1991-03-26 06:25:08 +08:00
|
|
|
|
#ifndef __A_OUT_GNU_H__
|
|
|
|
|
#define __A_OUT_GNU_H__
|
|
|
|
|
|
1991-04-25 13:20:18 +09:00
|
|
|
|
#include "reloc.h"
|
1991-03-26 06:25:08 +08:00
|
|
|
|
|
|
|
|
|
#define __GNU_EXEC_MACROS__
|
|
|
|
|
|
|
|
|
|
#ifndef __STRUCT_EXEC_OVERRIDE__
|
|
|
|
|
|
1991-04-25 13:20:18 +09:00
|
|
|
|
/* This is the layout on disk of a Unix V7, Berkeley, SunOS, Vax Ultrix
|
|
|
|
|
"struct exec". Don't assume that on this machine, the "struct exec"
|
|
|
|
|
will lay out the same sizes or alignments. */
|
|
|
|
|
|
|
|
|
|
struct exec_bytes {
|
|
|
|
|
unsigned char a_info[4];
|
|
|
|
|
unsigned char a_text[4];
|
|
|
|
|
unsigned char a_data[4];
|
|
|
|
|
unsigned char a_bss[4];
|
|
|
|
|
unsigned char a_syms[4];
|
|
|
|
|
unsigned char a_entry[4];
|
|
|
|
|
unsigned char a_trsize[4];
|
|
|
|
|
unsigned char a_drsize[4];
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
/* How big the "struct exec" is on disk */
|
|
|
|
|
#define EXEC_BYTES_SIZE (8 * 4)
|
|
|
|
|
|
|
|
|
|
/* This is the layout in memory of a "struct exec" while we process it. */
|
|
|
|
|
|
1991-03-26 06:25:08 +08:00
|
|
|
|
struct exec
|
|
|
|
|
{
|
|
|
|
|
unsigned long a_info; /* Use macros N_MAGIC, etc for access */
|
|
|
|
|
unsigned a_text; /* length of text, in bytes */
|
|
|
|
|
unsigned a_data; /* length of data, in bytes */
|
|
|
|
|
unsigned a_bss; /* length of uninitialized data area for file, in bytes */
|
|
|
|
|
unsigned a_syms; /* length of symbol table data in file, in bytes */
|
|
|
|
|
unsigned a_entry; /* start address */
|
|
|
|
|
unsigned a_trsize; /* length of relocation info for text, in bytes */
|
|
|
|
|
unsigned a_drsize; /* length of relocation info for data, in bytes */
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
#endif /* __STRUCT_EXEC_OVERRIDE__ */
|
|
|
|
|
|
|
|
|
|
/* these go in the N_MACHTYPE field */
|
|
|
|
|
/* These symbols could be defined by code from Suns...punt 'em */
|
1991-04-25 13:20:18 +09:00
|
|
|
|
#undef M_UNKNOWN
|
1991-03-26 06:25:08 +08:00
|
|
|
|
#undef M_68010
|
|
|
|
|
#undef M_68020
|
|
|
|
|
#undef M_SPARC
|
|
|
|
|
enum machine_type {
|
1991-04-25 13:20:18 +09:00
|
|
|
|
M_UNKNOWN = 0,
|
1991-03-26 06:25:08 +08:00
|
|
|
|
M_68010 = 1,
|
|
|
|
|
M_68020 = 2,
|
|
|
|
|
M_SPARC = 3,
|
|
|
|
|
/* skip a bunch so we don't run into any of sun's numbers */
|
|
|
|
|
M_386 = 100,
|
|
|
|
|
M_29K = 101,
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
#define N_MAGIC(exec) ((exec).a_info & 0xffff)
|
|
|
|
|
#define N_MACHTYPE(exec) ((enum machine_type)(((exec).a_info >> 16) & 0xff))
|
|
|
|
|
#define N_FLAGS(exec) (((exec).a_info >> 24) & 0xff)
|
|
|
|
|
#define N_SET_INFO(exec, magic, type, flags) \
|
|
|
|
|
((exec).a_info = ((magic) & 0xffff) \
|
|
|
|
|
| (((int)(type) & 0xff) << 16) \
|
|
|
|
|
| (((flags) & 0xff) << 24))
|
|
|
|
|
#define N_SET_MAGIC(exec, magic) \
|
|
|
|
|
((exec).a_info = (((exec).a_info & 0xffff0000) | ((magic) & 0xffff)))
|
|
|
|
|
|
|
|
|
|
#define N_SET_MACHTYPE(exec, machtype) \
|
|
|
|
|
((exec).a_info = \
|
|
|
|
|
((exec).a_info&0xff00ffff) | ((((int)(machtype))&0xff) << 16))
|
|
|
|
|
|
|
|
|
|
#define N_SET_FLAGS(exec, flags) \
|
|
|
|
|
((exec).a_info = \
|
|
|
|
|
((exec).a_info&0x00ffffff) | (((flags) & 0xff) << 24))
|
|
|
|
|
|
|
|
|
|
/* Code indicating object file or impure executable. */
|
|
|
|
|
#define OMAGIC 0407
|
|
|
|
|
/* Code indicating pure executable. */
|
|
|
|
|
#define NMAGIC 0410
|
|
|
|
|
/* Code indicating demand-paged executable. */
|
|
|
|
|
#define ZMAGIC 0413
|
|
|
|
|
|
|
|
|
|
/* Address of text segment in memory after it is loaded. */
|
|
|
|
|
/* Don't load things at zero, it encourages zero-pointer bugs */
|
|
|
|
|
#ifndef TEXT_START_ADDR
|
|
|
|
|
#define TEXT_START_ADDR 0x10000
|
|
|
|
|
#endif
|
1991-04-25 13:20:18 +09:00
|
|
|
|
|
|
|
|
|
/* Virtual Address of text segment from the a.out file. For OMAGIC,
|
|
|
|
|
(almost always "unlinked .o's" these days), should be zero.
|
|
|
|
|
Sun added a kludge so that shared libraries linked ZMAGIC get
|
|
|
|
|
an address of zero if a_entry (!!!) is lower than the otherwise
|
|
|
|
|
expected text address. These kludges have gotta go!
|
|
|
|
|
For linked files, should reflect reality if we know it. */
|
|
|
|
|
|
|
|
|
|
#ifndef N_TXTADDR
|
|
|
|
|
#define N_TXTADDR(x) \
|
|
|
|
|
(N_MAGIC(x)==OMAGIC? 0 \
|
|
|
|
|
: (N_MAGIC(x) == ZMAGIC && (x).a_entry < TEXT_START_ADDR)? 0 \
|
|
|
|
|
: TEXT_START_ADDR)
|
|
|
|
|
#endif
|
1991-03-26 06:25:08 +08:00
|
|
|
|
|
|
|
|
|
/* Address of data segment in memory after it is loaded.
|
|
|
|
|
Note that it is up to you to define SEGMENT_SIZE
|
|
|
|
|
on machines not listed here. */
|
1991-04-25 13:20:18 +09:00
|
|
|
|
#if defined(hp300) || defined(pyr)
|
1991-03-26 06:25:08 +08:00
|
|
|
|
#define SEGMENT_SIZE page_size
|
|
|
|
|
#endif
|
|
|
|
|
#ifdef sony
|
|
|
|
|
#define SEGMENT_SIZE 0x2000
|
|
|
|
|
#endif /* Sony. */
|
|
|
|
|
#ifdef is68k
|
|
|
|
|
#define SEGMENT_SIZE 0x20000
|
|
|
|
|
#endif
|
|
|
|
|
#if defined(m68k) && defined(PORTAR)
|
|
|
|
|
#define PAGE_SIZE 0x400
|
|
|
|
|
#define SEGMENT_SIZE PAGE_SIZE
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
#ifndef N_DATADDR
|
|
|
|
|
#define N_DATADDR(x) \
|
1991-04-25 13:20:18 +09:00
|
|
|
|
(N_MAGIC(x)==OMAGIC? (N_TXTADDR(x)+(x).a_text) \
|
|
|
|
|
: (SEGMENT_SIZE + ((N_TXTADDR(x)+(x).a_text-1) & ~(SEGMENT_SIZE-1))))
|
1991-03-26 06:25:08 +08:00
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
/* Address of bss segment in memory after it is loaded. */
|
|
|
|
|
#define N_BSSADDR(x) (N_DATADDR(x) + (x).a_data)
|
|
|
|
|
|
|
|
|
|
struct nlist {
|
|
|
|
|
union {
|
|
|
|
|
char *n_name;
|
|
|
|
|
struct nlist *n_next;
|
|
|
|
|
long n_strx;
|
|
|
|
|
} n_un;
|
|
|
|
|
unsigned char n_type;
|
|
|
|
|
char n_other;
|
|
|
|
|
short n_desc;
|
|
|
|
|
unsigned long n_value;
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
#define N_UNDF 0
|
|
|
|
|
#define N_ABS 2
|
|
|
|
|
#define N_TEXT 4
|
|
|
|
|
#define N_DATA 6
|
|
|
|
|
#define N_BSS 8
|
|
|
|
|
#define N_FN 15
|
|
|
|
|
|
|
|
|
|
#define N_EXT 1
|
|
|
|
|
#define N_TYPE 036
|
|
|
|
|
#define N_STAB 0340
|
|
|
|
|
|
|
|
|
|
/* The following type indicates the definition of a symbol as being
|
|
|
|
|
an indirect reference to another symbol. The other symbol
|
|
|
|
|
appears as an undefined reference, immediately following this symbol.
|
|
|
|
|
|
|
|
|
|
Indirection is asymmetrical. The other symbol's value will be used
|
|
|
|
|
to satisfy requests for the indirect symbol, but not vice versa.
|
|
|
|
|
If the other symbol does not have a definition, libraries will
|
|
|
|
|
be searched to find a definition. */
|
|
|
|
|
#define N_INDR 0xa
|
|
|
|
|
|
|
|
|
|
/* The following symbols refer to set elements.
|
|
|
|
|
All the N_SET[ATDB] symbols with the same name form one set.
|
|
|
|
|
Space is allocated for the set in the text section, and each set
|
|
|
|
|
element's value is stored into one word of the space.
|
|
|
|
|
The first word of the space is the length of the set (number of elements).
|
|
|
|
|
|
|
|
|
|
The address of the set is made into an N_SETV symbol
|
|
|
|
|
whose name is the same as the name of the set.
|
|
|
|
|
This symbol acts like a N_DATA global symbol
|
|
|
|
|
in that it can satisfy undefined external references. */
|
|
|
|
|
|
|
|
|
|
/* These appear as input to LD, in a .o file. */
|
|
|
|
|
#define N_SETA 0x14 /* Absolute set element symbol */
|
|
|
|
|
#define N_SETT 0x16 /* Text set element symbol */
|
|
|
|
|
#define N_SETD 0x18 /* Data set element symbol */
|
|
|
|
|
#define N_SETB 0x1A /* Bss set element symbol */
|
|
|
|
|
|
|
|
|
|
/* This is output from LD. */
|
|
|
|
|
#define N_SETV 0x1C /* Pointer to set vector in data area. */
|
|
|
|
|
|
|
|
|
|
/* This structure describes a single relocation to be performed.
|
|
|
|
|
The text-relocation section of the file is a vector of these structures,
|
|
|
|
|
all of which apply to the text section.
|
|
|
|
|
Likewise, the data-relocation section applies to the data section. */
|
|
|
|
|
|
1991-04-25 13:20:18 +09:00
|
|
|
|
/* The following enum and struct were borrowed from SunOS's
|
|
|
|
|
/usr/include/sun4/a.out.h and extended to handle
|
|
|
|
|
other machines. It is currently used on SPARC and AMD 29000.
|
1991-03-26 06:25:08 +08:00
|
|
|
|
|
1991-04-25 13:20:18 +09:00
|
|
|
|
reloc_ext_bytes is how it looks on disk. reloc_info_extended is
|
|
|
|
|
how we might process it on a native host. */
|
1991-03-26 06:25:08 +08:00
|
|
|
|
|
1991-04-25 13:20:18 +09:00
|
|
|
|
struct reloc_ext_bytes {
|
|
|
|
|
unsigned char r_address[4];
|
|
|
|
|
unsigned char r_index[3];
|
|
|
|
|
unsigned char r_bits[1];
|
|
|
|
|
unsigned char r_addend[4];
|
1991-03-26 06:25:08 +08:00
|
|
|
|
};
|
|
|
|
|
|
1991-04-25 13:20:18 +09:00
|
|
|
|
#define RELOC_EXT_BITS_EXTERN_BIG 0x80
|
|
|
|
|
#define RELOC_EXT_BITS_EXTERN_LITTLE 0x01
|
|
|
|
|
|
|
|
|
|
#define RELOC_EXT_BITS_TYPE_BIG 0x1F
|
|
|
|
|
#define RELOC_EXT_BITS_TYPE_SH_BIG 0
|
|
|
|
|
#define RELOC_EXT_BITS_TYPE_LITTLE 0xF8
|
|
|
|
|
#define RELOC_EXT_BITS_TYPE_SH_LITTLE 3
|
|
|
|
|
|
|
|
|
|
#define RELOC_EXT_SIZE 12 /* Bytes per relocation entry */
|
1991-03-26 06:25:08 +08:00
|
|
|
|
|
|
|
|
|
struct reloc_info_extended
|
|
|
|
|
{
|
|
|
|
|
unsigned long r_address;
|
|
|
|
|
unsigned int r_index:24;
|
|
|
|
|
# define r_symbolnum r_index
|
|
|
|
|
unsigned r_extern:1;
|
|
|
|
|
unsigned :2;
|
|
|
|
|
enum reloc_type r_type:5;
|
|
|
|
|
long int r_addend;
|
|
|
|
|
};
|
|
|
|
|
|
1991-04-25 13:20:18 +09:00
|
|
|
|
/* The standard, old-fashioned, Berkeley compatible relocation struct */
|
|
|
|
|
|
|
|
|
|
struct reloc_std_bytes {
|
|
|
|
|
unsigned char r_address[4];
|
|
|
|
|
unsigned char r_index[3];
|
|
|
|
|
unsigned char r_bits[1];
|
1991-03-26 06:25:08 +08:00
|
|
|
|
};
|
|
|
|
|
|
1991-04-25 13:20:18 +09:00
|
|
|
|
#define RELOC_STD_BITS_PCREL_BIG 0x80
|
|
|
|
|
#define RELOC_STD_BITS_PCREL_LITTLE 0x01
|
|
|
|
|
|
|
|
|
|
#define RELOC_STD_BITS_LENGTH_BIG 0x60
|
|
|
|
|
#define RELOC_STD_BITS_LENGTH_SH_BIG 5 /* To shift to units place */
|
|
|
|
|
#define RELOC_STD_BITS_LENGTH_LITTLE 0x06
|
|
|
|
|
#define RELOC_STD_BITS_LENGTH_SH_LITTLE 1
|
|
|
|
|
|
|
|
|
|
#define RELOC_STD_BITS_EXTERN_BIG 0x10
|
|
|
|
|
#define RELOC_STD_BITS_EXTERN_LITTLE 0x08
|
|
|
|
|
|
|
|
|
|
#define RELOC_STD_BITS_BASEREL_BIG 0x08
|
|
|
|
|
#define RELOC_STD_BITS_BASEREL_LITTLE 0x08
|
|
|
|
|
|
|
|
|
|
#define RELOC_STD_BITS_JMPTABLE_BIG 0x04
|
|
|
|
|
#define RELOC_STD_BITS_JMPTABLE_LITTLE 0x04
|
|
|
|
|
|
|
|
|
|
#define RELOC_STD_BITS_RELATIVE_BIG 0x02
|
|
|
|
|
#define RELOC_STD_BITS_RELATIVE_LITTLE 0x02
|
1991-03-26 06:25:08 +08:00
|
|
|
|
|
1991-04-25 13:20:18 +09:00
|
|
|
|
#define RELOC_STD_SIZE 8 /* Bytes per relocation entry */
|
1991-03-26 06:25:08 +08:00
|
|
|
|
|
|
|
|
|
struct relocation_info
|
|
|
|
|
{
|
|
|
|
|
/* Address (within segment) to be relocated. */
|
|
|
|
|
int r_address;
|
|
|
|
|
/* The meaning of r_symbolnum depends on r_extern. */
|
|
|
|
|
unsigned int r_symbolnum:24;
|
|
|
|
|
/* Nonzero means value is a pc-relative offset
|
|
|
|
|
and it should be relocated for changes in its own address
|
|
|
|
|
as well as for changes in the symbol or section specified. */
|
|
|
|
|
unsigned int r_pcrel:1;
|
|
|
|
|
/* Length (as exponent of 2) of the field to be relocated.
|
|
|
|
|
Thus, a value of 2 indicates 1<<2 bytes. */
|
|
|
|
|
unsigned int r_length:2;
|
|
|
|
|
/* 1 => relocate with value of symbol.
|
|
|
|
|
r_symbolnum is the index of the symbol
|
|
|
|
|
in file's the symbol table.
|
|
|
|
|
0 => relocate with the address of a segment.
|
|
|
|
|
r_symbolnum is N_TEXT, N_DATA, N_BSS or N_ABS
|
|
|
|
|
(the N_EXT bit may be set also, but signifies nothing). */
|
|
|
|
|
unsigned int r_extern:1;
|
1991-04-25 13:20:18 +09:00
|
|
|
|
/* The next three bits are for SunOS shared libraries, and seem to
|
|
|
|
|
be undocumented. */
|
|
|
|
|
unsigned int r_baserel:1; /* Linkage table relative */
|
|
|
|
|
unsigned int r_jmptable:1; /* pc-relative to jump table */
|
|
|
|
|
unsigned int r_relative:1; /* "relative relocation" */
|
|
|
|
|
/* unused */
|
|
|
|
|
unsigned int r_pad:1; /* Padding -- set to zero */
|
1991-03-26 06:25:08 +08:00
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
#endif /* __A_OUT_GNU_H__ */
|