binutils-gdb/gdb/gdbarch.h

380 lines
13 KiB
C
Raw Normal View History

1999-07-20 07:30:11 +08:00
/* Dynamic architecture support for GDB, the GNU debugger.
Copyright (C) 1998-2022 Free Software Foundation, Inc.
1999-07-08 04:19:36 +08:00
This file is part of GDB.
1999-07-08 04:19:36 +08:00
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
1999-07-08 04:19:36 +08:00
(at your option) any later version.
1999-07-08 04:19:36 +08:00
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
1999-07-08 04:19:36 +08:00
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
1999-07-20 07:30:11 +08:00
#ifndef GDBARCH_H
#define GDBARCH_H
Change return type of gdbarch_software_single_step to vector<CORE_ADDR> This is a relatively straightforward patch that changes gdbarch_software_single_step so it returns an std::vector<CORE_ADDR> instead of a VEC (CORE_ADDR). gdb/ChangeLog: * gdbarch.sh (software_single_step): Change return type to std::vector<CORE_ADDR>. * gdbarch.c, gdbarch.h: Re-generate. * arch/arm-get-next-pcs.c (thumb_deal_with_atomic_sequence_raw): Adjust. (arm_deal_with_atomic_sequence_raw): Adjust. (thumb_get_next_pcs_raw): Adjust. (arm_get_next_pcs_raw): Adjust. (arm_get_next_pcs): Adjust. * arch/arm-get-next-pcs.h (arm_get_next_pcs): Adjust. * aarch64-tdep.c (aarch64_software_single_step): Adjust. * alpha-tdep.c (alpha_deal_with_atomic_sequence): Adjust. (alpha_software_single_step): Adjust. * alpha-tdep.h (alpha_software_single_step): Adjust. * arm-linux-tdep.c (arm_linux_software_single_step): Adjust. * arm-tdep.c (arm_software_single_step): Adjust. (arm_breakpoint_kind_from_current_state): Adjust. * arm-tdep.h (arm_software_single_step): Adjust. * breakpoint.c (insert_single_step_breakpoint): Adjust. * cris-tdep.c (cris_software_single_step): Adjust. * mips-tdep.c (mips_deal_with_atomic_sequence): Adjust. (micromips_deal_with_atomic_sequence): Adjust. (deal_with_atomic_sequence): Adjust. (mips_software_single_step): Adjust. * mips-tdep.h (mips_software_single_step): Adjust. * moxie-tdep.c (moxie_software_single_step): Adjust. * nios2-tdep.c (nios2_software_single_step): Adjust. * ppc-tdep.h (ppc_deal_with_atomic_sequence): Adjust. * rs6000-aix-tdep.c (rs6000_software_single_step): Adjust. * rs6000-tdep.c (ppc_deal_with_atomic_sequence): Adjust. * s390-linux-tdep.c (s390_software_single_step): Adjust. * sparc-tdep.c (sparc_software_single_step): Adjust. * spu-tdep.c (spu_software_single_step): Adjust. * tic6x-tdep.c (tic6x_software_single_step): Adjust. gdb/gdbserver/ChangeLog: * linux-arm-low.c (arm_gdbserver_get_next_pcs): Adjust to software_single_step change of return type to std::vector<CORE_ADDR>. * linux-low.c (install_software_single_step_breakpoints): Likewise. * linux-low.h (install_software_single_step_breakpoints): Likewise.
2017-05-03 01:30:07 +08:00
#include <vector>
#include "frame.h"
GDB: Add support for the new set/show disassembler-options commands. This commit adds support to GDB so that it can modify the disassembler-options value that is passed to the disassembler, similar to objdump's -M option. Currently, the only supported targets are ARM, PowerPC and S/390, but adding support for a new target(s) is not difficult. include/ * dis-asm.h (disasm_options_t): New typedef. (parse_arm_disassembler_option): Remove prototype. (set_arm_regname_option): Likewise. (get_arm_regnames): Likewise. (get_arm_regname_num_options): Likewise. (disassemble_init_s390): New prototype. (disassembler_options_powerpc): Likewise. (disassembler_options_arm): Likewise. (disassembler_options_s390): Likewise. (remove_whitespace_and_extra_commas): Likewise. (disassembler_options_cmp): Likewise. (next_disassembler_option): New inline function. (FOR_EACH_DISASSEMBLER_OPTION): New macro. opcodes/ * disassemble.c Include "safe-ctype.h". (disassemble_init_for_target): Handle s390 init. (remove_whitespace_and_extra_commas): New function. (disassembler_options_cmp): Likewise. * arm-dis.c: Include "libiberty.h". (NUM_ELEM): Delete. (regnames): Use long disassembler style names. Add force-thumb and no-force-thumb options. (NUM_ARM_REGNAMES): Rename from this... (NUM_ARM_OPTIONS): ...to this. Use ARRAY_SIZE. (get_arm_regname_num_options): Delete. (set_arm_regname_option): Likewise. (get_arm_regnames): Likewise. (parse_disassembler_options): Likewise. (parse_arm_disassembler_option): Rename from this... (parse_arm_disassembler_options): ...to this. Make static. Use new FOR_EACH_DISASSEMBLER_OPTION macro to scan over options. (print_insn): Use parse_arm_disassembler_options. (disassembler_options_arm): New function. (print_arm_disassembler_options): Handle updated regnames. * ppc-dis.c: Include "libiberty.h". (ppc_opts): Add "32" and "64" entries. (ppc_parse_cpu): Use ARRAY_SIZE and disassembler_options_cmp. (powerpc_init_dialect): Add break to switch statement. Use new FOR_EACH_DISASSEMBLER_OPTION macro. (disassembler_options_powerpc): New function. (print_ppc_disassembler_options): Use ARRAY_SIZE. Remove printing of "32" and "64". * s390-dis.c: Include "libiberty.h". (init_flag): Remove unneeded variable. (struct s390_options_t): New structure type. (options): New structure. (init_disasm): Rename from this... (disassemble_init_s390): ...to this. Add initializations for current_arch_mask and option_use_insn_len_bits_p. Remove init_flag. (print_insn_s390): Delete call to init_disasm. (disassembler_options_s390): New function. (print_s390_disassembler_options): Print using information from struct 'options'. * po/opcodes.pot: Regenerate. binutils/ * objdump.c (main): Use remove_whitespace_and_extra_commas. gdb/ * NEWS: Mention new set/show disassembler-options commands. * doc/gdb.texinfo: Document new set/show disassembler-options commands. * disasm.c: Include "arch-utils.h", "gdbcmd.h" and "safe-ctype.h". (prospective_options): New static variable. (gdb_disassembler::gdb_disassembler): Initialize m_di.disassembler_options. (gdb_buffered_insn_length_init_dis): Initilize di->disassembler_options. (get_disassembler_options): New function. (set_disassembler_options): Likewise. (set_disassembler_options_sfunc): Likewise. (show_disassembler_options_sfunc): Likewise. (disassembler_options_completer): Likewise. (_initialize_disasm): Likewise. * disasm.h (get_disassembler_options): New prototype. (set_disassembler_options): Likewise. * gdbarch.sh (gdbarch_disassembler_options): New variable. (gdbarch_verify_disassembler_options): Likewise. * gdbarch.c: Regenerate. * gdbarch.h: Likewise. * arm-tdep.c (num_disassembly_options): Delete. (set_disassembly_style): Likewise. (arm_disassembler_options): New static variable. (set_disassembly_style_sfunc): Convert short style name into long option name. Call set_disassembler_options. (show_disassembly_style_sfunc): New function. (arm_gdbarch_init): Call set_gdbarch_disassembler_options and set_gdbarch_verify_disassembler_options. (_initialize_arm_tdep): Delete regnames variable and update callers. (arm_disassembler_options): Initialize. (disasm_options): New variable. (num_disassembly_options): Rename from this... (num_disassembly_styles): ...to this. Compute by scanning through disasm_options. (valid_disassembly_styles): Initialize using disasm_options. Remove calls to parse_arm_disassembler_option, get_arm_regnames and set_arm_regname_option. Pass show_disassembly_style_sfunc to the "disassembler" setshow command. * rs6000-tdep.c (powerpc_disassembler_options): New static variable. (rs6000_gdbarch_init): Call set_gdbarch_disassembler_options and set_gdbarch_verify_disassembler_options. * s390-tdep.c (s390_disassembler_options): New static variable. (s390_gdbarch_init):all set_gdbarch_disassembler_options and set_gdbarch_verify_disassembler_options. gdb/testsuite/ * gdb.arch/powerpc-power.exp: Delete test. * gdb.arch/powerpc-power.s: Likewise. * gdb.disasm/disassembler-options.exp: New test. * gdb.arch/powerpc-altivec.exp: Likewise. * gdb.arch/powerpc-altivec.s: Likewise. * gdb.arch/powerpc-altivec2.exp: Likewise. * gdb.arch/powerpc-altivec2.s: Likewise. * gdb.arch/powerpc-altivec3.exp: Likewise. * gdb.arch/powerpc-altivec3.s: Likewise. * gdb.arch/powerpc-power7.exp: Likewise. * gdb.arch/powerpc-power7.s: Likewise. * gdb.arch/powerpc-power8.exp: Likewise. * gdb.arch/powerpc-power8.s: Likewise. * gdb.arch/powerpc-power9.exp: Likewise. * gdb.arch/powerpc-power9.s: Likewise. * gdb.arch/powerpc-vsx.exp: Likewise. * gdb.arch/powerpc-vsx.s: Likewise. * gdb.arch/powerpc-vsx2.exp: Likewise. * gdb.arch/powerpc-vsx2.s: Likewise. * gdb.arch/powerpc-vsx3.exp: Likewise. * gdb.arch/powerpc-vsx3.s: Likewise. * gdb.arch/arm-disassembler-options.exp: Likewise. * gdb.arch/powerpc-disassembler-options.exp: Likewise. * gdb.arch/s390-disassembler-options.exp: Likewise.
2017-03-01 02:32:07 +08:00
#include "dis-asm.h"
#include "gdbsupport/gdb_obstack.h"
#include "infrun.h"
#include "osabi.h"
2020-12-05 05:43:55 +08:00
#include "displaced-stepping.h"
struct floatformat;
struct ui_file;
1999-06-08 03:19:32 +08:00
struct value;
struct objfile;
struct obj_section;
struct minimal_symbol;
struct regcache;
struct reggroup;
struct regset;
2003-09-04 Andrew Cagney <cagney@redhat.com> * avr-tdep.c: Include "dis-asm.h". * cris-tdep.c: Include "dis-asm.h". (cris_delayed_get_disassembler): Use "struct disassemble_info" instead of corresponding typedef. * h8300-tdep.c: Include "dis-asm.h". * ia64-tdep.c: Include "dis-asm.h". * i386-tdep.c: Include "dis-asm.h". (i386_print_insn): Use "struct disassemble_info" instead of corresponding typedef. * m68k-tdep.c: Include "dis-asm.h". * mcore-tdep.c: Include "dis-asm.h". * mips-tdep.c: Include "dis-asm.h". (gdb_print_insn_mips): Make static, use "struct disassemble_info" instead of corresponding typedef. * ns32k-tdep.c: Include "dis-asm.h". * s390-tdep.c: Include "dis-asm.h". * sparc-tdep.c: Include "dis-asm.h". * vax-tdep.c: Include "dis-asm.h". * v850-tdep.c: Include "dis-asm.h". * mn10300-tdep.c: Include "dis-asm.h". * rs6000-tdep.c: Include "dis-asm.h". * xstormy16-tdep.c: Include "dis-asm.h". (_initialize_xstormy16_tdep): Delete "extern" declaration of print_insn_xstormy16. * Makefile.in (v850-tdep.o): Update dependencies. (vax-tdep.o, sparc-tdep.o, s390-tdep.o): Ditto. (ns32k-tdep.o, mips-tdep.o, mcore-tdep.o): Ditto. (m68k-tdep.o, ia64-tdep.o, i386-tdep.o): Ditto. (h8300-tdep.o, cris-tdep.o, avr-tdep.o): Ditto. (mn10300-tdep.o, xstormy16-tdep.o, disasm.o): Ditto. (gdbarch_h): Remove $(dis_asm_h). * disasm.c: Include "dis-asm.h". (dis_asm_read_memory): Use "struct disassemble_info" instead of corresponding typedef. (dis_asm_memory_error, dump_insns, do_assembly_only): Ditto. (gdb_disassemble_info, gdb_disassembly, gdb_print_insn): Ditto. * gdbarch.sh: Do not include "dis-asm.h". (struct disassemble_info): Declare opaque. (TARGET_PRINT_INSN): Update declaration. * gdbarch.h, gdbarch.c: Re-generate.
2003-09-09 12:41:32 +08:00
struct disassemble_info;
struct target_ops;
2004-03-15 Andrew Cagney <cagney@redhat.com> * gdbarch.sh (gdbarch_data_pre_init_fytpe) (gdbarch_data_register_pre_init, gdbarch_data_post_init_fytpe) (gdbarch_data_register_post_init): Replace gdbarch_data_init_ftype and register_gdbarch_data. (deprecated_set_gdbarch_data): Rename set_gdbarch_data. (struct gdbarch_data): Replace "init" by "pre_init" and "post_init". * gdbarch.h, gdbarch.c: Re-generate. * dwarf2-frame.c (dwarf2_frame_init): Replace "gdbarch" paramter with"obstack", use OBSTACK_ZALLOC. (dwarf2_frame_ops): Delete. (dwarf2_frame_set_init_reg): Use gdbarch_data. (dwarf2_frame_init_reg): Use gdbarch_data. (_initialize_dwarf2_frame): Use gdbarch_data_register_pre_init. * solib-svr4.c (set_solib_svr4_fetch_link_map_offsets) (_initialize_svr4_solib): Update. * user-regs.c (_initialize_user_regs): Update. * reggroups.c (_initialize_reggroup): Update. * regcache.c (_initialize_regcache): Update. * mips-linux-tdep.c (_initialize_mips_linux_tdep): Update. * libunwind-frame.c (_initialize_libunwind_frame): Update. * gnu-v3-abi.c (init_gnuv3_ops): Update. * frame-unwind.c (_initialize_frame_unwind): Update. * frame-base.c (_initialize_frame_base): Update. * user-regs.c (user_reg_add): Update. * reggroups.c (reggroup_add): Update. * mips-linux-tdep.c (set_mips_linux_register_addr): Update. * libunwind-frame.c (libunwind_frame_set_descr): Update. * frame-unwind.c (frame_unwind_append_sniffer): Update. * frame-base.c (frame_base_table): Update. * remote.c (_initialize_remote): Update. * gdb_obstack.h (OBSTACK_ZALLOC, OBSTACK_CALLOC): Define.
2004-03-16 04:38:08 +08:00
struct obstack;
gdb/ * breakpoint.c (deprecated_read_memory_nobpt): Update to use shadow_len. (insert_bp_location, reattach_breakpoints, remove_breakpoint) (delete_breakpoint): Update calls to changed methods. (deprecated_insert_raw_breakpoint, deprecated_remove_raw_breakpoint) (single_step_breakpoints, insert_single_step_breakpoint) (remove_single_step_breakpoints): New. * breakpoint.h (struct bp_target_info): New. (struct bp_location): Replace shadow_contents with target_info and overlay_target_info. (deprecated_insert_raw_breakpoint, deprecated_remove_raw_breakpoint) (insert_single_step_breakpoint, remove_single_step_breakpoints): New prototypes. * gdbarch.sh: Forward declare struct bp_target_info in gdbarch.h. (memory_insert_breakpoint, memory_remove_breakpoint): Update second argument. * mem-break.c (default_memory_insert_breakpoint): Update. Set placed_address, placed_size, and shadow_len. (default_memory_remove_breakpoint): Update. Don't use BREAKPOINT_FROM_PC. (memory_insert_breakpoint, memory_remove_breakpoint): Update. * target.c (update_current_target): Update prototypes for changed functions. (debug_to_insert_breakpoint, debug_to_remove_breakpoint) (debug_to_insert_hw_breakpoint, debug_to_remove_hw_breakpoint): Update. * target.h: Forward declare struct bp_target_info. (struct target_ops): Use a bp_target_info argument for to_insert_breakpoint, to_remove_breakpoint, to_insert_hw_breakpoint, and to_remove_hw_breakpoint. (target_insert_breakpoint, target_remove_breakpoint) (target_insert_hw_breakpoint, target_remove_hw_breakpoint) (memory_insert_breakpoint, memory_remove_breakpoint) (default_memory_insert_breakpoint, default_memory_remove_breakpoint): Update. * config/i386/nm-i386.h: Forward declare struct bp_target_info. (i386_insert_hw_breakpoint, i386_remove_hw_breakpoint): Update. (target_insert_hw_breakpoint, target_remove_hw_breakpoint): Likewise. * gdbarch.c, gdbarch.h: Regenerated. * alpha-tdep.c (alpha_software_single_step): Use insert_single_step_breakpoint and remove_single_step_breakpoints. Remove unused statics. * arm-tdep.c (arm_software_single_step): Likewise. Add a note. * cris-tdep.c (cris_software_single_step): Likewise. * mips-tdep.c (mips_software_single_step): Likewise. * rs6000-tdep.c (rs6000_software_single_step): Likewise. * sparc-tdep.c (sparc_software_single_step): Likewise. * wince.c (struct thread_info_struct): Remove step_prev. (undoSStep): Use remove_single_step_breakpoints. (wince_software_single_step): Use insert_single_step_breakpoint. * corelow.c (ignore): Remove unneeded prototype. Update arguments. * exec.c (ignore): Likewise. * sol-thread.c (ignore): Likewise. * procfs.c (dbx_link_shadow_contents): Delete. (dbx_link_bpt): New. (procfs_mourn_inferior): Remove it if necessary. (remove_dbx_link_breakpoint): Use it. (insert_dbx_link_bpt_in_file): Set it. (procfs_init_inferior): Don't update dbx_link_bpt_addr. * rs6000-nat.c (exec_one_dummy_insn): Use deprecated_insert_raw_breakpoint and deprecated_remove_raw_breakpoint. * solib-irix.c (shadow_contents, breakpoint_addr): Delete. (base_breakpoint): New. (disable_break): Use it. (enable_break): Set it. * i386-nat.c (i386_insert_hw_breakpoint, i386_remove_hw_breakpoint): Update. * ia64-tdep.c (ia64_memory_insert_breakpoint) (ia64_memory_remove_breakpoint): Likewise. * m32r-tdep.c (m32r_memory_insert_breakpoint) (m32r_memory_remove_breakpoint): Likewise. * monitor.c (monitor_insert_breakpoint, monitor_remove_breakpoint): Likewise. Remove unnecessary prototypes. Use placed_address and placed_size. Removed useless read from memory. * nto-procfs.c (procfs_insert_breakpoint) (procfs_remove_breakpoint, procfs_insert_hw_breakpoint) (procfs_remove_hw_breakpoint): Update. * ocd.c (ocd_insert_breakpoint, ocd_remove_breakpoint): Likewise. * ocd.h (ocd_insert_breakpoint, ocd_remove_breakpoint): Likewise. * ppc-linux-tdep.c (ppc_linux_memory_remove_breakpoint): Likewise. * ppc-tdep.h (ppc_linux_memory_remove_breakpoint): Likewise. * remote-e7000.c (e7000_insert_breakpoint) (e7000_remove_breakpoint): Likewise. * remote-m32r-sdi.c (m32r_insert_breakpoint) (m32r_remove_breakpoint): Likewise. * remote-mips.c (mips_insert_breakpoint) (mips_remove_breakpoint): Likewise. * remote-rdp.c (remote_rdp_insert_breakpoint) (remote_rdp_remove_breakpoint): Likewise. (rdp_step): Use deprecated_insert_raw_breakpoint and deprecated_remove_raw_breakpoint. * remote-sds.c (sds_insert_breakpoint, sds_remove_breakpoint): Update. * remote-sim.c (gdbsim_insert_breakpoint, gdbsim_remove_breakpoint): Delete. (init_gdbsim_ops): Use memory_insert_breakpoint and memory_remove_breakpoint. * remote-st.c (st2000_insert_breakpoint) (st2000_remove_breakpoint): Update. Remove unused BREAKPOINT_FROM_PC. * remote.c (remote_insert_breakpoint, remote_remove_breakpoint): Update. Use placed_address and placed_size. (remote_insert_hw_breakpoint, remote_remove_hw_breakpoint): Likewise. gdb/doc/ * gdbint.texinfo (x86 Watchpoints, Target Conditionals): Update insert and remove breakpoint prototypes. (Watchpoints): Move description of target_insert_hw_breakpoint and target_remove_hw_breakpoint ... (Breakpoints): ... to here. Document target_insert_breakpoint and target_remove_breakpoint.
2006-04-19 03:20:08 +08:00
struct bp_target_info;
struct target_desc;
MIPS: Keep the ISA bit in compressed code addresses 1. Background information The MIPS architecture, as originally designed and implemented in mid-1980s has a uniform instruction word size that is 4 bytes, naturally aligned. As such all MIPS instructions are located at addresses that have their bits #1 and #0 set to zeroes, and any attempt to execute an instruction from an address that has any of the two bits set to one causes an address error exception. This may for example happen when a jump-register instruction is executed whose register value used as the jump target has any of these bits set. Then in mid 1990s LSI sought a way to improve code density for their TinyRISC family of MIPS cores and invented an alternatively encoded instruction set in a joint effort with MIPS Technologies (then a subsidiary of SGI). The new instruction set has been named the MIPS16 ASE (Application-Specific Extension) and uses a variable instruction word size, which is 2 bytes (as the name of the ASE suggests) for most, but there are a couple of exceptions that take 4 bytes, and then most of the 2-byte instructions can be treated with a 2-byte extension prefix to expand the range of the immediate operands used. As a result instructions are no longer 4-byte aligned, instead they are aligned to a multiple of 2. That left the bit #0 still unused for code references, be it for the standard MIPS (i.e. as originally invented) or for the MIPS16 instruction set, and based on that observation a clever trick was invented that on one hand allowed the processor to be seamlessly switched between the two instruction sets at any time at the run time while on the other avoided the introduction of any special control register to do that. So it is the bit #0 of the instruction address that was chosen as the selector and named the ISA bit. Any instruction executed at an even address is interpreted as a standard MIPS instruction (the address still has to have its bit #1 clear), any instruction executed at an odd address is interpreted as a MIPS16 instruction. To switch between modes ordinary jump instructions are used, such as used for function calls and returns, specifically the bit #0 of the source register used in jump-register instructions selects the execution (ISA) mode for the following piece of code to be interpreted in. Additionally new jump-immediate instructions were added that flipped the ISA bit to select the opposite mode upon execution. They were considered necessary to avoid the need to make register jumps in all cases as the original jump-immediate instructions provided no way to change the bit #0 at all. This was all important for cases where standard MIPS and MIPS16 code had to be mixed, either for compatibility with the existing binary code base or to access resources not reachable from MIPS16 code (the MIPS16 instruction set only provides access to general-purpose registers, and not for example floating-point unit registers or privileged coprocessor 0 registers) -- pieces of code in the opposite mode can be executed as ordinary subroutine calls. A similar approach has been more recently adopted for the MIPS16 replacement instruction set defined as the so called microMIPS ASE. This is another instruction set encoding introduced to the MIPS architecture. Just like the MIPS16 ASE, the microMIPS instruction set uses a variable-length encoding, where each instruction takes a multiple of 2 bytes. The ISA bit has been reused and for microMIPS-capable processors selects between the standard MIPS and the microMIPS mode instead. 2. Statement of the problem To put it shortly, MIPS16 and microMIPS code pointers used by GDB are different to these observed at the run time. This results in the same expressions being evaluated producing different results in GDB and in the program being debugged. Obviously it's the results obtained at the run time that are correct (they define how the program behaves) and therefore by definition the results obtained in GDB are incorrect. A bit longer description will record that obviously at the run time the ISA bit has to be set correctly (refer to background information above if unsure why so) or the program will not run as expected. This is recorded in all the executable file structures used at the run time: the dynamic symbol table (but not always the static one!), the GOT, and obviously in all the addresses embedded in code or data of the program itself, calculated by applying the appropriate relocations at the static link time. While a program is being processed by GDB, the ISA bit is stripped off from any code addresses, presumably to make them the same as the respective raw memory byte address used by the processor to access the instruction in the instruction fetch access cycle. This stripping is actually performed outside GDB proper, in BFD, specifically _bfd_mips_elf_symbol_processing (elfxx-mips.c, see the piece of code at the very bottom of that function, starting with an: "If this is an odd-valued function symbol, assume it's a MIPS16 or microMIPS one." comment). This function is also responsible for symbol table dumps made by `objdump' too, so you'll never see the ISA bit reported there by that tool, you need to use `readelf'. This is however unlike what is ever done at the run time, the ISA bit once present is never stripped off, for example a cast like this: (short *) main will not strip the ISA bit off and if the resulting pointer is intended to be used to access instructions as data, for example for software instruction decoding (like for fault recovery or emulation in a signal handler) or for self-modifying code then the bit still has to be stripped off by an explicit AND operation. This is probably best illustrated with a simple real program example. Let's consider the following simple program: $ cat foobar.c int __attribute__ ((mips16)) foo (void) { return 1; } int __attribute__ ((mips16)) bar (void) { return 2; } int __attribute__ ((nomips16)) foo32 (void) { return 3; } int (*foo32p) (void) = foo32; int (*foop) (void) = foo; int fooi = (int) foo; int main (void) { return foop (); } $ This is plain C with no odd tricks, except from the instruction mode attributes. They are not necessary to trigger this problem, I just put them here so that the program can be contained in a single source file and to make it obvious which function is MIPS16 code and which is not. Let's try it with Linux, so that everyone can repeat this experiment: $ mips-linux-gnu-gcc -mips16 -g -O2 -o foobar foobar.c $ Let's have a look at some interesting symbols: $ mips-linux-gnu-readelf -s foobar | egrep 'table|foo|bar' Symbol table '.dynsym' contains 7 entries: Symbol table '.symtab' contains 95 entries: 55: 00000000 0 FILE LOCAL DEFAULT ABS foobar.c 66: 0040068c 4 FUNC GLOBAL DEFAULT [MIPS16] 12 bar 68: 00410848 4 OBJECT GLOBAL DEFAULT 21 foo32p 70: 00410844 4 OBJECT GLOBAL DEFAULT 21 foop 78: 00400684 8 FUNC GLOBAL DEFAULT 12 foo32 80: 00400680 4 FUNC GLOBAL DEFAULT [MIPS16] 12 foo 88: 00410840 4 OBJECT GLOBAL DEFAULT 21 fooi $ Hmm, no sight of the ISA bit, but notice how foo and bar (but not foo32!) have been marked as MIPS16 functions (ELF symbol structure's `st_other' field is used for that). So let's try to run and poke at this program with GDB. I'll be using a native system for simplicity (I'll be using ellipses here and there to remove unrelated clutter): $ ./foobar $ echo $? 1 $ So far, so good. $ gdb ./foobar [...] (gdb) break main Breakpoint 1 at 0x400490: file foobar.c, line 23. (gdb) run Starting program: .../foobar Breakpoint 1, main () at foobar.c:23 23 return foop (); (gdb) Yay, it worked! OK, so let's poke at it: (gdb) print main $1 = {int (void)} 0x400490 <main> (gdb) print foo32 $2 = {int (void)} 0x400684 <foo32> (gdb) print foo32p $3 = (int (*)(void)) 0x400684 <foo32> (gdb) print bar $4 = {int (void)} 0x40068c <bar> (gdb) print foo $5 = {int (void)} 0x400680 <foo> (gdb) print foop $6 = (int (*)(void)) 0x400681 <foo> (gdb) A-ha! Here's the difference and finally the ISA bit! (gdb) print /x fooi $7 = 0x400681 (gdb) p/x $pc p/x $pc $8 = 0x400491 (gdb) And here as well... (gdb) advance foo foo () at foobar.c:4 4 } (gdb) disassemble Dump of assembler code for function foo: 0x00400680 <+0>: jr ra 0x00400682 <+2>: li v0,1 End of assembler dump. (gdb) finish Run till exit from #0 foo () at foobar.c:4 main () at foobar.c:24 24 } Value returned is $9 = 1 (gdb) continue Continuing. [Inferior 1 (process 14103) exited with code 01] (gdb) So let's be a bit inquisitive... (gdb) run Starting program: .../foobar Breakpoint 1, main () at foobar.c:23 23 return foop (); (gdb) Actually we do not like to run foo here at all. Let's run bar instead! (gdb) set foop = bar (gdb) print foop $10 = (int (*)(void)) 0x40068c <bar> (gdb) Hmm, no ISA bit. Is it going to work? (gdb) advance bar bar () at foobar.c:9 9 } (gdb) p/x $pc $11 = 0x40068c (gdb) disassemble Dump of assembler code for function bar: => 0x0040068c <+0>: jr ra 0x0040068e <+2>: li v0,2 End of assembler dump. (gdb) finish Run till exit from #0 bar () at foobar.c:9 Program received signal SIGILL, Illegal instruction. bar () at foobar.c:9 9 } (gdb) Oops! (gdb) p/x $pc $12 = 0x40068c (gdb) We're still there! (gdb) continue Continuing. Program terminated with signal SIGILL, Illegal instruction. The program no longer exists. (gdb) So let's try something else: (gdb) run Starting program: .../foobar Breakpoint 1, main () at foobar.c:23 23 return foop (); (gdb) set foop = foo (gdb) advance foo foo () at foobar.c:4 4 } (gdb) disassemble Dump of assembler code for function foo: => 0x00400680 <+0>: jr ra 0x00400682 <+2>: li v0,1 End of assembler dump. (gdb) finish Run till exit from #0 foo () at foobar.c:4 Program received signal SIGILL, Illegal instruction. foo () at foobar.c:4 4 } (gdb) continue Continuing. Program terminated with signal SIGILL, Illegal instruction. The program no longer exists. (gdb) The same problem! (gdb) run Starting program: /net/build2-lucid-cs/scratch/macro/mips-linux-fsf-gcc/isa-bit/foobar Breakpoint 1, main () at foobar.c:23 23 return foop (); (gdb) set foop = foo32 (gdb) advance foo32 foo32 () at foobar.c:14 14 } (gdb) disassemble Dump of assembler code for function foo32: => 0x00400684 <+0>: jr ra 0x00400688 <+4>: li v0,3 End of assembler dump. (gdb) finish Run till exit from #0 foo32 () at foobar.c:14 main () at foobar.c:24 24 } Value returned is $14 = 3 (gdb) continue Continuing. [Inferior 1 (process 14113) exited with code 03] (gdb) That did work though, so it's the ISA bit only! (gdb) quit Enough! That's the tip of the iceberg only though. So let's rebuild the executable with some dynamic symbols: $ mips-linux-gnu-gcc -mips16 -Wl,--export-dynamic -g -O2 -o foobar-dyn foobar.c $ mips-linux-gnu-readelf -s foobar-dyn | egrep 'table|foo|bar' Symbol table '.dynsym' contains 32 entries: 6: 004009cd 4 FUNC GLOBAL DEFAULT 12 bar 8: 00410b88 4 OBJECT GLOBAL DEFAULT 21 foo32p 9: 00410b84 4 OBJECT GLOBAL DEFAULT 21 foop 15: 004009c4 8 FUNC GLOBAL DEFAULT 12 foo32 17: 004009c1 4 FUNC GLOBAL DEFAULT 12 foo 25: 00410b80 4 OBJECT GLOBAL DEFAULT 21 fooi Symbol table '.symtab' contains 95 entries: 55: 00000000 0 FILE LOCAL DEFAULT ABS foobar.c 69: 004009cd 4 FUNC GLOBAL DEFAULT 12 bar 71: 00410b88 4 OBJECT GLOBAL DEFAULT 21 foo32p 72: 00410b84 4 OBJECT GLOBAL DEFAULT 21 foop 79: 004009c4 8 FUNC GLOBAL DEFAULT 12 foo32 81: 004009c1 4 FUNC GLOBAL DEFAULT 12 foo 89: 00410b80 4 OBJECT GLOBAL DEFAULT 21 fooi $ OK, now the ISA bit is there for a change, but the MIPS16 `st_other' attribute gone, hmm... What does `objdump' do then: $ mips-linux-gnu-objdump -Tt foobar-dyn | egrep 'SYMBOL|foo|bar' foobar-dyn: file format elf32-tradbigmips SYMBOL TABLE: 00000000 l df *ABS* 00000000 foobar.c 004009cc g F .text 00000004 0xf0 bar 00410b88 g O .data 00000004 foo32p 00410b84 g O .data 00000004 foop 004009c4 g F .text 00000008 foo32 004009c0 g F .text 00000004 0xf0 foo 00410b80 g O .data 00000004 fooi DYNAMIC SYMBOL TABLE: 004009cc g DF .text 00000004 Base 0xf0 bar 00410b88 g DO .data 00000004 Base foo32p 00410b84 g DO .data 00000004 Base foop 004009c4 g DF .text 00000008 Base foo32 004009c0 g DF .text 00000004 Base 0xf0 foo 00410b80 g DO .data 00000004 Base fooi $ Hmm, the attribute (0xf0, printed raw) is back, and the ISA bit gone again. Let's have a look at some DWARF-2 records GDB uses (I'll be stripping off a lot here for brevity) -- debug info: $ mips-linux-gnu-readelf -wi foobar Contents of the .debug_info section: [...] Compilation Unit @ offset 0x88: Length: 0xbb (32-bit) Version: 4 Abbrev Offset: 62 Pointer Size: 4 <0><93>: Abbrev Number: 1 (DW_TAG_compile_unit) <94> DW_AT_producer : (indirect string, offset: 0x19e): GNU C 4.8.0 20120513 (experimental) -meb -mips16 -march=mips32r2 -mhard-float -mllsc -mplt -mno-synci -mno-shared -mabi=32 -g -O2 <98> DW_AT_language : 1 (ANSI C) <99> DW_AT_name : (indirect string, offset: 0x190): foobar.c <9d> DW_AT_comp_dir : (indirect string, offset: 0x225): [...] <a1> DW_AT_ranges : 0x0 <a5> DW_AT_low_pc : 0x0 <a9> DW_AT_stmt_list : 0x27 <1><ad>: Abbrev Number: 2 (DW_TAG_subprogram) <ae> DW_AT_external : 1 <ae> DW_AT_name : foo <b2> DW_AT_decl_file : 1 <b3> DW_AT_decl_line : 1 <b4> DW_AT_prototyped : 1 <b4> DW_AT_type : <0xc2> <b8> DW_AT_low_pc : 0x400680 <bc> DW_AT_high_pc : 0x400684 <c0> DW_AT_frame_base : 1 byte block: 9c (DW_OP_call_frame_cfa) <c2> DW_AT_GNU_all_call_sites: 1 <1><c2>: Abbrev Number: 3 (DW_TAG_base_type) <c3> DW_AT_byte_size : 4 <c4> DW_AT_encoding : 5 (signed) <c5> DW_AT_name : int <1><c9>: Abbrev Number: 4 (DW_TAG_subprogram) <ca> DW_AT_external : 1 <ca> DW_AT_name : (indirect string, offset: 0x18a): foo32 <ce> DW_AT_decl_file : 1 <cf> DW_AT_decl_line : 11 <d0> DW_AT_prototyped : 1 <d0> DW_AT_type : <0xc2> <d4> DW_AT_low_pc : 0x400684 <d8> DW_AT_high_pc : 0x40068c <dc> DW_AT_frame_base : 1 byte block: 9c (DW_OP_call_frame_cfa) <de> DW_AT_GNU_all_call_sites: 1 <1><de>: Abbrev Number: 2 (DW_TAG_subprogram) <df> DW_AT_external : 1 <df> DW_AT_name : bar <e3> DW_AT_decl_file : 1 <e4> DW_AT_decl_line : 6 <e5> DW_AT_prototyped : 1 <e5> DW_AT_type : <0xc2> <e9> DW_AT_low_pc : 0x40068c <ed> DW_AT_high_pc : 0x400690 <f1> DW_AT_frame_base : 1 byte block: 9c (DW_OP_call_frame_cfa) <f3> DW_AT_GNU_all_call_sites: 1 <1><f3>: Abbrev Number: 5 (DW_TAG_subprogram) <f4> DW_AT_external : 1 <f4> DW_AT_name : (indirect string, offset: 0x199): main <f8> DW_AT_decl_file : 1 <f9> DW_AT_decl_line : 21 <fa> DW_AT_prototyped : 1 <fa> DW_AT_type : <0xc2> <fe> DW_AT_low_pc : 0x400490 <102> DW_AT_high_pc : 0x4004a4 <106> DW_AT_frame_base : 1 byte block: 9c (DW_OP_call_frame_cfa) <108> DW_AT_GNU_all_tail_call_sites: 1 [...] $ -- no sign of the ISA bit anywhere -- frame info: $ mips-linux-gnu-readelf -wf foobar [...] Contents of the .debug_frame section: 00000000 0000000c ffffffff CIE Version: 1 Augmentation: "" Code alignment factor: 1 Data alignment factor: -4 Return address column: 31 DW_CFA_def_cfa_register: r29 DW_CFA_nop 00000010 0000000c 00000000 FDE cie=00000000 pc=00400680..00400684 00000020 0000000c 00000000 FDE cie=00000000 pc=00400684..0040068c 00000030 0000000c 00000000 FDE cie=00000000 pc=0040068c..00400690 00000040 00000018 00000000 FDE cie=00000000 pc=00400490..004004a4 DW_CFA_advance_loc: 6 to 00400496 DW_CFA_def_cfa_offset: 32 DW_CFA_offset: r31 at cfa-4 DW_CFA_advance_loc: 6 to 0040049c DW_CFA_restore: r31 DW_CFA_def_cfa_offset: 0 DW_CFA_nop DW_CFA_nop DW_CFA_nop [...] $ -- no sign of the ISA bit anywhere -- range info (GDB doesn't use arange): $ mips-linux-gnu-readelf -wR foobar Contents of the .debug_ranges section: Offset Begin End 00000000 00400680 00400690 00000000 00400490 004004a4 00000000 <End of list> $ -- no sign of the ISA bit anywhere -- line info: $ mips-linux-gnu-readelf -wl foobar Raw dump of debug contents of section .debug_line: [...] Offset: 0x27 Length: 78 DWARF Version: 2 Prologue Length: 31 Minimum Instruction Length: 1 Initial value of 'is_stmt': 1 Line Base: -5 Line Range: 14 Opcode Base: 13 Opcodes: Opcode 1 has 0 args Opcode 2 has 1 args Opcode 3 has 1 args Opcode 4 has 1 args Opcode 5 has 1 args Opcode 6 has 0 args Opcode 7 has 0 args Opcode 8 has 0 args Opcode 9 has 1 args Opcode 10 has 0 args Opcode 11 has 0 args Opcode 12 has 1 args The Directory Table is empty. The File Name Table: Entry Dir Time Size Name 1 0 0 0 foobar.c Line Number Statements: Extended opcode 2: set Address to 0x400681 Special opcode 6: advance Address by 0 to 0x400681 and Line by 1 to 2 Special opcode 7: advance Address by 0 to 0x400681 and Line by 2 to 4 Special opcode 55: advance Address by 3 to 0x400684 and Line by 8 to 12 Special opcode 7: advance Address by 0 to 0x400684 and Line by 2 to 14 Advance Line by -7 to 7 Special opcode 131: advance Address by 9 to 0x40068d and Line by 0 to 7 Special opcode 7: advance Address by 0 to 0x40068d and Line by 2 to 9 Advance PC by 3 to 0x400690 Extended opcode 1: End of Sequence Extended opcode 2: set Address to 0x400491 Advance Line by 21 to 22 Copy Special opcode 6: advance Address by 0 to 0x400491 and Line by 1 to 23 Special opcode 60: advance Address by 4 to 0x400495 and Line by -1 to 22 Special opcode 34: advance Address by 2 to 0x400497 and Line by 1 to 23 Special opcode 62: advance Address by 4 to 0x40049b and Line by 1 to 24 Special opcode 32: advance Address by 2 to 0x40049d and Line by -1 to 23 Special opcode 6: advance Address by 0 to 0x40049d and Line by 1 to 24 Advance PC by 7 to 0x4004a4 Extended opcode 1: End of Sequence [...] -- a-ha, the ISA bit is there! However it's not always right for some reason, I don't have a small test case to show it, but here's an excerpt from MIPS16 libc, a prologue of a function: 00019630 <__libc_init_first>: 19630: e8a0 jrc ra 19632: 6500 nop 00019634 <_init>: 19634: f000 6a11 li v0,17 19638: f7d8 0b08 la v1,15e00 <_DYNAMIC+0x15c54> 1963c: f400 3240 sll v0,16 19640: e269 addu v0,v1 19642: 659a move gp,v0 19644: 64f6 save 48,ra,s0-s1 19646: 671c move s0,gp 19648: d204 sw v0,16(sp) 1964a: f352 984c lw v0,-27828(s0) 1964e: 6724 move s1,a0 and the corresponding DWARF-2 line info: Line Number Statements: Extended opcode 2: set Address to 0x19631 Advance Line by 44 to 45 Copy Special opcode 8: advance Address by 0 to 0x19631 and Line by 3 to 48 Special opcode 66: advance Address by 4 to 0x19635 and Line by 5 to 53 Advance PC by constant 17 to 0x19646 Special opcode 25: advance Address by 1 to 0x19647 and Line by 6 to 59 Advance Line by -6 to 53 Special opcode 33: advance Address by 2 to 0x19649 and Line by 0 to 53 Special opcode 39: advance Address by 2 to 0x1964b and Line by 6 to 59 Advance Line by -6 to 53 Special opcode 61: advance Address by 4 to 0x1964f and Line by 0 to 53 -- see that "Advance PC by constant 17" there? It clears the ISA bit, however code at 0x19646 is not standard MIPS code at all. For some reason the constant is always 17, I've never seen DW_LNS_const_add_pc used with any other value -- is that a binutils bug or what? 3. Solution: I think we should retain the value of the ISA bit in code references, that is effectively treat them as cookies as they indeed are (although trivially calculated) rather than raw memory byte addresses. In a perfect world both the static symbol table and the respective DWARF-2 records should be fixed to include the ISA bit in all the cases. I think however that this is infeasible. All the uses of `_bfd_mips_elf_symbol_processing' can not necessarily be tracked down. This function is used by `elf_slurp_symbol_table' that in turn is used by `bfd_canonicalize_symtab' and `bfd_canonicalize_dynamic_symtab', which are public interfaces. Similarly DWARF-2 records are used outside GDB, one notable if a bit questionable is the exception unwinder (libgcc/unwind-dw2.c) -- I have identified at least bits in `execute_cfa_program' and `uw_frame_state_for', both around the calls to `_Unwind_IsSignalFrame', that would need an update as they effectively flip the ISA bit freely; see also the comment about MASK_RETURN_ADDR in gcc/config/mips/mips.h. But there may be more places. Any change in how DWARF-2 records are produced would require an update there and would cause compatibility problems with libgcc.a binaries already distributed; given that this is a static library a complex change involving function renames would likely be required. I propose therefore to accept the existing inconsistencies and deal with them entirely within GDB. I have figured out that the ISA bit lost in various places can still be recovered as long as we have symbol information -- that'll have the `st_other' attribute correctly set to one of standard MIPS/MIPS16/microMIPS encoding. Here's the resulting change. It adds a couple of new `gdbarch' hooks, one to update symbol information with the ISA bit lost in `_bfd_mips_elf_symbol_processing', and two other ones to adjust DWARF-2 records as they're processed. The ISA bit is set in each address handled according to information retrieved from the symbol table for the symbol spanning the address if any; limits are adjusted based on the address they point to related to the respective base address. Additionally minimal symbol information has to be adjusted accordingly in its gdbarch hook. With these changes in place some complications with ISA bit juggling in the PC that never fully worked can be removed from the MIPS backend. Conversely, the generic dynamic linker event special breakpoint symbol handler has to be updated to call the minimal symbol gdbarch hook to record that the symbol is a MIPS16 or microMIPS address if applicable or the breakpoint will be set at the wrong address and either fail to work or cause SIGTRAPs (this is because the symbol is handled early on and bypasses regular symbol processing). 4. Results obtained The change fixes the example above -- to repeat only the crucial steps: (gdb) break main Breakpoint 1 at 0x400491: file foobar.c, line 23. (gdb) run Starting program: .../foobar Breakpoint 1, main () at foobar.c:23 23 return foop (); (gdb) print foo $1 = {int (void)} 0x400681 <foo> (gdb) set foop = bar (gdb) advance bar bar () at foobar.c:9 9 } (gdb) disassemble Dump of assembler code for function bar: => 0x0040068d <+0>: jr ra 0x0040068f <+2>: li v0,2 End of assembler dump. (gdb) finish Run till exit from #0 bar () at foobar.c:9 main () at foobar.c:24 24 } Value returned is $2 = 2 (gdb) continue Continuing. [Inferior 1 (process 14128) exited with code 02] (gdb) -- excellent! The change removes about 90 failures per MIPS16 multilib in mips-sde-elf testing too, results for MIPS16 are now similar to that for standard MIPS; microMIPS results are a bit worse because of host-I/O problems in QEMU used instead of MIPSsim for microMIPS testing only: === gdb Summary === # of expected passes 14299 # of unexpected failures 187 # of expected failures 56 # of known failures 58 # of unresolved testcases 11 # of untested testcases 52 # of unsupported tests 174 MIPS16: === gdb Summary === # of expected passes 14298 # of unexpected failures 187 # of unexpected successes 2 # of expected failures 54 # of known failures 58 # of unresolved testcases 12 # of untested testcases 52 # of unsupported tests 174 microMIPS: === gdb Summary === # of expected passes 14149 # of unexpected failures 201 # of unexpected successes 2 # of expected failures 54 # of known failures 58 # of unresolved testcases 7 # of untested testcases 53 # of unsupported tests 175 2014-12-12 Maciej W. Rozycki <macro@codesourcery.com> Maciej W. Rozycki <macro@mips.com> Pedro Alves <pedro@codesourcery.com> gdb/ * gdbarch.sh (elf_make_msymbol_special): Change type to `F', remove `predefault' and `invalid_p' initializers. (make_symbol_special): New architecture method. (adjust_dwarf2_addr, adjust_dwarf2_line): Likewise. (objfile, symbol): New declarations. * arch-utils.h (default_elf_make_msymbol_special): Remove prototype. (default_make_symbol_special): New prototype. (default_adjust_dwarf2_addr): Likewise. (default_adjust_dwarf2_line): Likewise. * mips-tdep.h (mips_unmake_compact_addr): New prototype. * arch-utils.c (default_elf_make_msymbol_special): Remove function. (default_make_symbol_special): New function. (default_adjust_dwarf2_addr): Likewise. (default_adjust_dwarf2_line): Likewise. * dwarf2-frame.c (decode_frame_entry_1): Call `gdbarch_adjust_dwarf2_addr'. * dwarf2loc.c (dwarf2_find_location_expression): Likewise. * dwarf2read.c (create_addrmap_from_index): Likewise. (process_psymtab_comp_unit_reader): Likewise. (add_partial_symbol): Likewise. (add_partial_subprogram): Likewise. (process_full_comp_unit): Likewise. (read_file_scope): Likewise. (read_func_scope): Likewise. Call `gdbarch_make_symbol_special'. (read_lexical_block_scope): Call `gdbarch_adjust_dwarf2_addr'. (read_call_site_scope): Likewise. (dwarf2_ranges_read): Likewise. (dwarf2_record_block_ranges): Likewise. (read_attribute_value): Likewise. (dwarf_decode_lines_1): Call `gdbarch_adjust_dwarf2_line'. (new_symbol_full): Call `gdbarch_adjust_dwarf2_addr'. * elfread.c (elf_symtab_read): Don't call `gdbarch_elf_make_msymbol_special' if unset. * mips-linux-tdep.c (micromips_linux_sigframe_validate): Strip the ISA bit from the PC. * mips-tdep.c (mips_unmake_compact_addr): New function. (mips_elf_make_msymbol_special): Set the ISA bit in the symbol's address appropriately. (mips_make_symbol_special): New function. (mips_pc_is_mips): Set the ISA bit before symbol lookup. (mips_pc_is_mips16): Likewise. (mips_pc_is_micromips): Likewise. (mips_pc_isa): Likewise. (mips_adjust_dwarf2_addr): New function. (mips_adjust_dwarf2_line): Likewise. (mips_read_pc, mips_unwind_pc): Keep the ISA bit. (mips_addr_bits_remove): Likewise. (mips_skip_trampoline_code): Likewise. (mips_write_pc): Don't set the ISA bit. (mips_eabi_push_dummy_call): Likewise. (mips_o64_push_dummy_call): Likewise. (mips_gdbarch_init): Install `mips_make_symbol_special', `mips_adjust_dwarf2_addr' and `mips_adjust_dwarf2_line' gdbarch handlers. * solib.c (gdb_bfd_lookup_symbol_from_symtab): Get target-specific symbol address adjustments. * gdbarch.h: Regenerate. * gdbarch.c: Regenerate. 2014-12-12 Maciej W. Rozycki <macro@codesourcery.com> gdb/testsuite/ * gdb.base/func-ptrs.c: New file. * gdb.base/func-ptrs.exp: New file.
2014-12-12 21:31:53 +08:00
struct symbol;
Implementing catch syscall. * amd64-linux-tdep.c: Include xml-syscall.h header, define the XML syscall name for the architecture. (amd64_linux_get_syscall_number): New function. (amd64_linux_init_abi): Register the correct functions for syscall catchpoint; set the correct syscall file name. * breakpoint.c: New include: xml-syscall.h. (set_raw_breakpoint_without_location): Setting the parameters for the catch syscall feature. (insert_catch_syscall): New. (remove_catch_syscall): New. (breakpoint_hit_catch_syscall): New. (print_it_catch_syscall): New. (print_one_catch_syscall): New. (print_mention_catch_syscall): New. (catch_syscall_breakpoint_ops): New. (syscall_catchpoint_p): New. (create_catchpoint_without_mention): New. (create_catchpoint): Modified in order to use create_catchpoint_without_mention. (create_syscall_event_catchpoint): New. (clean_up_filters): New. (catch_syscall_split_args): New. (catch_syscall_command_1): New. (delete_breakpoint): Add cleanup for catch syscall. (is_syscall_catchpoint_enabled): New. (catch_syscall_enabled): New. (catching_syscall_number): New. (catch_syscall_completer): New completer function. (add_catch_command): Add the completer function for catchpoints. * breakpoint.h (syscalls_to_be_caught): New vector. (catch_syscall_enabled): New. (catching_syscall_number): New. * gdbarch.c: Regenerated. * gdbarch.h: Regenerated. * gdbarch.sh: Add syscall catchpoint functions and structures. (get_syscall_number): New. (UNKNOWN_SYSCALL): New definition. * i386-linux-nat.c (i386_linux_resume): Select the proper request to be made for ptrace() considering if we are catching syscalls or not. * i386-linux-tdep.c: Include xml-syscall.h header, define the XML syscall name for the architecture. (i386_linux_get_syscall_number): New. (i386_linux_init_abi): Register the correct functions for syscall catchpoint; set the correct syscall file name. * inf-child.c (inf_child_set_syscall_catchpoint): New. (inf_child_target): Assign default values to target_ops. * inf-ptrace.c (inf_ptrace_resume): Select the proper request to be made for ptrace() considering if we are catching syscalls or not. * inferior.h (struct inferior): Included new variables any_syscall_count, syscalls_counts and total_syscalls_count, used to keep track of requested syscall catchpoints. * infrun.c (resume): Add syscall catchpoint. (deal_with_syscall_event): New. (handle_inferior_event): Add syscall entry/return events. (inferior_has_called_syscall): New. * linux-nat.c: Define some helpful variables to track wether we have support for the needed ptrace option. (linux_test_for_tracesysgood): New. (linux_supports_tracesysgood): New. (linux_enable_tracesysgood): New. (linux_enable_event_reporting): Save the current used ptrace options. (linux_child_post_attach): Calling linux_enable_tracesysgood. (linux_child_post_startup_inferior): Likewise. (linux_child_set_syscall_catchpoint): New function. (linux_handle_extended_wait): Handle the case which the inferior stops because it has called or returned from a syscall. (linux_target_install_ops): Install the necessary functions to handle syscall catchpoints. * linux-nat.h (struct lwp_info): Include syscall_state into the structure, which indicates if we are in a syscall entry or return. * ppc-linux-tdep.c: Include xml-syscall.h header, define the XML syscall filename for the arch. (ppc_linux_get_syscall_number): New. (ppc_linux_init_abi): Register the correct functions for syscall catchpoint; setting the correct name for the XML syscall file. * target.c (update_current_target): Update/copy functions related to syscall catchpoint. (target_waitstatus_to_string): Add syscall catchpoint entry/return events. * target.h (struct target_waitstatus): Add syscall number. (struct syscall): New struct to hold information about syscalls in the system. (struct target_ops): Add ops for syscall catchpoint. (inferior_has_called_syscall): New. (target_set_syscall_catchpoint): New. * xml-support.c (xml_fetch_content_from_file): New function, transferred from xml-tdesc.c. * xml-support.h (xml_fetch_content_from_file): New. * xml-tdesc.c (fetch_xml_from_file): Function removed; transferred to xml-support.c. (file_read_description_xml): Updated to use the new xml_fetch_content_from_file function. * syscalls/gdb-syscalls.dtd: New definition file for syscall's XML support. * syscalls/amd64-linux.xml: New file containing information about syscalls for GNU/Linux systems that use amd64 architecture. * syscalls/i386-linux.xml: New file containing information about syscalls for GNU/Linux systems that use i386 architecture. * syscalls/ppc-linux.xml: New file containing information about syscalls for GNU/Linux systems that use PPC architecture. * syscalls/ppc64-linux.xml: New file containing information about syscalls for GNU/Linux systems that use PPC64 architecture. * xml-syscall.c: New file containing functions for manipulating syscall's XML files. * xml-syscall.h: New file, exporting the functions above mentioned. * Makefile.in: Support for relocatable GDB datadir and XML syscall. * NEWS: Added information about the catch syscall feature. * doc/gdb.texinfo (Set Catchpoints): Documentation about the new feature. * testsuite/Makefile.in: Inclusion of catch-syscall object. * testsuite/gdb.base/catch-syscall.c: New file. * testsuite/gdb.base/catch-syscall.exp: New file.
2009-09-15 11:30:08 +08:00
struct syscall;
struct agent_expr;
struct axs_value;
2012-04-27 Sergio Durigan Junior <sergiodj@redhat.com> Tom Tromey <tromey@redhat.com> Jan Kratochvil <jan.kratochvil@redhat.com> * Makefile.in (SFILES): Add `probe' and `stap-probe'. (COMMON_OBS): Likewise. (HFILES_NO_SRCDIR): Add `probe'. * NEWS: Mention support for static and SystemTap probes. * amd64-tdep.c (amd64_init_abi): Initializing proper fields used by SystemTap probes' arguments parser. * arm-linux-tdep.c: Including headers needed to perform the parsing of SystemTap probes' arguments. (arm_stap_is_single_operand): New function. (arm_stap_parse_special_token): Likewise. (arm_linux_init_abi): Initializing proper fields used by SystemTap probes' arguments parser. * ax-gdb.c (require_rvalue): Removing static declaration. (gen_expr): Likewise. * ax-gdb.h (gen_expr): Declaring function. (require_rvalue): Likewise. * breakpoint.c: Include `gdb_regex.h' and `probe.h'. (bkpt_probe_breakpoint_ops): New variable. (momentary_breakpoint_from_master): Set the `probe' value. (add_location_to_breakpoint): Likewise. (break_command_1): Using proper breakpoint_ops according to the argument passed by the user in the command line. (bkpt_probe_insert_location): New function. (bkpt_probe_remove_location): Likewise. (bkpt_probe_create_sals_from_address): Likewise. (bkpt_probe_decode_linespec): Likewise. (tracepoint_probe_create_sals_from_address): Likewise. (tracepoint_probe_decode_linespec): Likewise. (tracepoint_probe_breakpoint_ops): New variable. (trace_command): Using proper breakpoint_ops according to the argument passed by the user in the command line. (initialize_breakpoint_ops): Initializing breakpoint_ops for static probes on breakpoints and tracepoints. * breakpoint.h (struct bp_location) <probe>: New field. * cli-utils.c (skip_spaces_const): New function. (extract_arg): Likewise. * cli-utils.h (skip_spaces_const): Likewise. (extract_arg): Likewise. * coffread.c (coff_sym_fns): Add `sym_probe_fns' value. * configure.ac: Append `stap-probe.o' to be generated when ELF support is present. * configure: Regenerate. * dbxread.c (aout_sym_fns): Add `sym_probe_fns' value. * elfread.c: Include `probe.h' and `arch-utils.h'. (probe_key): New variable. (elf_get_probes): New function. (elf_get_probe_argument_count): Likewise. (elf_evaluate_probe_argument): Likewise. (elf_compile_to_ax): Likewise. (elf_symfile_relocate_probe): Likewise. (stap_probe_key_free): Likewise. (elf_probe_fns): New variable. (elf_sym_fns): Add `sym_probe_fns' value. (elf_sym_fns_lazy_psyms): Likewise. (elf_sym_fns_gdb_index): Likewise. (_initialize_elfread): Initialize objfile cache for static probes. * gdb_vecs.h (struct probe): New forward declaration. (probe_p): New VEC declaration. * gdbarch.c: Regenerate. * gdbarch.h: Regenerate. * gdbarch.sh (stap_integer_prefix): New variable. (stap_integer_suffix): Likewise. (stap_register_prefix): Likewise. (stap_register_suffix): Likewise. (stap_register_indirection_prefix): Likewise. (stap_register_indirection_suffix): Likewise. (stap_gdb_register_prefix): Likewise. (stap_gdb_register_suffix): Likewise. (stap_is_single_operand): New function. (stap_parse_special_token): Likewise. (struct stap_parse_info): Forward declaration. * i386-tdep.c: Including headers needed to perform the parsing of SystemTap probes' arguments. (i386_stap_is_single_operand): New function. (i386_stap_parse_special_token): Likewise. (i386_elf_init_abi): Initializing proper fields used by SystemTap probes' arguments parser. * i386-tdep.h (i386_stap_is_single_operand): New function. (i386_stap_parse_special_token): Likewise. * machoread.c (macho_sym_fns): Add `sym_probe_fns' value. * mipsread.c (ecoff_sym_fns): Likewise. * objfiles.c (objfile_relocate1): Support relocation for static probes. * parse.c (prefixify_expression): Remove static declaration. (initialize_expout): Likewise. (reallocate_expout): Likewise. * parser-defs.h (initialize_expout): Declare function. (reallocate_expout): Likewise. (prefixify_expression): Likewise. * ppc-linux-tdep.c: Including headers needed to perform the parsing of SystemTap probes' arguments. (ppc_stap_is_single_operand): New function. (ppc_stap_parse_special_token): Likewise. (ppc_linux_init_abi): Initializing proper fields used by SystemTap probes' arguments parser. * probe.c: New file, for generic statically defined probe support. * probe.h: Likewise. * s390-tdep.c: Including headers needed to perform the parsing of SystemTap probes' arguments. (s390_stap_is_single_operand): New function. (s390_gdbarch_init): Initializing proper fields used by SystemTap probes' arguments parser. * somread.c (som_sym_fns): Add `sym_probe_fns' value. * stap-probe.c: New file, for SystemTap probe support. * stap-probe.h: Likewise. * symfile.h: Include `gdb_vecs.h'. (struct sym_probe_fns): New struct. (struct sym_fns) <sym_probe_fns>: New field. * symtab.c (init_sal): Initialize `probe' field. * symtab.h (struct probe): Forward declaration. (struct symtab_and_line) <probe>: New field. * tracepoint.c (start_tracing): Adjust semaphore on breakpoints locations. (stop_tracing): Likewise. * xcoffread.c (xcoff_sym_fns): Add `sym_probe_fns' value.
2012-04-28 04:47:57 +08:00
struct stap_parse_info;
struct expr_builder;
struct ravenscar_arch_ops;
struct mem_range;
Partial fix for PR breakpoints/10737: Make syscall info be per-arch instead of global This patch intends to partially fix PR breakpoints/10737, which is about making the syscall information (for the "catch syscall" command) be per-arch, instead of global. This is not a full fix because of the other issues pointed by Pedro here: <https://sourceware.org/bugzilla/show_bug.cgi?id=10737#c5> However, I consider it a good step towards the real fix. It will also help me fix <https://sourceware.org/bugzilla/show_bug.cgi?id=17402>. What this patch does, basically, is move the "syscalls_info" struct to gdbarch. Currently, the syscall information is stored in a global variable inside gdb/xml-syscall.c, which means that there is no easy way to correlate this info with the current target or architecture being used, for example. This causes strange behaviors, because the syscall info is not re-read when the arch changes. For example, if you put a syscall catchpoint in syscall 5 on i386 (syscall open), and then load a x86_64 program on GDB and put the same syscall 5 there (fstat on x86_64), you will still see that GDB tells you that it is catching "open", even though it is not. With this patch, GDB correctly says that it will be catching fstat syscalls. (gdb) set architecture i386 The target architecture is assumed to be i386 (gdb) catch syscall 5 Catchpoint 1 (syscall 'open' [5]) (gdb) set architecture i386:x86-64 The target architecture is assumed to be i386:x86-64 (gdb) catch syscall 5 Catchpoint 2 (syscall 'open' [5]) But with the patch: (gdb) set architecture i386 The target architecture is assumed to be i386 (gdb) catch syscall 5 Catchpoint 1 (syscall 'open' [5]) (gdb) set architecture i386:x86-64 The target architecture is assumed to be i386:x86-64 (gdb) catch syscall 5 Catchpoint 2 (syscall 'fstat' [5]) As I said, there are still some problems on the "catch syscall" mechanism, because (for example) the user should be able to "catch syscall open" on i386, and then expect "open" to be caught also on x86_64. Currently, it doesn't work. I intend to work on this later. gdb/ 2014-11-20 Sergio Durigan Junior <sergiodj@redhat.com> PR breakpoints/10737 * amd64-linux-tdep.c (amd64_linux_init_abi_common): Adjust call to set_xml_syscall_file_name to provide gdbarch. * arm-linux-tdep.c (arm_linux_init_abi): Likewise. * bfin-linux-tdep.c (bfin_linux_init_abi): Likewise. * breakpoint.c (print_it_catch_syscall): Adjust call to get_syscall_by_number to provide gdbarch. (print_one_catch_syscall): Likewise. (print_mention_catch_syscall): Likewise. (print_recreate_catch_syscall): Likewise. (catch_syscall_split_args): Adjust calls to get_syscall_by_number and get_syscall_by_name to provide gdbarch. (catch_syscall_completer): Adjust call to get_syscall_names to provide gdbarch. * gdbarch.c: Regenerate. * gdbarch.h: Likewise. * gdbarch.sh: Forward declare "struct syscalls_info". (xml_syscall_file): New variable. (syscalls_info): Likewise. * i386-linux-tdep.c (i386_linux_init_abi): Adjust call to set_xml_syscall_file_name to provide gdbarch. * mips-linux-tdep.c (mips_linux_init_abi): Likewise. * ppc-linux-tdep.c (ppc_linux_init_abi): Likewise. * s390-linux-tdep.c (s390_gdbarch_init): Likewise. * sparc-linux-tdep.c (sparc32_linux_init_abi): Likewise. * sparc64-linux-tdep.c (sparc64_linux_init_abi): Likewise. * xml-syscall.c: Include gdbarch.h. (set_xml_syscall_file_name): Accept gdbarch parameter. (get_syscall_by_number): Likewise. (get_syscall_by_name): Likewise. (get_syscall_names): Likewise. (my_gdb_datadir): Delete global variable. (struct syscalls_info) <my_gdb_datadir>: New variable. (struct syscalls_info) <sysinfo>: Rename variable to "syscalls_info". (sysinfo): Delete global variable. (have_initialized_sysinfo): Likewise. (xml_syscall_file): Likewise. (sysinfo_free_syscalls_desc): Rename to... (syscalls_info_free_syscalls_desc): ... this. (free_syscalls_info): Rename "sysinfo" to "syscalls_info". Adjust code to the new layout of "struct syscalls_info". (make_cleanup_free_syscalls_info): Rename parameter "sysinfo" to "syscalls_info". (syscall_create_syscall_desc): Likewise. (syscall_start_syscall): Likewise. (syscall_parse_xml): Likewise. (xml_init_syscalls_info): Likewise. Drop "const" from return value. (init_sysinfo): Rename to... (init_syscalls_info): ...this. Add gdbarch as a parameter. Adjust function to deal with gdbarch. (xml_get_syscall_number): Delete parameter sysinfo. Accept gdbarch as a parameter. Adjust code. (xml_get_syscall_name): Likewise. (xml_list_of_syscalls): Likewise. (set_xml_syscall_file_name): Accept gdbarch as parameter. (get_syscall_by_number): Likewise. (get_syscall_by_name): Likewise. (get_syscall_names): Likewise. * xml-syscall.h (set_xml_syscall_file_name): Likewise. (get_syscall_by_number): Likewise. (get_syscall_by_name): Likewise. (get_syscall_names): Likewise. gdb/testsuite/ 2014-11-20 Sergio Durigan Junior <sergiodj@redhat.com> PR breakpoints/10737 * gdb.base/catch-syscall.exp (do_syscall_tests): Call test_catch_syscall_multi_arch. (test_catch_syscall_multi_arch): New function.
2014-11-21 01:28:18 +08:00
struct syscalls_info;
struct thread_info;
Intel MPX bound violation handling With Intel Memory Protection Extensions it was introduced the concept of boundary violation. A boundary violations is presented to the inferior as a segmentation fault having SIGCODE 3. This patch adds a handler for a boundary violation extending the information displayed when a bound violation is presented to the inferior. In the stop mode case the debugger will also display the kind of violation: "upper" or "lower", bounds and the address accessed. On no stop mode the information will still remain unchanged. Additional information about bound violations are not meaningful in that case user does not know the line in which violation occurred as well. When the segmentation fault handler is stop mode the out puts will be changed as exemplified below. The usual output of a segfault is: Program received signal SIGSEGV, Segmentation fault 0x0000000000400d7c in upper (p=0x603010, a=0x603030, b=0x603050, c=0x603070, d=0x603090, len=7) at i386-mpx-sigsegv.c:68 68 value = *(p + len); In case it is a bound violation it will be presented as: Program received signal SIGSEGV, Segmentation fault Upper bound violation while accessing address 0x7fffffffc3b3 Bounds: [lower = 0x7fffffffc390, upper = 0x7fffffffc3a3] 0x0000000000400d7c in upper (p=0x603010, a=0x603030, b=0x603050, c=0x603070, d=0x603090, len=7) at i386-mpx-sigsegv.c:68 68 value = *(p + len); In mi mode the output of a segfault is: *stopped,reason="signal-received",signal-name="SIGSEGV", signal-meaning="Segmentation fault", frame={addr="0x0000000000400d7c", func="upper",args=[{name="p", value="0x603010"},{name="a",value="0x603030"} ,{name="b",value="0x603050"}, {name="c",value="0x603070"}, {name="d",value="0x603090"},{name="len",value="7"}], file="i386-mpx-sigsegv.c",fullname="i386-mpx-sigsegv.c",line="68"}, thread-id="1",stopped-threads="all",core="6" in the case of a bound violation: *stopped,reason="signal-received",signal-name="SIGSEGV", signal-meaning="Segmentation fault", sigcode-meaning="Upper bound violation", lower-bound="0x603010",upper-bound="0x603023",bound-access="0x60302f", frame={addr="0x0000000000400d7c",func="upper",args=[{name="p", value="0x603010"},{name="a",value="0x603030"},{name="b",value="0x603050"}, {name="c",value="0x603070"},{name="d",value="0x603090"}, {name="len",value="7"}],file="i386-mpx-sigsegv.c", fullname="i386-mpx-sigsegv.c",line="68"},thread-id="1", stopped-threads="all",core="6" 2016-02-18 Walfred Tedeschi <walfred.tedeschi@intel.com> gdb/ChangeLog: * NEWS: Add entry for bound violation. * amd64-linux-tdep.c (amd64_linux_init_abi_common): Add handler for segmentation fault. * gdbarch.sh (handle_segmentation_fault): New. * gdbarch.c: Regenerate. * gdbarch.h: Regenerate. * i386-linux-tdep.c (i386_linux_handle_segmentation_fault): New. (SIG_CODE_BONDARY_FAULT): New define. (i386_linux_init_abi): Use i386_mpx_bound_violation_handler. * i386-linux-tdep.h (i386_linux_handle_segmentation_fault) New. * i386-tdep.c (i386_mpx_enabled): Add as external. * i386-tdep.c (i386_mpx_enabled): Add as external. * infrun.c (handle_segmentation_fault): New function. (print_signal_received_reason): Use handle_segmentation_fault. gdb/testsuite/ChangeLog: * gdb.arch/i386-mpx-sigsegv.c: New file. * gdb.arch/i386-mpx-sigsegv.exp: New file. * gdb.arch/i386-mpx-simple_segv.c: New file. * gdb.arch/i386-mpx-simple_segv.exp: New file. gdb/doc/ChangeLog: * gdb.texinfo (Signals): Add bound violation display hints for a SIGSEGV.
2016-02-19 00:24:59 +08:00
struct ui_out;
gdb: move displaced stepping logic to gdbarch, allow starting concurrent displaced steps Today, GDB only allows a single displaced stepping operation to happen per inferior at a time. There is a single displaced stepping buffer per inferior, whose address is fixed (obtained with gdbarch_displaced_step_location), managed by infrun.c. In the case of the AMD ROCm target [1] (in the context of which this work has been done), it is typical to have thousands of threads (or waves, in SMT terminology) executing the same code, hitting the same breakpoint (possibly conditional) and needing to to displaced step it at the same time. The limitation of only one displaced step executing at a any given time becomes a real bottleneck. To fix this bottleneck, we want to make it possible for threads of a same inferior to execute multiple displaced steps in parallel. This patch builds the foundation for that. In essence, this patch moves the task of preparing a displaced step and cleaning up after to gdbarch functions. This allows using different schemes for allocating and managing displaced stepping buffers for different platforms. The gdbarch decides how to assign a buffer to a thread that needs to execute a displaced step. On the ROCm target, we are able to allocate one displaced stepping buffer per thread, so a thread will never have to wait to execute a displaced step. On Linux, the entry point of the executable if used as the displaced stepping buffer, since we assume that this code won't get used after startup. From what I saw (I checked with a binary generated against glibc and musl), on AMD64 we have enough space there to fit two displaced stepping buffers. A subsequent patch makes AMD64/Linux use two buffers. In addition to having multiple displaced stepping buffers, there is also the idea of sharing displaced stepping buffers between threads. Two threads doing displaced steps for the same PC could use the same buffer at the same time. Two threads stepping over the same instruction (same opcode) at two different PCs may also be able to share a displaced stepping buffer. This is an idea for future patches, but the architecture built by this patch is made to allow this. Now, the implementation details. The main part of this patch is moving the responsibility of preparing and finishing a displaced step to the gdbarch. Before this patch, preparing a displaced step is driven by the displaced_step_prepare_throw function. It does some calls to the gdbarch to do some low-level operations, but the high-level logic is there. The steps are roughly: - Ask the gdbarch for the displaced step buffer location - Save the existing bytes in the displaced step buffer - Ask the gdbarch to copy the instruction into the displaced step buffer - Set the pc of the thread to the beginning of the displaced step buffer Similarly, the "fixup" phase, executed after the instruction was successfully single-stepped, is driven by the infrun code (function displaced_step_finish). The steps are roughly: - Restore the original bytes in the displaced stepping buffer - Ask the gdbarch to fixup the instruction result (adjust the target's registers or memory to do as if the instruction had been executed in its original location) The displaced_step_inferior_state::step_thread field indicates which thread (if any) is currently using the displaced stepping buffer, so it is used by displaced_step_prepare_throw to check if the displaced stepping buffer is free to use or not. This patch defers the whole task of preparing and cleaning up after a displaced step to the gdbarch. Two new main gdbarch methods are added, with the following semantics: - gdbarch_displaced_step_prepare: Prepare for the given thread to execute a displaced step of the instruction located at its current PC. Upon return, everything should be ready for GDB to resume the thread (with either a single step or continue, as indicated by gdbarch_displaced_step_hw_singlestep) to make it displaced step the instruction. - gdbarch_displaced_step_finish: Called when the thread stopped after having started a displaced step. Verify if the instruction was executed, if so apply any fixup required to compensate for the fact that the instruction was executed at a different place than its original pc. Release any resources that were allocated for this displaced step. Upon return, everything should be ready for GDB to resume the thread in its "normal" code path. The displaced_step_prepare_throw function now pretty much just offloads to gdbarch_displaced_step_prepare and the displaced_step_finish function offloads to gdbarch_displaced_step_finish. The gdbarch_displaced_step_location method is now unnecessary, so is removed. Indeed, the core of GDB doesn't know how many displaced step buffers there are nor where they are. To keep the existing behavior for existing architectures, the logic that was previously implemented in infrun.c for preparing and finishing a displaced step is moved to displaced-stepping.c, to the displaced_step_buffer class. Architectures are modified to implement the new gdbarch methods using this class. The behavior is not expected to change. The other important change (which arises from the above) is that the core of GDB no longer prevents concurrent displaced steps. Before this patch, start_step_over walks the global step over chain and tries to initiate a step over (whether it is in-line or displaced). It follows these rules: - if an in-line step is in progress (in any inferior), don't start any other step over - if a displaced step is in progress for an inferior, don't start another displaced step for that inferior After starting a displaced step for a given inferior, it won't start another displaced step for that inferior. In the new code, start_step_over simply tries to initiate step overs for all the threads in the list. But because threads may be added back to the global list as it iterates the global list, trying to initiate step overs, start_step_over now starts by stealing the global queue into a local queue and iterates on the local queue. In the typical case, each thread will either: - have initiated a displaced step and be resumed - have been added back by the global step over queue by displaced_step_prepare_throw, because the gdbarch will have returned that there aren't enough resources (i.e. buffers) to initiate a displaced step for that thread Lastly, if start_step_over initiates an in-line step, it stops iterating, and moves back whatever remaining threads it had in its local step over queue to the global step over queue. Two other gdbarch methods are added, to handle some slightly annoying corner cases. They feel awkwardly specific to these cases, but I don't see any way around them: - gdbarch_displaced_step_copy_insn_closure_by_addr: in arm_pc_is_thumb, arm-tdep.c wants to get the closure for a given buffer address. - gdbarch_displaced_step_restore_all_in_ptid: when a process forks (at least on Linux), the address space is copied. If some displaced step buffers were in use at the time of the fork, we need to restore the original bytes in the child's address space. These two adjustments are also made in infrun.c: - prepare_for_detach: there may be multiple threads doing displaced steps when we detach, so wait until all of them are done - handle_inferior_event: when we handle a fork event for a given thread, it's possible that other threads are doing a displaced step at the same time. Make sure to restore the displaced step buffer contents in the child for them. [1] https://github.com/ROCm-Developer-Tools/ROCgdb gdb/ChangeLog: * displaced-stepping.h (struct displaced_step_copy_insn_closure): Adjust comments. (struct displaced_step_inferior_state) <step_thread, step_gdbarch, step_closure, step_original, step_copy, step_saved_copy>: Remove fields. (struct displaced_step_thread_state): New. (struct displaced_step_buffer): New. * displaced-stepping.c (displaced_step_buffer::prepare): New. (write_memory_ptid): Move from infrun.c. (displaced_step_instruction_executed_successfully): New, factored out of displaced_step_finish. (displaced_step_buffer::finish): New. (displaced_step_buffer::copy_insn_closure_by_addr): New. (displaced_step_buffer::restore_in_ptid): New. * gdbarch.sh (displaced_step_location): Remove. (displaced_step_prepare, displaced_step_finish, displaced_step_copy_insn_closure_by_addr, displaced_step_restore_all_in_ptid): New. * gdbarch.c: Re-generate. * gdbarch.h: Re-generate. * gdbthread.h (class thread_info) <displaced_step_state>: New field. (thread_step_over_chain_remove): New declaration. (thread_step_over_chain_next): New declaration. (thread_step_over_chain_length): New declaration. * thread.c (thread_step_over_chain_remove): Make non-static. (thread_step_over_chain_next): New. (global_thread_step_over_chain_next): Use thread_step_over_chain_next. (thread_step_over_chain_length): New. (global_thread_step_over_chain_enqueue): Add debug print. (global_thread_step_over_chain_remove): Add debug print. * infrun.h (get_displaced_step_copy_insn_closure_by_addr): Remove. * infrun.c (get_displaced_stepping_state): New. (displaced_step_in_progress_any_inferior): Remove. (displaced_step_in_progress_thread): Adjust. (displaced_step_in_progress): Adjust. (displaced_step_in_progress_any_thread): New. (get_displaced_step_copy_insn_closure_by_addr): Remove. (gdbarch_supports_displaced_stepping): Use gdbarch_displaced_step_prepare_p. (displaced_step_reset): Change parameter from inferior to thread. (displaced_step_prepare_throw): Implement using gdbarch_displaced_step_prepare. (write_memory_ptid): Move to displaced-step.c. (displaced_step_restore): Remove. (displaced_step_finish): Implement using gdbarch_displaced_step_finish. (start_step_over): Allow starting more than one displaced step. (prepare_for_detach): Handle possibly multiple threads doing displaced steps. (handle_inferior_event): Handle possibility that fork event happens while another thread displaced steps. * linux-tdep.h (linux_displaced_step_prepare): New. (linux_displaced_step_finish): New. (linux_displaced_step_copy_insn_closure_by_addr): New. (linux_displaced_step_restore_all_in_ptid): New. (linux_init_abi): Add supports_displaced_step parameter. * linux-tdep.c (struct linux_info) <disp_step_buf>: New field. (linux_displaced_step_prepare): New. (linux_displaced_step_finish): New. (linux_displaced_step_copy_insn_closure_by_addr): New. (linux_displaced_step_restore_all_in_ptid): New. (linux_init_abi): Add supports_displaced_step parameter, register displaced step methods if true. (_initialize_linux_tdep): Register inferior_execd observer. * amd64-linux-tdep.c (amd64_linux_init_abi_common): Add supports_displaced_step parameter, adjust call to linux_init_abi. Remove call to set_gdbarch_displaced_step_location. (amd64_linux_init_abi): Adjust call to amd64_linux_init_abi_common. (amd64_x32_linux_init_abi): Likewise. * aarch64-linux-tdep.c (aarch64_linux_init_abi): Adjust call to linux_init_abi. Remove call to set_gdbarch_displaced_step_location. * arm-linux-tdep.c (arm_linux_init_abi): Likewise. * i386-linux-tdep.c (i386_linux_init_abi): Likewise. * alpha-linux-tdep.c (alpha_linux_init_abi): Adjust call to linux_init_abi. * arc-linux-tdep.c (arc_linux_init_osabi): Likewise. * bfin-linux-tdep.c (bfin_linux_init_abi): Likewise. * cris-linux-tdep.c (cris_linux_init_abi): Likewise. * csky-linux-tdep.c (csky_linux_init_abi): Likewise. * frv-linux-tdep.c (frv_linux_init_abi): Likewise. * hppa-linux-tdep.c (hppa_linux_init_abi): Likewise. * ia64-linux-tdep.c (ia64_linux_init_abi): Likewise. * m32r-linux-tdep.c (m32r_linux_init_abi): Likewise. * m68k-linux-tdep.c (m68k_linux_init_abi): Likewise. * microblaze-linux-tdep.c (microblaze_linux_init_abi): Likewise. * mips-linux-tdep.c (mips_linux_init_abi): Likewise. * mn10300-linux-tdep.c (am33_linux_init_osabi): Likewise. * nios2-linux-tdep.c (nios2_linux_init_abi): Likewise. * or1k-linux-tdep.c (or1k_linux_init_abi): Likewise. * riscv-linux-tdep.c (riscv_linux_init_abi): Likewise. * s390-linux-tdep.c (s390_linux_init_abi_any): Likewise. * sh-linux-tdep.c (sh_linux_init_abi): Likewise. * sparc-linux-tdep.c (sparc32_linux_init_abi): Likewise. * sparc64-linux-tdep.c (sparc64_linux_init_abi): Likewise. * tic6x-linux-tdep.c (tic6x_uclinux_init_abi): Likewise. * tilegx-linux-tdep.c (tilegx_linux_init_abi): Likewise. * xtensa-linux-tdep.c (xtensa_linux_init_abi): Likewise. * ppc-linux-tdep.c (ppc_linux_init_abi): Adjust call to linux_init_abi. Remove call to set_gdbarch_displaced_step_location. * arm-tdep.c (arm_pc_is_thumb): Call gdbarch_displaced_step_copy_insn_closure_by_addr instead of get_displaced_step_copy_insn_closure_by_addr. * rs6000-aix-tdep.c (rs6000_aix_init_osabi): Adjust calls to clear gdbarch methods. * rs6000-tdep.c (struct ppc_inferior_data): New structure. (get_ppc_per_inferior): New function. (ppc_displaced_step_prepare): New function. (ppc_displaced_step_finish): New function. (ppc_displaced_step_restore_all_in_ptid): New function. (rs6000_gdbarch_init): Register new gdbarch methods. * s390-tdep.c (s390_gdbarch_init): Don't call set_gdbarch_displaced_step_location, set new gdbarch methods. gdb/testsuite/ChangeLog: * gdb.arch/amd64-disp-step-avx.exp: Adjust pattern. * gdb.threads/forking-threads-plus-breakpoint.exp: Likewise. * gdb.threads/non-stop-fair-events.exp: Likewise. Change-Id: I387cd235a442d0620ec43608fd3dc0097fcbf8c8
2020-12-05 05:43:55 +08:00
struct inferior;
1999-06-15 02:08:47 +08:00
#include "regcache.h"
struct gdbarch_tdep {};
gdb/ 2012-11-09 Pedro Alves <palves@redhat.com> * gdbarch.sh (target_gdbarch) <gdbarch.h>: Reimplement as macro. (get_target_gdbarch) <gdbarch.h>: New function. (startup_gdbarch) <gdbarch.h>: Declare. <gdbarch.c> (target_gdbarch): Delete. <gdbarch.c> (deprecated_target_gdbarch_select_hack): Set the current inferior's gdbarch. <gdbarch.c> (get_target_gdbarch): New function. * inferior.c: Include target-descriptions.h. (free_inferior): Free target description info. (add_inferior_with_spaces): Set the inferior's initial architecture. (clone_inferior_command): Copy the original inferior's target description if it was user specified. (initialize_inferiors): Add comment. * inferior.h (struct target_desc_info): Forward declare. (struct inferior) <gdbarch>: New field. * linux-nat.c: Include target-descriptions.h. (linux_child_follow_fork): Copy the parent's architecture and target description to the child. * target-descriptions.c: Include inferior.h. (struct target_desc_info): New structure, holding the equivalents of ... (target_desc_fetched, current_target_desc) (target_description_filename): ... these removed globals. (get_tdesc_info, target_desc_info_from_user_p) (copy_inferior_target_desc_info, target_desc_info_free): New. (target_desc_fetched, current_target_desc) (target_description_filename): Reimplemented as convenience macros. (tdesc_filename_cmd_string): New global. (set_tdesc_filename_cmd): Copy the string manipulated by the "set tdescs filename ..." commands to the per-inferior equivalent. (show_tdesc_filename_cmd): Get the value to show from the per-inferior description filename. (_initilize_target_descriptions): Change the "set/show tdesc filename" commands' variable. * target-descriptions.h (struct target_desc, struct target_desc_info) (struct inferior): Forward declare. (target_find_description, target_clear_description) (target_current_description): Adjust comments. (copy_inferior_target_desc_info, target_desc_info_free) (target_desc_info_from_user_p). Declare. gdb/testsuite/ 2012-11-09 Pedro Alves <palves@redhat.com> * gdb.multi/multi-arch.exp: New.
2012-11-09 09:47:20 +08:00
/* The architecture associated with the inferior through the
connection to the target.
The architecture vector provides some information that is really a
property of the inferior, accessed through a particular target:
ptrace operations; the layout of certain RSP packets; the solib_ops
vector; etc. To differentiate architecture accesses to
per-inferior/target properties from
per-thread/per-frame/per-objfile properties, accesses to
per-inferior/target properties should be made through this
gdbarch. */
/* This is a convenience wrapper for 'current_inferior ()->gdbarch'. */
extern struct gdbarch *target_gdbarch (void);
gdb/ 2012-11-09 Pedro Alves <palves@redhat.com> * gdbarch.sh (target_gdbarch) <gdbarch.h>: Reimplement as macro. (get_target_gdbarch) <gdbarch.h>: New function. (startup_gdbarch) <gdbarch.h>: Declare. <gdbarch.c> (target_gdbarch): Delete. <gdbarch.c> (deprecated_target_gdbarch_select_hack): Set the current inferior's gdbarch. <gdbarch.c> (get_target_gdbarch): New function. * inferior.c: Include target-descriptions.h. (free_inferior): Free target description info. (add_inferior_with_spaces): Set the inferior's initial architecture. (clone_inferior_command): Copy the original inferior's target description if it was user specified. (initialize_inferiors): Add comment. * inferior.h (struct target_desc_info): Forward declare. (struct inferior) <gdbarch>: New field. * linux-nat.c: Include target-descriptions.h. (linux_child_follow_fork): Copy the parent's architecture and target description to the child. * target-descriptions.c: Include inferior.h. (struct target_desc_info): New structure, holding the equivalents of ... (target_desc_fetched, current_target_desc) (target_description_filename): ... these removed globals. (get_tdesc_info, target_desc_info_from_user_p) (copy_inferior_target_desc_info, target_desc_info_free): New. (target_desc_fetched, current_target_desc) (target_description_filename): Reimplemented as convenience macros. (tdesc_filename_cmd_string): New global. (set_tdesc_filename_cmd): Copy the string manipulated by the "set tdescs filename ..." commands to the per-inferior equivalent. (show_tdesc_filename_cmd): Get the value to show from the per-inferior description filename. (_initilize_target_descriptions): Change the "set/show tdesc filename" commands' variable. * target-descriptions.h (struct target_desc, struct target_desc_info) (struct inferior): Forward declare. (target_find_description, target_clear_description) (target_current_description): Adjust comments. (copy_inferior_target_desc_info, target_desc_info_free) (target_desc_info_from_user_p). Declare. gdb/testsuite/ 2012-11-09 Pedro Alves <palves@redhat.com> * gdb.multi/multi-arch.exp: New.
2012-11-09 09:47:20 +08:00
New "iterate_over_objfiles_in_search_order" gdbarch method. This patch introduces the "iterate_over_objfiles_in_search_order" gdbarch method, as well as its default implementation, and converts the areas where it will matter to using this gdbarch method. The default method implementation is the only one installed, and the changes should have no functional impact in terms of behavior. This only paves the way for the architectures that will need their own version. gdb/ChangeLog: * gdbarch.sh: Add generation of "iterate_over_objfiles_in_search_order_cb_ftype" typedef in gdbarch.h. Add include of "objfiles.h" in gdbarch.c. (iterate_over_objfiles_in_search_order): New gdbarch method. * gdbarch.h, gdbarch.c: Regenerate. * objfiles.h (default_iterate_over_objfiles_in_search_order): Add declaration. * objfiles.c (default_iterate_over_objfiles_in_search_order): New function. * symtab.c (lookup_symbol_aux_objfile): New function, extracted out of lookup_symbol_aux_symtabs. (lookup_symbol_aux_symtabs): Replace extracted-out code by call to lookup_symbol_aux_objfile. (struct global_sym_lookup_data): New type. (lookup_symbol_global_iterator_cb): New function. (lookup_symbol_global): Search for symbol using gdbarch_iterate_over_objfiles_in_search_order and lookup_symbol_global_iterator_cb. * findvar.c (struct minsym_lookup_data): New type. (minsym_lookup_iterator_cb): New function. (default_read_var_value) [case LOC_UNRESOLVED]: Resolve the symbol's address via gdbarch_iterate_over_objfiles_in_search_order and minsym_lookup_iterator_cb.
2012-06-05 21:50:50 +08:00
/* Callback type for the 'iterate_over_objfiles_in_search_order'
gdbarch method. */
typedef int (iterate_over_objfiles_in_search_order_cb_ftype)
(struct objfile *objfile, void *cb_data);
Fix internal error when core file section is too big As reported in PR 17808, a test case with a forged (invalid) core file can crash GDB with an assertion failure. In that particular case the prstatus of an i386 core file looks like that from an AMD64 core file. Consequently the respective regset supply function i386_supply_gregset is invoked with a larger buffer than usual. But i386_supply_gregset asserts a specific buffer size, and this assertion fails. The patch relaxes all buffer size assertions in regset supply functions such that they merely check for a sufficiently large buffer. For consistency the regset collect functions are adjusted as well. gdb/ChangeLog: PR corefiles/17808: * gdbarch.sh (iterate_over_regset_sections_cb): Document this function type, particularly its SIZE parameter. * gdbarch.h: Regenerate. * amd64-tdep.c (amd64_supply_fpregset): In gdb_assert, compare actual against required size using ">=" instead of "==". (amd64_collect_fpregset): Likewise. * i386-tdep.c (i386_supply_gregset): Likewise. (i386_collect_gregset): Likewise. (i386_supply_fpregset): Likewise. (i386_collect_fpregset): Likewise. * mips-linux-tdep.c (mips_supply_gregset_wrapper): Likewise. (mips_fill_gregset_wrapper): Likewise. (mips_supply_fpregset_wrapper): Likewise. (mips_fill_fpregset_wrapper): Likewise. (mips64_supply_gregset_wrapper): Likewise. (mips64_fill_gregset_wrapper): Likewise. (mips64_supply_fpregset_wrapper): Likewise. (mips64_fill_fpregset_wrapper): Likewise. * mn10300-linux-tdep.c (am33_supply_gregset_method): Likewise. (am33_supply_fpregset_method): Likewise. (am33_collect_gregset_method): Likewise. (am33_collect_fpregset_method): Likewise.
2015-01-14 20:01:38 +08:00
/* Callback type for regset section iterators. The callback usually
invokes the REGSET's supply or collect method, to which it must
Split size in regset section iterators In the existing code, when using the regset section iteration functions, the size parameter is used in different ways. With collect, size is used to create the buffer in which to write the regset. (see linux-tdep.c::linux_collect_regset_section_cb). With supply, size is used to confirm the existing regset is the correct size. If REGSET_VARIABLE_SIZE is set then the regset can be bigger than size. Effectively, size is the minimum possible size of the regset. (see corelow.c::get_core_register_section). There are currently no targets with both REGSET_VARIABLE_SIZE and a collect function. In SVE, a corefile can contain one of two formats after the header, both of which are different sizes. However, when writing a core file, we always want to write out the full bigger size. To allow support of collects for REGSET_VARIABLE_SIZE we need two sizes. This is done by adding supply_size and collect_size. gdb/ * aarch64-fbsd-tdep.c (aarch64_fbsd_iterate_over_regset_sections): Add supply_size and collect_size. * aarch64-linux-tdep.c (aarch64_linux_iterate_over_regset_sections): Likewise. * alpha-linux-tdep.c (alpha_linux_iterate_over_regset_sections): * alpha-nbsd-tdep.c (alphanbsd_iterate_over_regset_sections): Likewise. * amd64-fbsd-tdep.c (amd64fbsd_iterate_over_regset_sections): Likewise. * amd64-linux-tdep.c (amd64_linux_iterate_over_regset_sections): Likewise. * arm-bsd-tdep.c (armbsd_iterate_over_regset_sections): Likewise. * arm-fbsd-tdep.c (arm_fbsd_iterate_over_regset_sections): Likewise. * arm-linux-tdep.c (arm_linux_iterate_over_regset_sections): Likewise. * corelow.c (get_core_registers_cb): Likewise. (core_target::fetch_registers): Likewise. * fbsd-tdep.c (fbsd_collect_regset_section_cb): Likewise. * frv-linux-tdep.c (frv_linux_iterate_over_regset_sections): Likewise. * gdbarch.h (void): Regenerate. * gdbarch.sh: Add supply_size and collect_size. * hppa-linux-tdep.c (hppa_linux_iterate_over_regset_sections): Likewise. * hppa-nbsd-tdep.c (hppanbsd_iterate_over_regset_sections): Likewise. * hppa-obsd-tdep.c (hppaobsd_iterate_over_regset_sections): Likewise. * i386-fbsd-tdep.c (i386fbsd_iterate_over_regset_sections): Likewise. * i386-linux-tdep.c (i386_linux_iterate_over_regset_sections): Likewise. * i386-tdep.c (i386_iterate_over_regset_sections): Likewise. * ia64-linux-tdep.c (ia64_linux_iterate_over_regset_sections): Likewise. * linux-tdep.c (linux_collect_regset_section_cb): Likewise. * m32r-linux-tdep.c (m32r_linux_iterate_over_regset_sections): Likewise. * m68k-bsd-tdep.c (m68kbsd_iterate_over_regset_sections): Likewise. * m68k-linux-tdep.c (m68k_linux_iterate_over_regset_sections): Likewise. * mips-fbsd-tdep.c (mips_fbsd_iterate_over_regset_sections): Likewise. * mips-linux-tdep.c (mips_linux_iterate_over_regset_sections): Likewise. * mips-nbsd-tdep.c (mipsnbsd_iterate_over_regset_sections): Likewise. * mips64-obsd-tdep.c (mips64obsd_iterate_over_regset_sections): Likewise. * mn10300-linux-tdep.c (am33_iterate_over_regset_sections): Likewise. * nios2-linux-tdep.c (nios2_iterate_over_regset_sections): Likewise. * ppc-fbsd-tdep.c (ppcfbsd_iterate_over_regset_sections): Likewise. * ppc-linux-tdep.c (ppc_linux_iterate_over_regset_sections): Likewise. * ppc-nbsd-tdep.c (ppcnbsd_iterate_over_regset_sections): Likewise. * ppc-obsd-tdep.c (ppcobsd_iterate_over_regset_sections): Likewise. * riscv-linux-tdep.c (riscv_linux_iterate_over_regset_sections): Likewise. * rs6000-aix-tdep.c (rs6000_aix_iterate_over_regset_sections): Likewise. * s390-linux-tdep.c (s390_iterate_over_regset_sections): Likewise. * score-tdep.c (score7_linux_iterate_over_regset_sections): Likewise. * sh-tdep.c (sh_iterate_over_regset_sections): Likewise. * sparc-tdep.c (sparc_iterate_over_regset_sections): Likewise. * tilegx-linux-tdep.c (tilegx_iterate_over_regset_sections): Likewise. * vax-tdep.c (vax_iterate_over_regset_sections): Likewise. * xtensa-tdep.c (xtensa_iterate_over_regset_sections): Likewise.
2018-08-13 17:04:11 +08:00
pass a buffer - for collects this buffer will need to be created using
COLLECT_SIZE, for supply the existing buffer being read from should
be at least SUPPLY_SIZE. SECT_NAME is a BFD section name, and HUMAN_NAME
is used for diagnostic messages. CB_DATA should have been passed
unchanged through the iterator. */
Fix internal error when core file section is too big As reported in PR 17808, a test case with a forged (invalid) core file can crash GDB with an assertion failure. In that particular case the prstatus of an i386 core file looks like that from an AMD64 core file. Consequently the respective regset supply function i386_supply_gregset is invoked with a larger buffer than usual. But i386_supply_gregset asserts a specific buffer size, and this assertion fails. The patch relaxes all buffer size assertions in regset supply functions such that they merely check for a sufficiently large buffer. For consistency the regset collect functions are adjusted as well. gdb/ChangeLog: PR corefiles/17808: * gdbarch.sh (iterate_over_regset_sections_cb): Document this function type, particularly its SIZE parameter. * gdbarch.h: Regenerate. * amd64-tdep.c (amd64_supply_fpregset): In gdb_assert, compare actual against required size using ">=" instead of "==". (amd64_collect_fpregset): Likewise. * i386-tdep.c (i386_supply_gregset): Likewise. (i386_collect_gregset): Likewise. (i386_supply_fpregset): Likewise. (i386_collect_fpregset): Likewise. * mips-linux-tdep.c (mips_supply_gregset_wrapper): Likewise. (mips_fill_gregset_wrapper): Likewise. (mips_supply_fpregset_wrapper): Likewise. (mips_fill_fpregset_wrapper): Likewise. (mips64_supply_gregset_wrapper): Likewise. (mips64_fill_gregset_wrapper): Likewise. (mips64_supply_fpregset_wrapper): Likewise. (mips64_fill_fpregset_wrapper): Likewise. * mn10300-linux-tdep.c (am33_supply_gregset_method): Likewise. (am33_supply_fpregset_method): Likewise. (am33_collect_gregset_method): Likewise. (am33_collect_fpregset_method): Likewise.
2015-01-14 20:01:38 +08:00
Replace 'core_regset_sections' by iterator method The core_regset_sections list in gdbarch (needed for multi-arch capable core file generation support) is replaced by an iterator method. Overall, this reduces the code a bit, and it allows for more flexibility. gdb/ChangeLog: * amd64-linux-tdep.c (amd64_linux_regset_sections): Remove. (amd64_linux_iterate_over_regset_sections): New. (amd64_linux_init_abi_common): Don't install the regset section list, but the new iterator in gdbarch. * arm-linux-tdep.c (arm_linux_fpa_regset_sections) (arm_linux_vfp_regset_sections): Remove. Move combined logic... (arm_linux_iterate_over_regset_sections): ...here. New function. (arm_linux_init_abi): Set iterator instead of section list. * corelow.c (get_core_registers_cb): New function, logic moved from... (get_core_registers): ...loop body here. Use new iterator method instead of walking through the regset section list. * gdbarch.sh: Remove 'core_regset_sections'. New method 'iterate_over_regset_sections'. New typedef 'iterate_over_regset_sections_cb'. * gdbarch.c: Regenerate. * gdbarch.h: Likewise. * i386-linux-tdep.c (i386_linux_regset_sections) (i386_linux_sse_regset_sections, i386_linux_avx_regset_sections): Remove. (i386_linux_iterate_over_regset_sections): New. (i386_linux_init_abi): Don't choose a regset section list, but install new iterator in gdbarch. * linux-tdep.c (struct linux_collect_regset_section_cb_data): New. (linux_collect_regset_section_cb): New function, logic moved from... (linux_collect_thread_registers): ...loop body here. Use iterator method instead of walking through list. (linux_make_corefile_notes_1): Check for presence of iterator method instead of regset section list. * ppc-linux-tdep.c (ppc_linux_vsx_regset_sections) (ppc_linux_vmx_regset_sections, ppc_linux_fp_regset_sections) (ppc64_linux_vsx_regset_sections, ppc64_linux_vmx_regset_sections) (ppc64_linux_fp_regset_sections): Remove. Move combined logic... (ppc_linux_iterate_over_regset_sections): ...here. New function. (ppc_linux_init_abi): Don't choose from above regset section lists, but install new iterator in gdbarch. * regset.h (struct core_regset_section): Remove. * s390-linux-tdep.c (struct gdbarch_tdep): Add new fields have_linux_v1, have_linux_v2, and have_tdb. (s390_linux32_regset_sections, s390_linux32v1_regset_sections) (s390_linux32v2_regset_sections, s390_linux64_regset_sections) (s390_linux64v1_regset_sections, s390_linux64v2_regset_sections) (s390x_linux64_regset_sections, s390x_linux64v1_regset_sections) (s390x_linux64v2_regset_sections): Remove. Move combined logic... (s390_iterate_over_regset_sections): ...here. New function. Use new tdep fields. (s390_gdbarch_init): Set new tdep fields. Don't choose from above regset section lists, but install new iterator.
2014-09-04 23:26:43 +08:00
typedef void (iterate_over_regset_sections_cb)
Split size in regset section iterators In the existing code, when using the regset section iteration functions, the size parameter is used in different ways. With collect, size is used to create the buffer in which to write the regset. (see linux-tdep.c::linux_collect_regset_section_cb). With supply, size is used to confirm the existing regset is the correct size. If REGSET_VARIABLE_SIZE is set then the regset can be bigger than size. Effectively, size is the minimum possible size of the regset. (see corelow.c::get_core_register_section). There are currently no targets with both REGSET_VARIABLE_SIZE and a collect function. In SVE, a corefile can contain one of two formats after the header, both of which are different sizes. However, when writing a core file, we always want to write out the full bigger size. To allow support of collects for REGSET_VARIABLE_SIZE we need two sizes. This is done by adding supply_size and collect_size. gdb/ * aarch64-fbsd-tdep.c (aarch64_fbsd_iterate_over_regset_sections): Add supply_size and collect_size. * aarch64-linux-tdep.c (aarch64_linux_iterate_over_regset_sections): Likewise. * alpha-linux-tdep.c (alpha_linux_iterate_over_regset_sections): * alpha-nbsd-tdep.c (alphanbsd_iterate_over_regset_sections): Likewise. * amd64-fbsd-tdep.c (amd64fbsd_iterate_over_regset_sections): Likewise. * amd64-linux-tdep.c (amd64_linux_iterate_over_regset_sections): Likewise. * arm-bsd-tdep.c (armbsd_iterate_over_regset_sections): Likewise. * arm-fbsd-tdep.c (arm_fbsd_iterate_over_regset_sections): Likewise. * arm-linux-tdep.c (arm_linux_iterate_over_regset_sections): Likewise. * corelow.c (get_core_registers_cb): Likewise. (core_target::fetch_registers): Likewise. * fbsd-tdep.c (fbsd_collect_regset_section_cb): Likewise. * frv-linux-tdep.c (frv_linux_iterate_over_regset_sections): Likewise. * gdbarch.h (void): Regenerate. * gdbarch.sh: Add supply_size and collect_size. * hppa-linux-tdep.c (hppa_linux_iterate_over_regset_sections): Likewise. * hppa-nbsd-tdep.c (hppanbsd_iterate_over_regset_sections): Likewise. * hppa-obsd-tdep.c (hppaobsd_iterate_over_regset_sections): Likewise. * i386-fbsd-tdep.c (i386fbsd_iterate_over_regset_sections): Likewise. * i386-linux-tdep.c (i386_linux_iterate_over_regset_sections): Likewise. * i386-tdep.c (i386_iterate_over_regset_sections): Likewise. * ia64-linux-tdep.c (ia64_linux_iterate_over_regset_sections): Likewise. * linux-tdep.c (linux_collect_regset_section_cb): Likewise. * m32r-linux-tdep.c (m32r_linux_iterate_over_regset_sections): Likewise. * m68k-bsd-tdep.c (m68kbsd_iterate_over_regset_sections): Likewise. * m68k-linux-tdep.c (m68k_linux_iterate_over_regset_sections): Likewise. * mips-fbsd-tdep.c (mips_fbsd_iterate_over_regset_sections): Likewise. * mips-linux-tdep.c (mips_linux_iterate_over_regset_sections): Likewise. * mips-nbsd-tdep.c (mipsnbsd_iterate_over_regset_sections): Likewise. * mips64-obsd-tdep.c (mips64obsd_iterate_over_regset_sections): Likewise. * mn10300-linux-tdep.c (am33_iterate_over_regset_sections): Likewise. * nios2-linux-tdep.c (nios2_iterate_over_regset_sections): Likewise. * ppc-fbsd-tdep.c (ppcfbsd_iterate_over_regset_sections): Likewise. * ppc-linux-tdep.c (ppc_linux_iterate_over_regset_sections): Likewise. * ppc-nbsd-tdep.c (ppcnbsd_iterate_over_regset_sections): Likewise. * ppc-obsd-tdep.c (ppcobsd_iterate_over_regset_sections): Likewise. * riscv-linux-tdep.c (riscv_linux_iterate_over_regset_sections): Likewise. * rs6000-aix-tdep.c (rs6000_aix_iterate_over_regset_sections): Likewise. * s390-linux-tdep.c (s390_iterate_over_regset_sections): Likewise. * score-tdep.c (score7_linux_iterate_over_regset_sections): Likewise. * sh-tdep.c (sh_iterate_over_regset_sections): Likewise. * sparc-tdep.c (sparc_iterate_over_regset_sections): Likewise. * tilegx-linux-tdep.c (tilegx_iterate_over_regset_sections): Likewise. * vax-tdep.c (vax_iterate_over_regset_sections): Likewise. * xtensa-tdep.c (xtensa_iterate_over_regset_sections): Likewise.
2018-08-13 17:04:11 +08:00
(const char *sect_name, int supply_size, int collect_size,
const struct regset *regset, const char *human_name, void *cb_data);
Replace 'core_regset_sections' by iterator method The core_regset_sections list in gdbarch (needed for multi-arch capable core file generation support) is replaced by an iterator method. Overall, this reduces the code a bit, and it allows for more flexibility. gdb/ChangeLog: * amd64-linux-tdep.c (amd64_linux_regset_sections): Remove. (amd64_linux_iterate_over_regset_sections): New. (amd64_linux_init_abi_common): Don't install the regset section list, but the new iterator in gdbarch. * arm-linux-tdep.c (arm_linux_fpa_regset_sections) (arm_linux_vfp_regset_sections): Remove. Move combined logic... (arm_linux_iterate_over_regset_sections): ...here. New function. (arm_linux_init_abi): Set iterator instead of section list. * corelow.c (get_core_registers_cb): New function, logic moved from... (get_core_registers): ...loop body here. Use new iterator method instead of walking through the regset section list. * gdbarch.sh: Remove 'core_regset_sections'. New method 'iterate_over_regset_sections'. New typedef 'iterate_over_regset_sections_cb'. * gdbarch.c: Regenerate. * gdbarch.h: Likewise. * i386-linux-tdep.c (i386_linux_regset_sections) (i386_linux_sse_regset_sections, i386_linux_avx_regset_sections): Remove. (i386_linux_iterate_over_regset_sections): New. (i386_linux_init_abi): Don't choose a regset section list, but install new iterator in gdbarch. * linux-tdep.c (struct linux_collect_regset_section_cb_data): New. (linux_collect_regset_section_cb): New function, logic moved from... (linux_collect_thread_registers): ...loop body here. Use iterator method instead of walking through list. (linux_make_corefile_notes_1): Check for presence of iterator method instead of regset section list. * ppc-linux-tdep.c (ppc_linux_vsx_regset_sections) (ppc_linux_vmx_regset_sections, ppc_linux_fp_regset_sections) (ppc64_linux_vsx_regset_sections, ppc64_linux_vmx_regset_sections) (ppc64_linux_fp_regset_sections): Remove. Move combined logic... (ppc_linux_iterate_over_regset_sections): ...here. New function. (ppc_linux_init_abi): Don't choose from above regset section lists, but install new iterator in gdbarch. * regset.h (struct core_regset_section): Remove. * s390-linux-tdep.c (struct gdbarch_tdep): Add new fields have_linux_v1, have_linux_v2, and have_tdb. (s390_linux32_regset_sections, s390_linux32v1_regset_sections) (s390_linux32v2_regset_sections, s390_linux64_regset_sections) (s390_linux64v1_regset_sections, s390_linux64v2_regset_sections) (s390x_linux64_regset_sections, s390x_linux64v1_regset_sections) (s390x_linux64v2_regset_sections): Remove. Move combined logic... (s390_iterate_over_regset_sections): ...here. New function. Use new tdep fields. (s390_gdbarch_init): Set new tdep fields. Don't choose from above regset section lists, but install new iterator.
2014-09-04 23:26:43 +08:00
/* For a function call, does the function return a value using a
normal value return or a structure return - passing a hidden
argument pointing to storage. For the latter, there are two
cases: language-mandated structure return and target ABI
structure return. */
enum function_call_return_method
{
/* Standard value return. */
return_method_normal = 0,
/* Language ABI structure return. This is handled
by passing the return location as the first parameter to
the function, even preceding "this". */
return_method_hidden_param,
/* Target ABI struct return. This is target-specific; for instance,
on ia64 the first argument is passed in out0 but the hidden
structure return pointer would normally be passed in r8. */
return_method_struct,
};
New gdbarch memory tagging hooks We need some new gdbarch hooks to help us manipulate memory tags without having to have GDB call the target methods directly. This patch adds the following hooks: gdbarch_memtag_to_string -- Returns a printable string corresponding to the tag. gdbarch_tagged_address_p -- Checks if a particular address is protected with memory tagging. gdbarch_memtag_matches_p -- Checks if the logical tag of a pointer and the allocation tag from the address the pointer points to matches. gdbarch_set_memtags: -- Sets either the allocation tag or the logical tag for a particular value. gdbarch_get_memtag: -- Gets either the allocation tag or the logical tag for a particular value. gdbarch_memtag_granule_size -- Sets the memory tag granule size, which represents the number of bytes a particular allocation tag covers. For example, this is 16 bytes for AArch64's MTE. I've used struct value as opposed to straight CORE_ADDR so other architectures can use the infrastructure without having to rely on a particular type for addresses/pointers. Some architecture may use pointers of 16 bytes that don't fit in a CORE_ADDR, for example. gdb/ChangeLog: 2021-03-24 Luis Machado <luis.machado@linaro.org> * arch-utils.c (default_memtag_to_string, default_tagged_address_p) (default_memtag_matches_p, default_set_memtags) (default_get_memtag): New functions. * arch-utils.h (default_memtag_to_string, default_tagged_address_p) (default_memtag_matches_p, default_set_memtags) (default_get_memtag): New prototypes. * gdbarch.c: Regenerate. * gdbarch.h: Regenerate. * gdbarch.sh (memtag_to_string, tagged_address_p, memtag_matches_p) (set_memtags, get_memtag, memtag_granule_size): New gdbarch hooks. (enum memtag_type): New enum.
2020-06-20 04:36:14 +08:00
enum class memtag_type
{
/* Logical tag, the tag that is stored in unused bits of a pointer to a
virtual address. */
logical = 0,
/* Allocation tag, the tag that is associated with every granule of memory in
the physical address space. Allocation tags are used to validate memory
accesses via pointers containing logical tags. */
allocation,
};
/* Callback types for 'read_core_file_mappings' gdbarch method. */
using read_core_file_mappings_pre_loop_ftype =
gdb::function_view<void (ULONGEST count)>;
using read_core_file_mappings_loop_ftype =
gdb::function_view<void (int num,
ULONGEST start,
ULONGEST end,
ULONGEST file_ofs,
const char *filename,
const bfd_build_id *build_id)>;
#include "gdbarch-gen.h"
Add new gdbarch method, read_core_file_mappings The new gdbarch method, read_core_file_mappings, will be used for reading file-backed mappings from a core file. It'll be used for two purposes: 1) to construct a table of file-backed mappings in corelow.c, and 2) for display of core file mappings. For Linux, I tried a different approach in which knowledge of the note format was placed directly in corelow.c. This seemed okay at first; it was only one note format and the note format was fairly simple. After looking at FreeBSD's note/mapping reading code, I concluded that it's best to leave architecture specific details for decoding the note in (architecture specific) tdep files. With regard to display of core file mappings, I experimented with placing the mappings display code in corelow.c. It has access to the file-backed mappings which were read in when the core file was loaded. And, better, still common code could be used for all architectures. But, again, the FreeBSD mapping code convinced me that this was not the best approach since it has even more mapping info than Linux. Display code which would work well for Linux will leave out mappings as well as protection info for mappings. So, for these reasons, I'm introducing a new gdbarch method for reading core file mappings. gdb/ChangeLog: * arch-utils.c (default_read_core_file_mappings): New function. * arch-utils.c (default_read_core_file_mappings): Declare. * gdbarch.sh (read_core_file_mappings): New gdbarch method. * gdbarch.h, gdbarch.c: Regenerate.
2020-07-04 04:32:08 +08:00
1999-08-31 09:14:27 +08:00
extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1999-06-15 02:08:47 +08:00
/* Mechanism for co-ordinating the selection of a specific
architecture.
GDB targets (*-tdep.c) can register an interest in a specific
architecture. Other GDB components can register a need to maintain
per-architecture data.
The mechanisms below ensures that there is only a loose connection
between the set-architecture command and the various GDB
components. Each component can independently register their need
1999-06-15 02:08:47 +08:00
to maintain architecture specific data with gdbarch.
Pragmatics:
Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
didn't scale.
The more traditional mega-struct containing architecture specific
data for all the various GDB components was also considered. Since
GDB is built from a variable number of (fairly independent)
1999-06-15 02:08:47 +08:00
components it was determined that the global aproach was not
2011-01-07 Michael Snyder <msnyder@vmware.com> * ada-lang.c: Comment cleanup, mostly periods and spaces. * ada-lang.h: Ditto. * ada-tasks.c: Ditto. * ada-valprint.c: Ditto. * aix-threads.c: Ditto. * alpha-linux-nat.c: Ditto. * alpha-linux-tdep.c: Ditto. * alpha-mdebug-tdep.c: Ditto. * alpha-nat.c: Ditto. * alpha-osf1-tdep.c: Ditto. * alpha-tdep.c: Ditto. * alphabsd-nat.c: Ditto. * alphabsd-tdep.c: Ditto. * amd64-darwin-tdep.c: Ditto. * amd64-linux-nat.c: Ditto. * amd64-linux-tdep.c: Ditto. * amd64-sol2-tdep.c: Ditto. * amd64-tdep.c: Ditto. * amd64-fbsd-tdep.c: Ditto. * amd64-nbsd-tdep.c: Ditto. * amd64-obsd-tdep.c: Ditto. * amd64-linux-nat.c: Ditto. * amd64-linux-tdep.c: Ditto. * arm-tdep.c: Ditto. * arm-tdep.h: Ditto. * armnbsd-nat.c: Ditto. * avr-tdep.c: Ditto. * bfin-tdep.c: Ditto. * bsd-kvm.c: Ditto. * c-typeprintc: Ditto. * c-valprint.c: Ditto. * coff-pe-read.h: Ditto. * coffreead.c: Ditto. * cris-tdep.c: Ditto. * d-lang.c: Ditto. * darwin-nat-info.c: Ditto. * darwin-nat.c: Ditto. * dbug-rom.c: Ditto. * dbxread.c: Ditto. * dcache.c: Ditto. * dcache.h: Ditto. * dec-thread.c: Ditto. * defs.h: Ditto. * demangle.c: Ditto. * dicos-tdep.c: Ditto. * dictionary.c: Ditto. * dictionary.h: Ditto. * dink32-rom.c: Ditto. * disasm.c: Ditto. * doublest.c: Ditto. * dsrec.c: Ditto. * dummy-frame.c: Ditto. * dwarf2-frame.c: Ditto. * dwarf2expr.c: Ditto. * dwarf2loc.c: Ditto. * dwarf2read.c: Ditto. * elfread.c: Ditto. * environ.c: Ditto. * eval.c: Ditto. * event-top.h: Ditto. * exceptions.c: Ditto. * exceptions.h: Ditto. * exec.c: Ditto. * expprint.c: Ditto. * expression.h: Ditto. * f-exp.y: Ditto. * f-lang.c: Ditto. * f-lang.h: Ditto. * f-typeprint.c: Ditto. * f-valprint.c: Ditto. * fbsd-nat.c: Ditto. * findvar.c: Ditto. * fork-child.c: Ditto. * frame.c: Ditto. * frame.h: Ditto. * frv-linux-tdep.c: Ditto. * frv-tdep.c: Ditto. * gcore.c: Ditto. * gdb-stabs.h: Ditto. * gdb_assert.h: Ditto. * gdb_string.h: Ditto. * gdb_thread_db.h: Ditto. * gdb_wait.h: Ditto. * gdbarch.sh: Ditto. * gdbcore.h: Ditto. * gdbthread.h: Ditto. * gdbtypes.c: Ditto. * gdbtypes.h: Ditto. * gnu-nat.c: Ditto. * gnu-nat.h: Ditto. * gnu-v2-abi.c: Ditto. * gnu-v3-abi.c: Ditto. * go32-nat.c: Ditto. * gdbarch.c: Regenerate. * gdbarch.h: Regenerate.
2011-01-08 03:36:19 +08:00
applicable. */
1999-06-15 02:08:47 +08:00
/* Register a new architectural family with GDB.
Register support for the specified ARCHITECTURE with GDB. When
gdbarch determines that the specified architecture has been
selected, the corresponding INIT function is called.
--
The INIT function takes two parameters: INFO which contains the
information available to gdbarch about the (possibly new)
architecture; ARCHES which is a list of the previously created
``struct gdbarch'' for this architecture.
The INFO parameter is, as far as possible, be pre-initialized with
information obtained from INFO.ABFD or the global defaults.
The ARCHES parameter is a linked list (sorted most recently used)
of all the previously created architures for this architecture
family. The (possibly NULL) ARCHES->gdbarch can used to access
values from the previously selected architecture for this
architecture family.
1999-06-15 02:08:47 +08:00
The INIT function shall return any of: NULL - indicating that it
doesn't recognize the selected architecture; an existing ``struct
1999-06-15 02:08:47 +08:00
gdbarch'' from the ARCHES list - indicating that the new
architecture is just a synonym for an earlier architecture (see
gdbarch_list_lookup_by_info()); a newly created ``struct gdbarch''
- that describes the selected architecture (see gdbarch_alloc()).
The DUMP_TDEP function shall print out all target specific values.
Care should be taken to ensure that the function works in both the
2011-01-07 Michael Snyder <msnyder@vmware.com> * ada-lang.c: Comment cleanup, mostly periods and spaces. * ada-lang.h: Ditto. * ada-tasks.c: Ditto. * ada-valprint.c: Ditto. * aix-threads.c: Ditto. * alpha-linux-nat.c: Ditto. * alpha-linux-tdep.c: Ditto. * alpha-mdebug-tdep.c: Ditto. * alpha-nat.c: Ditto. * alpha-osf1-tdep.c: Ditto. * alpha-tdep.c: Ditto. * alphabsd-nat.c: Ditto. * alphabsd-tdep.c: Ditto. * amd64-darwin-tdep.c: Ditto. * amd64-linux-nat.c: Ditto. * amd64-linux-tdep.c: Ditto. * amd64-sol2-tdep.c: Ditto. * amd64-tdep.c: Ditto. * amd64-fbsd-tdep.c: Ditto. * amd64-nbsd-tdep.c: Ditto. * amd64-obsd-tdep.c: Ditto. * amd64-linux-nat.c: Ditto. * amd64-linux-tdep.c: Ditto. * arm-tdep.c: Ditto. * arm-tdep.h: Ditto. * armnbsd-nat.c: Ditto. * avr-tdep.c: Ditto. * bfin-tdep.c: Ditto. * bsd-kvm.c: Ditto. * c-typeprintc: Ditto. * c-valprint.c: Ditto. * coff-pe-read.h: Ditto. * coffreead.c: Ditto. * cris-tdep.c: Ditto. * d-lang.c: Ditto. * darwin-nat-info.c: Ditto. * darwin-nat.c: Ditto. * dbug-rom.c: Ditto. * dbxread.c: Ditto. * dcache.c: Ditto. * dcache.h: Ditto. * dec-thread.c: Ditto. * defs.h: Ditto. * demangle.c: Ditto. * dicos-tdep.c: Ditto. * dictionary.c: Ditto. * dictionary.h: Ditto. * dink32-rom.c: Ditto. * disasm.c: Ditto. * doublest.c: Ditto. * dsrec.c: Ditto. * dummy-frame.c: Ditto. * dwarf2-frame.c: Ditto. * dwarf2expr.c: Ditto. * dwarf2loc.c: Ditto. * dwarf2read.c: Ditto. * elfread.c: Ditto. * environ.c: Ditto. * eval.c: Ditto. * event-top.h: Ditto. * exceptions.c: Ditto. * exceptions.h: Ditto. * exec.c: Ditto. * expprint.c: Ditto. * expression.h: Ditto. * f-exp.y: Ditto. * f-lang.c: Ditto. * f-lang.h: Ditto. * f-typeprint.c: Ditto. * f-valprint.c: Ditto. * fbsd-nat.c: Ditto. * findvar.c: Ditto. * fork-child.c: Ditto. * frame.c: Ditto. * frame.h: Ditto. * frv-linux-tdep.c: Ditto. * frv-tdep.c: Ditto. * gcore.c: Ditto. * gdb-stabs.h: Ditto. * gdb_assert.h: Ditto. * gdb_string.h: Ditto. * gdb_thread_db.h: Ditto. * gdb_wait.h: Ditto. * gdbarch.sh: Ditto. * gdbcore.h: Ditto. * gdbthread.h: Ditto. * gdbtypes.c: Ditto. * gdbtypes.h: Ditto. * gnu-nat.c: Ditto. * gnu-nat.h: Ditto. * gnu-v2-abi.c: Ditto. * gnu-v3-abi.c: Ditto. * go32-nat.c: Ditto. * gdbarch.c: Regenerate. * gdbarch.h: Regenerate.
2011-01-08 03:36:19 +08:00
multi-arch and non- multi-arch cases. */
1999-06-15 02:08:47 +08:00
1999-07-20 07:30:11 +08:00
struct gdbarch_list
{
struct gdbarch *gdbarch;
struct gdbarch_list *next;
};
1999-06-15 02:08:47 +08:00
1999-07-20 07:30:11 +08:00
struct gdbarch_info
{
gdbarch_info ()
/* Ensure the union is zero-initialized. Relies on the fact that there's
no member larger than TDESC_DATA. */
: tdesc_data ()
{}
1999-06-15 02:08:47 +08:00
const struct bfd_arch_info *bfd_arch_info = nullptr;
1999-06-15 02:08:47 +08:00
enum bfd_endian byte_order = BFD_ENDIAN_UNKNOWN;
enum bfd_endian byte_order_for_code = BFD_ENDIAN_UNKNOWN;
bfd *abfd = nullptr;
1999-06-15 02:08:47 +08:00
2017-08-07 22:53:54 +08:00
union
{
/* Architecture-specific target description data. Numerous targets
need only this, so give them an easy way to hold it. */
struct tdesc_arch_data *tdesc_data;
/* SPU file system ID. This is a single integer, so using the
generic form would only complicate code. Other targets may
reuse this member if suitable. */
int *id;
};
enum gdb_osabi osabi = GDB_OSABI_UNKNOWN;
const struct target_desc *target_desc = nullptr;
1999-07-20 07:30:11 +08:00
};
1999-06-15 02:08:47 +08:00
1999-08-31 09:14:27 +08:00
typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1999-06-15 02:08:47 +08:00
/* DEPRECATED - use gdbarch_register() */
1999-08-31 09:14:27 +08:00
extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1999-06-15 02:08:47 +08:00
extern void gdbarch_register (enum bfd_architecture architecture,
gdb, gdbserver, gdbsupport: fix leading space vs tabs issues Many spots incorrectly use only spaces for indentation (for example, there are a lot of spots in ada-lang.c). I've always found it awkward when I needed to edit one of these spots: do I keep the original wrong indentation, or do I fix it? What if the lines around it are also wrong, do I fix them too? I probably don't want to fix them in the same patch, to avoid adding noise to my patch. So I propose to fix as much as possible once and for all (hopefully). One typical counter argument for this is that it makes code archeology more difficult, because git-blame will show this commit as the last change for these lines. My counter counter argument is: when git-blaming, you often need to do "blame the file at the parent commit" anyway, to go past some other refactor that touched the line you are interested in, but is not the change you are looking for. So you already need a somewhat efficient way to do this. Using some interactive tool, rather than plain git-blame, makes this trivial. For example, I use "tig blame <file>", where going back past the commit that changed the currently selected line is one keystroke. It looks like Magit in Emacs does it too (though I've never used it). Web viewers of Github and Gitlab do it too. My point is that it won't really make archeology more difficult. The other typical counter argument is that it will cause conflicts with existing patches. That's true... but it's a one time cost, and those are not conflicts that are difficult to resolve. I have also tried "git rebase --ignore-whitespace", it seems to work well. Although that will re-introduce the faulty indentation, so one needs to take care of fixing the indentation in the patch after that (which is easy). gdb/ChangeLog: * aarch64-linux-tdep.c: Fix indentation. * aarch64-ravenscar-thread.c: Fix indentation. * aarch64-tdep.c: Fix indentation. * aarch64-tdep.h: Fix indentation. * ada-lang.c: Fix indentation. * ada-lang.h: Fix indentation. * ada-tasks.c: Fix indentation. * ada-typeprint.c: Fix indentation. * ada-valprint.c: Fix indentation. * ada-varobj.c: Fix indentation. * addrmap.c: Fix indentation. * addrmap.h: Fix indentation. * agent.c: Fix indentation. * aix-thread.c: Fix indentation. * alpha-bsd-nat.c: Fix indentation. * alpha-linux-tdep.c: Fix indentation. * alpha-mdebug-tdep.c: Fix indentation. * alpha-nbsd-tdep.c: Fix indentation. * alpha-obsd-tdep.c: Fix indentation. * alpha-tdep.c: Fix indentation. * amd64-bsd-nat.c: Fix indentation. * amd64-darwin-tdep.c: Fix indentation. * amd64-linux-nat.c: Fix indentation. * amd64-linux-tdep.c: Fix indentation. * amd64-nat.c: Fix indentation. * amd64-obsd-tdep.c: Fix indentation. * amd64-tdep.c: Fix indentation. * amd64-windows-tdep.c: Fix indentation. * annotate.c: Fix indentation. * arc-tdep.c: Fix indentation. * arch-utils.c: Fix indentation. * arch/arm-get-next-pcs.c: Fix indentation. * arch/arm.c: Fix indentation. * arm-linux-nat.c: Fix indentation. * arm-linux-tdep.c: Fix indentation. * arm-nbsd-tdep.c: Fix indentation. * arm-pikeos-tdep.c: Fix indentation. * arm-tdep.c: Fix indentation. * arm-tdep.h: Fix indentation. * arm-wince-tdep.c: Fix indentation. * auto-load.c: Fix indentation. * auxv.c: Fix indentation. * avr-tdep.c: Fix indentation. * ax-gdb.c: Fix indentation. * ax-general.c: Fix indentation. * bfin-linux-tdep.c: Fix indentation. * block.c: Fix indentation. * block.h: Fix indentation. * blockframe.c: Fix indentation. * bpf-tdep.c: Fix indentation. * break-catch-sig.c: Fix indentation. * break-catch-syscall.c: Fix indentation. * break-catch-throw.c: Fix indentation. * breakpoint.c: Fix indentation. * breakpoint.h: Fix indentation. * bsd-uthread.c: Fix indentation. * btrace.c: Fix indentation. * build-id.c: Fix indentation. * buildsym-legacy.h: Fix indentation. * buildsym.c: Fix indentation. * c-typeprint.c: Fix indentation. * c-valprint.c: Fix indentation. * c-varobj.c: Fix indentation. * charset.c: Fix indentation. * cli/cli-cmds.c: Fix indentation. * cli/cli-decode.c: Fix indentation. * cli/cli-decode.h: Fix indentation. * cli/cli-script.c: Fix indentation. * cli/cli-setshow.c: Fix indentation. * coff-pe-read.c: Fix indentation. * coffread.c: Fix indentation. * compile/compile-cplus-types.c: Fix indentation. * compile/compile-object-load.c: Fix indentation. * compile/compile-object-run.c: Fix indentation. * completer.c: Fix indentation. * corefile.c: Fix indentation. * corelow.c: Fix indentation. * cp-abi.h: Fix indentation. * cp-namespace.c: Fix indentation. * cp-support.c: Fix indentation. * cp-valprint.c: Fix indentation. * cris-linux-tdep.c: Fix indentation. * cris-tdep.c: Fix indentation. * darwin-nat-info.c: Fix indentation. * darwin-nat.c: Fix indentation. * darwin-nat.h: Fix indentation. * dbxread.c: Fix indentation. * dcache.c: Fix indentation. * disasm.c: Fix indentation. * dtrace-probe.c: Fix indentation. * dwarf2/abbrev.c: Fix indentation. * dwarf2/attribute.c: Fix indentation. * dwarf2/expr.c: Fix indentation. * dwarf2/frame.c: Fix indentation. * dwarf2/index-cache.c: Fix indentation. * dwarf2/index-write.c: Fix indentation. * dwarf2/line-header.c: Fix indentation. * dwarf2/loc.c: Fix indentation. * dwarf2/macro.c: Fix indentation. * dwarf2/read.c: Fix indentation. * dwarf2/read.h: Fix indentation. * elfread.c: Fix indentation. * eval.c: Fix indentation. * event-top.c: Fix indentation. * exec.c: Fix indentation. * exec.h: Fix indentation. * expprint.c: Fix indentation. * f-lang.c: Fix indentation. * f-typeprint.c: Fix indentation. * f-valprint.c: Fix indentation. * fbsd-nat.c: Fix indentation. * fbsd-tdep.c: Fix indentation. * findvar.c: Fix indentation. * fork-child.c: Fix indentation. * frame-unwind.c: Fix indentation. * frame-unwind.h: Fix indentation. * frame.c: Fix indentation. * frv-linux-tdep.c: Fix indentation. * frv-tdep.c: Fix indentation. * frv-tdep.h: Fix indentation. * ft32-tdep.c: Fix indentation. * gcore.c: Fix indentation. * gdb_bfd.c: Fix indentation. * gdbarch.sh: Fix indentation. * gdbarch.c: Re-generate * gdbarch.h: Re-generate. * gdbcore.h: Fix indentation. * gdbthread.h: Fix indentation. * gdbtypes.c: Fix indentation. * gdbtypes.h: Fix indentation. * glibc-tdep.c: Fix indentation. * gnu-nat.c: Fix indentation. * gnu-nat.h: Fix indentation. * gnu-v2-abi.c: Fix indentation. * gnu-v3-abi.c: Fix indentation. * go32-nat.c: Fix indentation. * guile/guile-internal.h: Fix indentation. * guile/scm-cmd.c: Fix indentation. * guile/scm-frame.c: Fix indentation. * guile/scm-iterator.c: Fix indentation. * guile/scm-math.c: Fix indentation. * guile/scm-ports.c: Fix indentation. * guile/scm-pretty-print.c: Fix indentation. * guile/scm-value.c: Fix indentation. * h8300-tdep.c: Fix indentation. * hppa-linux-nat.c: Fix indentation. * hppa-linux-tdep.c: Fix indentation. * hppa-nbsd-nat.c: Fix indentation. * hppa-nbsd-tdep.c: Fix indentation. * hppa-obsd-nat.c: Fix indentation. * hppa-tdep.c: Fix indentation. * hppa-tdep.h: Fix indentation. * i386-bsd-nat.c: Fix indentation. * i386-darwin-nat.c: Fix indentation. * i386-darwin-tdep.c: Fix indentation. * i386-dicos-tdep.c: Fix indentation. * i386-gnu-nat.c: Fix indentation. * i386-linux-nat.c: Fix indentation. * i386-linux-tdep.c: Fix indentation. * i386-nto-tdep.c: Fix indentation. * i386-obsd-tdep.c: Fix indentation. * i386-sol2-nat.c: Fix indentation. * i386-tdep.c: Fix indentation. * i386-tdep.h: Fix indentation. * i386-windows-tdep.c: Fix indentation. * i387-tdep.c: Fix indentation. * i387-tdep.h: Fix indentation. * ia64-libunwind-tdep.c: Fix indentation. * ia64-libunwind-tdep.h: Fix indentation. * ia64-linux-nat.c: Fix indentation. * ia64-linux-tdep.c: Fix indentation. * ia64-tdep.c: Fix indentation. * ia64-tdep.h: Fix indentation. * ia64-vms-tdep.c: Fix indentation. * infcall.c: Fix indentation. * infcmd.c: Fix indentation. * inferior.c: Fix indentation. * infrun.c: Fix indentation. * iq2000-tdep.c: Fix indentation. * language.c: Fix indentation. * linespec.c: Fix indentation. * linux-fork.c: Fix indentation. * linux-nat.c: Fix indentation. * linux-tdep.c: Fix indentation. * linux-thread-db.c: Fix indentation. * lm32-tdep.c: Fix indentation. * m2-lang.c: Fix indentation. * m2-typeprint.c: Fix indentation. * m2-valprint.c: Fix indentation. * m32c-tdep.c: Fix indentation. * m32r-linux-tdep.c: Fix indentation. * m32r-tdep.c: Fix indentation. * m68hc11-tdep.c: Fix indentation. * m68k-bsd-nat.c: Fix indentation. * m68k-linux-nat.c: Fix indentation. * m68k-linux-tdep.c: Fix indentation. * m68k-tdep.c: Fix indentation. * machoread.c: Fix indentation. * macrocmd.c: Fix indentation. * macroexp.c: Fix indentation. * macroscope.c: Fix indentation. * macrotab.c: Fix indentation. * macrotab.h: Fix indentation. * main.c: Fix indentation. * mdebugread.c: Fix indentation. * mep-tdep.c: Fix indentation. * mi/mi-cmd-catch.c: Fix indentation. * mi/mi-cmd-disas.c: Fix indentation. * mi/mi-cmd-env.c: Fix indentation. * mi/mi-cmd-stack.c: Fix indentation. * mi/mi-cmd-var.c: Fix indentation. * mi/mi-cmds.c: Fix indentation. * mi/mi-main.c: Fix indentation. * mi/mi-parse.c: Fix indentation. * microblaze-tdep.c: Fix indentation. * minidebug.c: Fix indentation. * minsyms.c: Fix indentation. * mips-linux-nat.c: Fix indentation. * mips-linux-tdep.c: Fix indentation. * mips-nbsd-tdep.c: Fix indentation. * mips-tdep.c: Fix indentation. * mn10300-linux-tdep.c: Fix indentation. * mn10300-tdep.c: Fix indentation. * moxie-tdep.c: Fix indentation. * msp430-tdep.c: Fix indentation. * namespace.h: Fix indentation. * nat/fork-inferior.c: Fix indentation. * nat/gdb_ptrace.h: Fix indentation. * nat/linux-namespaces.c: Fix indentation. * nat/linux-osdata.c: Fix indentation. * nat/netbsd-nat.c: Fix indentation. * nat/x86-dregs.c: Fix indentation. * nbsd-nat.c: Fix indentation. * nbsd-tdep.c: Fix indentation. * nios2-linux-tdep.c: Fix indentation. * nios2-tdep.c: Fix indentation. * nto-procfs.c: Fix indentation. * nto-tdep.c: Fix indentation. * objfiles.c: Fix indentation. * objfiles.h: Fix indentation. * opencl-lang.c: Fix indentation. * or1k-tdep.c: Fix indentation. * osabi.c: Fix indentation. * osabi.h: Fix indentation. * osdata.c: Fix indentation. * p-lang.c: Fix indentation. * p-typeprint.c: Fix indentation. * p-valprint.c: Fix indentation. * parse.c: Fix indentation. * ppc-linux-nat.c: Fix indentation. * ppc-linux-tdep.c: Fix indentation. * ppc-nbsd-nat.c: Fix indentation. * ppc-nbsd-tdep.c: Fix indentation. * ppc-obsd-nat.c: Fix indentation. * ppc-ravenscar-thread.c: Fix indentation. * ppc-sysv-tdep.c: Fix indentation. * ppc64-tdep.c: Fix indentation. * printcmd.c: Fix indentation. * proc-api.c: Fix indentation. * producer.c: Fix indentation. * producer.h: Fix indentation. * prologue-value.c: Fix indentation. * prologue-value.h: Fix indentation. * psymtab.c: Fix indentation. * python/py-arch.c: Fix indentation. * python/py-bpevent.c: Fix indentation. * python/py-event.c: Fix indentation. * python/py-event.h: Fix indentation. * python/py-finishbreakpoint.c: Fix indentation. * python/py-frame.c: Fix indentation. * python/py-framefilter.c: Fix indentation. * python/py-inferior.c: Fix indentation. * python/py-infthread.c: Fix indentation. * python/py-objfile.c: Fix indentation. * python/py-prettyprint.c: Fix indentation. * python/py-registers.c: Fix indentation. * python/py-signalevent.c: Fix indentation. * python/py-stopevent.c: Fix indentation. * python/py-stopevent.h: Fix indentation. * python/py-threadevent.c: Fix indentation. * python/py-tui.c: Fix indentation. * python/py-unwind.c: Fix indentation. * python/py-value.c: Fix indentation. * python/py-xmethods.c: Fix indentation. * python/python-internal.h: Fix indentation. * python/python.c: Fix indentation. * ravenscar-thread.c: Fix indentation. * record-btrace.c: Fix indentation. * record-full.c: Fix indentation. * record.c: Fix indentation. * reggroups.c: Fix indentation. * regset.h: Fix indentation. * remote-fileio.c: Fix indentation. * remote.c: Fix indentation. * reverse.c: Fix indentation. * riscv-linux-tdep.c: Fix indentation. * riscv-ravenscar-thread.c: Fix indentation. * riscv-tdep.c: Fix indentation. * rl78-tdep.c: Fix indentation. * rs6000-aix-tdep.c: Fix indentation. * rs6000-lynx178-tdep.c: Fix indentation. * rs6000-nat.c: Fix indentation. * rs6000-tdep.c: Fix indentation. * rust-lang.c: Fix indentation. * rx-tdep.c: Fix indentation. * s12z-tdep.c: Fix indentation. * s390-linux-tdep.c: Fix indentation. * score-tdep.c: Fix indentation. * ser-base.c: Fix indentation. * ser-mingw.c: Fix indentation. * ser-uds.c: Fix indentation. * ser-unix.c: Fix indentation. * serial.c: Fix indentation. * sh-linux-tdep.c: Fix indentation. * sh-nbsd-tdep.c: Fix indentation. * sh-tdep.c: Fix indentation. * skip.c: Fix indentation. * sol-thread.c: Fix indentation. * solib-aix.c: Fix indentation. * solib-darwin.c: Fix indentation. * solib-frv.c: Fix indentation. * solib-svr4.c: Fix indentation. * solib.c: Fix indentation. * source.c: Fix indentation. * sparc-linux-tdep.c: Fix indentation. * sparc-nbsd-tdep.c: Fix indentation. * sparc-obsd-tdep.c: Fix indentation. * sparc-ravenscar-thread.c: Fix indentation. * sparc-tdep.c: Fix indentation. * sparc64-linux-tdep.c: Fix indentation. * sparc64-nbsd-tdep.c: Fix indentation. * sparc64-obsd-tdep.c: Fix indentation. * sparc64-tdep.c: Fix indentation. * stabsread.c: Fix indentation. * stack.c: Fix indentation. * stap-probe.c: Fix indentation. * stubs/ia64vms-stub.c: Fix indentation. * stubs/m32r-stub.c: Fix indentation. * stubs/m68k-stub.c: Fix indentation. * stubs/sh-stub.c: Fix indentation. * stubs/sparc-stub.c: Fix indentation. * symfile-mem.c: Fix indentation. * symfile.c: Fix indentation. * symfile.h: Fix indentation. * symmisc.c: Fix indentation. * symtab.c: Fix indentation. * symtab.h: Fix indentation. * target-float.c: Fix indentation. * target.c: Fix indentation. * target.h: Fix indentation. * tic6x-tdep.c: Fix indentation. * tilegx-linux-tdep.c: Fix indentation. * tilegx-tdep.c: Fix indentation. * top.c: Fix indentation. * tracefile-tfile.c: Fix indentation. * tracepoint.c: Fix indentation. * tui/tui-disasm.c: Fix indentation. * tui/tui-io.c: Fix indentation. * tui/tui-regs.c: Fix indentation. * tui/tui-stack.c: Fix indentation. * tui/tui-win.c: Fix indentation. * tui/tui-winsource.c: Fix indentation. * tui/tui.c: Fix indentation. * typeprint.c: Fix indentation. * ui-out.h: Fix indentation. * unittests/copy_bitwise-selftests.c: Fix indentation. * unittests/memory-map-selftests.c: Fix indentation. * utils.c: Fix indentation. * v850-tdep.c: Fix indentation. * valarith.c: Fix indentation. * valops.c: Fix indentation. * valprint.c: Fix indentation. * valprint.h: Fix indentation. * value.c: Fix indentation. * value.h: Fix indentation. * varobj.c: Fix indentation. * vax-tdep.c: Fix indentation. * windows-nat.c: Fix indentation. * windows-tdep.c: Fix indentation. * xcoffread.c: Fix indentation. * xml-syscall.c: Fix indentation. * xml-tdesc.c: Fix indentation. * xstormy16-tdep.c: Fix indentation. * xtensa-config.c: Fix indentation. * xtensa-linux-nat.c: Fix indentation. * xtensa-linux-tdep.c: Fix indentation. * xtensa-tdep.c: Fix indentation. gdbserver/ChangeLog: * ax.cc: Fix indentation. * dll.cc: Fix indentation. * inferiors.h: Fix indentation. * linux-low.cc: Fix indentation. * linux-nios2-low.cc: Fix indentation. * linux-ppc-ipa.cc: Fix indentation. * linux-ppc-low.cc: Fix indentation. * linux-x86-low.cc: Fix indentation. * linux-xtensa-low.cc: Fix indentation. * regcache.cc: Fix indentation. * server.cc: Fix indentation. * tracepoint.cc: Fix indentation. gdbsupport/ChangeLog: * common-exceptions.h: Fix indentation. * event-loop.cc: Fix indentation. * fileio.cc: Fix indentation. * filestuff.cc: Fix indentation. * gdb-dlfcn.cc: Fix indentation. * gdb_string_view.h: Fix indentation. * job-control.cc: Fix indentation. * signals.cc: Fix indentation. Change-Id: I4bad7ae6be0fbe14168b8ebafb98ffe14964a695
2020-11-02 23:26:14 +08:00
gdbarch_init_ftype *,
gdbarch_dump_tdep_ftype *);
1999-06-15 02:08:47 +08:00
/* Return a vector of the valid architecture names. Since architectures are
registered during the _initialize phase this function only returns useful
information once initialization has been completed. */
extern std::vector<const char *> gdbarch_printable_names ();
1999-06-15 02:08:47 +08:00
/* Helper function. Search the list of ARCHES for a GDBARCH that
2011-01-07 Michael Snyder <msnyder@vmware.com> * ada-lang.c: Comment cleanup, mostly periods and spaces. * ada-lang.h: Ditto. * ada-tasks.c: Ditto. * ada-valprint.c: Ditto. * aix-threads.c: Ditto. * alpha-linux-nat.c: Ditto. * alpha-linux-tdep.c: Ditto. * alpha-mdebug-tdep.c: Ditto. * alpha-nat.c: Ditto. * alpha-osf1-tdep.c: Ditto. * alpha-tdep.c: Ditto. * alphabsd-nat.c: Ditto. * alphabsd-tdep.c: Ditto. * amd64-darwin-tdep.c: Ditto. * amd64-linux-nat.c: Ditto. * amd64-linux-tdep.c: Ditto. * amd64-sol2-tdep.c: Ditto. * amd64-tdep.c: Ditto. * amd64-fbsd-tdep.c: Ditto. * amd64-nbsd-tdep.c: Ditto. * amd64-obsd-tdep.c: Ditto. * amd64-linux-nat.c: Ditto. * amd64-linux-tdep.c: Ditto. * arm-tdep.c: Ditto. * arm-tdep.h: Ditto. * armnbsd-nat.c: Ditto. * avr-tdep.c: Ditto. * bfin-tdep.c: Ditto. * bsd-kvm.c: Ditto. * c-typeprintc: Ditto. * c-valprint.c: Ditto. * coff-pe-read.h: Ditto. * coffreead.c: Ditto. * cris-tdep.c: Ditto. * d-lang.c: Ditto. * darwin-nat-info.c: Ditto. * darwin-nat.c: Ditto. * dbug-rom.c: Ditto. * dbxread.c: Ditto. * dcache.c: Ditto. * dcache.h: Ditto. * dec-thread.c: Ditto. * defs.h: Ditto. * demangle.c: Ditto. * dicos-tdep.c: Ditto. * dictionary.c: Ditto. * dictionary.h: Ditto. * dink32-rom.c: Ditto. * disasm.c: Ditto. * doublest.c: Ditto. * dsrec.c: Ditto. * dummy-frame.c: Ditto. * dwarf2-frame.c: Ditto. * dwarf2expr.c: Ditto. * dwarf2loc.c: Ditto. * dwarf2read.c: Ditto. * elfread.c: Ditto. * environ.c: Ditto. * eval.c: Ditto. * event-top.h: Ditto. * exceptions.c: Ditto. * exceptions.h: Ditto. * exec.c: Ditto. * expprint.c: Ditto. * expression.h: Ditto. * f-exp.y: Ditto. * f-lang.c: Ditto. * f-lang.h: Ditto. * f-typeprint.c: Ditto. * f-valprint.c: Ditto. * fbsd-nat.c: Ditto. * findvar.c: Ditto. * fork-child.c: Ditto. * frame.c: Ditto. * frame.h: Ditto. * frv-linux-tdep.c: Ditto. * frv-tdep.c: Ditto. * gcore.c: Ditto. * gdb-stabs.h: Ditto. * gdb_assert.h: Ditto. * gdb_string.h: Ditto. * gdb_thread_db.h: Ditto. * gdb_wait.h: Ditto. * gdbarch.sh: Ditto. * gdbcore.h: Ditto. * gdbthread.h: Ditto. * gdbtypes.c: Ditto. * gdbtypes.h: Ditto. * gnu-nat.c: Ditto. * gnu-nat.h: Ditto. * gnu-v2-abi.c: Ditto. * gnu-v3-abi.c: Ditto. * go32-nat.c: Ditto. * gdbarch.c: Regenerate. * gdbarch.h: Regenerate.
2011-01-08 03:36:19 +08:00
matches the information provided by INFO. */
1999-06-15 02:08:47 +08:00
extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1999-06-15 02:08:47 +08:00
/* Helper function. Create a preliminary ``struct gdbarch''. Perform
basic initialization using values obtained from the INFO and TDEP
1999-06-15 02:08:47 +08:00
parameters. set_gdbarch_*() functions are called to complete the
2011-01-07 Michael Snyder <msnyder@vmware.com> * ada-lang.c: Comment cleanup, mostly periods and spaces. * ada-lang.h: Ditto. * ada-tasks.c: Ditto. * ada-valprint.c: Ditto. * aix-threads.c: Ditto. * alpha-linux-nat.c: Ditto. * alpha-linux-tdep.c: Ditto. * alpha-mdebug-tdep.c: Ditto. * alpha-nat.c: Ditto. * alpha-osf1-tdep.c: Ditto. * alpha-tdep.c: Ditto. * alphabsd-nat.c: Ditto. * alphabsd-tdep.c: Ditto. * amd64-darwin-tdep.c: Ditto. * amd64-linux-nat.c: Ditto. * amd64-linux-tdep.c: Ditto. * amd64-sol2-tdep.c: Ditto. * amd64-tdep.c: Ditto. * amd64-fbsd-tdep.c: Ditto. * amd64-nbsd-tdep.c: Ditto. * amd64-obsd-tdep.c: Ditto. * amd64-linux-nat.c: Ditto. * amd64-linux-tdep.c: Ditto. * arm-tdep.c: Ditto. * arm-tdep.h: Ditto. * armnbsd-nat.c: Ditto. * avr-tdep.c: Ditto. * bfin-tdep.c: Ditto. * bsd-kvm.c: Ditto. * c-typeprintc: Ditto. * c-valprint.c: Ditto. * coff-pe-read.h: Ditto. * coffreead.c: Ditto. * cris-tdep.c: Ditto. * d-lang.c: Ditto. * darwin-nat-info.c: Ditto. * darwin-nat.c: Ditto. * dbug-rom.c: Ditto. * dbxread.c: Ditto. * dcache.c: Ditto. * dcache.h: Ditto. * dec-thread.c: Ditto. * defs.h: Ditto. * demangle.c: Ditto. * dicos-tdep.c: Ditto. * dictionary.c: Ditto. * dictionary.h: Ditto. * dink32-rom.c: Ditto. * disasm.c: Ditto. * doublest.c: Ditto. * dsrec.c: Ditto. * dummy-frame.c: Ditto. * dwarf2-frame.c: Ditto. * dwarf2expr.c: Ditto. * dwarf2loc.c: Ditto. * dwarf2read.c: Ditto. * elfread.c: Ditto. * environ.c: Ditto. * eval.c: Ditto. * event-top.h: Ditto. * exceptions.c: Ditto. * exceptions.h: Ditto. * exec.c: Ditto. * expprint.c: Ditto. * expression.h: Ditto. * f-exp.y: Ditto. * f-lang.c: Ditto. * f-lang.h: Ditto. * f-typeprint.c: Ditto. * f-valprint.c: Ditto. * fbsd-nat.c: Ditto. * findvar.c: Ditto. * fork-child.c: Ditto. * frame.c: Ditto. * frame.h: Ditto. * frv-linux-tdep.c: Ditto. * frv-tdep.c: Ditto. * gcore.c: Ditto. * gdb-stabs.h: Ditto. * gdb_assert.h: Ditto. * gdb_string.h: Ditto. * gdb_thread_db.h: Ditto. * gdb_wait.h: Ditto. * gdbarch.sh: Ditto. * gdbcore.h: Ditto. * gdbthread.h: Ditto. * gdbtypes.c: Ditto. * gdbtypes.h: Ditto. * gnu-nat.c: Ditto. * gnu-nat.h: Ditto. * gnu-v2-abi.c: Ditto. * gnu-v3-abi.c: Ditto. * go32-nat.c: Ditto. * gdbarch.c: Regenerate. * gdbarch.h: Regenerate.
2011-01-08 03:36:19 +08:00
initialization of the object. */
1999-06-15 02:08:47 +08:00
1999-08-31 09:14:27 +08:00
extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1999-06-15 02:08:47 +08:00
/* Helper function. Free a partially-constructed ``struct gdbarch''.
It is assumed that the caller freeds the ``struct
2011-01-07 Michael Snyder <msnyder@vmware.com> * ada-lang.c: Comment cleanup, mostly periods and spaces. * ada-lang.h: Ditto. * ada-tasks.c: Ditto. * ada-valprint.c: Ditto. * aix-threads.c: Ditto. * alpha-linux-nat.c: Ditto. * alpha-linux-tdep.c: Ditto. * alpha-mdebug-tdep.c: Ditto. * alpha-nat.c: Ditto. * alpha-osf1-tdep.c: Ditto. * alpha-tdep.c: Ditto. * alphabsd-nat.c: Ditto. * alphabsd-tdep.c: Ditto. * amd64-darwin-tdep.c: Ditto. * amd64-linux-nat.c: Ditto. * amd64-linux-tdep.c: Ditto. * amd64-sol2-tdep.c: Ditto. * amd64-tdep.c: Ditto. * amd64-fbsd-tdep.c: Ditto. * amd64-nbsd-tdep.c: Ditto. * amd64-obsd-tdep.c: Ditto. * amd64-linux-nat.c: Ditto. * amd64-linux-tdep.c: Ditto. * arm-tdep.c: Ditto. * arm-tdep.h: Ditto. * armnbsd-nat.c: Ditto. * avr-tdep.c: Ditto. * bfin-tdep.c: Ditto. * bsd-kvm.c: Ditto. * c-typeprintc: Ditto. * c-valprint.c: Ditto. * coff-pe-read.h: Ditto. * coffreead.c: Ditto. * cris-tdep.c: Ditto. * d-lang.c: Ditto. * darwin-nat-info.c: Ditto. * darwin-nat.c: Ditto. * dbug-rom.c: Ditto. * dbxread.c: Ditto. * dcache.c: Ditto. * dcache.h: Ditto. * dec-thread.c: Ditto. * defs.h: Ditto. * demangle.c: Ditto. * dicos-tdep.c: Ditto. * dictionary.c: Ditto. * dictionary.h: Ditto. * dink32-rom.c: Ditto. * disasm.c: Ditto. * doublest.c: Ditto. * dsrec.c: Ditto. * dummy-frame.c: Ditto. * dwarf2-frame.c: Ditto. * dwarf2expr.c: Ditto. * dwarf2loc.c: Ditto. * dwarf2read.c: Ditto. * elfread.c: Ditto. * environ.c: Ditto. * eval.c: Ditto. * event-top.h: Ditto. * exceptions.c: Ditto. * exceptions.h: Ditto. * exec.c: Ditto. * expprint.c: Ditto. * expression.h: Ditto. * f-exp.y: Ditto. * f-lang.c: Ditto. * f-lang.h: Ditto. * f-typeprint.c: Ditto. * f-valprint.c: Ditto. * fbsd-nat.c: Ditto. * findvar.c: Ditto. * fork-child.c: Ditto. * frame.c: Ditto. * frame.h: Ditto. * frv-linux-tdep.c: Ditto. * frv-tdep.c: Ditto. * gcore.c: Ditto. * gdb-stabs.h: Ditto. * gdb_assert.h: Ditto. * gdb_string.h: Ditto. * gdb_thread_db.h: Ditto. * gdb_wait.h: Ditto. * gdbarch.sh: Ditto. * gdbcore.h: Ditto. * gdbthread.h: Ditto. * gdbtypes.c: Ditto. * gdbtypes.h: Ditto. * gnu-nat.c: Ditto. * gnu-nat.h: Ditto. * gnu-v2-abi.c: Ditto. * gnu-v3-abi.c: Ditto. * go32-nat.c: Ditto. * gdbarch.c: Regenerate. * gdbarch.h: Regenerate.
2011-01-08 03:36:19 +08:00
gdbarch_tdep''. */
extern void gdbarch_free (struct gdbarch *);
Introduce obstack_new, poison other "typed" obstack functions Since we use obstacks with objects that are not default constructible, we sometimes need to manually call the constructor by hand using placement new: foo *f = obstack_alloc (obstack, sizeof (foo)); f = new (f) foo; It's possible to use allocate_on_obstack instead, but there are types that we sometimes want to allocate on an obstack, and sometimes on the regular heap. This patch introduces a utility to make this pattern simpler if allocate_on_obstack is not an option: foo *f = obstack_new<foo> (obstack); Right now there's only one usage (in tdesc_data_init). To help catch places where we would forget to call new when allocating such an object on an obstack, this patch also poisons some other methods of allocating an instance of a type on an obstack: - OBSTACK_ZALLOC/OBSTACK_CALLOC - XOBNEW/XOBNEW - GDBARCH_OBSTACK_ZALLOC/GDBARCH_OBSTACK_CALLOC Unfortunately, there's no way to catch wrong usages of obstack_alloc. By pulling on that string though, it tripped on allocating struct template_symbol using OBSTACK_ZALLOC. The criterion currently used to know whether it's safe to "malloc" an instance of a struct is whether it is a POD. Because it inherits from struct symbol, template_symbol is not a POD. This criterion is a bit too strict however, it should still safe to allocate memory for a template_symbol and memset it to 0. We didn't use is_trivially_constructible as the criterion in the first place only because it is not available in gcc < 5. So here I considered two alternatives: 1. Relax that criterion to use std::is_trivially_constructible and add a bit more glue code to make it work with gcc < 5 2. Continue pulling on the string and change how the symbol structures are allocated and initialized I managed to do both, but I decided to go with #1 to keep this patch simpler and more focused. When building with a compiler that does not have is_trivially_constructible, the check will just not be enforced. gdb/ChangeLog: * common/traits.h (HAVE_IS_TRIVIALLY_COPYABLE): Define if compiler supports std::is_trivially_constructible. * common/poison.h: Include obstack.h. (IsMallocable): Define to is_trivially_constructible if the compiler supports it, define to true_type otherwise. (xobnew): New. (XOBNEW): Redefine. (xobnewvec): New. (XOBNEWVEC): Redefine. * gdb_obstack.h (obstack_zalloc): New. (OBSTACK_ZALLOC): Redefine. (obstack_calloc): New. (OBSTACK_CALLOC): Redefine. (obstack_new): New. * gdbarch.sh: Include gdb_obstack in gdbarch.h. (gdbarch_obstack): New declaration in gdbarch.h, definition in gdbarch.c. (GDBARCH_OBSTACK_CALLOC, GDBARCH_OBSTACK_ZALLOC): Use obstack_calloc/obstack_zalloc. (gdbarch_obstack_zalloc): Remove. * target-descriptions.c (tdesc_data_init): Use obstack_new.
2018-05-21 09:06:03 +08:00
/* Get the obstack owned by ARCH. */
extern obstack *gdbarch_obstack (gdbarch *arch);
/* Helper function. Allocate memory from the ``struct gdbarch''
obstack. The memory is freed when the corresponding architecture
is also freed. */
Introduce obstack_new, poison other "typed" obstack functions Since we use obstacks with objects that are not default constructible, we sometimes need to manually call the constructor by hand using placement new: foo *f = obstack_alloc (obstack, sizeof (foo)); f = new (f) foo; It's possible to use allocate_on_obstack instead, but there are types that we sometimes want to allocate on an obstack, and sometimes on the regular heap. This patch introduces a utility to make this pattern simpler if allocate_on_obstack is not an option: foo *f = obstack_new<foo> (obstack); Right now there's only one usage (in tdesc_data_init). To help catch places where we would forget to call new when allocating such an object on an obstack, this patch also poisons some other methods of allocating an instance of a type on an obstack: - OBSTACK_ZALLOC/OBSTACK_CALLOC - XOBNEW/XOBNEW - GDBARCH_OBSTACK_ZALLOC/GDBARCH_OBSTACK_CALLOC Unfortunately, there's no way to catch wrong usages of obstack_alloc. By pulling on that string though, it tripped on allocating struct template_symbol using OBSTACK_ZALLOC. The criterion currently used to know whether it's safe to "malloc" an instance of a struct is whether it is a POD. Because it inherits from struct symbol, template_symbol is not a POD. This criterion is a bit too strict however, it should still safe to allocate memory for a template_symbol and memset it to 0. We didn't use is_trivially_constructible as the criterion in the first place only because it is not available in gcc < 5. So here I considered two alternatives: 1. Relax that criterion to use std::is_trivially_constructible and add a bit more glue code to make it work with gcc < 5 2. Continue pulling on the string and change how the symbol structures are allocated and initialized I managed to do both, but I decided to go with #1 to keep this patch simpler and more focused. When building with a compiler that does not have is_trivially_constructible, the check will just not be enforced. gdb/ChangeLog: * common/traits.h (HAVE_IS_TRIVIALLY_COPYABLE): Define if compiler supports std::is_trivially_constructible. * common/poison.h: Include obstack.h. (IsMallocable): Define to is_trivially_constructible if the compiler supports it, define to true_type otherwise. (xobnew): New. (XOBNEW): Redefine. (xobnewvec): New. (XOBNEWVEC): Redefine. * gdb_obstack.h (obstack_zalloc): New. (OBSTACK_ZALLOC): Redefine. (obstack_calloc): New. (OBSTACK_CALLOC): Redefine. (obstack_new): New. * gdbarch.sh: Include gdb_obstack in gdbarch.h. (gdbarch_obstack): New declaration in gdbarch.h, definition in gdbarch.c. (GDBARCH_OBSTACK_CALLOC, GDBARCH_OBSTACK_ZALLOC): Use obstack_calloc/obstack_zalloc. (gdbarch_obstack_zalloc): Remove. * target-descriptions.c (tdesc_data_init): Use obstack_new.
2018-05-21 09:06:03 +08:00
#define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) obstack_calloc<TYPE> (gdbarch_obstack ((GDBARCH)), (NR))
#define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) obstack_zalloc<TYPE> (gdbarch_obstack ((GDBARCH)))
/* Duplicate STRING, returning an equivalent string that's allocated on the
obstack associated with GDBARCH. The string is freed when the corresponding
architecture is also freed. */
extern char *gdbarch_obstack_strdup (struct gdbarch *arch, const char *string);
2011-01-07 Michael Snyder <msnyder@vmware.com> * ada-lang.c: Comment cleanup, mostly periods and spaces. * ada-lang.h: Ditto. * ada-tasks.c: Ditto. * ada-valprint.c: Ditto. * aix-threads.c: Ditto. * alpha-linux-nat.c: Ditto. * alpha-linux-tdep.c: Ditto. * alpha-mdebug-tdep.c: Ditto. * alpha-nat.c: Ditto. * alpha-osf1-tdep.c: Ditto. * alpha-tdep.c: Ditto. * alphabsd-nat.c: Ditto. * alphabsd-tdep.c: Ditto. * amd64-darwin-tdep.c: Ditto. * amd64-linux-nat.c: Ditto. * amd64-linux-tdep.c: Ditto. * amd64-sol2-tdep.c: Ditto. * amd64-tdep.c: Ditto. * amd64-fbsd-tdep.c: Ditto. * amd64-nbsd-tdep.c: Ditto. * amd64-obsd-tdep.c: Ditto. * amd64-linux-nat.c: Ditto. * amd64-linux-tdep.c: Ditto. * arm-tdep.c: Ditto. * arm-tdep.h: Ditto. * armnbsd-nat.c: Ditto. * avr-tdep.c: Ditto. * bfin-tdep.c: Ditto. * bsd-kvm.c: Ditto. * c-typeprintc: Ditto. * c-valprint.c: Ditto. * coff-pe-read.h: Ditto. * coffreead.c: Ditto. * cris-tdep.c: Ditto. * d-lang.c: Ditto. * darwin-nat-info.c: Ditto. * darwin-nat.c: Ditto. * dbug-rom.c: Ditto. * dbxread.c: Ditto. * dcache.c: Ditto. * dcache.h: Ditto. * dec-thread.c: Ditto. * defs.h: Ditto. * demangle.c: Ditto. * dicos-tdep.c: Ditto. * dictionary.c: Ditto. * dictionary.h: Ditto. * dink32-rom.c: Ditto. * disasm.c: Ditto. * doublest.c: Ditto. * dsrec.c: Ditto. * dummy-frame.c: Ditto. * dwarf2-frame.c: Ditto. * dwarf2expr.c: Ditto. * dwarf2loc.c: Ditto. * dwarf2read.c: Ditto. * elfread.c: Ditto. * environ.c: Ditto. * eval.c: Ditto. * event-top.h: Ditto. * exceptions.c: Ditto. * exceptions.h: Ditto. * exec.c: Ditto. * expprint.c: Ditto. * expression.h: Ditto. * f-exp.y: Ditto. * f-lang.c: Ditto. * f-lang.h: Ditto. * f-typeprint.c: Ditto. * f-valprint.c: Ditto. * fbsd-nat.c: Ditto. * findvar.c: Ditto. * fork-child.c: Ditto. * frame.c: Ditto. * frame.h: Ditto. * frv-linux-tdep.c: Ditto. * frv-tdep.c: Ditto. * gcore.c: Ditto. * gdb-stabs.h: Ditto. * gdb_assert.h: Ditto. * gdb_string.h: Ditto. * gdb_thread_db.h: Ditto. * gdb_wait.h: Ditto. * gdbarch.sh: Ditto. * gdbcore.h: Ditto. * gdbthread.h: Ditto. * gdbtypes.c: Ditto. * gdbtypes.h: Ditto. * gnu-nat.c: Ditto. * gnu-nat.h: Ditto. * gnu-v2-abi.c: Ditto. * gnu-v3-abi.c: Ditto. * go32-nat.c: Ditto. * gdbarch.c: Regenerate. * gdbarch.h: Regenerate.
2011-01-08 03:36:19 +08:00
/* Helper function. Force an update of the current architecture.
1999-06-15 02:08:47 +08:00
The actual architecture selected is determined by INFO, ``(gdb) set
architecture'' et.al., the existing architecture and BFD's default
architecture. INFO should be initialized to zero and then selected
fields should be updated.
1999-06-15 02:08:47 +08:00
2011-01-07 Michael Snyder <msnyder@vmware.com> * ada-lang.c: Comment cleanup, mostly periods and spaces. * ada-lang.h: Ditto. * ada-tasks.c: Ditto. * ada-valprint.c: Ditto. * aix-threads.c: Ditto. * alpha-linux-nat.c: Ditto. * alpha-linux-tdep.c: Ditto. * alpha-mdebug-tdep.c: Ditto. * alpha-nat.c: Ditto. * alpha-osf1-tdep.c: Ditto. * alpha-tdep.c: Ditto. * alphabsd-nat.c: Ditto. * alphabsd-tdep.c: Ditto. * amd64-darwin-tdep.c: Ditto. * amd64-linux-nat.c: Ditto. * amd64-linux-tdep.c: Ditto. * amd64-sol2-tdep.c: Ditto. * amd64-tdep.c: Ditto. * amd64-fbsd-tdep.c: Ditto. * amd64-nbsd-tdep.c: Ditto. * amd64-obsd-tdep.c: Ditto. * amd64-linux-nat.c: Ditto. * amd64-linux-tdep.c: Ditto. * arm-tdep.c: Ditto. * arm-tdep.h: Ditto. * armnbsd-nat.c: Ditto. * avr-tdep.c: Ditto. * bfin-tdep.c: Ditto. * bsd-kvm.c: Ditto. * c-typeprintc: Ditto. * c-valprint.c: Ditto. * coff-pe-read.h: Ditto. * coffreead.c: Ditto. * cris-tdep.c: Ditto. * d-lang.c: Ditto. * darwin-nat-info.c: Ditto. * darwin-nat.c: Ditto. * dbug-rom.c: Ditto. * dbxread.c: Ditto. * dcache.c: Ditto. * dcache.h: Ditto. * dec-thread.c: Ditto. * defs.h: Ditto. * demangle.c: Ditto. * dicos-tdep.c: Ditto. * dictionary.c: Ditto. * dictionary.h: Ditto. * dink32-rom.c: Ditto. * disasm.c: Ditto. * doublest.c: Ditto. * dsrec.c: Ditto. * dummy-frame.c: Ditto. * dwarf2-frame.c: Ditto. * dwarf2expr.c: Ditto. * dwarf2loc.c: Ditto. * dwarf2read.c: Ditto. * elfread.c: Ditto. * environ.c: Ditto. * eval.c: Ditto. * event-top.h: Ditto. * exceptions.c: Ditto. * exceptions.h: Ditto. * exec.c: Ditto. * expprint.c: Ditto. * expression.h: Ditto. * f-exp.y: Ditto. * f-lang.c: Ditto. * f-lang.h: Ditto. * f-typeprint.c: Ditto. * f-valprint.c: Ditto. * fbsd-nat.c: Ditto. * findvar.c: Ditto. * fork-child.c: Ditto. * frame.c: Ditto. * frame.h: Ditto. * frv-linux-tdep.c: Ditto. * frv-tdep.c: Ditto. * gcore.c: Ditto. * gdb-stabs.h: Ditto. * gdb_assert.h: Ditto. * gdb_string.h: Ditto. * gdb_thread_db.h: Ditto. * gdb_wait.h: Ditto. * gdbarch.sh: Ditto. * gdbcore.h: Ditto. * gdbthread.h: Ditto. * gdbtypes.c: Ditto. * gdbtypes.h: Ditto. * gnu-nat.c: Ditto. * gnu-nat.h: Ditto. * gnu-v2-abi.c: Ditto. * gnu-v3-abi.c: Ditto. * go32-nat.c: Ditto. * gdbarch.c: Regenerate. * gdbarch.h: Regenerate.
2011-01-08 03:36:19 +08:00
Returns non-zero if the update succeeds. */
extern int gdbarch_update_p (struct gdbarch_info info);
1999-06-15 02:08:47 +08:00
/* Helper function. Find an architecture matching info.
INFO should have relevant fields set, and then finished using
gdbarch_info_fill.
Returns the corresponding architecture, or NULL if no matching
architecture was found. */
extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
/* Helper function. Set the target gdbarch to "gdbarch". */
extern void set_target_gdbarch (struct gdbarch *gdbarch);
1999-06-15 02:08:47 +08:00
/* Register per-architecture data-pointer.
Reserve space for a per-architecture data-pointer. An identifier
for the reserved data-pointer is returned. That identifer should
be saved in a local static variable.
1999-06-15 02:08:47 +08:00
Memory for the per-architecture data shall be allocated using
gdbarch_obstack_zalloc. That memory will be deleted when the
corresponding architecture object is deleted.
1999-06-15 02:08:47 +08:00
When a previously created architecture is re-selected, the
per-architecture data-pointer for that previous architecture is
restored. INIT() is not re-called.
1999-06-15 02:08:47 +08:00
Multiple registrarants for any architecture are allowed (and
strongly encouraged). */
struct gdbarch_data;
1999-06-15 02:08:47 +08:00
2004-03-15 Andrew Cagney <cagney@redhat.com> * gdbarch.sh (gdbarch_data_pre_init_fytpe) (gdbarch_data_register_pre_init, gdbarch_data_post_init_fytpe) (gdbarch_data_register_post_init): Replace gdbarch_data_init_ftype and register_gdbarch_data. (deprecated_set_gdbarch_data): Rename set_gdbarch_data. (struct gdbarch_data): Replace "init" by "pre_init" and "post_init". * gdbarch.h, gdbarch.c: Re-generate. * dwarf2-frame.c (dwarf2_frame_init): Replace "gdbarch" paramter with"obstack", use OBSTACK_ZALLOC. (dwarf2_frame_ops): Delete. (dwarf2_frame_set_init_reg): Use gdbarch_data. (dwarf2_frame_init_reg): Use gdbarch_data. (_initialize_dwarf2_frame): Use gdbarch_data_register_pre_init. * solib-svr4.c (set_solib_svr4_fetch_link_map_offsets) (_initialize_svr4_solib): Update. * user-regs.c (_initialize_user_regs): Update. * reggroups.c (_initialize_reggroup): Update. * regcache.c (_initialize_regcache): Update. * mips-linux-tdep.c (_initialize_mips_linux_tdep): Update. * libunwind-frame.c (_initialize_libunwind_frame): Update. * gnu-v3-abi.c (init_gnuv3_ops): Update. * frame-unwind.c (_initialize_frame_unwind): Update. * frame-base.c (_initialize_frame_base): Update. * user-regs.c (user_reg_add): Update. * reggroups.c (reggroup_add): Update. * mips-linux-tdep.c (set_mips_linux_register_addr): Update. * libunwind-frame.c (libunwind_frame_set_descr): Update. * frame-unwind.c (frame_unwind_append_sniffer): Update. * frame-base.c (frame_base_table): Update. * remote.c (_initialize_remote): Update. * gdb_obstack.h (OBSTACK_ZALLOC, OBSTACK_CALLOC): Define.
2004-03-16 04:38:08 +08:00
typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1999-06-15 02:08:47 +08:00
extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1999-06-15 02:08:47 +08:00
/* Set the dynamic target-system-dependent parameters (architecture,
2011-01-07 Michael Snyder <msnyder@vmware.com> * ada-lang.c: Comment cleanup, mostly periods and spaces. * ada-lang.h: Ditto. * ada-tasks.c: Ditto. * ada-valprint.c: Ditto. * aix-threads.c: Ditto. * alpha-linux-nat.c: Ditto. * alpha-linux-tdep.c: Ditto. * alpha-mdebug-tdep.c: Ditto. * alpha-nat.c: Ditto. * alpha-osf1-tdep.c: Ditto. * alpha-tdep.c: Ditto. * alphabsd-nat.c: Ditto. * alphabsd-tdep.c: Ditto. * amd64-darwin-tdep.c: Ditto. * amd64-linux-nat.c: Ditto. * amd64-linux-tdep.c: Ditto. * amd64-sol2-tdep.c: Ditto. * amd64-tdep.c: Ditto. * amd64-fbsd-tdep.c: Ditto. * amd64-nbsd-tdep.c: Ditto. * amd64-obsd-tdep.c: Ditto. * amd64-linux-nat.c: Ditto. * amd64-linux-tdep.c: Ditto. * arm-tdep.c: Ditto. * arm-tdep.h: Ditto. * armnbsd-nat.c: Ditto. * avr-tdep.c: Ditto. * bfin-tdep.c: Ditto. * bsd-kvm.c: Ditto. * c-typeprintc: Ditto. * c-valprint.c: Ditto. * coff-pe-read.h: Ditto. * coffreead.c: Ditto. * cris-tdep.c: Ditto. * d-lang.c: Ditto. * darwin-nat-info.c: Ditto. * darwin-nat.c: Ditto. * dbug-rom.c: Ditto. * dbxread.c: Ditto. * dcache.c: Ditto. * dcache.h: Ditto. * dec-thread.c: Ditto. * defs.h: Ditto. * demangle.c: Ditto. * dicos-tdep.c: Ditto. * dictionary.c: Ditto. * dictionary.h: Ditto. * dink32-rom.c: Ditto. * disasm.c: Ditto. * doublest.c: Ditto. * dsrec.c: Ditto. * dummy-frame.c: Ditto. * dwarf2-frame.c: Ditto. * dwarf2expr.c: Ditto. * dwarf2loc.c: Ditto. * dwarf2read.c: Ditto. * elfread.c: Ditto. * environ.c: Ditto. * eval.c: Ditto. * event-top.h: Ditto. * exceptions.c: Ditto. * exceptions.h: Ditto. * exec.c: Ditto. * expprint.c: Ditto. * expression.h: Ditto. * f-exp.y: Ditto. * f-lang.c: Ditto. * f-lang.h: Ditto. * f-typeprint.c: Ditto. * f-valprint.c: Ditto. * fbsd-nat.c: Ditto. * findvar.c: Ditto. * fork-child.c: Ditto. * frame.c: Ditto. * frame.h: Ditto. * frv-linux-tdep.c: Ditto. * frv-tdep.c: Ditto. * gcore.c: Ditto. * gdb-stabs.h: Ditto. * gdb_assert.h: Ditto. * gdb_string.h: Ditto. * gdb_thread_db.h: Ditto. * gdb_wait.h: Ditto. * gdbarch.sh: Ditto. * gdbcore.h: Ditto. * gdbthread.h: Ditto. * gdbtypes.c: Ditto. * gdbtypes.h: Ditto. * gnu-nat.c: Ditto. * gnu-nat.h: Ditto. * gnu-v2-abi.c: Ditto. * gnu-v3-abi.c: Ditto. * go32-nat.c: Ditto. * gdbarch.c: Regenerate. * gdbarch.h: Regenerate.
2011-01-08 03:36:19 +08:00
byte-order, ...) using information found in the BFD. */
1999-08-31 09:14:27 +08:00
extern void set_gdbarch_from_file (bfd *);
1999-10-26 11:43:48 +08:00
/* Initialize the current architecture to the "first" one we find on
our list. */
extern void initialize_current_architecture (void);
/* gdbarch trace variable */
gdb/ * dwarf2loc.c (entry_values_debug): Add 'unsigned'. (_initialize_dwarf2loc): Call add_setshow_zuinteger_cmd instead of add_setshow_zinteger_cmd. * dwarf2loc.h: Update the declaration of 'entry_values_debug'. * dwarf2read.c (dwarf2_die_debug): Add 'unsigned'. (_initialize_dwarf2_read): Call add_setshow_zuinteger_cmd instead of add_setshow_zinteger_cmd. * darwin-nat.c (dwarwin_debug_flag): Add 'unsigned'. (_initialize_darwin_inferior): Call add_setshow_zuinteger_cmd instead of add_setshow_zinteger_cmd. * frame.c (frame_debug): Add 'unsigned'. (_intialize_frame): Call add_setshow_zuinteger_cmd instead of add_setshow_zinteger_cmd. * frame.h: Update the declaration of 'frame_debug'. * gdbtypes.c (overload_debug): Add 'unsigned'. (_initialize_gdbtypes): Call add_setshow_zuinteger_cmd instead of add_setshow_zinteger_cmd. * inferior.h: Update declaration of 'debug_infrun'. * infrun.c (debug_infrun): Add 'unsigned'. (_initialize_infrun): Call add_setshow_zuinteger_cmd instead of add_setshow_zinteger_cmd. * jit.c (jit_debug): Add 'unsigned'. (_initialize_jit): Call add_setshow_zuinteger_cmd instead of add_setshow_zinteger_cmd. * linux-nat.c (debug_linux_nat): Add 'unsigned'. (_initialize_linux_nat): Call add_setshow_zuinteger_cmd instead of add_setshow_zinteger_cmd. * linux-thread-db.c (libthread_db_debug): Add 'unsigned'. (_initialize_thread_db): Call add_setshow_zuinteger_cmd instead of add_setshow_zinteger_cmd. * machoread.c (mach_o_debug_level): Add 'unsigned'. (_initialize_machoread): Call add_setshow_zuinteger_cmd instead of add_setshow_zinteger_cmd. * mi/mi-cmd-var.c: Update the declaration of 'varobjdebug'. * microblaze-tdep.c (microblaze_debug_flag): Add 'unsigned'. (_initialize_microblaze_tdep): Call add_setshow_zuinteger_cmd intead of add_setshow_zinteger_cmd. * mips-tdep.c (mips_debug): Add 'unsigned'. (_initialize_mips_tdep): Call add_setshow_zuinteger_cmd instead of add_setshow_zinteger_cmd. * monitor.c (monitor_debug): Add 'unsigned'. (_initialize_remote_monitors): Call add_setshow_zuinteger_cmd instead of add_setshow_zinteger_cmd. * observer.c (observer_debug): Add 'unsigned'. (_initialize_observer): Call add_setshow_zuinteger_cmd instead of add_setshow_zinteger_cmd. * parse.c (expressiondebug): Add 'unsigned'. (_initialize_parse): Call add_setshow_zuinteger_cmd instead of add_setshow_zinteger_cmd. * record.c (record_debug): Add 'unsigned'. (_initialize_record): Call add_setshow_zuinteger_cmd instead of add_setshow_zinteger_cmd. * record.h: Update the declaration of 'record_debug'. * stap-probe.c (stap_expression_debug): Add 'unsigned'. (_initialize_stap_probe): Call add_setshow_zuinteger_cmd instead of add_setshow_zinteger_cmd. * serial.c (global_serial_debug_p): Add 'unsigned'. (_initialize_serial): Call add_setshow_zuinteger_cmd instead of add_setshow_zinteger_cmd. * solib-dsbt.c (solib_dsbt_debug): Add 'unsigned'. (_initialize_dsbt_solib): Call add_setshow_zuinteger_cmd instead of add_setshow_zinteger_cmd. * solib-frv.c (solib_frv_debug): Add 'unsigned'. (_initialize_frv_solib): Call add_setshow_zuinteger_cmd instead of add_setshow_zinteger_cmd. * target.c (targetdebug): Add 'unsigned'. (initialize_targets): Call add_setshow_zuinteger_cmd instead of add_setshow_zinteger_cmd. * valops.c (overload_debug): Add 'unsigned'. * varobj.c (varobjdebug): Add 'unsigned'. (_initialize_varobj): Call add_setshow_zuinteger_cmd instead of add_setshow_zinteger_cmd. * xtensa-tdep.c (xtensa_debug_level): Add 'unsigned'. (_initialize_xtensa_tdep): Call add_setshow_zuinteger_cmd instead of add_setshow_zinteger_cmd. * arch-utils.h: Remove the declaration of 'gdbarch_debug'. * gdbarch.sh (gdbarch_debug): Add 'unsigned'. (extern void _initialize_gdbarch): Call add_setshow_zuinteger_cmd instead of add_setshow_zinteger_cmd. * gdbarch.c, gdbarch.h: Re-generated.
2012-08-02 17:36:40 +08:00
extern unsigned int gdbarch_debug;
extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1999-06-15 02:08:47 +08:00
Introduce gdbarch_num_cooked_regs The expression gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch) is used quite often to find the number of cooked registers (raw + pseudo registers). This patch introduces gdbarch_num_cooked_regs, which does the equivalent. It substantially reduces required wrapping in some places, so should improve readability. There is a for loop in m68hc11_frame_unwind_cache that had iterated until (the equivalent of) gdbarch_num_cooked_regs (gdbarch) - 1. During review, we concluded that this is most likely an off-by-one mistake, so I replaced it with gdbarch_num_cooked_regs (gdbarch). gdb/ChangeLog: * gdbarch.sh (gdbarch_num_cooked_regs): New. * gdbarch.h: Re-generate. * ax-gdb.c (gen_expr): Use gdbarch_num_cooked_regs. * dwarf2-frame.c (dwarf2_frame_cache): Likewise. * eval.c (evaluate_subexp_standard): Likewise. * findvar.c (value_of_register): Likewise. (value_of_register_lazy): Likewise. (address_from_register): Likewise. * frame.c (get_frame_register_bytes): Likewise. * gdbarch-selftests.c (register_to_value_test): Likewise. * h8300-tdep.c (h8300_register_type): Likewise. * i386-tdep.c (i386_dbx_reg_to_regnum): Likewise. (i386_svr4_reg_to_regnum): Likewise. * infcmd.c (default_print_registers_info): Likewise. (registers_info): Likewise. (print_vector_info): Likewise. (default_print_float_info): Likewise. * m68hc11-tdep.c (m68hc11_frame_unwind_cache): Likewise. * mdebugread.c (mdebug_reg_to_regnum): Likewise. * mi/mi-main.c (mi_cmd_data_list_register_names): Likewise. (mi_cmd_data_list_changed_registers): Likewise. (mi_cmd_data_list_register_values): Likewise. (mi_cmd_data_write_register_values): Likewise. (mi_cmd_trace_frame_collected): Likewise. * mips-tdep.c (print_gp_register_row): Likewise. (mips_print_registers_info): Likewise. * nds32-tdep.c (nds32_gdbarch_init): Likewise. * regcache.c (init_regcache_descr): Likewise. (register_size): Likewise. (register_dump::dump): Likewise. (cooked_read_test): Likewise. (cooked_write_test): Likewise. * rs6000-tdep.c (rs6000_register_sim_regno): Likewise. (rs6000_gdbarch_init): Likewise. * stabsread.c (stab_reg_to_regnum): Likewise. * stack.c (info_frame_command): Likewise. * target-descriptions.c (tdesc_register_name): Likewise. * trad-frame.c (trad_frame_alloc_saved_regs): Likewise. * tui/tui-regs.c (tui_show_register_group): Likewise. * user-regs.c (user_reg_map_name_to_regnum): Likewise. (user_reg_map_regnum_to_name): Likewise. (value_of_user_reg): Likewise. (maintenance_print_user_registers): Likewise. * xtensa-tdep.c (xtensa_find_register_by_name): Likewise. (xtensa_register_name): Likewise. (xtensa_register_type): Likewise. (xtensa_reg_to_regnum): Likewise. (xtensa_pseudo_register_read): Likewise. (xtensa_pseudo_register_write): Likewise.
2018-10-22 10:29:21 +08:00
/* Return the number of cooked registers (raw + pseudo) for ARCH. */
static inline int
gdbarch_num_cooked_regs (gdbarch *arch)
{
return gdbarch_num_regs (arch) + gdbarch_num_pseudo_regs (arch);
}
#endif