[gdb/tdep] Fix gdb.base/readnever.exp on s390x

On s390x-linux, I run into:
...
 (gdb) backtrace
 #0  0x000000000100061a in fun_three ()
 #1  0x000000000100067a in fun_two ()
 #2  0x000003fffdfa9470 in ?? ()
 Backtrace stopped: frame did not save the PC
 (gdb) FAIL: gdb.base/readnever.exp: backtrace
...

This is really due to a problem handling the fun_three frame.  When generating
a backtrace from fun_two, everying looks ok:
...
 $ gdb -readnever -q -batch outputs/gdb.base/readnever/readnever \
     -ex "b fun_two" \
     -ex run \
     -ex bt
   ...
 #0  0x0000000001000650 in fun_two ()
 #1  0x00000000010006b6 in fun_one ()
 #2  0x00000000010006ee in main ()
...

For reference the frame info with debug info (without -readnever) looks like this:
...
$ gdb -q -batch outputs/gdb.base/readnever/readnever \
    -ex "b fun_three" \
    -ex run \
    -ex "info frame"
  ...
Stack level 0, frame at 0x3fffffff140:
 pc = 0x1000632 in fun_three (readnever.c:20); saved pc = 0x100067a
 called by frame at 0x3fffffff1f0
 source language c.
 Arglist at 0x3fffffff140, args: a=10, b=49 '1', c=0x3fffffff29c
 Locals at 0x3fffffff140, Previous frame's sp in v0
...

But with -readnever, like this instead:
...
Stack level 0, frame at 0x0:
 pc = 0x100061a in fun_three; saved pc = 0x100067a
 called by frame at 0x3fffffff140
 Arglist at 0xffffffffffffffff, args:
 Locals at 0xffffffffffffffff, Previous frame's sp in r15
...

An obvious difference is the "Previous frame's sp in" v0 vs. r15.

Looking at the code:
...
0000000001000608 <fun_three>:
 1000608:	b3 c1 00 2b       	ldgr	%f2,%r11
 100060c:	b3 c1 00 0f       	ldgr	%f0,%r15
 1000610:	e3 f0 ff 50 ff 71 	lay	%r15,-176(%r15)
 1000616:	b9 04 00 bf       	lgr	%r11,%r15
...
it becomes clear what is going on.  This is an unusual prologue.

Rather than saving r11 (frame pointer) and r15 (stack pointer) to stack,
instead they're saved into call-clobbered floating point registers.

[ For reference, this is the prologue of fun_two:
...
0000000001000640 <fun_two>:
 1000640:	eb bf f0 58 00 24 	stmg	%r11,%r15,88(%r15)
 1000646:	e3 f0 ff 50 ff 71 	lay	%r15,-176(%r15)
 100064c:	b9 04 00 bf       	lgr	%r11,%r15
...
where the first instruction stores registers r11 to r15 to stack. ]

Gdb fails to properly analyze the prologue, which causes the problems getting
the frame info.

Fix this by:
- adding handling of the ldgr insn [1] in s390_analyze_prologue, and
- recognizing the insn as saving a register in
  s390_prologue_frame_unwind_cache.

This gets us instead:
...
Stack level 0, frame at 0x0:
 pc = 0x100061a in fun_three; saved pc = 0x100067a
 called by frame at 0x3fffffff1f0
 Arglist at 0xffffffffffffffff, args:
 Locals at 0xffffffffffffffff, Previous frame's sp in f0
...
and:
...
 (gdb) backtrace^M
 #0  0x000000000100061a in fun_three ()^M
 #1  0x000000000100067a in fun_two ()^M
 #2  0x00000000010006b6 in fun_one ()^M
 #3  0x00000000010006ee in main ()^M
 (gdb) PASS: gdb.base/readnever.exp: backtrace
...

Tested on s390x-linux.

PR tdep/32417
Bug: https://sourceware.org/bugzilla/show_bug.cgi?id=32417

Approved-By: Andreas Arnez <arnez@linux.ibm.com>

[1] https://www.ibm.com/support/pages/sites/default/files/2021-05/SA22-7871-10.pdf
This commit is contained in:
Tom de Vries 2025-01-09 14:32:19 +01:00
parent 7d5a005997
commit a64f365e64
2 changed files with 40 additions and 0 deletions

View File

@ -855,6 +855,11 @@ s390_analyze_prologue (struct gdbarch *gdbarch,
|| is_rre (insn64, op_lgr, &r1, &r2))
data->gpr[r1] = data->gpr[r2];
/* LDGR r1, r2 --- load from register to floating-point register
(64-bit version). */
else if (is_rre (insn64, op_ldgr, &r1, &r2))
data->fpr[r1] = data->gpr[r2];
/* L r1, d2(x2, b2) --- load. */
/* LY r1, d2(x2, b2) --- load (long-displacement version). */
/* LG r1, d2(x2, b2) --- load (64-bit version). */
@ -2542,6 +2547,40 @@ s390_prologue_frame_unwind_cache (const frame_info_ptr &this_frame,
&& data.fpr_slot[i] != 0)
info->saved_regs[S390_F0_REGNUM + i].set_addr (cfa - data.fpr_slot[i]);
/* Handle this type of prologue:
ldgr %f2,%r11
ldgr %f0,%r15
where call-clobbered floating point registers are used as register save
slots. */
for (i = 0; i < S390_NUM_FPRS; i++)
{
int fpr = S390_F0_REGNUM + i;
/* Check that fpr is a call-clobbered register. */
if (s390_register_call_saved (gdbarch, fpr))
continue;
/* Check that fpr contains the value of a register at function
entry. */
if (data.fpr[i].kind != pvk_register)
continue;
int entry_val_reg = data.fpr[i].reg;
/* Check that entry_val_reg is a call-saved register. */
if (!s390_register_call_saved (gdbarch, entry_val_reg))
continue;
/* In the prologue, we've copied:
- the value of a call-saved register (entry_val_reg) at function
entry, to
- a call-clobbered floating point register (fpr).
Heuristic: assume that makes the floating point register a register
save slot, leaving the value constant throughout the function. */
info->saved_regs[entry_val_reg].set_realreg (fpr);
}
/* Function return will set PC to %r14. */
info->saved_regs[S390_PSWA_REGNUM] = info->saved_regs[S390_RETADDR_REGNUM];

View File

@ -82,6 +82,7 @@ enum
op1_lgfi = 0xc0, op2_lgfi = 0x01,
op_lr = 0x18,
op_lgr = 0xb904,
op_ldgr = 0xb3c1,
op_l = 0x58,
op1_ly = 0xe3, op2_ly = 0x58,
op1_lg = 0xe3, op2_lg = 0x04,