Since the type whose name is being set is now being allocated on the
gdbarch obstack, we should allocate its TYPE_NAME on the obstack too.
This reduces the number of individual valgrind warnings for the command
"gdb gdb" from ~300 to ~150.
Tested on x86_64-unknown-linux-gnu.
gdb/ChangeLog:
* gdbarch.h (gdbarch_obstack_strdup): Declare.
* gdbarch.c (gdbarch_obstack_strdup): Define.
* gdbtypes.c (arch_type): Use it.
For the command "gdb gdb" valgrind currently reports 100s of individual
memory leaks, 500 of which originate solely out of the function
alloc_type_arch. This function allocates a "struct type" associated
with the given gdbarch using malloc but apparently the types allocated
by this function are never freed.
This patch fixes these leaks by making the function alloc_type_arch
allocate these gdbarch-associated types on the gdbarch obstack instead
of on the general heap. Since, from what I can tell, the types
allocated by this function are all fundamental "wired-in" types, such
types would not benefit from more granular memory management anyway.
They would likely live as long as the gdbarch is alive so allocating
them on the gdbarch obstack makes sense.
With this patch, the number of individual vargrind warnings emitted for
the command "gdb gdb" drops from ~800 to ~300.
Tested on x86_64-unknown-linux-gnu.
gdb/ChangeLog:
* gdbtypes.c (alloc_type_arch): Allocate the type on the given
gdbarch obstack instead of on the heap. Update commentary
accordingly.
solib_ops are installed as a property of the inferior gdbarch,
so they need to be systematically looked up via that architecture,
not some objfile architecture.
ChangeLog:
Revert:
2014-11-06 Doug Evans <xdje42@gmail.com>
* solib.c (solib_global_lookup): Fetch arch from objfile,
not target_gdbarch.
When debugging Cell/B.E. code, the cross-architecture frame unwinding
works by accessing data structures refered to by a thread-local variable
in the inferior. While accessing this variable via minimal symbol,
code would use BMSYMBOL_VALUE_ADDRESS to determine the offset of the
variable in the thread-local storage block.
This is incorrect, since it adds any relocation offset of the shared
library defining the TLS variable. That offset would be OK when
accessing the initial copy present in the .tbss section, but it must
not be applied to the offset of the variable in the TLS block at
runtime. Depending on whether or not the libspe2.so library was
prelinked, access to the variable would fail due to the incorrectly
relocated offset.
ChangeLog:
* ppc-linux-tdep.c (ppc_linux_spe_context_lookup): Do not
attempt to relocate a TLS variable offset.
With recent changes to inferior handling, parse_spufs_run needs to be
more careful in assumptions it makes. In particular, this patch:
- Bails out early if the current inferior has not yet been registered
(e.g. during fork procession) to avoid assertion failures in register
cache code.
- Sets inferior_ptid to the current ptid while calling target_read_memory
to make sure the correct process is accessed if parse_spufs_run is
called early when inferior_ptid has not yet been switched by the caller.
ChangeLog:
* spu-multiarch.c (parse_spufs_run): Bail out if inferior is not
registered yet. Set inferior_ptid while calling target_read_memory.
The Linux target and gdbserver now check the siginfo si_code
reported on a SIGTRAP to detect whether the trap indicates
a software breakpoint was hit.
Unfortunately, on Cell/B.E., the kernel uses an si_code value
of TRAP_BRKPT when a SW breakpoint was hit in PowerPC code,
but a si_code value of SI_KERNEL when a SW breakpoint was
hit in SPU code.
This patch updates Linux target and gdbserver to accept both
si_code values to indicate SW breakpoint on PowerPC.
ChangeLog:
* nat/linux-ptrace.h (GDB_ARCH_TRAP_BRKPT): Replace by ...
(GDB_ARCH_IS_TRAP_BRKPT): ... this. Add __powerpc__ case.
* linux-nat.c (check_stopped_by_breakpoint): Use
GDB_ARCH_IS_TRAP_BRKPT instead of GDB_ARCH_TRAP_BRKPT.
gdbserver/ChangeLog:
* linux-low.c (check_stopped_by_breakpoint): Use
GDB_ARCH_IS_TRAP_BRKPT instead of GDB_ARCH_TRAP_BRKPT.
Since we are no longer using thread events by default in linux-thread-db,
the find_new_threads_once routine contains an assertion that it should
never be called on a live inferior unless using thread events:
gdb_assert (!target_has_execution || thread_db_use_events ());
However, there is a code path from thread_db_get_thread_local_address
that will in fact call find_new_threads_once in some scenarios. In
particular, this is currently always triggered when starting up any
Cell/B.E. combined exeuctable.
To fix this, this patch removes the call to thread_db_find_new_threads_1
when the current thread was not yet detected. In its place, we now just
call thread_from_lwp to detect this one thread if necessary.
ChangeLog:
* linux-thread-db.c (thread_db_get_thread_local_address): If the
thread was not yet discovered, use thread_from_lwp instead of
calling thread_db_find_new_threads_1.
These two statements were inverted by mistake in commit "Replace some
xmalloc-family functions with XNEW-family ones". It obviously doesn't
make sense to have them in this order, which is why I am pushing this as
obvious.
gdb/ChangeLog:
* m88k-tdep.c (m88k_analyze_prologue): Fix inverted allocation
statements.
I think it would be a good idea to document that gdb now has (basic)
support to read/write memory on architectures with non-8-bits memory.
Hopefully somebody will see it and say "Hey! We can now (more easily)
port GDB to our strange DSP that has 32-bits-addressable memory!" and do
it.
gdb/ChangeLog:
* NEWS: Document support for non-8-bits addressable memory.
Since we're using sighandler_t, nothing else refers to RETSIGTYPE in
gdb.
(Actually, given gdb/remote.c has been assuming signal handlers return
void for a long time, we could have gotten get rid of this even
without gnulib's sighandler_t.)
gdb/ChangeLog:
2015-08-27 Pedro Alves <palves@redhat.com>
* configure.ac: Remove AC_TYPE_SIGNAL call.
* configure, config.in: Regenerate.
This fixes 14 build errors like these in C++ mode:
src/gdb/extension.c: In function ‘void install_sigint_handler(const signal_handler*)’:
src/gdb/extension.c:698:41: error: invalid conversion from ‘void (*)()’ to ‘__sighandler_t {aka void (*)(int)}’ [-fpermissive]
signal (SIGINT, handler_state->handler);
^
In file included from build-gnulib/import/signal.h:52:0,
from ../../src/gdb/extension.c:24:
/usr/include/signal.h:102:23: error: initializing argument 2 of ‘void (* signal(int, __sighandler_t))(int)’ [-fpermissive]
extern __sighandler_t signal (int __sig, __sighandler_t __handler)
^
Instead of this everywhere:
- RETSIGTYPE (*handle_sigint_for_compare) () = handle_sigint;
+ RETSIGTYPE (*handle_sigint_for_compare) (int) = handle_sigint;
Use sighandler_t (a GNU extension). That's OK to use unconditionaly
because gnulib's signal.h replacement makes sure that it is available.
gdb/ChangeLog:
2015-08-27 Pedro Alves <palves@redhat.com>
* cp-support.c (gdb_demangle): Use sighandler_t. Remove cast.
* extension-priv.h: Include signal.h.
(struct signal_handler) <handler>: Change type to sighandler_t.
* extension.c (install_gdb_sigint_handler): Use sighandler_t.
* inflow.c (sigint_ours, sigquit_ours): Change type to
sighandler_t.
(child_terminal_inferior): Remove casts.
(child_terminal_ours_1, new_tty): Use sighandler_t. Remove casts.
(osig): Change type to sighandler_t.
* nto-procfs.c (ofunc): Change type to sighandler_t.
(procfs_wait): Remove casts.
* remote-m32r-sdi.c (m32r_wait, m32r_load): Use sighandler_t.
* remote-sim.c (gdbsim_wait): Use sighandler_t.
* utils.c (wait_to_die_with_timeout): Use sighandler_t.
This gives us a signal.h replacement that makes sure the sighandler_t
typedef (a GNU extension) is always available. A follow up patch will
make use of this.
gdb/ChangeLog:
2015-08-27 Pedro Alves <palves@redhat.com>
* gnulib/update-gnulib.sh (IMPORTED_GNULIB_MODULES): Add signal-h.
* gnulib/aclocal.m4: Renegerate.
* gnulib/config.in: Renegerate.
* gnulib/configure: Renegerate.
* gnulib/import/Makefile.am: Update.
* gnulib/import/Makefile.in: Regenerate.
* gnulib/import/m4/gnulib-cache.m4: Update.
* gnulib/import/m4/gnulib-comp.m4: Update.
* gnulib/import/m4/signal_h.m4: New file.
* gnulib/import/signal.in.h: New file.
The remote packet buffer size is currently capped to 16384 mostly for
historical reasons, related to use of alloca. Stop using alloca and
remove the limitation.
Tested on x86_64 Fedora 20.
gdb/ChangeLog:
2015-08-27 Pedro Alves <palves@redhat.com>
* remote.c (DEFAULT_MAX_MEMORY_PACKET_SIZE)
(MIN_MEMORY_PACKET_SIZE): New.
(MAX_REMOTE_PACKET_SIZE, MIN_REMOTE_PACKET_SIZE): Delete.
(get_memory_packet_size): Adjust. No longer limit the max packet
size.
(set_memory_packet_size): Adjust, and remove dead code.
(remote_check_symbols): Use xmalloc and a cleanup instead of
alloca.
(remote_packet_size): No longer cap the packet size.
(putpkt_binary): Use xmalloc and a cleanup instead of alloca.
This patch improves one of the compile error messages by mentioning the
language.
Before - No compiler support for this language.
After - No compiler support for language <language>.
gdb/ChangeLog:
2015-08-26 Luis Machado <lgustavo@codesourcery.com>
* compile/compile.c (compile_to_object): Mention language in
error message.
We currently set attach_flag when attaching to a process, so we should
make sure to unset it when forking a new process. Otherwise attach_flag
would remain set after forking, if the previous process associated with
the inferior was attached to.
gdb/ChangeLog:
* target.c (target_pre_inferior): Unset attach_flag.
gdb/testsuite/ChangeLog:
* gdb.base/run-after-attach.exp: New test file.
* gdb.base/run-after-attach.c: New test file.
I made a mistake while handling my previous patch. A change in
gdbarch causes a build failure.
gdb/ChangeLog:
* gdbarch.sh (append_name): Fix type in XRESIZEVEC.
* gdbarch.c: Re-generate.
This patch fixes a segmentation fault in native GDB when
handling an exec event with follow-exec-mode set to "new".
The stack trace from the segfault was this:
0 0x0000000000669594 in gdbarch_data (gdbarch=0x0, data=0x20da7a0)
at /scratch/dbreazea/sandbox/exec-nat/binutils-gdb/gdb/gdbarch.c:4847
1 0x00000000004d430e in get_remote_arch_state ()
at /scratch/dbreazea/sandbox/exec-nat/binutils-gdb/gdb/remote.c:603
2 0x00000000004d431e in get_remote_state ()
at /scratch/dbreazea/sandbox/exec-nat/binutils-gdb/gdb/remote.c:616
3 0x00000000004dda8b in discard_pending_stop_replies (inf=0x217c710)
at /scratch/dbreazea/sandbox/exec-nat/binutils-gdb/gdb/remote.c:5775
4 0x00000000006a5928 in observer_inferior_exit_notification_stub (
data=0x4dda7a <discard_pending_stop_replies>, args_data=0x7fff12c258f0)
at ./observer.inc:1137
5 0x00000000006a419a in generic_observer_notify (subject=0x21dfbe0,
args=0x7fff12c258f0)
at /scratch/dbreazea/sandbox/exec-nat/binutils-gdb/gdb/observer.c:167
6 0x00000000006a59ba in observer_notify_inferior_exit (inf=0x217c710)
at ./observer.inc:1162
7 0x00000000007981d5 in exit_inferior_1 (inftoex=0x217c710, silent=1)
at /scratch/dbreazea/sandbox/exec-nat/binutils-gdb/gdb/inferior.c:244
8 0x00000000007982f2 in exit_inferior_num_silent (num=1)
at /scratch/dbreazea/sandbox/exec-nat/binutils-gdb/gdb/inferior.c:286
9 0x000000000062f93d in follow_exec (ptid=...,
execd_pathname=0x7fff12c259a0 "/scratch/dbreazea/sandbox/exec-nat/build/gdb/testsuite/gdb.base/execd-prog")
at /scratch/dbreazea/sandbox/exec-nat/binutils-gdb/gdb/infrun.c:1195
In follow_exec we were creating a new inferior for the execd program,
as required by the exec mode, but we were doing it before calling
exit_inferior_num_silent on the original inferior. So on entry to
exit_inferior_num_silent we had two inferiors with the same ptid.
In the calls made by exit_inferior_num_silent, the current inferior
is temporarily saved and replaced in order to make use of functions
that only operate on the current inferior (for example, in
do_all_continuations, called while deleting the threads of the original
inferior). When we restored the original inferior, we just took the
first inferior that matched the ptid of the original and got the new
(wrong) one. It hadn't been initialized yet and had no gdbarch
pointer, and GDB segfaulted.
The fix for that is to call exit_inferior_num_silent before adding the new
inferior, so that we never have two inferiors with the same ptid. Then
exit_inferior_num_silent uses the original inferior as the current inferior
throughout, and can find a valid gdbarch pointer.
Once we have finished with the exit of the old inferior and added the
new one, we need to create a new thread for the new inferior. In the
function that called follow_exec, handle_inferior_event_1,
ecs->event_thread now points to the thread that was deleted with the
exit of the original inferior. To remedy this we create the new thread,
and once we return from follow_exec we reset ecs->event_thread.
Note that we are guaranteed that we can reset ecs->event_thread
safely using inferior_thread because we have set the current
inferior in follow_exec, and inferior_ptid was set by the call
to context_switch at the beginning of exec event handling.
gdb/ChangeLog:
* infrun.c (follow_exec): Re-order operations for
handling follow-exec-mode "new".
(handle_inferior_event_1): Assign ecs->event_thread
to the current thread.
* remote.c (get_remote_arch_state): Add an assertion.
Currently, when remote debugging, if you type Ctrl-C just while the
target stopped for an internal event, and GDB is busy doing something
that takes a while (e.g., fetching chunks of a shared library off of
the target, with vFile, to process ELF headers and debug info), the
Ctrl-C is lost.
The patch hooks up the QUIT macro to a new target method that lets the
target react to the double-Ctrl-C before the event loop is reached,
which allows reacting to a double-Ctrl-C even when GDB is busy doing
some long operation and not waiting for a stop reply. That end result
is:
(gdb) c
Continuing.
^C
^C
Interrupted while waiting for the program.
Give up waiting? (y or n) y
Quit
(gdb) info threads
Id Target Id Frame
* 1 Thread 11673 0x00007ffff7deb240 in _dl_debug_state () from target:/lib64/ld-linux-x86-64.so.2
(gdb)
If, however, GDB is waiting for a stop reply (because the target has
been resumed, with e.g., vCont;c), but the target isn't responding, we
now get:
(gdb) c
Continuing.
^C
^C
The target is not responding to interrupt requests.
Stop debugging it? (y or n) y
Disconnected from target.
(gdb) info threads
No threads.
This offers to disconnect, because when we're waiting for a stop
reply, there's nothing else we can send the target other than an
interrupt request. And if that doesn't work, there's nothing else we
can do.
The Ctrl-C is presently lost because until we get to a user-visible
stop, the SIGINT handler that is installed is the one that forwards
the interrupt to the remote side, with the \003 "packet" [1]. But,
gdbserver ignores an interrupt request if the program is stopped.
Still, even if it didn't, the server can only report back a
stop-because-of-SIGINT when the program is next resumed. And it may
take a while to actually re-resume the target.
[1] - In the old sync days, the remote target would react to a
double-Ctrl-C by asking users whether they wanted to give up waiting
and disconnect. The code is still there, but it it isn't reacheable
on most hosts, which support serial connections in async mode
(probably only DJGPP doesn't). Even then, in sync mode, remote.c's
SIGINT handler is only installed while the target is resumed, and is
removed as soon as the target sends back a stop reply. That means
that a Ctrl-C just while GDB is processing an internal event can end
up with an odd "Quit" at the prompt instead of "Program stopped by
SIGINT". In contrast, in async mode, remote.c's SIGINT handler is set
up as long as target_terminal_inferior or
target_terminal_ours_for_output are in effect (IOW, until we get a
user-visible stop and call target_terminal_ours), so the user
shouldn't get back a spurious Quit. However, it's still desirable to
be able to interrupt a long-running GDB operation, if GDB takes a
while to re-resume the target or get back to the event loop.
Tested on x86_64 Fedora 20.
gdb/ChangeLog:
2015-08-24 Pedro Alves <palves@redhat.com>
* defs.h (maybe_quit): Declare.
(QUIT): Now calls maybe_quit.
* event-loop.c (clear_async_signal_handler)
(async_signal_handler_is_marked): New functions.
* event-loop.h (async_signal_handler_is_marked)
(clear_async_signal_handler): New declarations.
* remote.c (remote_check_pending_interrupt): New function.
(interrupt_query): Use make_cleanup_restore_target_terminal. No
longer check whether the target is async. If waiting for a stop
reply, and a Ctrl-C as been sent to the target, offer to
disconnect, and throw TARGET_CLOSE_ERROR instead of a quit.
Otherwise do not disconnect and throw a quit.
(_initialize_remote): Install remote_check_pending_interrupt as
to_check_pending_interrupt.
* target.c (target_check_pending_interrupt): New function.
* target.h (struct target_ops) <to_check_pending_interrupt>: New
field.
(target_check_pending_interrupt): New declaration.
* utils.c (maybe_quit): New function.
* target-delegates.c: Regenerate.
In debug_reg_change_callback, we change debug registers of each LWP.
It makes more sense to print LWP's pid rather than group leader's pid.
gdb:
2015-08-25 Yao Qi <yao.qi@linaro.org>
* nat/aarch64-linux-hw-point.c (debug_reg_change_callback):
Rename local variable pid to tid, and get lwpid of lwp. Update
debug output.
GDB's current behavior when dealing with non-local references in the
context of nested fuctions is approximative:
- code using valops.c:value_of_variable read the first available stack
frame that holds the corresponding variable (whereas there can be
multiple candidates for this);
- code directly relying on read_var_value will instead read non-local
variables in frames where they are not even defined.
This change adds the necessary context to symbol reads (to get the block
they belong to) and to blocks (the static link property, if any) so that
GDB can make the proper decisions when dealing with non-local varibale
references.
gdb/ChangeLog:
* ada-lang.c (ada_read_var_value): Add a var_block argument
and pass it to default_read_var_value.
* block.c (block_static_link): New accessor.
* block.h (block_static_link): Declare it.
* buildsym.c (finish_block_internal): Add a static_link
argument. If there is a static link, associate it to the new
block.
(finish_block): Add a static link argument and pass it to
finish_block_internal.
(end_symtab_get_static_block): Update calls to finish_block and
to finish_block_internal.
(end_symtab_with_blockvector): Update call to
finish_block_internal.
* buildsym.h: Forward-declare struct dynamic_prop.
(struct context_stack): Add a static_link field.
(finish_block): Add a static link argument.
* c-exp.y: Remove an obsolete comment (evaluation of variables
already start from the selected frame, and now they climb *up*
the call stack) and propagate the block information to the
produced expression.
* d-exp.y: Likewise.
* f-exp.y: Likewise.
* go-exp.y: Likewise.
* jv-exp.y: Likewise.
* m2-exp.y: Likewise.
* p-exp.y: Likewise.
* coffread.c (coff_symtab_read): Update calls to finish_block.
* dbxread.c (process_one_symbol): Likewise.
* xcoffread.c (read_xcoff_symtab): Likewise.
* compile/compile-c-symbols.c (convert_one_symbol): Promote the
"sym" parameter to struct block_symbol, update its uses and pass
its block to calls to read_var_value.
(convert_symbol_sym): Update the calls to convert_one_symbol.
* compile/compile-loc2c.c (do_compile_dwarf_expr_to_c): Update
call to read_var_value.
* dwarf2loc.c (block_op_get_frame_base): New.
(dwarf2_block_frame_base_locexpr_funcs): Implement the
get_frame_base method.
(dwarf2_block_frame_base_loclist_funcs): Likewise.
(dwarf2locexpr_baton_eval): Add a frame argument and use it
instead of the selected frame in order to evaluate the
expression.
(dwarf2_evaluate_property): Add a frame argument. Update call
to dwarf2_locexpr_baton_eval to provide a frame in available and
to handle the absence of address stack.
* dwarf2loc.h (dwarf2_evaluate_property): Add a frame argument.
* dwarf2read.c (attr_to_dynamic_prop): Add a forward
declaration.
(read_func_scope): Record any available static link description.
Update call to finish_block.
(read_lexical_block_scope): Update call to finish_block.
* findvar.c (follow_static_link): New.
(get_hosting_frame): New.
(default_read_var_value): Add a var_block argument. Use
get_hosting_frame to handle non-local references.
(read_var_value): Add a var_block argument and pass it to the
LA_READ_VAR_VALUE method.
* gdbtypes.c (resolve_dynamic_range): Update calls to
dwarf2_evaluate_property.
(resolve_dynamic_type_internal): Likewise.
* guile/scm-frame.c (gdbscm_frame_read_var): Update call to
read_var_value, passing it the block coming from symbol lookup.
* guile/scm-symbol.c (gdbscm_symbol_value): Update call to
read_var_value (TODO).
* infcmd.c (finish_command_continuation): Update call to
read_var_value, passing it the block coming from symbol lookup.
* infrun.c (insert_exception_resume_breakpoint): Likewise.
* language.h (struct language_defn): Add a var_block argument to
the LA_READ_VAR_VALUE method.
* objfiles.c (struct static_link_htab_entry): New.
(static_link_htab_entry_hash): New.
(static_link_htab_entry_eq): New.
(objfile_register_static_link): New.
(objfile_lookup_static_link): New.
(free_objfile): Free the STATIC_LINKS hashed map if needed.
* objfiles.h: Include hashtab.h.
(struct objfile): Add a static_links field.
(objfile_register_static_link): New.
(objfile_lookup_static_link): New.
* printcmd.c (print_variable_and_value): Update call to
read_var_value.
* python/py-finishbreakpoint.c (bpfinishpy_init): Likewise.
* python/py-frame.c (frapy_read_var): Update call to
read_var_value, passing it the block coming from symbol lookup.
* python/py-framefilter.c (extract_sym): Add a sym_block
parameter and set the pointed value to NULL (TODO).
(enumerate_args): Update call to extract_sym.
(enumerate_locals): Update calls to extract_sym and to
read_var_value.
* python/py-symbol.c (sympy_value): Update call to
read_var_value (TODO).
* stack.c (read_frame_local): Update call to read_var_value.
(read_frame_arg): Likewise.
(return_command): Likewise.
* symtab.h (struct symbol_block_ops): Add a get_frame_base
method.
(struct symbol): Add a block field.
(SYMBOL_BLOCK): New accessor.
* valops.c (value_of_variable): Remove frame/block handling and
pass the block argument to read_var_value, which does this job
now.
(value_struct_elt_for_reference): Update calls to
read_var_value.
(value_of_this): Pass the block found to read_var_value.
* value.h (read_var_value): Add a var_block argument.
(default_read_var_value): Likewise.
gdb/testsuite/ChangeLog:
* gdb.base/nested-subp1.exp: New file.
* gdb.base/nested-subp1.c: New file.
* gdb.base/nested-subp2.exp: New file.
* gdb.base/nested-subp2.c: New file.
* gdb.base/nested-subp3.exp: New file.
* gdb.base/nested-subp3.c: New file.
This patch moves aarch64_linux_new_thread in GDB and GDBserver to
nat/aarch64-linux.c.
gdb:
2015-08-25 Yao Qi <yao.qi@linaro.org>
* aarch64-linux-nat.c (aarch64_linux_new_thread): Move it to ...
* nat/aarch64-linux.c (aarch64_linux_new_thread): ... here.
* nat/aarch64-linux.h (aarch64_linux_new_thread): Declare.
gdb/gdbserver:
2015-08-25 Yao Qi <yao.qi@linaro.org>
* linux-aarch64-low.c (aarch64_linux_new_thread): Remove.
gdb:
2015-08-25 Yao Qi <yao.qi@linaro.org>
* aarch64-linux-nat.c (aarch64_linux_prepare_to_resume): Use
lwp_arch_private_info and ptid_of_lwp.
gdb/gdbserver:
2015-08-25 Yao Qi <yao.qi@linaro.org>
* linux-aarch64-low.c (aarch64_linux_prepare_to_resume): Use
lwp_arch_private_info and ptid_of_lwp.
gdb:
2015-08-25 Yao Qi <yao.qi@linaro.org>
* aarch64-linux-nat.c (debug_reg_change_callback): Use
debug_printf.
gdb/gdbserver:
2015-08-25 Yao Qi <yao.qi@linaro.org>
* linux-aarch64-low.c (debug_reg_change_callback): Use
debug_printf.
We print PID rather than LWPID in the debug output, so we need call
ptid_get_pid in debug_reg_change_callback.
gdb:
2015-08-25 Yao Qi <yao.qi@linaro.org>
* aarch64-linux-nat.c (debug_reg_change_callback): Call
ptid_get_pid rather than ptid_get_lwp.
Being able to force-disable the RSP multiprocess extensions is useful
for testing.
gdb/ChangeLog:
2015-08-24 Pedro Alves <palves@redhat.com>
* NEWS (New commands): Mention set/show remote
multiprocess-extensions-packet.
* remote.c (remote_query_supported): Only tell the server to use
the multiprocess extensions if the user hasn't force-disabled them
with "set remote multiprocess-extensions-packet off".
gdb/doc/ChangeLog:
2015-08-24 Pedro Alves <palves@redhat.com>
* gdb.texinfo (Remote Configuration): Document the "set/show
remote multiprocess-extensions-packet" commands.
After the last gnulib import (Dec 2012), gnulib upstream started
replacing mingw's 'struct timeval' with a version with 64-bit time_t,
for POSIX compliance:
commit f8e84098084b3b53bc6943a5542af1f607ffd477
Author: Bruno Haible <bruno@clisp.org>
Date: Sat Jan 28 18:12:10 2012 +0100
sys_time: Override 'struct timeval' on some native Windows platforms.
See:
https://lists.gnu.org/archive/html/bug-gnulib/2012-01/msg00372.html
However, that results in conflicts with native Winsock2's 'select':
select()'s argument
http://sourceforge.net/p/mingw-w64/mailman/message/29610438/
... and libiberty's timeval-utils.h timeval_add/timeval_sub, at the
least.
We don't really need the POSIX compliance, so this patch prepares us
to simply not use gnulib's 'struct timeval' replacement once a more
recent gnulib is imported, thus preserving the current behavior, by
adding a sys/time.h wrapper header that undefs gnulib's replacements,
and including that everywhere instead.
The SIZE -> OSIZE change is necessary because newer gnulib's
sys/time.h also includes windows.h/winsock2.h, which defines a
conflicting SIZE symbol.
Cross build-tested mingw-w64 32-bit and 64-bit.
Regtested on x86_64 Fedora 20.
gdb/ChangeLog:
2015-08-24 Pedro Alves <palves@redhat.com>
* Makefile.in (HFILES_NO_SRCDIR): Add common/gdb_sys_time.h.
* common/gdb_sys_time.h: New file.
* event-loop.c: Include gdb_sys_time.h instead of sys/time.h.
* gdb_select.h: Likewise.
* gdb_usleep.c: Likewise.
* maint.c: Likewise.
* mi/mi-main.c: Likewise.
* mi/mi-parse.h: Likewise.
* remote-fileio.c: Likewise.
* remote-m32r-sdi.c: Likewise.
* remote.c: Likewise.
* ser-base.c: Likewise.
* ser-pipe.c: Likewise.
* ser-tcp.c: Likewise.
* ser-unix.c: Likewise.
* symfile.c: Likewise.
* symfile.c: Likewise. Rename OSIZE to SIZE throughout.
* target-memory.c: Include gdb_sys_time.h instead of sys/time.h.
* utils.c: Likewise.
gdb/gdbserver/ChangeLog:
2015-08-24 Pedro Alves <palves@redhat.com>
* debug.c: Include gdb_sys_time.h instead of sys/time.h.
* event-loop.c: Likewise.
* remote-utils.c: Likewise.
* tracepoint.c: Likewise.
Ref: https://sourceware.org/ml/gdb/2015-07/msg00011.html
All of these targets use gdb/monitor.c, which has bit rotted
years ago (I'd guess around ~6), and nobody seems to
have noticed:
| target | source |
|----------------+----------------------|
| target dbug | gdb/dbug-rom.c |
| target picobug | gdb/microblaze-rom.c |
| target dink32 | gdb/dink32-rom.c |
| target m32r | gdb/m32r-rom.c |
| target mon2000 | gdb/m32r-rom.c |
| target ppcbug | gdb/ppcbug-rom.c |
This deletes them, along with finally removing monitor.c.
A manual update will be done separately.
gdb/ChangeLog:
2015-08-24 Pedro Alves <palves@redhat.com>
* NEWS: Mention removed support for the various ROM monitors.
* Makefile.in (ALL_TARGET_OBS): Remove dbug-rom.o, dink32-rom.o,
ppcbug-rom.o, m32r-rom.o, dsrec.o and monitor.o from gdb_target_obs.
* configure.tgt (h8300-*-*): Remove monitor.o and m32r-rom.o from
gdb_target_obs.
(m68*-*-*): Remove monitor.o dbug-rom.o and dsrec.o from
gdb_target_obs.
(microblaze*-linux-*): Remove microblaze-rom.o, monitor.o and
dsrec.o from gdb_target_obs.
(microblaze*-*-*): Remove microblaze-rom.o, monitor.o and dsrec.o
from gdb_target_obs.
(powerpc-*-lynx*178): Remove monitor.o and dsrec.o from
gdb_target_obs.
(powerpc*-*-*): Remove monitor.o, dsrec.o, ppcbug-rom.o and
dink32-rom.o from gdb_target_obs.
(sh*-*-linux*): Remove monitor.o and dsrec.o from gdb_target_obs.
(sh*): Remove monitor.o and dsrec.o from gdb_target_obs.
* dbug-rom.c, dink32-rom.c, dsrec.c, m32r-rom.c, microblaze-rom.c,
monitor.c, monitor.h, ppcbug-rom.c, srec.h: Delete files.
Fixes:
../../src/gdb/dwarf2read.c:127:15: error: declaration of ‘asection* dwarf2_section_info::<anonymous union>::asection’ [-fpermissive]
asection *asection;
^
In file included from ../../src/gdb/common/common-types.h:35:0,
from ../../src/gdb/common/common-defs.h:44,
from ../../src/gdb/defs.h:28,
from ../../src/gdb/dwarf2read.c:31:
../bfd/bfd.h:1596:3: error: changes meaning of ‘asection’ from ‘typedef struct bfd_section asection’ [-fpermissive]
} asection;
^
gdb/ChangeLog:
2015-08-21 Tom Tromey <tromey@redhat.com>
* dwarf2read.c (struct dwarf2_section_info): Rename field
'asection' to 'section'.
(dwarf2_has_info, get_section_bfd_owner, get_section_bfd_section)
(dwarf2_locate_sections, dwarf2_locate_sections)
(locate_dwz_sections, locate_v1_virtual_dwo_sections)
(dwarf2_locate_dwo_sections, dwarf2_locate_dwo_sections)
(dwarf2_locate_v2_dwp_sections): Adjust.
This patch fixes the following bug in TUI:
(gdb) break foo
No symbol table is loaded. Use the "file" command.
Make breakpoint pending on future shared library load? (y or [n]) <ENTER>
By submitting an empty command line to a secondary prompt, the line
corresponding to the secondary prompt is undesirably cleared and
overwritten. Outside of a secondary prompt, clearing the prompt line
after submitting an empty command line is intended behavior which
complements GDB's repeat-command shorthand. But inside a secondary
prompt, this behavior is undesired since the shorthand is not applicable
in that case. We should retain the secondary-prompt line even when it's
given no input.
This patch makes sure that a prompt that was given an empty command line
is cleared and overwritten only if it's not a secondary prompt. To
acheive this, a new predicate is defined which informs us whether the
current input handler is a secondary prompt.
gdb/ChangeLog:
* top.h (gdb_in_secondary_prompt_p): Declare.
* top.c (gdb_secondary_prompt_depth): Define.
(gdb_in_secondary_prompt_p): Define.
(gdb_readline_wrapper_cleanup): Decrement
gdb_secondary_prompt_depth.
(gdb_readline_wrapper): Increment gdb_secondary_prompt_depth.
* tui/tui-io.c (tui_getc): Don't clear the prompt line if we
are in a secondary prompt.
This is necessary to make sure that start_line is updated after a
command has been entered. Usually, start_line gets updated anyway
because most commands output text, and outputting text is done through
the function tui_puts, which updates start_line. However if a command
does not output text, then tui_puts will not get called and start_line
will not get updated in time for the next prompt to be displayed.
One can observe this bug by executing the command "delete" within TUI.
After executing, the prompt line
(gdb) delete
gets overwritten by the next prompt. With this patch, the prompt line
gets preserved.
gdb/ChangeLog:
* tui/tui-io.c (tui_getc): Use tui_putc instead of waddch to
emit the newline.
GDB provides no indicator of progress during file operations, and can
appear to have locked up during slow remote transfers. This commit
updates GDB to print a warning each time a file is accessed over RSP.
An additional message detailing how to avoid remote transfers is
printed for the first transfer only.
gdb/ChangeLog:
* target.h (struct target_ops) <to_fileio_open>: New argument
warn_if_slow. Update comment. All implementations updated.
(target_fileio_open_warn_if_slow): New declaration.
* target.c (target_fileio_open): Renamed as...
(target_fileio_open_1): ...this. New argument warn_if_slow.
Pass warn_if_slow to implementation. Update debug printing.
(target_fileio_open): New function.
(target_fileio_open_warn_if_slow): Likewise.
* gdb_bfd.c (gdb_bfd_iovec_fileio_open): Use new function
target_fileio_open_warn_if_slow.
gdb/testsuite/ChangeLog:
* gdb.trace/pending.exp: Cope with remote transfer warnings.
This commit fixes a stale cleanup left by linux_mntns_access_fs.
gdb/ChangeLog:
* nat/linux-namespaces.c (linux_mntns_access_fs):
Do not overwrite old_chain.
These changes allow debugging multithreaded NPTL xtensa applications.
2015-08-20 Max Filippov <jcmvbkbc@gmail.com>
gdb/gdbserver/
* configure.srv (xtensa*-*-linux*): Add srv_linux_thread_db=yes.
* linux-xtensa-low.c (arch/xtensa.h gdb_proc_service.h): New
#includes.
(ps_get_thread_area): New function.
2015-08-20 Max Filippov <jcmvbkbc@gmail.com>
gdb/
* arch/xtensa.h: New file.
* xtensa-linux-nat.c (gdb_proc_service.h): New #include.
(ps_get_thread_area): New function.
* xtensa-linux-tdep.c (xtensa_linux_init_abi): Add call to
set_gdbarch_fetch_tls_load_module_address to enable TLS support.
* xtensa-tdep.c (osabi.h): New #include.
(xtensa_gdbarch_init): Call gdbarch_init_osabi to register
xtensa-specific hooks.
* xtensa-tdep.h (struct xtensa_elf_gregset_t): Add threadptr
member and move the structure to arch/xtensa.h.
This patch almost halves the time it takes to "target remote + run to
main" on a higher-latency connection.
E.g., I've got a ping time of ~85ms to an x86-64 machine on the gcc
compile farm (almost 2000km away from me), and I'm behind a ~16Mbit
ADSL. When I connect to a gdbserver debugging itself on that machine
and run to main, it takes almost 55 seconds:
[palves@gcc76] $ ./gdbserver :9999 ./gdbserver
[palves@home] $ ssh -L 9999:localhost:9999 gcc76.fsffrance.org
[palves@home] $ time ./gdb -data-directory=data-directory -ex "tar rem :9999" -ex "b main" -ex "c" -ex "set confirm off" -ex "quit"
Pristine gdb 7.10.50.20150820-cvs gets us:
...
Remote debugging using :9999
Reading symbols from target:/home/palves/gdb/build/gdb/gdbserver/gdbserver...done.
Reading symbols from target:/lib64/ld-linux-x86-64.so.2...(no debugging symbols found)...done.
0x00007ffff7ddd190 in ?? () from target:/lib64/ld-linux-x86-64.so.2
Breakpoint 1 at 0x41200c: file ../../../src/gdb/gdbserver/server.c, line 3635.
Continuing.
Breakpoint 1, main (argc=1, argv=0x7fffffffe3d8) at ../../../src/gdb/gdbserver/server.c:3635
3635 ../../../src/gdb/gdbserver/server.c: No such file or directory.
/home/palves/gdb/build/gdb/gdbserver/gdbserver: No such file or directory.
real 0m54.803s
user 0m0.329s
sys 0m0.064s
While with the readahead cache added by this patch, it drops to:
real 0m29.462s
user 0m0.454s
sys 0m0.054s
I added a few counters to show cache hit/miss, and got:
readahead cache miss 142
readahead cache hit 310
Tested on x86_64 Fedora 20.
gdb/ChangeLog:
2015-08-21 Pedro Alves <palves@redhat.com>
* remote.c (struct readahead_cache): New.
(struct remote_state) <readahead_cache>: New field.
(remote_open_1): Invalidate the cache.
(readahead_cache_invalidate, readahead_cache_invalidate_fd): New
functions.
(remote_hostio_pwrite): Invalidate the readahead cache.
(remote_hostio_pread): Rename to ...
(remote_hostio_pread_vFile): ... this.
(remote_hostio_pread_from_cache): New function.
(remote_hostio_pread): Reimplement.
(remote_hostio_close): Invalidate the readahead cache.
Fixes implicit function declaration
error in gdb/procfs.c:4927 about undeclared
make_cleanup_close().
gdb/ChangeLog:
PR build/18843
* procfs.c: Include "filestuff.h".