2010-12-23 Yao Qi <yao@codesourcery.com>

* arm-tdep.c (thumb_analyze_prologue): Move some code ...
	(EXTRACT_MOVW_MOVT_IMM_T): ... here.  New macro.
	(EXTRACT_MOVW_MOVT_IMM_A): New macro.
	(arm_analyze_load_stack_chk_guard): New.
	(arm_skip_stack_protector): New.
	(arm_skip_prologue): Adjust post_prologue_pc by
	arm_skip_stack_protector.
This commit is contained in:
Yao Qi 2010-12-23 14:38:34 +00:00
parent 81ec3cceb2
commit 621c6d5b11
2 changed files with 214 additions and 4 deletions

View File

@ -1,3 +1,13 @@
2010-12-23 Yao Qi <yao@codesourcery.com>
* arm-tdep.c (thumb_analyze_prologue): Move some code ...
(EXTRACT_MOVW_MOVT_IMM_T): ... here. New macro.
(EXTRACT_MOVW_MOVT_IMM_A): New macro.
(arm_analyze_load_stack_chk_guard): New.
(arm_skip_stack_protector): New.
(arm_skip_prologue): Adjust post_prologue_pc by
arm_skip_stack_protector.
2010-12-23 Joel Brobecker <brobecker@adacore.com>
* mi/mi-main.c (mi_cmd_remove_inferior): Use _() marker for error

View File

@ -496,6 +496,21 @@ skip_prologue_function (CORE_ADDR pc)
#define BranchDest(addr,instr) \
((CORE_ADDR) (((long) (addr)) + 8 + (sbits (instr, 0, 23) << 2)))
/* Extract the immediate from instruction movw/movt of encoding T. INSN1 is
the first 16-bit of instruction, and INSN2 is the second 16-bit of
instruction. */
#define EXTRACT_MOVW_MOVT_IMM_T(insn1, insn2) \
((bits ((insn1), 0, 3) << 12) \
| (bits ((insn1), 10, 10) << 11) \
| (bits ((insn2), 12, 14) << 8) \
| bits ((insn2), 0, 7))
/* Extract the immediate from instruction movw/movt of encoding A. INSN is
the 32-bit instruction. */
#define EXTRACT_MOVW_MOVT_IMM_A(insn) \
((bits ((insn), 16, 19) << 12) \
| bits ((insn), 0, 11))
/* Decode immediate value; implements ThumbExpandImmediate pseudo-op. */
static unsigned int
@ -1004,10 +1019,8 @@ thumb_analyze_prologue (struct gdbarch *gdbarch,
else if ((insn & 0xfbf0) == 0xf240) /* movw Rd, #const */
{
unsigned int imm = ((bits (insn, 0, 3) << 12)
| (bits (insn, 10, 10) << 11)
| (bits (inst2, 12, 14) << 8)
| bits (inst2, 0, 7));
unsigned int imm
= EXTRACT_MOVW_MOVT_IMM_T (insn, inst2);
regs[bits (inst2, 8, 11)] = pv_constant (imm);
}
@ -1130,6 +1143,188 @@ thumb_analyze_prologue (struct gdbarch *gdbarch,
return unrecognized_pc;
}
/* Try to analyze the instructions starting from PC, which load symbol
__stack_chk_guard. Return the address of instruction after loading this
symbol, set the dest register number to *BASEREG, and set the size of
instructions for loading symbol in OFFSET. Return 0 if instructions are
not recognized. */
static CORE_ADDR
arm_analyze_load_stack_chk_guard(CORE_ADDR pc, struct gdbarch *gdbarch,
unsigned int *destreg, int *offset)
{
enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
int is_thumb = arm_pc_is_thumb (gdbarch, pc);
unsigned int low, high, address;
address = 0;
if (is_thumb)
{
unsigned short insn1
= read_memory_unsigned_integer (pc, 2, byte_order_for_code);
if ((insn1 & 0xf800) == 0x4800) /* ldr Rd, #immed */
{
*destreg = bits (insn1, 8, 10);
*offset = 2;
address = bits (insn1, 0, 7);
}
else if ((insn1 & 0xfbf0) == 0xf240) /* movw Rd, #const */
{
unsigned short insn2
= read_memory_unsigned_integer (pc + 2, 2, byte_order_for_code);
low = EXTRACT_MOVW_MOVT_IMM_T (insn1, insn2);
insn1
= read_memory_unsigned_integer (pc + 4, 2, byte_order_for_code);
insn2
= read_memory_unsigned_integer (pc + 6, 2, byte_order_for_code);
/* movt Rd, #const */
if ((insn1 & 0xfbc0) == 0xf2c0)
{
high = EXTRACT_MOVW_MOVT_IMM_T (insn1, insn2);
*destreg = bits (insn2, 8, 11);
*offset = 8;
address = (high << 16 | low);
}
}
}
else
{
unsigned int insn
= read_memory_unsigned_integer (pc, 4, byte_order_for_code);
if ((insn & 0x0e5f0000) == 0x041f0000) /* ldr Rd, #immed */
{
address = bits (insn, 0, 11);
*destreg = bits (insn, 12, 15);
*offset = 4;
}
else if ((insn & 0x0ff00000) == 0x03000000) /* movw Rd, #const */
{
low = EXTRACT_MOVW_MOVT_IMM_A (insn);
insn
= read_memory_unsigned_integer (pc + 4, 4, byte_order_for_code);
if ((insn & 0x0ff00000) == 0x03400000) /* movt Rd, #const */
high = EXTRACT_MOVW_MOVT_IMM_A (insn);
address = (high << 16 | low);
*destreg = bits (insn, 12, 15);
*offset = 8;
}
}
return address;
}
/* Try to skip a sequence of instructions used for stack protector. If PC
points to the first instruction of this sequence, return the address of first
instruction after this sequence, otherwise, return original PC.
On arm, this sequence of instructions is composed of mainly three steps,
Step 1: load symbol __stack_chk_guard,
Step 2: load from address of __stack_chk_guard,
Step 3: store it to somewhere else.
Usually, instructions on step 2 and step 3 are the same on various ARM
architectures. On step 2, it is one instruction 'ldr Rx, [Rn, #0]', and
on step 3, it is also one instruction 'str Rx, [r7, #immd]'. However,
instructions in step 1 vary from different ARM architectures. On ARMv7,
they are,
movw Rn, #:lower16:__stack_chk_guard
movt Rn, #:upper16:__stack_chk_guard
On ARMv5t, it is,
ldr Rn, .Label
....
.Lable:
.word __stack_chk_guard
Since ldr/str is a very popular instruction, we can't use them as
'fingerprint' or 'signature' of stack protector sequence. Here we choose
sequence {movw/movt, ldr}/ldr/str plus symbol __stack_chk_guard, if not
stripped, as the 'fingerprint' of a stack protector cdoe sequence. */
static CORE_ADDR
arm_skip_stack_protector(CORE_ADDR pc, struct gdbarch *gdbarch)
{
enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
unsigned int address, basereg;
struct minimal_symbol *stack_chk_guard;
int offset;
int is_thumb = arm_pc_is_thumb (gdbarch, pc);
CORE_ADDR addr;
/* Try to parse the instructions in Step 1. */
addr = arm_analyze_load_stack_chk_guard (pc, gdbarch,
&basereg, &offset);
if (!addr)
return pc;
stack_chk_guard = lookup_minimal_symbol_by_pc (addr);
/* If name of symbol doesn't start with '__stack_chk_guard', this
instruction sequence is not for stack protector. If symbol is
removed, we conservatively think this sequence is for stack protector. */
if (stack_chk_guard
&& strcmp (SYMBOL_LINKAGE_NAME(stack_chk_guard), "__stack_chk_guard"))
return pc;
if (is_thumb)
{
unsigned int destreg;
unsigned short insn
= read_memory_unsigned_integer (pc + offset, 2, byte_order_for_code);
/* Step 2: ldr Rd, [Rn, #immed], encoding T1. */
if ((insn & 0xf800) != 0x6800)
return pc;
if (bits (insn, 3, 5) != basereg)
return pc;
destreg = bits (insn, 0, 2);
insn = read_memory_unsigned_integer (pc + offset + 2, 2,
byte_order_for_code);
/* Step 3: str Rd, [Rn, #immed], encoding T1. */
if ((insn & 0xf800) != 0x6000)
return pc;
if (destreg != bits (insn, 0, 2))
return pc;
}
else
{
unsigned int destreg;
unsigned int insn
= read_memory_unsigned_integer (pc + offset, 4, byte_order_for_code);
/* Step 2: ldr Rd, [Rn, #immed], encoding A1. */
if ((insn & 0x0e500000) != 0x04100000)
return pc;
if (bits (insn, 16, 19) != basereg)
return pc;
destreg = bits (insn, 12, 15);
/* Step 3: str Rd, [Rn, #immed], encoding A1. */
insn = read_memory_unsigned_integer (pc + offset + 4,
4, byte_order_for_code);
if ((insn & 0x0e500000) != 0x04000000)
return pc;
if (bits (insn, 12, 15) != destreg)
return pc;
}
/* The size of total two instructions ldr/str is 4 on Thumb-2, while 8
on arm. */
if (is_thumb)
return pc + offset + 4;
else
return pc + offset + 8;
}
/* Advance the PC across any function entry prologue instructions to
reach some "real" code.
@ -1163,6 +1358,11 @@ arm_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
= skip_prologue_using_sal (gdbarch, func_addr);
struct symtab *s = find_pc_symtab (func_addr);
if (post_prologue_pc)
post_prologue_pc
= arm_skip_stack_protector (post_prologue_pc, gdbarch);
/* GCC always emits a line note before the prologue and another
one after, even if the two are at the same address or on the
same line. Take advantage of this so that we do not need to