mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2024-11-27 03:51:15 +08:00
Return vector of results from parallel_for_each
This changes gdb::parallel_for_each to return a vector of the results. However, if the passed-in function returns void, the return type remains 'void'. This functionality is used later, to parallelize the new indexer.
This commit is contained in:
parent
82d734f7a3
commit
f4565e4c99
@ -21,11 +21,98 @@
|
||||
#define GDBSUPPORT_PARALLEL_FOR_H
|
||||
|
||||
#include <algorithm>
|
||||
#include <type_traits>
|
||||
#include "gdbsupport/thread-pool.h"
|
||||
|
||||
namespace gdb
|
||||
{
|
||||
|
||||
namespace detail
|
||||
{
|
||||
|
||||
/* This is a helper class that is used to accumulate results for
|
||||
parallel_for. There is a specialization for 'void', below. */
|
||||
template<typename T>
|
||||
struct par_for_accumulator
|
||||
{
|
||||
public:
|
||||
|
||||
explicit par_for_accumulator (size_t n_threads)
|
||||
: m_futures (n_threads)
|
||||
{
|
||||
}
|
||||
|
||||
/* The result type that is accumulated. */
|
||||
typedef std::vector<T> result_type;
|
||||
|
||||
/* Post the Ith task to a background thread, and store a future for
|
||||
later. */
|
||||
void post (size_t i, std::function<T ()> task)
|
||||
{
|
||||
m_futures[i]
|
||||
= gdb::thread_pool::g_thread_pool->post_task (std::move (task));
|
||||
}
|
||||
|
||||
/* Invoke TASK in the current thread, then compute all the results
|
||||
from all background tasks and put them into a result vector,
|
||||
which is returned. */
|
||||
result_type finish (gdb::function_view<T ()> task)
|
||||
{
|
||||
result_type result (m_futures.size () + 1);
|
||||
|
||||
result.back () = task ();
|
||||
|
||||
for (size_t i = 0; i < m_futures.size (); ++i)
|
||||
result[i] = m_futures[i].get ();
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
private:
|
||||
|
||||
/* A vector of futures coming from the tasks run in the
|
||||
background. */
|
||||
std::vector<std::future<T>> m_futures;
|
||||
};
|
||||
|
||||
/* See the generic template. */
|
||||
template<>
|
||||
struct par_for_accumulator<void>
|
||||
{
|
||||
public:
|
||||
|
||||
explicit par_for_accumulator (size_t n_threads)
|
||||
: m_futures (n_threads)
|
||||
{
|
||||
}
|
||||
|
||||
/* This specialization does not compute results. */
|
||||
typedef void result_type;
|
||||
|
||||
void post (size_t i, std::function<void ()> task)
|
||||
{
|
||||
m_futures[i]
|
||||
= gdb::thread_pool::g_thread_pool->post_task (std::move (task));
|
||||
}
|
||||
|
||||
result_type finish (gdb::function_view<void ()> task)
|
||||
{
|
||||
task ();
|
||||
|
||||
for (auto &future : m_futures)
|
||||
{
|
||||
/* Use 'get' and not 'wait', to propagate any exception. */
|
||||
future.get ();
|
||||
}
|
||||
}
|
||||
|
||||
private:
|
||||
|
||||
std::vector<std::future<void>> m_futures;
|
||||
};
|
||||
|
||||
}
|
||||
|
||||
/* A very simple "parallel for". This splits the range of iterators
|
||||
into subranges, and then passes each subrange to the callback. The
|
||||
work may or may not be done in separate threads.
|
||||
@ -36,21 +123,25 @@ namespace gdb
|
||||
|
||||
The parameter N says how batching ought to be done -- there will be
|
||||
at least N elements processed per thread. Setting N to 0 is not
|
||||
allowed. */
|
||||
allowed.
|
||||
|
||||
If the function returns a non-void type, then a vector of the
|
||||
results is returned. The size of the resulting vector depends on
|
||||
the number of threads that were used. */
|
||||
|
||||
template<class RandomIt, class RangeFunction>
|
||||
void
|
||||
typename gdb::detail::par_for_accumulator<
|
||||
std::result_of_t<RangeFunction (RandomIt, RandomIt)>
|
||||
>::result_type
|
||||
parallel_for_each (unsigned n, RandomIt first, RandomIt last,
|
||||
RangeFunction callback)
|
||||
{
|
||||
/* So we can use a local array below. */
|
||||
const size_t local_max = 16;
|
||||
size_t n_threads = std::min (thread_pool::g_thread_pool->thread_count (),
|
||||
local_max);
|
||||
size_t n_actual_threads = 0;
|
||||
std::future<void> futures[local_max];
|
||||
typedef typename std::result_of_t<RangeFunction (RandomIt, RandomIt)>
|
||||
result_type;
|
||||
|
||||
size_t n_threads = thread_pool::g_thread_pool->thread_count ();
|
||||
size_t n_elements = last - first;
|
||||
size_t elts_per_thread = 0;
|
||||
if (n_threads > 1)
|
||||
{
|
||||
/* Require that there should be at least N elements in a
|
||||
@ -58,26 +149,27 @@ parallel_for_each (unsigned n, RandomIt first, RandomIt last,
|
||||
gdb_assert (n > 0);
|
||||
if (n_elements / n_threads < n)
|
||||
n_threads = std::max (n_elements / n, (size_t) 1);
|
||||
size_t elts_per_thread = n_elements / n_threads;
|
||||
n_actual_threads = n_threads - 1;
|
||||
for (int i = 0; i < n_actual_threads; ++i)
|
||||
{
|
||||
RandomIt end = first + elts_per_thread;
|
||||
auto task = [=] ()
|
||||
{
|
||||
callback (first, end);
|
||||
};
|
||||
elts_per_thread = n_elements / n_threads;
|
||||
}
|
||||
|
||||
futures[i] = gdb::thread_pool::g_thread_pool->post_task (task);
|
||||
first = end;
|
||||
}
|
||||
size_t count = n_threads == 0 ? 0 : n_threads - 1;
|
||||
gdb::detail::par_for_accumulator<result_type> results (count);
|
||||
|
||||
for (int i = 0; i < count; ++i)
|
||||
{
|
||||
RandomIt end = first + elts_per_thread;
|
||||
results.post (i, [=] ()
|
||||
{
|
||||
return callback (first, end);
|
||||
});
|
||||
first = end;
|
||||
}
|
||||
|
||||
/* Process all the remaining elements in the main thread. */
|
||||
callback (first, last);
|
||||
|
||||
for (int i = 0; i < n_actual_threads; ++i)
|
||||
futures[i].wait ();
|
||||
return results.finish ([=] ()
|
||||
{
|
||||
return callback (first, last);
|
||||
});
|
||||
}
|
||||
|
||||
}
|
||||
|
@ -134,11 +134,10 @@ thread_pool::set_thread_count (size_t num_threads)
|
||||
#endif /* CXX_STD_THREAD */
|
||||
}
|
||||
|
||||
std::future<void>
|
||||
thread_pool::post_task (std::function<void ()> &&func)
|
||||
void
|
||||
thread_pool::do_post_task (std::packaged_task<void ()> &&func)
|
||||
{
|
||||
std::packaged_task<void ()> t (std::move (func));
|
||||
std::future<void> f = t.get_future ();
|
||||
|
||||
#if CXX_STD_THREAD
|
||||
if (m_thread_count != 0)
|
||||
@ -153,7 +152,6 @@ thread_pool::post_task (std::function<void ()> &&func)
|
||||
/* Just execute it now. */
|
||||
t ();
|
||||
}
|
||||
return f;
|
||||
}
|
||||
|
||||
#if CXX_STD_THREAD
|
||||
|
@ -64,7 +64,24 @@ class thread_pool
|
||||
|
||||
/* Post a task to the thread pool. A future is returned, which can
|
||||
be used to wait for the result. */
|
||||
std::future<void> post_task (std::function<void ()> &&func);
|
||||
std::future<void> post_task (std::function<void ()> &&func)
|
||||
{
|
||||
std::packaged_task<void ()> task (std::move (func));
|
||||
std::future<void> result = task.get_future ();
|
||||
do_post_task (std::packaged_task<void ()> (std::move (task)));
|
||||
return result;
|
||||
}
|
||||
|
||||
/* Post a task to the thread pool. A future is returned, which can
|
||||
be used to wait for the result. */
|
||||
template<typename T>
|
||||
std::future<T> post_task (std::function<T ()> &&func)
|
||||
{
|
||||
std::packaged_task<T ()> task (std::move (func));
|
||||
std::future<T> result = task.get_future ();
|
||||
do_post_task (std::packaged_task<void ()> (std::move (task)));
|
||||
return result;
|
||||
}
|
||||
|
||||
private:
|
||||
|
||||
@ -74,6 +91,10 @@ class thread_pool
|
||||
/* The callback for each worker thread. */
|
||||
void thread_function ();
|
||||
|
||||
/* Post a task to the thread pool. A future is returned, which can
|
||||
be used to wait for the result. */
|
||||
void do_post_task (std::packaged_task<void ()> &&func);
|
||||
|
||||
/* The current thread count. */
|
||||
size_t m_thread_count = 0;
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user