Commit Graph

79947 Commits

Author SHA1 Message Date
DJ Delorie
0c315784bf Add opcode relaxation for rl78-elf
This patch adds initial in-gas opcode relaxation for the rl78
backend.  Specifically, it checks for conditional branches that
are too far and replaces them with inverted branches around longer
fixed branches.
2014-03-20 17:56:01 -04:00
Maciej W. Rozycki
deba7593bb Avoid using the ISO C99 `z' formatted output modifier
* mi/mi-interp.c (mi_memory_changed): Avoid using the ISO C99
	`z' formatted output modifier.
2014-03-20 21:41:56 +00:00
Richard Sandiford
d56a8dda6d gas/
* config/tc-mips.h (DIFF_EXPR_OK, CFI_DIFF_EXPR_OK): Define.
	* config/tc-mips.c (md_pcrel_from): Remove error message.
	(md_apply_fix): Convert PC-relative BFD_RELOC_32s to
	BFD_RELOC_32_PCREL.  Report a specific error message for unhandled
	PC-relative expressions.  Handle BFD_RELOC_8.

gas/testsuite/
	* gas/all/gas.exp: Remove XFAIL of forward.d for MIPS.
	* gas/mips/pcrel-1.s, gas/mips/pcrel-1.d, gas/mips/pcrel-2.s,
	gas/mips/pcrel-2.d, gas/mips/pcrel-3.s, gas/mips/pcrel-3.l,
	gas/mips/pcrel-4.s, gas/mips/pcrel-4-32.d, gas/mips/pcrel-4-n32.d,
	gas/mips/pcrel-4-64.d: New tests.
	* gas/mips/mips.exp: Run them.
	* gas/mips/lui-2.l: Tweak error message for line 7.

ld/testsuite/
	* ld-elf/merge.d: Remove MIPS XFAIL.
2014-03-20 21:18:43 +00:00
Sergio Durigan Junior
1bff71c325 Fix probe-related internal error on AIX
-- Initial message by Tom Tromey:

While testing on AIX, I happened to notice an internal error coming
from parse_probes.  This happens because there are no probes defined
on this platform.  This patch fixes the problem by changing an assert
into an ordinary error, and then changing the relevant caller to cope.

This fixes a few tests on AIX; also regtested on x86-64 Fedora 18.

-- Followup by Sergio Durigan Junior:

By reading the patch (and the original code), I found it a little bit
obscure, so I took the liberty to try to improve it.  Here's the patch.
Could you please take a look and see if it works on AIX (and also if you
like the approach)?

gdb/
2014-03-20  Tom Tromey  <tromey@redhat.com>
	    Sergio Durigan Junior  <sergiodj@redhat.com>

	* probe.c (parse_probes): Turn assert into an ordinary error.
	* break-catch-throw.c (re_set_exception_catchpoint): Ignore
	exceptions when parsing probes.  Rearrange the code for clarity.
2014-03-20 18:08:31 -03:00
Tom Tromey
90e289504f Fix py-finish-breakpoint.exp with target async.
With target async enabled, py-finish-breakpoint.exp triggers an
assertion failure.

The failure occurs because execute_command re-enters the event loop in
some circumstances, and in this case resets the sync_execution flag.
Then later GDB reaches this assertion in normal_stop:

      gdb_assert (sync_execution || !target_can_async_p ());

In detail:

#1 - A synchronous execution command is run.  sync_execution is set.

#2 - A python breakpoint is hit (TARGET_WAITKIND_STOPPED), and the
     corresponding Python breakpoint's stop method is executed.  When
     and while python commands are executed, interpreter_async is
     forced to 0.

#3 - The Python stop method happens to execute a not-execution-related
     gdb command.  In this case, "where 1".

#4 - Seeing that sync_execution is set, execute_command nests a new
     event loop (although that wasn't necessary; this is the problem).

#5 - The linux-nat target's pipe in the event loop happens to be
     marked.  That's normal, due to this in linux_nat_wait:

     /* If we requested any event, and something came out, assume there
        may be more.  If we requested a specific lwp or process, also
        assume there may be more.  */

     The nested event loop thus immediately wakes up and calls
     target_wait.  No thread is actually executing in the inferior, so
     the target returns TARGET_WAITKIND_NO_RESUMED.

#6 - normal_stop is reached.  GDB prints "No unwaited-for children
     left.", and resets the sync_execution flag (IOW, there are no
     resumed threads left, so the synchronous command is considered
     completed.)  This is already bogus.  We were handling a
     breakpoint!

#7 - the nested event loop unwinds/ends.  GDB is now back to handling
     the python stop method (TARGET_WAITKIND_STOPPED), which decides
     the breakpoint should stop.  normal_stop is called for this
     event.  However, normal_stop actually works with the _last_
     reported target status:

   void
   normal_stop (void)
   {
    struct target_waitstatus last;
    ptid_t last_ptid;
    struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);

    ...
    get_last_target_status (&last_ptid, &last);

    ...
    if (last.kind == TARGET_WAITKIND_NO_RESUMED)
      {
        gdb_assert (sync_execution || !target_can_async_p ());

        target_terminal_ours_for_output ();
        printf_filtered (_("No unwaited-for children left.\n"));
      }

   And due to the nesting in execute command, the last event is now
   TARGET_WAITKIND_NO_RESUMED, not the actual breakpoint event being
   handled.  This could be seen to be broken in itself, but we can
   leave fixing that for another pass.  The assertion is reached, and
   fails.

execute_command has a comment explaining when it should synchronously
wait for events:

      /* If the interpreter is in sync mode (we're running a user
	 command's list, running command hooks or similars), and we
	 just ran a synchronous command that started the target, wait
	 for that command to end.  */

However, the code did not follow this comment -- it didn't check to
see if the command actually started the target, just whether the
target was executing a sync command at this point.

This patch fixes the problem by noting whether the target was
executing in sync_execution mode before running the command, and then
augmenting the condition to test this as well.

2014-03-20  Tom Tromey  <tromey@redhat.com>

	PR gdb/14135
	* top.c (execute_command): Only dispatch events if the command
	started the target.
2014-03-20 18:08:33 +00:00
Pedro Alves
beb460e8d2 make dprintf.exp pass in target async mode
When target-async is enabled, dprintf.exp fails:

 Running ../../../src/gdb/testsuite/gdb.base/dprintf.exp ...
 FAIL: gdb.base/dprintf.exp: 1st dprintf, call
 FAIL: gdb.base/dprintf.exp: 2nd dprintf, call
 FAIL: gdb.base/dprintf.exp: Set dprintf function
 FAIL: gdb.base/dprintf.exp: 1st dprintf, fprintf
 FAIL: gdb.base/dprintf.exp: 2nd dprintf, fprintf

 Breakpoint 2, main (argc=1, argv=0x7fffffffd3f8) at ../../../src/gdb/testsuite/gdb.base/dprintf.c:33
 33        int loc = 1234;
 (gdb) continue
 Continuing.
 kickoff 1234
 also to stderr 1234
 At foo entry
 (gdb) FAIL: gdb.base/dprintf.exp: 1st dprintf, call

The problem is that GDB gave the prompt back to the user too early.

This happens when calling functions while handling an event that
doesn't cause a user visible stop.  dprintf with "set dprintf-style
gdb" is one such case.  This patch adds a test case that has a
breakpoint with a condition that calls a function that returns false,
so that regression testing isn't dependent on the implementation of
dprintf.

The problem happens because run_inferior_call causes GDB to forget
that it is running in sync_execution mode, so any event that runs an
inferior call causes fetch_inferior_event to display the prompt, even
if the event should not result in a user visible stop (that is, gdb
resumes the inferior and waits for the next event).

This patch fixes the issue by noticing when GDB was in sync_execution
mode in run_inferior_call, and taking care to restore this state
afterward.

gdb/
2014-03-20  Tom Tromey  <tromey@redhat.com>

	PR cli/15718
	* infcall.c: Include event-top.h.
	(run_inferior_call): Call async_disable_stdin if needed.

gdb/testsuite/
2014-03-20  Tom Tromey  <tromey@redhat.com>
	    Pedro Alves  <palves@redhat.com>

	PR cli/15718
	* gdb.base/condbreak-call-false.c: New file.
	* gdb.base/condbreak-call-false.exp: New file.
2014-03-20 17:49:51 +00:00
Ilya Tocar
5fc35d961b Fix memory size for gather/scatter instructions
For gathers with indices larger than elements (e. g.)

vpgatherqd      ymm6{k1}, ZMMWORD PTR [ebp+zmm7*8-123]

We currently treat memory size as a size of index register, while it is
actually should be size of destination register:

vpgatherqd      ymm6{k1}, YMMWORD PTR [ebp+zmm7*8-123]

This patch fixes it.

opcodes/

        * i386-opc.tbl: Change memory size for vgatherpf0qps, vgatherpf1qps,
        vscatterpf0qps, vscatterpf1qps, vgatherqps, vpgatherqd, vpscatterqd,
        vscatterqps.
        * i386-tbl.h: Regenerate.

gas/testsuite/

        * gas/i386/avx512pf-intel.d: Change memory size for vgatherpf0qps,
        vgatherpf1qps, vscatterpf0qps, vscatterpf1qps.
        * gas/i386/avx512pf.s: Ditto.
        * gas/i386/x86-64-avx512pf-intel.d: Ditto.
        * gas/i386/x86-64-avx512pf.s: Ditto.
        * gas/i386/avx512f-intel.d: Change memory size for vgatherqps,
        vpgatherqd, vpscatterqd, vscatterqps.
        * gas/i386/avx512f.s: Ditto.
        * gas/i386/x86-64-avx512f-intel.d: Ditto.
        * gas/i386/x86-64-avx512f.s: Ditto.
2014-03-20 08:13:30 -07:00
Pedro Alves
40acf43aad Further cleanup of signal-while-stepping-over-bp-other-thread.c.
This test now uses pthread_kill instead of the host's kill command, so
no longer need to block signals, or store the the inferior's PID.

gdb/testsuite/
2014-03-20  Pedro Alves  <palves@redhat.com>

	* gdb.threads/signal-while-stepping-over-bp-other-thread.c (pid):
	Delete.
	(block_signals, unblock_signals): Delete.
	(child_function_2, main): Remove references to deleted variable
	and functions.
2014-03-20 14:09:53 +00:00
Pedro Alves
9f5e1e021a Make signal-while-stepping-over-bp-other-thread.exp run against remote targets too.
Use pthread_kill instead of the host's "kill".  The reason the test
wasn't written that way to begin with, is that done this way, before
the previous fixes to make GDB step-over all other threads before the
stepping thread, the test would fail...

Tested on x86_64 Fedora 17, native and gdbserver.

gdb/testsuite/
2014-03-20  Pedro Alves  <palves@redhat.com>

	* gdb.threads/signal-while-stepping-over-bp-other-thread.c (main):
	Use pthread_kill to signal thread 2.
	* gdb.threads/signal-while-stepping-over-bp-other-thread.exp:
	Adjust to make the test send itself a signal rather than using the
	host's "kill" command.
2014-03-20 13:44:32 +00:00
Pedro Alves
99619beac6 Handle multiple step-overs.
This test fails with current mainline.

If the program stopped for a breakpoint in thread 1, and then the user
switches to thread 2, and resumes the program, GDB first switches back
to thread 1 to step it over the breakpoint, in order to make progress.

However, that logic only considers the last reported event, assuming
only one thread needs that stepping over dance.

That's actually not true when we play with scheduler-locking.  The
patch adds an example to the testsuite of multiple threads needing a
step-over before the stepping thread can be resumed.  With current
mainline, the program re-traps the same breakpoint it had already
trapped before.

E.g.:

 Breakpoint 2, main () at ../../../src/gdb/testsuite/gdb.threads/multiple-step-overs.c:99
 99	  wait_threads (); /* set wait-threads breakpoint here */
 (gdb) PASS: gdb.threads/multiple-step-overs.exp: step: continue to breakpoint: run to breakpoint
 info threads
   Id   Target Id         Frame
   3    Thread 0x7ffff77c9700 (LWP 4310) "multiple-step-o" 0x00000000004007ca in child_function_3 (arg=0x1) at ../../../src/gdb/testsuite/gdb.threads/multiple-step-overs.c:43
   2    Thread 0x7ffff7fca700 (LWP 4309) "multiple-step-o" 0x0000000000400827 in child_function_2 (arg=0x0) at ../../../src/gdb/testsuite/gdb.threads/multiple-step-overs.c:60
 * 1    Thread 0x7ffff7fcb740 (LWP 4305) "multiple-step-o" main () at ../../../src/gdb/testsuite/gdb.threads/multiple-step-overs.c:99
 (gdb) PASS: gdb.threads/multiple-step-overs.exp: step: info threads shows all threads
 set scheduler-locking on
 (gdb) PASS: gdb.threads/multiple-step-overs.exp: step: set scheduler-locking on
 break 44
 Breakpoint 3 at 0x4007d3: file ../../../src/gdb/testsuite/gdb.threads/multiple-step-overs.c, line 44.
 (gdb) break 61
 Breakpoint 4 at 0x40082d: file ../../../src/gdb/testsuite/gdb.threads/multiple-step-overs.c, line 61.
 (gdb) thread 3
 [Switching to thread 3 (Thread 0x7ffff77c9700 (LWP 4310))]
 #0  0x00000000004007ca in child_function_3 (arg=0x1) at ../../../src/gdb/testsuite/gdb.threads/multiple-step-overs.c:43
 43	      (*myp) ++;
 (gdb) PASS: gdb.threads/multiple-step-overs.exp: step: thread 3
 continue
 Continuing.

 Breakpoint 3, child_function_3 (arg=0x1) at ../../../src/gdb/testsuite/gdb.threads/multiple-step-overs.c:44
 44	      callme (); /* set breakpoint thread 3 here */
 (gdb) PASS: gdb.threads/multiple-step-overs.exp: step: continue to breakpoint: run to breakpoint in thread 3
 p *myp = 0
 $1 = 0
 (gdb) PASS: gdb.threads/multiple-step-overs.exp: step: unbreak loop in thread 3
 thread 2
 [Switching to thread 2 (Thread 0x7ffff7fca700 (LWP 4309))]
 #0  0x0000000000400827 in child_function_2 (arg=0x0) at ../../../src/gdb/testsuite/gdb.threads/multiple-step-overs.c:60
 60	      (*myp) ++;
 (gdb) PASS: gdb.threads/multiple-step-overs.exp: step: thread 2
 continue
 Continuing.

 Breakpoint 4, child_function_2 (arg=0x0) at ../../../src/gdb/testsuite/gdb.threads/multiple-step-overs.c:61
 61	      callme (); /* set breakpoint thread 2 here */
 (gdb) PASS: gdb.threads/multiple-step-overs.exp: step: continue to breakpoint: run to breakpoint in thread 2
 p *myp = 0
 $2 = 0
 (gdb) PASS: gdb.threads/multiple-step-overs.exp: step: unbreak loop in thread 2
 thread 1
 [Switching to thread 1 (Thread 0x7ffff7fcb740 (LWP 4305))]
 #0  main () at ../../../src/gdb/testsuite/gdb.threads/multiple-step-overs.c:99
 99	  wait_threads (); /* set wait-threads breakpoint here */
 (gdb) PASS: gdb.threads/multiple-step-overs.exp: step: thread 1
 set scheduler-locking off
 (gdb) PASS: gdb.threads/multiple-step-overs.exp: step: set scheduler-locking off

At this point all thread are stopped for a breakpoint that needs stepping over.

 (gdb) step

 Breakpoint 2, main () at ../../../src/gdb/testsuite/gdb.threads/multiple-step-overs.c:99
 99	  wait_threads (); /* set wait-threads breakpoint here */
 (gdb) FAIL: gdb.threads/multiple-step-overs.exp: step

But that "step" retriggers the same breakpoint instead of making
progress.

The patch teaches GDB to step over all breakpoints of all threads
before resuming the stepping thread.

Tested on x86_64 Fedora 17, against pristine mainline, and also my
branch that implements software single-stepping on x86.

gdb/
2014-03-20  Pedro Alves  <palves@redhat.com>

	* infrun.c (prepare_to_proceed): Delete.
	(thread_still_needs_step_over): New function.
	(find_thread_needs_step_over): New function.
	(proceed): If the current thread needs a step-over, set its
	steping_over_breakpoint flag.  Adjust to use
	find_thread_needs_step_over instead of prepare_to_proceed.
	(process_event_stop_test): For BPSTAT_WHAT_STOP_NOISY and
	BPSTAT_WHAT_STOP_SILENT, assume the thread stopped for a
	breakpoint.
	(switch_back_to_stepped_thread): Step over breakpoints of all
	threads not the stepping thread, before switching back to the
	stepping thread.

gdb/testsuite/
2014-03-20  Pedro Alves  <palves@redhat.com>

	* gdb.threads/multiple-step-overs.c: New file.
	* gdb.threads/multiple-step-overs.exp: New file.
	* gdb.threads/signal-while-stepping-over-bp-other-thread.exp:
	Adjust expected infrun debug output.
2014-03-20 13:43:28 +00:00
Pedro Alves
2adfaa28b5 Fix for even more missed events; eliminate thread-hop code.
Even with deferred_step_ptid out of the way, GDB can still lose
watchpoints.

If a watchpoint triggers and the PC points to an address where a
thread-specific breakpoint for another thread is set, the thread-hop
code triggers, and we lose the watchpoint:

  if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
    {
      int thread_hop_needed = 0;
      struct address_space *aspace =
	get_regcache_aspace (get_thread_regcache (ecs->ptid));

      /* Check if a regular breakpoint has been hit before checking
         for a potential single step breakpoint.  Otherwise, GDB will
         not see this breakpoint hit when stepping onto breakpoints.  */
      if (regular_breakpoint_inserted_here_p (aspace, stop_pc))
	{
	  if (!breakpoint_thread_match (aspace, stop_pc, ecs->ptid))
	    thread_hop_needed = 1;
	    ^^^^^^^^^^^^^^^^^^^^^
	}

And on software single-step targets, even without a thread-specific
breakpoint in the way, here in the thread-hop code:

      else if (singlestep_breakpoints_inserted_p)
	{
...
	  if (!ptid_equal (singlestep_ptid, ecs->ptid)
	      && in_thread_list (singlestep_ptid))
	    {
	      /* If the PC of the thread we were trying to single-step
		 has changed, discard this event (which we were going
		 to ignore anyway), and pretend we saw that thread
		 trap.  This prevents us continuously moving the
		 single-step breakpoint forward, one instruction at a
		 time.  If the PC has changed, then the thread we were
		 trying to single-step has trapped or been signalled,
		 but the event has not been reported to GDB yet.

		 There might be some cases where this loses signal
		 information, if a signal has arrived at exactly the
		 same time that the PC changed, but this is the best
		 we can do with the information available.  Perhaps we
		 should arrange to report all events for all threads
		 when they stop, or to re-poll the remote looking for
		 this particular thread (i.e. temporarily enable
		 schedlock).  */

	     CORE_ADDR new_singlestep_pc
	       = regcache_read_pc (get_thread_regcache (singlestep_ptid));

	     if (new_singlestep_pc != singlestep_pc)
	       {
		 enum gdb_signal stop_signal;

		 if (debug_infrun)
		   fprintf_unfiltered (gdb_stdlog, "infrun: unexpected thread,"
				       " but expected thread advanced also\n");

		 /* The current context still belongs to
		    singlestep_ptid.  Don't swap here, since that's
		    the context we want to use.  Just fudge our
		    state and continue.  */
                 stop_signal = ecs->event_thread->suspend.stop_signal;
                 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
                 ecs->ptid = singlestep_ptid;
                 ecs->event_thread = find_thread_ptid (ecs->ptid);
                 ecs->event_thread->suspend.stop_signal = stop_signal;
                 stop_pc = new_singlestep_pc;
               }
             else
	       {
		 if (debug_infrun)
		   fprintf_unfiltered (gdb_stdlog,
				       "infrun: unexpected thread\n");

		 thread_hop_needed = 1;
		 stepping_past_singlestep_breakpoint = 1;
		 saved_singlestep_ptid = singlestep_ptid;
	       }
	    }
	}

we either end up with thread_hop_needed, ignoring the watchpoint
SIGTRAP, or switch to the stepping thread, again ignoring that the
SIGTRAP could be for some other event.

The new test added by this patch exercises both paths.

So the fix is similar to the deferred_step_ptid fix -- defer the
thread hop to _after_ the SIGTRAP had a change of passing through the
regular bpstat handling.  If the wrong thread hits a breakpoint, we'll
just end up with BPSTAT_WHAT_SINGLE, and if nothing causes a stop,
keep_going starts a step-over.

Most of the stepping_past_singlestep_breakpoint mechanism is really
not necessary -- setting the thread to step over a breakpoint with
thread->trap_expected is sufficient to keep all other threads locked.
It's best to still keep the flag in some form though, because when we
get to keep_going, the software single-step breakpoint we need to step
over is already gone -- an optimization done by a follow up patch will
check whether a step-over is still be necessary by looking to see
whether the breakpoint is still there, and would find the thread no
longer needs a step-over, while we still want it.

Special care is still needed to handle the case of PC of the thread we
were trying to single-step having changed, like in the old code.  We
can't just keep_going and re-step it, as in that case we can over-step
the thread (if it was already done with the step, but hasn't reported
it yet, we'd ask it to step even further).  That's now handled in
switch_back_to_stepped_thread.  As bonus, we're now using a technique
that doesn't lose signals, unlike the old code -- we now insert a
breakpoint at PC, and resume, which either reports the breakpoint
immediately, or any pending signal.

Tested on x86_64 Fedora 17, against pristine mainline, and against a
branch that implements software single-step on x86.

gdb/
2014-03-20  Pedro Alves  <palves@redhat.com>

	* breakpoint.c (single_step_breakpoint_inserted_here_p): Make
	extern.
	* breakpoint.h (single_step_breakpoint_inserted_here_p): Declare.
	* infrun.c (saved_singlestep_ptid)
	(stepping_past_singlestep_breakpoint): Delete.
	(resume): Remove stepping_past_singlestep_breakpoint handling.
	(proceed): Store the prev_pc of the stepping thread too.
	(init_wait_for_inferior): Adjust.  Clear singlestep_ptid and
	singlestep_pc.
	(enum infwait_states): Delete infwait_thread_hop_state.
	(struct execution_control_state) <hit_singlestep_breakpoint>: New
	field.
	(handle_inferior_event): Adjust.
	(handle_signal_stop): Delete stepping_past_singlestep_breakpoint
	handling and the thread-hop code.  Before removing single-step
	breakpoints, check whether the thread hit a single-step breakpoint
	of another thread.  If it did, the trap is not a random signal.
	(switch_back_to_stepped_thread): If the event thread hit a
	single-step breakpoint, unblock it before switching to the
	stepping thread.  Handle the case of the stepped thread having
	advanced already.
	(keep_going): Handle the case of the current thread moving past a
	single-step breakpoint.

gdb/testsuite/
2014-03-20  Pedro Alves  <palves@redhat.com>

	* gdb.threads/step-over-trips-on-watchpoint.c: New file.
	* gdb.threads/step-over-trips-on-watchpoint.exp: New file.
2014-03-20 13:42:23 +00:00
Pedro Alves
31e77af205 PR breakpoints/7143 - Watchpoint does not trigger when first set
Say the program is stopped at a breakpoint, and the user sets a
watchpoint.  When the program is next resumed, GDB will first step
over the breakpoint, as explained in the manual:

  @value {GDBN} normally ignores breakpoints when it resumes
  execution, until at least one instruction has been executed.  If it
  it did not do this, you would be unable to proceed past a breakpoint
  without first disabling the breakpoint.  This rule applies whether
  or not the breakpoint already existed when your program stopped.

However, GDB currently also removes watchpoints, catchpoints, etc.,
and that means that the first instruction off the breakpoint does not
trigger the watchpoint, catchpoint, etc.

testsuite/gdb.base/watchpoint.exp has a kfail for this.

The PR proposes installing watchpoints only when stepping over a
breakpoint, but that misses catchpoints, etc.

A better fix would instead work from the opposite direction -- remove
only real breakpoints, leaving all other kinds of breakpoints
inserted.

But, going further, it's really a waste to constantly remove/insert
all breakpoints when stepping over a single breakpoint (generating a
pair of RSP z/Z packets for each breakpoint), so the fix goes a step
further and makes GDB remove _only_ the breakpoint being stepped over,
leaving all others installed.  This then has the added benefit of
reducing breakpoint-related RSP traffic substancialy when there are
many breakpoints set.

gdb/
2014-03-20  Pedro Alves  <palves@redhat.com>

	PR breakpoints/7143
	* breakpoint.c (should_be_inserted): Don't insert breakpoints that
	are being stepped over.
	(breakpoint_address_match): Make extern.
	* breakpoint.h (breakpoint_address_match): New declaration.
	* inferior.h (stepping_past_instruction_at): New declaration.
	* infrun.c (struct step_over_info): New type.
	(step_over_info): New global.
	(set_step_over_info, clear_step_over_info)
	(stepping_past_instruction_at): New functions.
	(handle_inferior_event): Clear the step-over info when
	trap_expected is cleared.
	(resume): Remove now stale comment.
	(clear_proceed_status): Clear step-over info.
	(proceed): Adjust step-over handling to set or clear the step-over
	info instead of removing all breakpoints.
	(handle_signal_stop): When setting up a thread-hop, don't remove
	breakpoints here.
	(stop_stepping): Clear step-over info.
	(keep_going): Adjust step-over handling to set or clear step-over
	info and then always inserting breakpoints, instead of removing
	all breakpoints when stepping over one.

gdb/testsuite/
2014-03-20  Pedro Alves  <palves@redhat.com>

	PR breakpoints/7143
	* gdb.base/watchpoint.exp: Mention bugzilla bug number instead of
	old gnats gdb/38.  Remove kfail.  Adjust to use gdb_test instead
	of gdb_test_multiple.
	* gdb.cp/annota2.exp: Remove kfail for gdb/38.
	* gdb.cp/annota3.exp: Remove kfail for gdb/38.
2014-03-20 13:41:08 +00:00
Pedro Alves
b9f437de50 Fix missing breakpoint/watchpoint hits, eliminate deferred_step_ptid.
Consider the case of the user doing "step" in thread 2, while thread 1
had previously stopped for a breakpoint.  In order to make progress,
GDB makes thread 1 step over its breakpoint first (with all other
threads stopped), and once that is over, thread 2 then starts stepping
(with thread 1 and all others running free, by default).  If GDB
didn't do that, thread 1 would just trip on the same breakpoint
immediately again.  This is what the prepare_to_proceed /
deferred_step_ptid code is all about.

However, deferred_step_ptid code resumes the target with:

	  resume (1, GDB_SIGNAL_0);
	  prepare_to_wait (ecs);
	  return;

Recall we were just stepping over a breakpoint when we get here.  That
means that _nothing_ had installed breakpoints yet!  If there's
another breakpoint just after the breakpoint that was just stepped,
we'll miss it.  The fix for that would be to use keep_going instead.

However, there are more problems.  What if the instruction that was
just single-stepped triggers a watchpoint?  Currently, GDB just
happily resumes the thread, losing that too...

Missed watchpoints will need yet further fixes, but we should keep
those in mind.

So the fix must be to let the trap fall through the regular bpstat
handling, and only if no breakpoint, watchpoint, etc. claims the trap,
shall we switch back to the stepped thread.

Now, nowadays, we have code at the tail end of trap handling that does
exactly that -- switch back to the stepped thread
(switch_back_to_the_stepped_thread).

So the deferred_step_ptid code is just standing in the way, and can
simply be eliminated, fixing bugs in the process.  Sweet.

The comment about spurious "Switching to ..." made me pause, but is
actually stale nowadays.  That isn't needed anymore.
previous_inferior_ptid used to be re-set at each (internal) event, but
now it's only touched in proceed and normal stop.

The two tests added by this patch fail without the fix.

Tested on x86_64 Fedora 17 (also against my software single-stepping
on x86 branch).

gdb/
2014-03-20  Pedro Alves  <palves@redhat.com>

	* infrun.c (previous_inferior_ptid): Adjust comment.
	(deferred_step_ptid): Delete.
	(infrun_thread_ptid_changed, prepare_to_proceed)
	(init_wait_for_inferior): Adjust.
	(handle_signal_stop): Delete deferred_step_ptid handling.

gdb/testsuite/
2014-03-20  Pedro Alves  <palves@redhat.com>

	* gdb.threads/step-over-lands-on-breakpoint.c: New file.
	* gdb.threads/step-over-lands-on-breakpoint.exp: New file.
2014-03-20 13:26:31 +00:00
Nick Clifton
bcf83b2a66 An off-by-one error in the code to catch bogus vn_next fields meant that
linker testsuite failures were showing up for the cris target.  Fixed by
this patch.

	* readelf.c (process_version_sections): Fix off-by-one error in
	previous delta.
2014-03-20 13:15:12 +00:00
Will Newton
97323ad113 bfd/elf32-arm.c: Set st_value to zero for undefined symbols
Unless pointer_equality_needed is set then set st_value to be zero
for undefined symbols.

bfd/ChangeLog:

2014-03-20  Will Newton  <will.newton@linaro.org>

	PR ld/16715
	* elf32-arm.c (elf32_arm_check_relocs): Set
	pointer_equality_needed for absolute references within
	executable links.
	(elf32_arm_finish_dynamic_symbol): Set st_value to zero
	unless pointer_equality_needed is set.

ld/testsuite/ChangeLog:

2014-03-20  Will Newton  <will.newton@linaro.org>

	* ld-arm/ifunc-14.rd: Update symbol values.
2014-03-20 11:43:33 +00:00
Alan Modra
e1f8f1b3af daily update 2014-03-20 09:32:15 +10:30
Nick Clifton
c24cf8b6e8 This is a fix for PR binutils/16723, where a corrupt .gnu.version_r section could
send readelf into an infinite loop.

	* readelf.c (process_version_sections): Prevent an infinite loop
	when the vn_next field is zero but there are still entries to be
	processed.
2014-03-19 16:48:02 +00:00
Jose E. Marchesi
ec92c392f7 This patch adds support for the hyperprivileged registers %hstick_offset
and %hstick_enable to the Sparc assembler.

	* config/tc-sparc.c (hpriv_reg_table): Added entries for
	%hstick_offset and %hstick_enable.
	* doc/c-sparc.texi (Sparc-Regs): Document the %hstick_offset and
	%hstick_enable hyperprivileged registers.

	* sparc-dis.c (v9_hpriv_reg_names): Names for %hstick_offset and
	%hstick_enable added.

	* gas/sparc/rdhpr.s: Test rd %hstick_offset and %hstick_enable.
	* gas/sparc/rdhpr.d: Likewise.

	* gas/sparc/wrhpr.s: Test wr %hstick_offset and %hstick_enable.
	* gas/sparc/wrhpr.d: Likewise.
2014-03-19 16:43:41 +00:00
Jose E. Marchesi
999bf65c4b Fix Sparc test which was failing in the presence of new v9 opcodes.
* gas/sparc/ldd_std.d: Fix objdump invocation in order to get
	the old opcodes for the ldtw, ldtwa, stw and stwa instructions.
2014-03-19 16:22:31 +00:00
Pedro Alves
05adc73e82 gdb.base/async.exp: Enable it.
There's no reason not to enable this test anymore.

Even if the current output isn't ideal (we mess up the prompt), it's what
we have today.  We can adjust the test if the output improves.

gdb/testsuite/
2014-03-19  Pedro Alves  <palves@redhat.com>

	* gdb.base/async.exp: Remove early return.
2014-03-19 15:55:06 +00:00
Pedro Alves
6048b9501d gdb.base/async.exp: Make test messages unique.
$ cat gdb.sum| grep PASS| sort | uniq -c |sort -n
       1 PASS: gdb.base/async.exp: finish&
       1 PASS: gdb.base/async.exp: jump&
       1 PASS: gdb.base/async.exp: next&
       1 PASS: gdb.base/async.exp: nexti&
       1 PASS: gdb.base/async.exp: set exec-done-display off
       1 PASS: gdb.base/async.exp: set exec-done-display on
       1 PASS: gdb.base/async.exp: set target-async on
       1 PASS: gdb.base/async.exp: stepi&
       1 PASS: gdb.base/async.exp: until&
       2 PASS: gdb.base/async.exp: step&

gdb/testsuite/
2014-03-19  Pedro Alves  <palves@redhat.com>

	* gdb.base/async.exp (step& tests): Pass explicit test messages.
2014-03-19 15:54:31 +00:00
Pedro Alves
8bcfb00a77 gdb.base/async.exp: Fix races.
This test is currently racy:

 PASS: gdb.base/async.exp: step&
 stepi&
 (gdb) 0x0000000000400547        14       x = 5; x = 5;
 completed.
 PASS: gdb.base/async.exp: stepi&
 nexti&
 (gdb) 15         y = 3;
 completed.FAIL: gdb.base/async.exp: nexti&

The problem is here:

 	-re "^$command\r\n${before_prompt}${gdb_prompt}${after_prompt}completed\.\r\n" {
 	    pass "$command"
 	}
	-re "$gdb_prompt.*completed\.$" {
 	    fail "$command"
	}

Note how the fail pattern is a subset of the pass pattern.  If the
expect buffer happens to end up with:

  "^$command\r\n${before_prompt}${gdb_prompt}${after_prompt}completed\."

that is, the final "\r\n" has't reached the expect buffer yet, but
"completed." has, then the fail pattern matches...

gdb/testsuite/
2014-03-19  Pedro Alves  <palves@redhat.com>

	* gdb.base/async.exp (test_background): Expect \r\n after
	"completed." in the fail pattern.
2014-03-19 15:53:00 +00:00
Pedro Alves
884e37dceb gdb.base/async.exp: Factor out test pattern to a procedure.
All the tests here follow the same pattern (and they all have the same
problem, not fixed here yet).  Add a new procedure, factoring out the
pattern to a simple place.

gdb/testsuite/
2014-03-19  Pedro Alves  <palves@redhat.com>

	* gdb.base/async.exp (test_background): New procedure.
	Use it for all background execution command tests.
2014-03-19 15:51:54 +00:00
Pedro Alves
148e57e232 gdb.base/async.exp: Use prepare_for_testing.
gdb/testsuite/
2014-03-19  Pedro Alves  <palves@redhat.com>

	* gdb.base/async.exp: Use prepare_for_testing.
2014-03-19 15:51:29 +00:00
Pedro Alves
f48088c7de gdb.base/async.exp: Fix stepi& test.
Currently the test assumes that "stepi" over:

 13       x = 5;

end up somewhere midline.  But, (at least) on x86, that assignment
ends up compiled as just one movl instruction, so a stepi stops at the
next line already:

 completed.
 PASS: gdb.base/async.exp: step &
 step&
 (gdb) foo () at ../../../src/gdb/testsuite/gdb.base/async.c:13
 13       x = 5;
 completed.
 PASS: gdb.base/async.exp: step &
 stepi&
 (gdb) 14         y = 3;
 completed.
 FAIL: gdb.base/async.exp: (timeout) stepi &
 nexti&
 (gdb) 16         return x + y;
 completed.
 FAIL: gdb.base/async.exp: (timeout) nexti &
 finish&
 Run till exit from #0  foo () at ../../../src/gdb/testsuite/gdb.base/async.c:16

This patch fixes it, by making sure there's more than one instruction
in that line.

gdb/testsuite/
2014-03-19  Pedro Alves  <palves@redhat.com>

	* gdb.base/async.c (foo): Make 'x' volatile.  Write to it twice in
	the same line.
2014-03-19 15:50:53 +00:00
Pedro Alves
e2f6c96628 gdb.base/async.exp: Don't hardcode line numbers.
gdb/testsuite/
2014-03-19  Pedro Alves  <palves@redhat.com>

	* gdb.base/async.c (main): Add "jump here" and "until here" line
	marker comments.
	* gdb.base/async.exp (jump_here): New global.
	(jump& test): Use it.
	(until_here): New global.
	(until& test): Use it.
2014-03-19 15:48:47 +00:00
Pedro Alves
c30568d4d1 gdb.base/async.exp: Leave gdb_protocol alone.
Many eons ago, async was only implemented in the remote target, and
you'd activate it by doing "target async" rather than "target remote".
That's long gone now, replaced by "set target-async on".

gdb/testsuite/
2014-03-19  Pedro Alves  <palves@redhat.com>

	* gdb.base/async.exp: Don't frob gdb_protocol.
2014-03-19 15:22:44 +00:00
Nick Clifton
6caf711179 Improve .rsrc section merging again. This time with an algorithm that
should work for all types of input .rsrc section.

	* peXXigen.c (rsrc_process_section): Add code to scan input
	sections and record their lengths.  Use these lengths to find the
	start of each merged .rsrc section.

	* scripttempl/pe.sc (R_RSRC): Fix default-manifest exclusion.
	(.rsrc): Add SUBALIGN(4).  Remove SORT.
	* scripttempl/pep.sc: Likewise.
2014-03-19 14:46:15 +00:00
Nick Clifton
288c6b306e Remove spurious character. 2014-03-19 14:43:00 +00:00
Daniel Gutson
2e6976a881 Add support for ARM assembler produced by CodeCompositor Studio.
* config/tc-arm.c (codecomposer_syntax): New flag that states whether the
	CCS syntax compatibility mode is on or off.
	(asmfunc_states): New enum to represent the asmfunc directive state.
	(asmfunc_state): New variable holding the asmfunc directive state.
	(comment_chars): Rename to arm_comment_chars.
	(line_separator_chars): Rename to arm_line_separator_chars.
	(s_ccs_ref): New function that handles the .ref directive.
	(asmfunc_debug): New function.
	(s_ccs_asmfunc): New function that handles the .asmfunc directive.
	(s_ccs_endasmfunc): New function that handles the .endasmfunc directive.
	(s_ccs_def): New function that handles the .def directive.
	(tc_start_label_without_colon): New function.
	(md_pseudo_table): Added new CCS directives.
	(arm_ccs_mode): New function that handles the -mccs command line option.
	(arm_long_opts): Added new -mccs command line option.
	* config/tc-arm.h (LABELS_WITHOUT_COLONS): New macro.
	(TC_START_LABEL_WITHOUT_COLON): New macro.
	(tc_start_label_without_colon): Added extern function declaration.
	(tc_comment_chars): Define.
	(tc_line_separator_chars): Define.
	* app.c (do_scrub_begin): Use tc_line_separator_chars, if defined.
	* read.c (read_begin): Likewise.
	* doc/as.texinfo: Add documentation for the -mccs command line
	option.
	* doc/c-arm.texi: Likewise.
	* doc/internals.texi: Document tc_line_separator_chars.
	* NEWS: Mention the new feature.

	* gas/arm/ccs.s: New test case.
	* gas/arm/ccs.d: New expected disassembly.
2014-03-19 14:31:25 +00:00
Nick Clifton
e57190430e Fix RX linker testsuite failures by making the assembler use conventional section names.
* config/default.exp (ASFLAGS): For the RX target add:
	-muse-conventional-section-names.
2014-03-19 12:21:39 +00:00
Nick Clifton
b41c812c96 Fix typo in changelog entry. 2014-03-19 09:40:21 +00:00
Nick Clifton
b8985e5c0e Fix RX gas testsuite failures by accounting for new variations in the disassembler's output.
* rx-decode.opc (bwl): Allow for bogus instructions with a size
	field of 3.
	(sbwl, ubwl, SCALE): Likewise.
	* rx-decode.c: Regenerate.

	* gas/rx/mov.d: Update expected disassembly.
2014-03-19 09:38:25 +00:00
Nick Clifton
1d63324c56 Improve .rsrc section merging with better handling of the alignment adjustments
made between merged .rsrc sections.

	* peXXigen.c (rsrc_align): New function.  Attempts to cope with
	alignment variances when .rsrc sections are merged.
	(rsrc_process_section): Use rsrc_align.

	* Makefile.am (default-manifest.o): Use WINDRES_FOR_TARGET.
	* Makefile.in: Regenerate.
	* emultempl/default-manifest.rc: Fix typo.
	* scripttempl/pe.sc (R_RSRC): Fix default-manifest exclusion.
	(.rsrc): Add SUBALIGN(4).
	* scripttempl/pep.sc: Likewise.
2014-03-19 08:51:20 +00:00
Doug Evans
0172b6a7de * gdb.base/async.exp: Whitespace fixes. Turn on target-async.
Fix spelling of exec-done-display.
2014-03-18 19:19:51 -04:00
Alan Modra
1d09f4731b daily update 2014-03-19 09:30:42 +10:30
Jan Kratochvil
06c868a8dc Fix SIGTERM signal safety (PR gdb/15358).
gdb/
2014-03-18  Jan Kratochvil  <jan.kratochvil@redhat.com>

	PR gdb/15358
	* defs.h (sync_quit_force_run): New declaration.
	(QUIT): Check also SYNC_QUIT_FORCE_RUN.
	* event-top.c (async_sigterm_handler): New declaration.
	(async_sigterm_token): New variable.
	(async_init_signals): Create also async_sigterm_token.
	(async_sigterm_handler): New function.
	(sync_quit_force_run): New variable.
	(handle_sigterm): Replace quit_force call by other calls.
	* utils.c (quit): Call quit_force if SYNC_QUIT_FORCE_RUN.

gdb/testsuite/
2014-03-18  Jan Kratochvil  <jan.kratochvil@redhat.com>

	PR gdb/15358
	* gdb.base/gdb-sigterm.c: New file.
	* gdb.base/gdb-sigterm.exp: New file.

Message-ID: <20140316135334.GA30698@host2.jankratochvil.net>
2014-03-18 22:48:06 +01:00
Maciej W. Rozycki
dea80df099 Power: Correct little-endian e500v2 GPR frame offsets
This change corrects GPR frame offset calculation for the e500v2
processor.  On this target, featuring the SPE APU, GPRs are 64-bit and
are held in stack frames whole with the use of `evstdd' and `evldd'
instructions.  Their integer 32-bit part occupies the low-order word and
therefore its offset varies between the two endiannesses possible.

	* rs6000-tdep.c (rs6000_frame_cache): Correct little-endian GPR
	offset into SPE pseudo registers.
2014-03-18 19:48:14 +00:00
Pedro Alves
0c7e1a4602 PR gdb/13860: make "-exec-foo"'s MI output equal to "foo"'s MI output.
Part of PR gdb/13860 is about the mi-solib.exp test's output being
different in sync vs async modes.

sync:

  >./gdb -nx -q ./testsuite/gdb.mi/solib-main -ex "set stop-on-solib-events 1" -ex "set target-async off" -i=mi
  =thread-group-added,id="i1"
  ~"Reading symbols from /home/pedro/gdb/mygit/build/gdb/testsuite/gdb.mi/solib-main..."
  ~"done.\n"
  (gdb)
  &"start\n"
  ~"Temporary breakpoint 1 at 0x400608: file ../../../src/gdb/testsuite/gdb.mi/solib-main.c, line 21.\n"
  =breakpoint-created,bkpt={number="1",type="breakpoint",disp="del",enabled="y",addr="0x0000000000400608",func="main",file="../../../src/gdb/testsuite/gdb.mi/solib-main.c",fullname="/home/pedro/gdb/mygit/src/gdb/testsuite/gdb.mi/solib-main.c",line="21",times="0",original-location="main"}
  ~"Starting program: /home/pedro/gdb/mygit/build/gdb/testsuite/gdb.mi/solib-main \n"
  =thread-group-started,id="i1",pid="17724"
  =thread-created,id="1",group-id="i1"
  ^running
  *running,thread-id="all"
  (gdb)
  =library-loaded,id="/lib64/ld-linux-x86-64.so.2",target-name="/lib64/ld-linux-x86-64.so.2",host-name="/lib64/ld-linux-x86-64.so.2",symbols-loaded="0",thread-group="i1"
  ~"Stopped due to shared library event (no libraries added or removed)\n"
  *stopped,reason="solib-event",frame={addr="0x000000379180f990",func="_dl_debug_state",args=[],from="/lib64/ld-linux-x86-64.so.2"},thread-id="1",stopped-threads="all",core="3"
  (gdb)

async:

  >./gdb -nx -q ./testsuite/gdb.mi/solib-main -ex "set stop-on-solib-events 1" -ex "set target-async on" -i=mi
  =thread-group-added,id="i1"
  ~"Reading symbols from /home/pedro/gdb/mygit/build/gdb/testsuite/gdb.mi/solib-main..."
  ~"done.\n"
  (gdb)
  start
  &"start\n"
  ~"Temporary breakpoint 1 at 0x400608: file ../../../src/gdb/testsuite/gdb.mi/solib-main.c, line 21.\n"
  =breakpoint-created,bkpt={number="1",type="breakpoint",disp="del",enabled="y",addr="0x0000000000400608",func="main",file="../../../src/gdb/testsuite/gdb.mi/solib-main.c",fullname="/home/pedro/gdb/mygit/src/gdb/testsuite/gdb.mi/solib-main.c",line="21",times="0",original-location="main"}
  ~"Starting program: /home/pedro/gdb/mygit/build/gdb/testsuite/gdb.mi/solib-main \n"
  =thread-group-started,id="i1",pid="17729"
  =thread-created,id="1",group-id="i1"
  ^running
  *running,thread-id="all"
  =library-loaded,id="/lib64/ld-linux-x86-64.so.2",target-name="/lib64/ld-linux-x86-64.so.2",host-name="/lib64/ld-linux-x86-64.so.2",symbols-loaded="0",thread-group="i1"
  (gdb)
  *stopped,reason="solib-event",thread-id="1",stopped-threads="all",core="1"

For now, let's focus only on the *stopped event.  We see that the
async output is missing frame info.  And this causes a test failure in
async mode, as "mi_expect_stop solib-event" wants to see the frame
info.

However, if we compare the event output when a real MI execution
command is used, compared to a CLI command (e.g., run vs -exec-run,
next vs -exec-next, etc.), we see:

  >./gdb -nx -q ./testsuite/gdb.mi/solib-main -ex "set stop-on-solib-events 1" -ex "set target-async off" -i=mi
  =thread-group-added,id="i1"
  ~"Reading symbols from /home/pedro/gdb/mygit/build/gdb/testsuite/gdb.mi/solib-main..."
  ~"done.\n"
  (gdb)
  r
  &"r\n"
  ~"Starting program: /home/pedro/gdb/mygit/build/gdb/testsuite/gdb.mi/solib-main \n"
  =thread-group-started,id="i1",pid="17751"
  =thread-created,id="1",group-id="i1"
  ^running
  *running,thread-id="all"
  (gdb)
  =library-loaded,id="/lib64/ld-linux-x86-64.so.2",target-name="/lib64/ld-linux-x86-64.so.2",host-name="/lib64/ld-linux-x86-64.so.2",symbols-loaded="0",thread-group="i1"
  ~"Stopped due to shared library event (no libraries added or removed)\n"
  *stopped,reason="solib-event",frame={addr="0x000000379180f990",func="_dl_debug_state",args=[],from="/lib64/ld-linux-x86-64.so.2"},thread-id="1",stopped-threads="all",core="3"
  (gdb)
  -exec-run
  =thread-exited,id="1",group-id="i1"
  =thread-group-exited,id="i1"
  =library-unloaded,id="/lib64/ld-linux-x86-64.so.2",target-name="/lib64/ld-linux-x86-64.so.2",host-name="/lib64/ld-linux-x86-64.so.2",thread-group="i1"
  =thread-group-started,id="i1",pid="17754"
  =thread-created,id="1",group-id="i1"
  ^running
  *running,thread-id="all"
  (gdb)
  =library-loaded,id="/lib64/ld-linux-x86-64.so.2",target-name="/lib64/ld-linux-x86-64.so.2",host-name="/lib64/ld-linux-x86-64.so.2",symbols-loaded="0",thread-group="i1"
  *stopped,reason="solib-event",thread-id="1",stopped-threads="all",core="1"
  =thread-selected,id="1"
  (gdb)

As seen above, with MI commands, the *stopped event _doesn't_ have
frame info.  This is because normal_stop, as commanded by the result
of bpstat_print, skips printing frame info in this case (it's an
"event", not a "breakpoint"), and when the interpreter is MI,
mi_on_normal_stop skips calling print_stack_frame, as the normal_stop
call was already done with the MI uiout.  This explains why the async
output is different even with a CLI command.  Its because in async
mode, the mi_on_normal_stop path is always taken; it is always reached
with the MI uiout, because the stop is handled from the event loop,
instead of from within `proceed -> wait_for_inferior -> normal_stop'
with the interpreter overridden, as in sync mode.

This patch fixes the issue by making all cases output the same
*stopped event, by factoring out the print code from normal_stop, and
using it from mi_on_normal_stop as well.  I chose the *stopped output
without a frame, mainly because that is what you already get if you
use MI execution commands, the commands frontends are supposed to use
(except when implementing a console).  This patch makes it simpler to
tweak the MI output differently if desired, as we only have to change
the centralized print_stop_event (taking into account whether the
uiout is MI-like), and all different modes will change accordingly.

Tested on x86_64 Fedora 17, no regressions.  The mi-solib.exp test no
longer fails in async mode with this patch, so the patch removes the
kfail.

2014-03-18  Pedro Alves  <palves@redhat.com>

	PR gdb/13860
	* inferior.h (print_stop_event): Declare.
	* infrun.c (print_stop_event): New, factored out from ...
	(normal_stop): ... this.
	* mi/mi-interp.c (mi_on_normal_stop): Use print_stop_event instead
	of bpstat_print/print_stack_frame.

2014-03-18  Pedro Alves  <palves@redhat.com>

	PR gdb/13860
	* gdb.mi/mi-solib.exp: Remove gdb/13860 kfail.
	* lib/mi-support.exp (mi_expect_stop): Add special handling for
	solib-event.
2014-03-18 17:50:28 +00:00
Yufeng Zhang
a52e6fd34a Enable verbose error messages by default for AArch64 gas.
gas/

	* config/tc-aarch64.c (aarch64_opts): Add new option
	"mno-verbose-error".
	(verbose_error_p): Initialize to 1.
	* doc/c-aarch64.texi (AArch64 Options): Document -mverbose-error
	and -mno-verbose-error.

gas/testsuite/

	* gas/aarch64/illegal.d: Pass -mno-verbose-error.
	* gas/aarch64/verbose-error.s: Add more verbose message testcases.
	* gas/aarch64/verbose-error.l: Ditto.
2014-03-18 17:41:43 +00:00
Nick Clifton
d68d7e6b82 Convert function declarations to ISO C format. Remove redundant code.
* wrapper.c: Convert function declarations to ISO C format.
	(sim_open): Delete code for handling t,d and z command line
	options.
2014-03-18 14:16:54 +00:00
Alan Modra
c24ff48c75 daily update 2014-03-18 09:30:50 +10:30
Tom Tromey
9c1fcd01cf fix latent bugs in ui-out.c
The destructor code in ui-out.c has a latent bug, which is hidden by
the fact that nothing uses this right now.  This patch fixes the
problem.  The bug is that we don't always clear a pointer in the
ui-out object, leading to a bad free.

2014-03-17  Tom Tromey  <tromey@redhat.com>

	* ui-out.c (clear_table, ui_out_new): Clear uiout->table.id.
2014-03-17 19:02:13 +00:00
Chris Faylor
c712f1e3f7 2014-03-17 Christopher Faylor <me.cygwin2014@cgf.cx>
* Makefile.am: Use host version of windres.
	* Makefile.in: Regenerate.
2014-03-17 13:19:49 -04:00
Nick Clifton
1f5afe1cc0 Add support for parsing VFP register names in .cfi_offset directives.
PR gas/16694
	* config/tc-arm.c (tc_arm_regname_to_dw2regnum): Parse VFP
	registers as well.

	* gas/cfi/cfi-arm-1.s: Add checks of VFP registers.
	* gas/cfi/cfi-arm-1.d: Update expected output.
2014-03-17 16:30:30 +00:00
Joel Brobecker
f7c77d9323 [testsuite/Ada] New testcase for packed array renaming.
gdb/testsuite/ChangeLog:

        * gdb.ada/pckd_arr_ren: New testcase.
2014-03-17 08:45:55 -07:00
Pierre-Marie de Rodat
11aa919a07 [Ada] Crash with references to GNAT packed arrays handling
Consider the following declarations:

  type Packed_Array is array (Natural range <>) of Boolean;
  pragma Pack (Packed_Array);

  function Make (H, L : Natural) return Packed_Array is
  begin
     return (H .. L => False);
  end Make;

  A1 : Packed_Array := Make (1, 2);
  A2 : Packed_Array renames A1;

One possible DWARF translation for A2 is:

  <3><1e4>: Abbrev Number: 21 (DW_TAG_variable)
     <1e5>   DW_AT_name                 : a2
     <1ea>   DW_AT_type                 : <0x1d9>

  <3><1d9>: Abbrev Number: 22 (DW_TAG_const_type)
     <1da>   DW_AT_type                 : <0x1de>
  <3><1de>: Abbrev Number: 23 (DW_TAG_reference_type)
     <1e0>   DW_AT_type                 : <0x1a3>
  <3><1a3>: Abbrev Number: 17 (DW_TAG_array_type)
     <1a4>   DW_AT_name                 : foo__Ta1S___XP1
     <1a8>   DW_AT_GNAT_descriptive_type: <0x16b>

  <3><16b>: Abbrev Number: 6 (DW_TAG_typedef)
     <16c>   DW_AT_name                 : foo__Ta1S
     <172>   DW_AT_type                 : <0x176>
  <3><176>: Abbrev Number: 17 (DW_TAG_array_type)
     <177>   DW_AT_name                 : foo__Ta1S
     <17b>   DW_AT_GNAT_descriptive_type: <0x223>

Here, foo__Ta1S___XP1 is the type used for the code generation while
foo__Ta1S is the source-level type. Both form a valid GNAT encoding for
a packed array type.

Trying to print A2 (1) can make GDB crash. This is because A2 is defined
as a reference to a GNAT encoding for a packed array. When decoding
constrained packed arrays, the ada_coerce_ref subprogram follows
references and returns a fixed type from the target type, peeling
the GNAT encoding for packed arrays. The remaining code assumes that
the resulting type is still such an encoding while we only have
a standard GDB array type, hence the crash:

  arr = ada_coerce_ref (arr);
  [...]
  type = decode_constrained_packed_array_type (value_type (arr));

decode_constrained_packed_array_type assumes that its argument is
such an encoding. From its front comment:

  /* The array type encoded by TYPE, where
     ada_is_constrained_packed_array_type (TYPE).  */

This patch simply replaces the call to ada_coerce_ref with a call
to coerce_ref in order to avoid prematurely transforming
the packed array type as a side-effect. This way, the remaining code
will always work with a GNAT encoding.

gdb/ChangeLog:

	* ada-lang.c (decode_constrained_packed_array): Perform a
	minimal coercion for reference with coerce_ref instead of
	ada_coerce_ref.
2014-03-17 08:44:43 -07:00
Tristan Gingold
d4ccb5e05c darwin: handle recent version of dyld
gdb/
	* solib-darwin.c (DYLD_VERSION_MAX): Increase value.
	(darwin_solib_create_inferior_hook): Emit a warning if version
	is unhandled.
2014-03-17 14:10:06 +01:00
Nick Clifton
a2a0d05662 readelf -s test: Skip extra symbols produced by MSP430 assembler.
* binutils-all/readelf.ss: Add skip of MSP430 defined symbols.
2014-03-17 11:00:32 +00:00
Tristan Gingold
167e1c1f1f od-macho: dump compact unwind info.
binutils/
	* od-macho.c (dump_section_header): Renames of dump_section.
	(dump_segment): Adjust after renaming.
	(OPT_COMPACT_UNWIND): Define.
	(options): Add compact unwind.
	(mach_o_help): Document compact_unwind.
	(unwind_x86_64_regs, unwind_x86_regs): New arrays.
	(dump_unwind_encoding_x86, dump_unwind_encoding)
	(dump_obj_compact_unwind, dump_exe_compact_unwind)
	(dump_section_content): New functions.
	(mach_o_dump): Handle compact unwind.

include/mach-o/
	* unwind.h: New file.
2014-03-17 10:29:07 +01:00