1991-03-29 00:26:26 +08:00
|
|
|
|
/* Memory-access and commands for inferior process, for GDB.
|
|
|
|
|
Copyright (C) 1986, 1987, 1988, 1989 Free Software Foundation, Inc.
|
|
|
|
|
|
|
|
|
|
This file is part of GDB.
|
|
|
|
|
|
|
|
|
|
GDB is free software; you can redistribute it and/or modify
|
|
|
|
|
it under the terms of the GNU General Public License as published by
|
|
|
|
|
the Free Software Foundation; either version 1, or (at your option)
|
|
|
|
|
any later version.
|
|
|
|
|
|
|
|
|
|
GDB is distributed in the hope that it will be useful,
|
|
|
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
|
GNU General Public License for more details.
|
|
|
|
|
|
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
|
|
|
along with GDB; see the file COPYING. If not, write to
|
|
|
|
|
the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
|
|
|
|
|
|
|
|
|
|
#include <stdio.h>
|
|
|
|
|
#include <signal.h>
|
|
|
|
|
#include <sys/param.h>
|
|
|
|
|
#include <string.h>
|
|
|
|
|
#include "defs.h"
|
|
|
|
|
#include "param.h"
|
|
|
|
|
#include "symtab.h"
|
|
|
|
|
#include "frame.h"
|
|
|
|
|
#include "inferior.h"
|
|
|
|
|
#include "environ.h"
|
|
|
|
|
#include "value.h"
|
|
|
|
|
#include "gdbcmd.h"
|
|
|
|
|
#include "gdbcore.h"
|
|
|
|
|
#include "target.h"
|
|
|
|
|
|
|
|
|
|
extern char *sys_siglist[];
|
|
|
|
|
|
|
|
|
|
extern void until_break_command (); /* breakpoint.c */
|
|
|
|
|
|
|
|
|
|
#define ERROR_NO_INFERIOR \
|
|
|
|
|
if (!target_has_execution) error ("The program is not being run.");
|
|
|
|
|
|
|
|
|
|
/* String containing arguments to give to the program, separated by spaces.
|
|
|
|
|
Empty string (pointer to '\0') means no args. */
|
|
|
|
|
|
|
|
|
|
static char *inferior_args;
|
|
|
|
|
|
|
|
|
|
/* File name for default use for standard in/out in the inferior. */
|
|
|
|
|
|
|
|
|
|
char *inferior_io_terminal;
|
|
|
|
|
|
|
|
|
|
/* Pid of our debugged inferior, or 0 if no inferior now.
|
|
|
|
|
Since various parts of infrun.c test this to see whether there is a program
|
|
|
|
|
being debugged it should be nonzero (currently 3 is used) for remote
|
|
|
|
|
debugging. */
|
|
|
|
|
|
|
|
|
|
int inferior_pid;
|
|
|
|
|
|
|
|
|
|
/* Last signal that the inferior received (why it stopped). */
|
|
|
|
|
|
|
|
|
|
int stop_signal;
|
|
|
|
|
|
|
|
|
|
/* Address at which inferior stopped. */
|
|
|
|
|
|
|
|
|
|
CORE_ADDR stop_pc;
|
|
|
|
|
|
|
|
|
|
/* Stack frame when program stopped. */
|
|
|
|
|
|
|
|
|
|
FRAME_ADDR stop_frame_address;
|
|
|
|
|
|
|
|
|
|
/* Chain containing status of breakpoint(s) that we have stopped at. */
|
|
|
|
|
|
|
|
|
|
bpstat stop_bpstat;
|
|
|
|
|
|
|
|
|
|
/* Flag indicating that a command has proceeded the inferior past the
|
|
|
|
|
current breakpoint. */
|
|
|
|
|
|
|
|
|
|
int breakpoint_proceeded;
|
|
|
|
|
|
|
|
|
|
/* Nonzero if stopped due to a step command. */
|
|
|
|
|
|
|
|
|
|
int stop_step;
|
|
|
|
|
|
|
|
|
|
/* Nonzero if stopped due to completion of a stack dummy routine. */
|
|
|
|
|
|
|
|
|
|
int stop_stack_dummy;
|
|
|
|
|
|
|
|
|
|
/* Nonzero if stopped due to a random (unexpected) signal in inferior
|
|
|
|
|
process. */
|
|
|
|
|
|
|
|
|
|
int stopped_by_random_signal;
|
|
|
|
|
|
|
|
|
|
/* Range to single step within.
|
|
|
|
|
If this is nonzero, respond to a single-step signal
|
|
|
|
|
by continuing to step if the pc is in this range. */
|
|
|
|
|
|
|
|
|
|
CORE_ADDR step_range_start; /* Inclusive */
|
|
|
|
|
CORE_ADDR step_range_end; /* Exclusive */
|
|
|
|
|
|
|
|
|
|
/* Stack frame address as of when stepping command was issued.
|
|
|
|
|
This is how we know when we step into a subroutine call,
|
|
|
|
|
and how to set the frame for the breakpoint used to step out. */
|
|
|
|
|
|
|
|
|
|
FRAME_ADDR step_frame_address;
|
|
|
|
|
|
|
|
|
|
/* 1 means step over all subroutine calls.
|
|
|
|
|
-1 means step over calls to undebuggable functions. */
|
|
|
|
|
|
|
|
|
|
int step_over_calls;
|
|
|
|
|
|
|
|
|
|
/* If stepping, nonzero means step count is > 1
|
|
|
|
|
so don't print frame next time inferior stops
|
|
|
|
|
if it stops due to stepping. */
|
|
|
|
|
|
|
|
|
|
int step_multi;
|
|
|
|
|
|
|
|
|
|
/* Environment to use for running inferior,
|
|
|
|
|
in format described in environ.h. */
|
|
|
|
|
|
|
|
|
|
struct environ *inferior_environ;
|
|
|
|
|
|
|
|
|
|
CORE_ADDR read_pc ();
|
|
|
|
|
void breakpoint_clear_ignore_counts ();
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
void
|
|
|
|
|
tty_command (file, from_tty)
|
|
|
|
|
char *file;
|
|
|
|
|
int from_tty;
|
|
|
|
|
{
|
|
|
|
|
if (file == 0)
|
|
|
|
|
error_no_arg ("terminal name for running target process");
|
|
|
|
|
|
|
|
|
|
inferior_io_terminal = savestring (file, strlen (file));
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static void
|
|
|
|
|
run_command (args, from_tty)
|
|
|
|
|
char *args;
|
|
|
|
|
int from_tty;
|
|
|
|
|
{
|
|
|
|
|
char *exec_file;
|
|
|
|
|
|
|
|
|
|
dont_repeat ();
|
|
|
|
|
|
|
|
|
|
if (inferior_pid)
|
|
|
|
|
{
|
|
|
|
|
if (
|
|
|
|
|
!query ("The program being debugged has been started already.\n\
|
|
|
|
|
Start it from the beginning? "))
|
|
|
|
|
error ("Program not restarted.");
|
|
|
|
|
target_kill ((char *)0, 0);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
exec_file = (char *) get_exec_file (0);
|
|
|
|
|
|
|
|
|
|
/* The exec file is re-read every time we do an inferior_died, so
|
|
|
|
|
we just have to worry about the symbol file. */
|
|
|
|
|
reread_symbols ();
|
|
|
|
|
|
|
|
|
|
if (args)
|
|
|
|
|
{
|
|
|
|
|
char *cmd;
|
|
|
|
|
cmd = concat ("set args ", args, "");
|
|
|
|
|
make_cleanup (free, cmd);
|
|
|
|
|
execute_command (cmd, from_tty);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (from_tty)
|
|
|
|
|
{
|
|
|
|
|
printf ("Starting program: %s %s\n",
|
|
|
|
|
exec_file? exec_file: "", inferior_args);
|
|
|
|
|
fflush (stdout);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
target_create_inferior (exec_file, inferior_args,
|
|
|
|
|
environ_vector (inferior_environ));
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void
|
|
|
|
|
continue_command (proc_count_exp, from_tty)
|
|
|
|
|
char *proc_count_exp;
|
|
|
|
|
int from_tty;
|
|
|
|
|
{
|
|
|
|
|
ERROR_NO_INFERIOR;
|
|
|
|
|
|
|
|
|
|
/* If have argument, set proceed count of breakpoint we stopped at. */
|
|
|
|
|
|
|
|
|
|
if (proc_count_exp != NULL)
|
|
|
|
|
{
|
|
|
|
|
bpstat bs = stop_bpstat;
|
|
|
|
|
int num = bpstat_num (&bs);
|
|
|
|
|
if (num == 0 && from_tty)
|
|
|
|
|
{
|
|
|
|
|
printf_filtered
|
|
|
|
|
("Not stopped at any breakpoint; argument ignored.\n");
|
|
|
|
|
}
|
|
|
|
|
while (num != 0)
|
|
|
|
|
{
|
|
|
|
|
set_ignore_count (num,
|
|
|
|
|
parse_and_eval_address (proc_count_exp) - 1,
|
|
|
|
|
from_tty);
|
|
|
|
|
/* set_ignore_count prints a message ending with a period.
|
|
|
|
|
So print two spaces before "Continuing.". */
|
|
|
|
|
if (from_tty)
|
|
|
|
|
printf (" ");
|
|
|
|
|
num = bpstat_num (&bs);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (from_tty)
|
|
|
|
|
printf ("Continuing.\n");
|
|
|
|
|
|
|
|
|
|
clear_proceed_status ();
|
|
|
|
|
|
|
|
|
|
proceed ((CORE_ADDR) -1, -1, 0);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Step until outside of current statement. */
|
|
|
|
|
static void step_1 ();
|
|
|
|
|
|
|
|
|
|
static void
|
|
|
|
|
step_command (count_string, from_tty)
|
|
|
|
|
char * count_string;
|
|
|
|
|
int from_tty;
|
|
|
|
|
{
|
|
|
|
|
step_1 (0, 0, count_string);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Likewise, but skip over subroutine calls as if single instructions. */
|
|
|
|
|
|
|
|
|
|
static void
|
|
|
|
|
next_command (count_string, from_tty)
|
|
|
|
|
char * count_string;
|
|
|
|
|
int from_tty;
|
|
|
|
|
{
|
|
|
|
|
step_1 (1, 0, count_string);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Likewise, but step only one instruction. */
|
|
|
|
|
|
|
|
|
|
static void
|
|
|
|
|
stepi_command (count_string, from_tty)
|
|
|
|
|
char * count_string;
|
|
|
|
|
int from_tty;
|
|
|
|
|
{
|
|
|
|
|
step_1 (0, 1, count_string);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static void
|
|
|
|
|
nexti_command (count_string, from_tty)
|
|
|
|
|
char * count_string;
|
|
|
|
|
int from_tty;
|
|
|
|
|
{
|
|
|
|
|
step_1 (1, 1, count_string);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static void
|
|
|
|
|
step_1 (skip_subroutines, single_inst, count_string)
|
|
|
|
|
int skip_subroutines;
|
|
|
|
|
int single_inst;
|
|
|
|
|
char *count_string;
|
|
|
|
|
{
|
|
|
|
|
register int count = 1;
|
|
|
|
|
FRAME fr;
|
|
|
|
|
|
|
|
|
|
ERROR_NO_INFERIOR;
|
|
|
|
|
count = count_string ? parse_and_eval_address (count_string) : 1;
|
|
|
|
|
|
|
|
|
|
for (; count > 0; count--)
|
|
|
|
|
{
|
|
|
|
|
clear_proceed_status ();
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
fr = get_current_frame ();
|
|
|
|
|
if (!fr) /* Avoid coredump here. Why tho? */
|
|
|
|
|
error ("No current frame");
|
|
|
|
|
step_frame_address = FRAME_FP (fr);
|
|
|
|
|
|
|
|
|
|
if (! single_inst)
|
|
|
|
|
{
|
|
|
|
|
find_pc_line_pc_range (stop_pc, &step_range_start, &step_range_end);
|
|
|
|
|
if (step_range_end == 0)
|
|
|
|
|
{
|
|
|
|
|
int misc;
|
|
|
|
|
|
|
|
|
|
misc = find_pc_misc_function (stop_pc);
|
|
|
|
|
target_terminal_ours ();
|
|
|
|
|
printf ("Current function has no line number information.\n");
|
|
|
|
|
fflush (stdout);
|
|
|
|
|
|
|
|
|
|
/* No info or after _etext ("Can't happen") */
|
|
|
|
|
if (misc == -1 || misc == misc_function_count - 1)
|
|
|
|
|
error ("No data available on pc function.");
|
|
|
|
|
|
|
|
|
|
printf ("Single stepping until function exit.\n");
|
|
|
|
|
fflush (stdout);
|
|
|
|
|
|
|
|
|
|
step_range_start = misc_function_vector[misc].address;
|
|
|
|
|
step_range_end = misc_function_vector[misc + 1].address;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
/* Say we are stepping, but stop after one insn whatever it does.
|
|
|
|
|
Don't step through subroutine calls even to undebuggable
|
|
|
|
|
functions. */
|
|
|
|
|
step_range_start = step_range_end = 1;
|
|
|
|
|
if (!skip_subroutines)
|
|
|
|
|
step_over_calls = 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (skip_subroutines)
|
|
|
|
|
step_over_calls = 1;
|
|
|
|
|
|
|
|
|
|
step_multi = (count > 1);
|
|
|
|
|
proceed ((CORE_ADDR) -1, -1, 1);
|
|
|
|
|
if (! stop_step)
|
|
|
|
|
break;
|
|
|
|
|
#if defined (SHIFT_INST_REGS)
|
|
|
|
|
write_register (NNPC_REGNUM, read_register (NPC_REGNUM));
|
|
|
|
|
write_register (NPC_REGNUM, read_register (PC_REGNUM));
|
|
|
|
|
#endif
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Continue program at specified address. */
|
|
|
|
|
|
|
|
|
|
static void
|
|
|
|
|
jump_command (arg, from_tty)
|
|
|
|
|
char *arg;
|
|
|
|
|
int from_tty;
|
|
|
|
|
{
|
|
|
|
|
register CORE_ADDR addr;
|
|
|
|
|
struct symtabs_and_lines sals;
|
|
|
|
|
struct symtab_and_line sal;
|
|
|
|
|
|
|
|
|
|
ERROR_NO_INFERIOR;
|
|
|
|
|
|
|
|
|
|
if (!arg)
|
|
|
|
|
error_no_arg ("starting address");
|
|
|
|
|
|
|
|
|
|
sals = decode_line_spec_1 (arg, 1);
|
|
|
|
|
if (sals.nelts != 1)
|
|
|
|
|
{
|
|
|
|
|
error ("Unreasonable jump request");
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
sal = sals.sals[0];
|
|
|
|
|
free (sals.sals);
|
|
|
|
|
|
|
|
|
|
if (sal.symtab == 0 && sal.pc == 0)
|
|
|
|
|
error ("No source file has been specified.");
|
|
|
|
|
|
|
|
|
|
if (sal.pc == 0)
|
|
|
|
|
sal.pc = find_line_pc (sal.symtab, sal.line);
|
|
|
|
|
|
|
|
|
|
{
|
|
|
|
|
struct symbol *fn = get_frame_function (get_current_frame ());
|
|
|
|
|
struct symbol *sfn = find_pc_function (sal.pc);
|
|
|
|
|
if (fn != 0 && sfn != fn
|
|
|
|
|
&& ! query ("Line %d is not in `%s'. Jump anyway? ",
|
|
|
|
|
sal.line, SYMBOL_NAME (fn)))
|
|
|
|
|
error ("Not confirmed.");
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (sal.pc == 0)
|
|
|
|
|
error ("No line %d in file \"%s\".", sal.line, sal.symtab->filename);
|
|
|
|
|
|
|
|
|
|
addr = ADDR_BITS_SET (sal.pc);
|
|
|
|
|
|
|
|
|
|
if (from_tty)
|
|
|
|
|
printf ("Continuing at 0x%x.\n", addr);
|
|
|
|
|
|
|
|
|
|
clear_proceed_status ();
|
|
|
|
|
proceed (addr, 0, 0);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Continue program giving it specified signal. */
|
|
|
|
|
|
|
|
|
|
static void
|
|
|
|
|
signal_command (signum_exp, from_tty)
|
|
|
|
|
char *signum_exp;
|
|
|
|
|
int from_tty;
|
|
|
|
|
{
|
|
|
|
|
register int signum;
|
|
|
|
|
|
|
|
|
|
dont_repeat (); /* Too dangerous. */
|
|
|
|
|
ERROR_NO_INFERIOR;
|
|
|
|
|
|
|
|
|
|
if (!signum_exp)
|
|
|
|
|
error_no_arg ("signal number");
|
|
|
|
|
|
|
|
|
|
signum = parse_and_eval_address (signum_exp);
|
|
|
|
|
|
|
|
|
|
if (from_tty)
|
|
|
|
|
printf ("Continuing with signal %d.\n", signum);
|
|
|
|
|
|
|
|
|
|
clear_proceed_status ();
|
|
|
|
|
proceed (stop_pc, signum, 0);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Execute a "stack dummy", a piece of code stored in the stack
|
|
|
|
|
by the debugger to be executed in the inferior.
|
|
|
|
|
|
|
|
|
|
To call: first, do PUSH_DUMMY_FRAME.
|
|
|
|
|
Then push the contents of the dummy. It should end with a breakpoint insn.
|
|
|
|
|
Then call here, passing address at which to start the dummy.
|
|
|
|
|
|
|
|
|
|
The contents of all registers are saved before the dummy frame is popped
|
|
|
|
|
and copied into the buffer BUFFER.
|
|
|
|
|
|
|
|
|
|
The dummy's frame is automatically popped whenever that break is hit.
|
|
|
|
|
If that is the first time the program stops, run_stack_dummy
|
|
|
|
|
returns to its caller with that frame already gone.
|
|
|
|
|
Otherwise, the caller never gets returned to. */
|
|
|
|
|
|
|
|
|
|
/* 4 => return instead of letting the stack dummy run. */
|
|
|
|
|
|
|
|
|
|
static int stack_dummy_testing = 0;
|
|
|
|
|
|
|
|
|
|
void
|
|
|
|
|
run_stack_dummy (addr, buffer)
|
|
|
|
|
CORE_ADDR addr;
|
|
|
|
|
char buffer[REGISTER_BYTES];
|
|
|
|
|
{
|
|
|
|
|
/* Now proceed, having reached the desired place. */
|
|
|
|
|
clear_proceed_status ();
|
|
|
|
|
if (stack_dummy_testing & 4)
|
|
|
|
|
{
|
|
|
|
|
POP_FRAME;
|
|
|
|
|
return;
|
|
|
|
|
}
|
|
|
|
|
proceed_to_finish = 1; /* We want stop_registers, please... */
|
|
|
|
|
proceed (addr, 0, 0);
|
|
|
|
|
|
|
|
|
|
if (!stop_stack_dummy)
|
|
|
|
|
/* This used to say
|
|
|
|
|
"Cannot continue previously requested operation". */
|
|
|
|
|
error ("\
|
|
|
|
|
The program being debugged stopped while in a function called from GDB.\n\
|
|
|
|
|
The expression which contained the function call has been discarded.");
|
|
|
|
|
|
|
|
|
|
/* On return, the stack dummy has been popped already. */
|
|
|
|
|
|
|
|
|
|
bcopy (stop_registers, buffer, sizeof stop_registers);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Proceed until we reach a different source line with pc greater than
|
|
|
|
|
our current one or exit the function. We skip calls in both cases.
|
|
|
|
|
|
|
|
|
|
Note that eventually this command should probably be changed so
|
|
|
|
|
that only source lines are printed out when we hit the breakpoint
|
|
|
|
|
we set. I'm going to postpone this until after a hopeful rewrite
|
|
|
|
|
of wait_for_inferior and the proceed status code. -- randy */
|
|
|
|
|
|
|
|
|
|
void
|
|
|
|
|
until_next_command (from_tty)
|
|
|
|
|
int from_tty;
|
|
|
|
|
{
|
|
|
|
|
FRAME frame;
|
|
|
|
|
CORE_ADDR pc;
|
|
|
|
|
struct symbol *func;
|
|
|
|
|
struct symtab_and_line sal;
|
|
|
|
|
|
|
|
|
|
clear_proceed_status ();
|
|
|
|
|
|
|
|
|
|
frame = get_current_frame ();
|
|
|
|
|
|
|
|
|
|
/* Step until either exited from this function or greater
|
|
|
|
|
than the current line (if in symbolic section) or pc (if
|
|
|
|
|
not). */
|
|
|
|
|
|
|
|
|
|
pc = read_pc ();
|
|
|
|
|
func = find_pc_function (pc);
|
|
|
|
|
|
|
|
|
|
if (!func)
|
|
|
|
|
{
|
|
|
|
|
int misc_func = find_pc_misc_function (pc);
|
|
|
|
|
|
|
|
|
|
if (misc_func != -1)
|
|
|
|
|
error ("Execution is not within a known function.");
|
|
|
|
|
|
|
|
|
|
step_range_start = misc_function_vector[misc_func].address;
|
|
|
|
|
step_range_end = pc;
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
sal = find_pc_line (pc, 0);
|
|
|
|
|
|
|
|
|
|
step_range_start = BLOCK_START (SYMBOL_BLOCK_VALUE (func));
|
|
|
|
|
step_range_end = sal.end;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
step_over_calls = 1;
|
|
|
|
|
step_frame_address = FRAME_FP (frame);
|
|
|
|
|
|
|
|
|
|
step_multi = 0; /* Only one call to proceed */
|
|
|
|
|
|
|
|
|
|
proceed ((CORE_ADDR) -1, -1, 1);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void
|
|
|
|
|
until_command (arg, from_tty)
|
|
|
|
|
char *arg;
|
|
|
|
|
int from_tty;
|
|
|
|
|
{
|
|
|
|
|
if (!target_has_execution)
|
|
|
|
|
error ("The program is not running.");
|
|
|
|
|
if (arg)
|
|
|
|
|
until_break_command (arg, from_tty);
|
|
|
|
|
else
|
|
|
|
|
until_next_command (from_tty);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* "finish": Set a temporary breakpoint at the place
|
|
|
|
|
the selected frame will return to, then continue. */
|
|
|
|
|
|
|
|
|
|
static void
|
|
|
|
|
finish_command (arg, from_tty)
|
|
|
|
|
char *arg;
|
|
|
|
|
int from_tty;
|
|
|
|
|
{
|
|
|
|
|
struct symtab_and_line sal;
|
|
|
|
|
register FRAME frame;
|
|
|
|
|
struct frame_info *fi;
|
|
|
|
|
register struct symbol *function;
|
|
|
|
|
|
|
|
|
|
if (arg)
|
|
|
|
|
error ("The \"finish\" command does not take any arguments.");
|
|
|
|
|
if (!target_has_execution)
|
|
|
|
|
error ("The program is not running.");
|
|
|
|
|
|
|
|
|
|
frame = get_prev_frame (selected_frame);
|
|
|
|
|
if (frame == 0)
|
|
|
|
|
error ("\"finish\" not meaningful in the outermost frame.");
|
|
|
|
|
|
|
|
|
|
clear_proceed_status ();
|
|
|
|
|
|
|
|
|
|
fi = get_frame_info (frame);
|
|
|
|
|
sal = find_pc_line (fi->pc, 0);
|
|
|
|
|
sal.pc = fi->pc;
|
|
|
|
|
set_momentary_breakpoint (sal, frame);
|
|
|
|
|
|
|
|
|
|
/* Find the function we will return from. */
|
|
|
|
|
|
|
|
|
|
fi = get_frame_info (selected_frame);
|
|
|
|
|
function = find_pc_function (fi->pc);
|
|
|
|
|
|
|
|
|
|
if (from_tty)
|
|
|
|
|
{
|
|
|
|
|
printf ("Run till exit from ");
|
|
|
|
|
print_selected_frame ();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
proceed_to_finish = 1; /* We want stop_registers, please... */
|
|
|
|
|
proceed ((CORE_ADDR) -1, -1, 0);
|
|
|
|
|
|
|
|
|
|
if (bpstat_momentary_breakpoint (stop_bpstat) && function != 0)
|
|
|
|
|
{
|
|
|
|
|
struct type *value_type;
|
|
|
|
|
register value val;
|
|
|
|
|
CORE_ADDR funcaddr;
|
|
|
|
|
|
|
|
|
|
value_type = TYPE_TARGET_TYPE (SYMBOL_TYPE (function));
|
|
|
|
|
if (!value_type)
|
|
|
|
|
fatal ("internal: finish_command: function has no target type");
|
|
|
|
|
|
|
|
|
|
if (TYPE_CODE (value_type) == TYPE_CODE_VOID)
|
|
|
|
|
return;
|
|
|
|
|
|
|
|
|
|
funcaddr = BLOCK_START (SYMBOL_BLOCK_VALUE (function));
|
|
|
|
|
|
|
|
|
|
val = value_being_returned (value_type, stop_registers,
|
|
|
|
|
using_struct_return (value_of_variable (function),
|
|
|
|
|
funcaddr,
|
|
|
|
|
value_type,
|
|
|
|
|
BLOCK_GCC_COMPILED (SYMBOL_BLOCK_VALUE (function))));
|
|
|
|
|
|
|
|
|
|
printf ("Value returned is $%d = ", record_latest_value (val));
|
|
|
|
|
value_print (val, stdout, 0, Val_no_prettyprint);
|
|
|
|
|
putchar ('\n');
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static void
|
|
|
|
|
program_info (args, from_tty)
|
|
|
|
|
char *args;
|
|
|
|
|
int from_tty;
|
|
|
|
|
{
|
|
|
|
|
bpstat bs = stop_bpstat;
|
|
|
|
|
int num = bpstat_num (&bs);
|
|
|
|
|
|
|
|
|
|
if (!target_has_execution)
|
|
|
|
|
{
|
|
|
|
|
printf ("The program being debugged is not being run.\n");
|
|
|
|
|
return;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
target_files_info ();
|
|
|
|
|
printf ("Program stopped at 0x%x.\n", stop_pc);
|
|
|
|
|
if (stop_step)
|
|
|
|
|
printf ("It stopped after being stepped.\n");
|
|
|
|
|
else if (num != 0)
|
|
|
|
|
{
|
|
|
|
|
/* There may be several breakpoints in the same place, so this
|
|
|
|
|
isn't as strange as it seems. */
|
|
|
|
|
while (num != 0)
|
|
|
|
|
{
|
|
|
|
|
if (num < 0)
|
|
|
|
|
printf ("It stopped at a breakpoint that has since been deleted.\n");
|
|
|
|
|
else
|
|
|
|
|
printf ("It stopped at breakpoint %d.\n", num);
|
|
|
|
|
num = bpstat_num (&bs);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
else if (stop_signal) {
|
|
|
|
|
#ifdef PRINT_RANDOM_SIGNAL
|
|
|
|
|
PRINT_RANDOM_SIGNAL (stop_signal);
|
|
|
|
|
#else
|
|
|
|
|
printf ("It stopped with signal %d (%s).\n",
|
|
|
|
|
stop_signal,
|
|
|
|
|
(stop_signal > NSIG)? "unknown": sys_siglist[stop_signal]);
|
|
|
|
|
#endif
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (!from_tty)
|
|
|
|
|
printf ("Type \"info stack\" or \"info registers\" for more information.\n");
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static void
|
|
|
|
|
environment_info (var)
|
|
|
|
|
char *var;
|
|
|
|
|
{
|
|
|
|
|
if (var)
|
|
|
|
|
{
|
|
|
|
|
register char *val = get_in_environ (inferior_environ, var);
|
|
|
|
|
if (val)
|
|
|
|
|
printf ("%s = %s\n", var, val);
|
|
|
|
|
else
|
|
|
|
|
printf ("Environment variable \"%s\" not defined.\n", var);
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
register char **vector = environ_vector (inferior_environ);
|
|
|
|
|
while (*vector)
|
|
|
|
|
printf ("%s\n", *vector++);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static void
|
|
|
|
|
set_environment_command (arg)
|
|
|
|
|
char *arg;
|
|
|
|
|
{
|
|
|
|
|
register char *p, *val, *var;
|
|
|
|
|
int nullset = 0;
|
|
|
|
|
|
|
|
|
|
if (arg == 0)
|
|
|
|
|
error_no_arg ("environment variable and value");
|
|
|
|
|
|
|
|
|
|
/* Find seperation between variable name and value */
|
|
|
|
|
p = (char *) strchr (arg, '=');
|
|
|
|
|
val = (char *) strchr (arg, ' ');
|
|
|
|
|
|
|
|
|
|
if (p != 0 && val != 0)
|
|
|
|
|
{
|
|
|
|
|
/* We have both a space and an equals. If the space is before the
|
|
|
|
|
equals and the only thing between the two is more space, use
|
|
|
|
|
the equals */
|
|
|
|
|
if (p > val)
|
|
|
|
|
while (*val == ' ')
|
|
|
|
|
val++;
|
|
|
|
|
|
|
|
|
|
/* Take the smaller of the two. If there was space before the
|
|
|
|
|
"=", they will be the same right now. */
|
|
|
|
|
p = arg + min (p - arg, val - arg);
|
|
|
|
|
}
|
|
|
|
|
else if (val != 0 && p == 0)
|
|
|
|
|
p = val;
|
|
|
|
|
|
|
|
|
|
if (p == arg)
|
|
|
|
|
error_no_arg ("environment variable to set");
|
|
|
|
|
|
|
|
|
|
if (p == 0 || p[1] == 0)
|
|
|
|
|
{
|
|
|
|
|
nullset = 1;
|
|
|
|
|
if (p == 0)
|
|
|
|
|
p = arg + strlen (arg); /* So that savestring below will work */
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
/* Not setting variable value to null */
|
|
|
|
|
val = p + 1;
|
|
|
|
|
while (*val == ' ' || *val == '\t')
|
|
|
|
|
val++;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
while (p != arg && (p[-1] == ' ' || p[-1] == '\t')) p--;
|
|
|
|
|
|
|
|
|
|
var = savestring (arg, p - arg);
|
|
|
|
|
if (nullset)
|
|
|
|
|
{
|
|
|
|
|
printf ("Setting environment variable \"%s\" to null value.\n", var);
|
|
|
|
|
set_in_environ (inferior_environ, var, "");
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
set_in_environ (inferior_environ, var, val);
|
|
|
|
|
free (var);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static void
|
|
|
|
|
unset_environment_command (var, from_tty)
|
|
|
|
|
char *var;
|
|
|
|
|
int from_tty;
|
|
|
|
|
{
|
|
|
|
|
if (var == 0)
|
|
|
|
|
{
|
|
|
|
|
/* If there is no argument, delete all environment variables.
|
|
|
|
|
Ask for confirmation if reading from the terminal. */
|
|
|
|
|
if (!from_tty || query ("Delete all environment variables? "))
|
|
|
|
|
{
|
|
|
|
|
free_environ (inferior_environ);
|
|
|
|
|
inferior_environ = make_environ ();
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
unset_in_environ (inferior_environ, var);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Handle the execution path (PATH variable) */
|
|
|
|
|
|
|
|
|
|
const static char path_var_name[] = "PATH";
|
|
|
|
|
|
|
|
|
|
void
|
|
|
|
|
path_info (args, from_tty)
|
|
|
|
|
char *args;
|
|
|
|
|
int from_tty;
|
|
|
|
|
{
|
|
|
|
|
printf ("Executable and object file path: %s\n",
|
|
|
|
|
get_in_environ (inferior_environ, path_var_name));
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Add zero or more directories to the front of the execution path. */
|
|
|
|
|
|
|
|
|
|
void
|
|
|
|
|
path_command (dirname, from_tty)
|
|
|
|
|
char *dirname;
|
|
|
|
|
int from_tty;
|
|
|
|
|
{
|
|
|
|
|
char *exec_path;
|
|
|
|
|
|
|
|
|
|
dont_repeat ();
|
|
|
|
|
exec_path = strsave (get_in_environ (inferior_environ, path_var_name));
|
|
|
|
|
mod_path (dirname, from_tty, &exec_path);
|
|
|
|
|
set_in_environ (inferior_environ, path_var_name, exec_path);
|
|
|
|
|
free (exec_path);
|
|
|
|
|
if (from_tty)
|
|
|
|
|
path_info ();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
CORE_ADDR
|
|
|
|
|
read_pc ()
|
|
|
|
|
{
|
|
|
|
|
return ADDR_BITS_REMOVE ((CORE_ADDR) read_register (PC_REGNUM));
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void
|
|
|
|
|
write_pc (val)
|
|
|
|
|
CORE_ADDR val;
|
|
|
|
|
{
|
|
|
|
|
write_register (PC_REGNUM, (long) val);
|
|
|
|
|
#ifdef NPC_REGNUM
|
|
|
|
|
write_register (NPC_REGNUM, (long) val+4);
|
|
|
|
|
#endif
|
|
|
|
|
pc_changed = 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
char *reg_names[] = REGISTER_NAMES;
|
|
|
|
|
|
|
|
|
|
/* Print out the machine register regnum. If regnum is -1,
|
|
|
|
|
print all registers.
|
|
|
|
|
For most machines, having all_registers_info() print the
|
|
|
|
|
register(s) one per line is good enough. If a different format
|
|
|
|
|
is required, (eg, for SPARC or Pyramid 90x, which both have
|
|
|
|
|
lots of regs), or there is an existing convention for showing
|
|
|
|
|
all the registers, define the macro DO_REGISTERS_INFO(regnum)
|
|
|
|
|
to provide that format. */
|
|
|
|
|
#if !defined (DO_REGISTERS_INFO)
|
|
|
|
|
#define DO_REGISTERS_INFO(regnum) do_registers_info(regnum)
|
|
|
|
|
static void do_registers_info (regnum)
|
|
|
|
|
int regnum;
|
|
|
|
|
{
|
|
|
|
|
register int i;
|
|
|
|
|
|
|
|
|
|
if (regnum == -1)
|
|
|
|
|
printf_filtered (
|
|
|
|
|
"Register Contents (relative to selected stack frame)\n\n");
|
|
|
|
|
|
|
|
|
|
for (i = 0; i < NUM_REGS; i++)
|
|
|
|
|
{
|
|
|
|
|
char raw_buffer[MAX_REGISTER_RAW_SIZE];
|
|
|
|
|
char virtual_buffer[MAX_REGISTER_VIRTUAL_SIZE];
|
|
|
|
|
|
|
|
|
|
if (regnum != -1 && i != regnum)
|
|
|
|
|
continue;
|
|
|
|
|
|
|
|
|
|
fputs_filtered (reg_names[i], stdout);
|
|
|
|
|
print_spaces_filtered (15 - strlen (reg_names[i]), stdout);
|
|
|
|
|
|
|
|
|
|
/* Get the data in raw format, then convert also to virtual format. */
|
|
|
|
|
if (read_relative_register_raw_bytes (i, raw_buffer))
|
|
|
|
|
{
|
|
|
|
|
printf_filtered ("Invalid register contents\n");
|
|
|
|
|
continue;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
target_convert_to_virtual (i, raw_buffer, virtual_buffer);
|
|
|
|
|
|
|
|
|
|
/* If virtual format is floating, print it that way, and in raw hex. */
|
|
|
|
|
if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (i)) == TYPE_CODE_FLT
|
|
|
|
|
&& ! INVALID_FLOAT (virtual_buffer, REGISTER_VIRTUAL_SIZE (i)))
|
|
|
|
|
{
|
|
|
|
|
register int j;
|
|
|
|
|
|
|
|
|
|
val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0,
|
|
|
|
|
stdout, 0, 1, 0, Val_pretty_default);
|
|
|
|
|
|
|
|
|
|
printf_filtered ("\t(raw 0x");
|
|
|
|
|
for (j = 0; j < REGISTER_RAW_SIZE (i); j++)
|
|
|
|
|
printf_filtered ("%02x", (unsigned char)raw_buffer[j]);
|
|
|
|
|
printf_filtered (")");
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* FIXME! val_print probably can handle all of these cases now... */
|
|
|
|
|
|
|
|
|
|
/* Else if virtual format is too long for printf,
|
|
|
|
|
print in hex a byte at a time. */
|
|
|
|
|
else if (REGISTER_VIRTUAL_SIZE (i) > sizeof (long))
|
|
|
|
|
{
|
|
|
|
|
register int j;
|
|
|
|
|
printf_filtered ("0x");
|
|
|
|
|
for (j = 0; j < REGISTER_VIRTUAL_SIZE (i); j++)
|
|
|
|
|
printf_filtered ("%02x", (unsigned char)virtual_buffer[j]);
|
|
|
|
|
}
|
|
|
|
|
/* Else print as integer in hex and in decimal. */
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
val_print (REGISTER_VIRTUAL_TYPE (i), raw_buffer, 0,
|
|
|
|
|
stdout, 'x', 1, 0, Val_pretty_default);
|
|
|
|
|
printf_filtered ("\t");
|
|
|
|
|
val_print (REGISTER_VIRTUAL_TYPE (i), raw_buffer, 0,
|
|
|
|
|
stdout, 0, 1, 0, Val_pretty_default);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* The SPARC wants to print even-numbered float regs as doubles
|
|
|
|
|
in addition to printing them as floats. */
|
|
|
|
|
#ifdef PRINT_REGISTER_HOOK
|
|
|
|
|
PRINT_REGISTER_HOOK (i);
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
printf_filtered ("\n");
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
#endif /* no DO_REGISTERS_INFO. */
|
|
|
|
|
|
|
|
|
|
static void
|
|
|
|
|
registers_info (addr_exp)
|
|
|
|
|
char *addr_exp;
|
|
|
|
|
{
|
|
|
|
|
int regnum;
|
|
|
|
|
|
|
|
|
|
if (!target_has_registers)
|
|
|
|
|
error ("The program has no registers now.");
|
|
|
|
|
|
|
|
|
|
if (addr_exp)
|
|
|
|
|
{
|
|
|
|
|
if (*addr_exp >= '0' && *addr_exp <= '9')
|
|
|
|
|
regnum = atoi (addr_exp);
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
register char *p = addr_exp;
|
|
|
|
|
if (p[0] == '$')
|
|
|
|
|
p++;
|
|
|
|
|
for (regnum = 0; regnum < NUM_REGS; regnum++)
|
|
|
|
|
if (!strcmp (p, reg_names[regnum]))
|
|
|
|
|
break;
|
|
|
|
|
if (regnum == NUM_REGS)
|
|
|
|
|
error ("%s: invalid register name.", addr_exp);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
regnum = -1;
|
|
|
|
|
|
|
|
|
|
DO_REGISTERS_INFO(regnum);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* TODO:
|
|
|
|
|
* Should save/restore the tty state since it might be that the
|
|
|
|
|
* program to be debugged was started on this tty and it wants
|
|
|
|
|
* the tty in some state other than what we want. If it's running
|
|
|
|
|
* on another terminal or without a terminal, then saving and
|
|
|
|
|
* restoring the tty state is a harmless no-op.
|
|
|
|
|
* This only needs to be done if we are attaching to a process.
|
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* attach_command --
|
|
|
|
|
* takes a program started up outside of gdb and ``attaches'' to it.
|
|
|
|
|
* This stops it cold in its tracks and allows us to start tracing it.
|
|
|
|
|
* For this to work, we must be able to send the process a
|
|
|
|
|
* signal and we must have the same effective uid as the program.
|
|
|
|
|
*/
|
|
|
|
|
void
|
|
|
|
|
attach_command (args, from_tty)
|
|
|
|
|
char *args;
|
|
|
|
|
int from_tty;
|
|
|
|
|
{
|
1991-04-19 10:32:08 +09:00
|
|
|
|
dont_repeat (); /* Not for the faint of heart */
|
1991-03-29 00:26:26 +08:00
|
|
|
|
target_attach (args, from_tty);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* detach_command --
|
|
|
|
|
* takes a program previously attached to and detaches it.
|
|
|
|
|
* The program resumes execution and will no longer stop
|
|
|
|
|
* on signals, etc. We better not have left any breakpoints
|
|
|
|
|
* in the program or it'll die when it hits one. For this
|
|
|
|
|
* to work, it may be necessary for the process to have been
|
|
|
|
|
* previously attached. It *might* work if the program was
|
|
|
|
|
* started via the normal ptrace (PTRACE_TRACEME).
|
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
static void
|
|
|
|
|
detach_command (args, from_tty)
|
|
|
|
|
char *args;
|
|
|
|
|
int from_tty;
|
|
|
|
|
{
|
1991-04-19 10:32:08 +09:00
|
|
|
|
dont_repeat (); /* Not for the faint of heart */
|
1991-03-29 00:26:26 +08:00
|
|
|
|
target_detach (args, from_tty);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* ARGSUSED */
|
|
|
|
|
static void
|
|
|
|
|
float_info (addr_exp)
|
|
|
|
|
char *addr_exp;
|
|
|
|
|
{
|
|
|
|
|
#ifdef FLOAT_INFO
|
|
|
|
|
FLOAT_INFO;
|
|
|
|
|
#else
|
|
|
|
|
printf ("No floating point info available for this processor.\n");
|
|
|
|
|
#endif
|
|
|
|
|
}
|
|
|
|
|
|
1991-04-19 10:32:08 +09:00
|
|
|
|
struct cmd_list_element *unsetlist = NULL;
|
|
|
|
|
|
|
|
|
|
/* ARGSUSED */
|
|
|
|
|
static void
|
|
|
|
|
unset_command (args, from_tty)
|
|
|
|
|
char *args;
|
|
|
|
|
int from_tty;
|
|
|
|
|
{
|
|
|
|
|
printf ("\"unset\" must be followed by the name of an unset subcommand.\n");
|
|
|
|
|
help_list (unsetlist, "unset ", -1, stdout);
|
|
|
|
|
}
|
|
|
|
|
|
1991-03-29 00:26:26 +08:00
|
|
|
|
void
|
|
|
|
|
_initialize_infcmd ()
|
|
|
|
|
{
|
|
|
|
|
struct cmd_list_element *c;
|
|
|
|
|
|
|
|
|
|
add_com ("tty", class_run, tty_command,
|
|
|
|
|
"Set terminal for future runs of program being debugged.");
|
|
|
|
|
|
|
|
|
|
add_show_from_set
|
|
|
|
|
(add_set_cmd ("args", class_run, var_string_noescape, (char *)&inferior_args,
|
|
|
|
|
|
|
|
|
|
"Set arguments to give program being debugged when it is started.\n\
|
|
|
|
|
Follow this command with any number of args, to be passed to the program.",
|
|
|
|
|
&setlist),
|
|
|
|
|
&showlist);
|
|
|
|
|
|
|
|
|
|
c = add_cmd
|
|
|
|
|
("environment", no_class, environment_info,
|
|
|
|
|
"The environment to give the program, or one variable's value.\n\
|
|
|
|
|
With an argument VAR, prints the value of environment variable VAR to\n\
|
|
|
|
|
give the program being debugged. With no arguments, prints the entire\n\
|
|
|
|
|
environment to be given to the program.", &showlist);
|
|
|
|
|
c->completer = noop_completer;
|
|
|
|
|
|
1991-04-19 10:32:08 +09:00
|
|
|
|
add_prefix_cmd ("unset", no_class, unset_command,
|
|
|
|
|
"Complement to certain \"set\" commands",
|
|
|
|
|
&unsetlist, "unset ", 0, &cmdlist);
|
|
|
|
|
|
1991-03-29 00:26:26 +08:00
|
|
|
|
c = add_cmd ("environment", class_run, unset_environment_command,
|
|
|
|
|
"Cancel environment variable VAR for the program.\n\
|
|
|
|
|
This does not affect the program until the next \"run\" command.",
|
1991-04-19 10:32:08 +09:00
|
|
|
|
&unsetlist);
|
1991-03-29 00:26:26 +08:00
|
|
|
|
c->completer = noop_completer;
|
|
|
|
|
|
|
|
|
|
c = add_cmd ("environment", class_run, set_environment_command,
|
|
|
|
|
"Set environment variable value to give the program.\n\
|
|
|
|
|
Arguments are VAR VALUE where VAR is variable name and VALUE is value.\n\
|
|
|
|
|
VALUES of environment variables are uninterpreted strings.\n\
|
|
|
|
|
This does not affect the program until the next \"run\" command.",
|
|
|
|
|
&setlist);
|
|
|
|
|
c->completer = noop_completer;
|
|
|
|
|
|
|
|
|
|
add_com ("path", class_files, path_command,
|
|
|
|
|
"Add directory DIR(s) to beginning of search path for object files.\n\
|
|
|
|
|
$cwd in the path means the current working directory.\n\
|
|
|
|
|
This path is equivalent to the $PATH shell variable. It is a list of\n\
|
|
|
|
|
directories, separated by colons. These directories are searched to find\n\
|
|
|
|
|
fully linked executable files and separately compiled object files as needed.");
|
|
|
|
|
|
|
|
|
|
add_info ("path", path_info,
|
|
|
|
|
"Current search path for finding object files.\n\
|
|
|
|
|
$cwd in the path means the current working directory.\n\
|
|
|
|
|
This path is equivalent to the $PATH shell variable. It is a list of\n\
|
|
|
|
|
directories, separated by colons. These directories are searched to find\n\
|
|
|
|
|
fully linked executable files and separately compiled object files as needed.");
|
|
|
|
|
|
|
|
|
|
add_com ("attach", class_run, attach_command,
|
|
|
|
|
"Attach to a process or file outside of GDB.\n\
|
|
|
|
|
This command attaches to another target, of the same type as your last\n\
|
|
|
|
|
`target' command (`info files' will show your target stack).\n\
|
|
|
|
|
The command may take as argument a process id or a device file.\n\
|
|
|
|
|
For a process id, you must have permission to send the process a signal,\n\
|
|
|
|
|
and it must have the same effective uid as the debugger.\n\
|
|
|
|
|
When using \"attach\", you should use the \"file\" command to specify\n\
|
|
|
|
|
the program running in the process, and to load its symbol table.");
|
|
|
|
|
|
|
|
|
|
add_com ("detach", class_run, detach_command,
|
|
|
|
|
"Detach a process or file previously attached.\n\
|
|
|
|
|
If a process, it is no longer traced, and it continues its execution. If you\n\
|
|
|
|
|
were debugging a file, the file is closed and gdb no longer accesses it.");
|
|
|
|
|
|
|
|
|
|
add_com ("signal", class_run, signal_command,
|
|
|
|
|
"Continue program giving it signal number SIGNUMBER.");
|
|
|
|
|
|
|
|
|
|
add_com ("stepi", class_run, stepi_command,
|
|
|
|
|
"Step one instruction exactly.\n\
|
|
|
|
|
Argument N means do this N times (or till program stops for another reason).");
|
|
|
|
|
add_com_alias ("si", "stepi", class_alias, 0);
|
|
|
|
|
|
|
|
|
|
add_com ("nexti", class_run, nexti_command,
|
|
|
|
|
"Step one instruction, but proceed through subroutine calls.\n\
|
|
|
|
|
Argument N means do this N times (or till program stops for another reason).");
|
|
|
|
|
add_com_alias ("ni", "nexti", class_alias, 0);
|
|
|
|
|
|
|
|
|
|
add_com ("finish", class_run, finish_command,
|
|
|
|
|
"Execute until selected stack frame returns.\n\
|
|
|
|
|
Upon return, the value returned is printed and put in the value history.");
|
|
|
|
|
|
|
|
|
|
add_com ("next", class_run, next_command,
|
|
|
|
|
"Step program, proceeding through subroutine calls.\n\
|
|
|
|
|
Like the \"step\" command as long as subroutine calls do not happen;\n\
|
|
|
|
|
when they do, the call is treated as one instruction.\n\
|
|
|
|
|
Argument N means do this N times (or till program stops for another reason).");
|
|
|
|
|
add_com_alias ("n", "next", class_run, 1);
|
|
|
|
|
|
|
|
|
|
add_com ("step", class_run, step_command,
|
|
|
|
|
"Step program until it reaches a different source line.\n\
|
|
|
|
|
Argument N means do this N times (or till program stops for another reason).");
|
|
|
|
|
add_com_alias ("s", "step", class_run, 1);
|
|
|
|
|
|
|
|
|
|
add_com ("until", class_run, until_command,
|
|
|
|
|
"Execute until the program reaches a source line greater than the current\n\
|
|
|
|
|
or a specified line or address or function (same args as break command).\n\
|
|
|
|
|
Execution will also stop upon exit from the current stack frame.");
|
|
|
|
|
add_com_alias ("u", "until", class_run, 1);
|
|
|
|
|
|
|
|
|
|
add_com ("jump", class_run, jump_command,
|
|
|
|
|
"Continue program being debugged at specified line or address.\n\
|
|
|
|
|
Give as argument either LINENUM or *ADDR, where ADDR is an expression\n\
|
|
|
|
|
for an address to start at.");
|
|
|
|
|
|
|
|
|
|
add_com ("continue", class_run, continue_command,
|
|
|
|
|
"Continue program being debugged, after signal or breakpoint.\n\
|
|
|
|
|
If proceeding from breakpoint, a number N may be used as an argument:\n\
|
|
|
|
|
then the same breakpoint won't break until the Nth time it is reached.");
|
|
|
|
|
add_com_alias ("c", "cont", class_run, 1);
|
|
|
|
|
add_com_alias ("fg", "cont", class_run, 1);
|
|
|
|
|
|
|
|
|
|
add_com ("run", class_run, run_command,
|
|
|
|
|
"Start debugged program. You may specify arguments to give it.\n\
|
|
|
|
|
Args may include \"*\", or \"[...]\"; they are expanded using \"sh\".\n\
|
|
|
|
|
Input and output redirection with \">\", \"<\", or \">>\" are also allowed.\n\n\
|
|
|
|
|
With no arguments, uses arguments last specified (with \"run\" or \"set args\".\n\
|
|
|
|
|
To cancel previous arguments and run with no arguments,\n\
|
|
|
|
|
use \"set args\" without arguments.");
|
|
|
|
|
add_com_alias ("r", "run", class_run, 1);
|
|
|
|
|
|
|
|
|
|
add_info ("registers", registers_info,
|
|
|
|
|
"List of registers and their contents, for selected stack frame.\n\
|
|
|
|
|
Register name as argument means describe only that register.");
|
|
|
|
|
|
|
|
|
|
add_info ("program", program_info,
|
|
|
|
|
"Execution status of the program.");
|
|
|
|
|
|
|
|
|
|
add_info ("float", float_info,
|
|
|
|
|
"Print the status of the floating point unit\n");
|
|
|
|
|
|
|
|
|
|
inferior_args = savestring ("", 1); /* Initially no args */
|
|
|
|
|
inferior_environ = make_environ ();
|
|
|
|
|
init_environ (inferior_environ);
|
|
|
|
|
}
|