* rx-decode.opc (bwl): Allow for bogus instructions with a size
field of 3.
(sbwl, ubwl, SCALE): Likewise.
* rx-decode.c: Regenerate.
* gas/rx/mov.d: Update expected disassembly.
gdb/
2014-03-18 Jan Kratochvil <jan.kratochvil@redhat.com>
PR gdb/15358
* defs.h (sync_quit_force_run): New declaration.
(QUIT): Check also SYNC_QUIT_FORCE_RUN.
* event-top.c (async_sigterm_handler): New declaration.
(async_sigterm_token): New variable.
(async_init_signals): Create also async_sigterm_token.
(async_sigterm_handler): New function.
(sync_quit_force_run): New variable.
(handle_sigterm): Replace quit_force call by other calls.
* utils.c (quit): Call quit_force if SYNC_QUIT_FORCE_RUN.
gdb/testsuite/
2014-03-18 Jan Kratochvil <jan.kratochvil@redhat.com>
PR gdb/15358
* gdb.base/gdb-sigterm.c: New file.
* gdb.base/gdb-sigterm.exp: New file.
Message-ID: <20140316135334.GA30698@host2.jankratochvil.net>
This change corrects GPR frame offset calculation for the e500v2
processor. On this target, featuring the SPE APU, GPRs are 64-bit and
are held in stack frames whole with the use of `evstdd' and `evldd'
instructions. Their integer 32-bit part occupies the low-order word and
therefore its offset varies between the two endiannesses possible.
* rs6000-tdep.c (rs6000_frame_cache): Correct little-endian GPR
offset into SPE pseudo registers.
Part of PR gdb/13860 is about the mi-solib.exp test's output being
different in sync vs async modes.
sync:
>./gdb -nx -q ./testsuite/gdb.mi/solib-main -ex "set stop-on-solib-events 1" -ex "set target-async off" -i=mi
=thread-group-added,id="i1"
~"Reading symbols from /home/pedro/gdb/mygit/build/gdb/testsuite/gdb.mi/solib-main..."
~"done.\n"
(gdb)
&"start\n"
~"Temporary breakpoint 1 at 0x400608: file ../../../src/gdb/testsuite/gdb.mi/solib-main.c, line 21.\n"
=breakpoint-created,bkpt={number="1",type="breakpoint",disp="del",enabled="y",addr="0x0000000000400608",func="main",file="../../../src/gdb/testsuite/gdb.mi/solib-main.c",fullname="/home/pedro/gdb/mygit/src/gdb/testsuite/gdb.mi/solib-main.c",line="21",times="0",original-location="main"}
~"Starting program: /home/pedro/gdb/mygit/build/gdb/testsuite/gdb.mi/solib-main \n"
=thread-group-started,id="i1",pid="17724"
=thread-created,id="1",group-id="i1"
^running
*running,thread-id="all"
(gdb)
=library-loaded,id="/lib64/ld-linux-x86-64.so.2",target-name="/lib64/ld-linux-x86-64.so.2",host-name="/lib64/ld-linux-x86-64.so.2",symbols-loaded="0",thread-group="i1"
~"Stopped due to shared library event (no libraries added or removed)\n"
*stopped,reason="solib-event",frame={addr="0x000000379180f990",func="_dl_debug_state",args=[],from="/lib64/ld-linux-x86-64.so.2"},thread-id="1",stopped-threads="all",core="3"
(gdb)
async:
>./gdb -nx -q ./testsuite/gdb.mi/solib-main -ex "set stop-on-solib-events 1" -ex "set target-async on" -i=mi
=thread-group-added,id="i1"
~"Reading symbols from /home/pedro/gdb/mygit/build/gdb/testsuite/gdb.mi/solib-main..."
~"done.\n"
(gdb)
start
&"start\n"
~"Temporary breakpoint 1 at 0x400608: file ../../../src/gdb/testsuite/gdb.mi/solib-main.c, line 21.\n"
=breakpoint-created,bkpt={number="1",type="breakpoint",disp="del",enabled="y",addr="0x0000000000400608",func="main",file="../../../src/gdb/testsuite/gdb.mi/solib-main.c",fullname="/home/pedro/gdb/mygit/src/gdb/testsuite/gdb.mi/solib-main.c",line="21",times="0",original-location="main"}
~"Starting program: /home/pedro/gdb/mygit/build/gdb/testsuite/gdb.mi/solib-main \n"
=thread-group-started,id="i1",pid="17729"
=thread-created,id="1",group-id="i1"
^running
*running,thread-id="all"
=library-loaded,id="/lib64/ld-linux-x86-64.so.2",target-name="/lib64/ld-linux-x86-64.so.2",host-name="/lib64/ld-linux-x86-64.so.2",symbols-loaded="0",thread-group="i1"
(gdb)
*stopped,reason="solib-event",thread-id="1",stopped-threads="all",core="1"
For now, let's focus only on the *stopped event. We see that the
async output is missing frame info. And this causes a test failure in
async mode, as "mi_expect_stop solib-event" wants to see the frame
info.
However, if we compare the event output when a real MI execution
command is used, compared to a CLI command (e.g., run vs -exec-run,
next vs -exec-next, etc.), we see:
>./gdb -nx -q ./testsuite/gdb.mi/solib-main -ex "set stop-on-solib-events 1" -ex "set target-async off" -i=mi
=thread-group-added,id="i1"
~"Reading symbols from /home/pedro/gdb/mygit/build/gdb/testsuite/gdb.mi/solib-main..."
~"done.\n"
(gdb)
r
&"r\n"
~"Starting program: /home/pedro/gdb/mygit/build/gdb/testsuite/gdb.mi/solib-main \n"
=thread-group-started,id="i1",pid="17751"
=thread-created,id="1",group-id="i1"
^running
*running,thread-id="all"
(gdb)
=library-loaded,id="/lib64/ld-linux-x86-64.so.2",target-name="/lib64/ld-linux-x86-64.so.2",host-name="/lib64/ld-linux-x86-64.so.2",symbols-loaded="0",thread-group="i1"
~"Stopped due to shared library event (no libraries added or removed)\n"
*stopped,reason="solib-event",frame={addr="0x000000379180f990",func="_dl_debug_state",args=[],from="/lib64/ld-linux-x86-64.so.2"},thread-id="1",stopped-threads="all",core="3"
(gdb)
-exec-run
=thread-exited,id="1",group-id="i1"
=thread-group-exited,id="i1"
=library-unloaded,id="/lib64/ld-linux-x86-64.so.2",target-name="/lib64/ld-linux-x86-64.so.2",host-name="/lib64/ld-linux-x86-64.so.2",thread-group="i1"
=thread-group-started,id="i1",pid="17754"
=thread-created,id="1",group-id="i1"
^running
*running,thread-id="all"
(gdb)
=library-loaded,id="/lib64/ld-linux-x86-64.so.2",target-name="/lib64/ld-linux-x86-64.so.2",host-name="/lib64/ld-linux-x86-64.so.2",symbols-loaded="0",thread-group="i1"
*stopped,reason="solib-event",thread-id="1",stopped-threads="all",core="1"
=thread-selected,id="1"
(gdb)
As seen above, with MI commands, the *stopped event _doesn't_ have
frame info. This is because normal_stop, as commanded by the result
of bpstat_print, skips printing frame info in this case (it's an
"event", not a "breakpoint"), and when the interpreter is MI,
mi_on_normal_stop skips calling print_stack_frame, as the normal_stop
call was already done with the MI uiout. This explains why the async
output is different even with a CLI command. Its because in async
mode, the mi_on_normal_stop path is always taken; it is always reached
with the MI uiout, because the stop is handled from the event loop,
instead of from within `proceed -> wait_for_inferior -> normal_stop'
with the interpreter overridden, as in sync mode.
This patch fixes the issue by making all cases output the same
*stopped event, by factoring out the print code from normal_stop, and
using it from mi_on_normal_stop as well. I chose the *stopped output
without a frame, mainly because that is what you already get if you
use MI execution commands, the commands frontends are supposed to use
(except when implementing a console). This patch makes it simpler to
tweak the MI output differently if desired, as we only have to change
the centralized print_stop_event (taking into account whether the
uiout is MI-like), and all different modes will change accordingly.
Tested on x86_64 Fedora 17, no regressions. The mi-solib.exp test no
longer fails in async mode with this patch, so the patch removes the
kfail.
2014-03-18 Pedro Alves <palves@redhat.com>
PR gdb/13860
* inferior.h (print_stop_event): Declare.
* infrun.c (print_stop_event): New, factored out from ...
(normal_stop): ... this.
* mi/mi-interp.c (mi_on_normal_stop): Use print_stop_event instead
of bpstat_print/print_stack_frame.
2014-03-18 Pedro Alves <palves@redhat.com>
PR gdb/13860
* gdb.mi/mi-solib.exp: Remove gdb/13860 kfail.
* lib/mi-support.exp (mi_expect_stop): Add special handling for
solib-event.
The destructor code in ui-out.c has a latent bug, which is hidden by
the fact that nothing uses this right now. This patch fixes the
problem. The bug is that we don't always clear a pointer in the
ui-out object, leading to a bad free.
2014-03-17 Tom Tromey <tromey@redhat.com>
* ui-out.c (clear_table, ui_out_new): Clear uiout->table.id.
Consider the following declarations:
type Packed_Array is array (Natural range <>) of Boolean;
pragma Pack (Packed_Array);
function Make (H, L : Natural) return Packed_Array is
begin
return (H .. L => False);
end Make;
A1 : Packed_Array := Make (1, 2);
A2 : Packed_Array renames A1;
One possible DWARF translation for A2 is:
<3><1e4>: Abbrev Number: 21 (DW_TAG_variable)
<1e5> DW_AT_name : a2
<1ea> DW_AT_type : <0x1d9>
<3><1d9>: Abbrev Number: 22 (DW_TAG_const_type)
<1da> DW_AT_type : <0x1de>
<3><1de>: Abbrev Number: 23 (DW_TAG_reference_type)
<1e0> DW_AT_type : <0x1a3>
<3><1a3>: Abbrev Number: 17 (DW_TAG_array_type)
<1a4> DW_AT_name : foo__Ta1S___XP1
<1a8> DW_AT_GNAT_descriptive_type: <0x16b>
<3><16b>: Abbrev Number: 6 (DW_TAG_typedef)
<16c> DW_AT_name : foo__Ta1S
<172> DW_AT_type : <0x176>
<3><176>: Abbrev Number: 17 (DW_TAG_array_type)
<177> DW_AT_name : foo__Ta1S
<17b> DW_AT_GNAT_descriptive_type: <0x223>
Here, foo__Ta1S___XP1 is the type used for the code generation while
foo__Ta1S is the source-level type. Both form a valid GNAT encoding for
a packed array type.
Trying to print A2 (1) can make GDB crash. This is because A2 is defined
as a reference to a GNAT encoding for a packed array. When decoding
constrained packed arrays, the ada_coerce_ref subprogram follows
references and returns a fixed type from the target type, peeling
the GNAT encoding for packed arrays. The remaining code assumes that
the resulting type is still such an encoding while we only have
a standard GDB array type, hence the crash:
arr = ada_coerce_ref (arr);
[...]
type = decode_constrained_packed_array_type (value_type (arr));
decode_constrained_packed_array_type assumes that its argument is
such an encoding. From its front comment:
/* The array type encoded by TYPE, where
ada_is_constrained_packed_array_type (TYPE). */
This patch simply replaces the call to ada_coerce_ref with a call
to coerce_ref in order to avoid prematurely transforming
the packed array type as a side-effect. This way, the remaining code
will always work with a GNAT encoding.
gdb/ChangeLog:
* ada-lang.c (decode_constrained_packed_array): Perform a
minimal coercion for reference with coerce_ref instead of
ada_coerce_ref.
This fixes a build failure against Python 2.4 by casting away "const"
on the second argument to PyObject_GetAttrString. Similar casts to
support Python 2.4 were already present in a number of other places.
gdb/
2014-03-16 Ulrich Weigand <uweigand@de.ibm.com>
* python/py-value.c (get_field_flag): Cast flag_name argument to
PyObject_GetAttrString to support Python 2.4.
gdb/
2014-03-14 Jan Kratochvil <jan.kratochvil@redhat.com>
* MAINTAINERS (The Official FSF-appointed GDB Maintainers)
(Global Maintainers): Remove Jan Kratochvil.
PR sim/8388
* armemu.c (WriteR15Load): New function. Determines if the state
can be changed upon a write to R15.
(LoadMult): Use WriteR15Load.
* armemu.h (WRITEDESTB): Use WriteR15Load.
For libraries without a soname, -l:libfoo.so set DT_NEEDED to the search
dir plus filename, while gold and -lfoo just use the filename. This
patch fixes the inconsistency.
* ldlang.h (full_name_provided): New input flag.
* ldlang.c (new_afile): Don't use lang_input_file_is_search_file_enum
for -l:namespec. Instead use lang_input_file_is_l_enum with
full_name_provided flag.
* ldlfile.c (ldfile_open_file_search): Don't complete lib name if
full_name_provided flag is set.
* emultempl/elf32.em (gld${EMULATION_NAME}_open_dynamic_archive):
Handle full_name_provided libraries. Tidy EXTRA_SHLIB_EXTENSION
support. Set DT_NEEDED for -l:namespec as namespec.
* emultempl/aix.em (ppc_after_open_output): Handle full_name_provided.
* emultempl/linux.em (gld${EMULATION_NAME}_open_dynamic_archive):
Don't handle full_name_provided libraries.
* emultempl/pe.em (gld${EMULATION_NAME}_open_dynamic_archive): Ditto.
* emultempl/pep.em (gld${EMULATION_NAME}_open_dynamic_archive): Ditto.
* emultempl/vms.em (gld${EMULATION_NAME}_open_dynamic_archive): Ditto.
Looking at target_terminal_inferior etc. in async mode, I realized
that the naming of the terminal_inferior, terminal_ours,
etc. functions doesn't really give a clue that they're meant for the
native target only. This patch renames them. There's already
child_terminal_info using the child_ prefix, and, they're most
prominently installed by inf-child.c, so I went with the child_
prefix. I dropped "inferior" from a couple to make the name match the
corresponding target method.
Tested on x86_64 Fedora 17, and cross built for mingw. I didn't test
gnu-nat.c, but I think the change is as obvious as it gets. I grepped
the tree looking for other potential spots that would need adjustment
but this is all I found. If something breaks, it should be trivial to
fix.
gdb/
2014-03-14 Pedro Alves <palves@redhat.com>
* inferior.h (terminal_ours_for_output): Rename to ...
(child_terminal_ours_for_output): ... this.
(terminal_save_ours): Rename to ...
(child_terminal_save_ours): ... this.
(terminal_ours): Rename to ...
(child_terminal_ours): ... this.
(terminal_inferior): Rename to ...
(child_terminal_inferior): ... this.
(terminal_init_inferior): Rename to ...
(child_terminal_init_inferior): ... this.
(terminal_init_inferior_with_pgrp): Rename to ...
(child_terminal_init_inferior_with_pgrp): ... this.
* inflow.c (terminal_init_inferior_with_pgrp): Rename to ...
(child_terminal_init_with_pgrp): ... this.
(terminal_save_ours): Rename to ...
(child_terminal_save_ours): ... this.
(terminal_init_inferior): Rename to ...
(child_terminal_init): ... this. Adjust.
(terminal_inferior): Rename to ...
(child_terminal_inferior): ... this.
(terminal_ours_for_output): Rename to ...
(child_terminal_ours_for_output): ... this. Adjust.
(terminal_ours): Rename to ...
(child_terminal_ours): ... this.
(terminal_ours_1): Rename to ...
(child_terminal_ours_1): ... this. Adjust.
* linux-nat.c (linux_nat_terminal_inferior): Adjust.
* windows-nat.c (do_initial_windows_stuff): Adjust.
* gnu-nat.c (gnu_terminal_init_inferior): Rename to ...
(gnu_terminal_init): ... this. Adjust.
(gnu_target): Adjust.
* inf-child.c (inf_child_target): Adjust.
2014-03-13 Richard Earnshaw <rearnsha@arm.com>
Jiong Wang <Jiong.Wang@arm.com>
* doc/c-aarch64.texi: Clean up some formatting issues.
(AArch64 Options): Document -mcpu and -march.
(AArch64 Extensions): New node.
* guile/scm-type.c (tyscm_copy_type_recursive): Move type to its
new eq?-hashtab.
testsuite/
* gdb.guile/scm-value.ep (test_value_after_death): Do a garbage
collect after discarding symbols.
* value.c (record_latest_value): Call release_value_or_incref
instead of release_value.
testsuite/
* gdb.guile/scm-value.exp (test_value_in_inferior): Verify value added
to history survives a gc.
Note that "target procfs" is used by QNX, but the test must be failing
there, as nto-procfs.c overrides to_open with a method that doesn't
throw the error being tested. So I'm just removing the test
completely.
gdb/
2014-03-13 Pedro Alves <palves@redhat.com>
* procfs.c (procfs_target): Don't override to_shortname,
to_longname or to_doc.
gdb/testsuite/
2014-03-13 Pedro Alves <palves@redhat.com>
* gdb.base/default.exp: Don't test "target procfs".
I find the mention of "Unix" unnecessary (and really slightly a lie)
on GNU/Linux in a couple of places:
(gdb) maint print target-stack
The current target stack is:
- multi-thread (multi-threaded child process.)
- child (Unix child process)
- exec (Local exec file)
- None (None)
(gdb) help target child
Unix child process (started by the "run" command).
(gdb) target child
Use the "run" command to start a Unix child process.
It's also odd that e.g., the Windows port says "Unix" in reaction to
"target child" (it was already that way before Windows used
inf-child.c):
(gdb) target child
Use the "run" command to start a Unix child process.
(gdb)
So drop "Unix", going in the direction of saying mostly the same on
all native targets:
(gdb) maint print target-stack
The current target stack is:
- multi-thread (multi-threaded child process.)
- - child (Unix child process)
+ - child (Child process)
- exec (Local exec file)
- None (None)
(gdb) help target child
- Unix child process (started by the "run" command).
+ Child process (started by the "run" command).
(gdb) target child
-Use the "run" command to start a Unix child process.
+Use the "run" command to start a child process.
gdb/
2014-03-13 Pedro Alves <palves@redhat.com>
* inf-child.c (inf_child_open, inf_child_target): Don't mention
Unix in user visible strings.
gdb/testsuite/
2014-03-13 Pedro Alves <palves@redhat.com>
* gdb.base/default.exp: Update "target child" and "target procfs"
tests to not expect "Unix".
bfd/
* peicode.h (pe_ILF_object_p): Adjust, as the version number
has been read.
(pe_bfd_object_p): Also read version number to detect ILF.
* pe-x86_64.c (COFF_WITH_PE_BIGOBJ): Define.
(x86_64pe_bigobj_vec): Define
* coffcode.h (bfd_coff_backend_data): Add _bfd_coff_max_nscns field.
(bfd_coff_max_nscns): New macro.
(coff_compute_section_file_positions): Use unsigned int for
target_index. Compare with bfd_coff_max_nscns.
(bfd_coff_std_swap_table, ticoff0_swap_table, ticoff1_swap_table):
Set a value for _bfd_coff_max_nscns.
(header_bigobj_classid): New constant.
(coff_bigobj_swap_filehdr_in, coff_bigobj_swap_filehdr_out)
(coff_bigobj_swap_sym_in, coff_bigobj_swap_sym_out)
(coff_bigobj_swap_aux_in, coff_bigobj_swap_aux_out): New
functions.
(bigobj_swap_table): New table.
* libcoff.h: Regenerate.
* coff-sh.c (bfd_coff_small_swap_table): Likewise.
* coff-alpha.c (alpha_ecoff_backend_data): Add value for
_bfd_coff_max_nscns.
* coff-mips.c (mips_ecoff_backend_data): Likewise.
* coff-rs6000.c (bfd_xcoff_backend_data)
(bfd_pmac_xcoff_backend_data): Likewise.
* coff64-rs6000.c (bfd_xcoff_backend_data)
(bfd_xcoff_aix5_backend_data): Likewise.
* targets.c (x86_64pe_bigobj_vec): Declare.
* configure.in (x86_64pe_bigobj_vec): New vector.
* configure: Regenerate.
* config.bfd: Add bigobj object format for Windows targets.
gas/
* config/tc-i386.c (use_big_obj): Declare.
(OPTION_MBIG_OBJ): Define.
(md_longopts): Add -mbig-obj option.
(md_parse_option): Handle it.
(md_show_usage): Display help for this option.
(i386_target_format): Use bigobj for x86-64 if -mbig-obj.
* doc/c-i386.texi: Document the option.
gas/testsuite/
* gas/pe/big-obj.d, gas/pe/big-obj.s: Add test.
* gas/pe/pe.exp: Add test.
include/coff/
* pe.h (struct external_ANON_OBJECT_HEADER_BIGOBJ): Declare.
(FILHSZ_BIGOBJ): Define.
(struct external_SYMBOL_EX): Declare.
(SYMENT_BIGOBJ, SYMESZ_BIGOBJ): Define.
(union external_AUX_SYMBOL_EX): Declare.
(AUXENT_BIGOBJ, AUXESZ_BIGOBJ): Define.
* internal.h (struct internal_filehdr): Change type
of f_nscns.
All execution commands currently have this pattern:
/* If we must run in the background, but the target can't do it,
error out. */
if (async_exec && !target_can_async_p ())
error (_("Asynchronous execution not supported on this target."));
/* If we are not asked to run in the bg, then prepare to run in the
foreground, synchronously. */
if (!async_exec && target_can_async_p ())
{
/* Simulate synchronous execution. */
async_disable_stdin ();
}
This patch factors that into a shared function.
attach_command installs a cleanup to re-enable stdin, but that's not
necessary, as per the comment in prepare_execution_command. In any
case, if someday it turns out necessary, we have a single place to
install it now.
Tested on x86_64 Fedora 17, sync and async modes.
gdb/
2014-03-12 Pedro Alves <palves@redhat.com>
* infcmd.c (prepare_execution_command): New function, factored out
from several execution commands.
(run_command_1, continue_command, step_1, jump_command)
(signal_command, until_command, advance_command, finish_command)
(attach_command): Use prepare_execution_command.
This patch updates arm native support for hwbreak-/watchpoints to enable
support for hwbreak-/watchpoints across fork/vfork. This involves changes to
hwbreak-/watchpoint insertion mechanism to the modern way, by marking debug
registers as needing update, but only really updating them on resume, which is
necessary for supporting watchpoints in non-stop mode. This also updates a
previously maintained per thread hwbreak-/watchpoint cache to a per process
cache which allows target specific code to come in sync with gdb-linux calls to
threads create/destroy and process fork/exit hooks.
I noticed 'make check TESTS="..."' works when ran from gdb/testsuite/,
but TESTS is ignored when "make check" is ran from gdb/.
The issue is that TESTS isn't being passed to the testsuite subdir
make invocation.
gdb/
2014-03-12 Pedro Alves <palves@redhat.com>
* Makefile.in (TARGET_FLAGS_TO_PASS): Add TESTS.
A patch in the target cleanup series caused a regression when using
record with target-async. Version 4 of the patch is here:
https://sourceware.org/ml/gdb-patches/2014-03/msg00159.html
The immediate problem is that record supplies to_can_async_p and
to_is_async_p methods, but does not supply a to_async method. So,
when target-async is set, record claims to support async -- but if the
underlying target does not support async, then the to_async method
call will end up in that method's default implementation, namely
tcomplain.
This worked previously because the record target used to provide a
to_async method; one that (erroneously, only at push time) checked the
other members of the target stack, and then simply dropped to_async
calls in the "does not implement async" case.
My first thought was to simply drop tcomplain as the default for
to_async. This works, but Pedro pointed out that the only reason
record has to supply to_can_async_p and to_is_async_p is that these
default to using the find_default_run_target machinery -- and these
defaults are only needed by "run" and "attach".
So, a nicer solution presents itself: change run and attach to
explicitly call into the default run target when needed; and change
to_is_async_p and to_can_async_p to default to "return 0". This makes
the target stack simpler to use and lets us remove the method
implementations from record. This is also in harmony with other plans
for the target stack; namely trying to reduce the impact of
find_default_run_target. This approach makes it clear that
find_default_is_async_p is not needed -- it is asking whether a target
that may not even be pushed is actually async, which seems like a
nonsensical question.
While an improvement, this approach proved to introduce the same bug
when using the core target. Looking a bit deeper, the issue is that
code in "attach" and "run" may need to use either the current target
stack or the default run target -- but different calls into the target
API in those functions could wind up querying different targets.
This new patch makes the target to use more explicit in "run" and
"attach". Then these commands explicitly make the needed calls
against that target. This ensures that a single target is used for
all relevant operations. This lets us remove a couple find_default_*
functions from various targets, including the dummy target. I think
this is a decent understandability improvement.
One issue I see with this patch is that the new calls in "run" and
"attach" are not very much like the rest of the target API. I think
fundamentally this is due to bad factoring in the target API, which
may need to be fixed for multi-target. Tackling that seemed ambitious
for a regression fix.
While working on this I noticed that there don't seem to be any test
cases that involve both target-async and record, so this patch changes
break-precsave.exp to add some. It also changes corefile.exp to add
some target-async tests; these pass with current trunk and with this
patch applied, but fail with the v1 patch.
This patch differs from v4 in that it moves initialization of
to_can_async_p and to_supports_non_stop into inf-child, adds some
assertions to complete_target_initialization, and adds some comments
to target.h.
Built and regtested on x86-64 Fedora 20.
2014-03-12 Tom Tromey <tromey@redhat.com>
* inf-child.c (return_zero): New function.
(inf_child_target): Set to_can_async_p, to_supports_non_stop.
* aix-thread.c (aix_thread_inferior_created): New function.
(aix_thread_attach): Remove.
(init_aix_thread_ops): Don't set to_attach.
(_initialize_aix_thread): Register inferior_created observer.
* corelow.c (init_core_ops): Don't set to_attach or
to_create_inferior.
* exec.c (init_exec_ops): Don't set to_attach or
to_create_inferior.
* infcmd.c (run_command_1): Use find_run_target. Make direct
target calls.
(attach_command): Use find_attach_target. Make direct target
calls.
* record-btrace.c (init_record_btrace_ops): Don't set
to_create_inferior.
* record-full.c (record_full_can_async_p, record_full_is_async_p):
Remove.
(init_record_full_ops, init_record_full_core_ops): Update. Don't
set to_create_inferior.
* target.c (complete_target_initialization): Add assertion.
(target_create_inferior): Remove.
(find_default_attach, find_default_create_inferior): Remove.
(find_attach_target, find_run_target): New functions.
(find_default_is_async_p, find_default_can_async_p)
(target_supports_non_stop, target_attach): Remove.
(init_dummy_target): Don't set to_create_inferior or
to_supports_non_stop.
* target.h (struct target_ops) <to_attach>: Add comment. Remove
TARGET_DEFAULT_FUNC.
<to_create_inferior>: Add comment.
<to_can_async_p, to_is_async_p, to_supports_non_stop>: Use
TARGET_DEFAULT_RETURN.
<to_can_async_p, to_supports_non_stop, to_can_run>: Add comments.
(find_attach_target, find_run_target): Declare.
(target_create_inferior): Remove.
(target_has_execution_1): Update comment.
(target_supports_non_stop): Remove.
* target-delegates.c: Rebuild.
2014-03-12 Tom Tromey <tromey@redhat.com>
* gdb.base/corefile.exp (corefile_test_run, corefile_test_attach):
New procs. Add target-async tests.
* gdb.reverse/break-precsave.exp (precsave_tests): New proc.
Add target-async tests.
that if multiple bignum values are encountered only the most recent is valid.
If such expressions are cached, eg to be emitted into a literal pool later on
in the assembly, then only one expression - the last - will be correct. This
patch fixes the problem for the AArch64 target by caching each bignum value
locally.
PR gas/16688
* config/tc-aarch64.c (literal_expression): New structure.
(literal_pool): Replace exp array with literal_expression array.
(add_to_lit_pool): When adding a bignum cache the big value.
(s_ltorg): When emitting a bignum initialise the global bignum
array from the cached value.
* gas/aarch64/litpool.s: New test case.
* gas/aarch64/litpool.d: Expected disassembly.
On PPC64, 'func' and 'main' are function descriptors and don't point
to the actual code. Thus the usage of these symbols in the DWARF
assembler source was broken. The patch introduces new labels
func_start and func_end for this purpose.
A "side effect" of the migration to Dwarf::assemble is that the DWARF
address size is now automatically adjusted to the target architecture.
The original assembler source hard-coded the DWARF address size to 4,
even on 64-bit architectures. This address size mismatch caused a
test case failure on s390x due to a wrong result from DW_OP_deref.