binutils-gdb/opcodes/vax-dis.c

488 lines
14 KiB
C
Raw Normal View History

1999-05-03 15:29:11 +08:00
/* Print VAX instructions.
2009-09-02 15:25:43 +08:00
Copyright 1995, 1998, 2000, 2001, 2002, 2005, 2007, 2009
Free Software Foundation, Inc.
1999-05-03 15:29:11 +08:00
Contributed by Pauline Middelink <middelin@polyware.iaf.nl>
2007-07-05 17:49:03 +08:00
This file is part of the GNU opcodes library.
This library is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
2007-07-05 17:49:03 +08:00
the Free Software Foundation; either version 3, or (at your option)
any later version.
1999-05-03 15:29:11 +08:00
2007-07-05 17:49:03 +08:00
It is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
License for more details.
1999-05-03 15:29:11 +08:00
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
MA 02110-1301, USA. */
1999-05-03 15:29:11 +08:00
#include <setjmp.h>
#include <string.h>
#include "sysdep.h"
1999-05-03 15:29:11 +08:00
#include "opcode/vax.h"
#include "dis-asm.h"
static char *reg_names[] =
{
"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
"r8", "r9", "r10", "r11", "ap", "fp", "sp", "pc"
};
/* Definitions for the function entry mask bits. */
static char *entry_mask_bit[] =
{
/* Registers 0 and 1 shall not be saved, since they're used to pass back
a function's result to its caller... */
"~r0~", "~r1~",
/* Registers 2 .. 11 are normal registers. */
"r2", "r3", "r4", "r5", "r6", "r7", "r8", "r9", "r10", "r11",
/* Registers 12 and 13 are argument and frame pointer and must not
be saved by using the entry mask. */
"~ap~", "~fp~",
/* Bits 14 and 15 control integer and decimal overflow. */
"IntOvfl", "DecOvfl",
};
1999-05-03 15:29:11 +08:00
/* Sign-extend an (unsigned char). */
#define COERCE_SIGNED_CHAR(ch) ((signed char)(ch))
/* Get a 1 byte signed integer. */
#define NEXTBYTE(p) \
(p += 1, FETCH_DATA (info, p), \
COERCE_SIGNED_CHAR(p[-1]))
/* Get a 2 byte signed integer. */
#define COERCE16(x) ((int) (((x) ^ 0x8000) - 0x8000))
#define NEXTWORD(p) \
(p += 2, FETCH_DATA (info, p), \
COERCE16 ((p[-1] << 8) + p[-2]))
/* Get a 4 byte signed integer. */
#define COERCE32(x) ((int) (((x) ^ 0x80000000) - 0x80000000))
#define NEXTLONG(p) \
(p += 4, FETCH_DATA (info, p), \
(COERCE32 ((((((p[-1] << 8) + p[-2]) << 8) + p[-3]) << 8) + p[-4])))
/* Maximum length of an instruction. */
#define MAXLEN 25
struct private
{
/* Points to first byte not fetched. */
bfd_byte * max_fetched;
bfd_byte the_buffer[MAXLEN];
bfd_vma insn_start;
jmp_buf bailout;
1999-05-03 15:29:11 +08:00
};
/* Make sure that bytes from INFO->PRIVATE_DATA->BUFFER (inclusive)
to ADDR (exclusive) are valid. Returns 1 for success, longjmps
on error. */
#define FETCH_DATA(info, addr) \
((addr) <= ((struct private *)(info->private_data))->max_fetched \
? 1 : fetch_data ((info), (addr)))
static int
fetch_data (struct disassemble_info *info, bfd_byte *addr)
1999-05-03 15:29:11 +08:00
{
int status;
struct private *priv = (struct private *) info->private_data;
bfd_vma start = priv->insn_start + (priv->max_fetched - priv->the_buffer);
status = (*info->read_memory_func) (start,
priv->max_fetched,
addr - priv->max_fetched,
info);
if (status != 0)
{
(*info->memory_error_func) (status, start, info);
longjmp (priv->bailout, 1);
}
else
priv->max_fetched = addr;
return 1;
}
/* Entry mask handling. */
static unsigned int entry_addr_occupied_slots = 0;
static unsigned int entry_addr_total_slots = 0;
static bfd_vma * entry_addr = NULL;
/* Parse the VAX specific disassembler options. These contain function
entry addresses, which can be useful to disassemble ROM images, since
there's no symbol table. Returns TRUE upon success, FALSE otherwise. */
static bfd_boolean
parse_disassembler_options (char * options)
{
const char * entry_switch = "entry:";
while ((options = strstr (options, entry_switch)))
{
options += strlen (entry_switch);
/* The greater-than part of the test below is paranoia. */
if (entry_addr_occupied_slots >= entry_addr_total_slots)
{
/* A guesstimate of the number of entries we will have to create. */
entry_addr_total_slots +=
strlen (options) / (strlen (entry_switch) + 5);
entry_addr = realloc (entry_addr, sizeof (bfd_vma)
* entry_addr_total_slots);
}
if (entry_addr == NULL)
return FALSE;
entry_addr[entry_addr_occupied_slots] = bfd_scan_vma (options, NULL, 0);
entry_addr_occupied_slots ++;
}
return TRUE;
}
#if 0 /* FIXME: Ideally the disassembler should have target specific
initialisation and termination function pointers. Then
parse_disassembler_options could be the init function and
free_entry_array (below) could be the termination routine.
Until then there is no way for the disassembler to tell us
that it has finished and that we no longer need the entry
array, so this routine is suppressed for now. It does mean
that we leak memory, but only to the extent that we do not
free it just before the disassembler is about to terminate
anyway. */
/* Free memory allocated to our entry array. */
static void
free_entry_array (void)
{
if (entry_addr)
{
free (entry_addr);
entry_addr = NULL;
entry_addr_occupied_slots = entry_addr_total_slots = 0;
}
}
#endif
/* Check if the given address is a known function entry point. This is
the case if there is a symbol of the function type at this address.
We also check for synthetic symbols as these are used for PLT entries
(weak undefined symbols may not have the function type set). Finally
the address may have been forced to be treated as an entry point. The
latter helps in disassembling ROM images, because there's no symbol
table at all. Forced entry points can be given by supplying several
-M options to objdump: -M entry:0xffbb7730. */
static bfd_boolean
is_function_entry (struct disassemble_info *info, bfd_vma addr)
{
unsigned int i;
/* Check if there's a function or PLT symbol at our address. */
if (info->symbols
&& info->symbols[0]
&& (info->symbols[0]->flags & (BSF_FUNCTION | BSF_SYNTHETIC))
&& addr == bfd_asymbol_value (info->symbols[0]))
return TRUE;
/* Check for forced function entry address. */
for (i = entry_addr_occupied_slots; i--;)
if (entry_addr[i] == addr)
return TRUE;
return FALSE;
}
/* Check if the given address is the last longword of a PLT entry.
This longword is data and depending on the value it may interfere
with disassembly of further PLT entries. We make use of the fact
PLT symbols are marked BSF_SYNTHETIC. */
static bfd_boolean
is_plt_tail (struct disassemble_info *info, bfd_vma addr)
{
if (info->symbols
&& info->symbols[0]
&& (info->symbols[0]->flags & BSF_SYNTHETIC)
&& addr == bfd_asymbol_value (info->symbols[0]) + 8)
return TRUE;
return FALSE;
}
static int
print_insn_mode (const char *d,
int size,
unsigned char *p0,
bfd_vma addr, /* PC for this arg to be relative to. */
disassemble_info *info)
{
unsigned char *p = p0;
unsigned char mode, reg;
/* Fetch and interpret mode byte. */
mode = (unsigned char) NEXTBYTE (p);
reg = mode & 0xF;
switch (mode & 0xF0)
{
case 0x00:
case 0x10:
case 0x20:
case 0x30: /* Literal mode $number. */
if (d[1] == 'd' || d[1] == 'f' || d[1] == 'g' || d[1] == 'h')
(*info->fprintf_func) (info->stream, "$0x%x [%c-float]", mode, d[1]);
else
(*info->fprintf_func) (info->stream, "$0x%x", mode);
break;
case 0x40: /* Index: base-addr[Rn] */
p += print_insn_mode (d, size, p0 + 1, addr + 1, info);
(*info->fprintf_func) (info->stream, "[%s]", reg_names[reg]);
break;
case 0x50: /* Register: Rn */
(*info->fprintf_func) (info->stream, "%s", reg_names[reg]);
break;
case 0x60: /* Register deferred: (Rn) */
(*info->fprintf_func) (info->stream, "(%s)", reg_names[reg]);
break;
case 0x70: /* Autodecrement: -(Rn) */
(*info->fprintf_func) (info->stream, "-(%s)", reg_names[reg]);
break;
case 0x80: /* Autoincrement: (Rn)+ */
if (reg == 0xF)
{ /* Immediate? */
int i;
FETCH_DATA (info, p + size);
(*info->fprintf_func) (info->stream, "$0x");
if (d[1] == 'd' || d[1] == 'f' || d[1] == 'g' || d[1] == 'h')
{
int float_word;
float_word = p[0] | (p[1] << 8);
if ((d[1] == 'd' || d[1] == 'f')
&& (float_word & 0xff80) == 0x8000)
{
(*info->fprintf_func) (info->stream, "[invalid %c-float]",
d[1]);
}
else
{
for (i = 0; i < size; i++)
(*info->fprintf_func) (info->stream, "%02x",
p[size - i - 1]);
(*info->fprintf_func) (info->stream, " [%c-float]", d[1]);
}
}
else
{
for (i = 0; i < size; i++)
(*info->fprintf_func) (info->stream, "%02x", p[size - i - 1]);
}
p += size;
}
else
(*info->fprintf_func) (info->stream, "(%s)+", reg_names[reg]);
break;
case 0x90: /* Autoincrement deferred: @(Rn)+ */
if (reg == 0xF)
(*info->fprintf_func) (info->stream, "*0x%x", NEXTLONG (p));
else
(*info->fprintf_func) (info->stream, "@(%s)+", reg_names[reg]);
break;
case 0xB0: /* Displacement byte deferred: *displ(Rn). */
(*info->fprintf_func) (info->stream, "*");
case 0xA0: /* Displacement byte: displ(Rn). */
if (reg == 0xF)
(*info->print_address_func) (addr + 2 + NEXTBYTE (p), info);
else
(*info->fprintf_func) (info->stream, "0x%x(%s)", NEXTBYTE (p),
reg_names[reg]);
break;
case 0xD0: /* Displacement word deferred: *displ(Rn). */
(*info->fprintf_func) (info->stream, "*");
case 0xC0: /* Displacement word: displ(Rn). */
if (reg == 0xF)
(*info->print_address_func) (addr + 3 + NEXTWORD (p), info);
else
(*info->fprintf_func) (info->stream, "0x%x(%s)", NEXTWORD (p),
reg_names[reg]);
break;
case 0xF0: /* Displacement long deferred: *displ(Rn). */
(*info->fprintf_func) (info->stream, "*");
case 0xE0: /* Displacement long: displ(Rn). */
if (reg == 0xF)
(*info->print_address_func) (addr + 5 + NEXTLONG (p), info);
else
(*info->fprintf_func) (info->stream, "0x%x(%s)", NEXTLONG (p),
reg_names[reg]);
break;
}
return p - p0;
}
/* Returns number of bytes "eaten" by the operand, or return -1 if an
invalid operand was found, or -2 if an opcode tabel error was
found. */
static int
print_insn_arg (const char *d,
unsigned char *p0,
bfd_vma addr, /* PC for this arg to be relative to. */
disassemble_info *info)
{
int arg_len;
/* Check validity of addressing length. */
switch (d[1])
{
case 'b' : arg_len = 1; break;
case 'd' : arg_len = 8; break;
case 'f' : arg_len = 4; break;
case 'g' : arg_len = 8; break;
case 'h' : arg_len = 16; break;
case 'l' : arg_len = 4; break;
case 'o' : arg_len = 16; break;
case 'w' : arg_len = 2; break;
case 'q' : arg_len = 8; break;
default : abort ();
}
/* Branches have no mode byte. */
if (d[0] == 'b')
{
unsigned char *p = p0;
if (arg_len == 1)
(*info->print_address_func) (addr + 1 + NEXTBYTE (p), info);
else
(*info->print_address_func) (addr + 2 + NEXTWORD (p), info);
return p - p0;
}
return print_insn_mode (d, arg_len, p0, addr, info);
}
1999-05-03 15:29:11 +08:00
/* Print the vax instruction at address MEMADDR in debugged memory,
on INFO->STREAM. Returns length of the instruction, in bytes. */
int
print_insn_vax (bfd_vma memaddr, disassemble_info *info)
1999-05-03 15:29:11 +08:00
{
static bfd_boolean parsed_disassembler_options = FALSE;
1999-05-03 15:29:11 +08:00
const struct vot *votp;
2001-09-20 23:28:25 +08:00
const char *argp;
1999-05-03 15:29:11 +08:00
unsigned char *arg;
struct private priv;
bfd_byte *buffer = priv.the_buffer;
info->private_data = & priv;
1999-05-03 15:29:11 +08:00
priv.max_fetched = priv.the_buffer;
priv.insn_start = memaddr;
2001-09-20 23:28:25 +08:00
if (! parsed_disassembler_options
&& info->disassembler_options != NULL)
{
parse_disassembler_options (info->disassembler_options);
/* To avoid repeated parsing of these options. */
parsed_disassembler_options = TRUE;
}
1999-05-03 15:29:11 +08:00
if (setjmp (priv.bailout) != 0)
/* Error return. */
return -1;
1999-05-03 15:29:11 +08:00
2001-09-20 23:28:25 +08:00
argp = NULL;
/* Check if the info buffer has more than one byte left since
the last opcode might be a single byte with no argument data. */
if (info->buffer_length - (memaddr - info->buffer_vma) > 1)
{
FETCH_DATA (info, buffer + 2);
}
else
{
FETCH_DATA (info, buffer + 1);
buffer[1] = 0;
}
/* Decode function entry mask. */
if (is_function_entry (info, memaddr))
{
int i = 0;
int register_mask = buffer[1] << 8 | buffer[0];
(*info->fprintf_func) (info->stream, ".word 0x%04x # Entry mask: <",
register_mask);
for (i = 15; i >= 0; i--)
if (register_mask & (1 << i))
(*info->fprintf_func) (info->stream, " %s", entry_mask_bit[i]);
(*info->fprintf_func) (info->stream, " >");
return 2;
}
/* Decode PLT entry offset longword. */
if (is_plt_tail (info, memaddr))
{
int offset;
FETCH_DATA (info, buffer + 4);
offset = buffer[3] << 24 | buffer[2] << 16 | buffer[1] << 8 | buffer[0];
(*info->fprintf_func) (info->stream, ".long 0x%08x", offset);
return 4;
}
1999-05-03 15:29:11 +08:00
for (votp = &votstrs[0]; votp->name[0]; votp++)
{
vax_opcodeT opcode = votp->detail.code;
1999-05-03 15:29:11 +08:00
/* 2 byte codes match 2 buffer pos. */
if ((bfd_byte) opcode == buffer[0]
&& (opcode >> 8 == 0 || opcode >> 8 == buffer[1]))
{
argp = votp->detail.args;
break;
}
}
if (argp == NULL)
{
/* Handle undefined instructions. */
(*info->fprintf_func) (info->stream, ".word 0x%x",
(buffer[0] << 8) + buffer[1]);
return 2;
}
/* Point at first byte of argument data, and at descriptor for first
argument. */
arg = buffer + ((votp->detail.code >> 8) ? 2 : 1);
/* Make sure we have it in mem */
FETCH_DATA (info, arg);
(*info->fprintf_func) (info->stream, "%s", votp->name);
if (*argp)
(*info->fprintf_func) (info->stream, " ");
while (*argp)
{
arg += print_insn_arg (argp, arg, memaddr + arg - buffer, info);
argp += 2;
if (*argp)
(*info->fprintf_func) (info->stream, ",");
}
return arg - buffer;
}