* gdb.texinfo (Overlays): New chapter, documenting GDB's

overlay support.  Add to top-level menu.
This commit is contained in:
Jim Blandy 2001-11-30 23:03:09 +00:00
parent 2d43aa5e5f
commit df0cd8c5a7
2 changed files with 387 additions and 0 deletions

View File

@ -1,3 +1,8 @@
2001-11-30 Jim Blandy <jimb@redhat.com>
* gdb.texinfo (Overlays): New chapter, documenting GDB's
overlay support. Add to top-level menu.
2001-11-26 Tom Tromey <tromey@redhat.com>
* gdb.texinfo (Command Syntax): Document C-o binding.

View File

@ -127,6 +127,7 @@ Copyright (C) 1988-2001 Free Software Foundation, Inc.
* Source:: Examining source files
* Data:: Examining data
* Tracepoints:: Debugging remote targets non-intrusively
* Overlays:: Debugging programs that use overlays
* Languages:: Using @value{GDBN} with different languages
@ -179,6 +180,7 @@ Copyright (C) 1988-2000 Free Software Foundation, Inc.
* Source:: Examining source files
* Data:: Examining data
* Tracepoints:: Debugging remote targets non-intrusively
* Overlays:: Debugging programs that use overlays
* Languages:: Using @value{GDBN} with different languages
@ -6301,6 +6303,386 @@ data.
> end
@end smallexample
@node Overlays
@chapter Debugging Programs That Use Overlays
@cindex overlays
If your program is too large to fit completely in your target system's
memory, you can sometimes use @dfn{overlays} to work around this
problem. @value{GDBN} provides some support for debugging programs that
use overlays.
@menu
* How Overlays Work:: A general explanation of overlays.
* Overlay Commands:: Managing overlays in @value{GDBN}.
* Automatic Overlay Debugging:: @value{GDBN} can find out which overlays are
mapped by asking the inferior.
* Overlay Sample Program:: A sample program using overlays.
@end menu
@node How Overlays Work
@section How Overlays Work
@cindex mapped overlays
@cindex unmapped overlays
@cindex load address, overlay's
@cindex mapped address
@cindex overlay area
Suppose you have a computer whose instruction address space is only 64
kilobytes long, but which has much more memory which can be accessed by
other means: special instructions, segment registers, or memory
management hardware, for example. Suppose further that you want to
adapt a program which is larger than 64 kilobytes to run on this system.
One solution is to identify modules of your program which are relatively
independent, and need not call each other directly; call these modules
@dfn{overlays}. Separate the overlays from the main program, and place
their machine code in the larger memory. Place your main program in
instruction memory, but leave at least enough space there to hold the
largest overlay as well.
Now, to call a function located in an overlay, you must first copy that
overlay's machine code from the large memory into the space set aside
for it in the instruction memory, and then jump to its entry point
there.
@example
@group
Data Instruction Larger
Address Space Address Space Address Space
+-----------+ +-----------+ +-----------+
| | | | | |
+-----------+ +-----------+ +-----------+<-- overlay 1
| program | | main | | | load address
| variables | | program | | overlay 1 |
| and heap | | | ,---| |
+-----------+ | | | | |
| | +-----------+ | +-----------+
+-----------+ | | | | |
mapped --->+-----------+ / +-----------+<-- overlay 2
address | overlay | <-' | overlay 2 | load address
| area | <-----| |
| | <---. +-----------+
| | | | |
+-----------+ | | |
| | | +-----------+<-- overlay 3
+-----------+ `--| | load address
| overlay 3 |
| |
+-----------+
| |
+-----------+
To map an overlay, copy its code from the larger address space
to the instruction address space. Since the overlays shown here
all use the same mapped address, only one may be mapped at a time.
@end group
@end example
This diagram shows a system with separate data and instruction address
spaces. For a system with a single address space for data and
instructions, the diagram would be similar, except that the program
variables and heap would share an address space with the main program
and the overlay area.
An overlay loaded into instruction memory and ready for use is called a
@dfn{mapped} overlay; its @dfn{mapped address} is its address in the
instruction memory. An overlay not present (or only partially present)
in instruction memory is called @dfn{unmapped}; its @dfn{load address}
is its address in the larger memory. The mapped address is also called
the @dfn{virtual memory address}, or @dfn{VMA}; the load address is also
called the @dfn{load memory address}, or @dfn{LMA}.
Unfortunately, overlays are not a completely transparent way to adapt a
program to limited instruction memory. They introduce a new set of
global constraints you must keep in mind as you design your program:
@itemize @bullet
@item
Before calling or returning to a function in an overlay, your program
must make sure that overlay is actually mapped. Otherwise, the call or
return will transfer control to the right address, but in the wrong
overlay, and your program will probably crash.
@item
If the process of mapping an overlay is expensive on your system, you
will need to choose your overlays carefully to minimize their effect on
your program's performance.
@item
The executable file you load onto your system must contain each
overlay's instructions, appearing at the overlay's load address, not its
mapped address. However, each overlay's instructions must be relocated
and its symbols defined as if the overlay were at its mapped address.
You can use GNU linker scripts to specify different load and relocation
addresses for pieces of your program; see @ref{Overlay Description,,,
ld.info, Using ld: the GNU linker}.
@item
The procedure for loading executable files onto your system must be able
to load their contents into the larger address space as well as the
instruction and data spaces.
@end itemize
The overlay system described above is rather simple, and could be
improved in many ways:
@itemize @bullet
@item
If your system has suitable bank switch registers or memory management
hardware, you could use those facilities to make an overlay's load area
contents simply appear at their mapped address in instruction space.
This would probably be faster than copying the overlay to its mapped
area in the usual way.
@item
If your overlays are small enough, you could set aside more than one
overlay area, and have more than one overlay mapped at a time.
@item
You can use overlays to manage data, as well as instructions. In
general, data overlays are even less transparent to your design than
code overlays: whereas code overlays only require care when you call or
return to functions, data overlays require care every time you access
the data. Also, if you change the contents of a data overlay, you
must copy its contents back out to its load address before you can copy a
different data overlay into the same mapped area.
@end itemize
@node Overlay Commands
@section Overlay Commands
To use @value{GDBN}'s overlay support, each overlay in your program must
correspond to a separate section of the executable file. The section's
virtual memory address and load memory address must be the overlay's
mapped and load addresses. Identifying overlays with sections allows
@value{GDBN} to determine the appropriate address of a function or
variable, depending on whether the overlay is mapped or not.
@value{GDBN}'s overlay commands all start with the word @code{overlay};
you can abbreviate this as @code{ov} or @code{ovly}. The commands are:
@table @code
@item overlay off
@kindex overlay off
Disable @value{GDBN}'s overlay support. When overlay support is
disabled, @value{GDBN} assumes that all functions and variables are
always present at their mapped addresses. By default, @value{GDBN}'s
overlay support is disabled.
@item overlay manual
@kindex overlay manual
@cindex manual overlay debugging
Enable @dfn{manual} overlay debugging. In this mode, @value{GDBN}
relies on you to tell it which overlays are mapped, and which are not,
using the @code{overlay map-overlay} and @code{overlay unmap-overlay}
commands described below.
@item overlay map-overlay @var{overlay}
@itemx overlay map @var{overlay}
@kindex overlay map-overlay
@cindex map an overlay
Tell @value{GDBN} that @var{overlay} is now mapped; @var{overlay} must
be the name of the object file section containing the overlay. When an
overlay is mapped, @value{GDBN} assumes it can find the overlay's
functions and variables at their mapped addresses. @value{GDBN} assumes
that any other overlays whose mapped ranges overlap that of
@var{overlay} are now unmapped.
@item overlay unmap-overlay @var{overlay}
@itemx overlay unmap @var{overlay}
@kindex overlay unmap-overlay
@cindex unmap an overlay
Tell @value{GDBN} that @var{overlay} is no longer mapped; @var{overlay}
must be the name of the object file section containing the overlay.
When an overlay is unmapped, @value{GDBN} assumes it can find the
overlay's functions and variables at their load addresses.
@item overlay auto
@kindex overlay auto
Enable @dfn{automatic} overlay debugging. In this mode, @value{GDBN}
consults a data structure the overlay manager maintains in the inferior
to see which overlays are mapped. For details, see @ref{Automatic
Overlay Debugging}.
@item overlay load-target
@itemx overlay load
@kindex overlay load-target
@cindex reloading the overlay table
Re-read the overlay table from the inferior. Normally, @value{GDBN}
re-reads the table @value{GDBN} automatically each time the inferior
stops, so this command should only be necessary if you have changed the
overlay mapping yourself using @value{GDBN}. This command is only
useful when using automatic overlay debugging.
@item overlay list-overlays
@itemx overlay list
@cindex listing mapped overlays
Display a list of the overlays currently mapped, along with their mapped
addresses, load addresses, and sizes.
@end table
Normally, when @value{GDBN} prints a code address, it includes the name
of the function the address falls in:
@example
(gdb) print main
$3 = @{int ()@} 0x11a0 <main>
@end example
@noindent
When overlay debugging is enabled, @value{GDBN} recognizes code in
unmapped overlays, and prints the names of unmapped functions with
asterisks around them. For example, if @code{foo} is a function in an
unmapped overlay, @value{GDBN} prints it this way:
@example
(gdb) overlay list
No sections are mapped.
(gdb) print foo
$5 = @{int (int)@} 0x100000 <*foo*>
@end example
@noindent
When @code{foo}'s overlay is mapped, @value{GDBN} prints the function's
name normally:
@example
(gdb) overlay list
Section .ov.foo.text, loaded at 0x100000 - 0x100034,
mapped at 0x1016 - 0x104a
(gdb) print foo
$6 = @{int (int)@} 0x1016 <foo>
@end example
When overlay debugging is enabled, @value{GDBN} can find the correct
address for functions and variables in an overlay, whether or not the
overlay is mapped. This allows most @value{GDBN} commands, like
@code{break} and @code{disassemble}, to work normally, even on unmapped
code. However, @value{GDBN}'s breakpoint support has some limitations:
@itemize @bullet
@item
@cindex breakpoints in overlays
@cindex overlays, setting breakpoints in
You can set breakpoints in functions in unmapped overlays, as long as
@value{GDBN} can write to the overlay at its load address.
@item
@value{GDBN} can not set hardware or simulator-based breakpoints in
unmapped overlays. However, if you set a breakpoint at the end of your
overlay manager (and tell @value{GDBN} which overlays are now mapped, if
you are using manual overlay management), @value{GDBN} will re-set its
breakpoints properly.
@end itemize
@node Automatic Overlay Debugging
@section Automatic Overlay Debugging
@cindex automatic overlay debugging
@value{GDBN} can automatically track which overlays are mapped and which
are not, given some simple co-operation from the overlay manager in the
inferior. If you enable automatic overlay debugging with the
@code{overlay auto} command (@pxref{Overlay Commands}), @value{GDBN}
looks in the inferior's memory for certain variables describing the
current state of the overlays.
Here are the variables your overlay manager must define to support
@value{GDBN}'s automatic overlay debugging:
@table @asis
@item @code{_ovly_table}:
This variable must be an array of the following structures:
@example
struct
@{
/* The overlay's mapped address. */
unsigned long vma;
/* The size of the overlay, in bytes. */
unsigned long size;
/* The overlay's load address. */
unsigned long lma;
/* Non-zero if the overlay is currently mapped;
zero otherwise. */
unsigned long mapped;
@}
@end example
@item @code{_novlys}:
This variable must be a four-byte signed integer, holding the total
number of elements in @code{_ovly_table}.
@end table
To decide whether a particular overlay is mapped or not, @value{GDBN}
looks for an entry in @w{@code{_ovly_table}} whose @code{vma} and
@code{lma} members equal the VMA and LMA of the overlay's section in the
executable file. When @value{GDBN} finds a matching entry, it consults
the entry's @code{mapped} member to determine whether the overlay is
currently mapped.
@node Overlay Sample Program
@section Overlay Sample Program
@cindex overlay example program
When linking a program which uses overlays, you must place the overlays
at their load addresses, while relocating them to run at their mapped
addresses. To do this, you must write a linker script (@pxref{Overlay
Description,,, ld.info, Using ld: the GNU linker}). Unfortunately,
since linker scripts are specific to a particular host system, target
architecture, and target memory layout, this manual cannot provide
portable sample code demonstrating @value{GDBN}'s overlay support.
However, the @value{GDBN} source distribution does contain an overlaid
program, with linker scripts for a few systems, as part of its test
suite. The program consists of the following files from
@file{gdb/testsuite/gdb.base}:
@table @file
@item overlays.c
The main program file.
@item ovlymgr.c
A simple overlay manager, used by @file{overlays.c}.
@item foo.c
@itemx bar.c
@itemx baz.c
@itemx grbx.c
Overlay modules, loaded and used by @file{overlays.c}.
@item d10v.ld
@itemx m32r.ld
Linker scripts for linking the test program on the @code{d10v-elf}
and @code{m32r-elf} targets.
@end table
You can build the test program using the @code{d10v-elf} GCC
cross-compiler like this:
@example
$ d10v-elf-gcc -g -c overlays.c
$ d10v-elf-gcc -g -c ovlymgr.c
$ d10v-elf-gcc -g -c foo.c
$ d10v-elf-gcc -g -c bar.c
$ d10v-elf-gcc -g -c baz.c
$ d10v-elf-gcc -g -c grbx.c
$ d10v-elf-gcc -g overlays.o ovlymgr.o foo.o bar.o \
baz.o grbx.o -Wl,-Td10v.ld -o overlays
@end example
The build process is identical for any other architecture, except that
you must substitute the appropriate compiler and linker script for the
target system for @code{d10v-elf-gcc} and @code{d10v.ld}.
@node Languages
@chapter Using @value{GDBN} with Different Languages
@cindex languages