2019-04-24 18:41:00 +08:00
|
|
|
/* Textual dumping of CTF data.
|
2020-01-01 15:57:01 +08:00
|
|
|
Copyright (C) 2019-2020 Free Software Foundation, Inc.
|
2019-04-24 18:41:00 +08:00
|
|
|
|
|
|
|
This file is part of libctf.
|
|
|
|
|
|
|
|
libctf is free software; you can redistribute it and/or modify it under
|
|
|
|
the terms of the GNU General Public License as published by the Free
|
|
|
|
Software Foundation; either version 3, or (at your option) any later
|
|
|
|
version.
|
|
|
|
|
|
|
|
This program is distributed in the hope that it will be useful, but
|
|
|
|
WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
|
|
|
|
See the GNU General Public License for more details.
|
|
|
|
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
|
|
along with this program; see the file COPYING. If not see
|
|
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
|
|
|
|
#include <ctf-impl.h>
|
|
|
|
#include <string.h>
|
|
|
|
|
2019-09-17 13:57:00 +08:00
|
|
|
#define str_append(s, a) ctf_str_append_noerr (s, a)
|
|
|
|
|
2019-04-24 18:41:00 +08:00
|
|
|
/* One item to be dumped, in string form. */
|
|
|
|
|
|
|
|
typedef struct ctf_dump_item
|
|
|
|
{
|
|
|
|
ctf_list_t cdi_list;
|
|
|
|
char *cdi_item;
|
|
|
|
} ctf_dump_item_t;
|
|
|
|
|
|
|
|
/* Cross-call state for dumping. Basically just enough to track the section in
|
|
|
|
use and a list of return strings. */
|
|
|
|
|
|
|
|
struct ctf_dump_state
|
|
|
|
{
|
|
|
|
ctf_sect_names_t cds_sect;
|
|
|
|
ctf_file_t *cds_fp;
|
|
|
|
ctf_dump_item_t *cds_current;
|
|
|
|
ctf_list_t cds_items;
|
|
|
|
};
|
|
|
|
|
|
|
|
/* Cross-call state for ctf_dump_member. */
|
|
|
|
|
|
|
|
typedef struct ctf_dump_membstate
|
|
|
|
{
|
|
|
|
char **cdm_str;
|
|
|
|
ctf_file_t *cdm_fp;
|
|
|
|
} ctf_dump_membstate_t;
|
|
|
|
|
|
|
|
static int
|
|
|
|
ctf_dump_append (ctf_dump_state_t *state, char *str)
|
|
|
|
{
|
|
|
|
ctf_dump_item_t *cdi;
|
|
|
|
|
libctf: remove ctf_malloc, ctf_free and ctf_strdup
These just get in the way of auditing for erroneous usage of strdup and
add a huge irregular surface of "ctf_malloc or malloc? ctf_free or free?
ctf_strdup or strdup?"
ctf_malloc and ctf_free usage has not reliably matched up for many
years, if ever, making the whole game pointless.
Go back to malloc, free, and strdup like everyone else: while we're at
it, fix a bunch of places where we weren't properly checking for OOM.
This changes the interface of ctf_cuname_set and ctf_parent_name_set,
which could strdup but could not return errors (like ENOMEM).
New in v4.
include/
* ctf-api.h (ctf_cuname_set): Can now fail, returning int.
(ctf_parent_name_set): Likewise.
libctf/
* ctf-impl.h (ctf_alloc): Remove.
(ctf_free): Likewise.
(ctf_strdup): Likewise.
* ctf-subr.c (ctf_alloc): Remove.
(ctf_free): Likewise.
* ctf-util.c (ctf_strdup): Remove.
* ctf-create.c (ctf_serialize): Use malloc, not ctf_alloc; free, not
ctf_free; strdup, not ctf_strdup.
(ctf_dtd_delete): Likewise.
(ctf_dvd_delete): Likewise.
(ctf_add_generic): Likewise.
(ctf_add_function): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_variable): Likewise.
(membadd): Likewise.
(ctf_compress_write): Likewise.
(ctf_write_mem): Likewise.
* ctf-decl.c (ctf_decl_push): Likewise.
(ctf_decl_fini): Likewise.
(ctf_decl_sprintf): Likewise. Check for OOM.
* ctf-dump.c (ctf_dump_append): Use malloc, not ctf_alloc; free, not
ctf_free; strdup, not ctf_strdup.
(ctf_dump_free): Likewise.
(ctf_dump): Likewise.
* ctf-open.c (upgrade_types_v1): Likewise.
(init_types): Likewise.
(ctf_file_close): Likewise.
(ctf_bufopen_internal): Likewise. Check for OOM.
(ctf_parent_name_set): Likewise: report the OOM to the caller.
(ctf_cuname_set): Likewise.
(ctf_import): Likewise.
* ctf-string.c (ctf_str_purge_atom_refs): Use malloc, not ctf_alloc;
free, not ctf_free; strdup, not ctf_strdup.
(ctf_str_free_atom): Likewise.
(ctf_str_create_atoms): Likewise.
(ctf_str_add_ref_internal): Likewise.
(ctf_str_remove_ref): Likewise.
(ctf_str_write_strtab): Likewise.
2019-09-17 13:54:23 +08:00
|
|
|
if ((cdi = malloc (sizeof (struct ctf_dump_item))) == NULL)
|
2019-04-24 18:41:00 +08:00
|
|
|
return (ctf_set_errno (state->cds_fp, ENOMEM));
|
|
|
|
|
|
|
|
cdi->cdi_item = str;
|
|
|
|
ctf_list_append (&state->cds_items, cdi);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
ctf_dump_free (ctf_dump_state_t *state)
|
|
|
|
{
|
|
|
|
ctf_dump_item_t *cdi, *next_cdi;
|
|
|
|
|
|
|
|
if (state == NULL)
|
|
|
|
return;
|
|
|
|
|
|
|
|
for (cdi = ctf_list_next (&state->cds_items); cdi != NULL;
|
|
|
|
cdi = next_cdi)
|
|
|
|
{
|
|
|
|
free (cdi->cdi_item);
|
|
|
|
next_cdi = ctf_list_next (cdi);
|
libctf: remove ctf_malloc, ctf_free and ctf_strdup
These just get in the way of auditing for erroneous usage of strdup and
add a huge irregular surface of "ctf_malloc or malloc? ctf_free or free?
ctf_strdup or strdup?"
ctf_malloc and ctf_free usage has not reliably matched up for many
years, if ever, making the whole game pointless.
Go back to malloc, free, and strdup like everyone else: while we're at
it, fix a bunch of places where we weren't properly checking for OOM.
This changes the interface of ctf_cuname_set and ctf_parent_name_set,
which could strdup but could not return errors (like ENOMEM).
New in v4.
include/
* ctf-api.h (ctf_cuname_set): Can now fail, returning int.
(ctf_parent_name_set): Likewise.
libctf/
* ctf-impl.h (ctf_alloc): Remove.
(ctf_free): Likewise.
(ctf_strdup): Likewise.
* ctf-subr.c (ctf_alloc): Remove.
(ctf_free): Likewise.
* ctf-util.c (ctf_strdup): Remove.
* ctf-create.c (ctf_serialize): Use malloc, not ctf_alloc; free, not
ctf_free; strdup, not ctf_strdup.
(ctf_dtd_delete): Likewise.
(ctf_dvd_delete): Likewise.
(ctf_add_generic): Likewise.
(ctf_add_function): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_variable): Likewise.
(membadd): Likewise.
(ctf_compress_write): Likewise.
(ctf_write_mem): Likewise.
* ctf-decl.c (ctf_decl_push): Likewise.
(ctf_decl_fini): Likewise.
(ctf_decl_sprintf): Likewise. Check for OOM.
* ctf-dump.c (ctf_dump_append): Use malloc, not ctf_alloc; free, not
ctf_free; strdup, not ctf_strdup.
(ctf_dump_free): Likewise.
(ctf_dump): Likewise.
* ctf-open.c (upgrade_types_v1): Likewise.
(init_types): Likewise.
(ctf_file_close): Likewise.
(ctf_bufopen_internal): Likewise. Check for OOM.
(ctf_parent_name_set): Likewise: report the OOM to the caller.
(ctf_cuname_set): Likewise.
(ctf_import): Likewise.
* ctf-string.c (ctf_str_purge_atom_refs): Use malloc, not ctf_alloc;
free, not ctf_free; strdup, not ctf_strdup.
(ctf_str_free_atom): Likewise.
(ctf_str_create_atoms): Likewise.
(ctf_str_add_ref_internal): Likewise.
(ctf_str_remove_ref): Likewise.
(ctf_str_write_strtab): Likewise.
2019-09-17 13:54:23 +08:00
|
|
|
free (cdi);
|
2019-04-24 18:41:00 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Slices need special handling to distinguish them from their referenced
|
|
|
|
type. */
|
|
|
|
|
|
|
|
static int
|
|
|
|
ctf_is_slice (ctf_file_t *fp, ctf_id_t id, ctf_encoding_t *enc)
|
|
|
|
{
|
|
|
|
int kind = ctf_type_kind (fp, id);
|
|
|
|
|
|
|
|
return (((kind == CTF_K_INTEGER) || (kind == CTF_K_ENUM)
|
|
|
|
|| (kind == CTF_K_FLOAT))
|
|
|
|
&& ctf_type_reference (fp, id) != CTF_ERR
|
libctf: fix a number of build problems found on Solaris and NetBSD
- Use of nonportable <endian.h>
- Use of qsort_r
- Use of zlib without appropriate magic to pull in the binutils zlib
- Use of off64_t without checking (fixed by dropping the unused fields
that need off64_t entirely)
- signedness problems due to long being too short a type on 32-bit
platforms: ctf_id_t is now 'unsigned long', and CTF_ERR must be
used only for functions that return ctf_id_t
- One lingering use of bzero() and of <sys/errno.h>
All fixed, using code from gnulib where possible.
Relatedly, set cts_size in a couple of places it was missed
(string table and symbol table loading upon ctf_bfdopen()).
binutils/
* objdump.c (make_ctfsect): Drop cts_type, cts_flags, and
cts_offset.
* readelf.c (shdr_to_ctf_sect): Likewise.
include/
* ctf-api.h (ctf_sect_t): Drop cts_type, cts_flags, and cts_offset.
(ctf_id_t): This is now an unsigned type.
(CTF_ERR): Cast it to ctf_id_t. Note that it should only be used
for ctf_id_t-returning functions.
libctf/
* Makefile.am (ZLIB): New.
(ZLIBINC): Likewise.
(AM_CFLAGS): Use them.
(libctf_a_LIBADD): New, for LIBOBJS.
* configure.ac: Check for zlib, endian.h, and qsort_r.
* ctf-endian.h: New, providing htole64 and le64toh.
* swap.h: Code style fixes.
(bswap_identity_64): New.
* qsort_r.c: New, from gnulib (with one added #include).
* ctf-decls.h: New, providing a conditional qsort_r declaration,
and unconditional definitions of MIN and MAX.
* ctf-impl.h: Use it. Do not use <sys/errno.h>.
(ctf_set_errno): Now returns unsigned long.
* ctf-util.c (ctf_set_errno): Adjust here too.
* ctf-archive.c: Use ctf-endian.h.
(ctf_arc_open_by_offset): Use memset, not bzero. Drop cts_type,
cts_flags and cts_offset.
(ctf_arc_write): Drop debugging dependent on the size of off_t.
* ctf-create.c: Provide a definition of roundup if not defined.
(ctf_create): Drop cts_type, cts_flags and cts_offset.
(ctf_add_reftype): Do not check if type IDs are below zero.
(ctf_add_slice): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_member_offset): Cast error-returning ssize_t's to size_t
when known error-free. Drop CTF_ERR usage for functions returning
int.
(ctf_add_member_encoded): Drop CTF_ERR usage for functions returning
int.
(ctf_add_variable): Likewise.
(enumcmp): Likewise.
(enumadd): Likewise.
(membcmp): Likewise.
(ctf_add_type): Likewise. Cast error-returning ssize_t's to size_t
when known error-free.
* ctf-dump.c (ctf_is_slice): Drop CTF_ERR usage for functions
returning int: use CTF_ERR for functions returning ctf_type_id.
(ctf_dump_label): Likewise.
(ctf_dump_objts): Likewise.
* ctf-labels.c (ctf_label_topmost): Likewise.
(ctf_label_iter): Likewise.
(ctf_label_info): Likewise.
* ctf-lookup.c (ctf_func_args): Likewise.
* ctf-open.c (upgrade_types): Cast to size_t where appropriate.
(ctf_bufopen): Likewise. Use zlib types as needed.
* ctf-types.c (ctf_member_iter): Drop CTF_ERR usage for functions
returning int.
(ctf_enum_iter): Likewise.
(ctf_type_size): Likewise.
(ctf_type_align): Likewise. Cast to size_t where appropriate.
(ctf_type_kind_unsliced): Likewise.
(ctf_type_kind): Likewise.
(ctf_type_encoding): Likewise.
(ctf_member_info): Likewise.
(ctf_array_info): Likewise.
(ctf_enum_value): Likewise.
(ctf_type_rvisit): Likewise.
* ctf-open-bfd.c (ctf_bfdopen): Drop cts_type, cts_flags and
cts_offset.
(ctf_simple_open): Likewise.
(ctf_bfdopen_ctfsect): Likewise. Set cts_size properly.
* Makefile.in: Regenerate.
* aclocal.m4: Likewise.
* config.h: Likewise.
* configure: Likewise.
2019-05-31 17:10:51 +08:00
|
|
|
&& ctf_type_encoding (fp, id, enc) == 0);
|
2019-04-24 18:41:00 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
/* Return a dump for a single type, without member info: but do show the
|
|
|
|
type's references. */
|
|
|
|
|
|
|
|
static char *
|
2019-07-14 03:49:19 +08:00
|
|
|
ctf_dump_format_type (ctf_file_t *fp, ctf_id_t id, int flag)
|
2019-04-24 18:41:00 +08:00
|
|
|
{
|
|
|
|
ctf_id_t new_id;
|
|
|
|
char *str = NULL, *bit = NULL, *buf = NULL;
|
|
|
|
|
|
|
|
new_id = id;
|
|
|
|
do
|
|
|
|
{
|
|
|
|
ctf_encoding_t enc;
|
2019-07-14 03:49:19 +08:00
|
|
|
const char *nonroot_leader = "";
|
|
|
|
const char *nonroot_trailer = "";
|
2019-04-24 18:41:00 +08:00
|
|
|
|
|
|
|
id = new_id;
|
2019-07-14 03:49:19 +08:00
|
|
|
if (flag == CTF_ADD_NONROOT)
|
|
|
|
{
|
|
|
|
nonroot_leader = "{";
|
|
|
|
nonroot_trailer = "}";
|
|
|
|
}
|
|
|
|
|
2019-04-24 18:41:00 +08:00
|
|
|
buf = ctf_type_aname (fp, id);
|
|
|
|
if (!buf)
|
libctf: handle nonrepresentable types at link time
GCC can emit references to type 0 to indicate that this type is one that
is not representable in the version of CTF it emits (for instance,
version 3 cannot encode vector types). Type 0 is already used in the
function section to indicate padding inserted to skip functions we do
not want to encode the type of, so using zero in this way is a good
extension of the format: but libctf reports such types as ECTF_BADID,
which is indistinguishable from file corruption via links to truly
nonexistent types with IDs like 0xDEADBEEF etc, which we really do want
to stop for.
In particular, this stops all traversals of types dead at this point,
preventing us from even dumping CTF files containing unrepresentable
types to see what's going on!
So add a new error, ECTF_NONREPRESENTABLE, which is returned by
recursive type resolution when a reference to a zero type is found. (No
zero type is ever emitted into the CTF file by GCC, only references to
one). We can't do much with types that are ultimately nonrepresentable,
but we can do enough to keep functioning.
Adjust ctf_add_type to ensure that top-level types of type zero and
structure and union members of ultimate type zero are simply skipped
without reporting an error, so we can copy structures and unions that
contain nonrepresentable members (skipping them and leaving a hole where
they would be, so no consumers downstream of the linker need to worry
about this): adjust the dumper so that we dump members of
nonrepresentable types in a simple form that indicates
nonrepresentability rather than terminating the dump, and do not falsely
assume all errors to be -ENOMEM: adjust the linker so that types that
fail to get added are simply skipped, so that both nonrepresentable
types and outright errors do not terminate the type addition, which
could skip many valid types and cause further errors when variables of
those types are added.
In future, when we gain the ability to call back to the linker to report
link-time type resolution errors, we should report failures to add all
but nonrepresentable types. But we can't do that yet.
v5: Fix tabdamage.
include/
* ctf-api.h (ECTF_NONREPRESENTABLE): New.
libctf/
* ctf-types.c (ctf_type_resolve): Return ECTF_NONREPRESENTABLE on
type zero.
* ctf-create.c (ctf_add_type): Detect and skip nonrepresentable
members and types.
(ctf_add_variable): Likewise for variables pointing to them.
* ctf-link.c (ctf_link_one_type): Do not warn for nonrepresentable
type link failure, but do warn for others.
* ctf-dump.c (ctf_dump_format_type): Likewise. Do not assume all
errors to be ENOMEM.
(ctf_dump_member): Likewise.
(ctf_dump_type): Likewise.
(ctf_dump_header_strfield): Do not assume all errors to be ENOMEM.
(ctf_dump_header_sectfield): Do not assume all errors to be ENOMEM.
(ctf_dump_header): Likewise.
(ctf_dump_label): likewise.
(ctf_dump_objts): likewise.
(ctf_dump_funcs): likewise.
(ctf_dump_var): likewise.
(ctf_dump_str): Likewise.
2019-08-05 18:40:33 +08:00
|
|
|
{
|
|
|
|
if (id == 0 || ctf_errno (fp) == ECTF_NONREPRESENTABLE)
|
|
|
|
{
|
2019-09-17 13:57:00 +08:00
|
|
|
str = str_append (str, " (type not represented in CTF)");
|
libctf: handle nonrepresentable types at link time
GCC can emit references to type 0 to indicate that this type is one that
is not representable in the version of CTF it emits (for instance,
version 3 cannot encode vector types). Type 0 is already used in the
function section to indicate padding inserted to skip functions we do
not want to encode the type of, so using zero in this way is a good
extension of the format: but libctf reports such types as ECTF_BADID,
which is indistinguishable from file corruption via links to truly
nonexistent types with IDs like 0xDEADBEEF etc, which we really do want
to stop for.
In particular, this stops all traversals of types dead at this point,
preventing us from even dumping CTF files containing unrepresentable
types to see what's going on!
So add a new error, ECTF_NONREPRESENTABLE, which is returned by
recursive type resolution when a reference to a zero type is found. (No
zero type is ever emitted into the CTF file by GCC, only references to
one). We can't do much with types that are ultimately nonrepresentable,
but we can do enough to keep functioning.
Adjust ctf_add_type to ensure that top-level types of type zero and
structure and union members of ultimate type zero are simply skipped
without reporting an error, so we can copy structures and unions that
contain nonrepresentable members (skipping them and leaving a hole where
they would be, so no consumers downstream of the linker need to worry
about this): adjust the dumper so that we dump members of
nonrepresentable types in a simple form that indicates
nonrepresentability rather than terminating the dump, and do not falsely
assume all errors to be -ENOMEM: adjust the linker so that types that
fail to get added are simply skipped, so that both nonrepresentable
types and outright errors do not terminate the type addition, which
could skip many valid types and cause further errors when variables of
those types are added.
In future, when we gain the ability to call back to the linker to report
link-time type resolution errors, we should report failures to add all
but nonrepresentable types. But we can't do that yet.
v5: Fix tabdamage.
include/
* ctf-api.h (ECTF_NONREPRESENTABLE): New.
libctf/
* ctf-types.c (ctf_type_resolve): Return ECTF_NONREPRESENTABLE on
type zero.
* ctf-create.c (ctf_add_type): Detect and skip nonrepresentable
members and types.
(ctf_add_variable): Likewise for variables pointing to them.
* ctf-link.c (ctf_link_one_type): Do not warn for nonrepresentable
type link failure, but do warn for others.
* ctf-dump.c (ctf_dump_format_type): Likewise. Do not assume all
errors to be ENOMEM.
(ctf_dump_member): Likewise.
(ctf_dump_type): Likewise.
(ctf_dump_header_strfield): Do not assume all errors to be ENOMEM.
(ctf_dump_header_sectfield): Do not assume all errors to be ENOMEM.
(ctf_dump_header): Likewise.
(ctf_dump_label): likewise.
(ctf_dump_objts): likewise.
(ctf_dump_funcs): likewise.
(ctf_dump_var): likewise.
(ctf_dump_str): Likewise.
2019-08-05 18:40:33 +08:00
|
|
|
ctf_set_errno (fp, ECTF_NOTREF);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
goto err;
|
|
|
|
}
|
2019-04-24 18:41:00 +08:00
|
|
|
|
|
|
|
/* Slices get a different print representation. */
|
|
|
|
|
|
|
|
if (ctf_is_slice (fp, id, &enc))
|
|
|
|
{
|
|
|
|
ctf_type_encoding (fp, id, &enc);
|
2019-07-14 03:49:19 +08:00
|
|
|
if (asprintf (&bit, " %s%lx: [slice 0x%x:0x%x]%s",
|
|
|
|
nonroot_leader, id, enc.cte_offset, enc.cte_bits,
|
|
|
|
nonroot_trailer) < 0)
|
2019-04-24 18:41:00 +08:00
|
|
|
goto oom;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
2019-07-14 03:49:19 +08:00
|
|
|
if (asprintf (&bit, " %s%lx: %s (size 0x%lx)%s", nonroot_leader,
|
|
|
|
id, buf[0] == '\0' ? "(nameless)" : buf,
|
|
|
|
(unsigned long) ctf_type_size (fp, id),
|
|
|
|
nonroot_trailer) < 0)
|
2019-04-24 18:41:00 +08:00
|
|
|
goto oom;
|
|
|
|
}
|
|
|
|
free (buf);
|
|
|
|
buf = NULL;
|
2019-09-17 13:57:00 +08:00
|
|
|
str = str_append (str, bit);
|
2019-04-24 18:41:00 +08:00
|
|
|
free (bit);
|
|
|
|
bit = NULL;
|
|
|
|
|
|
|
|
new_id = ctf_type_reference (fp, id);
|
|
|
|
if (new_id != CTF_ERR)
|
2019-09-17 13:57:00 +08:00
|
|
|
str = str_append (str, " ->");
|
2019-04-24 18:41:00 +08:00
|
|
|
} while (new_id != CTF_ERR);
|
|
|
|
|
|
|
|
if (ctf_errno (fp) != ECTF_NOTREF)
|
|
|
|
{
|
|
|
|
free (str);
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
return str;
|
|
|
|
|
|
|
|
oom:
|
libctf: handle nonrepresentable types at link time
GCC can emit references to type 0 to indicate that this type is one that
is not representable in the version of CTF it emits (for instance,
version 3 cannot encode vector types). Type 0 is already used in the
function section to indicate padding inserted to skip functions we do
not want to encode the type of, so using zero in this way is a good
extension of the format: but libctf reports such types as ECTF_BADID,
which is indistinguishable from file corruption via links to truly
nonexistent types with IDs like 0xDEADBEEF etc, which we really do want
to stop for.
In particular, this stops all traversals of types dead at this point,
preventing us from even dumping CTF files containing unrepresentable
types to see what's going on!
So add a new error, ECTF_NONREPRESENTABLE, which is returned by
recursive type resolution when a reference to a zero type is found. (No
zero type is ever emitted into the CTF file by GCC, only references to
one). We can't do much with types that are ultimately nonrepresentable,
but we can do enough to keep functioning.
Adjust ctf_add_type to ensure that top-level types of type zero and
structure and union members of ultimate type zero are simply skipped
without reporting an error, so we can copy structures and unions that
contain nonrepresentable members (skipping them and leaving a hole where
they would be, so no consumers downstream of the linker need to worry
about this): adjust the dumper so that we dump members of
nonrepresentable types in a simple form that indicates
nonrepresentability rather than terminating the dump, and do not falsely
assume all errors to be -ENOMEM: adjust the linker so that types that
fail to get added are simply skipped, so that both nonrepresentable
types and outright errors do not terminate the type addition, which
could skip many valid types and cause further errors when variables of
those types are added.
In future, when we gain the ability to call back to the linker to report
link-time type resolution errors, we should report failures to add all
but nonrepresentable types. But we can't do that yet.
v5: Fix tabdamage.
include/
* ctf-api.h (ECTF_NONREPRESENTABLE): New.
libctf/
* ctf-types.c (ctf_type_resolve): Return ECTF_NONREPRESENTABLE on
type zero.
* ctf-create.c (ctf_add_type): Detect and skip nonrepresentable
members and types.
(ctf_add_variable): Likewise for variables pointing to them.
* ctf-link.c (ctf_link_one_type): Do not warn for nonrepresentable
type link failure, but do warn for others.
* ctf-dump.c (ctf_dump_format_type): Likewise. Do not assume all
errors to be ENOMEM.
(ctf_dump_member): Likewise.
(ctf_dump_type): Likewise.
(ctf_dump_header_strfield): Do not assume all errors to be ENOMEM.
(ctf_dump_header_sectfield): Do not assume all errors to be ENOMEM.
(ctf_dump_header): Likewise.
(ctf_dump_label): likewise.
(ctf_dump_objts): likewise.
(ctf_dump_funcs): likewise.
(ctf_dump_var): likewise.
(ctf_dump_str): Likewise.
2019-08-05 18:40:33 +08:00
|
|
|
ctf_set_errno (fp, errno);
|
|
|
|
err:
|
2019-04-24 18:41:00 +08:00
|
|
|
free (buf);
|
|
|
|
free (str);
|
|
|
|
free (bit);
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
2019-07-08 20:59:15 +08:00
|
|
|
/* Dump one string field from the file header into the cds_items. */
|
|
|
|
static int
|
|
|
|
ctf_dump_header_strfield (ctf_file_t *fp, ctf_dump_state_t *state,
|
|
|
|
const char *name, uint32_t value)
|
|
|
|
{
|
|
|
|
char *str;
|
|
|
|
if (value)
|
|
|
|
{
|
|
|
|
if (asprintf (&str, "%s: %s\n", name, ctf_strptr (fp, value)) < 0)
|
|
|
|
goto err;
|
|
|
|
ctf_dump_append (state, str);
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
err:
|
libctf: handle nonrepresentable types at link time
GCC can emit references to type 0 to indicate that this type is one that
is not representable in the version of CTF it emits (for instance,
version 3 cannot encode vector types). Type 0 is already used in the
function section to indicate padding inserted to skip functions we do
not want to encode the type of, so using zero in this way is a good
extension of the format: but libctf reports such types as ECTF_BADID,
which is indistinguishable from file corruption via links to truly
nonexistent types with IDs like 0xDEADBEEF etc, which we really do want
to stop for.
In particular, this stops all traversals of types dead at this point,
preventing us from even dumping CTF files containing unrepresentable
types to see what's going on!
So add a new error, ECTF_NONREPRESENTABLE, which is returned by
recursive type resolution when a reference to a zero type is found. (No
zero type is ever emitted into the CTF file by GCC, only references to
one). We can't do much with types that are ultimately nonrepresentable,
but we can do enough to keep functioning.
Adjust ctf_add_type to ensure that top-level types of type zero and
structure and union members of ultimate type zero are simply skipped
without reporting an error, so we can copy structures and unions that
contain nonrepresentable members (skipping them and leaving a hole where
they would be, so no consumers downstream of the linker need to worry
about this): adjust the dumper so that we dump members of
nonrepresentable types in a simple form that indicates
nonrepresentability rather than terminating the dump, and do not falsely
assume all errors to be -ENOMEM: adjust the linker so that types that
fail to get added are simply skipped, so that both nonrepresentable
types and outright errors do not terminate the type addition, which
could skip many valid types and cause further errors when variables of
those types are added.
In future, when we gain the ability to call back to the linker to report
link-time type resolution errors, we should report failures to add all
but nonrepresentable types. But we can't do that yet.
v5: Fix tabdamage.
include/
* ctf-api.h (ECTF_NONREPRESENTABLE): New.
libctf/
* ctf-types.c (ctf_type_resolve): Return ECTF_NONREPRESENTABLE on
type zero.
* ctf-create.c (ctf_add_type): Detect and skip nonrepresentable
members and types.
(ctf_add_variable): Likewise for variables pointing to them.
* ctf-link.c (ctf_link_one_type): Do not warn for nonrepresentable
type link failure, but do warn for others.
* ctf-dump.c (ctf_dump_format_type): Likewise. Do not assume all
errors to be ENOMEM.
(ctf_dump_member): Likewise.
(ctf_dump_type): Likewise.
(ctf_dump_header_strfield): Do not assume all errors to be ENOMEM.
(ctf_dump_header_sectfield): Do not assume all errors to be ENOMEM.
(ctf_dump_header): Likewise.
(ctf_dump_label): likewise.
(ctf_dump_objts): likewise.
(ctf_dump_funcs): likewise.
(ctf_dump_var): likewise.
(ctf_dump_str): Likewise.
2019-08-05 18:40:33 +08:00
|
|
|
return (ctf_set_errno (fp, errno));
|
2019-07-08 20:59:15 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
/* Dump one section-offset field from the file header into the cds_items. */
|
|
|
|
static int
|
|
|
|
ctf_dump_header_sectfield (ctf_file_t *fp, ctf_dump_state_t *state,
|
|
|
|
const char *sect, uint32_t off, uint32_t nextoff)
|
|
|
|
{
|
|
|
|
char *str;
|
|
|
|
if (nextoff - off)
|
|
|
|
{
|
|
|
|
if (asprintf (&str, "%s:\t0x%lx -- 0x%lx (0x%lx bytes)\n", sect,
|
|
|
|
(unsigned long) off, (unsigned long) (nextoff - 1),
|
|
|
|
(unsigned long) (nextoff - off)) < 0)
|
|
|
|
goto err;
|
|
|
|
ctf_dump_append (state, str);
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
err:
|
libctf: handle nonrepresentable types at link time
GCC can emit references to type 0 to indicate that this type is one that
is not representable in the version of CTF it emits (for instance,
version 3 cannot encode vector types). Type 0 is already used in the
function section to indicate padding inserted to skip functions we do
not want to encode the type of, so using zero in this way is a good
extension of the format: but libctf reports such types as ECTF_BADID,
which is indistinguishable from file corruption via links to truly
nonexistent types with IDs like 0xDEADBEEF etc, which we really do want
to stop for.
In particular, this stops all traversals of types dead at this point,
preventing us from even dumping CTF files containing unrepresentable
types to see what's going on!
So add a new error, ECTF_NONREPRESENTABLE, which is returned by
recursive type resolution when a reference to a zero type is found. (No
zero type is ever emitted into the CTF file by GCC, only references to
one). We can't do much with types that are ultimately nonrepresentable,
but we can do enough to keep functioning.
Adjust ctf_add_type to ensure that top-level types of type zero and
structure and union members of ultimate type zero are simply skipped
without reporting an error, so we can copy structures and unions that
contain nonrepresentable members (skipping them and leaving a hole where
they would be, so no consumers downstream of the linker need to worry
about this): adjust the dumper so that we dump members of
nonrepresentable types in a simple form that indicates
nonrepresentability rather than terminating the dump, and do not falsely
assume all errors to be -ENOMEM: adjust the linker so that types that
fail to get added are simply skipped, so that both nonrepresentable
types and outright errors do not terminate the type addition, which
could skip many valid types and cause further errors when variables of
those types are added.
In future, when we gain the ability to call back to the linker to report
link-time type resolution errors, we should report failures to add all
but nonrepresentable types. But we can't do that yet.
v5: Fix tabdamage.
include/
* ctf-api.h (ECTF_NONREPRESENTABLE): New.
libctf/
* ctf-types.c (ctf_type_resolve): Return ECTF_NONREPRESENTABLE on
type zero.
* ctf-create.c (ctf_add_type): Detect and skip nonrepresentable
members and types.
(ctf_add_variable): Likewise for variables pointing to them.
* ctf-link.c (ctf_link_one_type): Do not warn for nonrepresentable
type link failure, but do warn for others.
* ctf-dump.c (ctf_dump_format_type): Likewise. Do not assume all
errors to be ENOMEM.
(ctf_dump_member): Likewise.
(ctf_dump_type): Likewise.
(ctf_dump_header_strfield): Do not assume all errors to be ENOMEM.
(ctf_dump_header_sectfield): Do not assume all errors to be ENOMEM.
(ctf_dump_header): Likewise.
(ctf_dump_label): likewise.
(ctf_dump_objts): likewise.
(ctf_dump_funcs): likewise.
(ctf_dump_var): likewise.
(ctf_dump_str): Likewise.
2019-08-05 18:40:33 +08:00
|
|
|
return (ctf_set_errno (fp, errno));
|
2019-07-08 20:59:15 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
/* Dump the file header into the cds_items. */
|
|
|
|
static int
|
|
|
|
ctf_dump_header (ctf_file_t *fp, ctf_dump_state_t *state)
|
|
|
|
{
|
|
|
|
char *str;
|
|
|
|
const ctf_header_t *hp = fp->ctf_header;
|
|
|
|
const char *vertab[] =
|
|
|
|
{
|
|
|
|
NULL, "CTF_VERSION_1",
|
|
|
|
"CTF_VERSION_1_UPGRADED_3 (latest format, version 1 type "
|
|
|
|
"boundaries)",
|
|
|
|
"CTF_VERSION_2",
|
|
|
|
"CTF_VERSION_3", NULL
|
|
|
|
};
|
|
|
|
const char *verstr = NULL;
|
|
|
|
|
|
|
|
if (asprintf (&str, "Magic number: %x\n", hp->cth_magic) < 0)
|
|
|
|
goto err;
|
|
|
|
ctf_dump_append (state, str);
|
|
|
|
|
|
|
|
if (hp->cth_version <= CTF_VERSION)
|
|
|
|
verstr = vertab[hp->cth_version];
|
|
|
|
|
|
|
|
if (verstr == NULL)
|
|
|
|
verstr = "(not a valid version)";
|
|
|
|
|
|
|
|
if (asprintf (&str, "Version: %i (%s)\n", hp->cth_version,
|
|
|
|
verstr) < 0)
|
|
|
|
goto err;
|
|
|
|
ctf_dump_append (state, str);
|
|
|
|
|
|
|
|
/* Everything else is only printed if present. */
|
|
|
|
|
|
|
|
/* The flags are unusual in that they represent the ctf_file_t *in memory*:
|
|
|
|
flags representing compression, etc, are turned off as the file is
|
|
|
|
decompressed. So we store a copy of the flags before they are changed, for
|
|
|
|
the dumper. */
|
|
|
|
|
|
|
|
if (fp->ctf_openflags > 0)
|
|
|
|
{
|
|
|
|
if (fp->ctf_openflags)
|
|
|
|
if (asprintf (&str, "Flags: 0x%x (%s)", fp->ctf_openflags,
|
|
|
|
fp->ctf_openflags & CTF_F_COMPRESS ? "CTF_F_COMPRESS"
|
|
|
|
: "") < 0)
|
|
|
|
goto err;
|
|
|
|
ctf_dump_append (state, str);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (ctf_dump_header_strfield (fp, state, "Parent label",
|
|
|
|
hp->cth_parlabel) < 0)
|
|
|
|
goto err;
|
|
|
|
|
|
|
|
if (ctf_dump_header_strfield (fp, state, "Parent name", hp->cth_parname) < 0)
|
|
|
|
goto err;
|
|
|
|
|
|
|
|
if (ctf_dump_header_strfield (fp, state, "Compilation unit name",
|
|
|
|
hp->cth_cuname) < 0)
|
|
|
|
goto err;
|
|
|
|
|
|
|
|
if (ctf_dump_header_sectfield (fp, state, "Label section", hp->cth_lbloff,
|
|
|
|
hp->cth_objtoff) < 0)
|
|
|
|
goto err;
|
|
|
|
|
|
|
|
if (ctf_dump_header_sectfield (fp, state, "Data object section",
|
|
|
|
hp->cth_objtoff, hp->cth_funcoff) < 0)
|
|
|
|
goto err;
|
|
|
|
|
|
|
|
if (ctf_dump_header_sectfield (fp, state, "Function info section",
|
|
|
|
hp->cth_funcoff, hp->cth_varoff) < 0)
|
|
|
|
goto err;
|
|
|
|
|
|
|
|
if (ctf_dump_header_sectfield (fp, state, "Variable section",
|
|
|
|
hp->cth_varoff, hp->cth_typeoff) < 0)
|
|
|
|
goto err;
|
|
|
|
|
|
|
|
if (ctf_dump_header_sectfield (fp, state, "Type section",
|
|
|
|
hp->cth_typeoff, hp->cth_stroff) < 0)
|
|
|
|
goto err;
|
|
|
|
|
|
|
|
if (ctf_dump_header_sectfield (fp, state, "String section", hp->cth_stroff,
|
|
|
|
hp->cth_stroff + hp->cth_strlen + 1) < 0)
|
|
|
|
goto err;
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
err:
|
libctf: handle nonrepresentable types at link time
GCC can emit references to type 0 to indicate that this type is one that
is not representable in the version of CTF it emits (for instance,
version 3 cannot encode vector types). Type 0 is already used in the
function section to indicate padding inserted to skip functions we do
not want to encode the type of, so using zero in this way is a good
extension of the format: but libctf reports such types as ECTF_BADID,
which is indistinguishable from file corruption via links to truly
nonexistent types with IDs like 0xDEADBEEF etc, which we really do want
to stop for.
In particular, this stops all traversals of types dead at this point,
preventing us from even dumping CTF files containing unrepresentable
types to see what's going on!
So add a new error, ECTF_NONREPRESENTABLE, which is returned by
recursive type resolution when a reference to a zero type is found. (No
zero type is ever emitted into the CTF file by GCC, only references to
one). We can't do much with types that are ultimately nonrepresentable,
but we can do enough to keep functioning.
Adjust ctf_add_type to ensure that top-level types of type zero and
structure and union members of ultimate type zero are simply skipped
without reporting an error, so we can copy structures and unions that
contain nonrepresentable members (skipping them and leaving a hole where
they would be, so no consumers downstream of the linker need to worry
about this): adjust the dumper so that we dump members of
nonrepresentable types in a simple form that indicates
nonrepresentability rather than terminating the dump, and do not falsely
assume all errors to be -ENOMEM: adjust the linker so that types that
fail to get added are simply skipped, so that both nonrepresentable
types and outright errors do not terminate the type addition, which
could skip many valid types and cause further errors when variables of
those types are added.
In future, when we gain the ability to call back to the linker to report
link-time type resolution errors, we should report failures to add all
but nonrepresentable types. But we can't do that yet.
v5: Fix tabdamage.
include/
* ctf-api.h (ECTF_NONREPRESENTABLE): New.
libctf/
* ctf-types.c (ctf_type_resolve): Return ECTF_NONREPRESENTABLE on
type zero.
* ctf-create.c (ctf_add_type): Detect and skip nonrepresentable
members and types.
(ctf_add_variable): Likewise for variables pointing to them.
* ctf-link.c (ctf_link_one_type): Do not warn for nonrepresentable
type link failure, but do warn for others.
* ctf-dump.c (ctf_dump_format_type): Likewise. Do not assume all
errors to be ENOMEM.
(ctf_dump_member): Likewise.
(ctf_dump_type): Likewise.
(ctf_dump_header_strfield): Do not assume all errors to be ENOMEM.
(ctf_dump_header_sectfield): Do not assume all errors to be ENOMEM.
(ctf_dump_header): Likewise.
(ctf_dump_label): likewise.
(ctf_dump_objts): likewise.
(ctf_dump_funcs): likewise.
(ctf_dump_var): likewise.
(ctf_dump_str): Likewise.
2019-08-05 18:40:33 +08:00
|
|
|
return (ctf_set_errno (fp, errno));
|
2019-07-08 20:59:15 +08:00
|
|
|
}
|
|
|
|
|
2019-04-24 18:41:00 +08:00
|
|
|
/* Dump a single label into the cds_items. */
|
|
|
|
|
|
|
|
static int
|
|
|
|
ctf_dump_label (const char *name, const ctf_lblinfo_t *info,
|
|
|
|
void *arg)
|
|
|
|
{
|
|
|
|
char *str;
|
|
|
|
char *typestr;
|
|
|
|
ctf_dump_state_t *state = arg;
|
|
|
|
|
|
|
|
if (asprintf (&str, "%s -> ", name) < 0)
|
libctf: handle nonrepresentable types at link time
GCC can emit references to type 0 to indicate that this type is one that
is not representable in the version of CTF it emits (for instance,
version 3 cannot encode vector types). Type 0 is already used in the
function section to indicate padding inserted to skip functions we do
not want to encode the type of, so using zero in this way is a good
extension of the format: but libctf reports such types as ECTF_BADID,
which is indistinguishable from file corruption via links to truly
nonexistent types with IDs like 0xDEADBEEF etc, which we really do want
to stop for.
In particular, this stops all traversals of types dead at this point,
preventing us from even dumping CTF files containing unrepresentable
types to see what's going on!
So add a new error, ECTF_NONREPRESENTABLE, which is returned by
recursive type resolution when a reference to a zero type is found. (No
zero type is ever emitted into the CTF file by GCC, only references to
one). We can't do much with types that are ultimately nonrepresentable,
but we can do enough to keep functioning.
Adjust ctf_add_type to ensure that top-level types of type zero and
structure and union members of ultimate type zero are simply skipped
without reporting an error, so we can copy structures and unions that
contain nonrepresentable members (skipping them and leaving a hole where
they would be, so no consumers downstream of the linker need to worry
about this): adjust the dumper so that we dump members of
nonrepresentable types in a simple form that indicates
nonrepresentability rather than terminating the dump, and do not falsely
assume all errors to be -ENOMEM: adjust the linker so that types that
fail to get added are simply skipped, so that both nonrepresentable
types and outright errors do not terminate the type addition, which
could skip many valid types and cause further errors when variables of
those types are added.
In future, when we gain the ability to call back to the linker to report
link-time type resolution errors, we should report failures to add all
but nonrepresentable types. But we can't do that yet.
v5: Fix tabdamage.
include/
* ctf-api.h (ECTF_NONREPRESENTABLE): New.
libctf/
* ctf-types.c (ctf_type_resolve): Return ECTF_NONREPRESENTABLE on
type zero.
* ctf-create.c (ctf_add_type): Detect and skip nonrepresentable
members and types.
(ctf_add_variable): Likewise for variables pointing to them.
* ctf-link.c (ctf_link_one_type): Do not warn for nonrepresentable
type link failure, but do warn for others.
* ctf-dump.c (ctf_dump_format_type): Likewise. Do not assume all
errors to be ENOMEM.
(ctf_dump_member): Likewise.
(ctf_dump_type): Likewise.
(ctf_dump_header_strfield): Do not assume all errors to be ENOMEM.
(ctf_dump_header_sectfield): Do not assume all errors to be ENOMEM.
(ctf_dump_header): Likewise.
(ctf_dump_label): likewise.
(ctf_dump_objts): likewise.
(ctf_dump_funcs): likewise.
(ctf_dump_var): likewise.
(ctf_dump_str): Likewise.
2019-08-05 18:40:33 +08:00
|
|
|
return (ctf_set_errno (state->cds_fp, errno));
|
2019-04-24 18:41:00 +08:00
|
|
|
|
2019-07-14 03:49:19 +08:00
|
|
|
if ((typestr = ctf_dump_format_type (state->cds_fp, info->ctb_type,
|
|
|
|
CTF_ADD_ROOT)) == NULL)
|
2019-04-24 18:41:00 +08:00
|
|
|
{
|
|
|
|
free (str);
|
libctf: fix a number of build problems found on Solaris and NetBSD
- Use of nonportable <endian.h>
- Use of qsort_r
- Use of zlib without appropriate magic to pull in the binutils zlib
- Use of off64_t without checking (fixed by dropping the unused fields
that need off64_t entirely)
- signedness problems due to long being too short a type on 32-bit
platforms: ctf_id_t is now 'unsigned long', and CTF_ERR must be
used only for functions that return ctf_id_t
- One lingering use of bzero() and of <sys/errno.h>
All fixed, using code from gnulib where possible.
Relatedly, set cts_size in a couple of places it was missed
(string table and symbol table loading upon ctf_bfdopen()).
binutils/
* objdump.c (make_ctfsect): Drop cts_type, cts_flags, and
cts_offset.
* readelf.c (shdr_to_ctf_sect): Likewise.
include/
* ctf-api.h (ctf_sect_t): Drop cts_type, cts_flags, and cts_offset.
(ctf_id_t): This is now an unsigned type.
(CTF_ERR): Cast it to ctf_id_t. Note that it should only be used
for ctf_id_t-returning functions.
libctf/
* Makefile.am (ZLIB): New.
(ZLIBINC): Likewise.
(AM_CFLAGS): Use them.
(libctf_a_LIBADD): New, for LIBOBJS.
* configure.ac: Check for zlib, endian.h, and qsort_r.
* ctf-endian.h: New, providing htole64 and le64toh.
* swap.h: Code style fixes.
(bswap_identity_64): New.
* qsort_r.c: New, from gnulib (with one added #include).
* ctf-decls.h: New, providing a conditional qsort_r declaration,
and unconditional definitions of MIN and MAX.
* ctf-impl.h: Use it. Do not use <sys/errno.h>.
(ctf_set_errno): Now returns unsigned long.
* ctf-util.c (ctf_set_errno): Adjust here too.
* ctf-archive.c: Use ctf-endian.h.
(ctf_arc_open_by_offset): Use memset, not bzero. Drop cts_type,
cts_flags and cts_offset.
(ctf_arc_write): Drop debugging dependent on the size of off_t.
* ctf-create.c: Provide a definition of roundup if not defined.
(ctf_create): Drop cts_type, cts_flags and cts_offset.
(ctf_add_reftype): Do not check if type IDs are below zero.
(ctf_add_slice): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_member_offset): Cast error-returning ssize_t's to size_t
when known error-free. Drop CTF_ERR usage for functions returning
int.
(ctf_add_member_encoded): Drop CTF_ERR usage for functions returning
int.
(ctf_add_variable): Likewise.
(enumcmp): Likewise.
(enumadd): Likewise.
(membcmp): Likewise.
(ctf_add_type): Likewise. Cast error-returning ssize_t's to size_t
when known error-free.
* ctf-dump.c (ctf_is_slice): Drop CTF_ERR usage for functions
returning int: use CTF_ERR for functions returning ctf_type_id.
(ctf_dump_label): Likewise.
(ctf_dump_objts): Likewise.
* ctf-labels.c (ctf_label_topmost): Likewise.
(ctf_label_iter): Likewise.
(ctf_label_info): Likewise.
* ctf-lookup.c (ctf_func_args): Likewise.
* ctf-open.c (upgrade_types): Cast to size_t where appropriate.
(ctf_bufopen): Likewise. Use zlib types as needed.
* ctf-types.c (ctf_member_iter): Drop CTF_ERR usage for functions
returning int.
(ctf_enum_iter): Likewise.
(ctf_type_size): Likewise.
(ctf_type_align): Likewise. Cast to size_t where appropriate.
(ctf_type_kind_unsliced): Likewise.
(ctf_type_kind): Likewise.
(ctf_type_encoding): Likewise.
(ctf_member_info): Likewise.
(ctf_array_info): Likewise.
(ctf_enum_value): Likewise.
(ctf_type_rvisit): Likewise.
* ctf-open-bfd.c (ctf_bfdopen): Drop cts_type, cts_flags and
cts_offset.
(ctf_simple_open): Likewise.
(ctf_bfdopen_ctfsect): Likewise. Set cts_size properly.
* Makefile.in: Regenerate.
* aclocal.m4: Likewise.
* config.h: Likewise.
* configure: Likewise.
2019-05-31 17:10:51 +08:00
|
|
|
return -1; /* errno is set for us. */
|
2019-04-24 18:41:00 +08:00
|
|
|
}
|
|
|
|
|
2019-09-17 13:57:00 +08:00
|
|
|
str = str_append (str, typestr);
|
2019-04-24 18:41:00 +08:00
|
|
|
free (typestr);
|
|
|
|
|
|
|
|
ctf_dump_append (state, str);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Dump all the object entries into the cds_items. (There is no iterator for
|
|
|
|
this section, so we just do it in a loop, and this function handles all of
|
|
|
|
them, rather than only one. */
|
|
|
|
|
|
|
|
static int
|
|
|
|
ctf_dump_objts (ctf_file_t *fp, ctf_dump_state_t *state)
|
|
|
|
{
|
|
|
|
size_t i;
|
|
|
|
|
|
|
|
for (i = 0; i < fp->ctf_nsyms; i++)
|
|
|
|
{
|
|
|
|
char *str;
|
|
|
|
char *typestr;
|
|
|
|
const char *sym_name;
|
|
|
|
ctf_id_t type;
|
|
|
|
|
libctf: fix a number of build problems found on Solaris and NetBSD
- Use of nonportable <endian.h>
- Use of qsort_r
- Use of zlib without appropriate magic to pull in the binutils zlib
- Use of off64_t without checking (fixed by dropping the unused fields
that need off64_t entirely)
- signedness problems due to long being too short a type on 32-bit
platforms: ctf_id_t is now 'unsigned long', and CTF_ERR must be
used only for functions that return ctf_id_t
- One lingering use of bzero() and of <sys/errno.h>
All fixed, using code from gnulib where possible.
Relatedly, set cts_size in a couple of places it was missed
(string table and symbol table loading upon ctf_bfdopen()).
binutils/
* objdump.c (make_ctfsect): Drop cts_type, cts_flags, and
cts_offset.
* readelf.c (shdr_to_ctf_sect): Likewise.
include/
* ctf-api.h (ctf_sect_t): Drop cts_type, cts_flags, and cts_offset.
(ctf_id_t): This is now an unsigned type.
(CTF_ERR): Cast it to ctf_id_t. Note that it should only be used
for ctf_id_t-returning functions.
libctf/
* Makefile.am (ZLIB): New.
(ZLIBINC): Likewise.
(AM_CFLAGS): Use them.
(libctf_a_LIBADD): New, for LIBOBJS.
* configure.ac: Check for zlib, endian.h, and qsort_r.
* ctf-endian.h: New, providing htole64 and le64toh.
* swap.h: Code style fixes.
(bswap_identity_64): New.
* qsort_r.c: New, from gnulib (with one added #include).
* ctf-decls.h: New, providing a conditional qsort_r declaration,
and unconditional definitions of MIN and MAX.
* ctf-impl.h: Use it. Do not use <sys/errno.h>.
(ctf_set_errno): Now returns unsigned long.
* ctf-util.c (ctf_set_errno): Adjust here too.
* ctf-archive.c: Use ctf-endian.h.
(ctf_arc_open_by_offset): Use memset, not bzero. Drop cts_type,
cts_flags and cts_offset.
(ctf_arc_write): Drop debugging dependent on the size of off_t.
* ctf-create.c: Provide a definition of roundup if not defined.
(ctf_create): Drop cts_type, cts_flags and cts_offset.
(ctf_add_reftype): Do not check if type IDs are below zero.
(ctf_add_slice): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_member_offset): Cast error-returning ssize_t's to size_t
when known error-free. Drop CTF_ERR usage for functions returning
int.
(ctf_add_member_encoded): Drop CTF_ERR usage for functions returning
int.
(ctf_add_variable): Likewise.
(enumcmp): Likewise.
(enumadd): Likewise.
(membcmp): Likewise.
(ctf_add_type): Likewise. Cast error-returning ssize_t's to size_t
when known error-free.
* ctf-dump.c (ctf_is_slice): Drop CTF_ERR usage for functions
returning int: use CTF_ERR for functions returning ctf_type_id.
(ctf_dump_label): Likewise.
(ctf_dump_objts): Likewise.
* ctf-labels.c (ctf_label_topmost): Likewise.
(ctf_label_iter): Likewise.
(ctf_label_info): Likewise.
* ctf-lookup.c (ctf_func_args): Likewise.
* ctf-open.c (upgrade_types): Cast to size_t where appropriate.
(ctf_bufopen): Likewise. Use zlib types as needed.
* ctf-types.c (ctf_member_iter): Drop CTF_ERR usage for functions
returning int.
(ctf_enum_iter): Likewise.
(ctf_type_size): Likewise.
(ctf_type_align): Likewise. Cast to size_t where appropriate.
(ctf_type_kind_unsliced): Likewise.
(ctf_type_kind): Likewise.
(ctf_type_encoding): Likewise.
(ctf_member_info): Likewise.
(ctf_array_info): Likewise.
(ctf_enum_value): Likewise.
(ctf_type_rvisit): Likewise.
* ctf-open-bfd.c (ctf_bfdopen): Drop cts_type, cts_flags and
cts_offset.
(ctf_simple_open): Likewise.
(ctf_bfdopen_ctfsect): Likewise. Set cts_size properly.
* Makefile.in: Regenerate.
* aclocal.m4: Likewise.
* config.h: Likewise.
* configure: Likewise.
2019-05-31 17:10:51 +08:00
|
|
|
if ((type = ctf_lookup_by_symbol (state->cds_fp, i)) == CTF_ERR)
|
2019-04-24 18:41:00 +08:00
|
|
|
switch (ctf_errno (state->cds_fp))
|
|
|
|
{
|
|
|
|
/* Most errors are just an indication that this symbol is not a data
|
|
|
|
symbol, but this one indicates that we were called wrong, on a
|
|
|
|
CTF file with no associated symbol table. */
|
|
|
|
case ECTF_NOSYMTAB:
|
libctf: fix a number of build problems found on Solaris and NetBSD
- Use of nonportable <endian.h>
- Use of qsort_r
- Use of zlib without appropriate magic to pull in the binutils zlib
- Use of off64_t without checking (fixed by dropping the unused fields
that need off64_t entirely)
- signedness problems due to long being too short a type on 32-bit
platforms: ctf_id_t is now 'unsigned long', and CTF_ERR must be
used only for functions that return ctf_id_t
- One lingering use of bzero() and of <sys/errno.h>
All fixed, using code from gnulib where possible.
Relatedly, set cts_size in a couple of places it was missed
(string table and symbol table loading upon ctf_bfdopen()).
binutils/
* objdump.c (make_ctfsect): Drop cts_type, cts_flags, and
cts_offset.
* readelf.c (shdr_to_ctf_sect): Likewise.
include/
* ctf-api.h (ctf_sect_t): Drop cts_type, cts_flags, and cts_offset.
(ctf_id_t): This is now an unsigned type.
(CTF_ERR): Cast it to ctf_id_t. Note that it should only be used
for ctf_id_t-returning functions.
libctf/
* Makefile.am (ZLIB): New.
(ZLIBINC): Likewise.
(AM_CFLAGS): Use them.
(libctf_a_LIBADD): New, for LIBOBJS.
* configure.ac: Check for zlib, endian.h, and qsort_r.
* ctf-endian.h: New, providing htole64 and le64toh.
* swap.h: Code style fixes.
(bswap_identity_64): New.
* qsort_r.c: New, from gnulib (with one added #include).
* ctf-decls.h: New, providing a conditional qsort_r declaration,
and unconditional definitions of MIN and MAX.
* ctf-impl.h: Use it. Do not use <sys/errno.h>.
(ctf_set_errno): Now returns unsigned long.
* ctf-util.c (ctf_set_errno): Adjust here too.
* ctf-archive.c: Use ctf-endian.h.
(ctf_arc_open_by_offset): Use memset, not bzero. Drop cts_type,
cts_flags and cts_offset.
(ctf_arc_write): Drop debugging dependent on the size of off_t.
* ctf-create.c: Provide a definition of roundup if not defined.
(ctf_create): Drop cts_type, cts_flags and cts_offset.
(ctf_add_reftype): Do not check if type IDs are below zero.
(ctf_add_slice): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_member_offset): Cast error-returning ssize_t's to size_t
when known error-free. Drop CTF_ERR usage for functions returning
int.
(ctf_add_member_encoded): Drop CTF_ERR usage for functions returning
int.
(ctf_add_variable): Likewise.
(enumcmp): Likewise.
(enumadd): Likewise.
(membcmp): Likewise.
(ctf_add_type): Likewise. Cast error-returning ssize_t's to size_t
when known error-free.
* ctf-dump.c (ctf_is_slice): Drop CTF_ERR usage for functions
returning int: use CTF_ERR for functions returning ctf_type_id.
(ctf_dump_label): Likewise.
(ctf_dump_objts): Likewise.
* ctf-labels.c (ctf_label_topmost): Likewise.
(ctf_label_iter): Likewise.
(ctf_label_info): Likewise.
* ctf-lookup.c (ctf_func_args): Likewise.
* ctf-open.c (upgrade_types): Cast to size_t where appropriate.
(ctf_bufopen): Likewise. Use zlib types as needed.
* ctf-types.c (ctf_member_iter): Drop CTF_ERR usage for functions
returning int.
(ctf_enum_iter): Likewise.
(ctf_type_size): Likewise.
(ctf_type_align): Likewise. Cast to size_t where appropriate.
(ctf_type_kind_unsliced): Likewise.
(ctf_type_kind): Likewise.
(ctf_type_encoding): Likewise.
(ctf_member_info): Likewise.
(ctf_array_info): Likewise.
(ctf_enum_value): Likewise.
(ctf_type_rvisit): Likewise.
* ctf-open-bfd.c (ctf_bfdopen): Drop cts_type, cts_flags and
cts_offset.
(ctf_simple_open): Likewise.
(ctf_bfdopen_ctfsect): Likewise. Set cts_size properly.
* Makefile.in: Regenerate.
* aclocal.m4: Likewise.
* config.h: Likewise.
* configure: Likewise.
2019-05-31 17:10:51 +08:00
|
|
|
return -1;
|
2019-04-24 18:41:00 +08:00
|
|
|
case ECTF_NOTDATA:
|
|
|
|
case ECTF_NOTYPEDAT:
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Variable name. */
|
|
|
|
sym_name = ctf_lookup_symbol_name (fp, i);
|
|
|
|
if (sym_name[0] == '\0')
|
|
|
|
{
|
2019-06-06 20:59:56 +08:00
|
|
|
if (asprintf (&str, "%lx -> ", (unsigned long) i) < 0)
|
libctf: handle nonrepresentable types at link time
GCC can emit references to type 0 to indicate that this type is one that
is not representable in the version of CTF it emits (for instance,
version 3 cannot encode vector types). Type 0 is already used in the
function section to indicate padding inserted to skip functions we do
not want to encode the type of, so using zero in this way is a good
extension of the format: but libctf reports such types as ECTF_BADID,
which is indistinguishable from file corruption via links to truly
nonexistent types with IDs like 0xDEADBEEF etc, which we really do want
to stop for.
In particular, this stops all traversals of types dead at this point,
preventing us from even dumping CTF files containing unrepresentable
types to see what's going on!
So add a new error, ECTF_NONREPRESENTABLE, which is returned by
recursive type resolution when a reference to a zero type is found. (No
zero type is ever emitted into the CTF file by GCC, only references to
one). We can't do much with types that are ultimately nonrepresentable,
but we can do enough to keep functioning.
Adjust ctf_add_type to ensure that top-level types of type zero and
structure and union members of ultimate type zero are simply skipped
without reporting an error, so we can copy structures and unions that
contain nonrepresentable members (skipping them and leaving a hole where
they would be, so no consumers downstream of the linker need to worry
about this): adjust the dumper so that we dump members of
nonrepresentable types in a simple form that indicates
nonrepresentability rather than terminating the dump, and do not falsely
assume all errors to be -ENOMEM: adjust the linker so that types that
fail to get added are simply skipped, so that both nonrepresentable
types and outright errors do not terminate the type addition, which
could skip many valid types and cause further errors when variables of
those types are added.
In future, when we gain the ability to call back to the linker to report
link-time type resolution errors, we should report failures to add all
but nonrepresentable types. But we can't do that yet.
v5: Fix tabdamage.
include/
* ctf-api.h (ECTF_NONREPRESENTABLE): New.
libctf/
* ctf-types.c (ctf_type_resolve): Return ECTF_NONREPRESENTABLE on
type zero.
* ctf-create.c (ctf_add_type): Detect and skip nonrepresentable
members and types.
(ctf_add_variable): Likewise for variables pointing to them.
* ctf-link.c (ctf_link_one_type): Do not warn for nonrepresentable
type link failure, but do warn for others.
* ctf-dump.c (ctf_dump_format_type): Likewise. Do not assume all
errors to be ENOMEM.
(ctf_dump_member): Likewise.
(ctf_dump_type): Likewise.
(ctf_dump_header_strfield): Do not assume all errors to be ENOMEM.
(ctf_dump_header_sectfield): Do not assume all errors to be ENOMEM.
(ctf_dump_header): Likewise.
(ctf_dump_label): likewise.
(ctf_dump_objts): likewise.
(ctf_dump_funcs): likewise.
(ctf_dump_var): likewise.
(ctf_dump_str): Likewise.
2019-08-05 18:40:33 +08:00
|
|
|
return (ctf_set_errno (fp, errno));
|
2019-04-24 18:41:00 +08:00
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
2019-06-06 20:59:56 +08:00
|
|
|
if (asprintf (&str, "%s (%lx) -> ", sym_name, (unsigned long) i) < 0)
|
libctf: handle nonrepresentable types at link time
GCC can emit references to type 0 to indicate that this type is one that
is not representable in the version of CTF it emits (for instance,
version 3 cannot encode vector types). Type 0 is already used in the
function section to indicate padding inserted to skip functions we do
not want to encode the type of, so using zero in this way is a good
extension of the format: but libctf reports such types as ECTF_BADID,
which is indistinguishable from file corruption via links to truly
nonexistent types with IDs like 0xDEADBEEF etc, which we really do want
to stop for.
In particular, this stops all traversals of types dead at this point,
preventing us from even dumping CTF files containing unrepresentable
types to see what's going on!
So add a new error, ECTF_NONREPRESENTABLE, which is returned by
recursive type resolution when a reference to a zero type is found. (No
zero type is ever emitted into the CTF file by GCC, only references to
one). We can't do much with types that are ultimately nonrepresentable,
but we can do enough to keep functioning.
Adjust ctf_add_type to ensure that top-level types of type zero and
structure and union members of ultimate type zero are simply skipped
without reporting an error, so we can copy structures and unions that
contain nonrepresentable members (skipping them and leaving a hole where
they would be, so no consumers downstream of the linker need to worry
about this): adjust the dumper so that we dump members of
nonrepresentable types in a simple form that indicates
nonrepresentability rather than terminating the dump, and do not falsely
assume all errors to be -ENOMEM: adjust the linker so that types that
fail to get added are simply skipped, so that both nonrepresentable
types and outright errors do not terminate the type addition, which
could skip many valid types and cause further errors when variables of
those types are added.
In future, when we gain the ability to call back to the linker to report
link-time type resolution errors, we should report failures to add all
but nonrepresentable types. But we can't do that yet.
v5: Fix tabdamage.
include/
* ctf-api.h (ECTF_NONREPRESENTABLE): New.
libctf/
* ctf-types.c (ctf_type_resolve): Return ECTF_NONREPRESENTABLE on
type zero.
* ctf-create.c (ctf_add_type): Detect and skip nonrepresentable
members and types.
(ctf_add_variable): Likewise for variables pointing to them.
* ctf-link.c (ctf_link_one_type): Do not warn for nonrepresentable
type link failure, but do warn for others.
* ctf-dump.c (ctf_dump_format_type): Likewise. Do not assume all
errors to be ENOMEM.
(ctf_dump_member): Likewise.
(ctf_dump_type): Likewise.
(ctf_dump_header_strfield): Do not assume all errors to be ENOMEM.
(ctf_dump_header_sectfield): Do not assume all errors to be ENOMEM.
(ctf_dump_header): Likewise.
(ctf_dump_label): likewise.
(ctf_dump_objts): likewise.
(ctf_dump_funcs): likewise.
(ctf_dump_var): likewise.
(ctf_dump_str): Likewise.
2019-08-05 18:40:33 +08:00
|
|
|
return (ctf_set_errno (fp, errno));
|
2019-04-24 18:41:00 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
/* Variable type. */
|
2019-07-14 03:49:19 +08:00
|
|
|
if ((typestr = ctf_dump_format_type (state->cds_fp, type,
|
|
|
|
CTF_ADD_ROOT)) == NULL)
|
2019-04-24 18:41:00 +08:00
|
|
|
{
|
|
|
|
free (str);
|
libctf: fix a number of build problems found on Solaris and NetBSD
- Use of nonportable <endian.h>
- Use of qsort_r
- Use of zlib without appropriate magic to pull in the binutils zlib
- Use of off64_t without checking (fixed by dropping the unused fields
that need off64_t entirely)
- signedness problems due to long being too short a type on 32-bit
platforms: ctf_id_t is now 'unsigned long', and CTF_ERR must be
used only for functions that return ctf_id_t
- One lingering use of bzero() and of <sys/errno.h>
All fixed, using code from gnulib where possible.
Relatedly, set cts_size in a couple of places it was missed
(string table and symbol table loading upon ctf_bfdopen()).
binutils/
* objdump.c (make_ctfsect): Drop cts_type, cts_flags, and
cts_offset.
* readelf.c (shdr_to_ctf_sect): Likewise.
include/
* ctf-api.h (ctf_sect_t): Drop cts_type, cts_flags, and cts_offset.
(ctf_id_t): This is now an unsigned type.
(CTF_ERR): Cast it to ctf_id_t. Note that it should only be used
for ctf_id_t-returning functions.
libctf/
* Makefile.am (ZLIB): New.
(ZLIBINC): Likewise.
(AM_CFLAGS): Use them.
(libctf_a_LIBADD): New, for LIBOBJS.
* configure.ac: Check for zlib, endian.h, and qsort_r.
* ctf-endian.h: New, providing htole64 and le64toh.
* swap.h: Code style fixes.
(bswap_identity_64): New.
* qsort_r.c: New, from gnulib (with one added #include).
* ctf-decls.h: New, providing a conditional qsort_r declaration,
and unconditional definitions of MIN and MAX.
* ctf-impl.h: Use it. Do not use <sys/errno.h>.
(ctf_set_errno): Now returns unsigned long.
* ctf-util.c (ctf_set_errno): Adjust here too.
* ctf-archive.c: Use ctf-endian.h.
(ctf_arc_open_by_offset): Use memset, not bzero. Drop cts_type,
cts_flags and cts_offset.
(ctf_arc_write): Drop debugging dependent on the size of off_t.
* ctf-create.c: Provide a definition of roundup if not defined.
(ctf_create): Drop cts_type, cts_flags and cts_offset.
(ctf_add_reftype): Do not check if type IDs are below zero.
(ctf_add_slice): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_member_offset): Cast error-returning ssize_t's to size_t
when known error-free. Drop CTF_ERR usage for functions returning
int.
(ctf_add_member_encoded): Drop CTF_ERR usage for functions returning
int.
(ctf_add_variable): Likewise.
(enumcmp): Likewise.
(enumadd): Likewise.
(membcmp): Likewise.
(ctf_add_type): Likewise. Cast error-returning ssize_t's to size_t
when known error-free.
* ctf-dump.c (ctf_is_slice): Drop CTF_ERR usage for functions
returning int: use CTF_ERR for functions returning ctf_type_id.
(ctf_dump_label): Likewise.
(ctf_dump_objts): Likewise.
* ctf-labels.c (ctf_label_topmost): Likewise.
(ctf_label_iter): Likewise.
(ctf_label_info): Likewise.
* ctf-lookup.c (ctf_func_args): Likewise.
* ctf-open.c (upgrade_types): Cast to size_t where appropriate.
(ctf_bufopen): Likewise. Use zlib types as needed.
* ctf-types.c (ctf_member_iter): Drop CTF_ERR usage for functions
returning int.
(ctf_enum_iter): Likewise.
(ctf_type_size): Likewise.
(ctf_type_align): Likewise. Cast to size_t where appropriate.
(ctf_type_kind_unsliced): Likewise.
(ctf_type_kind): Likewise.
(ctf_type_encoding): Likewise.
(ctf_member_info): Likewise.
(ctf_array_info): Likewise.
(ctf_enum_value): Likewise.
(ctf_type_rvisit): Likewise.
* ctf-open-bfd.c (ctf_bfdopen): Drop cts_type, cts_flags and
cts_offset.
(ctf_simple_open): Likewise.
(ctf_bfdopen_ctfsect): Likewise. Set cts_size properly.
* Makefile.in: Regenerate.
* aclocal.m4: Likewise.
* config.h: Likewise.
* configure: Likewise.
2019-05-31 17:10:51 +08:00
|
|
|
return -1; /* errno is set for us. */
|
2019-04-24 18:41:00 +08:00
|
|
|
}
|
|
|
|
|
2019-09-17 13:57:00 +08:00
|
|
|
str = str_append (str, typestr);
|
2019-04-24 18:41:00 +08:00
|
|
|
free (typestr);
|
|
|
|
|
|
|
|
ctf_dump_append (state, str);
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Dump all the function entries into the cds_items. (As above, there is no
|
|
|
|
iterator for this section.) */
|
|
|
|
|
|
|
|
static int
|
|
|
|
ctf_dump_funcs (ctf_file_t *fp, ctf_dump_state_t *state)
|
|
|
|
{
|
|
|
|
size_t i;
|
|
|
|
|
|
|
|
for (i = 0; i < fp->ctf_nsyms; i++)
|
|
|
|
{
|
libctf: handle nonrepresentable types at link time
GCC can emit references to type 0 to indicate that this type is one that
is not representable in the version of CTF it emits (for instance,
version 3 cannot encode vector types). Type 0 is already used in the
function section to indicate padding inserted to skip functions we do
not want to encode the type of, so using zero in this way is a good
extension of the format: but libctf reports such types as ECTF_BADID,
which is indistinguishable from file corruption via links to truly
nonexistent types with IDs like 0xDEADBEEF etc, which we really do want
to stop for.
In particular, this stops all traversals of types dead at this point,
preventing us from even dumping CTF files containing unrepresentable
types to see what's going on!
So add a new error, ECTF_NONREPRESENTABLE, which is returned by
recursive type resolution when a reference to a zero type is found. (No
zero type is ever emitted into the CTF file by GCC, only references to
one). We can't do much with types that are ultimately nonrepresentable,
but we can do enough to keep functioning.
Adjust ctf_add_type to ensure that top-level types of type zero and
structure and union members of ultimate type zero are simply skipped
without reporting an error, so we can copy structures and unions that
contain nonrepresentable members (skipping them and leaving a hole where
they would be, so no consumers downstream of the linker need to worry
about this): adjust the dumper so that we dump members of
nonrepresentable types in a simple form that indicates
nonrepresentability rather than terminating the dump, and do not falsely
assume all errors to be -ENOMEM: adjust the linker so that types that
fail to get added are simply skipped, so that both nonrepresentable
types and outright errors do not terminate the type addition, which
could skip many valid types and cause further errors when variables of
those types are added.
In future, when we gain the ability to call back to the linker to report
link-time type resolution errors, we should report failures to add all
but nonrepresentable types. But we can't do that yet.
v5: Fix tabdamage.
include/
* ctf-api.h (ECTF_NONREPRESENTABLE): New.
libctf/
* ctf-types.c (ctf_type_resolve): Return ECTF_NONREPRESENTABLE on
type zero.
* ctf-create.c (ctf_add_type): Detect and skip nonrepresentable
members and types.
(ctf_add_variable): Likewise for variables pointing to them.
* ctf-link.c (ctf_link_one_type): Do not warn for nonrepresentable
type link failure, but do warn for others.
* ctf-dump.c (ctf_dump_format_type): Likewise. Do not assume all
errors to be ENOMEM.
(ctf_dump_member): Likewise.
(ctf_dump_type): Likewise.
(ctf_dump_header_strfield): Do not assume all errors to be ENOMEM.
(ctf_dump_header_sectfield): Do not assume all errors to be ENOMEM.
(ctf_dump_header): Likewise.
(ctf_dump_label): likewise.
(ctf_dump_objts): likewise.
(ctf_dump_funcs): likewise.
(ctf_dump_var): likewise.
(ctf_dump_str): Likewise.
2019-08-05 18:40:33 +08:00
|
|
|
char *str;
|
2019-04-24 18:41:00 +08:00
|
|
|
char *bit;
|
libctf: handle nonrepresentable types at link time
GCC can emit references to type 0 to indicate that this type is one that
is not representable in the version of CTF it emits (for instance,
version 3 cannot encode vector types). Type 0 is already used in the
function section to indicate padding inserted to skip functions we do
not want to encode the type of, so using zero in this way is a good
extension of the format: but libctf reports such types as ECTF_BADID,
which is indistinguishable from file corruption via links to truly
nonexistent types with IDs like 0xDEADBEEF etc, which we really do want
to stop for.
In particular, this stops all traversals of types dead at this point,
preventing us from even dumping CTF files containing unrepresentable
types to see what's going on!
So add a new error, ECTF_NONREPRESENTABLE, which is returned by
recursive type resolution when a reference to a zero type is found. (No
zero type is ever emitted into the CTF file by GCC, only references to
one). We can't do much with types that are ultimately nonrepresentable,
but we can do enough to keep functioning.
Adjust ctf_add_type to ensure that top-level types of type zero and
structure and union members of ultimate type zero are simply skipped
without reporting an error, so we can copy structures and unions that
contain nonrepresentable members (skipping them and leaving a hole where
they would be, so no consumers downstream of the linker need to worry
about this): adjust the dumper so that we dump members of
nonrepresentable types in a simple form that indicates
nonrepresentability rather than terminating the dump, and do not falsely
assume all errors to be -ENOMEM: adjust the linker so that types that
fail to get added are simply skipped, so that both nonrepresentable
types and outright errors do not terminate the type addition, which
could skip many valid types and cause further errors when variables of
those types are added.
In future, when we gain the ability to call back to the linker to report
link-time type resolution errors, we should report failures to add all
but nonrepresentable types. But we can't do that yet.
v5: Fix tabdamage.
include/
* ctf-api.h (ECTF_NONREPRESENTABLE): New.
libctf/
* ctf-types.c (ctf_type_resolve): Return ECTF_NONREPRESENTABLE on
type zero.
* ctf-create.c (ctf_add_type): Detect and skip nonrepresentable
members and types.
(ctf_add_variable): Likewise for variables pointing to them.
* ctf-link.c (ctf_link_one_type): Do not warn for nonrepresentable
type link failure, but do warn for others.
* ctf-dump.c (ctf_dump_format_type): Likewise. Do not assume all
errors to be ENOMEM.
(ctf_dump_member): Likewise.
(ctf_dump_type): Likewise.
(ctf_dump_header_strfield): Do not assume all errors to be ENOMEM.
(ctf_dump_header_sectfield): Do not assume all errors to be ENOMEM.
(ctf_dump_header): Likewise.
(ctf_dump_label): likewise.
(ctf_dump_objts): likewise.
(ctf_dump_funcs): likewise.
(ctf_dump_var): likewise.
(ctf_dump_str): Likewise.
2019-08-05 18:40:33 +08:00
|
|
|
const char *err;
|
2019-04-24 18:41:00 +08:00
|
|
|
const char *sym_name;
|
|
|
|
ctf_funcinfo_t fi;
|
|
|
|
ctf_id_t type;
|
|
|
|
size_t j;
|
|
|
|
ctf_id_t *args;
|
|
|
|
|
libctf: fix a number of build problems found on Solaris and NetBSD
- Use of nonportable <endian.h>
- Use of qsort_r
- Use of zlib without appropriate magic to pull in the binutils zlib
- Use of off64_t without checking (fixed by dropping the unused fields
that need off64_t entirely)
- signedness problems due to long being too short a type on 32-bit
platforms: ctf_id_t is now 'unsigned long', and CTF_ERR must be
used only for functions that return ctf_id_t
- One lingering use of bzero() and of <sys/errno.h>
All fixed, using code from gnulib where possible.
Relatedly, set cts_size in a couple of places it was missed
(string table and symbol table loading upon ctf_bfdopen()).
binutils/
* objdump.c (make_ctfsect): Drop cts_type, cts_flags, and
cts_offset.
* readelf.c (shdr_to_ctf_sect): Likewise.
include/
* ctf-api.h (ctf_sect_t): Drop cts_type, cts_flags, and cts_offset.
(ctf_id_t): This is now an unsigned type.
(CTF_ERR): Cast it to ctf_id_t. Note that it should only be used
for ctf_id_t-returning functions.
libctf/
* Makefile.am (ZLIB): New.
(ZLIBINC): Likewise.
(AM_CFLAGS): Use them.
(libctf_a_LIBADD): New, for LIBOBJS.
* configure.ac: Check for zlib, endian.h, and qsort_r.
* ctf-endian.h: New, providing htole64 and le64toh.
* swap.h: Code style fixes.
(bswap_identity_64): New.
* qsort_r.c: New, from gnulib (with one added #include).
* ctf-decls.h: New, providing a conditional qsort_r declaration,
and unconditional definitions of MIN and MAX.
* ctf-impl.h: Use it. Do not use <sys/errno.h>.
(ctf_set_errno): Now returns unsigned long.
* ctf-util.c (ctf_set_errno): Adjust here too.
* ctf-archive.c: Use ctf-endian.h.
(ctf_arc_open_by_offset): Use memset, not bzero. Drop cts_type,
cts_flags and cts_offset.
(ctf_arc_write): Drop debugging dependent on the size of off_t.
* ctf-create.c: Provide a definition of roundup if not defined.
(ctf_create): Drop cts_type, cts_flags and cts_offset.
(ctf_add_reftype): Do not check if type IDs are below zero.
(ctf_add_slice): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_member_offset): Cast error-returning ssize_t's to size_t
when known error-free. Drop CTF_ERR usage for functions returning
int.
(ctf_add_member_encoded): Drop CTF_ERR usage for functions returning
int.
(ctf_add_variable): Likewise.
(enumcmp): Likewise.
(enumadd): Likewise.
(membcmp): Likewise.
(ctf_add_type): Likewise. Cast error-returning ssize_t's to size_t
when known error-free.
* ctf-dump.c (ctf_is_slice): Drop CTF_ERR usage for functions
returning int: use CTF_ERR for functions returning ctf_type_id.
(ctf_dump_label): Likewise.
(ctf_dump_objts): Likewise.
* ctf-labels.c (ctf_label_topmost): Likewise.
(ctf_label_iter): Likewise.
(ctf_label_info): Likewise.
* ctf-lookup.c (ctf_func_args): Likewise.
* ctf-open.c (upgrade_types): Cast to size_t where appropriate.
(ctf_bufopen): Likewise. Use zlib types as needed.
* ctf-types.c (ctf_member_iter): Drop CTF_ERR usage for functions
returning int.
(ctf_enum_iter): Likewise.
(ctf_type_size): Likewise.
(ctf_type_align): Likewise. Cast to size_t where appropriate.
(ctf_type_kind_unsliced): Likewise.
(ctf_type_kind): Likewise.
(ctf_type_encoding): Likewise.
(ctf_member_info): Likewise.
(ctf_array_info): Likewise.
(ctf_enum_value): Likewise.
(ctf_type_rvisit): Likewise.
* ctf-open-bfd.c (ctf_bfdopen): Drop cts_type, cts_flags and
cts_offset.
(ctf_simple_open): Likewise.
(ctf_bfdopen_ctfsect): Likewise. Set cts_size properly.
* Makefile.in: Regenerate.
* aclocal.m4: Likewise.
* config.h: Likewise.
* configure: Likewise.
2019-05-31 17:10:51 +08:00
|
|
|
if ((type = ctf_func_info (state->cds_fp, i, &fi)) == CTF_ERR)
|
2019-04-24 18:41:00 +08:00
|
|
|
switch (ctf_errno (state->cds_fp))
|
|
|
|
{
|
|
|
|
/* Most errors are just an indication that this symbol is not a data
|
|
|
|
symbol, but this one indicates that we were called wrong, on a
|
|
|
|
CTF file with no associated symbol table. */
|
|
|
|
case ECTF_NOSYMTAB:
|
libctf: fix a number of build problems found on Solaris and NetBSD
- Use of nonportable <endian.h>
- Use of qsort_r
- Use of zlib without appropriate magic to pull in the binutils zlib
- Use of off64_t without checking (fixed by dropping the unused fields
that need off64_t entirely)
- signedness problems due to long being too short a type on 32-bit
platforms: ctf_id_t is now 'unsigned long', and CTF_ERR must be
used only for functions that return ctf_id_t
- One lingering use of bzero() and of <sys/errno.h>
All fixed, using code from gnulib where possible.
Relatedly, set cts_size in a couple of places it was missed
(string table and symbol table loading upon ctf_bfdopen()).
binutils/
* objdump.c (make_ctfsect): Drop cts_type, cts_flags, and
cts_offset.
* readelf.c (shdr_to_ctf_sect): Likewise.
include/
* ctf-api.h (ctf_sect_t): Drop cts_type, cts_flags, and cts_offset.
(ctf_id_t): This is now an unsigned type.
(CTF_ERR): Cast it to ctf_id_t. Note that it should only be used
for ctf_id_t-returning functions.
libctf/
* Makefile.am (ZLIB): New.
(ZLIBINC): Likewise.
(AM_CFLAGS): Use them.
(libctf_a_LIBADD): New, for LIBOBJS.
* configure.ac: Check for zlib, endian.h, and qsort_r.
* ctf-endian.h: New, providing htole64 and le64toh.
* swap.h: Code style fixes.
(bswap_identity_64): New.
* qsort_r.c: New, from gnulib (with one added #include).
* ctf-decls.h: New, providing a conditional qsort_r declaration,
and unconditional definitions of MIN and MAX.
* ctf-impl.h: Use it. Do not use <sys/errno.h>.
(ctf_set_errno): Now returns unsigned long.
* ctf-util.c (ctf_set_errno): Adjust here too.
* ctf-archive.c: Use ctf-endian.h.
(ctf_arc_open_by_offset): Use memset, not bzero. Drop cts_type,
cts_flags and cts_offset.
(ctf_arc_write): Drop debugging dependent on the size of off_t.
* ctf-create.c: Provide a definition of roundup if not defined.
(ctf_create): Drop cts_type, cts_flags and cts_offset.
(ctf_add_reftype): Do not check if type IDs are below zero.
(ctf_add_slice): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_member_offset): Cast error-returning ssize_t's to size_t
when known error-free. Drop CTF_ERR usage for functions returning
int.
(ctf_add_member_encoded): Drop CTF_ERR usage for functions returning
int.
(ctf_add_variable): Likewise.
(enumcmp): Likewise.
(enumadd): Likewise.
(membcmp): Likewise.
(ctf_add_type): Likewise. Cast error-returning ssize_t's to size_t
when known error-free.
* ctf-dump.c (ctf_is_slice): Drop CTF_ERR usage for functions
returning int: use CTF_ERR for functions returning ctf_type_id.
(ctf_dump_label): Likewise.
(ctf_dump_objts): Likewise.
* ctf-labels.c (ctf_label_topmost): Likewise.
(ctf_label_iter): Likewise.
(ctf_label_info): Likewise.
* ctf-lookup.c (ctf_func_args): Likewise.
* ctf-open.c (upgrade_types): Cast to size_t where appropriate.
(ctf_bufopen): Likewise. Use zlib types as needed.
* ctf-types.c (ctf_member_iter): Drop CTF_ERR usage for functions
returning int.
(ctf_enum_iter): Likewise.
(ctf_type_size): Likewise.
(ctf_type_align): Likewise. Cast to size_t where appropriate.
(ctf_type_kind_unsliced): Likewise.
(ctf_type_kind): Likewise.
(ctf_type_encoding): Likewise.
(ctf_member_info): Likewise.
(ctf_array_info): Likewise.
(ctf_enum_value): Likewise.
(ctf_type_rvisit): Likewise.
* ctf-open-bfd.c (ctf_bfdopen): Drop cts_type, cts_flags and
cts_offset.
(ctf_simple_open): Likewise.
(ctf_bfdopen_ctfsect): Likewise. Set cts_size properly.
* Makefile.in: Regenerate.
* aclocal.m4: Likewise.
* config.h: Likewise.
* configure: Likewise.
2019-05-31 17:10:51 +08:00
|
|
|
return -1;
|
2019-04-24 18:41:00 +08:00
|
|
|
case ECTF_NOTDATA:
|
2019-07-14 03:50:49 +08:00
|
|
|
case ECTF_NOTFUNC:
|
|
|
|
case ECTF_NOFUNCDAT:
|
2019-04-24 18:41:00 +08:00
|
|
|
continue;
|
|
|
|
}
|
|
|
|
if ((args = calloc (fi.ctc_argc, sizeof (ctf_id_t))) == NULL)
|
|
|
|
return (ctf_set_errno (fp, ENOMEM));
|
|
|
|
|
|
|
|
/* Return type. */
|
|
|
|
if ((str = ctf_type_aname (state->cds_fp, type)) == NULL)
|
libctf: handle nonrepresentable types at link time
GCC can emit references to type 0 to indicate that this type is one that
is not representable in the version of CTF it emits (for instance,
version 3 cannot encode vector types). Type 0 is already used in the
function section to indicate padding inserted to skip functions we do
not want to encode the type of, so using zero in this way is a good
extension of the format: but libctf reports such types as ECTF_BADID,
which is indistinguishable from file corruption via links to truly
nonexistent types with IDs like 0xDEADBEEF etc, which we really do want
to stop for.
In particular, this stops all traversals of types dead at this point,
preventing us from even dumping CTF files containing unrepresentable
types to see what's going on!
So add a new error, ECTF_NONREPRESENTABLE, which is returned by
recursive type resolution when a reference to a zero type is found. (No
zero type is ever emitted into the CTF file by GCC, only references to
one). We can't do much with types that are ultimately nonrepresentable,
but we can do enough to keep functioning.
Adjust ctf_add_type to ensure that top-level types of type zero and
structure and union members of ultimate type zero are simply skipped
without reporting an error, so we can copy structures and unions that
contain nonrepresentable members (skipping them and leaving a hole where
they would be, so no consumers downstream of the linker need to worry
about this): adjust the dumper so that we dump members of
nonrepresentable types in a simple form that indicates
nonrepresentability rather than terminating the dump, and do not falsely
assume all errors to be -ENOMEM: adjust the linker so that types that
fail to get added are simply skipped, so that both nonrepresentable
types and outright errors do not terminate the type addition, which
could skip many valid types and cause further errors when variables of
those types are added.
In future, when we gain the ability to call back to the linker to report
link-time type resolution errors, we should report failures to add all
but nonrepresentable types. But we can't do that yet.
v5: Fix tabdamage.
include/
* ctf-api.h (ECTF_NONREPRESENTABLE): New.
libctf/
* ctf-types.c (ctf_type_resolve): Return ECTF_NONREPRESENTABLE on
type zero.
* ctf-create.c (ctf_add_type): Detect and skip nonrepresentable
members and types.
(ctf_add_variable): Likewise for variables pointing to them.
* ctf-link.c (ctf_link_one_type): Do not warn for nonrepresentable
type link failure, but do warn for others.
* ctf-dump.c (ctf_dump_format_type): Likewise. Do not assume all
errors to be ENOMEM.
(ctf_dump_member): Likewise.
(ctf_dump_type): Likewise.
(ctf_dump_header_strfield): Do not assume all errors to be ENOMEM.
(ctf_dump_header_sectfield): Do not assume all errors to be ENOMEM.
(ctf_dump_header): Likewise.
(ctf_dump_label): likewise.
(ctf_dump_objts): likewise.
(ctf_dump_funcs): likewise.
(ctf_dump_var): likewise.
(ctf_dump_str): Likewise.
2019-08-05 18:40:33 +08:00
|
|
|
{
|
|
|
|
err = "look up return type";
|
|
|
|
goto err;
|
|
|
|
}
|
2019-04-24 18:41:00 +08:00
|
|
|
|
2019-09-17 13:57:00 +08:00
|
|
|
str = str_append (str, " ");
|
2019-04-24 18:41:00 +08:00
|
|
|
|
|
|
|
/* Function name. */
|
|
|
|
|
|
|
|
sym_name = ctf_lookup_symbol_name (fp, i);
|
|
|
|
if (sym_name[0] == '\0')
|
|
|
|
{
|
2019-06-27 20:15:37 +08:00
|
|
|
if (asprintf (&bit, "0x%lx ", (unsigned long) i) < 0)
|
2019-04-24 18:41:00 +08:00
|
|
|
goto oom;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
2019-06-27 20:15:37 +08:00
|
|
|
if (asprintf (&bit, "%s (0x%lx) ", sym_name, (unsigned long) i) < 0)
|
2019-04-24 18:41:00 +08:00
|
|
|
goto oom;
|
|
|
|
}
|
2019-09-17 13:57:00 +08:00
|
|
|
str = str_append (str, bit);
|
|
|
|
str = str_append (str, " (");
|
2019-06-04 03:26:02 +08:00
|
|
|
free (bit);
|
2019-04-24 18:41:00 +08:00
|
|
|
|
|
|
|
/* Function arguments. */
|
|
|
|
|
|
|
|
if (ctf_func_args (state->cds_fp, i, fi.ctc_argc, args) < 0)
|
libctf: handle nonrepresentable types at link time
GCC can emit references to type 0 to indicate that this type is one that
is not representable in the version of CTF it emits (for instance,
version 3 cannot encode vector types). Type 0 is already used in the
function section to indicate padding inserted to skip functions we do
not want to encode the type of, so using zero in this way is a good
extension of the format: but libctf reports such types as ECTF_BADID,
which is indistinguishable from file corruption via links to truly
nonexistent types with IDs like 0xDEADBEEF etc, which we really do want
to stop for.
In particular, this stops all traversals of types dead at this point,
preventing us from even dumping CTF files containing unrepresentable
types to see what's going on!
So add a new error, ECTF_NONREPRESENTABLE, which is returned by
recursive type resolution when a reference to a zero type is found. (No
zero type is ever emitted into the CTF file by GCC, only references to
one). We can't do much with types that are ultimately nonrepresentable,
but we can do enough to keep functioning.
Adjust ctf_add_type to ensure that top-level types of type zero and
structure and union members of ultimate type zero are simply skipped
without reporting an error, so we can copy structures and unions that
contain nonrepresentable members (skipping them and leaving a hole where
they would be, so no consumers downstream of the linker need to worry
about this): adjust the dumper so that we dump members of
nonrepresentable types in a simple form that indicates
nonrepresentability rather than terminating the dump, and do not falsely
assume all errors to be -ENOMEM: adjust the linker so that types that
fail to get added are simply skipped, so that both nonrepresentable
types and outright errors do not terminate the type addition, which
could skip many valid types and cause further errors when variables of
those types are added.
In future, when we gain the ability to call back to the linker to report
link-time type resolution errors, we should report failures to add all
but nonrepresentable types. But we can't do that yet.
v5: Fix tabdamage.
include/
* ctf-api.h (ECTF_NONREPRESENTABLE): New.
libctf/
* ctf-types.c (ctf_type_resolve): Return ECTF_NONREPRESENTABLE on
type zero.
* ctf-create.c (ctf_add_type): Detect and skip nonrepresentable
members and types.
(ctf_add_variable): Likewise for variables pointing to them.
* ctf-link.c (ctf_link_one_type): Do not warn for nonrepresentable
type link failure, but do warn for others.
* ctf-dump.c (ctf_dump_format_type): Likewise. Do not assume all
errors to be ENOMEM.
(ctf_dump_member): Likewise.
(ctf_dump_type): Likewise.
(ctf_dump_header_strfield): Do not assume all errors to be ENOMEM.
(ctf_dump_header_sectfield): Do not assume all errors to be ENOMEM.
(ctf_dump_header): Likewise.
(ctf_dump_label): likewise.
(ctf_dump_objts): likewise.
(ctf_dump_funcs): likewise.
(ctf_dump_var): likewise.
(ctf_dump_str): Likewise.
2019-08-05 18:40:33 +08:00
|
|
|
{
|
|
|
|
err = "look up argument type";
|
|
|
|
goto err;
|
|
|
|
}
|
2019-04-24 18:41:00 +08:00
|
|
|
|
|
|
|
for (j = 0; j < fi.ctc_argc; j++)
|
|
|
|
{
|
|
|
|
if ((bit = ctf_type_aname (state->cds_fp, args[j])) == NULL)
|
libctf: handle nonrepresentable types at link time
GCC can emit references to type 0 to indicate that this type is one that
is not representable in the version of CTF it emits (for instance,
version 3 cannot encode vector types). Type 0 is already used in the
function section to indicate padding inserted to skip functions we do
not want to encode the type of, so using zero in this way is a good
extension of the format: but libctf reports such types as ECTF_BADID,
which is indistinguishable from file corruption via links to truly
nonexistent types with IDs like 0xDEADBEEF etc, which we really do want
to stop for.
In particular, this stops all traversals of types dead at this point,
preventing us from even dumping CTF files containing unrepresentable
types to see what's going on!
So add a new error, ECTF_NONREPRESENTABLE, which is returned by
recursive type resolution when a reference to a zero type is found. (No
zero type is ever emitted into the CTF file by GCC, only references to
one). We can't do much with types that are ultimately nonrepresentable,
but we can do enough to keep functioning.
Adjust ctf_add_type to ensure that top-level types of type zero and
structure and union members of ultimate type zero are simply skipped
without reporting an error, so we can copy structures and unions that
contain nonrepresentable members (skipping them and leaving a hole where
they would be, so no consumers downstream of the linker need to worry
about this): adjust the dumper so that we dump members of
nonrepresentable types in a simple form that indicates
nonrepresentability rather than terminating the dump, and do not falsely
assume all errors to be -ENOMEM: adjust the linker so that types that
fail to get added are simply skipped, so that both nonrepresentable
types and outright errors do not terminate the type addition, which
could skip many valid types and cause further errors when variables of
those types are added.
In future, when we gain the ability to call back to the linker to report
link-time type resolution errors, we should report failures to add all
but nonrepresentable types. But we can't do that yet.
v5: Fix tabdamage.
include/
* ctf-api.h (ECTF_NONREPRESENTABLE): New.
libctf/
* ctf-types.c (ctf_type_resolve): Return ECTF_NONREPRESENTABLE on
type zero.
* ctf-create.c (ctf_add_type): Detect and skip nonrepresentable
members and types.
(ctf_add_variable): Likewise for variables pointing to them.
* ctf-link.c (ctf_link_one_type): Do not warn for nonrepresentable
type link failure, but do warn for others.
* ctf-dump.c (ctf_dump_format_type): Likewise. Do not assume all
errors to be ENOMEM.
(ctf_dump_member): Likewise.
(ctf_dump_type): Likewise.
(ctf_dump_header_strfield): Do not assume all errors to be ENOMEM.
(ctf_dump_header_sectfield): Do not assume all errors to be ENOMEM.
(ctf_dump_header): Likewise.
(ctf_dump_label): likewise.
(ctf_dump_objts): likewise.
(ctf_dump_funcs): likewise.
(ctf_dump_var): likewise.
(ctf_dump_str): Likewise.
2019-08-05 18:40:33 +08:00
|
|
|
{
|
|
|
|
err = "look up argument type name";
|
|
|
|
goto err;
|
|
|
|
}
|
2019-09-17 13:57:00 +08:00
|
|
|
str = str_append (str, bit);
|
2019-04-24 18:41:00 +08:00
|
|
|
if ((j < fi.ctc_argc - 1) || (fi.ctc_flags & CTF_FUNC_VARARG))
|
2019-09-17 13:57:00 +08:00
|
|
|
str = str_append (str, ", ");
|
2019-04-24 18:41:00 +08:00
|
|
|
free (bit);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (fi.ctc_flags & CTF_FUNC_VARARG)
|
2019-09-17 13:57:00 +08:00
|
|
|
str = str_append (str, "...");
|
|
|
|
str = str_append (str, ")");
|
2019-04-24 18:41:00 +08:00
|
|
|
|
|
|
|
free (args);
|
|
|
|
ctf_dump_append (state, str);
|
|
|
|
continue;
|
|
|
|
|
|
|
|
oom:
|
|
|
|
free (args);
|
|
|
|
free (str);
|
libctf: handle nonrepresentable types at link time
GCC can emit references to type 0 to indicate that this type is one that
is not representable in the version of CTF it emits (for instance,
version 3 cannot encode vector types). Type 0 is already used in the
function section to indicate padding inserted to skip functions we do
not want to encode the type of, so using zero in this way is a good
extension of the format: but libctf reports such types as ECTF_BADID,
which is indistinguishable from file corruption via links to truly
nonexistent types with IDs like 0xDEADBEEF etc, which we really do want
to stop for.
In particular, this stops all traversals of types dead at this point,
preventing us from even dumping CTF files containing unrepresentable
types to see what's going on!
So add a new error, ECTF_NONREPRESENTABLE, which is returned by
recursive type resolution when a reference to a zero type is found. (No
zero type is ever emitted into the CTF file by GCC, only references to
one). We can't do much with types that are ultimately nonrepresentable,
but we can do enough to keep functioning.
Adjust ctf_add_type to ensure that top-level types of type zero and
structure and union members of ultimate type zero are simply skipped
without reporting an error, so we can copy structures and unions that
contain nonrepresentable members (skipping them and leaving a hole where
they would be, so no consumers downstream of the linker need to worry
about this): adjust the dumper so that we dump members of
nonrepresentable types in a simple form that indicates
nonrepresentability rather than terminating the dump, and do not falsely
assume all errors to be -ENOMEM: adjust the linker so that types that
fail to get added are simply skipped, so that both nonrepresentable
types and outright errors do not terminate the type addition, which
could skip many valid types and cause further errors when variables of
those types are added.
In future, when we gain the ability to call back to the linker to report
link-time type resolution errors, we should report failures to add all
but nonrepresentable types. But we can't do that yet.
v5: Fix tabdamage.
include/
* ctf-api.h (ECTF_NONREPRESENTABLE): New.
libctf/
* ctf-types.c (ctf_type_resolve): Return ECTF_NONREPRESENTABLE on
type zero.
* ctf-create.c (ctf_add_type): Detect and skip nonrepresentable
members and types.
(ctf_add_variable): Likewise for variables pointing to them.
* ctf-link.c (ctf_link_one_type): Do not warn for nonrepresentable
type link failure, but do warn for others.
* ctf-dump.c (ctf_dump_format_type): Likewise. Do not assume all
errors to be ENOMEM.
(ctf_dump_member): Likewise.
(ctf_dump_type): Likewise.
(ctf_dump_header_strfield): Do not assume all errors to be ENOMEM.
(ctf_dump_header_sectfield): Do not assume all errors to be ENOMEM.
(ctf_dump_header): Likewise.
(ctf_dump_label): likewise.
(ctf_dump_objts): likewise.
(ctf_dump_funcs): likewise.
(ctf_dump_var): likewise.
(ctf_dump_str): Likewise.
2019-08-05 18:40:33 +08:00
|
|
|
return (ctf_set_errno (fp, errno));
|
2019-04-24 18:41:00 +08:00
|
|
|
err:
|
libctf: handle nonrepresentable types at link time
GCC can emit references to type 0 to indicate that this type is one that
is not representable in the version of CTF it emits (for instance,
version 3 cannot encode vector types). Type 0 is already used in the
function section to indicate padding inserted to skip functions we do
not want to encode the type of, so using zero in this way is a good
extension of the format: but libctf reports such types as ECTF_BADID,
which is indistinguishable from file corruption via links to truly
nonexistent types with IDs like 0xDEADBEEF etc, which we really do want
to stop for.
In particular, this stops all traversals of types dead at this point,
preventing us from even dumping CTF files containing unrepresentable
types to see what's going on!
So add a new error, ECTF_NONREPRESENTABLE, which is returned by
recursive type resolution when a reference to a zero type is found. (No
zero type is ever emitted into the CTF file by GCC, only references to
one). We can't do much with types that are ultimately nonrepresentable,
but we can do enough to keep functioning.
Adjust ctf_add_type to ensure that top-level types of type zero and
structure and union members of ultimate type zero are simply skipped
without reporting an error, so we can copy structures and unions that
contain nonrepresentable members (skipping them and leaving a hole where
they would be, so no consumers downstream of the linker need to worry
about this): adjust the dumper so that we dump members of
nonrepresentable types in a simple form that indicates
nonrepresentability rather than terminating the dump, and do not falsely
assume all errors to be -ENOMEM: adjust the linker so that types that
fail to get added are simply skipped, so that both nonrepresentable
types and outright errors do not terminate the type addition, which
could skip many valid types and cause further errors when variables of
those types are added.
In future, when we gain the ability to call back to the linker to report
link-time type resolution errors, we should report failures to add all
but nonrepresentable types. But we can't do that yet.
v5: Fix tabdamage.
include/
* ctf-api.h (ECTF_NONREPRESENTABLE): New.
libctf/
* ctf-types.c (ctf_type_resolve): Return ECTF_NONREPRESENTABLE on
type zero.
* ctf-create.c (ctf_add_type): Detect and skip nonrepresentable
members and types.
(ctf_add_variable): Likewise for variables pointing to them.
* ctf-link.c (ctf_link_one_type): Do not warn for nonrepresentable
type link failure, but do warn for others.
* ctf-dump.c (ctf_dump_format_type): Likewise. Do not assume all
errors to be ENOMEM.
(ctf_dump_member): Likewise.
(ctf_dump_type): Likewise.
(ctf_dump_header_strfield): Do not assume all errors to be ENOMEM.
(ctf_dump_header_sectfield): Do not assume all errors to be ENOMEM.
(ctf_dump_header): Likewise.
(ctf_dump_label): likewise.
(ctf_dump_objts): likewise.
(ctf_dump_funcs): likewise.
(ctf_dump_var): likewise.
(ctf_dump_str): Likewise.
2019-08-05 18:40:33 +08:00
|
|
|
ctf_dprintf ("Cannot %s dumping function type for symbol 0x%li: %s\n",
|
|
|
|
err, (unsigned long) i,
|
|
|
|
ctf_errmsg (ctf_errno (state->cds_fp)));
|
2019-04-24 18:41:00 +08:00
|
|
|
free (args);
|
|
|
|
free (str);
|
libctf: fix a number of build problems found on Solaris and NetBSD
- Use of nonportable <endian.h>
- Use of qsort_r
- Use of zlib without appropriate magic to pull in the binutils zlib
- Use of off64_t without checking (fixed by dropping the unused fields
that need off64_t entirely)
- signedness problems due to long being too short a type on 32-bit
platforms: ctf_id_t is now 'unsigned long', and CTF_ERR must be
used only for functions that return ctf_id_t
- One lingering use of bzero() and of <sys/errno.h>
All fixed, using code from gnulib where possible.
Relatedly, set cts_size in a couple of places it was missed
(string table and symbol table loading upon ctf_bfdopen()).
binutils/
* objdump.c (make_ctfsect): Drop cts_type, cts_flags, and
cts_offset.
* readelf.c (shdr_to_ctf_sect): Likewise.
include/
* ctf-api.h (ctf_sect_t): Drop cts_type, cts_flags, and cts_offset.
(ctf_id_t): This is now an unsigned type.
(CTF_ERR): Cast it to ctf_id_t. Note that it should only be used
for ctf_id_t-returning functions.
libctf/
* Makefile.am (ZLIB): New.
(ZLIBINC): Likewise.
(AM_CFLAGS): Use them.
(libctf_a_LIBADD): New, for LIBOBJS.
* configure.ac: Check for zlib, endian.h, and qsort_r.
* ctf-endian.h: New, providing htole64 and le64toh.
* swap.h: Code style fixes.
(bswap_identity_64): New.
* qsort_r.c: New, from gnulib (with one added #include).
* ctf-decls.h: New, providing a conditional qsort_r declaration,
and unconditional definitions of MIN and MAX.
* ctf-impl.h: Use it. Do not use <sys/errno.h>.
(ctf_set_errno): Now returns unsigned long.
* ctf-util.c (ctf_set_errno): Adjust here too.
* ctf-archive.c: Use ctf-endian.h.
(ctf_arc_open_by_offset): Use memset, not bzero. Drop cts_type,
cts_flags and cts_offset.
(ctf_arc_write): Drop debugging dependent on the size of off_t.
* ctf-create.c: Provide a definition of roundup if not defined.
(ctf_create): Drop cts_type, cts_flags and cts_offset.
(ctf_add_reftype): Do not check if type IDs are below zero.
(ctf_add_slice): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_member_offset): Cast error-returning ssize_t's to size_t
when known error-free. Drop CTF_ERR usage for functions returning
int.
(ctf_add_member_encoded): Drop CTF_ERR usage for functions returning
int.
(ctf_add_variable): Likewise.
(enumcmp): Likewise.
(enumadd): Likewise.
(membcmp): Likewise.
(ctf_add_type): Likewise. Cast error-returning ssize_t's to size_t
when known error-free.
* ctf-dump.c (ctf_is_slice): Drop CTF_ERR usage for functions
returning int: use CTF_ERR for functions returning ctf_type_id.
(ctf_dump_label): Likewise.
(ctf_dump_objts): Likewise.
* ctf-labels.c (ctf_label_topmost): Likewise.
(ctf_label_iter): Likewise.
(ctf_label_info): Likewise.
* ctf-lookup.c (ctf_func_args): Likewise.
* ctf-open.c (upgrade_types): Cast to size_t where appropriate.
(ctf_bufopen): Likewise. Use zlib types as needed.
* ctf-types.c (ctf_member_iter): Drop CTF_ERR usage for functions
returning int.
(ctf_enum_iter): Likewise.
(ctf_type_size): Likewise.
(ctf_type_align): Likewise. Cast to size_t where appropriate.
(ctf_type_kind_unsliced): Likewise.
(ctf_type_kind): Likewise.
(ctf_type_encoding): Likewise.
(ctf_member_info): Likewise.
(ctf_array_info): Likewise.
(ctf_enum_value): Likewise.
(ctf_type_rvisit): Likewise.
* ctf-open-bfd.c (ctf_bfdopen): Drop cts_type, cts_flags and
cts_offset.
(ctf_simple_open): Likewise.
(ctf_bfdopen_ctfsect): Likewise. Set cts_size properly.
* Makefile.in: Regenerate.
* aclocal.m4: Likewise.
* config.h: Likewise.
* configure: Likewise.
2019-05-31 17:10:51 +08:00
|
|
|
return -1; /* errno is set for us. */
|
2019-04-24 18:41:00 +08:00
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Dump a single variable into the cds_items. */
|
|
|
|
static int
|
|
|
|
ctf_dump_var (const char *name, ctf_id_t type, void *arg)
|
|
|
|
{
|
|
|
|
char *str;
|
|
|
|
char *typestr;
|
|
|
|
ctf_dump_state_t *state = arg;
|
|
|
|
|
|
|
|
if (asprintf (&str, "%s -> ", name) < 0)
|
libctf: handle nonrepresentable types at link time
GCC can emit references to type 0 to indicate that this type is one that
is not representable in the version of CTF it emits (for instance,
version 3 cannot encode vector types). Type 0 is already used in the
function section to indicate padding inserted to skip functions we do
not want to encode the type of, so using zero in this way is a good
extension of the format: but libctf reports such types as ECTF_BADID,
which is indistinguishable from file corruption via links to truly
nonexistent types with IDs like 0xDEADBEEF etc, which we really do want
to stop for.
In particular, this stops all traversals of types dead at this point,
preventing us from even dumping CTF files containing unrepresentable
types to see what's going on!
So add a new error, ECTF_NONREPRESENTABLE, which is returned by
recursive type resolution when a reference to a zero type is found. (No
zero type is ever emitted into the CTF file by GCC, only references to
one). We can't do much with types that are ultimately nonrepresentable,
but we can do enough to keep functioning.
Adjust ctf_add_type to ensure that top-level types of type zero and
structure and union members of ultimate type zero are simply skipped
without reporting an error, so we can copy structures and unions that
contain nonrepresentable members (skipping them and leaving a hole where
they would be, so no consumers downstream of the linker need to worry
about this): adjust the dumper so that we dump members of
nonrepresentable types in a simple form that indicates
nonrepresentability rather than terminating the dump, and do not falsely
assume all errors to be -ENOMEM: adjust the linker so that types that
fail to get added are simply skipped, so that both nonrepresentable
types and outright errors do not terminate the type addition, which
could skip many valid types and cause further errors when variables of
those types are added.
In future, when we gain the ability to call back to the linker to report
link-time type resolution errors, we should report failures to add all
but nonrepresentable types. But we can't do that yet.
v5: Fix tabdamage.
include/
* ctf-api.h (ECTF_NONREPRESENTABLE): New.
libctf/
* ctf-types.c (ctf_type_resolve): Return ECTF_NONREPRESENTABLE on
type zero.
* ctf-create.c (ctf_add_type): Detect and skip nonrepresentable
members and types.
(ctf_add_variable): Likewise for variables pointing to them.
* ctf-link.c (ctf_link_one_type): Do not warn for nonrepresentable
type link failure, but do warn for others.
* ctf-dump.c (ctf_dump_format_type): Likewise. Do not assume all
errors to be ENOMEM.
(ctf_dump_member): Likewise.
(ctf_dump_type): Likewise.
(ctf_dump_header_strfield): Do not assume all errors to be ENOMEM.
(ctf_dump_header_sectfield): Do not assume all errors to be ENOMEM.
(ctf_dump_header): Likewise.
(ctf_dump_label): likewise.
(ctf_dump_objts): likewise.
(ctf_dump_funcs): likewise.
(ctf_dump_var): likewise.
(ctf_dump_str): Likewise.
2019-08-05 18:40:33 +08:00
|
|
|
return (ctf_set_errno (state->cds_fp, errno));
|
2019-04-24 18:41:00 +08:00
|
|
|
|
2019-07-14 03:49:19 +08:00
|
|
|
if ((typestr = ctf_dump_format_type (state->cds_fp, type,
|
|
|
|
CTF_ADD_ROOT)) == NULL)
|
2019-04-24 18:41:00 +08:00
|
|
|
{
|
|
|
|
free (str);
|
libctf: fix a number of build problems found on Solaris and NetBSD
- Use of nonportable <endian.h>
- Use of qsort_r
- Use of zlib without appropriate magic to pull in the binutils zlib
- Use of off64_t without checking (fixed by dropping the unused fields
that need off64_t entirely)
- signedness problems due to long being too short a type on 32-bit
platforms: ctf_id_t is now 'unsigned long', and CTF_ERR must be
used only for functions that return ctf_id_t
- One lingering use of bzero() and of <sys/errno.h>
All fixed, using code from gnulib where possible.
Relatedly, set cts_size in a couple of places it was missed
(string table and symbol table loading upon ctf_bfdopen()).
binutils/
* objdump.c (make_ctfsect): Drop cts_type, cts_flags, and
cts_offset.
* readelf.c (shdr_to_ctf_sect): Likewise.
include/
* ctf-api.h (ctf_sect_t): Drop cts_type, cts_flags, and cts_offset.
(ctf_id_t): This is now an unsigned type.
(CTF_ERR): Cast it to ctf_id_t. Note that it should only be used
for ctf_id_t-returning functions.
libctf/
* Makefile.am (ZLIB): New.
(ZLIBINC): Likewise.
(AM_CFLAGS): Use them.
(libctf_a_LIBADD): New, for LIBOBJS.
* configure.ac: Check for zlib, endian.h, and qsort_r.
* ctf-endian.h: New, providing htole64 and le64toh.
* swap.h: Code style fixes.
(bswap_identity_64): New.
* qsort_r.c: New, from gnulib (with one added #include).
* ctf-decls.h: New, providing a conditional qsort_r declaration,
and unconditional definitions of MIN and MAX.
* ctf-impl.h: Use it. Do not use <sys/errno.h>.
(ctf_set_errno): Now returns unsigned long.
* ctf-util.c (ctf_set_errno): Adjust here too.
* ctf-archive.c: Use ctf-endian.h.
(ctf_arc_open_by_offset): Use memset, not bzero. Drop cts_type,
cts_flags and cts_offset.
(ctf_arc_write): Drop debugging dependent on the size of off_t.
* ctf-create.c: Provide a definition of roundup if not defined.
(ctf_create): Drop cts_type, cts_flags and cts_offset.
(ctf_add_reftype): Do not check if type IDs are below zero.
(ctf_add_slice): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_member_offset): Cast error-returning ssize_t's to size_t
when known error-free. Drop CTF_ERR usage for functions returning
int.
(ctf_add_member_encoded): Drop CTF_ERR usage for functions returning
int.
(ctf_add_variable): Likewise.
(enumcmp): Likewise.
(enumadd): Likewise.
(membcmp): Likewise.
(ctf_add_type): Likewise. Cast error-returning ssize_t's to size_t
when known error-free.
* ctf-dump.c (ctf_is_slice): Drop CTF_ERR usage for functions
returning int: use CTF_ERR for functions returning ctf_type_id.
(ctf_dump_label): Likewise.
(ctf_dump_objts): Likewise.
* ctf-labels.c (ctf_label_topmost): Likewise.
(ctf_label_iter): Likewise.
(ctf_label_info): Likewise.
* ctf-lookup.c (ctf_func_args): Likewise.
* ctf-open.c (upgrade_types): Cast to size_t where appropriate.
(ctf_bufopen): Likewise. Use zlib types as needed.
* ctf-types.c (ctf_member_iter): Drop CTF_ERR usage for functions
returning int.
(ctf_enum_iter): Likewise.
(ctf_type_size): Likewise.
(ctf_type_align): Likewise. Cast to size_t where appropriate.
(ctf_type_kind_unsliced): Likewise.
(ctf_type_kind): Likewise.
(ctf_type_encoding): Likewise.
(ctf_member_info): Likewise.
(ctf_array_info): Likewise.
(ctf_enum_value): Likewise.
(ctf_type_rvisit): Likewise.
* ctf-open-bfd.c (ctf_bfdopen): Drop cts_type, cts_flags and
cts_offset.
(ctf_simple_open): Likewise.
(ctf_bfdopen_ctfsect): Likewise. Set cts_size properly.
* Makefile.in: Regenerate.
* aclocal.m4: Likewise.
* config.h: Likewise.
* configure: Likewise.
2019-05-31 17:10:51 +08:00
|
|
|
return -1; /* errno is set for us. */
|
2019-04-24 18:41:00 +08:00
|
|
|
}
|
|
|
|
|
2019-09-17 13:57:00 +08:00
|
|
|
str = str_append (str, typestr);
|
2019-04-24 18:41:00 +08:00
|
|
|
free (typestr);
|
|
|
|
|
|
|
|
ctf_dump_append (state, str);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Dump a single member into the string in the membstate. */
|
|
|
|
static int
|
|
|
|
ctf_dump_member (const char *name, ctf_id_t id, unsigned long offset,
|
|
|
|
int depth, void *arg)
|
|
|
|
{
|
|
|
|
ctf_dump_membstate_t *state = arg;
|
|
|
|
char *typestr = NULL;
|
|
|
|
char *bit = NULL;
|
|
|
|
ctf_encoding_t ep;
|
|
|
|
ssize_t i;
|
|
|
|
|
|
|
|
for (i = 0; i < depth; i++)
|
2019-09-17 13:57:00 +08:00
|
|
|
*state->cdm_str = str_append (*state->cdm_str, " ");
|
2019-04-24 18:41:00 +08:00
|
|
|
|
|
|
|
if ((typestr = ctf_type_aname (state->cdm_fp, id)) == NULL)
|
libctf: handle nonrepresentable types at link time
GCC can emit references to type 0 to indicate that this type is one that
is not representable in the version of CTF it emits (for instance,
version 3 cannot encode vector types). Type 0 is already used in the
function section to indicate padding inserted to skip functions we do
not want to encode the type of, so using zero in this way is a good
extension of the format: but libctf reports such types as ECTF_BADID,
which is indistinguishable from file corruption via links to truly
nonexistent types with IDs like 0xDEADBEEF etc, which we really do want
to stop for.
In particular, this stops all traversals of types dead at this point,
preventing us from even dumping CTF files containing unrepresentable
types to see what's going on!
So add a new error, ECTF_NONREPRESENTABLE, which is returned by
recursive type resolution when a reference to a zero type is found. (No
zero type is ever emitted into the CTF file by GCC, only references to
one). We can't do much with types that are ultimately nonrepresentable,
but we can do enough to keep functioning.
Adjust ctf_add_type to ensure that top-level types of type zero and
structure and union members of ultimate type zero are simply skipped
without reporting an error, so we can copy structures and unions that
contain nonrepresentable members (skipping them and leaving a hole where
they would be, so no consumers downstream of the linker need to worry
about this): adjust the dumper so that we dump members of
nonrepresentable types in a simple form that indicates
nonrepresentability rather than terminating the dump, and do not falsely
assume all errors to be -ENOMEM: adjust the linker so that types that
fail to get added are simply skipped, so that both nonrepresentable
types and outright errors do not terminate the type addition, which
could skip many valid types and cause further errors when variables of
those types are added.
In future, when we gain the ability to call back to the linker to report
link-time type resolution errors, we should report failures to add all
but nonrepresentable types. But we can't do that yet.
v5: Fix tabdamage.
include/
* ctf-api.h (ECTF_NONREPRESENTABLE): New.
libctf/
* ctf-types.c (ctf_type_resolve): Return ECTF_NONREPRESENTABLE on
type zero.
* ctf-create.c (ctf_add_type): Detect and skip nonrepresentable
members and types.
(ctf_add_variable): Likewise for variables pointing to them.
* ctf-link.c (ctf_link_one_type): Do not warn for nonrepresentable
type link failure, but do warn for others.
* ctf-dump.c (ctf_dump_format_type): Likewise. Do not assume all
errors to be ENOMEM.
(ctf_dump_member): Likewise.
(ctf_dump_type): Likewise.
(ctf_dump_header_strfield): Do not assume all errors to be ENOMEM.
(ctf_dump_header_sectfield): Do not assume all errors to be ENOMEM.
(ctf_dump_header): Likewise.
(ctf_dump_label): likewise.
(ctf_dump_objts): likewise.
(ctf_dump_funcs): likewise.
(ctf_dump_var): likewise.
(ctf_dump_str): Likewise.
2019-08-05 18:40:33 +08:00
|
|
|
{
|
|
|
|
if (id == 0 || ctf_errno (state->cdm_fp) == ECTF_NONREPRESENTABLE)
|
|
|
|
{
|
|
|
|
if (asprintf (&bit, " [0x%lx] (type not represented in CTF)",
|
|
|
|
offset) < 0)
|
|
|
|
goto oom;
|
|
|
|
|
2019-09-17 13:57:00 +08:00
|
|
|
*state->cdm_str = str_append (*state->cdm_str, bit);
|
libctf: handle nonrepresentable types at link time
GCC can emit references to type 0 to indicate that this type is one that
is not representable in the version of CTF it emits (for instance,
version 3 cannot encode vector types). Type 0 is already used in the
function section to indicate padding inserted to skip functions we do
not want to encode the type of, so using zero in this way is a good
extension of the format: but libctf reports such types as ECTF_BADID,
which is indistinguishable from file corruption via links to truly
nonexistent types with IDs like 0xDEADBEEF etc, which we really do want
to stop for.
In particular, this stops all traversals of types dead at this point,
preventing us from even dumping CTF files containing unrepresentable
types to see what's going on!
So add a new error, ECTF_NONREPRESENTABLE, which is returned by
recursive type resolution when a reference to a zero type is found. (No
zero type is ever emitted into the CTF file by GCC, only references to
one). We can't do much with types that are ultimately nonrepresentable,
but we can do enough to keep functioning.
Adjust ctf_add_type to ensure that top-level types of type zero and
structure and union members of ultimate type zero are simply skipped
without reporting an error, so we can copy structures and unions that
contain nonrepresentable members (skipping them and leaving a hole where
they would be, so no consumers downstream of the linker need to worry
about this): adjust the dumper so that we dump members of
nonrepresentable types in a simple form that indicates
nonrepresentability rather than terminating the dump, and do not falsely
assume all errors to be -ENOMEM: adjust the linker so that types that
fail to get added are simply skipped, so that both nonrepresentable
types and outright errors do not terminate the type addition, which
could skip many valid types and cause further errors when variables of
those types are added.
In future, when we gain the ability to call back to the linker to report
link-time type resolution errors, we should report failures to add all
but nonrepresentable types. But we can't do that yet.
v5: Fix tabdamage.
include/
* ctf-api.h (ECTF_NONREPRESENTABLE): New.
libctf/
* ctf-types.c (ctf_type_resolve): Return ECTF_NONREPRESENTABLE on
type zero.
* ctf-create.c (ctf_add_type): Detect and skip nonrepresentable
members and types.
(ctf_add_variable): Likewise for variables pointing to them.
* ctf-link.c (ctf_link_one_type): Do not warn for nonrepresentable
type link failure, but do warn for others.
* ctf-dump.c (ctf_dump_format_type): Likewise. Do not assume all
errors to be ENOMEM.
(ctf_dump_member): Likewise.
(ctf_dump_type): Likewise.
(ctf_dump_header_strfield): Do not assume all errors to be ENOMEM.
(ctf_dump_header_sectfield): Do not assume all errors to be ENOMEM.
(ctf_dump_header): Likewise.
(ctf_dump_label): likewise.
(ctf_dump_objts): likewise.
(ctf_dump_funcs): likewise.
(ctf_dump_var): likewise.
(ctf_dump_str): Likewise.
2019-08-05 18:40:33 +08:00
|
|
|
free (typestr);
|
|
|
|
free (bit);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
goto oom;
|
|
|
|
}
|
2019-04-24 18:41:00 +08:00
|
|
|
|
|
|
|
if (asprintf (&bit, " [0x%lx] (ID 0x%lx) (kind %i) %s %s (aligned at 0x%lx",
|
|
|
|
offset, id, ctf_type_kind (state->cdm_fp, id), typestr, name,
|
2019-06-06 20:59:56 +08:00
|
|
|
(unsigned long) ctf_type_align (state->cdm_fp, id)) < 0)
|
2019-04-24 18:41:00 +08:00
|
|
|
goto oom;
|
2019-09-17 13:57:00 +08:00
|
|
|
*state->cdm_str = str_append (*state->cdm_str, bit);
|
2019-04-24 18:41:00 +08:00
|
|
|
free (typestr);
|
|
|
|
free (bit);
|
|
|
|
typestr = NULL;
|
|
|
|
bit = NULL;
|
|
|
|
|
|
|
|
if ((ctf_type_kind (state->cdm_fp, id) == CTF_K_INTEGER)
|
|
|
|
|| (ctf_type_kind (state->cdm_fp, id) == CTF_K_FLOAT)
|
|
|
|
|| (ctf_is_slice (state->cdm_fp, id, &ep) == CTF_K_ENUM))
|
|
|
|
{
|
|
|
|
ctf_type_encoding (state->cdm_fp, id, &ep);
|
|
|
|
if (asprintf (&bit, ", format 0x%x, offset:bits 0x%x:0x%x", ep.cte_format,
|
|
|
|
ep.cte_offset, ep.cte_bits) < 0)
|
|
|
|
goto oom;
|
2019-09-17 13:57:00 +08:00
|
|
|
*state->cdm_str = str_append (*state->cdm_str, bit);
|
2019-04-24 18:41:00 +08:00
|
|
|
free (bit);
|
|
|
|
bit = NULL;
|
|
|
|
}
|
|
|
|
|
2019-09-17 13:57:00 +08:00
|
|
|
*state->cdm_str = str_append (*state->cdm_str, ")\n");
|
2019-04-24 18:41:00 +08:00
|
|
|
return 0;
|
|
|
|
|
|
|
|
oom:
|
|
|
|
free (typestr);
|
|
|
|
free (bit);
|
libctf: handle nonrepresentable types at link time
GCC can emit references to type 0 to indicate that this type is one that
is not representable in the version of CTF it emits (for instance,
version 3 cannot encode vector types). Type 0 is already used in the
function section to indicate padding inserted to skip functions we do
not want to encode the type of, so using zero in this way is a good
extension of the format: but libctf reports such types as ECTF_BADID,
which is indistinguishable from file corruption via links to truly
nonexistent types with IDs like 0xDEADBEEF etc, which we really do want
to stop for.
In particular, this stops all traversals of types dead at this point,
preventing us from even dumping CTF files containing unrepresentable
types to see what's going on!
So add a new error, ECTF_NONREPRESENTABLE, which is returned by
recursive type resolution when a reference to a zero type is found. (No
zero type is ever emitted into the CTF file by GCC, only references to
one). We can't do much with types that are ultimately nonrepresentable,
but we can do enough to keep functioning.
Adjust ctf_add_type to ensure that top-level types of type zero and
structure and union members of ultimate type zero are simply skipped
without reporting an error, so we can copy structures and unions that
contain nonrepresentable members (skipping them and leaving a hole where
they would be, so no consumers downstream of the linker need to worry
about this): adjust the dumper so that we dump members of
nonrepresentable types in a simple form that indicates
nonrepresentability rather than terminating the dump, and do not falsely
assume all errors to be -ENOMEM: adjust the linker so that types that
fail to get added are simply skipped, so that both nonrepresentable
types and outright errors do not terminate the type addition, which
could skip many valid types and cause further errors when variables of
those types are added.
In future, when we gain the ability to call back to the linker to report
link-time type resolution errors, we should report failures to add all
but nonrepresentable types. But we can't do that yet.
v5: Fix tabdamage.
include/
* ctf-api.h (ECTF_NONREPRESENTABLE): New.
libctf/
* ctf-types.c (ctf_type_resolve): Return ECTF_NONREPRESENTABLE on
type zero.
* ctf-create.c (ctf_add_type): Detect and skip nonrepresentable
members and types.
(ctf_add_variable): Likewise for variables pointing to them.
* ctf-link.c (ctf_link_one_type): Do not warn for nonrepresentable
type link failure, but do warn for others.
* ctf-dump.c (ctf_dump_format_type): Likewise. Do not assume all
errors to be ENOMEM.
(ctf_dump_member): Likewise.
(ctf_dump_type): Likewise.
(ctf_dump_header_strfield): Do not assume all errors to be ENOMEM.
(ctf_dump_header_sectfield): Do not assume all errors to be ENOMEM.
(ctf_dump_header): Likewise.
(ctf_dump_label): likewise.
(ctf_dump_objts): likewise.
(ctf_dump_funcs): likewise.
(ctf_dump_var): likewise.
(ctf_dump_str): Likewise.
2019-08-05 18:40:33 +08:00
|
|
|
return (ctf_set_errno (state->cdm_fp, errno));
|
2019-04-24 18:41:00 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
/* Dump a single type into the cds_items. */
|
|
|
|
static int
|
2019-07-14 03:49:19 +08:00
|
|
|
ctf_dump_type (ctf_id_t id, int flag, void *arg)
|
2019-04-24 18:41:00 +08:00
|
|
|
{
|
|
|
|
char *str;
|
libctf: handle nonrepresentable types at link time
GCC can emit references to type 0 to indicate that this type is one that
is not representable in the version of CTF it emits (for instance,
version 3 cannot encode vector types). Type 0 is already used in the
function section to indicate padding inserted to skip functions we do
not want to encode the type of, so using zero in this way is a good
extension of the format: but libctf reports such types as ECTF_BADID,
which is indistinguishable from file corruption via links to truly
nonexistent types with IDs like 0xDEADBEEF etc, which we really do want
to stop for.
In particular, this stops all traversals of types dead at this point,
preventing us from even dumping CTF files containing unrepresentable
types to see what's going on!
So add a new error, ECTF_NONREPRESENTABLE, which is returned by
recursive type resolution when a reference to a zero type is found. (No
zero type is ever emitted into the CTF file by GCC, only references to
one). We can't do much with types that are ultimately nonrepresentable,
but we can do enough to keep functioning.
Adjust ctf_add_type to ensure that top-level types of type zero and
structure and union members of ultimate type zero are simply skipped
without reporting an error, so we can copy structures and unions that
contain nonrepresentable members (skipping them and leaving a hole where
they would be, so no consumers downstream of the linker need to worry
about this): adjust the dumper so that we dump members of
nonrepresentable types in a simple form that indicates
nonrepresentability rather than terminating the dump, and do not falsely
assume all errors to be -ENOMEM: adjust the linker so that types that
fail to get added are simply skipped, so that both nonrepresentable
types and outright errors do not terminate the type addition, which
could skip many valid types and cause further errors when variables of
those types are added.
In future, when we gain the ability to call back to the linker to report
link-time type resolution errors, we should report failures to add all
but nonrepresentable types. But we can't do that yet.
v5: Fix tabdamage.
include/
* ctf-api.h (ECTF_NONREPRESENTABLE): New.
libctf/
* ctf-types.c (ctf_type_resolve): Return ECTF_NONREPRESENTABLE on
type zero.
* ctf-create.c (ctf_add_type): Detect and skip nonrepresentable
members and types.
(ctf_add_variable): Likewise for variables pointing to them.
* ctf-link.c (ctf_link_one_type): Do not warn for nonrepresentable
type link failure, but do warn for others.
* ctf-dump.c (ctf_dump_format_type): Likewise. Do not assume all
errors to be ENOMEM.
(ctf_dump_member): Likewise.
(ctf_dump_type): Likewise.
(ctf_dump_header_strfield): Do not assume all errors to be ENOMEM.
(ctf_dump_header_sectfield): Do not assume all errors to be ENOMEM.
(ctf_dump_header): Likewise.
(ctf_dump_label): likewise.
(ctf_dump_objts): likewise.
(ctf_dump_funcs): likewise.
(ctf_dump_var): likewise.
(ctf_dump_str): Likewise.
2019-08-05 18:40:33 +08:00
|
|
|
const char *err;
|
2019-04-24 18:41:00 +08:00
|
|
|
ctf_dump_state_t *state = arg;
|
|
|
|
ctf_dump_membstate_t membstate = { &str, state->cds_fp };
|
|
|
|
size_t len;
|
|
|
|
|
2019-07-14 03:49:19 +08:00
|
|
|
if ((str = ctf_dump_format_type (state->cds_fp, id, flag)) == NULL)
|
libctf: handle nonrepresentable types at link time
GCC can emit references to type 0 to indicate that this type is one that
is not representable in the version of CTF it emits (for instance,
version 3 cannot encode vector types). Type 0 is already used in the
function section to indicate padding inserted to skip functions we do
not want to encode the type of, so using zero in this way is a good
extension of the format: but libctf reports such types as ECTF_BADID,
which is indistinguishable from file corruption via links to truly
nonexistent types with IDs like 0xDEADBEEF etc, which we really do want
to stop for.
In particular, this stops all traversals of types dead at this point,
preventing us from even dumping CTF files containing unrepresentable
types to see what's going on!
So add a new error, ECTF_NONREPRESENTABLE, which is returned by
recursive type resolution when a reference to a zero type is found. (No
zero type is ever emitted into the CTF file by GCC, only references to
one). We can't do much with types that are ultimately nonrepresentable,
but we can do enough to keep functioning.
Adjust ctf_add_type to ensure that top-level types of type zero and
structure and union members of ultimate type zero are simply skipped
without reporting an error, so we can copy structures and unions that
contain nonrepresentable members (skipping them and leaving a hole where
they would be, so no consumers downstream of the linker need to worry
about this): adjust the dumper so that we dump members of
nonrepresentable types in a simple form that indicates
nonrepresentability rather than terminating the dump, and do not falsely
assume all errors to be -ENOMEM: adjust the linker so that types that
fail to get added are simply skipped, so that both nonrepresentable
types and outright errors do not terminate the type addition, which
could skip many valid types and cause further errors when variables of
those types are added.
In future, when we gain the ability to call back to the linker to report
link-time type resolution errors, we should report failures to add all
but nonrepresentable types. But we can't do that yet.
v5: Fix tabdamage.
include/
* ctf-api.h (ECTF_NONREPRESENTABLE): New.
libctf/
* ctf-types.c (ctf_type_resolve): Return ECTF_NONREPRESENTABLE on
type zero.
* ctf-create.c (ctf_add_type): Detect and skip nonrepresentable
members and types.
(ctf_add_variable): Likewise for variables pointing to them.
* ctf-link.c (ctf_link_one_type): Do not warn for nonrepresentable
type link failure, but do warn for others.
* ctf-dump.c (ctf_dump_format_type): Likewise. Do not assume all
errors to be ENOMEM.
(ctf_dump_member): Likewise.
(ctf_dump_type): Likewise.
(ctf_dump_header_strfield): Do not assume all errors to be ENOMEM.
(ctf_dump_header_sectfield): Do not assume all errors to be ENOMEM.
(ctf_dump_header): Likewise.
(ctf_dump_label): likewise.
(ctf_dump_objts): likewise.
(ctf_dump_funcs): likewise.
(ctf_dump_var): likewise.
(ctf_dump_str): Likewise.
2019-08-05 18:40:33 +08:00
|
|
|
{
|
|
|
|
err = "format type";
|
|
|
|
goto err;
|
|
|
|
}
|
2019-04-24 18:41:00 +08:00
|
|
|
|
2019-09-17 13:57:00 +08:00
|
|
|
str = str_append (str, "\n");
|
2019-04-24 18:41:00 +08:00
|
|
|
if ((ctf_type_visit (state->cds_fp, id, ctf_dump_member, &membstate)) < 0)
|
libctf: handle nonrepresentable types at link time
GCC can emit references to type 0 to indicate that this type is one that
is not representable in the version of CTF it emits (for instance,
version 3 cannot encode vector types). Type 0 is already used in the
function section to indicate padding inserted to skip functions we do
not want to encode the type of, so using zero in this way is a good
extension of the format: but libctf reports such types as ECTF_BADID,
which is indistinguishable from file corruption via links to truly
nonexistent types with IDs like 0xDEADBEEF etc, which we really do want
to stop for.
In particular, this stops all traversals of types dead at this point,
preventing us from even dumping CTF files containing unrepresentable
types to see what's going on!
So add a new error, ECTF_NONREPRESENTABLE, which is returned by
recursive type resolution when a reference to a zero type is found. (No
zero type is ever emitted into the CTF file by GCC, only references to
one). We can't do much with types that are ultimately nonrepresentable,
but we can do enough to keep functioning.
Adjust ctf_add_type to ensure that top-level types of type zero and
structure and union members of ultimate type zero are simply skipped
without reporting an error, so we can copy structures and unions that
contain nonrepresentable members (skipping them and leaving a hole where
they would be, so no consumers downstream of the linker need to worry
about this): adjust the dumper so that we dump members of
nonrepresentable types in a simple form that indicates
nonrepresentability rather than terminating the dump, and do not falsely
assume all errors to be -ENOMEM: adjust the linker so that types that
fail to get added are simply skipped, so that both nonrepresentable
types and outright errors do not terminate the type addition, which
could skip many valid types and cause further errors when variables of
those types are added.
In future, when we gain the ability to call back to the linker to report
link-time type resolution errors, we should report failures to add all
but nonrepresentable types. But we can't do that yet.
v5: Fix tabdamage.
include/
* ctf-api.h (ECTF_NONREPRESENTABLE): New.
libctf/
* ctf-types.c (ctf_type_resolve): Return ECTF_NONREPRESENTABLE on
type zero.
* ctf-create.c (ctf_add_type): Detect and skip nonrepresentable
members and types.
(ctf_add_variable): Likewise for variables pointing to them.
* ctf-link.c (ctf_link_one_type): Do not warn for nonrepresentable
type link failure, but do warn for others.
* ctf-dump.c (ctf_dump_format_type): Likewise. Do not assume all
errors to be ENOMEM.
(ctf_dump_member): Likewise.
(ctf_dump_type): Likewise.
(ctf_dump_header_strfield): Do not assume all errors to be ENOMEM.
(ctf_dump_header_sectfield): Do not assume all errors to be ENOMEM.
(ctf_dump_header): Likewise.
(ctf_dump_label): likewise.
(ctf_dump_objts): likewise.
(ctf_dump_funcs): likewise.
(ctf_dump_var): likewise.
(ctf_dump_str): Likewise.
2019-08-05 18:40:33 +08:00
|
|
|
{
|
|
|
|
if (id == 0 || ctf_errno (state->cds_fp) == ECTF_NONREPRESENTABLE)
|
|
|
|
{
|
|
|
|
ctf_dump_append (state, str);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
err = "visit members";
|
|
|
|
goto err;
|
|
|
|
}
|
2019-04-24 18:41:00 +08:00
|
|
|
|
|
|
|
/* Trim off the last linefeed added by ctf_dump_member(). */
|
|
|
|
len = strlen (str);
|
|
|
|
if (str[len-1] == '\n')
|
|
|
|
str[len-1] = '\0';
|
|
|
|
|
|
|
|
ctf_dump_append (state, str);
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
err:
|
libctf: handle nonrepresentable types at link time
GCC can emit references to type 0 to indicate that this type is one that
is not representable in the version of CTF it emits (for instance,
version 3 cannot encode vector types). Type 0 is already used in the
function section to indicate padding inserted to skip functions we do
not want to encode the type of, so using zero in this way is a good
extension of the format: but libctf reports such types as ECTF_BADID,
which is indistinguishable from file corruption via links to truly
nonexistent types with IDs like 0xDEADBEEF etc, which we really do want
to stop for.
In particular, this stops all traversals of types dead at this point,
preventing us from even dumping CTF files containing unrepresentable
types to see what's going on!
So add a new error, ECTF_NONREPRESENTABLE, which is returned by
recursive type resolution when a reference to a zero type is found. (No
zero type is ever emitted into the CTF file by GCC, only references to
one). We can't do much with types that are ultimately nonrepresentable,
but we can do enough to keep functioning.
Adjust ctf_add_type to ensure that top-level types of type zero and
structure and union members of ultimate type zero are simply skipped
without reporting an error, so we can copy structures and unions that
contain nonrepresentable members (skipping them and leaving a hole where
they would be, so no consumers downstream of the linker need to worry
about this): adjust the dumper so that we dump members of
nonrepresentable types in a simple form that indicates
nonrepresentability rather than terminating the dump, and do not falsely
assume all errors to be -ENOMEM: adjust the linker so that types that
fail to get added are simply skipped, so that both nonrepresentable
types and outright errors do not terminate the type addition, which
could skip many valid types and cause further errors when variables of
those types are added.
In future, when we gain the ability to call back to the linker to report
link-time type resolution errors, we should report failures to add all
but nonrepresentable types. But we can't do that yet.
v5: Fix tabdamage.
include/
* ctf-api.h (ECTF_NONREPRESENTABLE): New.
libctf/
* ctf-types.c (ctf_type_resolve): Return ECTF_NONREPRESENTABLE on
type zero.
* ctf-create.c (ctf_add_type): Detect and skip nonrepresentable
members and types.
(ctf_add_variable): Likewise for variables pointing to them.
* ctf-link.c (ctf_link_one_type): Do not warn for nonrepresentable
type link failure, but do warn for others.
* ctf-dump.c (ctf_dump_format_type): Likewise. Do not assume all
errors to be ENOMEM.
(ctf_dump_member): Likewise.
(ctf_dump_type): Likewise.
(ctf_dump_header_strfield): Do not assume all errors to be ENOMEM.
(ctf_dump_header_sectfield): Do not assume all errors to be ENOMEM.
(ctf_dump_header): Likewise.
(ctf_dump_label): likewise.
(ctf_dump_objts): likewise.
(ctf_dump_funcs): likewise.
(ctf_dump_var): likewise.
(ctf_dump_str): Likewise.
2019-08-05 18:40:33 +08:00
|
|
|
ctf_dprintf ("Cannot %s dumping type 0x%lx: %s\n", err, id,
|
|
|
|
ctf_errmsg (ctf_errno (state->cds_fp)));
|
2019-04-24 18:41:00 +08:00
|
|
|
free (str);
|
libctf: fix a number of build problems found on Solaris and NetBSD
- Use of nonportable <endian.h>
- Use of qsort_r
- Use of zlib without appropriate magic to pull in the binutils zlib
- Use of off64_t without checking (fixed by dropping the unused fields
that need off64_t entirely)
- signedness problems due to long being too short a type on 32-bit
platforms: ctf_id_t is now 'unsigned long', and CTF_ERR must be
used only for functions that return ctf_id_t
- One lingering use of bzero() and of <sys/errno.h>
All fixed, using code from gnulib where possible.
Relatedly, set cts_size in a couple of places it was missed
(string table and symbol table loading upon ctf_bfdopen()).
binutils/
* objdump.c (make_ctfsect): Drop cts_type, cts_flags, and
cts_offset.
* readelf.c (shdr_to_ctf_sect): Likewise.
include/
* ctf-api.h (ctf_sect_t): Drop cts_type, cts_flags, and cts_offset.
(ctf_id_t): This is now an unsigned type.
(CTF_ERR): Cast it to ctf_id_t. Note that it should only be used
for ctf_id_t-returning functions.
libctf/
* Makefile.am (ZLIB): New.
(ZLIBINC): Likewise.
(AM_CFLAGS): Use them.
(libctf_a_LIBADD): New, for LIBOBJS.
* configure.ac: Check for zlib, endian.h, and qsort_r.
* ctf-endian.h: New, providing htole64 and le64toh.
* swap.h: Code style fixes.
(bswap_identity_64): New.
* qsort_r.c: New, from gnulib (with one added #include).
* ctf-decls.h: New, providing a conditional qsort_r declaration,
and unconditional definitions of MIN and MAX.
* ctf-impl.h: Use it. Do not use <sys/errno.h>.
(ctf_set_errno): Now returns unsigned long.
* ctf-util.c (ctf_set_errno): Adjust here too.
* ctf-archive.c: Use ctf-endian.h.
(ctf_arc_open_by_offset): Use memset, not bzero. Drop cts_type,
cts_flags and cts_offset.
(ctf_arc_write): Drop debugging dependent on the size of off_t.
* ctf-create.c: Provide a definition of roundup if not defined.
(ctf_create): Drop cts_type, cts_flags and cts_offset.
(ctf_add_reftype): Do not check if type IDs are below zero.
(ctf_add_slice): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_member_offset): Cast error-returning ssize_t's to size_t
when known error-free. Drop CTF_ERR usage for functions returning
int.
(ctf_add_member_encoded): Drop CTF_ERR usage for functions returning
int.
(ctf_add_variable): Likewise.
(enumcmp): Likewise.
(enumadd): Likewise.
(membcmp): Likewise.
(ctf_add_type): Likewise. Cast error-returning ssize_t's to size_t
when known error-free.
* ctf-dump.c (ctf_is_slice): Drop CTF_ERR usage for functions
returning int: use CTF_ERR for functions returning ctf_type_id.
(ctf_dump_label): Likewise.
(ctf_dump_objts): Likewise.
* ctf-labels.c (ctf_label_topmost): Likewise.
(ctf_label_iter): Likewise.
(ctf_label_info): Likewise.
* ctf-lookup.c (ctf_func_args): Likewise.
* ctf-open.c (upgrade_types): Cast to size_t where appropriate.
(ctf_bufopen): Likewise. Use zlib types as needed.
* ctf-types.c (ctf_member_iter): Drop CTF_ERR usage for functions
returning int.
(ctf_enum_iter): Likewise.
(ctf_type_size): Likewise.
(ctf_type_align): Likewise. Cast to size_t where appropriate.
(ctf_type_kind_unsliced): Likewise.
(ctf_type_kind): Likewise.
(ctf_type_encoding): Likewise.
(ctf_member_info): Likewise.
(ctf_array_info): Likewise.
(ctf_enum_value): Likewise.
(ctf_type_rvisit): Likewise.
* ctf-open-bfd.c (ctf_bfdopen): Drop cts_type, cts_flags and
cts_offset.
(ctf_simple_open): Likewise.
(ctf_bfdopen_ctfsect): Likewise. Set cts_size properly.
* Makefile.in: Regenerate.
* aclocal.m4: Likewise.
* config.h: Likewise.
* configure: Likewise.
2019-05-31 17:10:51 +08:00
|
|
|
return -1; /* errno is set for us. */
|
2019-04-24 18:41:00 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
/* Dump the string table into the cds_items. */
|
|
|
|
|
|
|
|
static int
|
|
|
|
ctf_dump_str (ctf_file_t *fp, ctf_dump_state_t *state)
|
|
|
|
{
|
|
|
|
const char *s = fp->ctf_str[CTF_STRTAB_0].cts_strs;
|
|
|
|
|
|
|
|
for (; s < fp->ctf_str[CTF_STRTAB_0].cts_strs +
|
|
|
|
fp->ctf_str[CTF_STRTAB_0].cts_len;)
|
|
|
|
{
|
|
|
|
char *str;
|
2019-06-06 20:59:56 +08:00
|
|
|
if (asprintf (&str, "%lx: %s",
|
|
|
|
(unsigned long) (s - fp->ctf_str[CTF_STRTAB_0].cts_strs),
|
2019-04-24 18:41:00 +08:00
|
|
|
s) < 0)
|
libctf: handle nonrepresentable types at link time
GCC can emit references to type 0 to indicate that this type is one that
is not representable in the version of CTF it emits (for instance,
version 3 cannot encode vector types). Type 0 is already used in the
function section to indicate padding inserted to skip functions we do
not want to encode the type of, so using zero in this way is a good
extension of the format: but libctf reports such types as ECTF_BADID,
which is indistinguishable from file corruption via links to truly
nonexistent types with IDs like 0xDEADBEEF etc, which we really do want
to stop for.
In particular, this stops all traversals of types dead at this point,
preventing us from even dumping CTF files containing unrepresentable
types to see what's going on!
So add a new error, ECTF_NONREPRESENTABLE, which is returned by
recursive type resolution when a reference to a zero type is found. (No
zero type is ever emitted into the CTF file by GCC, only references to
one). We can't do much with types that are ultimately nonrepresentable,
but we can do enough to keep functioning.
Adjust ctf_add_type to ensure that top-level types of type zero and
structure and union members of ultimate type zero are simply skipped
without reporting an error, so we can copy structures and unions that
contain nonrepresentable members (skipping them and leaving a hole where
they would be, so no consumers downstream of the linker need to worry
about this): adjust the dumper so that we dump members of
nonrepresentable types in a simple form that indicates
nonrepresentability rather than terminating the dump, and do not falsely
assume all errors to be -ENOMEM: adjust the linker so that types that
fail to get added are simply skipped, so that both nonrepresentable
types and outright errors do not terminate the type addition, which
could skip many valid types and cause further errors when variables of
those types are added.
In future, when we gain the ability to call back to the linker to report
link-time type resolution errors, we should report failures to add all
but nonrepresentable types. But we can't do that yet.
v5: Fix tabdamage.
include/
* ctf-api.h (ECTF_NONREPRESENTABLE): New.
libctf/
* ctf-types.c (ctf_type_resolve): Return ECTF_NONREPRESENTABLE on
type zero.
* ctf-create.c (ctf_add_type): Detect and skip nonrepresentable
members and types.
(ctf_add_variable): Likewise for variables pointing to them.
* ctf-link.c (ctf_link_one_type): Do not warn for nonrepresentable
type link failure, but do warn for others.
* ctf-dump.c (ctf_dump_format_type): Likewise. Do not assume all
errors to be ENOMEM.
(ctf_dump_member): Likewise.
(ctf_dump_type): Likewise.
(ctf_dump_header_strfield): Do not assume all errors to be ENOMEM.
(ctf_dump_header_sectfield): Do not assume all errors to be ENOMEM.
(ctf_dump_header): Likewise.
(ctf_dump_label): likewise.
(ctf_dump_objts): likewise.
(ctf_dump_funcs): likewise.
(ctf_dump_var): likewise.
(ctf_dump_str): Likewise.
2019-08-05 18:40:33 +08:00
|
|
|
return (ctf_set_errno (fp, errno));
|
2019-04-24 18:41:00 +08:00
|
|
|
ctf_dump_append (state, str);
|
|
|
|
s += strlen (s) + 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Dump a particular section of a CTF file, in textual form. Call with a
|
|
|
|
pointer to a NULL STATE: each call emits a dynamically allocated string
|
|
|
|
containing a description of one entity in the specified section, in order.
|
|
|
|
Only the first call (with a NULL state) may vary SECT. Once the CTF section
|
|
|
|
has been entirely dumped, the call returns NULL and frees and annuls the
|
|
|
|
STATE, ready for another section to be dumped. The returned textual content
|
|
|
|
may span multiple lines: between each call the FUNC is called with one
|
|
|
|
textual line at a time, and should return a suitably decorated line (it can
|
|
|
|
allocate a new one and return it if it likes). */
|
|
|
|
|
|
|
|
char *
|
|
|
|
ctf_dump (ctf_file_t *fp, ctf_dump_state_t **statep, ctf_sect_names_t sect,
|
|
|
|
ctf_dump_decorate_f *func, void *arg)
|
|
|
|
{
|
|
|
|
char *str;
|
|
|
|
char *line;
|
|
|
|
ctf_dump_state_t *state = NULL;
|
|
|
|
|
|
|
|
if (*statep == NULL)
|
|
|
|
{
|
|
|
|
/* Data collection. Transforming a call-at-a-time iterator into a
|
|
|
|
return-at-a-time iterator in a language without call/cc is annoying. It
|
|
|
|
is easiest to simply collect everything at once and then return it bit
|
|
|
|
by bit. The first call will take (much) longer than otherwise, but the
|
|
|
|
amortized time needed is the same. */
|
|
|
|
|
libctf: remove ctf_malloc, ctf_free and ctf_strdup
These just get in the way of auditing for erroneous usage of strdup and
add a huge irregular surface of "ctf_malloc or malloc? ctf_free or free?
ctf_strdup or strdup?"
ctf_malloc and ctf_free usage has not reliably matched up for many
years, if ever, making the whole game pointless.
Go back to malloc, free, and strdup like everyone else: while we're at
it, fix a bunch of places where we weren't properly checking for OOM.
This changes the interface of ctf_cuname_set and ctf_parent_name_set,
which could strdup but could not return errors (like ENOMEM).
New in v4.
include/
* ctf-api.h (ctf_cuname_set): Can now fail, returning int.
(ctf_parent_name_set): Likewise.
libctf/
* ctf-impl.h (ctf_alloc): Remove.
(ctf_free): Likewise.
(ctf_strdup): Likewise.
* ctf-subr.c (ctf_alloc): Remove.
(ctf_free): Likewise.
* ctf-util.c (ctf_strdup): Remove.
* ctf-create.c (ctf_serialize): Use malloc, not ctf_alloc; free, not
ctf_free; strdup, not ctf_strdup.
(ctf_dtd_delete): Likewise.
(ctf_dvd_delete): Likewise.
(ctf_add_generic): Likewise.
(ctf_add_function): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_variable): Likewise.
(membadd): Likewise.
(ctf_compress_write): Likewise.
(ctf_write_mem): Likewise.
* ctf-decl.c (ctf_decl_push): Likewise.
(ctf_decl_fini): Likewise.
(ctf_decl_sprintf): Likewise. Check for OOM.
* ctf-dump.c (ctf_dump_append): Use malloc, not ctf_alloc; free, not
ctf_free; strdup, not ctf_strdup.
(ctf_dump_free): Likewise.
(ctf_dump): Likewise.
* ctf-open.c (upgrade_types_v1): Likewise.
(init_types): Likewise.
(ctf_file_close): Likewise.
(ctf_bufopen_internal): Likewise. Check for OOM.
(ctf_parent_name_set): Likewise: report the OOM to the caller.
(ctf_cuname_set): Likewise.
(ctf_import): Likewise.
* ctf-string.c (ctf_str_purge_atom_refs): Use malloc, not ctf_alloc;
free, not ctf_free; strdup, not ctf_strdup.
(ctf_str_free_atom): Likewise.
(ctf_str_create_atoms): Likewise.
(ctf_str_add_ref_internal): Likewise.
(ctf_str_remove_ref): Likewise.
(ctf_str_write_strtab): Likewise.
2019-09-17 13:54:23 +08:00
|
|
|
if ((*statep = malloc (sizeof (struct ctf_dump_state))) == NULL)
|
2019-04-24 18:41:00 +08:00
|
|
|
{
|
|
|
|
ctf_set_errno (fp, ENOMEM);
|
|
|
|
goto end;
|
|
|
|
}
|
|
|
|
state = *statep;
|
|
|
|
|
|
|
|
memset (state, 0, sizeof (struct ctf_dump_state));
|
|
|
|
state->cds_fp = fp;
|
|
|
|
state->cds_sect = sect;
|
|
|
|
|
|
|
|
switch (sect)
|
|
|
|
{
|
|
|
|
case CTF_SECT_HEADER:
|
2019-07-08 20:59:15 +08:00
|
|
|
ctf_dump_header (fp, state);
|
2019-04-24 18:41:00 +08:00
|
|
|
break;
|
|
|
|
case CTF_SECT_LABEL:
|
|
|
|
if (ctf_label_iter (fp, ctf_dump_label, state) < 0)
|
|
|
|
{
|
|
|
|
if (ctf_errno (fp) != ECTF_NOLABELDATA)
|
|
|
|
goto end; /* errno is set for us. */
|
|
|
|
ctf_set_errno (fp, 0);
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case CTF_SECT_OBJT:
|
|
|
|
if (ctf_dump_objts (fp, state) < 0)
|
|
|
|
goto end; /* errno is set for us. */
|
|
|
|
break;
|
|
|
|
case CTF_SECT_FUNC:
|
|
|
|
if (ctf_dump_funcs (fp, state) < 0)
|
|
|
|
goto end; /* errno is set for us. */
|
|
|
|
break;
|
|
|
|
case CTF_SECT_VAR:
|
|
|
|
if (ctf_variable_iter (fp, ctf_dump_var, state) < 0)
|
|
|
|
goto end; /* errno is set for us. */
|
|
|
|
break;
|
|
|
|
case CTF_SECT_TYPE:
|
2019-07-14 03:49:19 +08:00
|
|
|
if (ctf_type_iter_all (fp, ctf_dump_type, state) < 0)
|
2019-04-24 18:41:00 +08:00
|
|
|
goto end; /* errno is set for us. */
|
|
|
|
break;
|
|
|
|
case CTF_SECT_STR:
|
|
|
|
ctf_dump_str (fp, state);
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
ctf_set_errno (fp, ECTF_DUMPSECTUNKNOWN);
|
|
|
|
goto end;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
state = *statep;
|
|
|
|
|
|
|
|
if (state->cds_sect != sect)
|
|
|
|
{
|
|
|
|
ctf_set_errno (fp, ECTF_DUMPSECTCHANGED);
|
|
|
|
goto end;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (state->cds_current == NULL)
|
|
|
|
state->cds_current = ctf_list_next (&state->cds_items);
|
|
|
|
else
|
|
|
|
state->cds_current = ctf_list_next (state->cds_current);
|
|
|
|
|
|
|
|
if (state->cds_current == NULL)
|
|
|
|
goto end;
|
|
|
|
|
|
|
|
/* Hookery. There is some extra complexity to preserve linefeeds within each
|
|
|
|
item while removing linefeeds at the end. */
|
|
|
|
if (func)
|
|
|
|
{
|
|
|
|
size_t len;
|
|
|
|
|
|
|
|
str = NULL;
|
|
|
|
for (line = state->cds_current->cdi_item; line && *line; )
|
|
|
|
{
|
|
|
|
char *nline = line;
|
|
|
|
char *ret;
|
|
|
|
|
|
|
|
nline = strchr (line, '\n');
|
|
|
|
if (nline)
|
|
|
|
nline[0] = '\0';
|
|
|
|
|
|
|
|
ret = func (sect, line, arg);
|
2019-09-17 13:57:00 +08:00
|
|
|
str = str_append (str, ret);
|
|
|
|
str = str_append (str, "\n");
|
2019-04-24 18:41:00 +08:00
|
|
|
if (ret != line)
|
|
|
|
free (ret);
|
|
|
|
|
|
|
|
if (nline)
|
|
|
|
{
|
|
|
|
nline[0] = '\n';
|
|
|
|
nline++;
|
|
|
|
}
|
|
|
|
|
|
|
|
line = nline;
|
|
|
|
}
|
|
|
|
|
|
|
|
len = strlen (str);
|
|
|
|
|
|
|
|
if (str[len-1] == '\n')
|
|
|
|
str[len-1] = '\0';
|
|
|
|
}
|
|
|
|
else
|
2019-09-17 13:57:00 +08:00
|
|
|
{
|
|
|
|
str = strdup (state->cds_current->cdi_item);
|
|
|
|
if (!str)
|
|
|
|
{
|
|
|
|
ctf_set_errno (fp, ENOMEM);
|
|
|
|
return str;
|
|
|
|
}
|
|
|
|
}
|
2019-04-24 18:41:00 +08:00
|
|
|
|
|
|
|
ctf_set_errno (fp, 0);
|
|
|
|
return str;
|
|
|
|
|
|
|
|
end:
|
|
|
|
ctf_dump_free (state);
|
libctf: remove ctf_malloc, ctf_free and ctf_strdup
These just get in the way of auditing for erroneous usage of strdup and
add a huge irregular surface of "ctf_malloc or malloc? ctf_free or free?
ctf_strdup or strdup?"
ctf_malloc and ctf_free usage has not reliably matched up for many
years, if ever, making the whole game pointless.
Go back to malloc, free, and strdup like everyone else: while we're at
it, fix a bunch of places where we weren't properly checking for OOM.
This changes the interface of ctf_cuname_set and ctf_parent_name_set,
which could strdup but could not return errors (like ENOMEM).
New in v4.
include/
* ctf-api.h (ctf_cuname_set): Can now fail, returning int.
(ctf_parent_name_set): Likewise.
libctf/
* ctf-impl.h (ctf_alloc): Remove.
(ctf_free): Likewise.
(ctf_strdup): Likewise.
* ctf-subr.c (ctf_alloc): Remove.
(ctf_free): Likewise.
* ctf-util.c (ctf_strdup): Remove.
* ctf-create.c (ctf_serialize): Use malloc, not ctf_alloc; free, not
ctf_free; strdup, not ctf_strdup.
(ctf_dtd_delete): Likewise.
(ctf_dvd_delete): Likewise.
(ctf_add_generic): Likewise.
(ctf_add_function): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_variable): Likewise.
(membadd): Likewise.
(ctf_compress_write): Likewise.
(ctf_write_mem): Likewise.
* ctf-decl.c (ctf_decl_push): Likewise.
(ctf_decl_fini): Likewise.
(ctf_decl_sprintf): Likewise. Check for OOM.
* ctf-dump.c (ctf_dump_append): Use malloc, not ctf_alloc; free, not
ctf_free; strdup, not ctf_strdup.
(ctf_dump_free): Likewise.
(ctf_dump): Likewise.
* ctf-open.c (upgrade_types_v1): Likewise.
(init_types): Likewise.
(ctf_file_close): Likewise.
(ctf_bufopen_internal): Likewise. Check for OOM.
(ctf_parent_name_set): Likewise: report the OOM to the caller.
(ctf_cuname_set): Likewise.
(ctf_import): Likewise.
* ctf-string.c (ctf_str_purge_atom_refs): Use malloc, not ctf_alloc;
free, not ctf_free; strdup, not ctf_strdup.
(ctf_str_free_atom): Likewise.
(ctf_str_create_atoms): Likewise.
(ctf_str_add_ref_internal): Likewise.
(ctf_str_remove_ref): Likewise.
(ctf_str_write_strtab): Likewise.
2019-09-17 13:54:23 +08:00
|
|
|
free (state);
|
2019-04-24 18:41:00 +08:00
|
|
|
ctf_set_errno (fp, 0);
|
|
|
|
*statep = NULL;
|
|
|
|
return NULL;
|
|
|
|
}
|