T-Head has a range of vendor-specific instructions.
Therefore it makes sense to group them into smaller chunks
in form of vendor extensions.
This patch adds the XTheadMemIdx extension, a collection of T-Head specific
GPR memory access instructions.
The 'th' prefix and the "XTheadMemIdx" extension are documented in a PR
for the RISC-V toolchain conventions ([1]).
In total XTheadCmo introduces the following 44 instructions
(BU,HU,WU only for loads (zero-extend instead of sign-extend)):
* {L,S}{D,W,WU,H,HU,B,BU}{IA,IB} rd, rs1, imm5, imm2
* {L,S}R{D,W,WU,H,HU,B,BU} rd, rs1, rs2, imm2
* {L,S}UR{D,W,WU,H,HU,B,BU} rd, rs1, rs2, imm2
[1] https://github.com/riscv-non-isa/riscv-toolchain-conventions/pull/19
Co-developed-by: Lifang Xia <lifang_xia@linux.alibaba.com>
Signed-off-by: Christoph Müllner <christoph.muellner@vrull.eu>
T-Head has a range of vendor-specific instructions.
Therefore it makes sense to group them into smaller chunks
in form of vendor extensions.
This patch adds the XTheadFMemIdx extension, a collection of
T-Head-specific floating-point memory access instructions.
The 'th' prefix and the "XTheadFMemIdx" extension are documented
in a PR for the RISC-V toolchain conventions ([1]).
[1] https://github.com/riscv-non-isa/riscv-toolchain-conventions/pull/19
Co-developed-by: Lifang Xia <lifang_xia@linux.alibaba.com>
Signed-off-by: Christoph Müllner <christoph.muellner@vrull.eu>
T-Head has a range of vendor-specific instructions.
Therefore it makes sense to group them into smaller chunks
in form of vendor extensions.
This patch adds the XTheadMac extension, a collection of
T-Head-specific multiply-accumulate instructions.
The 'th' prefix and the "XTheadMac" extension are documented
in a PR for the RISC-V toolchain conventions ([1]).
[1] https://github.com/riscv-non-isa/riscv-toolchain-conventions/pull/19
Co-developed-by: Lifang Xia <lifang_xia@linux.alibaba.com>
Signed-off-by: Christoph Müllner <christoph.muellner@vrull.eu>
T-Head has a range of vendor-specific instructions.
Therefore it makes sense to group them into smaller chunks
in form of vendor extensions.
This patch adds the XTheadCondMov extension, a collection of
T-Head-specific conditional move instructions.
The 'th' prefix and the "XTheadCondMov" extension are documented
in a PR for the RISC-V toolchain conventions ([1]).
[1] https://github.com/riscv-non-isa/riscv-toolchain-conventions/pull/19
Co-developed-by: Lifang Xia <lifang_xia@linux.alibaba.com>
Signed-off-by: Christoph Müllner <christoph.muellner@vrull.eu>
T-Head has a range of vendor-specific instructions.
Therefore it makes sense to group them into smaller chunks
in form of vendor extensions.
This patch adds the XThead{Ba,Bb,Bs} extensions, a collection of
T-Head-specific bitmanipulation instructions.
The 'th' prefix and the "XThead{Ba,Bb,Bs}" extension are documented
in a PR for the RISC-V toolchain conventions ([1]).
[1] https://github.com/riscv-non-isa/riscv-toolchain-conventions/pull/19
Co-developed-by: Lifang Xia <lifang_xia@linux.alibaba.com>
Signed-off-by: Christoph Müllner <christoph.muellner@vrull.eu>
This patch introduces support for arbitrary signed or unsigned immediate
encoding formats. The formats have the form "XsN@S" and "XuN@S" with N
being the number of bits and S the LSB position.
For example an immediate field of 5 bytes that encodes a signed value
and is stored in the bits 24-20 of the instruction word can use the
format specifier "Xs5@20".
Co-developed-by: Lifang Xia <lifang_xia@linux.alibaba.com>
Signed-off-by: Christoph Müllner <christoph.muellner@vrull.eu>
T-Head has a range of vendor-specific instructions.
Therefore it makes sense to group them into smaller chunks
in form of vendor extensions.
This patch adds the XTheadSync extension, a collection of
T-Head-specific multi-processor synchronization instructions.
The 'th' prefix and the "XTheadSync" extension are documented in a PR
for the RISC-V toolchain conventions ([1]).
[1] https://github.com/riscv-non-isa/riscv-toolchain-conventions/pull/19
Co-developed-by: Lifang Xia <lifang_xia@linux.alibaba.com>
Signed-off-by: Christoph Müllner <christoph.muellner@vrull.eu>
T-Head has a range of vendor-specific instructions.
Therefore it makes sense to group them into smaller chunks
in form of vendor extensions.
This patch adds the XTheadCmo extension, a collection of T-Head specific
cache management operations.
The 'th' prefix and the "XTheadCmo" extension are documented in a PR
for the RISC-V toolchain conventions ([1]).
In total XTheadCmo introduces the following 21 instructions:
* DCACHE.{C,CI,I}ALL
* DCACHE.{C,CI,I}{PA,VA,SW} rs1
* DCACHE.C{PAL1,VAL1} rs1
* ICACHE.I{ALL,ALLS}
* ICACHE.I{PA,VA} rs1
* L2CACHE.{C,CI,I}ALL
Contrary to Zicbom, the XTheadCmo instructions don't have a constant
displacement, therefore we have a different syntax for the arguments.
To clarify this is intended behaviour, there is a set of negative test
for Zicbom-style arguments in x-thead-cmo-fail.s.
[1] https://github.com/riscv-non-isa/riscv-toolchain-conventions/pull/19
v2:
- Add missing DECLARE_INSN() list
- Fix ordering
Co-developed-by: Lifang Xia <lifang_xia@linux.alibaba.com>
Signed-off-by: Christoph Müllner <christoph.muellner@vrull.eu>
"-Wunused-but-set-variable" warning option can be helpful to track variables
that are written but not read thereafter. But it can be harmful if some of
the code is auto-generated and we have no ways to deal with it.
The particular example is Bison-generated code.
The new DIAGNOSTIC_IGNORE_UNUSED_BUT_SET_VARIABLE macro can be helpful on
such cases. A typical use of this macro is to place this macro before the
end of user prologues on Bison (.y) files.
include/ChangeLog:
* diagnostics.h (DIAGNOSTIC_IGNORE_UNUSED_BUT_SET_VARIABLE): New.
User-defined warnings (on Clang, "-Wuser-defined-warnings") can be harmful
if we have specified "-Werror" and we have no control to disable the warning
ourself. The particular example is Gnulib.
Gnulib generates a warning if the system version of certain functions
are used (to redirect the developer to use Gnulib version). However,
it can be harmful if we cannot easily replace them (e.g. the target is in
the standard C++ library).
The new DIAGNOSTIC_IGNORE_USER_DEFINED_WARNINGS macro can be helpful on such
cases. A typical use of this macro is to place this macro before including
certain system headers.
include/ChangeLog:
* diagnostics.h (DIAGNOSTIC_IGNORE_USER_DEFINED_WARNINGS): New.
I don't see why include/gdb/fileio.h is placed there. It's not
installed by "make install", and it's not included by anything outside
of gdb/gdbserver/gdbsupport.
Move its content back to gdbsupport/fileio.h. I have omitted the bits
inside an `#if 0`, since it's obviously not used, as well as the
"limits" constants, which are also unused.
Change-Id: I6fbc2ea10fbe4cfcf15f9f76006b31b99c20e5a9
This patch support ZTSO extension. It will turn on the tso flag for elf_flags
once we have enabled Ztso extension. This is intended to implement v0.1 of
the proposed specification which can be found in Chapter 25 of,
https://github.com/riscv/riscv-isa-manual/releases/download/draft-20220723-10eea63/riscv-spec.pdf.
bfd\ChangeLog:
* elfnn-riscv.c (_bfd_riscv_elf_merge_private_bfd_data): Set TSO flag.
* elfxx-riscv.c: Add Ztso's arch.
binutils\ChangeLog:
* readelf.c (get_machine_flags): Set TSO flag.
gas\ChangeLog:
* config/tc-riscv.c (riscv_set_tso): Ditto.
(riscv_set_arch): Ditto.
* testsuite/gas/riscv/ztso.d: New test.
include\ChangeLog:
* elf/riscv.h (EF_RISCV_TSO): Ditto.
The -mfuture and -Mfuture options which are used for adding potential
new ISA instructions were not documented. They also lacked a bitmask
so new instructions could not be enabled by those options. Fixed.
binutils/
* doc/binutils.texi: Document -Mfuture.
gas/
* config/tc-ppc.c: Document -mfuture
* doc/c-ppc.texi: Likewise.
include/
* opcode/ppc.h (PPC_OPCODE_FUTURE): Define.
opcodes/
* ppc-dis.c (ppc_opts) <future>: Use it.
* ppc-opc.c (FUTURE): Define.
This is paired with "gdb: Add non-enum disassembler options".
There is a portable mechanism for disassembler options and used on some
architectures:
- ARC
- Arm
- MIPS
- PowerPC
- RISC-V
- S/390
However, it only supports following forms:
- [NAME]
- [NAME]=[ENUM_VALUE]
Valid values for [ENUM_VALUE] must be predefined in
disasm_option_arg_t.values. For instance, for -M cpu=[CPU] in ARC
architecture, opcodes/arc-dis.c builds valid CPU model list from
include/elf/arc-cpu.def.
In this commit, it adds following format:
- [NAME]=[ARBITRARY_VALUE] (cannot contain "," though)
This is identified by NULL value of disasm_option_arg_t.values
(normally, this is a non-NULL pointer to a NULL-terminated list).
include/ChangeLog:
* dis-asm.h (disasm_option_arg_t): Update comment of values
to allow non-enum disassembler options.
opcodes/ChangeLog:
* riscv-dis.c (print_riscv_disassembler_options): Support
non-enum disassembler options on printing disassembler help.
* arc-dis.c (print_arc_disassembler_options): Likewise.
* mips-dis.c (print_mips_disassembler_options): Likewise.
Three-part patch set from Tsukasa OI to support zmmul in assembler.
The 'Zmmul' is a RISC-V extension consisting of only multiply instructions
(a subset of 'M' which has multiply and divide instructions).
bfd/
* elfxx-riscv.c (riscv_implicit_subsets): Add 'Zmmul' implied by 'M'.
(riscv_supported_std_z_ext): Add 'Zmmul' extension.
(riscv_multi_subset_supports): Add handling for new instruction class.
gas/
* testsuite/gas/riscv/attribute-09.d: Updated implicit 'Zmmul' by 'M'.
* testsuite/gas/riscv/option-arch-02.d: Likewise.
* testsuite/gas/riscv/m-ext.s: New test.
* testsuite/gas/riscv/m-ext-32.d: New test (RV32).
* testsuite/gas/riscv/m-ext-64.d: New test (RV64).
* testsuite/gas/riscv/zmmul-32.d: New expected output.
* testsuite/gas/riscv/zmmul-64.d: Likewise.
* testsuite/gas/riscv/m-ext-fail-xlen-32.d: New test (failure
by using RV64-only instructions in RV32).
* testsuite/gas/riscv/m-ext-fail-xlen-32.l: Likewise.
* testsuite/gas/riscv/m-ext-fail-zmmul-32.d: New failure test
(RV32 + Zmmul but with no M).
* testsuite/gas/riscv/m-ext-fail-zmmul-32.l: Likewise.
* testsuite/gas/riscv/m-ext-fail-zmmul-64.d: New failure test
(RV64 + Zmmul but with no M).
* testsuite/gas/riscv/m-ext-fail-zmmul-64.l: Likewise.
* testsuite/gas/riscv/m-ext-fail-noarch-64.d: New failure test
(no Zmmul or M).
* testsuite/gas/riscv/m-ext-fail-noarch-64.l: Likewise.
include/
* opcode/riscv.h (enum riscv_insn_class): Added INSN_CLASS_ZMMUL.
ld/
* testsuite/ld-riscv-elf/attr-merge-arch-01.d: We don't care zmmul in
these testcases, so just replaced m by a.
* testsuite/ld-riscv-elf/attr-merge-arch-01a.s: Likewise.
* testsuite/ld-riscv-elf/attr-merge-arch-01b.s: Likewise.
* testsuite/ld-riscv-elf/attr-merge-arch-02.d: Likewise.
* testsuite/ld-riscv-elf/attr-merge-arch-02a.s: Likewise.
* testsuite/ld-riscv-elf/attr-merge-arch-03.d: Likewise.
* testsuite/ld-riscv-elf/attr-merge-arch-03a.s: Likewise.
* testsuite/ld-riscv-elf/attr-merge-user-ext-01.d: Likewise.
* testsuite/ld-riscv-elf/attr-merge-user-ext-rv32i2p1_a2p0.s: Renamed.
* testsuite/ld-riscv-elf/attr-merge-user-ext-rv32i2p1_a2p1.s: Renamed.
opcodes/
* riscv-opc.c (riscv_opcodes): Updated multiply instructions to zmmul.
svstep and svshape instructions subtract 1 before encoding some of the
operands. Obviously zero is not supported for these operands. Whilst
PPC_OPERAND_PLUS1 fits perfectly to mark that maximal value should be
incremented, there is no flag which marks the fact that zero values are
not allowed. This patch adds a new flag, PPC_OPERAND_NONZERO, for this
purpose.
This patch adds support for LibreSOC machine and SVP64 extension flag
for PowerPC architecture. SV (Simple-V) is a strict RISC-paradigm
Scalable Vector Extension for the Power ISA. SVP64 is the 64-bit
Prefixed instruction format implementing SV. Funded by NLnet through EU
Grants No: 825310 and 825322, SV is in DRAFT form and is to be publicly
submitted via the OpenPOWER Foundation ISA Working Group via the
newly-created External RFC Process.
For more details, visit https://libre-soc.org.
They were legacy relocation types copied from other ports. The related
-fvtable-gc was removed from GCC in 2003.
The associated assembler directives (.vtable_inherit and .vtable_entry)
have never been supported by the RISC-V port. Remove related ld code.
Link: https://github.com/riscv-non-isa/riscv-elf-psabi-doc/pull/323
This adds support for efi-loongarch64 by virtue of adding a new PEI target
pei-loongarch64. This is not a full target and only exists to support EFI at
this time.
This means that this target does not support relocation processing and is mostly
a container format. This format has been added to elf based loongarch64 targets
such that efi images can be made natively on Linux.
However this target is not valid for use with gas but only with objcopy.
We should't limit addresses to 32-bits for 64-bit vma, otherwise there will be
"RVA truncated" error when using objcopy on loongarch64.
With these changes the resulting file is recognized as an efi image.
Any magic number is based on the Microsoft PE specification [1].
The test results are as follows:
$ make check-binutils RUNTESTFLAGS='loongarch64.exp'
PASS: Check if efi app format is recognized
$ objdump -h -f tmpdir/loongarch64copy.o
tmpdir/loongarch64copy.o: file format pei-loongarch64
architecture: Loongarch64, flags 0x00000132:
EXEC_P, HAS_SYMS, HAS_LOCALS, D_PAGED
start address 0x0000000000000000
Sections:
Idx Name Size VMA LMA File off Algn
0 .text 0000003c 00000000200000b0 00000000200000b0 00000200 2**2
CONTENTS, ALLOC, LOAD, READONLY, CODE
[1] https://docs.microsoft.com/en-us/windows/win32/debug/pe-format
bfd:
* .gitignore (pe-loongarch64igen.c): New.
* Makefile.am (pei-loongarch64.lo, pe-loongarch64igen.lo, pei-loongarch64.c,
pe-loongarch64igen.c): Add support.
* Makefile.in: Likewise.
* bfd.c (bfd_get_sign_extend_vma): Add pei-loongarch64.
* coff-loongarch64.c: New file.
* coffcode.h (coff_set_arch_mach_hook, coff_set_flags,
coff_write_object_contents) Add loongarch64 (loongarch64_pei_vec) support.
* config.bfd: Likewise.
* configure: Likewise.
* configure.ac: Likewise.
* libpei.h (GET_OPTHDR_IMAGE_BASE, PUT_OPTHDR_IMAGE_BASE,
GET_OPTHDR_SIZE_OF_STACK_RESERVE, PUT_OPTHDR_SIZE_OF_STACK_RESERVE,
GET_OPTHDR_SIZE_OF_STACK_COMMIT, PUT_OPTHDR_SIZE_OF_STACK_COMMIT,
GET_OPTHDR_SIZE_OF_HEAP_RESERVE, PUT_OPTHDR_SIZE_OF_HEAP_RESERVE,
GET_OPTHDR_SIZE_OF_HEAP_COMMIT, PUT_OPTHDR_SIZE_OF_HEAP_COMMIT,
GET_PDATA_ENTRY, _bfd_peLoongArch64_bfd_copy_private_bfd_data_common,
_bfd_peLoongArch64_bfd_copy_private_section_data,
_bfd_peLoongArch64_get_symbol_info, _bfd_peLoongArch64_only_swap_filehdr_out,
_bfd_peLoongArch64_print_private_bfd_data_common,
_bfd_peLoongArch64i_final_link_postscript,
_bfd_peLoongArch64i_only_swap_filehdr_out, _bfd_peLoongArch64i_swap_aouthdr_in,
_bfd_peLoongArch64i_swap_aouthdr_out, _bfd_peLoongArch64i_swap_aux_in,
_bfd_peLoongArch64i_swap_aux_out, _bfd_peLoongArch64i_swap_lineno_in,
_bfd_peLoongArch64i_swap_lineno_out, _bfd_peLoongArch64i_swap_scnhdr_out,
_bfd_peLoongArch64i_swap_sym_in, _bfd_peLoongArch64i_swap_sym_out,
_bfd_peLoongArch64i_swap_debugdir_in, _bfd_peLoongArch64i_swap_debugdir_out,
_bfd_peLoongArch64i_write_codeview_record,
_bfd_peLoongArch64i_slurp_codeview_record,
_bfd_peLoongArch64_print_ce_compressed_pdata): New.
* peXXigen.c (_bfd_XXi_swap_aouthdr_in, _bfd_XXi_swap_aouthdr_out,
_bfd_XXi_swap_scnhdr_out, pe_print_pdata, _bfd_XX_print_private_bfd_data_common,
_bfd_XX_bfd_copy_private_section_data, _bfd_XXi_final_link_postscript):
Support COFF_WITH_peLoongArch64,
* pei-loongarch64.c: New file.
* peicode.h (coff_swap_scnhdr_in, pe_ILF_build_a_bfd, pe_ILF_object_p):
Support COFF_WITH_peLoongArch64.
(jtab): Add dummy entry that traps.
* targets.c (loongarch64_pei_vec): New.
binutils
* testsuite/binutils-all/loongarch64/loongarch64.exp: New file.
* testsuite/binutils-all/loongarch64/pei-loongarch64.d: New test.
* testsuite/binutils-all/loongarch64/pei-loongarch64.s: New test.
include
* coff/loongarch64.h: New file.
* coff/pe.h (IMAGE_FILE_MACHINE_LOONGARCH64): New.
Signed-off-by: Youling Tang <tangyouling@loongson.cn>
This commit enables disassembler styling for AArch64. After this
commit it is possible to have objdump style AArch64 disassembler
output (using --disassembler-color option). Once the required GDB
patches are merged, GDB will also style the disassembler output.
The changes to support styling are mostly split between two files
opcodes/aarch64-dis.c and opcodes/aarch64-opc.c.
The entry point for the AArch64 disassembler can be found in
aarch64-dis.c, this file handles printing the instruction mnemonics,
and assembler directives (e.g. '.byte', '.word', etc). Some operands,
mostly relating to assembler directives are also printed from this
file. This commit changes all of this to pass through suitable
styling information.
However, for most "normal" instructions, the instruction operands are
printed using a two step process. From aarch64-dis.c, in the
print_operands function, the function aarch64_print_operand is called,
this function is in aarch64-opc.c, and converts an instruction operand
into a string. Then, back in print_operands (aarch64-dis.c), the
operand string is printed.
Unfortunately, the string returned by aarch64_print_operand can be
quite complex, it will include syntax elements, like '[' and ']', in
addition to register names and immediate values. In some cases, a
single operand will expand into what will appear (to the user) as
multiple operands separated with a ','.
This makes the task of styling more complex, all these different
components need to by styled differently, so we need to get the
styling information out of aarch64_print_operand in some way.
The solution that I propose here is similar to the solution that I
used for the i386 disassembler.
Currently, aarch64_print_operand uses snprintf to write the operand
text into a buffer provided by the caller.
What I propose is that we pass an extra argument to the
aarch64_print_operand function, this argument will be a structure, the
structure contains a callback function and some state.
When aarch64_print_operand needs to format part of its output this can
be done by using the callback function within the new structure, this
callback returns a string with special embedded markers that indicate
which mode should be used for each piece of text. Back in
aarch64-dis.c we can spot these special style markers and use this to
split the disassembler output up and apply the correct style to each
piece.
To make aarch64-opc.c clearer a series of new static functions have
been added, e.g. 'style_reg', 'style_imm', etc. Each of these
functions formats a piece of text in a different style, 'register' and
'immediate' in this case.
Here's an example taken from aarch64-opc.c of the new functions in
use:
snprintf (buf, size, "[%s, %s]!",
style_reg (styler, base),
style_imm (styler, "#%d", opnd->addr.offset.imm));
The aarch64_print_operand function is also called from the assembler
to aid in printing diagnostic messages. Right now I have no plans to
add styling to the assembler output, and so, the callback function
used in the assembler ignores the styling information and just returns
an plain string.
I've used the source files in gas/testsuite/gas/aarch64/ for testing,
and have manually gone through and checked that the styling looks
reasonable, however, I'm not an AArch64 expert, so it is possible that
the odd piece is styled incorrectly. Please point out any mistakes
I've made.
With objdump disassembler color turned off, there should be no change
in the output after this commit.
When adding libopcodes disassembler styling support for AArch64, it
feels like the results would be improved by having a new sub-mnemonic
style. This will be used in cases like:
add w16, w7, w1, uxtb #2
^^^^----- Here
And:
cinc w0, w1, ne
^^----- Here
This commit just adds the new style, and prepares objdump to handle
the style. A later commit will add AArch64 styling, and will actually
make use of the style.
As this style is currently unused, there should be no user visible
changes after this commit.
Some R_LARCH_64 in section .eh_frame will to generate
R_LARCH_NONE, we change relocation to R_LARCH_32_PCREL
from R_LARCH_64 in setction .eh_frame and not generate
dynamic relocation for R_LARCH_32_PCREL.
Add New relocate type R_LARCH_32_PCREL for .eh_frame.
include/elf/
loongarch.h
bfd/
bfd/bfd-in2.h
libbfd.h
reloc.c
elfxx-loongarch.c
elfnn-loongarch.c
gas/config/
tc-loongarch.c
binutils/
readelf.c
ld/testsuite/ld-elf/
eh5.d
The Linux kernel can dump memory tag segments to a core file, one segment
per mapped range. The format and documentation can be found in the Linux
kernel tree [1].
The following patch adjusts bfd and binutils so they can handle this new
segment type and display it accordingly. It also adds code required so GDB
can properly read/dump core file data containing memory tags.
Upon reading, each segment that contains memory tags gets mapped to a
section named "memtag". These sections will be used by GDB to lookup the tag
data. There can be multiple such sections with the same name, and they are not
numbered to simplify GDB's handling and lookup.
There is another patch for GDB that enables both reading
and dumping of memory tag segments.
Tested on aarch64-linux Ubuntu 20.04.
[1] Documentation/arm64/memory-tagging-extension.rst (Core Dump Support)
This commit adds Zfhmin and Zhinxmin extensions (subsets of Zfh and
Zhinx extensions, respectively). In the process supporting Zfhmin and
Zhinxmin extension, this commit also changes how instructions are
categorized considering Zfhmin, Zhinx and Zhinxmin extensions.
Detailed changes,
* From INSN_CLASS_ZFH to INSN_CLASS_ZFHMIN:
flh, fsh, fmv.x.h and fmv.h.x.
* From INSN_CLASS_ZFH to INSN_CLASS_ZFH_OR_ZHINX:
fmv.h.
* From INSN_CLASS_ZFH_OR_ZHINX to INSN_CLASS_ZFH_OR_ZHINX:
fneg.h, fabs.h, fsgnj.h, fsgnjn.h, fsgnjx.h,
fadd.h, fsub.h, fmul.h, fdiv.h, fsqrt.h, fmin.h, fmax.h,
fmadd.h, fnmadd.h, fmsub.h, fnmsub.h,
fcvt.w.h, fcvt.wu.h, fcvt.h.w, fcvt.h.wu,
fcvt.l.h, fcvt.lu.h, fcvt.h.l, fcvt.h.lu,
feq.h, flt.h, fle.h, fgt.h, fge.h,
fclass.h.
* From INSN_CLASS_ZFH_OR_ZHINX to INSN_CLASS_ZFHMIN_OR_ZHINXMIN:
fcvt.s.h and fcvt.h.s.
* From INSN_CLASS_D_AND_ZFH_INX to INSN_CLASS_ZFHMIN_AND_D:
fcvt.d.h and fcvt.h.d.
* From INSN_CLASS_Q_AND_ZFH_INX to INSN_CLASS_ZFHMIN_AND_Q:
fcvt.q.h and fcvt.h.q.
bfd/ChangeLog:
* elfxx-riscv.c (riscv_implicit_subsets): Change implicit
subsets. Zfh->Zicsr is not needed and Zfh->F is replaced with
Zfh->Zfhmin and Zfhmin->F. Zhinx->Zicsr is not needed and
Zhinx->Zfinx is replaced with Zhinx->Zhinxmin and
Zhinxmin->Zfinx.
(riscv_supported_std_z_ext): Added zfhmin and zhinxmin.
(riscv_multi_subset_supports): Rewrite handling for new
instruction classes.
(riscv_multi_subset_supports_ext): Updated.
(riscv_parse_check_conflicts): Change error message to include
zfh and zfhmin extensions.
gas/ChangeLog:
* testsuite/gas/riscv/zfhmin-d-insn-class-fail.s: New complex
error handling test.
* testsuite/gas/riscv/zfhmin-d-insn-class-fail-1.d: Likewise.
* testsuite/gas/riscv/zfhmin-d-insn-class-fail-1.l: Likewise.
* testsuite/gas/riscv/zfhmin-d-insn-class-fail-2.d: Likewise.
* testsuite/gas/riscv/zfhmin-d-insn-class-fail-2.l: Likewise.
* testsuite/gas/riscv/zfhmin-d-insn-class-fail-3.d: Likewise.
* testsuite/gas/riscv/zfhmin-d-insn-class-fail-3.l: Likewise.
* testsuite/gas/riscv/zfhmin-d-insn-class-fail-4.d: Likewise.
* testsuite/gas/riscv/zfhmin-d-insn-class-fail-4.l: Likewise.
* testsuite/gas/riscv/zfhmin-d-insn-class-fail-5.d: Likewise.
* testsuite/gas/riscv/zfhmin-d-insn-class-fail-5.l: Likewise.
* testsuite/gas/riscv/zhinx.d: Renamed from fp-zhinx-insns.d
and refactored.
* testsuite/gas/riscv/zhinx.s: Likewise.
include/ChangeLog:
* opcode/riscv.h (enum riscv_insn_class): Removed INSN_CLASS_ZFH,
INSN_CLASS_D_AND_ZFH_INX and INSN_CLASS_Q_AND_ZFH_INX. Added
INSN_CLASS_ZFHMIN, INSN_CLASS_ZFHMIN_OR_ZHINXMIN,
INSN_CLASS_ZFHMIN_AND_D and INSN_CLASS_ZFHMIN_AND_Q.
opcodes/ChangeLog:
* riscv-opc.c (riscv_opcodes): Change instruction classes for
Zfh and Zfhmin instructions. Fix `fcvt.h.lu' instruction
(two operand variant) mask.
The function aarch64_print_operand (aarch64-opc.c) is responsible for
converting an instruction operand into the textual representation of
that operand.
In some cases, a comment is included in the operand representation,
though this (currently) only happens for the last operand of the
instruction.
In a future commit I would like to enable the new libopcodes styling
for AArch64, this will allow objdump and GDB[1] to syntax highlight
the disassembler output, however, having operands and comments
combined in a single string like this makes such styling harder.
In this commit, I propose to extend aarch64_print_operand to take a
second buffer. Any comments for the instruction are written into this
extra buffer. The two callers of aarch64_print_operand are then
updated to pass an extra buffer, and print any resulting comment.
In this commit no styling is added, that will come later. However, I
have adjusted the output slightly. Before this commit some comments
would be separated from the instruction operands with a tab character,
while in other cases the comment was separated with two single spaces.
After this commit I use a single tab character in all cases. This
means a few test cases needed updated. If people would prefer me to
move everyone to use the two spaces, then just let me know. Or maybe
there was a good reason why we used a mix of styles, I could probably
figure out a way to maintain the old output exactly if that is
critical.
Other than that, there should be no user visible changes after this
commit.
[1] GDB patches have not been merged yet, but have been posted to the
GDB mailing list:
https://sourceware.org/pipermail/gdb-patches/2022-June/190142.html
Commit 04f096fb9e ("Move the xc16x target to the obsolete list") moved
the architecture from the "obsolete but still available" to the
"obsolete / support removed" list in config.bfd, making the architecture
impossible to enable (except maybe via "enable everything" options").
Note that I didn't touch */po/*.po{,t} on the assumption that these
would be updated by some (half)automatic means.
According to the picture 28.1 in the current ISA spec, h is no larger the
multi-letter extension, it is a single extension after v. Therefore, this
patch fix the implementation, and use the single h to control hypervisor
CSRs and instructions, which we promised to do before.
bfd/
* elfxx-riscv.c (riscv_supported_std_ext): Added h with version 1.0 after v.
(riscv_supported_std_h_ext): Removed.
(riscv_all_supported_ext): Updated since riscv_supported_std_h_ext is removed.
(riscv_prefix_ext_class): Removed RV_ISA_CLASS_H.
(parse_config): Updated since riscv_prefix_ext_class is removed.
(riscv_recognized_prefixed_ext): Likewise.
(riscv_get_default_ext_version): Likewise.
(riscv_multi_subset_supports): Handle INSN_CLASS_H for hypervisor instructions.
(riscv_multi_subset_supports_ext): Likewise.
gas/
* config/tc-riscv.c (riscv_csr_class): Added CSR_CLASS_H and CSR_CLASS_H_32 for
hypervisor CSRs.
(riscv_csr_address): Likewise.
* testsuite/gas/riscv/csr-version-1p10.d: Updated since hypervisor CSRs are
controlled by single h extension for now.
* testsuite/gas/riscv/csr-version-1p10.l: Likewise.
* testsuite/gas/riscv/csr-version-1p11.d: Likewise.
* testsuite/gas/riscv/csr-version-1p11.l: Likewise.
* testsuite/gas/riscv/csr-version-1p12.d: Likewise.
* testsuite/gas/riscv/csr-version-1p12.l: Likewise.
* testsuite/gas/riscv/csr-version-1p9p1.d: Likewise.
* testsuite/gas/riscv/csr-version-1p9p1.l: Likewise.
* testsuite/gas/riscv/h-ext-32.d: Added h to architecture string.
* testsuite/gas/riscv/h-ext-64.d: Likewise.
* testsuite/gas/riscv/march-fail-single-prefix-h: Removed since h is no
longer multi-letter extension.
* testsuite/gas/riscv/march-fail-unknown-h.d: Likewise.
include/
* opcode/riscv-opc.h: Control hypervisor CSRs by h extension, rather than
the privileged spec verisons.
* opcode/riscv.h (riscv_insn_class): Added INSN_CLASS_H.
opcodes/
* riscv-opc.c (riscv_opcodes): Control hypervisor instructions by h extension.
When building trunk on openSUSE Leap 15.3 with system gcc 7.5.0, I run into:
...
In file included from ../bfd/bfd.h:46:0,
from gdb/defs.h:37,
from gdb/debuginfod-support.c:19:
gdb/debuginfod-support.c: In function ‘bool debuginfod_is_enabled()’:
gdb/../include/diagnostics.h:42:3: error: unknown option after \
‘#pragma GCC diagnostic’ kind [-Werror=pragmas]
_Pragma (DIAGNOSTIC_STRINGIFY (GCC diagnostic ignored option))
^
gdb/../include/diagnostics.h:80:3: note: in expansion of macro \
‘DIAGNOSTIC_IGNORE’
DIAGNOSTIC_IGNORE ("-Wstringop-overread")
^~~~~~~~~~~~~~~~~
gdb/debuginfod-support.c:201:4: note: in expansion of macro \
‘DIAGNOSTIC_IGNORE_STRINGOP_OVERREAD’
DIAGNOSTIC_IGNORE_STRINGOP_OVERREAD
^
...
The problem is that the warning -Wstringop-overread has been introduced for
gcc 11, and we can only tell gcc to ignore if it knows about it.
Fix this by guarding the DIAGNOSTIC_IGNORE_STRINGOP_OVERREAD definition in
diagnostics.c with '#if __GNUC__ >= 11'.
Tested on x86_64-linux, by completing a build.
The zhinx extension is a sub-extension in zfinx, corresponding to
zfh extension but use GPRs instead of FPRs.
This patch expanded the zfh insn class define, since zfh and zhinx
use the same opcodes, thanks for Nelson's works.
changelog in V2: Add missing classes of 'zfh' and 'zhinx' in
"riscv_multi_subset_supports_ext".
bfd/ChangeLog:
* elfxx-riscv.c (riscv_multi_subset_supports): New extensions.
(riscv_multi_subset_supports_ext): New extensions.
gas/ChangeLog:
* testsuite/gas/riscv/fp-zhinx-insns.d: New test.
* testsuite/gas/riscv/fp-zhinx-insns.s: New test.
include/ChangeLog:
* opcode/riscv.h (enum riscv_insn_class): New INSN classes.
opcodes/ChangeLog:
* riscv-opc.c: Modify INSN_CLASS.
bfd_hostptr_t is defined as a type large enough to hold either a long
or a pointer. It mostly appears in the coff backend code in casts.
include/coff/internal.h struct internal_syment and union
internal_auxent have the only uses in data structures, where
comparison with include/coff/external.h and other code reveals that
the type only needs to be large enough for a 32-bit integer or a
pointer. That should mean replacing with uintptr_t is OK.
Requiring C99 means that uses of bfd_uint64_t can be replaced with
uint64_t, and similarly for bfd_int64_t, BFD_HOST_U_64_BIT, and
BFD_HOST_64_BIT. This patch does that, removes #ifdef BFD_HOST_*
and tidies a few places that print 64-bit values.
With the upcoming SVP64 extension[0] to PowerPC architecture, it became
evident that PowerPC operand indices no longer fit 8 bits. This patch
switches the underlying type to uint16_t, also introducing a special
typedef so that any future extension goes even smoother.
[0] https://libre-soc.org
include/
* opcode/ppc.h (ppc_opindex_t): New typedef.
(struct powerpc_opcode): Use it.
(PPC_OPINDEX_MAX): Define.
gas/
* write.h (struct fix): Increase size of fx_pcrel_adjust.
Reorganise.
* config/tc-ppc.c (insn_validate): Use ppc_opindex_t for operands.
(md_assemble): Likewise.
(md_apply_fix): Likewise. Mask fx_pcrel_adjust with PPC_OPINDEX_MAX.
(ppc_setup_opcodes): Adjust opcode index assertion.
opcodes/
* ppc-dis.c (skip_optional_operands): Use ppc_opindex_t for
operand pointer.
(lookup_powerpc, lookup_prefix, lookup_vle, lookup_spe2): Likewise.
(print_insn_powerpc): Likewise.
As fmv.x.q and fmv.q.x instructions are RV128-only (not RV64-only),
it should be removed until RV128 support for GNU Binutils is required
again.
gas/ChangeLog:
* testsuite/gas/riscv/fmv.x.q-rv64-fail.d: New failure test.
* testsuite/gas/riscv/fmv.x.q-rv64-fail.l: Likewise.
* testsuite/gas/riscv/fmv.x.q-rv64-fail.s: Likewise.
include/ChangeLog:
* opcode/riscv-opc.h (MATCH_FMV_X_Q, MASK_FMV_X_Q,
MATCH_FMV_Q_X, MASK_FMV_Q_X): Remove RV128-only instructions.
opcodes/ChangeLog:
* riscv-opc.c (riscv_opcodes): Remove RV128-only instructions.
Make ld and bfd values consistent by swapping values 0 and 2 in
link_info.warn_execstack. This has the benefit of making the value an
"extended" boolean, with 0 meaning no warning, 1 meaning warn, other
values a conditional warning.
Yes, this patch introduces fails on arm/aarch64. Not a problem with
this patch but an arm/aarch64 before_parse problem.
bfd/
* elflink.c (bfd_elf_size_dynamic_sections): Adjust
warn_execstack test.
include/
* bfdlink.h (warn_execstack): Swap 0 and 2 meaning.
ld/
* configure.ac (DEFAULT_LD_WARN_EXECSTACK): Use values of 0,
1, 2 consistent with link_info.warn_execstack.
* ld.texi: Typo fixes.
* lexsup.c (parse_args): Adjust setting of link_info.warn_execstack.
(elf_static_list_options): Adjust help message conditions.
* configure: Regenerate.
In Armv9-A SVE is mandatory, and for SVE FP16 is mandatory. This fixes a disconnect
between GCC and binutils where GCC has FP16 on by default and gas doesn't.
include/ChangeLog:
2022-05-16 Tamar Christina <tamar.christina@arm.com>
* opcode/aarch64.h (AARCH64_ARCH_V9_FEATURES): Add AARCH64_FEATURE_F16.
When an IR symbol SYM is referenced in IR via __real_SYM, its resolution
should be LDPR_PREVAILING_DEF, not PREVAILING_DEF_IRONLY, since LTO
doesn't know that __real_SYM should be resolved by SYM.
bfd/
PR ld/29086
* linker.c (bfd_wrapped_link_hash_lookup): Mark SYM is referenced
via __real_SYM.
include/
PR ld/29086
* bfdlink.h (bfd_link_hash_entry): Add ref_real.
ld/
PR ld/29086
* plugin.c (get_symbols): Resolve SYM definition to
LDPR_PREVAILING_DEF for __real_SYM reference.
* testsuite/ld-plugin/lto.exp: Run PR ld/29086 test.
* testsuite/ld-plugin/pr29086.c: New file.