No other sub directory provides such a configuration option, so
drop it from the sim dir as well. This cleans up a good bit of
code in the process.
If people want to use custom flags for just the sim, they can
still run configure+make by hand in the sim subdir and use the
normal CFLAGS settings.
The common subdir sets up a cconfig.h file to hold checks for the common
code. In practice, most files still end up using config.h instead which
just leads to confusion.
Merge all the configure checks that went into cconfig.h into SIM_AC_COMMON
so we can drop the cconfig.h file altogether. Now there is only a single
config.h file like normal.
The compiler/C library should produce reasonable code for htonl/ntohl,
and at least glibc tries pretty hard to always produce good code for
them. This logic only had support for 32-bit x86 systems anymore, and
it's unlikely people were even opting into this, so drop it all.
Fix a long standing todo where we let getopt write directly to stderr
when an invalid option is passed. Use the sim io funcs instead as they
go through the filtered callbacks that gdb wants.
The --enable-sim-hostendian flag was purely so people had an escape route
for when cross-compiling. This is because historically, AC_C_BIGENDIAN
did not work in those cases. That was fixed a while ago though, so we can
require that macro everywhere now and simplify a good bit of code.
Rather than re-invent endian defines, as well as maintain our own list
of OS & arch-specific includes, punt all that logic in favor of the bfd
ones already set up and maintained elsewhere. We already rely on the
bfd library, so leveraging the endian aspect should be fine.
Pretty much all targets are using this module already, so add it to the
common list of objects. The only oddball out here is cris and that's
because it supports loading via an offset for all the phdrs. We drop
support for that.
No arch is using this anymore, and we want all new ports using the
hardware framework instead. Punt WITH_DEVICES and the two callbacks
device_io_{read,write}_buffer.
We can also punt the tconfig.h file as no port is using it anymore.
This fixes in-tree builds that get confused by picking up the wrong
one (common/ vs <port>/) caused by commit ae7d0cac8c.
Any port that needs to set up a global define can use their own
sim-main.h file that they must provide regardless.
Fix occurrences of left-shifting negative constants in C code.
sim/arm/ChangeLog:
* thumbemu.c (handle_T2_insn): Fix left shift of negative value.
* armemu.c (handle_v6_insn): Likewise.
sim/avr/ChangeLog:
* interp.c (sign_ext): Fix left shift of negative value.
sim/mips/ChangeLog:
* micromips.igen (process_isa_mode): Fix left shift of negative
value.
sim/msp430/ChangeLog:
* msp430-sim.c (get_op, put_op): Fix left shift of negative value.
sim/v850/ChangeLog:
* simops.c (v850_bins): Fix left shift of negative value.
Other than the nice advantage of all sims having to declare one fewer
common function, this also fixes leakage in pretty much every sim.
Many were not freeing any resources, and a few were inconsistent as
to the ones they did. Now we have a single module that takes care of
all the logic for us.
Most of the non-cgen based ones could be deleted outright. The cgen
ones required adding a callback to the arch-specific cleanup func.
The few that still have close callbacks are to manage their internal
state.
We do not convert erc32, m32c, ppc, rl78, or rx as they do not use
the common sim core.
* Makefile.in (SIM_EXTRA_CFLAGS): Add -lm.
* armdefs.h (ARMdval, ARMfval): New types.
(ARM_VFP_reg): New union.
(struct ARMul_State): Add VFP_Reg and FPSCR fields.
(VFP_fval, VFP_uword, VFP_sword, VFP_dval, VFP_dword): Accessor
macros for the new VFP_Reg field.
* armemu.c (handle_v6_insn): Add code to handle MOVW, MOVT,
QADD16, QASX, QSAX, QSUB16, QADD8, QSUB8, UADD16, USUB16, UADD8,
USUB8, SEL, REV, REV16, RBIT, BFC, BFI, SBFX and UBFX
instructions.
(handle_VFP_move): New function.
(ARMul_Emulate16): Add checks for newly supported v6
instructions. Add support for VMRS, VMOV and MRC instructions.
(Multiply64): Allow nRdHi == nRm and/or nRdLo == nRm when
operating in v6 mode.
* armemu.h (t_resolved): Define.
* armsupp.c: Include math.h.
(handle_VFP_xfer): New function. Handles VMOV, VSTM, VSTR, VPUSH,
VSTM, VLDM and VPOP instructions.
(ARMul_LDC): Test for co-processor 10 or 11 and pass call to the
new handle_VFP_xfer function.
(ARMul_STC): Likewise.
(handle_VFP_op): New function. Handles VMLA, VMLS, VNMLA, VNMLS,
VNMUL, VMUL, VADD, VSUB, VDIV, VMOV, VABS, VNEG, VSQRT, VCMP,
VCMPE and VCVT instructions.
(ARMul_CDP): Test for co-processor 10 or 11 and pass call to the
new handle_VFP_op function.
* thumbemu.c (tBIT, tBITS, ntBIT, ntBITS): New macros.
(test_cond): New function. Tests a condition and returns non-zero
if the condition has been met.
(handle_IT_block): New function.
(in_IT_block): New function.
(IT_block_allow): New function.
(ThumbExpandImm): New function.
(handle_T2_insn): New function. Handles T2 thumb instructions.
(handle_v6_thumb_insn): Add next_instr and pc parameters.
(ARMul_ThumbDecode): Add support for IT blocks. Add support for
v6 instructions.
* wrapper.c (sim_create_inferior): Detect a thumb address and call
SETT appropriately.
Since every target typedefs this the same way, move it to the common code.
We have to leave Blackfin behind here for now because of inter-dependencies
on types and headers: sim-base.h includes sim-model.h which needs types in
machs.h which needs types in bfim-sim.h which needs SIM_CPU.
Almost every target defines sim_cia the same way -- either using the
address_word type directly, or a type of equivalent size. The only
odd one out is sh64 (who has 32bit address_word and 64bit cia), and
even that case doesn't seem to make sense. We'll put off clean up
though of sh64 and at least set up a sensible default for everyone.
The CIA_{GET,SET} macros serve the same function as CPU_PC_{GET,SET}
except the latter adds a layer of indirection via the sim state. This
lets models set up different functions at runtime and doesn't reach so
directly into the arch-specific cpu state.
It also doesn't make sense to have two sets of macros that do exactly
the same thing, so lets standardize on the one that gets us more.
Now that all the targets are utilizing CPU_PC_{FETCH,STORE}, and the
cpu state is multicore, and the STATE_CPU defines match, we can move
it all to the common code.
With sim-hrw.o being built & linked in the common list, some people are
getting linking errors now for these targets. Move the main objects that
provide these functions before the common list to avoid that.
Now that all targets have been converted to nrun, we can finally punt
this old inconsistent interface.
A few stray references to the old run were sprinkled about; clean them
up in the process.
We leave behind the run(1) man page mostly so that we get it updated for
the new nrun interface.
A lot of cpu state is stored in global variables, as is memory handling.
The sim_size support needs unwinding at some point. But at least this
is an improvement on the status quo.
In preparation for converting to nrun, call the common functions that
are needed. This doesn't produce any new warnings, and the generated
code should be the same.
Rather than manually include tconfig.h when we think we'll need it (which
is error prone as it can define symbols we expect from config.h), have it
be included directly by config.h. Since we know we have to include that
header everywhere already, this will make sure tconfig.h isn't missed.
It should also be fine as tconfig.h is supposed to be simple and only set
up a few core defines for the target.
This allows us to stop symlinking it in place all the time and just use
it straight out of the respective source directory.
We want people to stop using the run.c frontend, but it's hard to notice
when it's still set as the default. Lets flip things so nrun.c is the
default, and users of run.c will get an error by default. We turn that
error into a warning for existing sims so we don't break them -- this is
mostly meant for people starting new ports.
Directories that don't use libtool need to add -ldl (on most *nix
hosts) to provide dlopen for libbfd.
config/
* plugins.m4 (AC_PLUGINS): If plugins are enabled, add -ldl to
LIBS via AC_SEARCH_LIBS.
gdb/
* acinclude.m4 (GDB_AC_CHECK_BFD): Don't add -ldl.
* config.in: Regenerate.
sim/ppc/
* configure.ac: Invoke AC_PLUGINS.
* config.in: Regenerate.
and regen lots of configure files.
PR sim/8388
* armemu.c (WriteR15Load): New function. Determines if the state
can be changed upon a write to R15.
(LoadMult): Use WriteR15Load.
* armemu.h (WRITEDESTB): Use WriteR15Load.
It is rare for people to want to modify the cmd arg. In general, they
really shouldn't be, but a few still do. For those who misbehave, dupe
the string locally so they can bang on it.
I noticed the sim code is using an old implementation of the maintainer logic.
I cut it over to the new macro (like gdb has been doing). In practice, it
makes no difference currently as nothing in the sim tree uses it, but I have a
follow up commit for the Blackfin tree that needs it.
From: Jayant R. Sonar <Jayant.Sonar@kpitcummins.com>
This patch adds simulator support for handling the armv7 instructions
'movw (immediate)' and 'movt'.
Compiler frequently use these instructions to load the 32bit addresses of
global variables, string pointers etc. into the general registers.
In absence of support of these instructions:
1. GDB run simulator fails to print even simple "hello world" string
on console.
2. Loading of global variable addresses into the registers fail causing
arithmetic operation failures.
Patch has been regression tested for arm-none-eabi (-march=armv7-a).