mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2024-11-21 01:12:32 +08:00
1a7d840a21
212 Commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
Tom de Vries
|
1a7d840a21 |
[gdb/tdep] Fix ARM_LINUX_JB_PC_EABI
In arm-linux-tdep.c, ARM_LINUX_JB_PC_EABI is defined as 9, but it's been 1 since glibc 2.20. See glibc commit 80a56cc3ee ("ARM: Add SystemTap probes to longjmp and setjmp."). Update it, allowing us to run into the gdb/26967 kfail. Tested on arm-linux. Approved-By: Luis Machado <luis.machado@arm.com> PR arm/tdep Bug: https://www.sourceware.org/bugzilla/show_bug.cgi?id=31089 |
||
Simon Marchi
|
ec45252592 |
gdb: move store/extract integer functions to extract-store-integer.{c,h}
Move the declarations out of defs.h, and the implementations out of findvar.c. I opted for a new file, because this functionality of converting integers to bytes and vice-versa seems a bit to generic to live in findvar.c. Change-Id: I524858fca33901ee2150c582bac16042148d2251 Approved-By: John Baldwin <jhb@FreeBSD.org> |
||
Simon Marchi
|
18d2988e5d |
gdb, gdbserver, gdbsupport: remove includes of early headers
Now that defs.h, server.h and common-defs.h are included via the `-include` option, it is no longer necessary for source files to include them. Remove all the inclusions of these files I could find. Update the generation scripts where relevant. Change-Id: Ia026cff269c1b7ae7386dd3619bc9bb6a5332837 Approved-By: Pedro Alves <pedro@palves.net> |
||
Thiago Jung Bauermann
|
bbb12eb9c8 |
gdb/arm: Remove tpidruro register from non-FreeBSD target descriptions
Commit
|
||
Simon Marchi
|
8480a37e14 |
gdb: pass frames as const frame_info_ptr &
We currently pass frames to function by value, as `frame_info_ptr`. This is somewhat expensive: - the size of `frame_info_ptr` is 64 bytes, which is a bit big to pass by value - the constructors and destructor link/unlink the object in the global `frame_info_ptr::frame_list` list. This is an `intrusive_list`, so it's not so bad: it's just assigning a few points, there's no memory allocation as if it was `std::list`, but still it's useless to do that over and over. As suggested by Tom Tromey, change many function signatures to accept `const frame_info_ptr &` instead of `frame_info_ptr`. Some functions reassign their `frame_info_ptr` parameter, like: void the_func (frame_info_ptr frame) { for (; frame != nullptr; frame = get_prev_frame (frame)) { ... } } I wondered what to do about them, do I leave them as-is or change them (and need to introduce a separate local variable that can be re-assigned). I opted for the later for consistency. It might not be clear why some functions take `const frame_info_ptr &` while others take `frame_info_ptr`. Also, if a function took a `frame_info_ptr` because it did re-assign its parameter, I doubt that we would think to change it to `const frame_info_ptr &` should the implementation change such that it doesn't need to take `frame_info_ptr` anymore. It seems better to have a simple rule and apply it everywhere. Change-Id: I59d10addef687d157f82ccf4d54f5dde9a963fd0 Approved-By: Andrew Burgess <aburgess@redhat.com> |
||
Simon Marchi
|
9c175474a8 |
gdb: remove some unnecessary frame_info_ptr resets
This code was probably needed before we had reinflatable frame_info_ptrs, it's not necessary anymore. Change-Id: I5474c6081ee1e39624c9266b05dbe01351a130b5 Approved-By: Tom Tromey <tom@tromey.com> |
||
Andrew Burgess
|
1d506c26d9 |
Update copyright year range in header of all files managed by GDB
This commit is the result of the following actions: - Running gdb/copyright.py to update all of the copyright headers to include 2024, - Manually updating a few files the copyright.py script told me to update, these files had copyright headers embedded within the file, - Regenerating gdbsupport/Makefile.in to refresh it's copyright date, - Using grep to find other files that still mentioned 2023. If these files were updated last year from 2022 to 2023 then I've updated them this year to 2024. I'm sure I've probably missed some dates. Feel free to fix them up as you spot them. |
||
Simon Marchi
|
e4e20d4511 |
gdb: use reg_buffer_common throughout gdbsupport/common-regcache.h
Right now, gdbsupport/common-regcache.h contains two abstractons for a regcache. An opaque type `regcache` (gdb and gdbserver both have their own regcache that is the concrete version of this) and an abstract base class `reg_buffer_common`, that is the base of regcaches on both sides. These abstractions allow code to be written for both gdb and gdbserver, for instance in the gdb/arch sub-directory. However, having two different abstractions is impractical. If some common code has a regcache, and wants to use an operation defined on reg_buffer_common, it can't. It would be better to have just one. Change all instances of `regcache *` in gdbsupport/common-regcache.h to be `reg_buffer_common *`, then fix fallouts. Implementations in gdb and gdbserver now need to down-cast (using gdb::checked_static_cast) from reg_buffer_common to their concrete regcache type. Some of them could be avoided by changing free functions (like regcache_register_size) to be virtual methods on reg_buffer_common. I tried it, it seems to work, but I did not include it in this series to avoid adding unnecessary changes. Change-Id: Ia5503adb6b5509a0f4604bd2a68b4642cc5283fd Reviewed-by: John Baldwin <jhb@FreeBSD.org> |
||
Lancelot Six
|
6b09f1342c |
gdb: Replace gdb::optional with std::optional
Since GDB now requires C++17, we don't need the internally maintained gdb::optional implementation. This patch does the following replacing: - gdb::optional -> std::optional - gdb::in_place -> std::in_place - #include "gdbsupport/gdb_optional.h" -> #include <optional> This change has mostly been done automatically. One exception is gdbsupport/thread-pool.* which did not use the gdb:: prefix as it already lives in the gdb namespace. Change-Id: I19a92fa03e89637bab136c72e34fd351524f65e9 Approved-By: Tom Tromey <tom@tromey.com> Approved-By: Pedro Alves <pedro@palves.net> |
||
Tom de Vries
|
eb42bb1489 |
[gdb/tdep] Fix catching syscall execve exit for arm
When running test-case gdb.base/catch-syscall.exp on a pinebook (64-bit aarch64 kernel, 32-bit userland) I run into: ... (gdb) PASS: $exp: execve: syscall(s) execve appears in 'info breakpoints' continue^M Continuing.^M ^M Catchpoint 18 (call to syscall execve), 0xf7726318 in execve () from \ /lib/arm-linux-gnueabihf/libc.so.6^M (gdb) PASS: gdb.base/catch-syscall.exp: execve: program has called execve continue^M Continuing.^M process 32392 is executing new program: catch-syscall^M Cannot access memory at address 0xf77c6a7c^M (gdb) FAIL: $exp: execve: syscall execve has returned ... The memory error is thrown by arm_linux_get_syscall_number, when doing: ... /* PC gets incremented before the syscall-stop, so read the previous instruction. */ unsigned long this_instr = read_memory_unsigned_integer (pc - 4, 4, byte_order_for_code); ... The reason for the error is that we're stopped at the syscall exit of syscall execve, and the pc is at the first insn of the new exec, which also happens to be the first insn in the code segment, so consequently we cannot read the previous insn. Fix this by detecting the situation by looking at the register state, similar to what is done in aarch64_linux_get_syscall_number. Furthermore, catch the memory error by using safe_read_memory_unsigned_integer and return -1 instead, matching the documented behaviour of arm_linux_get_syscall_number. Finally, rather than using a hardcoded constant 11, introduce an ad-hoc arm_sys_execve. Tested on pinebook. PR tdep/31071 Bug: https://sourceware.org/bugzilla/show_bug.cgi?id=31071 |
||
Tom de Vries
|
33b5899fc0 |
[gdb] Fix typos
Fix a few typos: - implemention -> implementation - convertion(s) -> conversion(s) - backlashes -> backslashes - signoring -> ignoring - (un)ambigious -> (un)ambiguous - occured -> occurred - hidding -> hiding - temporarilly -> temporarily - immediatelly -> immediately - sillyness -> silliness - similiar -> similar - porkuser -> pokeuser - thats -> that - alway -> always - supercede -> supersede - accomodate -> accommodate - aquire -> acquire - priveleged -> privileged - priviliged -> privileged - priviledges -> privileges - privilige -> privilege - recieve -> receive - (p)refered -> (p)referred - succesfully -> successfully - successfuly -> successfully - responsability -> responsibility - wether -> whether - wich -> which - disasbleable -> disableable - descriminant -> discriminant - construcstor -> constructor - underlaying -> underlying - underyling -> underlying - structureal -> structural - appearences -> appearances - terciarily -> tertiarily - resgisters -> registers - reacheable -> reachable - likelyhood -> likelihood - intepreter -> interpreter - disassemly -> disassembly - covnersion -> conversion - conviently -> conveniently - atttribute -> attribute - struction -> struct - resonable -> reasonable - popupated -> populated - namespaxe -> namespace - intialize -> initialize - identifer(s) -> identifier(s) - expection -> exception - exectuted -> executed - dungerous -> dangerous - dissapear -> disappear - completly -> completely - (inter)changable -> (inter)changeable - beakpoint -> breakpoint - automativ -> automatic - alocating -> allocating - agressive -> aggressive - writting -> writing - reguires -> requires - registed -> registered - recuding -> reducing - opeartor -> operator - ommitted -> omitted - modifing -> modifying - intances -> instances - imbedded -> embedded - gdbaarch -> gdbarch - exection -> execution - direcive -> directive - demanged -> demangled - decidely -> decidedly - argments -> arguments - agrument -> argument - amespace -> namespace - targtet -> target - supress(ed) -> suppress(ed) - startum -> stratum - squence -> sequence - prompty -> prompt - overlow -> overflow - memember -> member - languge -> language - geneate -> generate - funcion -> function - exising -> existing - dinking -> syncing - destroh -> destroy - clenaed -> cleaned - changep -> changedp (name of variable) - arround -> around - aproach -> approach - whould -> would - symobl -> symbol - recuse -> recurse - outter -> outer - freeds -> frees - contex -> context Tested on x86_64-linux. Reviewed-By: Tom Tromey <tom@tromey.com> |
||
Joel Brobecker
|
213516ef31 |
Update copyright year range in header of all files managed by GDB
This commit is the result of running the gdb/copyright.py script, which automated the update of the copyright year range for all source files managed by the GDB project to be updated to include year 2023. |
||
Pedro Alves
|
f34652de0b |
internal_error: remove need to pass __FILE__/__LINE__
Currently, every internal_error call must be passed __FILE__/__LINE__ explicitly, like: internal_error (__FILE__, __LINE__, "foo %d", var); The need to pass in explicit __FILE__/__LINE__ is there probably because the function predates widespread and portable variadic macros availability. We can use variadic macros nowadays, and in fact, we already use them in several places, including the related gdb_assert_not_reached. So this patch renames the internal_error function to something else, and then reimplements internal_error as a variadic macro that expands __FILE__/__LINE__ itself. The result is that we now should call internal_error like so: internal_error ("foo %d", var); Likewise for internal_warning. The patch adjusts all calls sites. 99% of the adjustments were done with a perl/sed script. The non-mechanical changes are in gdbsupport/errors.h, gdbsupport/gdb_assert.h, and gdb/gdbarch.py. Approved-By: Simon Marchi <simon.marchi@efficios.com> Change-Id: Ia6f372c11550ca876829e8fd85048f4502bdcf06 |
||
Simon Marchi
|
1639fab33b |
gdb: rename target_read_auxv(target_ops *) to target_read_auxv_raw
Having two overloads of target_read_auxv that don't have the same goals is confusing. Rename the one that reads from an explicit target_ops to target_read_auxv_raw. Also, it occured to me that the non-raw version could use the raw version, that reduces duplication a bit. Change-Id: I28e5f7cecbfcacd0174d4686efb3e4a23b4ad491 |
||
Simon Marchi
|
82d23ca811 |
gdb: fix auxv caching
There's a flaw in the interaction of the auxv caching and the fact that target_auxv_search allows reading auxv from an arbitrary target_ops (passed in as a parameter). This has consequences as explained in this thread: https://inbox.sourceware.org/gdb-patches/20220719144542.1478037-1-luis.machado@arm.com/ In summary, when loading an AArch64 core file with MTE support by passing the executable and core file names directly to GDB, we see the MTE info: $ ./gdb -nx --data-directory=data-directory -q aarch64-mte-gcore aarch64-mte-gcore.core ... Program terminated with signal SIGSEGV, Segmentation fault Memory tag violation while accessing address 0x0000ffff8ef5e000 Allocation tag 0x1 Logical tag 0x0. #0 0x0000aaaade3d0b4c in ?? () (gdb) But if we do it as two separate commands (file and core) we don't: $ ./gdb -nx --data-directory=data-directory -q -ex "file aarch64-mte-gcore" -ex "core aarch64-mte-gcore.core" ... Program terminated with signal SIGSEGV, Segmentation fault. #0 0x0000aaaade3d0b4c in ?? () (gdb) The problem with the latter is that auxv data gets improperly cached between the two commands. When executing the file command, auxv gets first queried here, when loading the executable: #0 target_auxv_search (ops=0x55555b842400 <exec_ops>, match=0x9, valp=0x7fffffffc5d0) at /home/simark/src/binutils-gdb/gdb/auxv.c:383 #1 0x0000555557e576f2 in svr4_exec_displacement (displacementp=0x7fffffffc8c0) at /home/simark/src/binutils-gdb/gdb/solib-svr4.c:2482 #2 0x0000555557e594d1 in svr4_relocate_main_executable () at /home/simark/src/binutils-gdb/gdb/solib-svr4.c:2878 #3 0x0000555557e5989e in svr4_solib_create_inferior_hook (from_tty=1) at /home/simark/src/binutils-gdb/gdb/solib-svr4.c:2933 #4 0x0000555557e6e49f in solib_create_inferior_hook (from_tty=1) at /home/simark/src/binutils-gdb/gdb/solib.c:1253 #5 0x0000555557f33e29 in symbol_file_command (args=0x7fffffffe01c "aarch64-mte-gcore", from_tty=1) at /home/simark/src/binutils-gdb/gdb/symfile.c:1655 #6 0x00005555573319c3 in file_command (arg=0x7fffffffe01c "aarch64-mte-gcore", from_tty=1) at /home/simark/src/binutils-gdb/gdb/exec.c:555 #7 0x0000555556e47185 in do_simple_func (args=0x7fffffffe01c "aarch64-mte-gcore", from_tty=1, c=0x612000047740) at /home/simark/src/binutils-gdb/gdb/cli/cli-decode.c:95 #8 0x0000555556e551c9 in cmd_func (cmd=0x612000047740, args=0x7fffffffe01c "aarch64-mte-gcore", from_tty=1) at /home/simark/src/binutils-gdb/gdb/cli/cli-decode.c:2543 #9 0x00005555580e63fd in execute_command (p=0x7fffffffe02c "e", from_tty=1) at /home/simark/src/binutils-gdb/gdb/top.c:692 #10 0x0000555557771913 in catch_command_errors (command=0x5555580e55ad <execute_command(char const*, int)>, arg=0x7fffffffe017 "file aarch64-mte-gcore", from_tty=1, do_bp_actions=true) at /home/simark/src/binutils-gdb/gdb/main.c:513 #11 0x0000555557771fba in execute_cmdargs (cmdarg_vec=0x7fffffffd570, file_type=CMDARG_FILE, cmd_type=CMDARG_COMMAND, ret=0x7fffffffd230) at /home/simark/src/binutils-gdb/gdb/main.c:608 #12 0x00005555577755ac in captured_main_1 (context=0x7fffffffda10) at /home/simark/src/binutils-gdb/gdb/main.c:1299 #13 0x0000555557775c2d in captured_main (data=0x7fffffffda10) at /home/simark/src/binutils-gdb/gdb/main.c:1320 #14 0x0000555557775cc2 in gdb_main (args=0x7fffffffda10) at /home/simark/src/binutils-gdb/gdb/main.c:1345 #15 0x00005555568bdcbe in main (argc=10, argv=0x7fffffffdba8) at /home/simark/src/binutils-gdb/gdb/gdb.c:32 Here, target_auxv_search is called on the inferior's target stack. The target stack only contains the exec target, so the query returns empty auxv data. This gets cached for that inferior in `auxv_inferior_data`. In its constructor (before it is pushed to the inferior's target stack), the core_target needs to identify the right target description from the core, and for that asks the gdbarch to read a target description from the core file. Because some implementations of gdbarch_core_read_description (such as AArch64's) need to read auxv data from the core in order to determine the right target description, the core_target passes a pointer to itself, allowing implementations to call target_auxv_search it. However, because we have previously cached (empty) auxv data for that inferior, target_auxv_search searched that cached (empty) auxv data, not auxv data read from the core. Remember that this data was obtained by reading auxv on the inferior's target stack, which only contained an exec target. The problem I see is that while target_auxv_search offers the flexibility of reading from an arbitrary (passed as an argument) target, the caching doesn't do the distinction of which target is being queried, and where the cached data came from. So, you could read auxv from a target A, it gets cached, then you try to read auxv from a target B, and it returns the cached data from target A. That sounds wrong. In our case, we expect to read different auxv data from the core target than what we have read from the target stack earlier, so it doesn't make sense to hit the cache in this case. To fix this, I propose splitting the code paths that read auxv data from an inferior's target stack and those that read from a passed-in target. The code path that reads from the target stack will keep caching, whereas the one that reads from a passed-in target won't. And since, searching in auxv data is independent from where this data came from, split the "read" part from the "search" part. From what I understand, auxv caching was introduced mostly to reduce latency on remote connections, when doing many queries. With the change I propose, only the queries done while constructing the core_target end up not using cached auxv data. This is fine, because there are just a handful of queries max, done at this point, and reading core files is local. The changes to auxv functions are: - Introduce 2 target_read_auxv functions. One reads from an explicit target_ops and doesn't do caching (to be used in gdbarch_core_read_description context). The other takes no argument, reads from the current inferior's target stack (it looks just like a standard target function wrapper) and does caching. The first target_read_auxv actually replaces get_auxv_inferior_data, since it became a trivial wrapper around it. - Change the existing target_auxv_search to not read auxv data from the target, but to accept it as a parameter (a gdb::byte_vector). This function doesn't care where the data came from, it just searches in it. It still needs to take a target_ops and gdbarch to know how to parse auxv entries. - Add a convenience target_auxv_search overload that reads auxv data from the inferior's target stack and searches in it. This overload is useful to replace the exist target_auxv_search calls that passed the `current_inferior ()->top_target ()` target and keep the call sites short. - Modify parse_auxv to accept a target_ops and gdbarch to use for parsing entries. Not strictly related to the rest of this change, but it seems like a good change in the context. Changes in architecture-specific files (tdep and nat): - In linux-tdep, linux_get_hwcap and linux_get_hwcap2 get split in two, similar to target_auxv_search. One version receives auxv data, target and arch as parameters. The other gets everything from the current inferior. The latter is for convenience, to avoid making call sites too ugly. - Call sites of linux_get_hwcap and linux_get_hwcap2 are adjusted to use either of the new versions. The call sites in gdbarch_core_read_description context explicitly read auxv data from the passed-in target and call the linux_get_hwcap{,2} function with parameters. Other call sites use the versions without parameters. - Same idea for arm_fbsd_read_description_auxv. - Call sites of target_auxv_search that passed `current_inferior ()->top_target ()` are changed to use the target_auxv_search overload that works in the current inferior. Reviewed-By: John Baldwin <jhb@FreeBSD.org> Reviewed-By: Luis Machado <luis.machado@arm.com> Change-Id: Ib775a220cf1e76443fb7da2fdff8fc631128fe66 |
||
Tom Tromey
|
bd2b40ac12 |
Change GDB to use frame_info_ptr
This changes GDB to use frame_info_ptr instead of frame_info * The substitution was done with multiple sequential `sed` commands: sed 's/^struct frame_info;/class frame_info_ptr;/' sed 's/struct frame_info \*/frame_info_ptr /g' - which left some issues in a few files, that were manually fixed. sed 's/\<frame_info \*/frame_info_ptr /g' sed 's/frame_info_ptr $/frame_info_ptr/g' - used to remove whitespace problems. The changed files were then manually checked and some 'sed' changes undone, some constructors and some gets were added, according to what made sense, and what Tromey originally did Co-Authored-By: Bruno Larsen <blarsen@redhat.com> Approved-by: Tom Tomey <tom@tromey.com> |
||
Andrew Burgess
|
08106042d9 |
gdb: move the type cast into gdbarch_tdep
I built GDB for all targets on a x86-64/GNU-Linux system, and then (accidentally) passed GDB a RISC-V binary, and asked GDB to "run" the binary on the native target. I got this error: (gdb) show architecture The target architecture is set to "auto" (currently "i386"). (gdb) file /tmp/hello.rv32.exe Reading symbols from /tmp/hello.rv32.exe... (gdb) show architecture The target architecture is set to "auto" (currently "riscv:rv32"). (gdb) run Starting program: /tmp/hello.rv32.exe ../../src/gdb/i387-tdep.c:596: internal-error: i387_supply_fxsave: Assertion `tdep->st0_regnum >= I386_ST0_REGNUM' failed. What's going on here is this; initially the architecture is i386, this is based on the default architecture, which is set based on the native target. After loading the RISC-V executable the architecture of the current inferior is updated based on the architecture of the executable. When we "run", GDB does a fork & exec, with the inferior being controlled through ptrace. GDB sees an initial stop from the inferior as soon as the inferior comes to life. In response to this stop GDB ends up calling save_stop_reason (linux-nat.c), which ends up trying to read register from the inferior, to do this we end up calling target_ops::fetch_registers, which, for the x86-64 native target, calls amd64_linux_nat_target::fetch_registers. After this I eventually end up in i387_supply_fxsave, different x86 based targets will end in different functions to fetch registers, but it doesn't really matter which function we end up in, the problem is this line, which is repeated in many places: i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (arch); The problem here is that the ARCH in this line comes from the current inferior, which, as we discussed above, will be a RISC-V gdbarch, the tdep field will actually be of type riscv_gdbarch_tdep, not i386_gdbarch_tdep. After this cast we are relying on undefined behaviour, in my case I happen to trigger an assert, but this might not always be the case. The thing I tried that exposed this problem was of course, trying to start an executable of the wrong architecture on a native target. I don't think that the correct solution for this problem is to detect, at the point of cast, that the gdbarch_tdep object is of the wrong type, but, I did wonder, is there a way that we could protect ourselves from incorrectly casting the gdbarch_tdep object? I think that there is something we can do here, and this commit is the first step in that direction, though no actual check is added by this commit. This commit can be split into two parts: (1) In gdbarch.h and arch-utils.c. In these files I have modified gdbarch_tdep (the function) so that it now takes a template argument, like this: template<typename TDepType> static inline TDepType * gdbarch_tdep (struct gdbarch *gdbarch) { struct gdbarch_tdep *tdep = gdbarch_tdep_1 (gdbarch); return static_cast<TDepType *> (tdep); } After this change we are no better protected, but the cast is now done within the gdbarch_tdep function rather than at the call sites, this leads to the second, much larger change in this commit, (2) Everywhere gdbarch_tdep is called, we make changes like this: - i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (arch); + i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (arch); There should be no functional change after this commit. In the next commit I will build on this change to add an assertion in gdbarch_tdep that checks we are casting to the correct type. |
||
Tom de Vries
|
43f074cde4 |
[gdb/record] Support recording of getrandom
Add missing support for recording of linux syscall getrandom. Tested on x86_64-linux with native and target board unix/-m32. Bug: https://sourceware.org/bugzilla/show_bug.cgi?id=22081 |
||
John Baldwin
|
92d48a1e4e | Add an arm-tls feature which includes the tpidruro register from CP15. | ||
Tom Tromey
|
6cb06a8cda |
Unify gdb printf functions
Now that filtered and unfiltered output can be treated identically, we can unify the printf family of functions. This is done under the name "gdb_printf". Most of this patch was written by script. |
||
Joel Brobecker
|
4a94e36819 |
Automatic Copyright Year update after running gdb/copyright.py
This commit brings all the changes made by running gdb/copyright.py as per GDB's Start of New Year Procedure. For the avoidance of doubt, all changes in this commits were performed by the script. |
||
Tom Tromey
|
d68510ac19 |
Use correct stream for process record output
The process record code often emits unfiltered output. In some cases, this output ought to go to gdb_stderr (but see below). In other cases, the output is guarded by a logging variable and so ought to go to gdb_stdlog. This patch makes these changes. Note that in many cases, the output to stderr is followed by a "return -1", which is how process record indicates an error. It seems to me that calling error here would be preferable, because, in many cases, that's all the caller does when it sees a -1. However, I haven't made this change. This is part of PR gdb/7233. Bug: https://sourceware.org/bugzilla/show_bug.cgi?id=7233 |
||
Simon Marchi
|
345bd07cce |
gdb: fix gdbarch_tdep ODR violation
I would like to be able to use non-trivial types in gdbarch_tdep types. This is not possible at the moment (in theory), because of the one definition rule. To allow it, rename all gdbarch_tdep types to <arch>_gdbarch_tdep, and make them inherit from a gdbarch_tdep base class. The inheritance is necessary to be able to pass pointers to all these <arch>_gdbarch_tdep objects to gdbarch_alloc, which takes a pointer to gdbarch_tdep. These objects are never deleted through a base class pointer, so I didn't include a virtual destructor. In the future, if gdbarch objects deletable, I could imagine that the gdbarch_tdep objects could become owned by the gdbarch objects, and then it would become useful to have a virtual destructor (so that the gdbarch object can delete the owned gdbarch_tdep object). But that's not necessary right now. It turns out that RISC-V already has a gdbarch_tdep that is non-default-constructible, so that provides a good motivation for this change. Most changes are fairly straightforward, mostly needing to add some casts all over the place. There is however the xtensa architecture, doing its own little weird thing to define its gdbarch_tdep. I did my best to adapt it, but I can't test those changes. Change-Id: Ic001903f91ddd106bd6ca09a79dabe8df2d69f3b |
||
H.J. Lu
|
c0154a4a21 |
gdb: Don't assume r_ldsomap when r_version > 1 on Linux
The r_ldsomap field is specific to Solaris (part of librtld_db), and should never be accessed for Linux. glibc is planning to add a field to support multiple namespaces. But there will be no r_ldsomap when r_version is bumped to 2. Add linux_[ilp32|lp64]_fetch_link_map_offsets to set r_ldsomap_offset to -1 and use them for Linux targets. Bug: https://sourceware.org/bugzilla/show_bug.cgi?id=28236 |
||
Tom Tromey
|
4c5e7a930a |
Convert stap probes to create operations
This changes the stap probe code to create operations, rather than exp_elements. gdb/ChangeLog 2021-03-08 Tom Tromey <tom@tromey.com> * stap-probe.c (binop_maker_ftype): New typedef. (stap_maker_map): New global. (stap_make_binop): New function. (stap_parse_register_operand): Return operation_up. (stap_parse_single_operand, stap_parse_argument_conditionally) (stap_parse_argument_1): Likewise. (stap_parse_argument): Create operations. (stap_probe::parse_arguments): Update. (_initialize_stap_probe): Initialize stap_maker_map. * ppc-linux-tdep.c (ppc_stap_parse_special_token): Change return type. * i386-tdep.h (i386_stap_parse_special_token): Change return type. * i386-tdep.c (i386_stap_parse_special_token_triplet) (i386_stap_parse_special_token_three_arg_disp) (i386_stap_parse_special_token): Change return type. * gdbarch.sh (stap_parse_special_token): Change return type. * gdbarch.c: Rebuild. * gdbarch.h: Rebuild. * arm-linux-tdep.c (arm_stap_parse_special_token): Change return type. * aarch64-linux-tdep.c (aarch64_stap_parse_special_token): Change return type. |
||
Simon Marchi
|
6bd434d6ca |
gdb: make some variables static
I'm trying to enable clang's -Wmissing-variable-declarations warning. This patch fixes all the obvious spots where we can simply add "static" (at least, found when building on x86-64 Linux). gdb/ChangeLog: * aarch64-linux-tdep.c (aarch64_linux_record_tdep): Make static. * aarch64-tdep.c (tdesc_aarch64_list, aarch64_prologue_unwind, aarch64_stub_unwind, aarch64_normal_base, ): Make static. * arm-linux-tdep.c (arm_prologue_unwind): Make static. * arm-tdep.c (struct frame_unwind): Make static. * auto-load.c (auto_load_safe_path_vec): Make static. * csky-tdep.c (csky_stub_unwind): Make static. * gdbarch.c (gdbarch_data_registry): Make static. * gnu-v2-abi.c (gnu_v2_abi_ops): Make static. * i386-netbsd-tdep.c (i386nbsd_mc_reg_offset): Make static. * i386-tdep.c (i386_frame_setup_skip_insns, i386_tramp_chain_in_reg_insns, i386_tramp_chain_on_stack_insns): Make static. * infrun.c (observer_mode): Make static. * linux-nat.c (sigchld_action): Make static. * linux-thread-db.c (thread_db_list): Make static. * maint-test-options.c (maintenance_test_options_list): * mep-tdep.c (mep_csr_registers): Make static. * mi/mi-cmds.c (struct mi_cmd_stats): Remove struct type name. (stats): Make static. * nat/linux-osdata.c (struct osdata_type): Make static. * ppc-netbsd-tdep.c (ppcnbsd_reg_offsets): Make static. * progspace.c (last_program_space_num): Make static. * python/py-param.c (struct parm_constant): Remove struct type name. (parm_constants): Make static. * python/py-record-btrace.c (btpy_list_methods): Make static. * python/py-record.c (recpy_gap_type): Make static. * record.c (record_goto_cmdlist): Make static. * regcache.c (regcache_descr_handle): Make static. * registry.h (DEFINE_REGISTRY): Make definition static. * symmisc.c (std_in, std_out, std_err): Make static. * top.c (previous_saved_command_line): Make static. * tracepoint.c (trace_user, trace_notes, trace_stop_notes): Make static. * unittests/command-def-selftests.c (nr_duplicates, nr_invalid_prefixcmd, lists): Make static. * unittests/observable-selftests.c (test_notification): Make static. * unittests/optional/assignment/1.cc (counter): Make static. * unittests/optional/assignment/2.cc (counter): Make static. * unittests/optional/assignment/3.cc (counter): Make static. * unittests/optional/assignment/4.cc (counter): Make static. * unittests/optional/assignment/5.cc (counter): Make static. * unittests/optional/assignment/6.cc (counter): Make static. gdbserver/ChangeLog: * ax.cc (bytecode_address_table): Make static. * debug.cc (debug_file): Make static. * linux-low.cc (stopping_threads): Make static. (step_over_bkpt): Make static. * linux-x86-low.cc (amd64_emit_ops, i386_emit_ops): Make static. * tracepoint.cc (stop_tracing_bkpt, flush_trace_buffer_bkpt, alloced_trace_state_variables, trace_buffer_ctrl, tracing_start_time, tracing_stop_time, tracing_user_name, tracing_notes, tracing_stop_note): Make static. Change-Id: Ic1d8034723b7802502bda23770893be2338ab020 |
||
Joel Brobecker
|
3666a04883 |
Update copyright year range in all GDB files
This commits the result of running gdb/copyright.py as per our Start of New Year procedure... gdb/ChangeLog Update copyright year range in copyright header of all GDB files. |
||
Simon Marchi
|
480af54cf6 |
gdb: make displaced stepping implementation capable of managing multiple buffers
The displaced_step_buffer class, introduced in the previous patch, manages access to a single displaced step buffer. Change it into displaced_step_buffers (note the plural), which manages access to multiple displaced step buffers. When preparing a displaced step for a thread, it looks for an unused buffer. For now, all users still pass a single displaced step buffer, so no real behavior change is expected here. The following patch makes a user pass more than one buffer, so the functionality introduced by this patch is going to be useful in the next one. gdb/ChangeLog: * displaced-stepping.h (struct displaced_step_buffer): Rename to... (struct displaced_step_buffers): ... this. <m_addr, m_current_thread, m_copy_insn_closure>: Remove. <struct displaced_step_buffer>: New inner class. <m_buffers>: New. * displaced-stepping.c (displaced_step_buffer::prepare): Rename to... (displaced_step_buffers::prepare): ... this, adjust for multiple buffers. (displaced_step_buffer::finish): Rename to... (displaced_step_buffers::finish): ... this, adjust for multiple buffers. (displaced_step_buffer::copy_insn_closure_by_addr): Rename to... (displaced_step_buffers::copy_insn_closure_by_addr): ... this, adjust for multiple buffers. (displaced_step_buffer::restore_in_ptid): Rename to... (displaced_step_buffers::restore_in_ptid): ... this, adjust for multiple buffers. * linux-tdep.h (linux_init_abi): Change supports_displaced_step for num_disp_step_buffers. * linux-tdep.c (struct linux_gdbarch_data) <num_disp_step_buffers>: New field. (struct linux_info) <disp_step_buf>: Rename to... <disp_step_bufs>: ... this, change type to displaced_step_buffers. (linux_displaced_step_prepare): Use linux_gdbarch_data::num_disp_step_buffers to create that number of buffers. (linux_displaced_step_finish): Adjust. (linux_displaced_step_copy_insn_closure_by_addr): Adjust. (linux_displaced_step_restore_all_in_ptid): Adjust. (linux_init_abi): Change supports_displaced_step parameter for num_disp_step_buffers, save it in linux_gdbarch_data. * aarch64-linux-tdep.c (aarch64_linux_init_abi): Adjust. * alpha-linux-tdep.c (alpha_linux_init_abi): Adjust. * amd64-linux-tdep.c (amd64_linux_init_abi_common): Change supports_displaced_step parameter for num_disp_step_buffers. (amd64_linux_init_abi): Adjust. (amd64_x32_linux_init_abi): Adjust. * arc-linux-tdep.c (arc_linux_init_osabi): Adjust. * arm-linux-tdep.c (arm_linux_init_abi): Adjust. * bfin-linux-tdep.c (bfin_linux_init_abi): Adjust. * cris-linux-tdep.c (cris_linux_init_abi): Adjust. * csky-linux-tdep.c (csky_linux_init_abi): Adjust. * frv-linux-tdep.c (frv_linux_init_abi): Adjust. * hppa-linux-tdep.c (hppa_linux_init_abi): Adjust. * i386-linux-tdep.c (i386_linux_init_abi): Adjust. * ia64-linux-tdep.c (ia64_linux_init_abi): Adjust. * m32r-linux-tdep.c (m32r_linux_init_abi): Adjust. * m68k-linux-tdep.c (m68k_linux_init_abi): * microblaze-linux-tdep.c (microblaze_linux_init_abi): * mips-linux-tdep.c (mips_linux_init_abi): Adjust. * mn10300-linux-tdep.c (am33_linux_init_osabi): Adjust. * nios2-linux-tdep.c (nios2_linux_init_abi): Adjust. * or1k-linux-tdep.c (or1k_linux_init_abi): Adjust. * ppc-linux-tdep.c (ppc_linux_init_abi): Adjust. * riscv-linux-tdep.c (riscv_linux_init_abi): Adjust. * rs6000-tdep.c (struct ppc_inferior_data) <disp_step_buf>: Change type to displaced_step_buffers. * s390-linux-tdep.c (s390_linux_init_abi_any): Adjust. * sh-linux-tdep.c (sh_linux_init_abi): Adjust. * sparc-linux-tdep.c (sparc32_linux_init_abi): Adjust. * sparc64-linux-tdep.c (sparc64_linux_init_abi): Adjust. * tic6x-linux-tdep.c (tic6x_uclinux_init_abi): Adjust. * tilegx-linux-tdep.c (tilegx_linux_init_abi): Adjust. * xtensa-linux-tdep.c (xtensa_linux_init_abi): Adjust. Change-Id: Ia9c02f207da2c9e1d9188020139619122392bb70 |
||
Simon Marchi
|
187b041e25 |
gdb: move displaced stepping logic to gdbarch, allow starting concurrent displaced steps
Today, GDB only allows a single displaced stepping operation to happen per inferior at a time. There is a single displaced stepping buffer per inferior, whose address is fixed (obtained with gdbarch_displaced_step_location), managed by infrun.c. In the case of the AMD ROCm target [1] (in the context of which this work has been done), it is typical to have thousands of threads (or waves, in SMT terminology) executing the same code, hitting the same breakpoint (possibly conditional) and needing to to displaced step it at the same time. The limitation of only one displaced step executing at a any given time becomes a real bottleneck. To fix this bottleneck, we want to make it possible for threads of a same inferior to execute multiple displaced steps in parallel. This patch builds the foundation for that. In essence, this patch moves the task of preparing a displaced step and cleaning up after to gdbarch functions. This allows using different schemes for allocating and managing displaced stepping buffers for different platforms. The gdbarch decides how to assign a buffer to a thread that needs to execute a displaced step. On the ROCm target, we are able to allocate one displaced stepping buffer per thread, so a thread will never have to wait to execute a displaced step. On Linux, the entry point of the executable if used as the displaced stepping buffer, since we assume that this code won't get used after startup. From what I saw (I checked with a binary generated against glibc and musl), on AMD64 we have enough space there to fit two displaced stepping buffers. A subsequent patch makes AMD64/Linux use two buffers. In addition to having multiple displaced stepping buffers, there is also the idea of sharing displaced stepping buffers between threads. Two threads doing displaced steps for the same PC could use the same buffer at the same time. Two threads stepping over the same instruction (same opcode) at two different PCs may also be able to share a displaced stepping buffer. This is an idea for future patches, but the architecture built by this patch is made to allow this. Now, the implementation details. The main part of this patch is moving the responsibility of preparing and finishing a displaced step to the gdbarch. Before this patch, preparing a displaced step is driven by the displaced_step_prepare_throw function. It does some calls to the gdbarch to do some low-level operations, but the high-level logic is there. The steps are roughly: - Ask the gdbarch for the displaced step buffer location - Save the existing bytes in the displaced step buffer - Ask the gdbarch to copy the instruction into the displaced step buffer - Set the pc of the thread to the beginning of the displaced step buffer Similarly, the "fixup" phase, executed after the instruction was successfully single-stepped, is driven by the infrun code (function displaced_step_finish). The steps are roughly: - Restore the original bytes in the displaced stepping buffer - Ask the gdbarch to fixup the instruction result (adjust the target's registers or memory to do as if the instruction had been executed in its original location) The displaced_step_inferior_state::step_thread field indicates which thread (if any) is currently using the displaced stepping buffer, so it is used by displaced_step_prepare_throw to check if the displaced stepping buffer is free to use or not. This patch defers the whole task of preparing and cleaning up after a displaced step to the gdbarch. Two new main gdbarch methods are added, with the following semantics: - gdbarch_displaced_step_prepare: Prepare for the given thread to execute a displaced step of the instruction located at its current PC. Upon return, everything should be ready for GDB to resume the thread (with either a single step or continue, as indicated by gdbarch_displaced_step_hw_singlestep) to make it displaced step the instruction. - gdbarch_displaced_step_finish: Called when the thread stopped after having started a displaced step. Verify if the instruction was executed, if so apply any fixup required to compensate for the fact that the instruction was executed at a different place than its original pc. Release any resources that were allocated for this displaced step. Upon return, everything should be ready for GDB to resume the thread in its "normal" code path. The displaced_step_prepare_throw function now pretty much just offloads to gdbarch_displaced_step_prepare and the displaced_step_finish function offloads to gdbarch_displaced_step_finish. The gdbarch_displaced_step_location method is now unnecessary, so is removed. Indeed, the core of GDB doesn't know how many displaced step buffers there are nor where they are. To keep the existing behavior for existing architectures, the logic that was previously implemented in infrun.c for preparing and finishing a displaced step is moved to displaced-stepping.c, to the displaced_step_buffer class. Architectures are modified to implement the new gdbarch methods using this class. The behavior is not expected to change. The other important change (which arises from the above) is that the core of GDB no longer prevents concurrent displaced steps. Before this patch, start_step_over walks the global step over chain and tries to initiate a step over (whether it is in-line or displaced). It follows these rules: - if an in-line step is in progress (in any inferior), don't start any other step over - if a displaced step is in progress for an inferior, don't start another displaced step for that inferior After starting a displaced step for a given inferior, it won't start another displaced step for that inferior. In the new code, start_step_over simply tries to initiate step overs for all the threads in the list. But because threads may be added back to the global list as it iterates the global list, trying to initiate step overs, start_step_over now starts by stealing the global queue into a local queue and iterates on the local queue. In the typical case, each thread will either: - have initiated a displaced step and be resumed - have been added back by the global step over queue by displaced_step_prepare_throw, because the gdbarch will have returned that there aren't enough resources (i.e. buffers) to initiate a displaced step for that thread Lastly, if start_step_over initiates an in-line step, it stops iterating, and moves back whatever remaining threads it had in its local step over queue to the global step over queue. Two other gdbarch methods are added, to handle some slightly annoying corner cases. They feel awkwardly specific to these cases, but I don't see any way around them: - gdbarch_displaced_step_copy_insn_closure_by_addr: in arm_pc_is_thumb, arm-tdep.c wants to get the closure for a given buffer address. - gdbarch_displaced_step_restore_all_in_ptid: when a process forks (at least on Linux), the address space is copied. If some displaced step buffers were in use at the time of the fork, we need to restore the original bytes in the child's address space. These two adjustments are also made in infrun.c: - prepare_for_detach: there may be multiple threads doing displaced steps when we detach, so wait until all of them are done - handle_inferior_event: when we handle a fork event for a given thread, it's possible that other threads are doing a displaced step at the same time. Make sure to restore the displaced step buffer contents in the child for them. [1] https://github.com/ROCm-Developer-Tools/ROCgdb gdb/ChangeLog: * displaced-stepping.h (struct displaced_step_copy_insn_closure): Adjust comments. (struct displaced_step_inferior_state) <step_thread, step_gdbarch, step_closure, step_original, step_copy, step_saved_copy>: Remove fields. (struct displaced_step_thread_state): New. (struct displaced_step_buffer): New. * displaced-stepping.c (displaced_step_buffer::prepare): New. (write_memory_ptid): Move from infrun.c. (displaced_step_instruction_executed_successfully): New, factored out of displaced_step_finish. (displaced_step_buffer::finish): New. (displaced_step_buffer::copy_insn_closure_by_addr): New. (displaced_step_buffer::restore_in_ptid): New. * gdbarch.sh (displaced_step_location): Remove. (displaced_step_prepare, displaced_step_finish, displaced_step_copy_insn_closure_by_addr, displaced_step_restore_all_in_ptid): New. * gdbarch.c: Re-generate. * gdbarch.h: Re-generate. * gdbthread.h (class thread_info) <displaced_step_state>: New field. (thread_step_over_chain_remove): New declaration. (thread_step_over_chain_next): New declaration. (thread_step_over_chain_length): New declaration. * thread.c (thread_step_over_chain_remove): Make non-static. (thread_step_over_chain_next): New. (global_thread_step_over_chain_next): Use thread_step_over_chain_next. (thread_step_over_chain_length): New. (global_thread_step_over_chain_enqueue): Add debug print. (global_thread_step_over_chain_remove): Add debug print. * infrun.h (get_displaced_step_copy_insn_closure_by_addr): Remove. * infrun.c (get_displaced_stepping_state): New. (displaced_step_in_progress_any_inferior): Remove. (displaced_step_in_progress_thread): Adjust. (displaced_step_in_progress): Adjust. (displaced_step_in_progress_any_thread): New. (get_displaced_step_copy_insn_closure_by_addr): Remove. (gdbarch_supports_displaced_stepping): Use gdbarch_displaced_step_prepare_p. (displaced_step_reset): Change parameter from inferior to thread. (displaced_step_prepare_throw): Implement using gdbarch_displaced_step_prepare. (write_memory_ptid): Move to displaced-step.c. (displaced_step_restore): Remove. (displaced_step_finish): Implement using gdbarch_displaced_step_finish. (start_step_over): Allow starting more than one displaced step. (prepare_for_detach): Handle possibly multiple threads doing displaced steps. (handle_inferior_event): Handle possibility that fork event happens while another thread displaced steps. * linux-tdep.h (linux_displaced_step_prepare): New. (linux_displaced_step_finish): New. (linux_displaced_step_copy_insn_closure_by_addr): New. (linux_displaced_step_restore_all_in_ptid): New. (linux_init_abi): Add supports_displaced_step parameter. * linux-tdep.c (struct linux_info) <disp_step_buf>: New field. (linux_displaced_step_prepare): New. (linux_displaced_step_finish): New. (linux_displaced_step_copy_insn_closure_by_addr): New. (linux_displaced_step_restore_all_in_ptid): New. (linux_init_abi): Add supports_displaced_step parameter, register displaced step methods if true. (_initialize_linux_tdep): Register inferior_execd observer. * amd64-linux-tdep.c (amd64_linux_init_abi_common): Add supports_displaced_step parameter, adjust call to linux_init_abi. Remove call to set_gdbarch_displaced_step_location. (amd64_linux_init_abi): Adjust call to amd64_linux_init_abi_common. (amd64_x32_linux_init_abi): Likewise. * aarch64-linux-tdep.c (aarch64_linux_init_abi): Adjust call to linux_init_abi. Remove call to set_gdbarch_displaced_step_location. * arm-linux-tdep.c (arm_linux_init_abi): Likewise. * i386-linux-tdep.c (i386_linux_init_abi): Likewise. * alpha-linux-tdep.c (alpha_linux_init_abi): Adjust call to linux_init_abi. * arc-linux-tdep.c (arc_linux_init_osabi): Likewise. * bfin-linux-tdep.c (bfin_linux_init_abi): Likewise. * cris-linux-tdep.c (cris_linux_init_abi): Likewise. * csky-linux-tdep.c (csky_linux_init_abi): Likewise. * frv-linux-tdep.c (frv_linux_init_abi): Likewise. * hppa-linux-tdep.c (hppa_linux_init_abi): Likewise. * ia64-linux-tdep.c (ia64_linux_init_abi): Likewise. * m32r-linux-tdep.c (m32r_linux_init_abi): Likewise. * m68k-linux-tdep.c (m68k_linux_init_abi): Likewise. * microblaze-linux-tdep.c (microblaze_linux_init_abi): Likewise. * mips-linux-tdep.c (mips_linux_init_abi): Likewise. * mn10300-linux-tdep.c (am33_linux_init_osabi): Likewise. * nios2-linux-tdep.c (nios2_linux_init_abi): Likewise. * or1k-linux-tdep.c (or1k_linux_init_abi): Likewise. * riscv-linux-tdep.c (riscv_linux_init_abi): Likewise. * s390-linux-tdep.c (s390_linux_init_abi_any): Likewise. * sh-linux-tdep.c (sh_linux_init_abi): Likewise. * sparc-linux-tdep.c (sparc32_linux_init_abi): Likewise. * sparc64-linux-tdep.c (sparc64_linux_init_abi): Likewise. * tic6x-linux-tdep.c (tic6x_uclinux_init_abi): Likewise. * tilegx-linux-tdep.c (tilegx_linux_init_abi): Likewise. * xtensa-linux-tdep.c (xtensa_linux_init_abi): Likewise. * ppc-linux-tdep.c (ppc_linux_init_abi): Adjust call to linux_init_abi. Remove call to set_gdbarch_displaced_step_location. * arm-tdep.c (arm_pc_is_thumb): Call gdbarch_displaced_step_copy_insn_closure_by_addr instead of get_displaced_step_copy_insn_closure_by_addr. * rs6000-aix-tdep.c (rs6000_aix_init_osabi): Adjust calls to clear gdbarch methods. * rs6000-tdep.c (struct ppc_inferior_data): New structure. (get_ppc_per_inferior): New function. (ppc_displaced_step_prepare): New function. (ppc_displaced_step_finish): New function. (ppc_displaced_step_restore_all_in_ptid): New function. (rs6000_gdbarch_init): Register new gdbarch methods. * s390-tdep.c (s390_gdbarch_init): Don't call set_gdbarch_displaced_step_location, set new gdbarch methods. gdb/testsuite/ChangeLog: * gdb.arch/amd64-disp-step-avx.exp: Adjust pattern. * gdb.threads/forking-threads-plus-breakpoint.exp: Likewise. * gdb.threads/non-stop-fair-events.exp: Likewise. Change-Id: I387cd235a442d0620ec43608fd3dc0097fcbf8c8 |
||
Simon Marchi
|
1152d984bb |
gdb: rename displaced_step_closure to displaced_step_copy_insn_closure
Since we're going to introduce other "displaced step" functions and another kind of displaced step closure, make it clear that this is the return type of the gdbarch_displaced_step_copy_insn function. gdb/ChangeLog: * infrun.h (get_displaced_step_closure_by_addr): Rename to... (get_displaced_step_copy_insn_closure_by_addr): ... this. Update all users. (displaced_step_closure): Rename to... (displaced_step_copy_insn_closure): ... this. Update all users. (displaced_step_closure_up): Rename to... (displaced_step_copy_insn_closure_up). ... this. Update all users. (buf_displaced_step_closure): Rename to... (buf_displaced_step_copy_insn_closure): ... this. Update all users. * infrun.c (get_displaced_step_closure_by_addr): Rename to... (get_displaced_step_copy_insn_closure_by_addr): ... this. Update all users. * aarch64-tdep.c (aarch64_displaced_step_closure): Rename to... (aarch64_displaced_step_copy_insn_closure): ... this. Update all users. * amd64-tdep.c (amd64_displaced_step_closure): Rename to... (amd64_displaced_step_copy_insn_closure): ... this. Update all users. * arm-tdep.h (arm_displaced_step_closure): Rename to... (arm_displaced_step_copy_insn_closure): ... this. Update all users. * i386-tdep.h (i386_displaced_step_closure): Rename to... (i386_displaced_step_copy_insn_closure): ... this. Update all users. * rs6000-tdep.c (ppc_displaced_step_closure): Rename to... (ppc_displaced_step_copy_insn_closure): ... this. Update all users. * s390-tdep.c (s390_displaced_step_closure): Rename to... (s390_displaced_step_copy_insn_closure): ... this. Update all users. * gdbarch.h: Re-generate. * gdbarch.c: Re-generate. Change-Id: I11f56dbcd4c3532fb195a08ba93bccf1d12a03c8 |
||
Simon Marchi
|
dda83cd783 |
gdb, gdbserver, gdbsupport: fix leading space vs tabs issues
Many spots incorrectly use only spaces for indentation (for example, there are a lot of spots in ada-lang.c). I've always found it awkward when I needed to edit one of these spots: do I keep the original wrong indentation, or do I fix it? What if the lines around it are also wrong, do I fix them too? I probably don't want to fix them in the same patch, to avoid adding noise to my patch. So I propose to fix as much as possible once and for all (hopefully). One typical counter argument for this is that it makes code archeology more difficult, because git-blame will show this commit as the last change for these lines. My counter counter argument is: when git-blaming, you often need to do "blame the file at the parent commit" anyway, to go past some other refactor that touched the line you are interested in, but is not the change you are looking for. So you already need a somewhat efficient way to do this. Using some interactive tool, rather than plain git-blame, makes this trivial. For example, I use "tig blame <file>", where going back past the commit that changed the currently selected line is one keystroke. It looks like Magit in Emacs does it too (though I've never used it). Web viewers of Github and Gitlab do it too. My point is that it won't really make archeology more difficult. The other typical counter argument is that it will cause conflicts with existing patches. That's true... but it's a one time cost, and those are not conflicts that are difficult to resolve. I have also tried "git rebase --ignore-whitespace", it seems to work well. Although that will re-introduce the faulty indentation, so one needs to take care of fixing the indentation in the patch after that (which is easy). gdb/ChangeLog: * aarch64-linux-tdep.c: Fix indentation. * aarch64-ravenscar-thread.c: Fix indentation. * aarch64-tdep.c: Fix indentation. * aarch64-tdep.h: Fix indentation. * ada-lang.c: Fix indentation. * ada-lang.h: Fix indentation. * ada-tasks.c: Fix indentation. * ada-typeprint.c: Fix indentation. * ada-valprint.c: Fix indentation. * ada-varobj.c: Fix indentation. * addrmap.c: Fix indentation. * addrmap.h: Fix indentation. * agent.c: Fix indentation. * aix-thread.c: Fix indentation. * alpha-bsd-nat.c: Fix indentation. * alpha-linux-tdep.c: Fix indentation. * alpha-mdebug-tdep.c: Fix indentation. * alpha-nbsd-tdep.c: Fix indentation. * alpha-obsd-tdep.c: Fix indentation. * alpha-tdep.c: Fix indentation. * amd64-bsd-nat.c: Fix indentation. * amd64-darwin-tdep.c: Fix indentation. * amd64-linux-nat.c: Fix indentation. * amd64-linux-tdep.c: Fix indentation. * amd64-nat.c: Fix indentation. * amd64-obsd-tdep.c: Fix indentation. * amd64-tdep.c: Fix indentation. * amd64-windows-tdep.c: Fix indentation. * annotate.c: Fix indentation. * arc-tdep.c: Fix indentation. * arch-utils.c: Fix indentation. * arch/arm-get-next-pcs.c: Fix indentation. * arch/arm.c: Fix indentation. * arm-linux-nat.c: Fix indentation. * arm-linux-tdep.c: Fix indentation. * arm-nbsd-tdep.c: Fix indentation. * arm-pikeos-tdep.c: Fix indentation. * arm-tdep.c: Fix indentation. * arm-tdep.h: Fix indentation. * arm-wince-tdep.c: Fix indentation. * auto-load.c: Fix indentation. * auxv.c: Fix indentation. * avr-tdep.c: Fix indentation. * ax-gdb.c: Fix indentation. * ax-general.c: Fix indentation. * bfin-linux-tdep.c: Fix indentation. * block.c: Fix indentation. * block.h: Fix indentation. * blockframe.c: Fix indentation. * bpf-tdep.c: Fix indentation. * break-catch-sig.c: Fix indentation. * break-catch-syscall.c: Fix indentation. * break-catch-throw.c: Fix indentation. * breakpoint.c: Fix indentation. * breakpoint.h: Fix indentation. * bsd-uthread.c: Fix indentation. * btrace.c: Fix indentation. * build-id.c: Fix indentation. * buildsym-legacy.h: Fix indentation. * buildsym.c: Fix indentation. * c-typeprint.c: Fix indentation. * c-valprint.c: Fix indentation. * c-varobj.c: Fix indentation. * charset.c: Fix indentation. * cli/cli-cmds.c: Fix indentation. * cli/cli-decode.c: Fix indentation. * cli/cli-decode.h: Fix indentation. * cli/cli-script.c: Fix indentation. * cli/cli-setshow.c: Fix indentation. * coff-pe-read.c: Fix indentation. * coffread.c: Fix indentation. * compile/compile-cplus-types.c: Fix indentation. * compile/compile-object-load.c: Fix indentation. * compile/compile-object-run.c: Fix indentation. * completer.c: Fix indentation. * corefile.c: Fix indentation. * corelow.c: Fix indentation. * cp-abi.h: Fix indentation. * cp-namespace.c: Fix indentation. * cp-support.c: Fix indentation. * cp-valprint.c: Fix indentation. * cris-linux-tdep.c: Fix indentation. * cris-tdep.c: Fix indentation. * darwin-nat-info.c: Fix indentation. * darwin-nat.c: Fix indentation. * darwin-nat.h: Fix indentation. * dbxread.c: Fix indentation. * dcache.c: Fix indentation. * disasm.c: Fix indentation. * dtrace-probe.c: Fix indentation. * dwarf2/abbrev.c: Fix indentation. * dwarf2/attribute.c: Fix indentation. * dwarf2/expr.c: Fix indentation. * dwarf2/frame.c: Fix indentation. * dwarf2/index-cache.c: Fix indentation. * dwarf2/index-write.c: Fix indentation. * dwarf2/line-header.c: Fix indentation. * dwarf2/loc.c: Fix indentation. * dwarf2/macro.c: Fix indentation. * dwarf2/read.c: Fix indentation. * dwarf2/read.h: Fix indentation. * elfread.c: Fix indentation. * eval.c: Fix indentation. * event-top.c: Fix indentation. * exec.c: Fix indentation. * exec.h: Fix indentation. * expprint.c: Fix indentation. * f-lang.c: Fix indentation. * f-typeprint.c: Fix indentation. * f-valprint.c: Fix indentation. * fbsd-nat.c: Fix indentation. * fbsd-tdep.c: Fix indentation. * findvar.c: Fix indentation. * fork-child.c: Fix indentation. * frame-unwind.c: Fix indentation. * frame-unwind.h: Fix indentation. * frame.c: Fix indentation. * frv-linux-tdep.c: Fix indentation. * frv-tdep.c: Fix indentation. * frv-tdep.h: Fix indentation. * ft32-tdep.c: Fix indentation. * gcore.c: Fix indentation. * gdb_bfd.c: Fix indentation. * gdbarch.sh: Fix indentation. * gdbarch.c: Re-generate * gdbarch.h: Re-generate. * gdbcore.h: Fix indentation. * gdbthread.h: Fix indentation. * gdbtypes.c: Fix indentation. * gdbtypes.h: Fix indentation. * glibc-tdep.c: Fix indentation. * gnu-nat.c: Fix indentation. * gnu-nat.h: Fix indentation. * gnu-v2-abi.c: Fix indentation. * gnu-v3-abi.c: Fix indentation. * go32-nat.c: Fix indentation. * guile/guile-internal.h: Fix indentation. * guile/scm-cmd.c: Fix indentation. * guile/scm-frame.c: Fix indentation. * guile/scm-iterator.c: Fix indentation. * guile/scm-math.c: Fix indentation. * guile/scm-ports.c: Fix indentation. * guile/scm-pretty-print.c: Fix indentation. * guile/scm-value.c: Fix indentation. * h8300-tdep.c: Fix indentation. * hppa-linux-nat.c: Fix indentation. * hppa-linux-tdep.c: Fix indentation. * hppa-nbsd-nat.c: Fix indentation. * hppa-nbsd-tdep.c: Fix indentation. * hppa-obsd-nat.c: Fix indentation. * hppa-tdep.c: Fix indentation. * hppa-tdep.h: Fix indentation. * i386-bsd-nat.c: Fix indentation. * i386-darwin-nat.c: Fix indentation. * i386-darwin-tdep.c: Fix indentation. * i386-dicos-tdep.c: Fix indentation. * i386-gnu-nat.c: Fix indentation. * i386-linux-nat.c: Fix indentation. * i386-linux-tdep.c: Fix indentation. * i386-nto-tdep.c: Fix indentation. * i386-obsd-tdep.c: Fix indentation. * i386-sol2-nat.c: Fix indentation. * i386-tdep.c: Fix indentation. * i386-tdep.h: Fix indentation. * i386-windows-tdep.c: Fix indentation. * i387-tdep.c: Fix indentation. * i387-tdep.h: Fix indentation. * ia64-libunwind-tdep.c: Fix indentation. * ia64-libunwind-tdep.h: Fix indentation. * ia64-linux-nat.c: Fix indentation. * ia64-linux-tdep.c: Fix indentation. * ia64-tdep.c: Fix indentation. * ia64-tdep.h: Fix indentation. * ia64-vms-tdep.c: Fix indentation. * infcall.c: Fix indentation. * infcmd.c: Fix indentation. * inferior.c: Fix indentation. * infrun.c: Fix indentation. * iq2000-tdep.c: Fix indentation. * language.c: Fix indentation. * linespec.c: Fix indentation. * linux-fork.c: Fix indentation. * linux-nat.c: Fix indentation. * linux-tdep.c: Fix indentation. * linux-thread-db.c: Fix indentation. * lm32-tdep.c: Fix indentation. * m2-lang.c: Fix indentation. * m2-typeprint.c: Fix indentation. * m2-valprint.c: Fix indentation. * m32c-tdep.c: Fix indentation. * m32r-linux-tdep.c: Fix indentation. * m32r-tdep.c: Fix indentation. * m68hc11-tdep.c: Fix indentation. * m68k-bsd-nat.c: Fix indentation. * m68k-linux-nat.c: Fix indentation. * m68k-linux-tdep.c: Fix indentation. * m68k-tdep.c: Fix indentation. * machoread.c: Fix indentation. * macrocmd.c: Fix indentation. * macroexp.c: Fix indentation. * macroscope.c: Fix indentation. * macrotab.c: Fix indentation. * macrotab.h: Fix indentation. * main.c: Fix indentation. * mdebugread.c: Fix indentation. * mep-tdep.c: Fix indentation. * mi/mi-cmd-catch.c: Fix indentation. * mi/mi-cmd-disas.c: Fix indentation. * mi/mi-cmd-env.c: Fix indentation. * mi/mi-cmd-stack.c: Fix indentation. * mi/mi-cmd-var.c: Fix indentation. * mi/mi-cmds.c: Fix indentation. * mi/mi-main.c: Fix indentation. * mi/mi-parse.c: Fix indentation. * microblaze-tdep.c: Fix indentation. * minidebug.c: Fix indentation. * minsyms.c: Fix indentation. * mips-linux-nat.c: Fix indentation. * mips-linux-tdep.c: Fix indentation. * mips-nbsd-tdep.c: Fix indentation. * mips-tdep.c: Fix indentation. * mn10300-linux-tdep.c: Fix indentation. * mn10300-tdep.c: Fix indentation. * moxie-tdep.c: Fix indentation. * msp430-tdep.c: Fix indentation. * namespace.h: Fix indentation. * nat/fork-inferior.c: Fix indentation. * nat/gdb_ptrace.h: Fix indentation. * nat/linux-namespaces.c: Fix indentation. * nat/linux-osdata.c: Fix indentation. * nat/netbsd-nat.c: Fix indentation. * nat/x86-dregs.c: Fix indentation. * nbsd-nat.c: Fix indentation. * nbsd-tdep.c: Fix indentation. * nios2-linux-tdep.c: Fix indentation. * nios2-tdep.c: Fix indentation. * nto-procfs.c: Fix indentation. * nto-tdep.c: Fix indentation. * objfiles.c: Fix indentation. * objfiles.h: Fix indentation. * opencl-lang.c: Fix indentation. * or1k-tdep.c: Fix indentation. * osabi.c: Fix indentation. * osabi.h: Fix indentation. * osdata.c: Fix indentation. * p-lang.c: Fix indentation. * p-typeprint.c: Fix indentation. * p-valprint.c: Fix indentation. * parse.c: Fix indentation. * ppc-linux-nat.c: Fix indentation. * ppc-linux-tdep.c: Fix indentation. * ppc-nbsd-nat.c: Fix indentation. * ppc-nbsd-tdep.c: Fix indentation. * ppc-obsd-nat.c: Fix indentation. * ppc-ravenscar-thread.c: Fix indentation. * ppc-sysv-tdep.c: Fix indentation. * ppc64-tdep.c: Fix indentation. * printcmd.c: Fix indentation. * proc-api.c: Fix indentation. * producer.c: Fix indentation. * producer.h: Fix indentation. * prologue-value.c: Fix indentation. * prologue-value.h: Fix indentation. * psymtab.c: Fix indentation. * python/py-arch.c: Fix indentation. * python/py-bpevent.c: Fix indentation. * python/py-event.c: Fix indentation. * python/py-event.h: Fix indentation. * python/py-finishbreakpoint.c: Fix indentation. * python/py-frame.c: Fix indentation. * python/py-framefilter.c: Fix indentation. * python/py-inferior.c: Fix indentation. * python/py-infthread.c: Fix indentation. * python/py-objfile.c: Fix indentation. * python/py-prettyprint.c: Fix indentation. * python/py-registers.c: Fix indentation. * python/py-signalevent.c: Fix indentation. * python/py-stopevent.c: Fix indentation. * python/py-stopevent.h: Fix indentation. * python/py-threadevent.c: Fix indentation. * python/py-tui.c: Fix indentation. * python/py-unwind.c: Fix indentation. * python/py-value.c: Fix indentation. * python/py-xmethods.c: Fix indentation. * python/python-internal.h: Fix indentation. * python/python.c: Fix indentation. * ravenscar-thread.c: Fix indentation. * record-btrace.c: Fix indentation. * record-full.c: Fix indentation. * record.c: Fix indentation. * reggroups.c: Fix indentation. * regset.h: Fix indentation. * remote-fileio.c: Fix indentation. * remote.c: Fix indentation. * reverse.c: Fix indentation. * riscv-linux-tdep.c: Fix indentation. * riscv-ravenscar-thread.c: Fix indentation. * riscv-tdep.c: Fix indentation. * rl78-tdep.c: Fix indentation. * rs6000-aix-tdep.c: Fix indentation. * rs6000-lynx178-tdep.c: Fix indentation. * rs6000-nat.c: Fix indentation. * rs6000-tdep.c: Fix indentation. * rust-lang.c: Fix indentation. * rx-tdep.c: Fix indentation. * s12z-tdep.c: Fix indentation. * s390-linux-tdep.c: Fix indentation. * score-tdep.c: Fix indentation. * ser-base.c: Fix indentation. * ser-mingw.c: Fix indentation. * ser-uds.c: Fix indentation. * ser-unix.c: Fix indentation. * serial.c: Fix indentation. * sh-linux-tdep.c: Fix indentation. * sh-nbsd-tdep.c: Fix indentation. * sh-tdep.c: Fix indentation. * skip.c: Fix indentation. * sol-thread.c: Fix indentation. * solib-aix.c: Fix indentation. * solib-darwin.c: Fix indentation. * solib-frv.c: Fix indentation. * solib-svr4.c: Fix indentation. * solib.c: Fix indentation. * source.c: Fix indentation. * sparc-linux-tdep.c: Fix indentation. * sparc-nbsd-tdep.c: Fix indentation. * sparc-obsd-tdep.c: Fix indentation. * sparc-ravenscar-thread.c: Fix indentation. * sparc-tdep.c: Fix indentation. * sparc64-linux-tdep.c: Fix indentation. * sparc64-nbsd-tdep.c: Fix indentation. * sparc64-obsd-tdep.c: Fix indentation. * sparc64-tdep.c: Fix indentation. * stabsread.c: Fix indentation. * stack.c: Fix indentation. * stap-probe.c: Fix indentation. * stubs/ia64vms-stub.c: Fix indentation. * stubs/m32r-stub.c: Fix indentation. * stubs/m68k-stub.c: Fix indentation. * stubs/sh-stub.c: Fix indentation. * stubs/sparc-stub.c: Fix indentation. * symfile-mem.c: Fix indentation. * symfile.c: Fix indentation. * symfile.h: Fix indentation. * symmisc.c: Fix indentation. * symtab.c: Fix indentation. * symtab.h: Fix indentation. * target-float.c: Fix indentation. * target.c: Fix indentation. * target.h: Fix indentation. * tic6x-tdep.c: Fix indentation. * tilegx-linux-tdep.c: Fix indentation. * tilegx-tdep.c: Fix indentation. * top.c: Fix indentation. * tracefile-tfile.c: Fix indentation. * tracepoint.c: Fix indentation. * tui/tui-disasm.c: Fix indentation. * tui/tui-io.c: Fix indentation. * tui/tui-regs.c: Fix indentation. * tui/tui-stack.c: Fix indentation. * tui/tui-win.c: Fix indentation. * tui/tui-winsource.c: Fix indentation. * tui/tui.c: Fix indentation. * typeprint.c: Fix indentation. * ui-out.h: Fix indentation. * unittests/copy_bitwise-selftests.c: Fix indentation. * unittests/memory-map-selftests.c: Fix indentation. * utils.c: Fix indentation. * v850-tdep.c: Fix indentation. * valarith.c: Fix indentation. * valops.c: Fix indentation. * valprint.c: Fix indentation. * valprint.h: Fix indentation. * value.c: Fix indentation. * value.h: Fix indentation. * varobj.c: Fix indentation. * vax-tdep.c: Fix indentation. * windows-nat.c: Fix indentation. * windows-tdep.c: Fix indentation. * xcoffread.c: Fix indentation. * xml-syscall.c: Fix indentation. * xml-tdesc.c: Fix indentation. * xstormy16-tdep.c: Fix indentation. * xtensa-config.c: Fix indentation. * xtensa-linux-nat.c: Fix indentation. * xtensa-linux-tdep.c: Fix indentation. * xtensa-tdep.c: Fix indentation. gdbserver/ChangeLog: * ax.cc: Fix indentation. * dll.cc: Fix indentation. * inferiors.h: Fix indentation. * linux-low.cc: Fix indentation. * linux-nios2-low.cc: Fix indentation. * linux-ppc-ipa.cc: Fix indentation. * linux-ppc-low.cc: Fix indentation. * linux-x86-low.cc: Fix indentation. * linux-xtensa-low.cc: Fix indentation. * regcache.cc: Fix indentation. * server.cc: Fix indentation. * tracepoint.cc: Fix indentation. gdbsupport/ChangeLog: * common-exceptions.h: Fix indentation. * event-loop.cc: Fix indentation. * fileio.cc: Fix indentation. * filestuff.cc: Fix indentation. * gdb-dlfcn.cc: Fix indentation. * gdb_string_view.h: Fix indentation. * job-control.cc: Fix indentation. * signals.cc: Fix indentation. Change-Id: I4bad7ae6be0fbe14168b8ebafb98ffe14964a695 |
||
Simon Marchi
|
136821d9f6 |
gdb: introduce displaced_debug_printf
Move all debug prints of the "displaced" category to use a new displaced_debug_printf macro, like what was done for infrun and others earlier. The debug output for one displaced step one amd64 looks like: [displaced] displaced_step_prepare_throw: stepping process 3367044 now [displaced] displaced_step_prepare_throw: saved 0x555555555042: 1e fa 31 ed 49 89 d1 5e 48 89 e2 48 83 e4 f0 50 [displaced] amd64_displaced_step_copy_insn: copy 0x555555555131->0x555555555042: b8 00 00 00 00 5d c3 0f 1f 84 00 00 00 00 00 f3 [displaced] displaced_step_prepare_throw: displaced pc to 0x555555555042 [displaced] resume_1: run 0x555555555042: b8 00 00 00 [displaced] displaced_step_restore: restored process 3367044 0x555555555042 [displaced] amd64_displaced_step_fixup: fixup (0x555555555131, 0x555555555042), insn = 0xb8 0x00 ... [displaced] amd64_displaced_step_fixup: relocated %rip from 0x555555555047 to 0x555555555136 On test case needed to be updated because it relied on the specific formatting of the message. gdb/ChangeLog: * infrun.h (displaced_debug_printf): New macro. Replace displaced debug prints throughout to use it. (displaced_debug_printf_1): New declaration. (displaced_step_dump_bytes): Return string, remove ui_file parameter, update all callers. * infrun.c (displaced_debug_printf_1): New function. (displaced_step_dump_bytes): Return string, remove ui_file parameter gdb/testsuite/ChangeLog: * gdb.arch/amd64-disp-step-avx.exp: Update displaced step debug expected output. Change-Id: Ie78837f56431f6f98378790ba1e6051337bf6533 |
||
Bernd Edlinger
|
6d0cf4464e |
Fix build with gcc-4.8.x
Use an explicit conversion from unique_ptr<T> to displaced_step_closure_up to avoid a compiler bug with gcc-4.8.4: ../../binutils-gdb/gdb/amd64-tdep.c:1514:10: error: cannot bind 'std::unique_ptr<amd64_displaced_step_closure>' lvalue to 'std::unique_ptr<amd64_displaced_step_closure>&&' gdb: 2020-02-18 Bernd Edlinger <bernd.edlinger@hotmail.de> * aarch64-tdep.c (aarch64_displaced_step_copy_insn): Use an explicit conversion. * amd64-tdep.c (amd64_displaced_step_copy_insn): Likewise. * arm-linux-tdep.c (arm_linux_displaced_step_copy_insn): Likewise. * i386-tdep.c (i386_displaced_step_copy_insn): Likewise. * rs6000-tdep.c (ppc_displaced_step_copy_insn): Likewise. * s390-tdep.c (s390_displaced_step_copy_insn): Likewise. |
||
Simon Marchi
|
fdb61c6c39 |
gdb: introduce displaced_step_closure_up type alias
To help with readability, add the type displaced_step_closure_up, an alias for std::unique_ptr<displaced_step_closure>, and use it throughout the code base. gdb/ChangeLog: * aarch64-tdep.c (aarch64_displaced_step_copy_insn): Use displaced_step_closure_up. * aarch64-tdep.h (aarch64_displaced_step_copy_insn): Likewise. (struct displaced_step_closure_up): * amd64-tdep.c (amd64_displaced_step_copy_insn): Likewise. * amd64-tdep.h (amd64_displaced_step_copy_insn): Likewise. * arm-linux-tdep.c (arm_linux_displaced_step_copy_insn): Likewise. * gdbarch.sh (displaced_step_copy_insn): Likewise. * gdbarch.c, gdbarch.h: Re-generate. * i386-linux-tdep.c (i386_linux_displaced_step_copy_insn): Use displaced_step_closure_up. * i386-tdep.c (i386_displaced_step_copy_insn): Likewise. * i386-tdep.h (i386_displaced_step_copy_insn): Likewise. * infrun.h (displaced_step_closure_up): New type alias. (struct displaced_step_inferior_state) <step_closure>: Change type to displaced_step_closure_up. * rs6000-tdep.c (ppc_displaced_step_copy_insn): Use displaced_step_closure_up. * s390-tdep.c (s390_displaced_step_copy_insn): Likewise. |
||
Simon Marchi
|
e8217e61f5 |
gdb: make gdbarch_displaced_step_copy_insn return an std::unique_ptr
This callback dynamically allocates a specialized displaced_step_closure, and gives the ownership of the object to its caller. So I think it would make sense for the callback to return an std::unique_ptr, this is what this patch implements. gdb/ChangeLog: * gdbarch.sh (displaced_step_copy_insn): Change return type to an std::unique_ptr. * gdbarch.c: Re-generate. * gdbarch.h: Re-generate. * infrun.c (displaced_step_prepare_throw): Adjust to std::unique_ptr change. * aarch64-tdep.c (aarch64_displaced_step_copy_insn): Change return type to std::unique_ptr. * aarch64-tdep.h (aarch64_displaced_step_copy_insn): Likewise. * amd64-tdep.c (amd64_displaced_step_copy_insn): Likewise. * amd64-tdep.h (amd64_displaced_step_copy_insn): Likewise. * arm-linux-tdep.c (arm_linux_displaced_step_copy_insn): Likewise. * i386-linux-tdep.c (i386_linux_displaced_step_copy_insn): Likewise. * i386-tdep.c (i386_displaced_step_copy_insn): Likewise. * i386-tdep.h (i386_displaced_step_copy_insn): Likewise. * rs6000-tdep.c (ppc_displaced_step_copy_insn): Likewise. * s390-tdep.c (s390_displaced_step_copy_insn): Likewise. |
||
Simon Marchi
|
6c2659886f |
gdb: add back declarations for _initialize functions
I'd like to enable the -Wmissing-declarations warning. However, it
warns for every _initialize function, for example:
CXX dcache.o
/home/smarchi/src/binutils-gdb/gdb/dcache.c: In function ‘void _initialize_dcache()’:
/home/smarchi/src/binutils-gdb/gdb/dcache.c:688:1: error: no previous declaration for ‘void _initialize_dcache()’ [-Werror=missing-declarations]
_initialize_dcache (void)
^~~~~~~~~~~~~~~~~~
The only practical way forward I found is to add back the declarations,
which were removed by this commit:
commit
|
||
Joel Brobecker
|
b811d2c292 |
Update copyright year range in all GDB files.
gdb/ChangeLog: Update copyright year range in all GDB files. |
||
Tom Tromey
|
953cff5630 |
Change gcc_target_options to return std::string
This patch was inspired by a recent review that recommended using std::string in a new implementation of the gcc_target_options gdbarch function. It changes this function to return std::string rather than an ordinary xmalloc'd string. I believe this caught a latent memory leak in compile.c:get_args. Tested on x86-64 Fedora 29. gdb/ChangeLog 2019-10-15 Tom Tromey <tromey@adacore.com> * gdbarch.h, gdbarch.c: Rebuild. * gdbarch.sh (gcc_target_options): Change return type to std::string. * compile/compile.c (get_args): Update. * nios2-tdep.c (nios2_gcc_target_options): Return std::string. * arm-linux-tdep.c (arm_linux_gcc_target_options): Return std::string. * aarch64-linux-tdep.c (aarch64_linux_gcc_target_options): Return std::string. * arch-utils.c (default_gcc_target_options): Return std::string. * arch-utils.h (default_gcc_target_options): Return std::string. * s390-tdep.c (s390_gcc_target_options): Return std::string. Change-Id: I51f61703426a323089e646da8f22320a2cafbc1f |
||
Christian Biesinger
|
c7ae7675cf |
Move arm_apcs_32 extern declaration to header
Instead of having several extern declarations for arm_apcs_32 in a few .c files, declare it in arm-tdep.h. This file is already included from these .c files. gdb/ChangeLog: 2019-09-19 Christian Biesinger <cbiesinger@google.com> * arm-linux-nat.c: Remove extern declaration for arm_apcs_32. * arm-linux-tdep.c: Likewise. * arm-nbsd-nat.c: Likewise. * arm-tdep.h: Declare arm_apcs_32. |
||
Christian Biesinger
|
491144b5e2 |
Change boolean options to bool instead of int
This is for add_setshow_boolean_cmd as well as the gdb::option interface. gdb/ChangeLog: 2019-09-17 Christian Biesinger <cbiesinger@google.com> * ada-lang.c (ada_ignore_descriptive_types_p): Change to bool. (print_signatures): Likewise. (trust_pad_over_xvs): Likewise. * arch/aarch64-insn.c (aarch64_debug): Likewise. * arch/aarch64-insn.h (aarch64_debug): Likewise. * arm-linux-nat.c (arm_apcs_32): Likewise. * arm-linux-tdep.c (arm_apcs_32): Likewise. * arm-nbsd-nat.c (arm_apcs_32): Likewise. * arm-tdep.c (arm_debug): Likewise. (arm_apcs_32): Likewise. * auto-load.c (debug_auto_load): Likewise. (auto_load_gdb_scripts): Likewise. (global_auto_load): Likewise. (auto_load_local_gdbinit): Likewise. (auto_load_local_gdbinit_loaded): Likewise. * auto-load.h (global_auto_load): Likewise. (auto_load_local_gdbinit): Likewise. (auto_load_local_gdbinit_loaded): Likewise. * breakpoint.c (disconnected_dprintf): Likewise. (breakpoint_proceeded): Likewise. (automatic_hardware_breakpoints): Likewise. (always_inserted_mode): Likewise. (target_exact_watchpoints): Likewise. (_initialize_breakpoint): Update. * breakpoint.h (target_exact_watchpoints): Change to bool. * btrace.c (maint_btrace_pt_skip_pad): Likewise. * cli/cli-cmds.c (trace_commands): Likewise. * cli/cli-cmds.h (trace_commands): Likewise. * cli/cli-decode.c (add_setshow_boolean_cmd): Change int* argument to bool*. * cli/cli-logging.c (logging_overwrite): Change to bool. (logging_redirect): Likewise. (debug_redirect): Likewise. * cli/cli-option.h (option_def) <boolean>: Change return type to bool*. (struct boolean_option_def) <get_var_address_cb_>: Change return type to bool. <boolean_option_def>: Update. (struct flag_option_def): Change default type of Context to bool from int. <flag_option_def>: Change return type of var_address_cb_ to bool*. * cli/cli-setshow.c (do_set_command): Cast to bool* instead of int*. (get_setshow_command_value_string): Likewise. * cli/cli-style.c (cli_styling): Change to bool. (source_styling): Likewise. * cli/cli-style.h (source_styling): Likewise. (cli_styling): Likewise. * cli/cli-utils.h (struct qcs_flags) <quiet, cont, silent>: Change to bool. * command.h (var_types): Update comment. (add_setshow_boolean_cmd): Change int* var argument to bool*. * compile/compile-cplus-types.c (debug_compile_cplus_types): Change to bool. (debug_compile_cplus_scopes): Likewise. * compile/compile-internal.h (compile_debug): Likewise. * compile/compile.c (compile_debug): Likewise. (struct compile_options) <raw>: Likewise. * cp-support.c (catch_demangler_crashes): Likewise. * cris-tdep.c (usr_cmd_cris_version_valid): Likewise. (usr_cmd_cris_dwarf2_cfi): Likewise. * csky-tdep.c (csky_debug): Likewise. * darwin-nat.c (enable_mach_exceptions): Likewise. * dcache.c (dcache_enabled_p): Likewise. * defs.h (info_verbose): Likewise. * demangle.c (demangle): Likewise. (asm_demangle): Likewise. * dwarf-index-cache.c (debug_index_cache): Likewise. * dwarf2-frame.c (dwarf2_frame_unwinders_enabled_p): Likewise. * dwarf2-frame.h (dwarf2_frame_unwinders_enabled_p): Likewise. * dwarf2read.c (check_physname): Likewise. (use_deprecated_index_sections): Likewise. (dwarf_always_disassemble): Likewise. * eval.c (overload_resolution): Likewise. * event-top.c (set_editing_cmd_var): Likewise. (exec_done_display_p): Likewise. * event-top.h (set_editing_cmd_var): Likewise. (exec_done_display_p): Likewise. * exec.c (write_files): Likewise. * fbsd-nat.c (debug_fbsd_lwp): Likewise (debug_fbsd_nat): Likewise. * frame.h (struct frame_print_options) <print_raw_frame_arguments>: Likewise. (struct set_backtrace_options) <backtrace_past_main>: Likewise. <backtrace_past_entry> Likewise. * gdb-demangle.h (demangle): Likewise. (asm_demangle): Likewise. * gdb_bfd.c (bfd_sharing): Likewise. * gdbcore.h (write_files): Likewise. * gdbsupport/common-debug.c (show_debug_regs): Likewise. * gdbsupport/common-debug.h (show_debug_regs): Likewise. * gdbthread.h (print_thread_events): Likewise. * gdbtypes.c (opaque_type_resolution): Likewise. (strict_type_checking): Likewise. * gnu-nat.c (gnu_debug_flag): Likewise. * guile/scm-auto-load.c (auto_load_guile_scripts): Likewise. * guile/scm-param.c (pascm_variable): Add boolval. (add_setshow_generic): Update. (pascm_param_value): Update. (pascm_set_param_value_x): Update. * hppa-tdep.c (hppa_debug): Change to bool.. * infcall.c (may_call_functions_p): Likewise. (coerce_float_to_double_p): Likewise. (unwind_on_signal_p): Likewise. (unwind_on_terminating_exception_p): Likewise. * infcmd.c (startup_with_shell): Likewise. * inferior.c (print_inferior_events): Likewise. * inferior.h (startup_with_shell): Likewise. (print_inferior_events): Likewise. * infrun.c (step_stop_if_no_debug): Likewise. (detach_fork): Likewise. (debug_displaced): Likewise. (disable_randomization): Likewise. (non_stop): Likewise. (non_stop_1): Likewise. (observer_mode): Likewise. (observer_mode_1): Likewise. (set_observer_mode): Update. (sched_multi): Change to bool. * infrun.h (debug_displaced): Likewise. (sched_multi): Likewise. (step_stop_if_no_debug): Likewise. (non_stop): Likewise. (disable_randomization): Likewise. * linux-tdep.c (use_coredump_filter): Likewise. (dump_excluded_mappings): Likewise. * linux-thread-db.c (auto_load_thread_db): Likewise. (check_thread_db_on_load): Likewise. * main.c (captured_main_1): Update. * maint-test-options.c (struct test_options_opts) <flag_opt, xx1_opt, xx2_opt, boolean_opt>: Change to bool. * maint-test-settings.c (maintenance_test_settings_boolean): Likewise. * maint.c (maintenance_profile_p): Likewise. (per_command_time): Likewise. (per_command_space): Likewise. (per_command_symtab): Likewise. * memattr.c (inaccessible_by_default): Likewise. * mi/mi-main.c (mi_async): Likewise. (mi_async_1): Likewise. * mips-tdep.c (mips64_transfers_32bit_regs_p): Likewise. * nat/fork-inferior.h (startup_with_shell): Likewise. * nat/linux-namespaces.c (debug_linux_namespaces): Likewise. * nat/linux-namespaces.h (debug_linux_namespaces): Likewise. * nios2-tdep.c (nios2_debug): Likewise. * or1k-tdep.c (or1k_debug): Likewise. * parse.c (parser_debug): Likewise. * parser-defs.h (parser_debug): Likewise. * printcmd.c (print_symbol_filename): Likewise. * proc-api.c (procfs_trace): Likewise. * python/py-auto-load.c (auto_load_python_scripts): Likewise. * python/py-param.c (union parmpy_variable): Add "bool boolval" field. (set_parameter_value): Update. (add_setshow_generic): Update. * python/py-value.c (copy_py_bool_obj): Change argument from int* to bool*. * python/python.c (gdbpy_parameter_value): Cast to bool* instead of int*. * ravenscar-thread.c (ravenscar_task_support): Change to bool. * record-btrace.c (record_btrace_target::store_registers): Update. * record-full.c (record_full_memory_query): Change to bool. (record_full_stop_at_limit): Likewise. * record-full.h (record_full_memory_query): Likewise. * remote-notif.c (notif_debug): Likewise. * remote-notif.h (notif_debug): Likewise. * remote.c (use_range_stepping): Likewise. (interrupt_on_connect): Likewise. (remote_break): Likewise. * ser-tcp.c (tcp_auto_retry): Likewise. * ser-unix.c (serial_hwflow): Likewise. * skip.c (debug_skip): Likewise. * solib-aix.c (solib_aix_debug): Likewise. * spu-tdep.c (spu_stop_on_load_p): Likewise. (spu_auto_flush_cache_p): Likewise. * stack.c (struct backtrace_cmd_options) <full, no_filters, hide>: Likewise. (struct info_print_options) <quiet>: Likewise. * symfile-debug.c (debug_symfile): Likewise. * symfile.c (auto_solib_add): Likewise. (separate_debug_file_debug): Likewise. * symfile.h (auto_solib_add): Likewise. (separate_debug_file_debug): Likewise. * symtab.c (basenames_may_differ): Likewise. (struct filename_partial_match_opts) <dirname, basename>: Likewise. (struct info_print_options) <quiet, exclude_minsyms>: Likewise. (struct info_types_options) <quiet>: Likewise. * symtab.h (demangle): Likewise. (basenames_may_differ): Likewise. * target-dcache.c (stack_cache_enabled_1): Likewise. (code_cache_enabled_1): Likewise. * target.c (trust_readonly): Likewise. (may_write_registers): Likewise. (may_write_memory): Likewise. (may_insert_breakpoints): Likewise. (may_insert_tracepoints): Likewise. (may_insert_fast_tracepoints): Likewise. (may_stop): Likewise. (auto_connect_native_target): Likewise. (target_stop_and_wait): Update. (target_async_permitted): Change to bool. (target_async_permitted_1): Likewise. (may_write_registers_1): Likewise. (may_write_memory_1): Likewise. (may_insert_breakpoints_1): Likewise. (may_insert_tracepoints_1): Likewise. (may_insert_fast_tracepoints_1): Likewise. (may_stop_1): Likewise. * target.h (target_async_permitted): Likewise. (may_write_registers): Likewise. (may_write_memory): Likewise. (may_insert_breakpoints): Likewise. (may_insert_tracepoints): Likewise. (may_insert_fast_tracepoints): Likewise. (may_stop): Likewise. * thread.c (struct info_threads_opts) <show_global_ids>: Likewise. (make_thread_apply_all_options_def_group): Change argument from int* to bool*. (thread_apply_all_command): Update. (print_thread_events): Change to bool. * top.c (confirm): Likewise. (command_editing_p): Likewise. (history_expansion_p): Likewise. (write_history_p): Likewise. (info_verbose): Likewise. * top.h (confirm): Likewise. (history_expansion_p): Likewise. * tracepoint.c (disconnected_tracing): Likewise. (circular_trace_buffer): Likewise. * typeprint.c (print_methods): Likewise. (print_typedefs): Likewise. * utils.c (debug_timestamp): Likewise. (sevenbit_strings): Likewise. (pagination_enabled): Likewise. * utils.h (sevenbit_strings): Likewise. (pagination_enabled): Likewise. * valops.c (overload_resolution): Likewise. * valprint.h (struct value_print_options) <prettyformat_arrays, prettyformat_structs, vtblprint, unionprint, addressprint, objectprint, stop_print_at_null, print_array_indexes, deref_ref, static_field_print, pascal_static_field_print, raw, summary, symbol_print, finish_print>: Likewise. * windows-nat.c (new_console): Likewise. (cygwin_exceptions): Likewise. (new_group): Likewise. (debug_exec): Likewise. (debug_events): Likewise. (debug_memory): Likewise. (debug_exceptions): Likewise. (useshell): Likewise. * windows-tdep.c (maint_display_all_tib): Likewise. * xml-support.c (debug_xml): Likewise. |
||
Alan Hayward
|
d105cce5dd |
Arm: Add read_description read funcs and use in GDB
Switch the Arm target to get target descriptions via arm_read_description and aarch32_read_description, in the same style as other feature targets. Add an enum to specify the different types - this will also be of use to gdbserver in a later patch. Under the hood return the same existing pre-feature target descriptions. gdb/ChangeLog: * Makefile.in: Add new files. * aarch32-tdep.c: New file. * aarch32-tdep.h: New file. * aarch64-linux-nat.c (aarch64_linux_nat_target::read_description): Call aarch32_read_description. * arch/aarch32.c: New file. * arch/aarch32.h: New file. * arch/arm.c (arm_create_target_description) (arm_create_mprofile_target_description): New function. * arch/arm.h (arm_fp_type, arm_m_profile_type): New enum. (arm_create_target_description) (arm_create_mprofile_target_description): New declaration. * arm-fbsd-tdep.c (arm_fbsd_read_description_auxv): Call read_description functions. * arm-linux-nat.c (arm_linux_nat_target::read_description): Likewise. * arm-linux-tdep.c (arm_linux_core_read_description): Likewise. * arm-tdep.c (tdesc_arm_list): New variable. (arm_register_g_packet_guesses): Call create description functions. (arm_read_description) (arm_read_mprofile_description): New function. * arm-tdep.h (arm_read_description) (arm_read_mprofile_description): Add declaration. * configure.tgt: Add new files. |
||
Alan Hayward
|
f0452268d6 |
Arm: Prefix register sizes with ARM_
Add ARM_ to the front of INT_REGISTER_SIZE, FP_REGISTER_SIZE and ARM_VFP_REGISTER_SIZE to make it obvious they are for the Arm target. Move the defines to arch/arm.h No functionality changes. gdb/ChangeLog: * arch/arm-get-next-pcs.c (thumb_get_next_pcs_raw): Use ARM_ defines. * arch/arm-linux.c (arm_linux_sigreturn_next_pc_offset): Likewise. * arch/arm.h (INT_REGISTER_SIZE) Rename from... (ARM_INT_REGISTER_SIZE): ...to this. (ARM_FP_REGISTER_SIZE) (ARM_VFP_REGISTER_SIZE): Add define. * arm-linux-tdep.c (ARM_LINUX_JB_ELEMENT_SIZE) (ARM_LINUX_SIZEOF_GREGSET, arm_linux_supply_gregset) (arm_linux_collect_gregset, supply_nwfpe_register) (collect_nwfpe_register, arm_linux_collect_nwfpe): Use ARM_ defines. * arm-linux-tdep.h (ARM_LINUX_SIZEOF_NWFPE, NWFPE_FPSR_OFFSET) (NWFPE_FPCR_OFFSET, NWFPE_TAGS_OFFSET): Likewise * arm-nbsd-tdep.c (ARM_NBSD_JB_ELEMENT_SIZE): Likewise. * arm-tdep.c (arm_push_dummy_call, arm_extract_return_value) (arm_return_in_memory, arm_store_return_value) (arm_get_longjmp_target, arm_register_g_packet_guesses) (arm_record_ld_st_multiple): Likewise. * arm-tdep.h (FP_REGISTER_SIZE, VFP_REGISTER_SIZE): Remove. * arm-wince-tdep.c (ARM_WINCE_JB_ELEMENT_SIZE): Use ARM_ defines. |
||
Alan Hayward
|
e935475cb6 |
Arm/AArch64: Split DISPLACED_MODIFIED_INSNS name clash
Both targets define DISPLACED_MODIFIED_INSNS, each with different values. Add ARM_ and AARCH64_ to the start of the name to prevent confusion. No functionality changes. gdb/ChangeLog: * aarch64-linux-tdep.c (aarch64_linux_init_abi): Use AARCH64_DISPLACED_MODIFIED_INSNS. * aarch64-tdep.c (struct aarch64_displaced_step_data) (aarch64_displaced_step_copy_insn): Likewise. * aarch64-tdep.h (DISPLACED_MODIFIED_INSNS): Rename from.. (AARCH64_DISPLACED_MODIFIED_INSNS): ...to this. * arm-linux-tdep.c (arm_linux_cleanup_svc): Use ARM_DISPLACED_MODIFIED_INSNS. * arm-tdep.c (arm_gdbarch_init): Likewise. * arm-tdep.h (DISPLACED_MODIFIED_INSNS): Rename from.. (ARM_DISPLACED_MODIFIED_INSNS): ...to this. (struct arm_displaced_step_closure): Use ARM_DISPLACED_MODIFIED_INSNS. |
||
Tom Tromey
|
4de283e4b5 |
Revert the header-sorting patch
Andreas Schwab and John Baldwin pointed out some bugs in the header sorting patch; and I noticed that the output was not correct when limited to a subset of files (a bug in my script). So, I'm reverting the patch. I may try again after fixing the issues pointed out. gdb/ChangeLog 2019-04-05 Tom Tromey <tom@tromey.com> Revert the header-sorting patch. * ft32-tdep.c: Revert. * frv-tdep.c: Revert. * frv-linux-tdep.c: Revert. * frame.c: Revert. * frame-unwind.c: Revert. * frame-base.c: Revert. * fork-child.c: Revert. * findvar.c: Revert. * findcmd.c: Revert. * filesystem.c: Revert. * filename-seen-cache.h: Revert. * filename-seen-cache.c: Revert. * fbsd-tdep.c: Revert. * fbsd-nat.h: Revert. * fbsd-nat.c: Revert. * f-valprint.c: Revert. * f-typeprint.c: Revert. * f-lang.c: Revert. * extension.h: Revert. * extension.c: Revert. * extension-priv.h: Revert. * expprint.c: Revert. * exec.h: Revert. * exec.c: Revert. * exceptions.c: Revert. * event-top.c: Revert. * event-loop.c: Revert. * eval.c: Revert. * elfread.c: Revert. * dwarf2read.h: Revert. * dwarf2read.c: Revert. * dwarf2loc.c: Revert. * dwarf2expr.h: Revert. * dwarf2expr.c: Revert. * dwarf2-frame.c: Revert. * dwarf2-frame-tailcall.c: Revert. * dwarf-index-write.h: Revert. * dwarf-index-write.c: Revert. * dwarf-index-common.c: Revert. * dwarf-index-cache.h: Revert. * dwarf-index-cache.c: Revert. * dummy-frame.c: Revert. * dtrace-probe.c: Revert. * disasm.h: Revert. * disasm.c: Revert. * disasm-selftests.c: Revert. * dictionary.c: Revert. * dicos-tdep.c: Revert. * demangle.c: Revert. * dcache.h: Revert. * dcache.c: Revert. * darwin-nat.h: Revert. * darwin-nat.c: Revert. * darwin-nat-info.c: Revert. * d-valprint.c: Revert. * d-namespace.c: Revert. * d-lang.c: Revert. * ctf.c: Revert. * csky-tdep.c: Revert. * csky-linux-tdep.c: Revert. * cris-tdep.c: Revert. * cris-linux-tdep.c: Revert. * cp-valprint.c: Revert. * cp-support.c: Revert. * cp-namespace.c: Revert. * cp-abi.c: Revert. * corelow.c: Revert. * corefile.c: Revert. * continuations.c: Revert. * completer.h: Revert. * completer.c: Revert. * complaints.c: Revert. * coffread.c: Revert. * coff-pe-read.c: Revert. * cli-out.h: Revert. * cli-out.c: Revert. * charset.c: Revert. * c-varobj.c: Revert. * c-valprint.c: Revert. * c-typeprint.c: Revert. * c-lang.c: Revert. * buildsym.c: Revert. * buildsym-legacy.c: Revert. * build-id.h: Revert. * build-id.c: Revert. * btrace.c: Revert. * bsd-uthread.c: Revert. * breakpoint.h: Revert. * breakpoint.c: Revert. * break-catch-throw.c: Revert. * break-catch-syscall.c: Revert. * break-catch-sig.c: Revert. * blockframe.c: Revert. * block.c: Revert. * bfin-tdep.c: Revert. * bfin-linux-tdep.c: Revert. * bfd-target.c: Revert. * bcache.c: Revert. * ax-general.c: Revert. * ax-gdb.h: Revert. * ax-gdb.c: Revert. * avr-tdep.c: Revert. * auxv.c: Revert. * auto-load.c: Revert. * arm-wince-tdep.c: Revert. * arm-tdep.c: Revert. * arm-symbian-tdep.c: Revert. * arm-pikeos-tdep.c: Revert. * arm-obsd-tdep.c: Revert. * arm-nbsd-tdep.c: Revert. * arm-nbsd-nat.c: Revert. * arm-linux-tdep.c: Revert. * arm-linux-nat.c: Revert. * arm-fbsd-tdep.c: Revert. * arm-fbsd-nat.c: Revert. * arm-bsd-tdep.c: Revert. * arch-utils.c: Revert. * arc-tdep.c: Revert. * arc-newlib-tdep.c: Revert. * annotate.h: Revert. * annotate.c: Revert. * amd64-windows-tdep.c: Revert. * amd64-windows-nat.c: Revert. * amd64-tdep.c: Revert. * amd64-sol2-tdep.c: Revert. * amd64-obsd-tdep.c: Revert. * amd64-obsd-nat.c: Revert. * amd64-nbsd-tdep.c: Revert. * amd64-nbsd-nat.c: Revert. * amd64-nat.c: Revert. * amd64-linux-tdep.c: Revert. * amd64-linux-nat.c: Revert. * amd64-fbsd-tdep.c: Revert. * amd64-fbsd-nat.c: Revert. * amd64-dicos-tdep.c: Revert. * amd64-darwin-tdep.c: Revert. * amd64-bsd-nat.c: Revert. * alpha-tdep.c: Revert. * alpha-obsd-tdep.c: Revert. * alpha-nbsd-tdep.c: Revert. * alpha-mdebug-tdep.c: Revert. * alpha-linux-tdep.c: Revert. * alpha-linux-nat.c: Revert. * alpha-bsd-tdep.c: Revert. * alpha-bsd-nat.c: Revert. * aix-thread.c: Revert. * agent.c: Revert. * addrmap.c: Revert. * ada-varobj.c: Revert. * ada-valprint.c: Revert. * ada-typeprint.c: Revert. * ada-tasks.c: Revert. * ada-lang.c: Revert. * aarch64-tdep.c: Revert. * aarch64-ravenscar-thread.c: Revert. * aarch64-newlib-tdep.c: Revert. * aarch64-linux-tdep.c: Revert. * aarch64-linux-nat.c: Revert. * aarch64-fbsd-tdep.c: Revert. * aarch64-fbsd-nat.c: Revert. * aarch32-linux-nat.c: Revert. |
||
Tom Tromey
|
d55e5aa6b2 |
Sort includes for files gdb/[a-f]*.[chyl].
This patch sorts the include files for the files [a-f]*.[chyl]. The patch was written by a script. Tested by the buildbot. I will follow up with patches to sort the remaining files, by sorting a subset, testing them, and then checking them in. gdb/ChangeLog 2019-04-05 Tom Tromey <tom@tromey.com> * ft32-tdep.c: Sort headers. * frv-tdep.c: Sort headers. * frv-linux-tdep.c: Sort headers. * frame.c: Sort headers. * frame-unwind.c: Sort headers. * frame-base.c: Sort headers. * fork-child.c: Sort headers. * findvar.c: Sort headers. * findcmd.c: Sort headers. * filesystem.c: Sort headers. * filename-seen-cache.h: Sort headers. * filename-seen-cache.c: Sort headers. * fbsd-tdep.c: Sort headers. * fbsd-nat.h: Sort headers. * fbsd-nat.c: Sort headers. * f-valprint.c: Sort headers. * f-typeprint.c: Sort headers. * f-lang.c: Sort headers. * extension.h: Sort headers. * extension.c: Sort headers. * extension-priv.h: Sort headers. * expprint.c: Sort headers. * exec.h: Sort headers. * exec.c: Sort headers. * exceptions.c: Sort headers. * event-top.c: Sort headers. * event-loop.c: Sort headers. * eval.c: Sort headers. * elfread.c: Sort headers. * dwarf2read.h: Sort headers. * dwarf2read.c: Sort headers. * dwarf2loc.c: Sort headers. * dwarf2expr.h: Sort headers. * dwarf2expr.c: Sort headers. * dwarf2-frame.c: Sort headers. * dwarf2-frame-tailcall.c: Sort headers. * dwarf-index-write.h: Sort headers. * dwarf-index-write.c: Sort headers. * dwarf-index-common.c: Sort headers. * dwarf-index-cache.h: Sort headers. * dwarf-index-cache.c: Sort headers. * dummy-frame.c: Sort headers. * dtrace-probe.c: Sort headers. * disasm.h: Sort headers. * disasm.c: Sort headers. * disasm-selftests.c: Sort headers. * dictionary.c: Sort headers. * dicos-tdep.c: Sort headers. * demangle.c: Sort headers. * dcache.h: Sort headers. * dcache.c: Sort headers. * darwin-nat.h: Sort headers. * darwin-nat.c: Sort headers. * darwin-nat-info.c: Sort headers. * d-valprint.c: Sort headers. * d-namespace.c: Sort headers. * d-lang.c: Sort headers. * ctf.c: Sort headers. * csky-tdep.c: Sort headers. * csky-linux-tdep.c: Sort headers. * cris-tdep.c: Sort headers. * cris-linux-tdep.c: Sort headers. * cp-valprint.c: Sort headers. * cp-support.c: Sort headers. * cp-namespace.c: Sort headers. * cp-abi.c: Sort headers. * corelow.c: Sort headers. * corefile.c: Sort headers. * continuations.c: Sort headers. * completer.h: Sort headers. * completer.c: Sort headers. * complaints.c: Sort headers. * coffread.c: Sort headers. * coff-pe-read.c: Sort headers. * cli-out.h: Sort headers. * cli-out.c: Sort headers. * charset.c: Sort headers. * c-varobj.c: Sort headers. * c-valprint.c: Sort headers. * c-typeprint.c: Sort headers. * c-lang.c: Sort headers. * buildsym.c: Sort headers. * buildsym-legacy.c: Sort headers. * build-id.h: Sort headers. * build-id.c: Sort headers. * btrace.c: Sort headers. * bsd-uthread.c: Sort headers. * breakpoint.h: Sort headers. * breakpoint.c: Sort headers. * break-catch-throw.c: Sort headers. * break-catch-syscall.c: Sort headers. * break-catch-sig.c: Sort headers. * blockframe.c: Sort headers. * block.c: Sort headers. * bfin-tdep.c: Sort headers. * bfin-linux-tdep.c: Sort headers. * bfd-target.c: Sort headers. * bcache.c: Sort headers. * ax-general.c: Sort headers. * ax-gdb.h: Sort headers. * ax-gdb.c: Sort headers. * avr-tdep.c: Sort headers. * auxv.c: Sort headers. * auto-load.c: Sort headers. * arm-wince-tdep.c: Sort headers. * arm-tdep.c: Sort headers. * arm-symbian-tdep.c: Sort headers. * arm-pikeos-tdep.c: Sort headers. * arm-obsd-tdep.c: Sort headers. * arm-nbsd-tdep.c: Sort headers. * arm-nbsd-nat.c: Sort headers. * arm-linux-tdep.c: Sort headers. * arm-linux-nat.c: Sort headers. * arm-fbsd-tdep.c: Sort headers. * arm-fbsd-nat.c: Sort headers. * arm-bsd-tdep.c: Sort headers. * arch-utils.c: Sort headers. * arc-tdep.c: Sort headers. * arc-newlib-tdep.c: Sort headers. * annotate.h: Sort headers. * annotate.c: Sort headers. * amd64-windows-tdep.c: Sort headers. * amd64-windows-nat.c: Sort headers. * amd64-tdep.c: Sort headers. * amd64-sol2-tdep.c: Sort headers. * amd64-obsd-tdep.c: Sort headers. * amd64-obsd-nat.c: Sort headers. * amd64-nbsd-tdep.c: Sort headers. * amd64-nbsd-nat.c: Sort headers. * amd64-nat.c: Sort headers. * amd64-linux-tdep.c: Sort headers. * amd64-linux-nat.c: Sort headers. * amd64-fbsd-tdep.c: Sort headers. * amd64-fbsd-nat.c: Sort headers. * amd64-dicos-tdep.c: Sort headers. * amd64-darwin-tdep.c: Sort headers. * amd64-bsd-nat.c: Sort headers. * alpha-tdep.c: Sort headers. * alpha-obsd-tdep.c: Sort headers. * alpha-nbsd-tdep.c: Sort headers. * alpha-mdebug-tdep.c: Sort headers. * alpha-linux-tdep.c: Sort headers. * alpha-linux-nat.c: Sort headers. * alpha-bsd-tdep.c: Sort headers. * alpha-bsd-nat.c: Sort headers. * aix-thread.c: Sort headers. * agent.c: Sort headers. * addrmap.c: Sort headers. * ada-varobj.c: Sort headers. * ada-valprint.c: Sort headers. * ada-typeprint.c: Sort headers. * ada-tasks.c: Sort headers. * ada-lang.c: Sort headers. * aarch64-tdep.c: Sort headers. * aarch64-ravenscar-thread.c: Sort headers. * aarch64-newlib-tdep.c: Sort headers. * aarch64-linux-tdep.c: Sort headers. * aarch64-linux-nat.c: Sort headers. * aarch64-fbsd-tdep.c: Sort headers. * aarch64-fbsd-nat.c: Sort headers. * aarch32-linux-nat.c: Sort headers. |
||
Alan Hayward
|
0f83012ea0 |
Add linux_get_hwcap
Tidy up calls to read HWCAP (and HWCAP2) by adding common functions, removing the PPC and AArch64 specific versions. The only function difference is in aarch64_linux_core_read_description - if the hwcap read fails it now return a valid description instead of nullptr. gdb/ChangeLog: 2019-03-25 Alan Hayward <alan.hayward@arm.com> * aarch64-linux-nat.c (aarch64_linux_nat_target::read_description): Call linux_get_hwcap. * aarch64-linux-tdep.c (aarch64_linux_core_read_description): Likewise. (aarch64_linux_get_hwcap): Remove function. * aarch64-linux-tdep.h (aarch64_linux_get_hwcap): Remove declaration. * arm-linux-nat.c (arm_linux_nat_target::read_description):Call linux_get_hwcap. * arm-linux-tdep.c (arm_linux_core_read_description): Likewise. * linux-tdep.c (linux_get_hwcap): Add function. (linux_get_hwcap2): Likewise. * linux-tdep.h (linux_get_hwcap): Add declaration. (linux_get_hwcap2): Likewise. * ppc-linux-nat.c (ppc_linux_get_hwcap): Remove function. (ppc_linux_get_hwcap2): Likewise. (ppc_linux_nat_target::region_ok_for_hw_watchpoint): Call linux_get_hwcap. (ppc_linux_nat_target::insert_watchpoint): Likewise. (ppc_linux_nat_target::watchpoint_addr_within_range): Likewise. (ppc_linux_nat_target::read_description): Likewise. * ppc-linux-tdep.c (ppc_linux_core_read_description): Likewise. * s390-linux-nat.c: Likewise. * s390-linux-tdep.c (s390_core_read_description): Likewise. |
||
Joel Brobecker
|
42a4f53d2b |
Update copyright year range in all GDB files.
This commit applies all changes made after running the gdb/copyright.py script. Note that one file was flagged by the script, due to an invalid copyright header (gdb/unittests/basic_string_view/element_access/char/empty.cc). As the file was copied from GCC's libstdc++-v3 testsuite, this commit leaves this file untouched for the time being; a patch to fix the header was sent to gcc-patches first. gdb/ChangeLog: Update copyright year range in all GDB files. |
||
Tom Tromey
|
7bc02706c3 |
Avoid -Wnarrowing warnings in struct tramp_frame instances
This avoids -Wnarrowing warnings in struct tramp_frame instances, replacing uses of -1 with a new ULONGEST_MAX. It also redefined TRAMP_SENTINEL_INSN to avoid the same warning. gdb/ChangeLog 2018-08-27 Tom Tromey <tom@tromey.com> * tramp-frame.h (TRAMP_SENTINEL_INSN): Redefine. * tilegx-linux-tdep.c (tilegx_linux_rt_sigframe): Use ULONGEST_MAX. * tic6x-linux-tdep.c (tic6x_linux_rt_sigreturn_tramp_frame): Use ULONGEST_MAX. * sparc64-linux-tdep.c (sparc64_linux_rt_sigframe): Use ULONGEST_MAX. * sparc-linux-tdep.c (sparc32_linux_sigframe) (sparc32_linux_rt_sigframe): Use ULONGEST_MAX. * ppc-nbsd-tdep.c (ppcnbsd_sigtramp, ppcnbsd2_sigtramp): Use ULONGEST_MAX. * ppc-linux-tdep.c (ppc32_linux_sigaction_tramp_frame) (ppc64_linux_sigaction_tramp_frame) (ppc32_linux_sighandler_tramp_frame) (ppc64_linux_sighandler_tramp_frame): Use ULONGEST_MAX. * nios2-linux-tdep.c (nios2_r1_linux_rt_sigreturn_tramp_frame) (nios2_r2_linux_rt_sigreturn_tramp_frame): Use ULONGEST_MAX. * mn10300-linux-tdep.c (am33_linux_sigframe) (am33_linux_rt_sigframe): Use ULONGEST_MAX. * mips64-obsd-tdep.c (mips64obsd_sigframe): Use ULONGEST_MAX. * mips-linux-tdep.c (mips_linux_o32_sigframe) (mips_linux_o32_rt_sigframe, mips_linux_n32_rt_sigframe) (mips_linux_n64_rt_sigframe, micromips_linux_o32_sigframe) (micromips_linux_o32_rt_sigframe, micromips_linux_n32_rt_sigframe) (micromips_linux_n64_rt_sigframe): Use ULONGEST_MAX. * mips-fbsd-tdep.c (mips_fbsd_sigframe, mipsn32_fbsd_sigframe) (mips64_fbsd_sigframe): Use ULONGEST_MAX. * microblaze-linux-tdep.c (microblaze_linux_sighandler_tramp_frame): Use ULONGEST_MAX. * i386-nbsd-tdep.c (i386nbsd_sigtramp_sc16, i386nbsd_sigtramp_sc2) (i386nbsd_sigtramp_si2, i386nbsd_sigtramp_si31) (i386nbsd_sigtramp_si4): Use ULONGEST_MAX. * hppa-nbsd-tdep.c (hppanbsd_sigtramp_si4): Use ULONGEST_MAX. * common/common-types.h (ULONGEST_MAX): New define. (CORE_ADDR_MAX): Fix formatting. * bfin-linux-tdep.c (bfin_linux_sigframe): Use ULONGEST_MAX. * arm-obsd-tdep.c (armobsd_sigframe): Use ULONGEST_MAX. * arm-linux-tdep.c (arm_linux_sigreturn_tramp_frame) (arm_linux_rt_sigreturn_tramp_frame) (arm_eabi_linux_sigreturn_tramp_frame) (arm_eabi_linux_rt_sigreturn_tramp_frame) (thumb2_eabi_linux_sigreturn_tramp_frame) (thumb2_eabi_linux_rt_sigreturn_tramp_frame) (arm_linux_restart_syscall_tramp_frame) (arm_kernel_linux_restart_syscall_tramp_frame): Use ULONGEST_MAX. * arm-fbsd-tdep.c (arm_fbsd_sigframe): Use ULONGEST_MAX. * aarch64-linux-tdep.c (aarch64_linux_rt_sigframe): Use ULONGEST_MAX. * aarch64-fbsd-tdep.c (aarch64_fbsd_sigframe): Use ULONGEST_MAX. |
||
Alan Hayward
|
a616bb9450 |
Split size in regset section iterators
In the existing code, when using the regset section iteration functions, the size parameter is used in different ways. With collect, size is used to create the buffer in which to write the regset. (see linux-tdep.c::linux_collect_regset_section_cb). With supply, size is used to confirm the existing regset is the correct size. If REGSET_VARIABLE_SIZE is set then the regset can be bigger than size. Effectively, size is the minimum possible size of the regset. (see corelow.c::get_core_register_section). There are currently no targets with both REGSET_VARIABLE_SIZE and a collect function. In SVE, a corefile can contain one of two formats after the header, both of which are different sizes. However, when writing a core file, we always want to write out the full bigger size. To allow support of collects for REGSET_VARIABLE_SIZE we need two sizes. This is done by adding supply_size and collect_size. gdb/ * aarch64-fbsd-tdep.c (aarch64_fbsd_iterate_over_regset_sections): Add supply_size and collect_size. * aarch64-linux-tdep.c (aarch64_linux_iterate_over_regset_sections): Likewise. * alpha-linux-tdep.c (alpha_linux_iterate_over_regset_sections): * alpha-nbsd-tdep.c (alphanbsd_iterate_over_regset_sections): Likewise. * amd64-fbsd-tdep.c (amd64fbsd_iterate_over_regset_sections): Likewise. * amd64-linux-tdep.c (amd64_linux_iterate_over_regset_sections): Likewise. * arm-bsd-tdep.c (armbsd_iterate_over_regset_sections): Likewise. * arm-fbsd-tdep.c (arm_fbsd_iterate_over_regset_sections): Likewise. * arm-linux-tdep.c (arm_linux_iterate_over_regset_sections): Likewise. * corelow.c (get_core_registers_cb): Likewise. (core_target::fetch_registers): Likewise. * fbsd-tdep.c (fbsd_collect_regset_section_cb): Likewise. * frv-linux-tdep.c (frv_linux_iterate_over_regset_sections): Likewise. * gdbarch.h (void): Regenerate. * gdbarch.sh: Add supply_size and collect_size. * hppa-linux-tdep.c (hppa_linux_iterate_over_regset_sections): Likewise. * hppa-nbsd-tdep.c (hppanbsd_iterate_over_regset_sections): Likewise. * hppa-obsd-tdep.c (hppaobsd_iterate_over_regset_sections): Likewise. * i386-fbsd-tdep.c (i386fbsd_iterate_over_regset_sections): Likewise. * i386-linux-tdep.c (i386_linux_iterate_over_regset_sections): Likewise. * i386-tdep.c (i386_iterate_over_regset_sections): Likewise. * ia64-linux-tdep.c (ia64_linux_iterate_over_regset_sections): Likewise. * linux-tdep.c (linux_collect_regset_section_cb): Likewise. * m32r-linux-tdep.c (m32r_linux_iterate_over_regset_sections): Likewise. * m68k-bsd-tdep.c (m68kbsd_iterate_over_regset_sections): Likewise. * m68k-linux-tdep.c (m68k_linux_iterate_over_regset_sections): Likewise. * mips-fbsd-tdep.c (mips_fbsd_iterate_over_regset_sections): Likewise. * mips-linux-tdep.c (mips_linux_iterate_over_regset_sections): Likewise. * mips-nbsd-tdep.c (mipsnbsd_iterate_over_regset_sections): Likewise. * mips64-obsd-tdep.c (mips64obsd_iterate_over_regset_sections): Likewise. * mn10300-linux-tdep.c (am33_iterate_over_regset_sections): Likewise. * nios2-linux-tdep.c (nios2_iterate_over_regset_sections): Likewise. * ppc-fbsd-tdep.c (ppcfbsd_iterate_over_regset_sections): Likewise. * ppc-linux-tdep.c (ppc_linux_iterate_over_regset_sections): Likewise. * ppc-nbsd-tdep.c (ppcnbsd_iterate_over_regset_sections): Likewise. * ppc-obsd-tdep.c (ppcobsd_iterate_over_regset_sections): Likewise. * riscv-linux-tdep.c (riscv_linux_iterate_over_regset_sections): Likewise. * rs6000-aix-tdep.c (rs6000_aix_iterate_over_regset_sections): Likewise. * s390-linux-tdep.c (s390_iterate_over_regset_sections): Likewise. * score-tdep.c (score7_linux_iterate_over_regset_sections): Likewise. * sh-tdep.c (sh_iterate_over_regset_sections): Likewise. * sparc-tdep.c (sparc_iterate_over_regset_sections): Likewise. * tilegx-linux-tdep.c (tilegx_iterate_over_regset_sections): Likewise. * vax-tdep.c (vax_iterate_over_regset_sections): Likewise. * xtensa-tdep.c (xtensa_iterate_over_regset_sections): Likewise. |
||
Pedro Alves
|
00431a78b2 |
Use thread_info and inferior pointers more throughout
This is more preparation bits for multi-target support. In a multi-target scenario, we need to address the case of different processes/threads running on different targets that happen to have the same PID/PTID. E.g., we can have both process 123 in target 1, and process 123 in target 2, while they're in reality different processes running on different machines. Or maybe we've loaded multiple instances of the same core file. Etc. To address this, in my WIP multi-target branch, threads and processes are uniquely identified by the (process_stratum target_ops *, ptid_t) and (process_stratum target_ops *, pid) tuples respectively. I.e., each process_stratum instance has its own thread/process number space. As you can imagine, that requires passing around target_ops * pointers in a number of functions where we're currently passing only a ptid_t or an int. E.g., when we look up a thread_info object by ptid_t in find_thread_ptid, the ptid_t alone isn't sufficient. In many cases though, we already have the thread_info or inferior pointer handy, but we "lose" it somewhere along the call stack, only to look it up again by ptid_t/pid. Since thread_info or inferior objects know their parent target, if we pass around thread_info or inferior pointers when possible, we avoid having to add extra target_ops parameters to many functions, and also, we eliminate a number of by ptid_t/int lookups. So that's what this patch does. In a bit more detail: - Changes a number of functions and methods to take a thread_info or inferior pointer instead of a ptid_t or int parameter. - Changes a number of structure fields from ptid_t/int to inferior or thread_info pointers. - Uses the inferior_thread() function whenever possible instead of inferior_ptid. - Uses thread_info pointers directly when possible instead of the is_running/is_stopped etc. routines that require a lookup. - A number of functions are eliminated along the way, such as: int valid_gdb_inferior_id (int num); int pid_to_gdb_inferior_id (int pid); int gdb_inferior_id_to_pid (int num); int in_inferior_list (int pid); - A few structures and places hold a thread_info pointer across inferior execution, so now they take a strong reference to the (refcounted) thread_info object to avoid the thread_info pointer getting stale. This is done in enable_thread_stack_temporaries and in the infcall.c code. - Related, there's a spot in infcall.c where using a RAII object to handle the refcount would be handy, so a gdb::ref_ptr specialization for thread_info is added (thread_info_ref, in gdbthread.h), along with a gdb_ref_ptr policy that works for all refcounted_object types (in common/refcounted-object.h). gdb/ChangeLog: 2018-06-21 Pedro Alves <palves@redhat.com> * ada-lang.h (ada_get_task_number): Take a thread_info pointer instead of a ptid_t. All callers adjusted. * ada-tasks.c (ada_get_task_number): Likewise. All callers adjusted. (print_ada_task_info, display_current_task_id, task_command_1): Adjust. * breakpoint.c (watchpoint_in_thread_scope): Adjust to use inferior_thread. (breakpoint_kind): Adjust. (remove_breakpoints_pid): Rename to ... (remove_breakpoints_inf): ... this. Adjust to take an inferior pointer. All callers adjusted. (bpstat_clear_actions): Use inferior_thread. (get_bpstat_thread): New. (bpstat_do_actions): Use it. (bpstat_check_breakpoint_conditions, bpstat_stop_status): Adjust to take a thread_info pointer. All callers adjusted. (set_longjmp_breakpoint_for_call_dummy, set_momentary_breakpoint) (breakpoint_re_set_thread): Use inferior_thread. * breakpoint.h (struct inferior): Forward declare. (bpstat_stop_status): Update. (remove_breakpoints_pid): Delete. (remove_breakpoints_inf): New. * bsd-uthread.c (bsd_uthread_target::wait) (bsd_uthread_target::update_thread_list): Use find_thread_ptid. * btrace.c (btrace_add_pc, btrace_enable, btrace_fetch) (maint_btrace_packet_history_cmd) (maint_btrace_clear_packet_history_cmd): Adjust. (maint_btrace_clear_cmd, maint_info_btrace_cmd): Adjust to use inferior_thread. * cli/cli-interp.c: Include "inferior.h". * common/refcounted-object.h (struct refcounted_object_ref_policy): New. * compile/compile-object-load.c: Include gdbthread.h. (store_regs): Use inferior_thread. * corelow.c (core_target::close): Use current_inferior. (core_target_open): Adjust to use first_thread_of_inferior and use the current inferior. * ctf.c (ctf_target::close): Adjust to use current_inferior. * dummy-frame.c (dummy_frame_id) <ptid>: Delete, replaced by ... <thread>: ... this new field. All references adjusted. (dummy_frame_pop, dummy_frame_discard, register_dummy_frame_dtor): Take a thread_info pointer instead of a ptid_t. * dummy-frame.h (dummy_frame_push, dummy_frame_pop) (dummy_frame_discard, register_dummy_frame_dtor): Take a thread_info pointer instead of a ptid_t. * elfread.c: Include "inferior.h". (elf_gnu_ifunc_resolver_stop, elf_gnu_ifunc_resolver_return_stop): Use inferior_thread. * eval.c (evaluate_subexp): Likewise. * frame.c (frame_pop, has_stack_frames, find_frame_sal): Use inferior_thread. * gdb_proc_service.h (struct thread_info): Forward declare. (struct ps_prochandle) <ptid>: Delete, replaced by ... <thread>: ... this new field. All references adjusted. * gdbarch.h, gdbarch.c: Regenerate. * gdbarch.sh (get_syscall_number): Replace 'ptid' parameter with a 'thread' parameter. All implementations and callers adjusted. * gdbthread.h (thread_info) <set_running>: New method. (delete_thread, delete_thread_silent): Take a thread_info pointer instead of a ptid. (global_thread_id_to_ptid, ptid_to_global_thread_id): Delete. (first_thread_of_process): Delete, replaced by ... (first_thread_of_inferior): ... this new function. All callers adjusted. (any_live_thread_of_process): Delete, replaced by ... (any_live_thread_of_inferior): ... this new function. All callers adjusted. (switch_to_thread, switch_to_no_thread): Declare. (is_executing): Delete. (enable_thread_stack_temporaries): Update comment. <enable_thread_stack_temporaries>: Take a thread_info pointer instead of a ptid_t. Incref the thread. <~enable_thread_stack_temporaries>: Decref the thread. <m_ptid>: Delete <m_thr>: New. (thread_stack_temporaries_enabled_p, push_thread_stack_temporary) (get_last_thread_stack_temporary) (value_in_thread_stack_temporaries, can_access_registers_thread): Take a thread_info pointer instead of a ptid_t. All callers adjusted. * infcall.c (get_call_return_value): Use inferior_thread. (run_inferior_call): Work with thread pointers instead of ptid_t. (call_function_by_hand_dummy): Work with thread pointers instead of ptid_t. Use thread_info_ref. * infcmd.c (proceed_thread_callback): Access thread's state directly. (ensure_valid_thread, ensure_not_running): Use inferior_thread, access thread's state directly. (continue_command): Use inferior_thread. (info_program_command): Use find_thread_ptid and access thread state directly. (proceed_after_attach_callback): Use thread state directly. (notice_new_inferior): Take a thread_info pointer instead of a ptid_t. All callers adjusted. (exit_inferior): Take an inferior pointer instead of a pid. All callers adjusted. (exit_inferior_silent): New. (detach_inferior): Delete. (valid_gdb_inferior_id, pid_to_gdb_inferior_id) (gdb_inferior_id_to_pid, in_inferior_list): Delete. (detach_inferior_command, kill_inferior_command): Use find_inferior_id instead of valid_gdb_inferior_id and gdb_inferior_id_to_pid. (inferior_command): Use inferior and thread pointers. * inferior.h (struct thread_info): Forward declare. (notice_new_inferior): Take a thread_info pointer instead of a ptid_t. All callers adjusted. (detach_inferior): Delete declaration. (exit_inferior, exit_inferior_silent): Take an inferior pointer instead of a pid. All callers adjusted. (gdb_inferior_id_to_pid, pid_to_gdb_inferior_id, in_inferior_list) (valid_gdb_inferior_id): Delete. * infrun.c (follow_fork_inferior, proceed_after_vfork_done) (handle_vfork_child_exec_or_exit, follow_exec): Adjust. (struct displaced_step_inferior_state) <pid>: Delete, replaced by ... <inf>: ... this new field. <step_ptid>: Delete, replaced by ... <step_thread>: ... this new field. (get_displaced_stepping_state): Take an inferior pointer instead of a pid. All callers adjusted. (displaced_step_in_progress_any_inferior): Adjust. (displaced_step_in_progress_thread): Take a thread pointer instead of a ptid_t. All callers adjusted. (displaced_step_in_progress, add_displaced_stepping_state): Take an inferior pointer instead of a pid. All callers adjusted. (get_displaced_step_closure_by_addr): Adjust. (remove_displaced_stepping_state): Take an inferior pointer instead of a pid. All callers adjusted. (displaced_step_prepare_throw, displaced_step_prepare) (displaced_step_fixup): Take a thread pointer instead of a ptid_t. All callers adjusted. (start_step_over): Adjust. (infrun_thread_ptid_changed): Remove bit updating ptids in the displaced step queue. (do_target_resume): Adjust. (fetch_inferior_event): Use inferior_thread. (context_switch, get_inferior_stop_soon): Take an execution_control_state pointer instead of a ptid_t. All callers adjusted. (switch_to_thread_cleanup): Delete. (stop_all_threads): Use scoped_restore_current_thread. * inline-frame.c: Include "gdbthread.h". (inline_state) <inline_state>: Take a thread pointer instead of a ptid_t. All callers adjusted. <ptid>: Delete, replaced by ... <thread>: ... this new field. (find_inline_frame_state): Take a thread pointer instead of a ptid_t. All callers adjusted. (skip_inline_frames, step_into_inline_frame) (inline_skipped_frames, inline_skipped_symbol): Take a thread pointer instead of a ptid_t. All callers adjusted. * inline-frame.h (skip_inline_frames, step_into_inline_frame) (inline_skipped_frames, inline_skipped_symbol): Likewise. * linux-fork.c (delete_checkpoint_command): Adjust to use thread pointers directly. * linux-nat.c (get_detach_signal): Likewise. * linux-thread-db.c (thread_from_lwp): New 'stopped' parameter. (thread_db_notice_clone): Adjust. (thread_db_find_new_threads_silently) (thread_db_find_new_threads_2, thread_db_find_new_threads_1): Take a thread pointer instead of a ptid_t. All callers adjusted. * mi/mi-cmd-var.c: Include "inferior.h". (mi_cmd_var_update_iter): Update to use thread pointers. * mi/mi-interp.c (mi_new_thread): Update to use the thread's inferior directly. (mi_output_running_pid, mi_inferior_count): Delete, bits factored out to ... (mi_output_running): ... this new function. (mi_on_resume_1): Adjust to use it. (mi_user_selected_context_changed): Adjust to use inferior_thread. * mi/mi-main.c (proceed_thread): Adjust to use thread pointers directly. (interrupt_thread_callback): : Adjust to use thread and inferior pointers. * proc-service.c: Include "gdbthread.h". (ps_pglobal_lookup): Adjust to use the thread's inferior directly. * progspace-and-thread.c: Include "inferior.h". * progspace.c: Include "inferior.h". * python/py-exitedevent.c (create_exited_event_object): Adjust to hold a reference to an inferior_object. * python/py-finishbreakpoint.c (bpfinishpy_init): Adjust to use inferior_thread. * python/py-inferior.c (struct inferior_object): Give the type a tag name instead of a typedef. (python_on_normal_stop): No need to check if the current thread is listed. (inferior_to_inferior_object): Change return type to inferior_object. All callers adjusted. (find_thread_object): Delete, bits factored out to ... (thread_to_thread_object): ... this new function. * python/py-infthread.c (create_thread_object): Use inferior_to_inferior_object. (thpy_is_stopped): Use thread pointer directly. (gdbpy_selected_thread): Use inferior_thread. * python/py-record-btrace.c (btpy_list_object) <ptid>: Delete field, replaced with ... <thread>: ... this new field. All users adjusted. (btpy_insn_or_gap_new): Drop const. (btpy_list_new): Take a thread pointer instead of a ptid_t. All callers adjusted. * python/py-record.c: Include "gdbthread.h". (recpy_insn_new, recpy_func_new): Take a thread pointer instead of a ptid_t. All callers adjusted. (gdbpy_current_recording): Use inferior_thread. * python/py-record.h (recpy_record_object) <ptid>: Delete field, replaced with ... <thread>: ... this new field. All users adjusted. (recpy_element_object) <ptid>: Delete field, replaced with ... <thread>: ... this new field. All users adjusted. (recpy_insn_new, recpy_func_new): Take a thread pointer instead of a ptid_t. All callers adjusted. * python/py-threadevent.c: Include "gdbthread.h". (get_event_thread): Use thread_to_thread_object. * python/python-internal.h (struct inferior_object): Forward declare. (find_thread_object, find_inferior_object): Delete declarations. (thread_to_thread_object, inferior_to_inferior_object): New declarations. * record-btrace.c: Include "inferior.h". (require_btrace_thread): Use inferior_thread. (record_btrace_frame_sniffer) (record_btrace_tailcall_frame_sniffer): Use inferior_thread. (get_thread_current_frame): Use scoped_restore_current_thread and switch_to_thread. (get_thread_current_frame): Use thread pointer directly. (record_btrace_replay_at_breakpoint): Use thread's inferior pointer directly. * record-full.c: Include "inferior.h". * regcache.c: Include "gdbthread.h". (get_thread_arch_regcache): Use the inferior's address space directly. (get_thread_regcache, registers_changed_thread): New. * regcache.h (get_thread_regcache(thread_info *thread)): New overload. (registers_changed_thread): New. (remote_target) <remote_detach_1>: Swap order of parameters. (remote_add_thread): <remote_add_thread>: Return the new thread. (get_remote_thread_info(ptid_t)): New overload. (remote_target::remote_notice_new_inferior): Use thread pointers directly. (remote_target::process_initial_stop_replies): Use thread_info::set_running. (remote_target::remote_detach_1, remote_target::detach) (extended_remote_target::detach): Adjust. * stack.c (frame_show_address): Use inferior_thread. * target-debug.h (target_debug_print_thread_info_pp): New. * target-delegates.c: Regenerate. * target.c (default_thread_address_space): Delete. (memory_xfer_partial_1): Use current_inferior. (target_detach): Use current_inferior. (target_thread_address_space): Delete. (generic_mourn_inferior): Use current_inferior. * target.h (struct target_ops) <thread_address_space>: Delete. (target_thread_address_space): Delete. * thread.c (init_thread_list): Use ALL_THREADS_SAFE. Use thread pointers directly. (delete_thread_1, delete_thread, delete_thread_silent): Take a thread pointer instead of a ptid_t. Adjust all callers. (ptid_to_global_thread_id, global_thread_id_to_ptid): Delete. (first_thread_of_process): Delete, replaced by ... (first_thread_of_inferior): ... this new function. All callers adjusted. (any_thread_of_process): Rename to ... (any_thread_of_inferior): ... this, and take an inferior pointer. (any_live_thread_of_process): Rename to ... (any_live_thread_of_inferior): ... this, and take an inferior pointer. (thread_stack_temporaries_enabled_p, push_thread_stack_temporary) (value_in_thread_stack_temporaries) (get_last_thread_stack_temporary): Take a thread pointer instead of a ptid_t. Adjust all callers. (thread_info::set_running): New. (validate_registers_access): Use inferior_thread. (can_access_registers_ptid): Rename to ... (can_access_registers_thread): ... this, and take a thread pointer. (print_thread_info_1): Adjust to compare thread pointers instead of ptids. (switch_to_no_thread, switch_to_thread): Make extern. (scoped_restore_current_thread::~scoped_restore_current_thread): Use m_thread pointer directly. (scoped_restore_current_thread::scoped_restore_current_thread): Use inferior_thread. (thread_command): Use thread pointer directly. (thread_num_make_value_helper): Use inferior_thread. * top.c (execute_command): Use inferior_thread. * tui/tui-interp.c: Include "inferior.h". * varobj.c (varobj_create): Use inferior_thread. (value_of_root_1): Use find_thread_global_id instead of global_thread_id_to_ptid. |