Implement complex arithmetic

This adds support for complex arithmetic to gdb.  Now something like
"print 23 + 7i" will work.

Addition, subtraction, multiplication, division, and equality testing
are supported binary operations.

Unary +, negation, and complement are supported.  Following GCC, the ~
operator computes the complex conjugate.

gdb/ChangeLog
2020-04-01  Tom Tromey  <tom@tromey.com>

	PR exp/25299:
	* valarith.c (promotion_type, complex_binop): New functions.
	(scalar_binop): Handle complex numbers.  Use promotion_type.
	(value_pos, value_neg, value_complement): Handle complex numbers.

gdb/testsuite/ChangeLog
2020-04-01  Tom Tromey  <tom@tromey.com>

	* gdb.base/complex-parts.exp: Add arithmetic tests.
This commit is contained in:
Tom Tromey 2020-04-01 14:09:52 -06:00 committed by Tom Tromey
parent fa649bb7d3
commit c34e871466
4 changed files with 215 additions and 21 deletions

View File

@ -1,3 +1,10 @@
2020-04-01 Tom Tromey <tom@tromey.com>
PR exp/25299:
* valarith.c (promotion_type, complex_binop): New functions.
(scalar_binop): Handle complex numbers. Use promotion_type.
(value_pos, value_neg, value_complement): Handle complex numbers.
2020-04-01 Tom Tromey <tom@tromey.com>
* c-exp.y (COMPLEX_INT, COMPLEX_FLOAT): New tokens.

View File

@ -1,3 +1,7 @@
2020-04-01 Tom Tromey <tom@tromey.com>
* gdb.base/complex-parts.exp: Add arithmetic tests.
2020-04-01 Tom Tromey <tom@tromey.com>
* gdb.compile/compile.exp: Update.

View File

@ -60,3 +60,29 @@ gdb_test "p \$_cimag (i1)" "expected a complex number"
gdb_test "p \$_creal (d1)" "expected a complex number"
gdb_test "p \$_creal (f1)" "expected a complex number"
gdb_test "p \$_creal (i1)" "expected a complex number"
#
# General complex number tests.
#
gdb_test "print 23 + 7i" " = 23 \\+ 7i"
gdb_test "print 23.125f + 7i" " = 23.125 \\+ 7i"
gdb_test "print 23 + 7.25fi" " = 23 \\+ 7.25i"
gdb_test "print (23 + 7i) + (17 + 10i)" " = 40 \\+ 17i"
gdb_test "print 23 + -7i" " = 23 \\+ -7i"
gdb_test "print 23 - 7i" " = 23 \\+ -7i"
gdb_test "print -(23 + 7i)" " = -23 \\+ -7i"
gdb_test "print +(23 + 7i)" " = 23 \\+ 7i"
gdb_test "print ~(23 + 7i)" " = 23 \\+ -7i"
gdb_test "print (5 + 5i) * (2 + 2i)" " = 0 \\+ 20i"
gdb_test "print (5 + 7i) == (5 + 7i)" " = 1"
gdb_test "print (5 + 7i) == (8 + 7i)" " = 0"
gdb_test "print (5 + 7i) == (5 + 92i)" " = 0"
gdb_test "print (5 + 7i) != (5 + 7i)" " = 0"
gdb_test "print (5 + 7i) != (8 + 7i)" " = 1"
gdb_test "print (5 + 7i) != (5 + 92i)" " = 1"
gdb_test "print (20 - 4i) / (3 + 2i)" " = 4 \\+ -4i"

View File

@ -911,6 +911,157 @@ value_args_as_target_float (struct value *arg1, struct value *arg2,
TYPE_NAME (type2));
}
/* A helper function that finds the type to use for a binary operation
involving TYPE1 and TYPE2. */
static struct type *
promotion_type (struct type *type1, struct type *type2)
{
struct type *result_type;
if (is_floating_type (type1) || is_floating_type (type2))
{
/* If only one type is floating-point, use its type.
Otherwise use the bigger type. */
if (!is_floating_type (type1))
result_type = type2;
else if (!is_floating_type (type2))
result_type = type1;
else if (TYPE_LENGTH (type2) > TYPE_LENGTH (type1))
result_type = type2;
else
result_type = type1;
}
else
{
/* Integer types. */
if (TYPE_LENGTH (type1) > TYPE_LENGTH (type2))
result_type = type1;
else if (TYPE_LENGTH (type2) > TYPE_LENGTH (type1))
result_type = type2;
else if (TYPE_UNSIGNED (type1))
result_type = type1;
else if (TYPE_UNSIGNED (type2))
result_type = type2;
else
result_type = type1;
}
return result_type;
}
static struct value *scalar_binop (struct value *arg1, struct value *arg2,
enum exp_opcode op);
/* Perform a binary operation on complex operands. */
static struct value *
complex_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
{
struct type *arg1_type = check_typedef (value_type (arg1));
struct type *arg2_type = check_typedef (value_type (arg2));
struct value *arg1_real, *arg1_imag, *arg2_real, *arg2_imag;
if (TYPE_CODE (arg1_type) == TYPE_CODE_COMPLEX)
{
arg1_real = value_real_part (arg1);
arg1_imag = value_imaginary_part (arg1);
}
else
{
arg1_real = arg1;
arg1_imag = value_zero (arg1_type, not_lval);
}
if (TYPE_CODE (arg2_type) == TYPE_CODE_COMPLEX)
{
arg2_real = value_real_part (arg2);
arg2_imag = value_imaginary_part (arg2);
}
else
{
arg2_real = arg2;
arg2_imag = value_zero (arg2_type, not_lval);
}
struct type *comp_type = promotion_type (value_type (arg1_real),
value_type (arg2_real));
arg1_real = value_cast (comp_type, arg1_real);
arg1_imag = value_cast (comp_type, arg1_imag);
arg2_real = value_cast (comp_type, arg2_real);
arg2_imag = value_cast (comp_type, arg2_imag);
struct type *result_type = init_complex_type (nullptr, comp_type);
struct value *result_real, *result_imag;
switch (op)
{
case BINOP_ADD:
case BINOP_SUB:
result_real = scalar_binop (arg1_real, arg2_real, op);
result_imag = scalar_binop (arg1_imag, arg2_imag, op);
break;
case BINOP_MUL:
{
struct value *x1 = scalar_binop (arg1_real, arg2_real, op);
struct value *x2 = scalar_binop (arg1_imag, arg2_imag, op);
result_real = scalar_binop (x1, x2, BINOP_SUB);
x1 = scalar_binop (arg1_real, arg2_imag, op);
x2 = scalar_binop (arg1_imag, arg2_real, op);
result_imag = scalar_binop (x1, x2, BINOP_ADD);
}
break;
case BINOP_DIV:
{
if (TYPE_CODE (arg2_type) == TYPE_CODE_COMPLEX)
{
struct value *conjugate = value_complement (arg2);
/* We have to reconstruct ARG1, in case the type was
promoted. */
arg1 = value_literal_complex (arg1_real, arg1_imag, result_type);
struct value *numerator = scalar_binop (arg1, conjugate,
BINOP_MUL);
arg1_real = value_real_part (numerator);
arg1_imag = value_imaginary_part (numerator);
struct value *x1 = scalar_binop (arg2_real, arg2_real, BINOP_MUL);
struct value *x2 = scalar_binop (arg2_imag, arg2_imag, BINOP_MUL);
arg2_real = scalar_binop (x1, x2, BINOP_ADD);
}
result_real = scalar_binop (arg1_real, arg2_real, op);
result_imag = scalar_binop (arg1_imag, arg2_real, op);
}
break;
case BINOP_EQUAL:
case BINOP_NOTEQUAL:
{
struct value *x1 = scalar_binop (arg1_real, arg2_real, op);
struct value *x2 = scalar_binop (arg1_imag, arg2_imag, op);
LONGEST v1 = value_as_long (x1);
LONGEST v2 = value_as_long (x2);
if (op == BINOP_EQUAL)
v1 = v1 && v2;
else
v1 = v1 || v2;
return value_from_longest (value_type (x1), v1);
}
break;
default:
error (_("Invalid binary operation on numbers."));
}
return value_literal_complex (result_real, result_imag, result_type);
}
/* Perform a binary operation on two operands which have reasonable
representations as integers or floats. This includes booleans,
characters, integers, or floats.
@ -929,23 +1080,17 @@ scalar_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
type1 = check_typedef (value_type (arg1));
type2 = check_typedef (value_type (arg2));
if (TYPE_CODE (type1) == TYPE_CODE_COMPLEX
|| TYPE_CODE (type2) == TYPE_CODE_COMPLEX)
return complex_binop (arg1, arg2, op);
if ((!is_floating_value (arg1) && !is_integral_type (type1))
|| (!is_floating_value (arg2) && !is_integral_type (type2)))
error (_("Argument to arithmetic operation not a number or boolean."));
if (is_floating_type (type1) || is_floating_type (type2))
{
/* If only one type is floating-point, use its type.
Otherwise use the bigger type. */
if (!is_floating_type (type1))
result_type = type2;
else if (!is_floating_type (type2))
result_type = type1;
else if (TYPE_LENGTH (type2) > TYPE_LENGTH (type1))
result_type = type2;
else
result_type = type1;
result_type = promotion_type (type1, type2);
val = allocate_value (result_type);
struct type *eff_type_v1, *eff_type_v2;
@ -1013,16 +1158,8 @@ scalar_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
if one of the operands is unsigned. */
if (op == BINOP_RSH || op == BINOP_LSH || op == BINOP_EXP)
result_type = type1;
else if (TYPE_LENGTH (type1) > TYPE_LENGTH (type2))
result_type = type1;
else if (TYPE_LENGTH (type2) > TYPE_LENGTH (type1))
result_type = type2;
else if (TYPE_UNSIGNED (type1))
result_type = type1;
else if (TYPE_UNSIGNED (type2))
result_type = type2;
else
result_type = type1;
result_type = promotion_type (type1, type2);
if (TYPE_UNSIGNED (result_type))
{
@ -1629,7 +1766,8 @@ value_pos (struct value *arg1)
type = check_typedef (value_type (arg1));
if (is_integral_type (type) || is_floating_value (arg1)
|| (TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type)))
|| (TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type))
|| TYPE_CODE (type) == TYPE_CODE_COMPLEX)
return value_from_contents (type, value_contents (arg1));
else
error (_("Argument to positive operation not a number."));
@ -1663,6 +1801,15 @@ value_neg (struct value *arg1)
}
return val;
}
else if (TYPE_CODE (type) == TYPE_CODE_COMPLEX)
{
struct value *real = value_real_part (arg1);
struct value *imag = value_imaginary_part (arg1);
real = value_neg (real);
imag = value_neg (imag);
return value_literal_complex (real, imag, type);
}
else
error (_("Argument to negate operation not a number."));
}
@ -1696,6 +1843,16 @@ value_complement (struct value *arg1)
value_contents_all (tmp), TYPE_LENGTH (eltype));
}
}
else if (TYPE_CODE (type) == TYPE_CODE_COMPLEX)
{
/* GCC has an extension that treats ~complex as the complex
conjugate. */
struct value *real = value_real_part (arg1);
struct value *imag = value_imaginary_part (arg1);
imag = value_neg (imag);
return value_literal_complex (real, imag, type);
}
else
error (_("Argument to complement operation not an integer, boolean."));