
gdbsupport/tdesc.h, this is the interface file for generic code shared
between GDB and GDBserver (relating to target descriptions). The
actual implementation for the delete function still lives in
gdb/target-description.c, but now gdb/arch/riscv.c can see the
declaration. Problem solved....
... but, though RISC-V doesn't use it I've now exposed the
target_desc_up type to gdbserver, so in future someone _might_ start
using it, which is fine, except right now there's no definition of the
delete function - remember the delete I used is only defined in GDB
code.
No problem, I add an implementation of the delete operator into
gdbserver/tdesc.cc, and all is good..... except....
I start getting this error from GCC:
tdesc.cc:109:10: error: deleting object of polymorphic class type ‘target_desc’ which has non-virtual destructor might cause undefined behavior [-Werror=delete-non-virtual-dtor]
Which is caused because gdbserver's target_desc type inherits from
tdesc_element which has a virtual method, and so GCC worries that
target_desc might be used as a base class.
The solution is to declare gdbserver's target_desc class as final.
This is fine so long as we never intent to inherit from
target_desc (in gdbserver). But if we did then we'd want to make
target_desc's destructor virtual anyway, so the error above would be
resolved, and there wouldn't be an issue.
gdb/ChangeLog:
* arch/riscv.c (riscv_tdesc_cache): Change map type.
(riscv_lookup_target_description): Return pointer out of
unique_ptr.
* target-descriptions.c (allocate_target_description): Add
comment.
(target_desc_deleter::operator()): Likewise.
* target-descriptions.h (struct target_desc_deleter): Moved to
gdbsupport/tdesc.h.
(target_desc_up): Likewise.
gdbserver/ChangeLog:
* tdesc.cc (allocate_target_description): Add header comment.
(target_desc_deleter::operator()): New function.
* tdesc.h (struct target_desc): Declare as final.
gdbsupport/ChangeLog:
* tdesc.h (struct target_desc_deleter): Moved here
from gdb/target-descriptions.h, extend comment.
(target_desc_up): Likewise.
When building gdbserver with AddressSanitizer, I get this annoying
little leak when gdbserver exits:
==307817==ERROR: LeakSanitizer: detected memory leaks
Direct leak of 14 byte(s) in 1 object(s) allocated from:
#0 0x7f7fd4256459 in __interceptor_malloc /build/gcc/src/gcc/libsanitizer/asan/asan_malloc_linux.cpp:145
#1 0x563bef981b80 in xmalloc /home/simark/src/binutils-gdb/gdbserver/../gdb/alloc.c:60
#2 0x563befb53301 in xstrdup /home/simark/src/binutils-gdb/libiberty/xstrdup.c:34
#3 0x563bef9d742b in handle_query /home/simark/src/binutils-gdb/gdbserver/server.cc:2286
#4 0x563bef9ed0b7 in process_serial_event /home/simark/src/binutils-gdb/gdbserver/server.cc:4061
#5 0x563bef9f1d9e in handle_serial_event(int, void*) /home/simark/src/binutils-gdb/gdbserver/server.cc:4402
#6 0x563befb0ec65 in handle_file_event /home/simark/src/binutils-gdb/gdbsupport/event-loop.cc:548
#7 0x563befb0f49f in gdb_wait_for_event /home/simark/src/binutils-gdb/gdbsupport/event-loop.cc:673
#8 0x563befb0d4a1 in gdb_do_one_event() /home/simark/src/binutils-gdb/gdbsupport/event-loop.cc:215
#9 0x563bef9e721a in start_event_loop /home/simark/src/binutils-gdb/gdbserver/server.cc:3484
#10 0x563bef9eb90a in captured_main /home/simark/src/binutils-gdb/gdbserver/server.cc:3875
#11 0x563bef9ec2c7 in main /home/simark/src/binutils-gdb/gdbserver/server.cc:3961
#12 0x7f7fd3330001 in __libc_start_main (/usr/lib/libc.so.6+0x27001)
SUMMARY: AddressSanitizer: 14 byte(s) leaked in 1 allocation(s).
This is due to the handling of unknown qsupported features in
handle_query. The `qsupported` vector is built, containing all the
feature names received from GDB. As we iterate on them, when we
encounter unknown ones, we move them at the beginning of the vector, in
preparation of passing this vector of unknown features down to the
target (which may know about them).
When moving these unknown features to other slots in the vector, we
overwrite other pointers without freeing them, which therefore leak.
An easy fix would be to add a `free` when doing the move. However, I
think this is a good opportunity to sprinkle a bit of automatic memory
management in this code.
So, use a vector of std::string which owns all the entries. And use a
separate vector (that doesn't own the entries) for the unknown ones,
which is then passed to target_process_qsupported.
Given that the `c_str` method of std::string returns a `const char *`,
it follows that process_stratum_target::process_qsupported must accept a
`const char **` instead of a `char **`. And while at it, change the
pointer + size paramters to use an array_view instead.
gdbserver/ChangeLog:
* server.cc (handle_query): Use std::vector of
std::string for `qsupported` vector. Use separate
vector for unknowns.
* target.h (class process_stratum_target) <process_qsupported>:
Change parameters to array_view of const char *.
(target_process_qsupported): Remove `count` parameter.
* target.cc (process_stratum_target::process_qsupported): Change
parameters to array_view of const char *.
* linux-x86-low.cc (class x86_target) <process_qsupported>:
Likewise.
Change-Id: I97f133825faa6d7abbf83a58504eb0ba77462812
The file gdbserver/ax.h contains:
...
#ifdef IN_PROCESS_AGENT
#define debug_threads debug_agent
#endif
...
but does not declare debug_agent.
Fix this by adding an include of gdbsupport/agent.h.
[ If this fix would have been in place before commit 8118159c69 "[gdbserver] Fix
Wlto-type-mismatch for debug_agent", we would have simply run into this build
breaker with a regular, non-lto build:
...
src/gdbserver/ax.cc:28:5: error: conflicting declaration 'int debug_agent'
int debug_agent = 0;
^~~~~~~~~~~
In file included from src/gdbserver/ax.h:25:0,
from src/gdbserver/ax.cc:20:
src/gdbsupport/agent.h:47:13: note: previous declaration as 'bool debug_agent'
extern bool debug_agent;
^~~~~~~~~~~
... ]
Tested on x86_64-linux.
gdbserver/ChangeLog:
2020-06-29 Tom de Vries <tdevries@suse.de>
* ax.h: Include gdbsupport/debug_agent.h.
The gdbsupport directory contains a helper class print_xml_feature
that is shared between gdb and gdbserver. This class is used for
printing an XML representation of a target_desc object.
Currently this class doesn't have the ability to print the
<compatible> entities that can appear within a target description, I
guess no targets have needed that functionality yet.
The print_xml_feature classes API is based around operating on the
target_desc class, however, the sharing between gdb and gdbserver is
purely textural, we rely on their being a class called target_desc in
both gdb and gdbserver, but there is no shared implementation. We
then have a set of functions declared that operate on an object of
type target_desc, and again these functions have completely separate
implementations.
Currently then the gdb version of target_desc contains a vector of
bfd_arch_info pointers which represents the compatible entries from a
target description. The gdbserver version of target_desc has no such
information. Further, the gdbserver code doesn't seem to include the
bfd headers, and so doesn't know about the bfd types.
I was reluctant to include the bfd headers into gdbserver just so I
can reference the compatible information, which isn't (currently) even
needed in gdbserver.
So, the approach I take in this patch is to wrap the compatible
information into a new helper class. This class is declared in the
gdbsupport library, but implemented separately in both gdb and
gdbserver.
In gdbserver the class is empty. The compatible information within
the gdbserver is an empty list, of empty classes.
In gdb the class contains a pointer to the bfd_arch_info object.
With this in place we can now add support to print_xml_feature for
printing the compatible information if it is present. In the
gdbserver code this will never happen, as the gdbserver never has any
compatible information. But in gdb, this code will trigger when
appropriate.
gdb/ChangeLog:
* target-descriptions.c (class tdesc_compatible_info): New class.
(struct target_desc): Change type of compatible vector.
(tdesc_compatible_p): Update for change in type of
target_desc::compatible.
(tdesc_compatible_info_list): New function.
(tdesc_compatible_info_arch_name): New function.
(tdesc_add_compatible): Update for change in type of
target_desc::compatible.
(print_c_tdesc::visit_pre): Likewise.
gdbserver/ChangeLog:
* tdesc.cc (struct tdesc_compatible_info): New struct.
(tdesc_compatible_info_list): New function.
(tdesc_compatible_info_arch_name): New function.
gdbsupport/ChangeLog:
* tdesc.cc (print_xml_feature::visit_pre): Print compatible
information.
* tdesc.h (struct tdesc_compatible_info): Declare new struct.
(tdesc_compatible_info_up): New typedef.
(tdesc_compatible_info_list): Declare new function.
(tdesc_compatible_info_arch_name): Declare new function.
Use std::list to store pending signals instead of a manually-managed
linked list. This is a refactoring.
In the existing code, pending signals are kept in a manually-created
linked list with "prev" pointers. A new pending signal is thus
inserted to the beginning of the list. When consuming, GDB goes until
the end of the list, following the "prev" pointers, and processes the
final item. With this patch, a new item is added to the end of the
list and the item at the front of the list is consumed. In other
words, the list elements used to be stored in reverse order; with this
patch, they are stored in their order of arrival. This causes a change
in the debug messages that print the pending signals. Otherwise, no
behavioral change is expected.
gdbserver/ChangeLog:
2020-06-22 Tankut Baris Aktemur <tankut.baris.aktemur@intel.com>
Use std::list to stop pending signal instead of manually-created
linked list.
* linux-low.h: Include <list>.
(struct pending_signal): Move here from linux-low.cc.
(struct lwp_info) <pending_signals>
<pending_signals_to_report>: Update the type.
* linux-low.cc (struct pending_signals): Remove.
(linux_process_target::delete_lwp)
(linux_process_target::add_lwp)
(enqueue_one_deferred_signal)
(dequeue_one_deferred_signal)
(enqueue_pending_signal)
(linux_process_target::resume_one_lwp_throw)
(linux_process_target::thread_needs_step_over)
(linux_process_target::resume_one_thread)
(linux_process_target::proceed_one_lwp): Update the use of pending
signal list.
This patch removes the leftover regformats .dat files for the arm
architecture. There are no longer relevant, since the arm architecture
has been converted to use feature-based target-descriptions. These .dat
files are used by GDBserver ports that still use static target
descriptions.
These .dat files are generated from corresponding .xml files in the
features directory. And since the corresponding .xml files for these
arm .dat files don't exist anymore, it is impossible to re-generated
them. If you delete these .dat files and type "make" in the features
directory, you'll get:
make: *** No rule to make target '../regformats/arm/arm-with-iwmmxt.dat', needed by 'all'. Stop.
So it removes the entries in the `WHICH` variable of
gdb/features/Makefile.
Finally, it removes the rule in gdbserver/Makefile to generate .cc files
from `../gdb/regformats/arm/%.dat`.
gdb/ChangeLog:
* features/Makefile (WHICH): Remove arm files.
* regformats/arm/arm-with-iwmmxt.dat: Remove.
* regformats/arm/arm-with-neon.dat: Remove.
* regformats/arm/arm-with-vfpv2.dat: Remove.
* regformats/arm/arm-with-vfpv3.dat: Remove.
gdbserver/ChangeLog:
* Makefile.in (%-generated.cc: ../gdb/regformats/arm/%.dat):
Remove.
Change-Id: I3b7d989c50e2cb92235c1f7c7071a26839d84c78
This port has been unmaintained for years and the upstream Linux kernel
does not support this architecture anymore, remove it.
gdbserver/ChangeLog:
* Makefile.in (SFILES): linux-tile-low.cc.
* configure.srv: Remove tilegx case.
* linux-tile-low.cc: Remove.
Change-Id: I1c2910d04ddbd6013e5d228047106b41d80f9477
This port has been unmaintained for years and the upstream Linux kernel
does not support this architecture anymore, remove it.
gdbserver/ChangeLog:
* Makefile.in (SFILES): Remove linux-m32r-low.cc.
* configure.srv: Remove m32r case.
* linux-m32r-low.cc: Remove.
Change-Id: I5617b2b1fd92aeec19b38e0e3c0b78adaafdb35b
This port has been unmaintained for years and the upstream Linux kernel
does not support this architecture anymore, remove it.
gdbserver/ChangeLog:
* Makefile.in (SFILES): Remove linux-cris-low.c.
* configure.srv: Remove cris cases.
* linux-cris-low.cc, linux-crisv32-low.cc: Remove.
Change-Id: Ib3ff436b03373548215f15540a47f39cbec5f512
This port has been unmaintained for years and the upstream Linux kernel
does not support this architecture anymore, remove it.
gdbserver/ChangeLog:
* Makefile.in (SFILES): Remove linux-bfin-low.c.
* configure.srv: Remove bfin case.
* linux-bfin-low.cc: Remove.
* linux-low.cc: Remove BFIN-conditional code.
Change-Id: I846310d15e6386118ec7eabb1b87e647174560fb
This port has been unmaintained for years, remove it.
gdbserver/ChangeLog:
* configure: Re-generate.
* configure.ac: Remove srv_qnx test.
* configure.srv: Remove nto case.
* nto-low.cc, nto-low.h, nto-x86-low.cc: Remove.
* remote-utils.c: Remove __QNX__-guarded code.
Change-Id: I8a1ad9c740a69352da1f6993778dbf951eebb22f
This port has been unmaintained for years, remove it.
gdbserver/ChangeLog:
* configure: Re-generate.
* configure.ac: Remove srv_lynxos test.
* configure.srv: Remove lynxos cases.
* lynx-i386-low.cc, lynx-low.cc, lynx-low.h, lynx-ppc-low.c:
Remove.
Change-Id: I239d1cf1fc7b4c7a174251bc7981707eaba7d972
Fix a few outdated or incoherent things in the README:
- Don't mention remote.c nor *-stub.c files as references for the remote
protocol. remote.c is in GDB, not GDBserver, and *-stub.c files don't
exist today. Add a link to the documentation instead.
- In the "server (target) side" section, use `:2345` instead of
`host:2345`. It currently says that using `host:2345` means we would
expect a connection from `host`. That's not what I would expect by
passing a host part here. If I passed `11.22.33.44:2345` as the listen
address, I would expect it to instruct gdbserver to listen only on that
(11.22.33.44) network interface, not to expect a connection from host
`11.22.33.44`. So, remove that part of the sentence.
- Remove the list of supported target, refer to configure.srv instead.
Keeping a list here is bound to lose sync with reality.
- In the cross-compile instructions, I don't think it's necessary to mention
"In a Bourne shell".
- In the cross-compile instructions, I don't know what passing
`your-target-name` to configure does, I don't think it's valid. Use
`make all-gdbserver` as in the instructions just above.
gdbserver/ChangeLog:
* README: Fix a few outdated or incoherent things.
Change-Id: I79349e25bc1bc53447855e0dea6cc7b9630f4553
When building gdb including gdbserver with CFLAGS/CXXFLAGS -O2 -g -flto=auto,
I run into:
...
src/gdbserver/../gdbsupport/agent.h:47:13: error: type of 'debug_agent' \
does not match original declaration [-Werror=lto-type-mismatch]
extern bool debug_agent;
^
src/gdbserver/ax.cc:28:5: note: type 'int' should match type 'bool'
int debug_agent = 0;
^
src/gdbserver/ax.cc:28:5: note: 'debug_agent' was previously declared here
src/gdbserver/ax.cc:28:5: note: code may be misoptimized unless \
-fno-strict-aliasing is used
...
Fix this by changing the type of debug_agent in ax.cc from int to bool.
Tested on x86_64-linux.
Only the process handle returned by OpenProcess or CreateProcess needs to
be closed, the one provided by WaitForDebugEvent is closed automatically.
gdbserver/ChangeLog:
2020-05-27 Hannes Domani <ssbssa@yahoo.de>
* win32-low.cc (do_initial_child_stuff): Set open_process_used.
(win32_clear_inferiors): Use open_process_used.
(get_child_debug_event): Likewise.
Use the construct_inferior_arguments function instead of
stringify_argv to construct a string from the program
arguments in those places where that one is then passed
to fork_inferior (linux-low, lyn-low), since
construct_inferior_arguments properly takes care of
special characters, while stringify_argv does not.
Using construct_inferior_arguments seems "natural", since its
documentation also mentions that it "does the
same shell processing as fork_inferior".
Since construct_inferior_args has been extended to do
proper quoting for Windows shells in commit
5d60742e2d
("Fix quoting of special characters for the MinGW build.",
2012-06-12), use it for the Windows case as well.
(I could not test that case myself, though.)
Adapt handling of empty args in function 'handle_v_run'
in gdbserver/server.cc to just insert an empty string
for an empty arg, since that one is now properly handled
in 'construct_inferior_arguments' already (and inserting
a "''" string in 'handle_v_run' would otherwise
cause that one to be treated as a string literally
containing two quote characters, which
'construct_inferior_args' would preserve by adding
extra escaping).
This makes gdbserver properly handle program args containing special
characters (like spaces), e.g. (example from PR25893)
$ gdbserver localhost:50505 myprogram "hello world"
now properly handles "hello world" as a single arg, not two separate
ones ("hello", "world").
gdbserver/ChangeLog:
PR gdbserver/25893
* linux-low.cc (linux_process_target::create_inferior),
lynx-low.cc (lynx_process_target::create_inferior),
win32-low.cc (win32_process_target::create_inferior): Use
construct_inferior_arguments instead of stringify_argv
to get string representation which properly escapes
special characters.
* server.cc (handle_v_run): Just pass empty program arg
as such, since any further processing is now handled via
construct_inferior_arguments.
Change-Id: Ibf963fcd51415c948840fb463289516b3479b0c3
According to [1], the fifth parameter
to the 'spawnp' function is 'char * const argv[]',
so just pass the args contained in the vector as
an array right away, rather than converting that
to a C string first and passing that one.
With commit 2090129c36
("Share fork_inferior et al with gdbserver",
2016-12-22) the type had changed from 'char **'
to 'char *', but I can't see an apparent reason for
that, and 'nto_procfs_target::create_inferior'
(in gdb/nto-procfs.c) also passes a 'char **' to
'spawnp' instead.
I do not know much about that target and cannot actually
test this, however.
The main motivation to look at this was identifying
and replacing the remaining uses of the 'stringify_argv'
function which does not properly do escaping.
[1] http://www.qnx.com/developers/docs/7.0.0/#com.qnx.doc.neutrino.lib_ref/topic/s/spawnp.html
gdbserver/ChangeLog:
* nto-low.cc (nto_process_target::create_inferior): Pass
argv to spawnp function as char **.
Change-Id: Ic46fe745c2aa1118114240d149d4156032f84344
The vector holding the program args is passed as a parameter
to target_create_inferior, which then passes it to
stringify_argv for all platforms, where any NULL entry in
the vector is ignored, so there seems to be no reason
to actually add one after all.
(Since the intention is to replace uses of stringify_argv with
construct_inferior_arguments in a follow-up commit and that
function doesn't currently handle such NULL arguments, it
would otherwise have to be extended.)
gdbserver/ChangeLog:
* server.cc (captured_main), (handle_v_run): No longer
insert extra NULL element to args vector.
Change-Id: Ia2ef6d36814a6b11ce8b0d6e3b33248a7945e825
This patch avoids depending on the current locale when parsing &
comparing symbol names, by using libiberty's safe-ctype.h uppercase
TOLOWER, ISXDIGIT, etc. macros instead of the standard ctype.h
tolower, isxdigit, etc. macros/functions.
This commit:
commit b1b60145ae
Author: Pedro Alves <palves@redhat.com>
AuthorDate: Tue May 22 17:35:38 2018 +0100
Support UTF-8 identifiers in C/C++ expressions (PR gdb/22973)
did something similar, except in the expression parser.
This can improve GDB's symbol loading performance significantly.
Currently strcmp_iw_ordered can show up high on profiles (called from
sort_pst_symbols -> std::sort) because of the isspace and tolower
functions. Hannes mentions seeing it as high as in ~24% of the
profiling samples on Windows
(https://sourceware.org/pipermail/gdb-patches/2020-May/168858.html).
I tested GDB's performance (built with "-g -O2") loading a "-g -O0"
build of gdb.
I ran GDB 10 times like:
/bin/time -f %e \
./gdb/gdb --data-directory ./gdb/data-directory -nx \
-batch /tmp/gdb-g-O0
Then I computed the mean time.
The baseline mean time was
gdb 2.515
This patch brings the number down to
gdb 2.096
Which is an around 16% improvement.
gdb/ChangeLog:
2020-05-23 Pedro Alves <palves@redhat.com>
* utils.c: Include "gdbsupport/gdb-safe-ctype.h".
(parse_escape): Use ISDIGIT instead of isdigit.
(puts_debug): Use gdb_isprint instead of isprint.
(fprintf_symbol_filtered): Use ISALNUM instead of isalnum.
(cp_skip_operator_token, skip_ws, strncmp_iw_with_mode): Use
ISSPACE instead of isspace.
(strncmp_iw_with_mode): Use TOLOWER instead of tolower and ISSPACE
instead of isspace.
(strcmp_iw_ordered): Use ISSPACE instead of isspace.
(string_to_core_addr): Use TOLOWER instead of tolower, ISXDIGIT
instead of isxdigit and ISDIGIT instead of isdigit.
gdbsupport/ChangeLog:
2020-05-23 Pedro Alves <palves@redhat.com>
* gdb-safe-ctype.h: New.
During the gdbserver c++'ification refactoring, I apparently made a
typo that broke build in ia64 targets.
gdbserver/ChangeLog:
2020-05-16 Tankut Baris Aktemur <tankut.baris.aktemur@intel.com>
* linux-ia64-low.cc (ia64_target::sw_breakpoint_from_kind):
Fix incorrect 'gdb_assert_no_reached' to 'gdb_assert_not_reached'.
(ia64_target::low_breakpoint_at): Ditto.
When trying to use hardware breakpoints with gdbserver you get this error:
(gdb) hbreak main
Hardware assisted breakpoint 2 at 0x40162d: file gdb-9493.c, line 5.
(gdb) c
Continuing.
Warning:
Cannot insert hardware breakpoint 2.
Could not insert hardware breakpoints:
You may have requested too many hardware breakpoints/watchpoints.
It turns out the respective types just needed to be added to the
appropriate callback functions, because x86_dr_(insert|remove)_watchpoint
already handles them.
gdbserver/ChangeLog:
2020-05-15 Hannes Domani <ssbssa@yahoo.de>
* win32-i386-low.cc (i386_supports_z_point_type): Handle
Z_PACKET_HW_BP z_type.
(i386_insert_point): Handle raw_bkpt_type type.
(i386_remove_point): Likewise.