binutils-gdb/gdb/gdbserver/low-lynx.c

746 lines
19 KiB
C
Raw Normal View History

/* Low level interface to ptrace, for the remote server for GDB.
Copyright 1986, 1987, 1993, 1994, 1995, 1999, 2000, 2001, 2002
2001-03-06 16:22:02 +08:00
Free Software Foundation, Inc.
1999-07-08 04:19:36 +08:00
This file is part of GDB.
1999-07-08 04:19:36 +08:00
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
1999-07-08 04:19:36 +08:00
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
1999-07-08 04:19:36 +08:00
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
#include "server.h"
#include "frame.h"
#include "inferior.h"
#include <stdio.h>
#include <sys/param.h>
#include <sys/dir.h>
#define LYNXOS
#include <sys/mem.h>
#include <sys/signal.h>
#include <sys/file.h>
#include <sys/kernel.h>
#ifndef __LYNXOS
#define __LYNXOS
#endif
#include <sys/itimer.h>
#include <sys/time.h>
#include <sys/resource.h>
#include <sys/proc.h>
#include <signal.h>
#include <sys/ioctl.h>
#include <sgtty.h>
#include <fcntl.h>
#include <sys/wait.h>
#include <sys/fpp.h>
1999-11-02 12:44:47 +08:00
static char my_registers[REGISTER_BYTES];
char *registers = my_registers;
#include <sys/ptrace.h>
/* Start an inferior process and returns its pid.
ALLARGS is a vector of program-name and args. */
int
2000-07-30 09:48:28 +08:00
create_inferior (char *program, char **allargs)
{
int pid;
pid = fork ();
if (pid < 0)
perror_with_name ("fork");
if (pid == 0)
{
int pgrp;
/* Switch child to it's own process group so that signals won't
1999-07-08 04:19:36 +08:00
directly affect gdbserver. */
1999-07-08 04:19:36 +08:00
pgrp = getpid ();
setpgrp (0, pgrp);
ioctl (0, TIOCSPGRP, &pgrp);
1999-07-08 04:19:36 +08:00
ptrace (PTRACE_TRACEME, 0, (PTRACE_ARG3_TYPE) 0, 0);
execv (program, allargs);
fprintf (stderr, "GDBserver (process %d): Cannot exec %s: %s.\n",
1999-07-08 04:19:36 +08:00
getpid (), program,
errno < sys_nerr ? sys_errlist[errno] : "unknown error");
fflush (stderr);
_exit (0177);
}
return pid;
}
/* Attaching is not supported. */
int
myattach (int pid)
{
return -1;
}
/* Kill the inferior process. Make us have no inferior. */
void
2000-07-30 09:48:28 +08:00
kill_inferior (void)
{
if (inferior_pid == 0)
return;
ptrace (PTRACE_KILL, inferior_pid, 0, 0);
wait (0);
inferior_pid = 0;
}
/* Return nonzero if the given thread is still alive. */
int
2000-07-30 09:48:28 +08:00
mythread_alive (int pid)
{
/* Arggh. Apparently pthread_kill only works for threads within
the process that calls pthread_kill.
We want to avoid the lynx signal extensions as they simply don't
map well to the generic gdb interface we want to keep.
All we want to do is determine if a particular thread is alive;
it appears as if we can just make a harmless thread specific
ptrace call to do that. */
return (ptrace (PTRACE_THREADUSER,
BUILDPID (PIDGET (inferior_pid), pid), 0, 0) != -1);
}
/* Wait for process, returns status */
unsigned char
2000-07-30 09:48:28 +08:00
mywait (char *status)
{
int pid;
union wait w;
while (1)
{
1999-07-08 04:19:36 +08:00
enable_async_io ();
pid = wait (&w);
1999-07-08 04:19:36 +08:00
disable_async_io ();
1999-07-08 04:19:36 +08:00
if (pid != PIDGET (inferior_pid))
perror_with_name ("wait");
thread_from_wait = w.w_tid;
inferior_pid = BUILDPID (inferior_pid, w.w_tid);
1999-07-08 04:19:36 +08:00
if (WIFSTOPPED (w)
&& WSTOPSIG (w) == SIGTRAP)
{
int realsig;
realsig = ptrace (PTRACE_GETTRACESIG, inferior_pid,
1999-07-08 04:19:36 +08:00
(PTRACE_ARG3_TYPE) 0, 0);
if (realsig == SIGNEWTHREAD)
{
/* It's a new thread notification. Nothing to do here since
1999-07-08 04:19:36 +08:00
the machine independent code in wait_for_inferior will
add the thread to the thread list and restart the thread
when pid != inferior_pid and pid is not in the thread list.
We don't even want to muck with realsig -- the code in
wait_for_inferior expects SIGTRAP. */
;
}
}
break;
}
if (WIFEXITED (w))
{
*status = 'W';
return ((unsigned char) WEXITSTATUS (w));
}
else if (!WIFSTOPPED (w))
{
*status = 'X';
return ((unsigned char) WTERMSIG (w));
}
fetch_inferior_registers (0);
*status = 'T';
return ((unsigned char) WSTOPSIG (w));
}
/* Resume execution of the inferior process.
If STEP is nonzero, single-step it.
If SIGNAL is nonzero, give it that signal. */
void
2000-07-30 09:48:28 +08:00
myresume (int step, int signal)
{
errno = 0;
ptrace (step ? PTRACE_SINGLESTEP_ONE : PTRACE_CONT,
BUILDPID (inferior_pid, cont_thread == -1 ? 0 : cont_thread),
1, signal);
if (errno)
perror_with_name ("ptrace");
}
#undef offsetof
#define offsetof(TYPE, MEMBER) ((unsigned long) &((TYPE *)0)->MEMBER)
/* Mapping between GDB register #s and offsets into econtext. Must be
consistent with REGISTER_NAMES macro in various tmXXX.h files. */
#define X(ENTRY)(offsetof(struct econtext, ENTRY))
#ifdef I386
/* Mappings from tm-i386v.h */
static int regmap[] =
{
1999-07-08 04:19:36 +08:00
X (eax),
X (ecx),
X (edx),
X (ebx),
X (esp), /* sp */
X (ebp), /* fp */
X (esi),
X (edi),
X (eip), /* pc */
X (flags), /* ps */
X (cs),
X (ss),
X (ds),
X (es),
X (ecode), /* Lynx doesn't give us either fs or gs, so */
X (fault), /* we just substitute these two in the hopes
that they are useful. */
};
#endif
#ifdef M68K
/* Mappings from tm-m68k.h */
static int regmap[] =
{
1999-07-08 04:19:36 +08:00
X (regs[0]), /* d0 */
X (regs[1]), /* d1 */
X (regs[2]), /* d2 */
X (regs[3]), /* d3 */
X (regs[4]), /* d4 */
X (regs[5]), /* d5 */
X (regs[6]), /* d6 */
X (regs[7]), /* d7 */
X (regs[8]), /* a0 */
X (regs[9]), /* a1 */
X (regs[10]), /* a2 */
X (regs[11]), /* a3 */
X (regs[12]), /* a4 */
X (regs[13]), /* a5 */
X (regs[14]), /* fp */
0, /* sp */
1999-07-08 04:19:36 +08:00
X (status), /* ps */
X (pc),
X (fregs[0 * 3]), /* fp0 */
X (fregs[1 * 3]), /* fp1 */
X (fregs[2 * 3]), /* fp2 */
X (fregs[3 * 3]), /* fp3 */
X (fregs[4 * 3]), /* fp4 */
X (fregs[5 * 3]), /* fp5 */
X (fregs[6 * 3]), /* fp6 */
X (fregs[7 * 3]), /* fp7 */
X (fcregs[0]), /* fpcontrol */
X (fcregs[1]), /* fpstatus */
X (fcregs[2]), /* fpiaddr */
X (ssw), /* fpcode */
X (fault), /* fpflags */
};
#endif
#ifdef SPARC
/* Mappings from tm-sparc.h */
#define FX(ENTRY)(offsetof(struct fcontext, ENTRY))
static int regmap[] =
{
-1, /* g0 */
1999-07-08 04:19:36 +08:00
X (g1),
X (g2),
X (g3),
X (g4),
-1, /* g5->g7 aren't saved by Lynx */
-1,
-1,
1999-07-08 04:19:36 +08:00
X (o[0]),
X (o[1]),
X (o[2]),
X (o[3]),
X (o[4]),
X (o[5]),
X (o[6]), /* sp */
X (o[7]), /* ra */
-1, -1, -1, -1, -1, -1, -1, -1, /* l0 -> l7 */
-1, -1, -1, -1, -1, -1, -1, -1, /* i0 -> i7 */
FX (f.fregs[0]), /* f0 */
FX (f.fregs[1]),
FX (f.fregs[2]),
FX (f.fregs[3]),
FX (f.fregs[4]),
FX (f.fregs[5]),
FX (f.fregs[6]),
FX (f.fregs[7]),
FX (f.fregs[8]),
FX (f.fregs[9]),
FX (f.fregs[10]),
FX (f.fregs[11]),
FX (f.fregs[12]),
FX (f.fregs[13]),
FX (f.fregs[14]),
FX (f.fregs[15]),
FX (f.fregs[16]),
FX (f.fregs[17]),
FX (f.fregs[18]),
FX (f.fregs[19]),
FX (f.fregs[20]),
FX (f.fregs[21]),
FX (f.fregs[22]),
FX (f.fregs[23]),
FX (f.fregs[24]),
FX (f.fregs[25]),
FX (f.fregs[26]),
FX (f.fregs[27]),
FX (f.fregs[28]),
FX (f.fregs[29]),
FX (f.fregs[30]),
FX (f.fregs[31]),
X (y),
X (psr),
X (wim),
X (tbr),
X (pc),
X (npc),
FX (fsr), /* fpsr */
-1, /* cpsr */
};
#endif
#ifdef SPARC
/* This routine handles some oddball cases for Sparc registers and LynxOS.
In partucular, it causes refs to G0, g5->7, and all fp regs to return zero.
It also handles knows where to find the I & L regs on the stack. */
void
2000-07-30 09:48:28 +08:00
fetch_inferior_registers (int regno)
{
#if 0
int whatregs = 0;
#define WHATREGS_FLOAT 1
#define WHATREGS_GEN 2
#define WHATREGS_STACK 4
if (regno == -1)
whatregs = WHATREGS_FLOAT | WHATREGS_GEN | WHATREGS_STACK;
else if (regno >= L0_REGNUM && regno <= I7_REGNUM)
whatregs = WHATREGS_STACK;
else if (regno >= FP0_REGNUM && regno < FP0_REGNUM + 32)
whatregs = WHATREGS_FLOAT;
else
whatregs = WHATREGS_GEN;
if (whatregs & WHATREGS_GEN)
{
1999-07-08 04:19:36 +08:00
struct econtext ec; /* general regs */
char buf[MAX_REGISTER_RAW_SIZE];
int retval;
int i;
errno = 0;
retval = ptrace (PTRACE_GETREGS,
BUILDPID (inferior_pid, general_thread),
1999-07-08 04:19:36 +08:00
(PTRACE_ARG3_TYPE) & ec,
0);
if (errno)
perror_with_name ("Sparc fetch_inferior_registers(ptrace)");
1999-07-08 04:19:36 +08:00
memset (buf, 0, REGISTER_RAW_SIZE (G0_REGNUM));
supply_register (G0_REGNUM, buf);
1999-07-08 04:19:36 +08:00
supply_register (TBR_REGNUM, (char *) &ec.tbr);
memcpy (&registers[REGISTER_BYTE (G1_REGNUM)], &ec.g1,
4 * REGISTER_RAW_SIZE (G1_REGNUM));
for (i = G1_REGNUM; i <= G1_REGNUM + 3; i++)
register_valid[i] = 1;
1999-07-08 04:19:36 +08:00
supply_register (PS_REGNUM, (char *) &ec.psr);
supply_register (Y_REGNUM, (char *) &ec.y);
supply_register (PC_REGNUM, (char *) &ec.pc);
supply_register (NPC_REGNUM, (char *) &ec.npc);
supply_register (WIM_REGNUM, (char *) &ec.wim);
memcpy (&registers[REGISTER_BYTE (O0_REGNUM)], ec.o,
8 * REGISTER_RAW_SIZE (O0_REGNUM));
for (i = O0_REGNUM; i <= O0_REGNUM + 7; i++)
register_valid[i] = 1;
}
if (whatregs & WHATREGS_STACK)
{
CORE_ADDR sp;
int i;
sp = read_register (SP_REGNUM);
target_xfer_memory (sp + FRAME_SAVED_I0,
1999-07-08 04:19:36 +08:00
&registers[REGISTER_BYTE (I0_REGNUM)],
8 * REGISTER_RAW_SIZE (I0_REGNUM), 0);
for (i = I0_REGNUM; i <= I7_REGNUM; i++)
register_valid[i] = 1;
target_xfer_memory (sp + FRAME_SAVED_L0,
1999-07-08 04:19:36 +08:00
&registers[REGISTER_BYTE (L0_REGNUM)],
8 * REGISTER_RAW_SIZE (L0_REGNUM), 0);
for (i = L0_REGNUM; i <= L0_REGNUM + 7; i++)
register_valid[i] = 1;
}
if (whatregs & WHATREGS_FLOAT)
{
1999-07-08 04:19:36 +08:00
struct fcontext fc; /* fp regs */
int retval;
int i;
errno = 0;
1999-07-08 04:19:36 +08:00
retval = ptrace (PTRACE_GETFPREGS, BUILDPID (inferior_pid, general_thread), (PTRACE_ARG3_TYPE) & fc,
0);
if (errno)
perror_with_name ("Sparc fetch_inferior_registers(ptrace)");
1999-07-08 04:19:36 +08:00
memcpy (&registers[REGISTER_BYTE (FP0_REGNUM)], fc.f.fregs,
32 * REGISTER_RAW_SIZE (FP0_REGNUM));
for (i = FP0_REGNUM; i <= FP0_REGNUM + 31; i++)
register_valid[i] = 1;
1999-07-08 04:19:36 +08:00
supply_register (FPS_REGNUM, (char *) &fc.fsr);
}
#endif
}
/* This routine handles storing of the I & L regs for the Sparc. The trick
here is that they actually live on the stack. The really tricky part is
that when changing the stack pointer, the I & L regs must be written to
where the new SP points, otherwise the regs will be incorrect when the
process is started up again. We assume that the I & L regs are valid at
this point. */
void
2000-07-30 09:48:28 +08:00
store_inferior_registers (int regno)
{
#if 0
int whatregs = 0;
if (regno == -1)
whatregs = WHATREGS_FLOAT | WHATREGS_GEN | WHATREGS_STACK;
else if (regno >= L0_REGNUM && regno <= I7_REGNUM)
whatregs = WHATREGS_STACK;
else if (regno >= FP0_REGNUM && regno < FP0_REGNUM + 32)
whatregs = WHATREGS_FLOAT;
else if (regno == SP_REGNUM)
whatregs = WHATREGS_STACK | WHATREGS_GEN;
else
whatregs = WHATREGS_GEN;
if (whatregs & WHATREGS_GEN)
{
1999-07-08 04:19:36 +08:00
struct econtext ec; /* general regs */
int retval;
ec.tbr = read_register (TBR_REGNUM);
memcpy (&ec.g1, &registers[REGISTER_BYTE (G1_REGNUM)],
4 * REGISTER_RAW_SIZE (G1_REGNUM));
ec.psr = read_register (PS_REGNUM);
ec.y = read_register (Y_REGNUM);
ec.pc = read_register (PC_REGNUM);
ec.npc = read_register (NPC_REGNUM);
ec.wim = read_register (WIM_REGNUM);
memcpy (ec.o, &registers[REGISTER_BYTE (O0_REGNUM)],
8 * REGISTER_RAW_SIZE (O0_REGNUM));
errno = 0;
1999-07-08 04:19:36 +08:00
retval = ptrace (PTRACE_SETREGS, BUILDPID (inferior_pid, general_thread), (PTRACE_ARG3_TYPE) & ec,
0);
if (errno)
perror_with_name ("Sparc fetch_inferior_registers(ptrace)");
}
if (whatregs & WHATREGS_STACK)
{
int regoffset;
CORE_ADDR sp;
sp = read_register (SP_REGNUM);
if (regno == -1 || regno == SP_REGNUM)
{
1999-07-08 04:19:36 +08:00
if (!register_valid[L0_REGNUM + 5])
abort ();
target_xfer_memory (sp + FRAME_SAVED_I0,
&registers[REGISTER_BYTE (I0_REGNUM)],
8 * REGISTER_RAW_SIZE (I0_REGNUM), 1);
target_xfer_memory (sp + FRAME_SAVED_L0,
&registers[REGISTER_BYTE (L0_REGNUM)],
8 * REGISTER_RAW_SIZE (L0_REGNUM), 1);
}
else if (regno >= L0_REGNUM && regno <= I7_REGNUM)
{
if (!register_valid[regno])
1999-07-08 04:19:36 +08:00
abort ();
if (regno >= L0_REGNUM && regno <= L0_REGNUM + 7)
regoffset = REGISTER_BYTE (regno) - REGISTER_BYTE (L0_REGNUM)
+ FRAME_SAVED_L0;
else
regoffset = REGISTER_BYTE (regno) - REGISTER_BYTE (I0_REGNUM)
+ FRAME_SAVED_I0;
target_xfer_memory (sp + regoffset, &registers[REGISTER_BYTE (regno)],
REGISTER_RAW_SIZE (regno), 1);
}
}
if (whatregs & WHATREGS_FLOAT)
{
1999-07-08 04:19:36 +08:00
struct fcontext fc; /* fp regs */
int retval;
/* We read fcontext first so that we can get good values for fq_t... */
errno = 0;
1999-07-08 04:19:36 +08:00
retval = ptrace (PTRACE_GETFPREGS, BUILDPID (inferior_pid, general_thread), (PTRACE_ARG3_TYPE) & fc,
0);
if (errno)
perror_with_name ("Sparc fetch_inferior_registers(ptrace)");
1999-07-08 04:19:36 +08:00
memcpy (fc.f.fregs, &registers[REGISTER_BYTE (FP0_REGNUM)],
32 * REGISTER_RAW_SIZE (FP0_REGNUM));
fc.fsr = read_register (FPS_REGNUM);
errno = 0;
1999-07-08 04:19:36 +08:00
retval = ptrace (PTRACE_SETFPREGS, BUILDPID (inferior_pid, general_thread), (PTRACE_ARG3_TYPE) & fc,
0);
if (errno)
perror_with_name ("Sparc fetch_inferior_registers(ptrace)");
1999-07-08 04:19:36 +08:00
}
#endif
}
#endif /* SPARC */
#ifndef SPARC
/* Return the offset relative to the start of the per-thread data to the
saved context block. */
static unsigned long
2000-07-30 09:48:28 +08:00
lynx_registers_addr (void)
{
CORE_ADDR stblock;
1999-07-08 04:19:36 +08:00
int ecpoff = offsetof (st_t, ecp);
CORE_ADDR ecp;
errno = 0;
stblock = (CORE_ADDR) ptrace (PTRACE_THREADUSER, BUILDPID (inferior_pid, general_thread),
1999-07-08 04:19:36 +08:00
(PTRACE_ARG3_TYPE) 0, 0);
if (errno)
perror_with_name ("PTRACE_THREADUSER");
ecp = (CORE_ADDR) ptrace (PTRACE_PEEKTHREAD, BUILDPID (inferior_pid, general_thread),
1999-07-08 04:19:36 +08:00
(PTRACE_ARG3_TYPE) ecpoff, 0);
if (errno)
perror_with_name ("lynx_registers_addr(PTRACE_PEEKTHREAD)");
return ecp - stblock;
}
/* Fetch one or more registers from the inferior. REGNO == -1 to get
them all. We actually fetch more than requested, when convenient,
marking them as valid so we won't fetch them again. */
void
2000-07-30 09:48:28 +08:00
fetch_inferior_registers (int ignored)
{
int regno;
unsigned long reg;
unsigned long ecp;
1999-07-08 04:19:36 +08:00
ecp = lynx_registers_addr ();
for (regno = 0; regno < NUM_REGS; regno++)
{
int ptrace_fun = PTRACE_PEEKTHREAD;
#ifdef PTRACE_PEEKUSP
ptrace_fun = regno == SP_REGNUM ? PTRACE_PEEKUSP : PTRACE_PEEKTHREAD;
#endif
errno = 0;
reg = ptrace (ptrace_fun, BUILDPID (inferior_pid, general_thread),
(PTRACE_ARG3_TYPE) (ecp + regmap[regno]), 0);
if (errno)
perror_with_name ("fetch_inferior_registers(PTRACE_PEEKTHREAD)");
1999-07-08 04:19:36 +08:00
*(unsigned long *) &registers[REGISTER_BYTE (regno)] = reg;
}
}
/* Store our register values back into the inferior.
If REGNO is -1, do this for all registers.
Otherwise, REGNO specifies which register (so we can save time). */
void
2000-07-30 09:48:28 +08:00
store_inferior_registers (int ignored)
{
int regno;
unsigned long reg;
unsigned long ecp;
1999-07-08 04:19:36 +08:00
ecp = lynx_registers_addr ();
for (regno = 0; regno < NUM_REGS; regno++)
{
int ptrace_fun = PTRACE_POKEUSER;
#ifdef PTRACE_POKEUSP
ptrace_fun = regno == SP_REGNUM ? PTRACE_POKEUSP : PTRACE_POKEUSER;
#endif
1999-07-08 04:19:36 +08:00
reg = *(unsigned long *) &registers[REGISTER_BYTE (regno)];
errno = 0;
ptrace (ptrace_fun, BUILDPID (inferior_pid, general_thread),
(PTRACE_ARG3_TYPE) (ecp + regmap[regno]), reg);
if (errno)
perror_with_name ("PTRACE_POKEUSER");
}
}
#endif /* ! SPARC */
/* NOTE! I tried using PTRACE_READDATA, etc., to read and write memory
in the NEW_SUN_PTRACE case.
It ought to be straightforward. But it appears that writing did
not write the data that I specified. I cannot understand where
it got the data that it actually did write. */
/* Copy LEN bytes from inferior's memory starting at MEMADDR
to debugger memory starting at MYADDR. */
void
2000-07-30 09:48:28 +08:00
read_inferior_memory (CORE_ADDR memaddr, char *myaddr, int len)
{
register int i;
/* Round starting address down to longword boundary. */
register CORE_ADDR addr = memaddr & -(CORE_ADDR) sizeof (int);
/* Round ending address up; get number of longwords that makes. */
register int count
= (((memaddr + len) - addr) + sizeof (int) - 1) / sizeof (int);
/* Allocate buffer of that many longwords. */
register int *buffer = (int *) alloca (count * sizeof (int));
/* Read all the longwords */
for (i = 0; i < count; i++, addr += sizeof (int))
{
buffer[i] = ptrace (PTRACE_PEEKTEXT, BUILDPID (inferior_pid, general_thread), addr, 0);
}
/* Copy appropriate bytes out of the buffer. */
memcpy (myaddr, (char *) buffer + (memaddr & (sizeof (int) - 1)), len);
}
/* Copy LEN bytes of data from debugger memory at MYADDR
to inferior's memory at MEMADDR.
On failure (cannot write the inferior)
returns the value of errno. */
int
2000-07-30 09:48:28 +08:00
write_inferior_memory (CORE_ADDR memaddr, char *myaddr, int len)
{
register int i;
/* Round starting address down to longword boundary. */
register CORE_ADDR addr = memaddr & -(CORE_ADDR) sizeof (int);
/* Round ending address up; get number of longwords that makes. */
register int count
= (((memaddr + len) - addr) + sizeof (int) - 1) / sizeof (int);
/* Allocate buffer of that many longwords. */
register int *buffer = (int *) alloca (count * sizeof (int));
extern int errno;
/* Fill start and end extra bytes of buffer with existing memory data. */
buffer[0] = ptrace (PTRACE_PEEKTEXT, BUILDPID (inferior_pid, general_thread), addr, 0);
if (count > 1)
{
buffer[count - 1]
= ptrace (PTRACE_PEEKTEXT, BUILDPID (inferior_pid, general_thread),
addr + (count - 1) * sizeof (int), 0);
}
/* Copy data to be written over corresponding part of buffer */
memcpy ((char *) buffer + (memaddr & (sizeof (int) - 1)), myaddr, len);
/* Write the entire buffer. */
for (i = 0; i < count; i++, addr += sizeof (int))
{
while (1)
{
errno = 0;
ptrace (PTRACE_POKETEXT, BUILDPID (inferior_pid, general_thread), addr, buffer[i]);
if (errno)
{
1999-07-08 04:19:36 +08:00
fprintf (stderr, "\
ptrace (PTRACE_POKETEXT): errno=%d, pid=0x%x, addr=0x%x, buffer[i] = 0x%x\n",
1999-07-08 04:19:36 +08:00
errno, BUILDPID (inferior_pid, general_thread),
addr, buffer[i]);
fprintf (stderr, "Sleeping for 1 second\n");
sleep (1);
}
else
break;
}
}
return 0;
}
1999-11-17 10:31:06 +08:00
void
2000-07-30 09:48:28 +08:00
initialize_low (void)
1999-11-17 10:31:06 +08:00
{
}