binutils-gdb/gdb/gdbserver/lynx-low.c

778 lines
21 KiB
C
Raw Normal View History

/* Copyright (C) 2009-2019 Free Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
#include "server.h"
#include "target.h"
#include "lynx-low.h"
#include <limits.h>
#include <sys/ptrace.h>
#include <sys/piddef.h> /* Provides PIDGET, TIDGET, BUILDPID, etc. */
#include <unistd.h>
#include <sys/ioctl.h>
#include <sys/types.h>
Rename common to gdbsupport This is the next patch in the ongoing series to move gdbsever to the top level. This patch just renames the "common" directory. The idea is to do this move in two parts: first rename the directory (this patch), then move the directory to the top. This approach makes the patches a bit more tractable. I chose the name "gdbsupport" for the directory. However, as this patch was largely written by sed, we could pick a new name without too much difficulty. Tested by the buildbot. gdb/ChangeLog 2019-07-09 Tom Tromey <tom@tromey.com> * contrib/ari/gdb_ari.sh: Change common to gdbsupport. * configure: Rebuild. * configure.ac: Change common to gdbsupport. * gdbsupport: Rename from common. * acinclude.m4: Change common to gdbsupport. * Makefile.in (CONFIG_SRC_SUBDIR, COMMON_SFILES) (HFILES_NO_SRCDIR, stamp-version, ALLDEPFILES): Change common to gdbsupport. * aarch64-tdep.c, ada-lang.c, ada-lang.h, agent.c, alloc.c, amd64-darwin-tdep.c, amd64-dicos-tdep.c, amd64-fbsd-nat.c, amd64-fbsd-tdep.c, amd64-linux-nat.c, amd64-linux-tdep.c, amd64-nbsd-tdep.c, amd64-obsd-tdep.c, amd64-sol2-tdep.c, amd64-tdep.c, amd64-windows-tdep.c, arch-utils.c, arch/aarch64-insn.c, arch/aarch64.c, arch/aarch64.h, arch/amd64.c, arch/amd64.h, arch/arm-get-next-pcs.c, arch/arm-linux.c, arch/arm.c, arch/i386.c, arch/i386.h, arch/ppc-linux-common.c, arch/riscv.c, arch/riscv.h, arch/tic6x.c, arm-tdep.c, auto-load.c, auxv.c, ax-gdb.c, ax-general.c, ax.h, breakpoint.c, breakpoint.h, btrace.c, btrace.h, build-id.c, build-id.h, c-lang.h, charset.c, charset.h, cli/cli-cmds.c, cli/cli-cmds.h, cli/cli-decode.c, cli/cli-dump.c, cli/cli-option.h, cli/cli-script.c, coff-pe-read.c, command.h, compile/compile-c-support.c, compile/compile-c.h, compile/compile-cplus-symbols.c, compile/compile-cplus-types.c, compile/compile-cplus.h, compile/compile-loc2c.c, compile/compile.c, completer.c, completer.h, contrib/ari/gdb_ari.sh, corefile.c, corelow.c, cp-support.c, cp-support.h, cp-valprint.c, csky-tdep.c, ctf.c, darwin-nat.c, debug.c, defs.h, disasm-selftests.c, disasm.c, disasm.h, dtrace-probe.c, dwarf-index-cache.c, dwarf-index-cache.h, dwarf-index-write.c, dwarf2-frame.c, dwarf2expr.c, dwarf2loc.c, dwarf2read.c, event-loop.c, event-top.c, exceptions.c, exec.c, extension.h, fbsd-nat.c, features/aarch64-core.c, features/aarch64-fpu.c, features/aarch64-pauth.c, features/aarch64-sve.c, features/i386/32bit-avx.c, features/i386/32bit-avx512.c, features/i386/32bit-core.c, features/i386/32bit-linux.c, features/i386/32bit-mpx.c, features/i386/32bit-pkeys.c, features/i386/32bit-segments.c, features/i386/32bit-sse.c, features/i386/64bit-avx.c, features/i386/64bit-avx512.c, features/i386/64bit-core.c, features/i386/64bit-linux.c, features/i386/64bit-mpx.c, features/i386/64bit-pkeys.c, features/i386/64bit-segments.c, features/i386/64bit-sse.c, features/i386/x32-core.c, features/riscv/32bit-cpu.c, features/riscv/32bit-csr.c, features/riscv/32bit-fpu.c, features/riscv/64bit-cpu.c, features/riscv/64bit-csr.c, features/riscv/64bit-fpu.c, features/tic6x-c6xp.c, features/tic6x-core.c, features/tic6x-gp.c, filename-seen-cache.h, findcmd.c, findvar.c, fork-child.c, gcore.c, gdb_bfd.c, gdb_bfd.h, gdb_proc_service.h, gdb_regex.c, gdb_select.h, gdb_usleep.c, gdbarch-selftests.c, gdbthread.h, gdbtypes.h, gnu-nat.c, go32-nat.c, guile/guile.c, guile/scm-ports.c, guile/scm-safe-call.c, guile/scm-type.c, i386-fbsd-nat.c, i386-fbsd-tdep.c, i386-go32-tdep.c, i386-linux-nat.c, i386-linux-tdep.c, i386-tdep.c, i387-tdep.c, ia64-libunwind-tdep.c, ia64-linux-nat.c, inf-child.c, inf-ptrace.c, infcall.c, infcall.h, infcmd.c, inferior-iter.h, inferior.c, inferior.h, inflow.c, inflow.h, infrun.c, infrun.h, inline-frame.c, language.h, linespec.c, linux-fork.c, linux-nat.c, linux-tdep.c, linux-thread-db.c, location.c, machoread.c, macrotab.h, main.c, maint.c, maint.h, memattr.c, memrange.h, mi/mi-cmd-break.h, mi/mi-cmd-env.c, mi/mi-cmd-stack.c, mi/mi-cmd-var.c, mi/mi-interp.c, mi/mi-main.c, mi/mi-parse.h, minsyms.c, mips-linux-tdep.c, namespace.h, nat/aarch64-linux-hw-point.c, nat/aarch64-linux-hw-point.h, nat/aarch64-linux.c, nat/aarch64-sve-linux-ptrace.c, nat/amd64-linux-siginfo.c, nat/fork-inferior.c, nat/linux-btrace.c, nat/linux-btrace.h, nat/linux-namespaces.c, nat/linux-nat.h, nat/linux-osdata.c, nat/linux-personality.c, nat/linux-procfs.c, nat/linux-ptrace.c, nat/linux-ptrace.h, nat/linux-waitpid.c, nat/mips-linux-watch.c, nat/mips-linux-watch.h, nat/ppc-linux.c, nat/x86-dregs.c, nat/x86-dregs.h, nat/x86-linux-dregs.c, nat/x86-linux.c, nto-procfs.c, nto-tdep.c, objfile-flags.h, objfiles.c, objfiles.h, obsd-nat.c, observable.h, osdata.c, p-valprint.c, parse.c, parser-defs.h, ppc-linux-nat.c, printcmd.c, probe.c, proc-api.c, procfs.c, producer.c, progspace.h, psymtab.h, python/py-framefilter.c, python/py-inferior.c, python/py-ref.h, python/py-type.c, python/python.c, record-btrace.c, record-full.c, record.c, record.h, regcache-dump.c, regcache.c, regcache.h, remote-fileio.c, remote-fileio.h, remote-sim.c, remote.c, riscv-tdep.c, rs6000-aix-tdep.c, rust-exp.y, s12z-tdep.c, selftest-arch.c, ser-base.c, ser-event.c, ser-pipe.c, ser-tcp.c, ser-unix.c, skip.c, solib-aix.c, solib-target.c, solib.c, source-cache.c, source.c, source.h, sparc-nat.c, spu-linux-nat.c, stack.c, stap-probe.c, symfile-add-flags.h, symfile.c, symfile.h, symtab.c, symtab.h, target-descriptions.c, target-descriptions.h, target-memory.c, target.c, target.h, target/waitstatus.c, target/waitstatus.h, thread-iter.h, thread.c, tilegx-tdep.c, top.c, top.h, tracefile-tfile.c, tracefile.c, tracepoint.c, tracepoint.h, tui/tui-io.c, ui-file.c, ui-out.h, unittests/array-view-selftests.c, unittests/child-path-selftests.c, unittests/cli-utils-selftests.c, unittests/common-utils-selftests.c, unittests/copy_bitwise-selftests.c, unittests/environ-selftests.c, unittests/format_pieces-selftests.c, unittests/function-view-selftests.c, unittests/lookup_name_info-selftests.c, unittests/memory-map-selftests.c, unittests/memrange-selftests.c, unittests/mkdir-recursive-selftests.c, unittests/observable-selftests.c, unittests/offset-type-selftests.c, unittests/optional-selftests.c, unittests/parse-connection-spec-selftests.c, unittests/ptid-selftests.c, unittests/rsp-low-selftests.c, unittests/scoped_fd-selftests.c, unittests/scoped_mmap-selftests.c, unittests/scoped_restore-selftests.c, unittests/string_view-selftests.c, unittests/style-selftests.c, unittests/tracepoint-selftests.c, unittests/unpack-selftests.c, unittests/utils-selftests.c, unittests/xml-utils-selftests.c, utils.c, utils.h, valarith.c, valops.c, valprint.c, value.c, value.h, varobj.c, varobj.h, windows-nat.c, x86-linux-nat.c, xml-support.c, xml-support.h, xml-tdesc.h, xstormy16-tdep.c, xtensa-linux-nat.c, dwarf2read.h: Change common to gdbsupport. gdb/gdbserver/ChangeLog 2019-07-09 Tom Tromey <tom@tromey.com> * configure: Rebuild. * configure.ac: Change common to gdbsupport. * acinclude.m4: Change common to gdbsupport. * Makefile.in (SFILES, OBS, GDBREPLAY_OBS, IPA_OBJS) (version-generated.c, gdbsupport/%-ipa.o, gdbsupport/%.o): Change common to gdbsupport. * ax.c, event-loop.c, fork-child.c, gdb_proc_service.h, gdbreplay.c, gdbthread.h, hostio-errno.c, hostio.c, i387-fp.c, inferiors.c, inferiors.h, linux-aarch64-tdesc-selftest.c, linux-amd64-ipa.c, linux-i386-ipa.c, linux-low.c, linux-tic6x-low.c, linux-x86-low.c, linux-x86-tdesc-selftest.c, linux-x86-tdesc.c, lynx-i386-low.c, lynx-low.c, mem-break.h, nto-x86-low.c, regcache.c, regcache.h, remote-utils.c, server.c, server.h, spu-low.c, symbol.c, target.h, tdesc.c, tdesc.h, thread-db.c, tracepoint.c, win32-i386-low.c, win32-low.c: Change common to gdbsupport.
2019-05-06 10:29:24 +08:00
#include "gdbsupport/gdb_wait.h"
#include <signal.h>
Rename common to gdbsupport This is the next patch in the ongoing series to move gdbsever to the top level. This patch just renames the "common" directory. The idea is to do this move in two parts: first rename the directory (this patch), then move the directory to the top. This approach makes the patches a bit more tractable. I chose the name "gdbsupport" for the directory. However, as this patch was largely written by sed, we could pick a new name without too much difficulty. Tested by the buildbot. gdb/ChangeLog 2019-07-09 Tom Tromey <tom@tromey.com> * contrib/ari/gdb_ari.sh: Change common to gdbsupport. * configure: Rebuild. * configure.ac: Change common to gdbsupport. * gdbsupport: Rename from common. * acinclude.m4: Change common to gdbsupport. * Makefile.in (CONFIG_SRC_SUBDIR, COMMON_SFILES) (HFILES_NO_SRCDIR, stamp-version, ALLDEPFILES): Change common to gdbsupport. * aarch64-tdep.c, ada-lang.c, ada-lang.h, agent.c, alloc.c, amd64-darwin-tdep.c, amd64-dicos-tdep.c, amd64-fbsd-nat.c, amd64-fbsd-tdep.c, amd64-linux-nat.c, amd64-linux-tdep.c, amd64-nbsd-tdep.c, amd64-obsd-tdep.c, amd64-sol2-tdep.c, amd64-tdep.c, amd64-windows-tdep.c, arch-utils.c, arch/aarch64-insn.c, arch/aarch64.c, arch/aarch64.h, arch/amd64.c, arch/amd64.h, arch/arm-get-next-pcs.c, arch/arm-linux.c, arch/arm.c, arch/i386.c, arch/i386.h, arch/ppc-linux-common.c, arch/riscv.c, arch/riscv.h, arch/tic6x.c, arm-tdep.c, auto-load.c, auxv.c, ax-gdb.c, ax-general.c, ax.h, breakpoint.c, breakpoint.h, btrace.c, btrace.h, build-id.c, build-id.h, c-lang.h, charset.c, charset.h, cli/cli-cmds.c, cli/cli-cmds.h, cli/cli-decode.c, cli/cli-dump.c, cli/cli-option.h, cli/cli-script.c, coff-pe-read.c, command.h, compile/compile-c-support.c, compile/compile-c.h, compile/compile-cplus-symbols.c, compile/compile-cplus-types.c, compile/compile-cplus.h, compile/compile-loc2c.c, compile/compile.c, completer.c, completer.h, contrib/ari/gdb_ari.sh, corefile.c, corelow.c, cp-support.c, cp-support.h, cp-valprint.c, csky-tdep.c, ctf.c, darwin-nat.c, debug.c, defs.h, disasm-selftests.c, disasm.c, disasm.h, dtrace-probe.c, dwarf-index-cache.c, dwarf-index-cache.h, dwarf-index-write.c, dwarf2-frame.c, dwarf2expr.c, dwarf2loc.c, dwarf2read.c, event-loop.c, event-top.c, exceptions.c, exec.c, extension.h, fbsd-nat.c, features/aarch64-core.c, features/aarch64-fpu.c, features/aarch64-pauth.c, features/aarch64-sve.c, features/i386/32bit-avx.c, features/i386/32bit-avx512.c, features/i386/32bit-core.c, features/i386/32bit-linux.c, features/i386/32bit-mpx.c, features/i386/32bit-pkeys.c, features/i386/32bit-segments.c, features/i386/32bit-sse.c, features/i386/64bit-avx.c, features/i386/64bit-avx512.c, features/i386/64bit-core.c, features/i386/64bit-linux.c, features/i386/64bit-mpx.c, features/i386/64bit-pkeys.c, features/i386/64bit-segments.c, features/i386/64bit-sse.c, features/i386/x32-core.c, features/riscv/32bit-cpu.c, features/riscv/32bit-csr.c, features/riscv/32bit-fpu.c, features/riscv/64bit-cpu.c, features/riscv/64bit-csr.c, features/riscv/64bit-fpu.c, features/tic6x-c6xp.c, features/tic6x-core.c, features/tic6x-gp.c, filename-seen-cache.h, findcmd.c, findvar.c, fork-child.c, gcore.c, gdb_bfd.c, gdb_bfd.h, gdb_proc_service.h, gdb_regex.c, gdb_select.h, gdb_usleep.c, gdbarch-selftests.c, gdbthread.h, gdbtypes.h, gnu-nat.c, go32-nat.c, guile/guile.c, guile/scm-ports.c, guile/scm-safe-call.c, guile/scm-type.c, i386-fbsd-nat.c, i386-fbsd-tdep.c, i386-go32-tdep.c, i386-linux-nat.c, i386-linux-tdep.c, i386-tdep.c, i387-tdep.c, ia64-libunwind-tdep.c, ia64-linux-nat.c, inf-child.c, inf-ptrace.c, infcall.c, infcall.h, infcmd.c, inferior-iter.h, inferior.c, inferior.h, inflow.c, inflow.h, infrun.c, infrun.h, inline-frame.c, language.h, linespec.c, linux-fork.c, linux-nat.c, linux-tdep.c, linux-thread-db.c, location.c, machoread.c, macrotab.h, main.c, maint.c, maint.h, memattr.c, memrange.h, mi/mi-cmd-break.h, mi/mi-cmd-env.c, mi/mi-cmd-stack.c, mi/mi-cmd-var.c, mi/mi-interp.c, mi/mi-main.c, mi/mi-parse.h, minsyms.c, mips-linux-tdep.c, namespace.h, nat/aarch64-linux-hw-point.c, nat/aarch64-linux-hw-point.h, nat/aarch64-linux.c, nat/aarch64-sve-linux-ptrace.c, nat/amd64-linux-siginfo.c, nat/fork-inferior.c, nat/linux-btrace.c, nat/linux-btrace.h, nat/linux-namespaces.c, nat/linux-nat.h, nat/linux-osdata.c, nat/linux-personality.c, nat/linux-procfs.c, nat/linux-ptrace.c, nat/linux-ptrace.h, nat/linux-waitpid.c, nat/mips-linux-watch.c, nat/mips-linux-watch.h, nat/ppc-linux.c, nat/x86-dregs.c, nat/x86-dregs.h, nat/x86-linux-dregs.c, nat/x86-linux.c, nto-procfs.c, nto-tdep.c, objfile-flags.h, objfiles.c, objfiles.h, obsd-nat.c, observable.h, osdata.c, p-valprint.c, parse.c, parser-defs.h, ppc-linux-nat.c, printcmd.c, probe.c, proc-api.c, procfs.c, producer.c, progspace.h, psymtab.h, python/py-framefilter.c, python/py-inferior.c, python/py-ref.h, python/py-type.c, python/python.c, record-btrace.c, record-full.c, record.c, record.h, regcache-dump.c, regcache.c, regcache.h, remote-fileio.c, remote-fileio.h, remote-sim.c, remote.c, riscv-tdep.c, rs6000-aix-tdep.c, rust-exp.y, s12z-tdep.c, selftest-arch.c, ser-base.c, ser-event.c, ser-pipe.c, ser-tcp.c, ser-unix.c, skip.c, solib-aix.c, solib-target.c, solib.c, source-cache.c, source.c, source.h, sparc-nat.c, spu-linux-nat.c, stack.c, stap-probe.c, symfile-add-flags.h, symfile.c, symfile.h, symtab.c, symtab.h, target-descriptions.c, target-descriptions.h, target-memory.c, target.c, target.h, target/waitstatus.c, target/waitstatus.h, thread-iter.h, thread.c, tilegx-tdep.c, top.c, top.h, tracefile-tfile.c, tracefile.c, tracepoint.c, tracepoint.h, tui/tui-io.c, ui-file.c, ui-out.h, unittests/array-view-selftests.c, unittests/child-path-selftests.c, unittests/cli-utils-selftests.c, unittests/common-utils-selftests.c, unittests/copy_bitwise-selftests.c, unittests/environ-selftests.c, unittests/format_pieces-selftests.c, unittests/function-view-selftests.c, unittests/lookup_name_info-selftests.c, unittests/memory-map-selftests.c, unittests/memrange-selftests.c, unittests/mkdir-recursive-selftests.c, unittests/observable-selftests.c, unittests/offset-type-selftests.c, unittests/optional-selftests.c, unittests/parse-connection-spec-selftests.c, unittests/ptid-selftests.c, unittests/rsp-low-selftests.c, unittests/scoped_fd-selftests.c, unittests/scoped_mmap-selftests.c, unittests/scoped_restore-selftests.c, unittests/string_view-selftests.c, unittests/style-selftests.c, unittests/tracepoint-selftests.c, unittests/unpack-selftests.c, unittests/utils-selftests.c, unittests/xml-utils-selftests.c, utils.c, utils.h, valarith.c, valops.c, valprint.c, value.c, value.h, varobj.c, varobj.h, windows-nat.c, x86-linux-nat.c, xml-support.c, xml-support.h, xml-tdesc.h, xstormy16-tdep.c, xtensa-linux-nat.c, dwarf2read.h: Change common to gdbsupport. gdb/gdbserver/ChangeLog 2019-07-09 Tom Tromey <tom@tromey.com> * configure: Rebuild. * configure.ac: Change common to gdbsupport. * acinclude.m4: Change common to gdbsupport. * Makefile.in (SFILES, OBS, GDBREPLAY_OBS, IPA_OBJS) (version-generated.c, gdbsupport/%-ipa.o, gdbsupport/%.o): Change common to gdbsupport. * ax.c, event-loop.c, fork-child.c, gdb_proc_service.h, gdbreplay.c, gdbthread.h, hostio-errno.c, hostio.c, i387-fp.c, inferiors.c, inferiors.h, linux-aarch64-tdesc-selftest.c, linux-amd64-ipa.c, linux-i386-ipa.c, linux-low.c, linux-tic6x-low.c, linux-x86-low.c, linux-x86-tdesc-selftest.c, linux-x86-tdesc.c, lynx-i386-low.c, lynx-low.c, mem-break.h, nto-x86-low.c, regcache.c, regcache.h, remote-utils.c, server.c, server.h, spu-low.c, symbol.c, target.h, tdesc.c, tdesc.h, thread-db.c, tracepoint.c, win32-i386-low.c, win32-low.c: Change common to gdbsupport.
2019-05-06 10:29:24 +08:00
#include "gdbsupport/filestuff.h"
#include "gdbsupport/common-inferior.h"
Share fork_inferior et al with gdbserver This is the most important (and the biggest, sorry) patch of the series. It moves fork_inferior from gdb/fork-child.c to nat/fork-inferior.c and makes all the necessary adjustments to both GDB and gdbserver to make sure everything works OK. There is no "most important change" with this patch; all changes are made in a progressive way, making sure that gdbserver had the necessary features while not breaking GDB at the same time. I decided to go ahead and implement a partial support for starting the inferior with a shell on gdbserver, although the full feature comes in the next patch. The user won't have the option to disable the startup-with-shell, and also won't be able to change which shell gdbserver will use (other than setting the $SHELL environment variable, that is). Everything is working as expected, and no regressions were present during the tests. gdb/ChangeLog: 2017-06-07 Sergio Durigan Junior <sergiodj@redhat.com> Pedro Alves <palves@redhat.com> * Makefile.in (HFILES_NO_SRCDIR): Add "common/common-inferior.h" and "nat/fork-inferior.h". * common/common-inferior.h: New file, with contents from "gdb/inferior.h". * commom/common-utils.c: Include "common-utils.h". (stringify_argv): New function. * common/common-utils.h (stringify_argv): New prototype. * configure.nat: Add "fork-inferior.o" as a dependency for "*linux*", "fbsd*" and "nbsd*" hosts. * corefile.c (get_exec_file): Update comment. * darwin-nat.c (darwin_ptrace_him): Call "gdb_startup_inferior" instead of "startup_inferior". (darwin_create_inferior): Call "add_thread_silent" after "fork_inferior". * fork-child.c: Cleanup unnecessary includes. (SHELL_FILE): Move to "common/common-fork-child.c". (environ): Likewise. (exec_wrapper): Initialize. (get_exec_wrapper): New function. (breakup_args): Move to "common/common-fork-child.c"; rename to "breakup_args_for_exec". (escape_bang_in_quoted_argument): Move to "common/common-fork-child.c". (saved_ui): New variable. (prefork_hook): New function. (postfork_hook): Likewise. (postfork_child_hook): Likewise. (gdb_startup_inferior): Likewise. (fork_inferior): Move to "common/common-fork-child.c". Update function to support gdbserver. (startup_inferior): Likewise. * gdbcore.h (get_exec_file): Remove declaration. * gnu-nat.c (gnu_create_inferior): Call "gdb_startup_inferior" instead of "startup_inferior". Call "add_thread_silent" after "fork_inferior". * inf-ptrace.c: Include "nat/fork-inferior.h" and "utils.h". (inf_ptrace_create_inferior): Call "gdb_startup_inferior" instead of "startup_inferior". Call "add_thread_silent" after "fork_inferior". * inferior.h: Include "common-inferior.h". (trace_start_error): Move to "common/common-utils.h". (trace_start_error_with_name): Likewise. (fork_inferior): Move prototype to "nat/fork-inferior.h". (startup_inferior): Likewise. (gdb_startup_inferior): New prototype. * nat/fork-inferior.c: New file, with contents from "fork-child.c". * nat/fork-inferior.h: New file. * procfs.c (procfs_init_inferior): Call "gdb_startup_inferior" instead of "startup_inferior". Call "add_thread_silent" after "fork_inferior". * target.h (target_terminal_init): Move prototype to "target/target.h". (target_terminal_inferior): Likewise. (target_terminal_ours): Likewise. * target/target.h (target_terminal_init): New prototype, moved from "target.h". (target_terminal_inferior): Likewise. (target_terminal_ours): Likewise. * utils.c (gdb_flush_out_err): New function. gdb/gdbserver/ChangeLog: 2017-06-07 Sergio Durigan Junior <sergiodj@redhat.com> Pedro Alves <palves@redhat.com> * Makefile.in (SFILES): Add "nat/fork-inferior.o". * configure: Regenerate. * configure.srv (srv_linux_obj): Add "fork-child.o" and "fork-inferior.o". (i[34567]86-*-lynxos*): Likewise. (spu*-*-*): Likewise. * fork-child.c: New file. * linux-low.c: Include "common-inferior.h", "nat/fork-inferior.h" and "environ.h". (linux_ptrace_fun): New function. (linux_create_inferior): Adjust function prototype to reflect change on "target.h". Adjust function code to use "fork_inferior". (linux_request_interrupt): Delete "signal_pid". * lynx-low.c: Include "common-inferior.h" and "nat/fork-inferior.h". (lynx_ptrace_fun): New function. (lynx_create_inferior): Adjust function prototype to reflect change on "target.h". Adjust function code to use "fork_inferior". * nto-low.c (nto_create_inferior): Adjust function prototype and code to reflect change on "target.h". Update comments. * server.c: Include "common-inferior.h", "nat/fork-inferior.h", "common-terminal.h" and "environ.h". (terminal_fd): Moved to fork-child.c. (old_foreground_pgrp): Likewise. (restore_old_foreground_pgrp): Likewise. (last_status): Make it global. (last_ptid): Likewise. (our_environ): New variable. (startup_with_shell): Likewise. (program_name): Likewise. (program_argv): Rename to... (program_args): ...this. (wrapper_argv): New variable. (start_inferior): Delete function. (get_exec_wrapper): New function. (get_exec_file): Likewise. (get_environ): Likewise. (prefork_hook): Likewise. (post_fork_inferior): Likewise. (postfork_hook): Likewise. (postfork_child_hook): Likewise. (handle_v_run): Update code to deal with arguments coming from the remote host. Update calls from "start_inferior" to "create_inferior". (captured_main): Likewise. Initialize environment variable. Call "have_job_control". * server.h (post_fork_inferior): New prototype. (get_environ): Likewise. (last_status): Declare. (last_ptid): Likewise. (signal_pid): Likewise. * spu-low.c: Include "common-inferior.h" and "nat/fork-inferior.h". (spu_ptrace_fun): New function. (spu_create_inferior): Adjust function prototype to reflect change on "target.h". Adjust function code to use "fork_inferior". * target.c (target_terminal_init): New function. (target_terminal_inferior): Likewise. (target_terminal_ours): Likewise. * target.h: Include <vector>. (struct target_ops) <create_inferior>: Update prototype. (create_inferior): Update macro. * utils.c (gdb_flush_out_err): New function. * win32-low.c (win32_create_inferior): Adjust function prototype and code to reflect change on "target.h". gdb/testsuite/ChangeLog: 2017-06-07 Sergio Durigan Junior <sergiodj@redhat.com> * gdb.server/non-existing-program.exp: Update regex in order to reflect the fact that gdbserver is now using fork_inferior (with a shell) to startup the inferior.
2016-12-23 10:11:11 +08:00
#include "nat/fork-inferior.h"
int using_threads = 1;
[GDBserver] Multi-process + multi-arch This patch makes GDBserver support multi-process + biarch. Currently, if you're debugging more than one process at once with a single gdbserver (in extended-remote mode), then all processes must have the same architecture (e.g., 64-bit vs 32-bit). Otherwise, you see this: Added inferior 2 [Switching to inferior 2 [<null>] (<noexec>)] Reading symbols from /home/pedro/gdb/tests/main32...done. Temporary breakpoint 2 at 0x4004cf: main. (2 locations) Starting program: /home/pedro/gdb/tests/main32 warning: Selected architecture i386 is not compatible with reported target architecture i386:x86-64 warning: Architecture rejected target-supplied description Remote 'g' packet reply is too long: 000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000090cfffff0000000000000000000000000000000000000000000000000000000000020000000000000000000000000000000000000000000000000000000000000000000000000000b042f7460000000000020000230000002b0000002b0000002b000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000007f03000000000000ffff0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000801f00003b0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 ... etc, etc ... Even though the process was running a 32-bit program, GDBserver sent back to GDB a register set in 64-bit layout. A patch (http://sourceware.org/ml/gdb-patches/2012-11/msg00228.html) a while ago made GDB track a target_gdbarch per inferior, and as consequence, fetch a target description per-inferior. This patch is the GDBserver counterpart, that makes GDBserver keep track of each process'es XML target description and register layout. So in the example above, GDBserver will send the correct register set in 32-bit layout to GDB. A new "struct target_desc" object (tdesc for short) is added, that holds the target description and register layout information about each process. Each `struct process_info' holds a pointer to a target description. The regcache also gains a pointer to a target description, mainly for convenience, and parallel with GDB (and possible future support for programs that flip processor modes). The low target's arch_setup routines are responsible for setting the process'es correct tdesc. This isn't that much different to how things were done before, except that instead of detecting the inferior process'es architecture and calling the corresponding init_registers_FOO routine, which would change the regcache layout globals and recreate the threads' regcaches, the regcache.c globals are gone, and the init_registers_$BAR routines now each initialize a separate global struct target_desc object (one for each arch variant GDBserver supports), and so all the init_registers_$BAR routines that are built into GDBserver are called early at GDBserver startup time (similarly to how GDB handles its built-in target descriptions), and then the arch_setup routine is responsible for making process_info->tdesc point to one of these target description globals. The regcache module is all parameterized to get the regcache's layout from the tdesc object instead of the old register_bytes, etc. globals. The threads' regcaches are now created lazily. The old scheme where we created each of them when we added a new thread doesn't work anymore, because we add the main thread/lwp before we see it stop for the first time, and it is only when we see the thread stop for the first time that we have a chance of determining the inferior's architecture (through the_low_target.arch_setup). Therefore when we add the main thread we don't know which architecture/tdesc its regcache should have. This patch makes the gdb.multi/multi-arch.exp test now pass against (extended-remote) GDBserver. It currently fails, without this patch. The IPA also uses the regcache, so it gains a new global struct target_desc pointer, which points at the description of the process it is loaded in. Re. the linux-low.c & friends changes. Since the register map etc. may differ between processes (64-bit vs 32-bit) etc., the linux_target_ops num_regs, regmap and regset_bitmap data fields are no longer sufficient. A new method is added in their place that returns a pointer to a new struct that includes all info linux-low.c needs to access registers of the current inferior. The patch/discussion that originally introduced linux-low.c:disabled_regsets mentions that the disabled_regsets set may be different per mode (in a biarch setup), and indeed that is cleared whenever we start a new (first) inferior, so that global is moved as well behind the new `struct regs_info'. On the x86 side: I simply replaced the i387-fp.c:num_xmm_registers global with a check for 64-bit or 32-bit process, which is equivalent to how the global was set. This avoided coming up with some more general mechanism that would work for all targets that use this module (GNU/Linux, Windows, etc.). Tested: GNU/Linux IA64 GNU/Linux MIPS64 GNU/Linux PowerPC (Fedora 16) GNU/Linux s390x (Fedora 16) GNU/Linux sparc64 (Debian) GNU/Linux x86_64, -m64 and -m32 (Fedora 17) Cross built, and smoke tested: i686-w64-mingw32, under Wine. GNU/Linux TI C6x, by Yao Qi. Cross built but otherwise not tested: aarch64-linux-gnu arm-linux-gnu m68k-linux nios2-linux-gnu sh-linux-gnu spu tilegx-unknown-linux-gnu Completely untested: GNU/Linux Blackfin GNU/Linux CRIS GNU/Linux CRISv32 GNU/Linux TI Xtensa GNU/Linux M32R LynxOS QNX NTO gdb/gdbserver/ 2013-06-07 Pedro Alves <palves@redhat.com> * Makefile.in (OBS): Add tdesc.o. (IPA_OBJS): Add tdesc-ipa.o. (tdesc-ipa.o): New rule. * ax.c (gdb_eval_agent_expr): Adjust register_size call to new interface. * linux-low.c (new_inferior): Delete. (disabled_regsets, num_regsets): Delete. (linux_add_process): Adjust to set the new per-process new_inferior flag. (linux_detach_one_lwp): Adjust to call regcache_invalidate_thread. (linux_wait_for_lwp): Adjust. Only call arch_setup if the event was a stop. When calling arch_setup, switch the current inferior to the thread that got an event. (linux_resume_one_lwp): Adjust to call regcache_invalidate_thread. (regsets_fetch_inferior_registers) (regsets_store_inferior_registers): New regsets_info parameter. Adjust to use it. (linux_register_in_regsets): New regs_info parameter. Adjust to use it. (register_addr, fetch_register, store_register): New usrregs_info parameter. Adjust to use it. (usr_fetch_inferior_registers, usr_store_inferior_registers): New parameter regs_info. Adjust to use it. (linux_fetch_registers): Get the current inferior's regs_info, and adjust to use it. (linux_store_registers): Ditto. [HAVE_LINUX_REGSETS] (initialize_regsets_info): New. (initialize_low): Don't initialize the target_regsets here. Call initialize_low_arch. * linux-low.h (target_regsets): Delete declaration. (struct regsets_info): New. (struct usrregs_info): New. (struct regs_info): New. (struct process_info_private) <new_inferior>: New field. (struct linux_target_ops): Delete the num_regs, regmap, and regset_bitmap fields. New field regs_info. [HAVE_LINUX_REGSETS] (initialize_regsets_info): Declare. * i387-fp.c (num_xmm_registers): Delete. (i387_cache_to_fsave, i387_fsave_to_cache): Adjust find_regno calls to new interface. (i387_cache_to_fxsave, i387_cache_to_xsave, i387_fxsave_to_cache) (i387_xsave_to_cache): Adjust find_regno calls to new interface. Infer the number of xmm registers from the regcache's target description. * i387-fp.h (num_xmm_registers): Delete. * inferiors.c (add_thread): Don't install the thread's regcache here. * proc-service.c (gregset_info): Fetch the current inferior's regs_info. Adjust to use it. * regcache.c: Include tdesc.h. (register_bytes, reg_defs, num_registers) (gdbserver_expedite_regs): Delete. (get_thread_regcache): If the thread doesn't have a regcache yet, create one, instead of aborting gdbserver. (regcache_invalidate_one): Rename to ... (regcache_invalidate_thread): ... this. (regcache_invalidate_one): New. (regcache_invalidate): Only invalidate registers of the current process. (init_register_cache): Add target_desc parameter, and use it. (new_register_cache): Ditto. Assert the target description has a non zero registers_size. (regcache_cpy): Add assertions. Adjust. (realloc_register_cache, set_register_cache): Delete. (registers_to_string, registers_from_string): Adjust. (find_register_by_name, find_regno, find_register_by_number) (register_cache_size): Add target_desc parameter, and use it. (free_register_cache_thread, free_register_cache_thread_one) (regcache_release, register_cache_size): New. (register_size): Add target_desc parameter, and use it. (register_data, supply_register, supply_register_zeroed) (supply_regblock, supply_register_by_name, collect_register) (collect_register_as_string, collect_register_by_name): Adjust. * regcache.h (struct target_desc): Forward declare. (struct regcache) <tdesc>: New field. (init_register_cache, new_register_cache): Add target_desc parameter. (regcache_invalidate_thread): Declare. (regcache_invalidate_one): Delete declaration. (regcache_release): Declare. (find_register_by_number, register_cache_size, register_size) (find_regno): Add target_desc parameter. (gdbserver_expedite_regs, gdbserver_xmltarget): Delete declarations. * remote-utils.c: Include tdesc.h. (outreg, prepare_resume_reply): Adjust. * server.c: Include tdesc.h. (gdbserver_xmltarget): Delete declaration. (get_features_xml, process_serial_event): Adjust. * server.h [IN_PROCESS_AGENT] (struct target_desc): Forward declare. (struct process_info) <tdesc>: New field. (ipa_tdesc): Declare. * tdesc.c: New file. * tdesc.h: New file. * tracepoint.c: Include tdesc.h. [IN_PROCESS_AGENT] (ipa_tdesc): Define. (get_context_regcache): Adjust to pass ipa_tdesc down. (do_action_at_tracepoint): Adjust to get the register cache size from the context regcache's description. (traceframe_walk_blocks): Adjust to get the register cache size from the current trace frame's description. (traceframe_get_pc): Adjust to get current trace frame's description and pass it down. (gdb_collect): Adjust to get the register cache size from the IPA's description. * linux-amd64-ipa.c (tdesc_amd64_linux): Declare. (gdbserver_xmltarget): Delete. (initialize_low_tracepoint): Set the ipa's target description. * linux-i386-ipa.c (tdesc_i386_linux): Declare. (initialize_low_tracepoint): Set the ipa's target description. * linux-x86-low.c: Include tdesc.h. [__x86_64__] (is_64bit_tdesc): New. (ps_get_thread_area, x86_get_thread_area): Use it. (i386_cannot_store_register): Rename to ... (x86_cannot_store_register): ... this. Use is_64bit_tdesc. (i386_cannot_fetch_register): Rename to ... (x86_cannot_fetch_register): ... this. Use is_64bit_tdesc. (x86_fill_gregset, x86_store_gregset): Adjust register_size calls to new interface. (target_regsets): Rename to ... (x86_regsets): ... this. (x86_get_pc, x86_set_pc): Adjust register_size calls to new interface. (x86_siginfo_fixup): Use is_64bit_tdesc. [__x86_64__] (tdesc_amd64_linux, tdesc_amd64_avx_linux) (tdesc_x32_avx_linux, tdesc_x32_linux) (tdesc_i386_linux, tdesc_i386_mmx_linux, tdesc_i386_avx_linux): Declare. (x86_linux_update_xmltarget): Delete. (I386_LINUX_XSAVE_XCR0_OFFSET): Define. (have_ptrace_getfpxregs, have_ptrace_getregset): New. (AMD64_LINUX_USER64_CS): New. (x86_linux_read_description): New, based on x86_linux_update_xmltarget. (same_process_callback): New. (x86_arch_setup_process_callback): New. (x86_linux_update_xmltarget): New. (x86_regsets_info): New. (amd64_linux_regs_info): New. (i386_linux_usrregs_info): New. (i386_linux_regs_info): New. (x86_linux_regs_info): New. (x86_arch_setup): Reimplement. (x86_install_fast_tracepoint_jump_pad): Use is_64bit_tdesc. (x86_emit_ops): Ditto. (the_low_target): Adjust. Install x86_linux_regs_info, x86_cannot_fetch_register, and x86_cannot_store_register. (initialize_low_arch): New. * linux-ia64-low.c (tdesc_ia64): Declare. (ia64_fetch_register): Adjust. (ia64_usrregs_info, regs_info): New globals. (ia64_regs_info): New function. (the_low_target): Adjust. (initialize_low_arch): New function. * linux-sparc-low.c (tdesc_sparc64): Declare. (sparc_fill_gregset_to_stack, sparc_store_gregset_from_stack): Adjust. (sparc_arch_setup): New function. (sparc_regsets_info, sparc_usrregs_info, regs_info): New globals. (the_low_target): Adjust. (initialize_low_arch): New function. * linux-ppc-low.c (tdesc_powerpc_32l, tdesc_powerpc_altivec32l) (tdesc_powerpc_cell32l, tdesc_powerpc_vsx32l) (tdesc_powerpc_isa205_32l, tdesc_powerpc_isa205_altivec32l) (tdesc_powerpc_isa205_vsx32l, tdesc_powerpc_e500l) (tdesc_powerpc_64l, tdesc_powerpc_altivec64l) (tdesc_powerpc_cell64l, tdesc_powerpc_vsx64l) (tdesc_powerpc_isa205_64l, tdesc_powerpc_isa205_altivec64l) (tdesc_powerpc_isa205_vsx64l): Declare. (ppc_cannot_store_register, ppc_collect_ptrace_register) (ppc_supply_ptrace_register, parse_spufs_run, ppc_get_pc) (ppc_set_pc, ppc_get_hwcap): Adjust. (ppc_usrregs_info): Forward declare. (!__powerpc64__) ppc_regmap_adjusted: New global. (ppc_arch_setup): Adjust to the current process'es target description. (ppc_fill_vsxregset, ppc_store_vsxregset, ppc_fill_vrregset) (ppc_store_vrregset, ppc_fill_evrregset, ppc_store_evrregse) (ppc_store_evrregset): Adjust. (target_regsets): Rename to ... (ppc_regsets): ... this, and make static. (ppc_usrregs_info, ppc_regsets_info, regs_info): New globals. (ppc_regs_info): New function. (the_low_target): Adjust. (initialize_low_arch): New function. * linux-s390-low.c (tdesc_s390_linux32, tdesc_s390_linux32v1) (tdesc_s390_linux32v2, tdesc_s390_linux64, tdesc_s390_linux64v1) (tdesc_s390_linux64v2, tdesc_s390x_linux64, tdesc_s390x_linux64v1) (tdesc_s390x_linux64v2): Declare. (s390_collect_ptrace_register, s390_supply_ptrace_register) (s390_fill_gregset, s390_store_last_break): Adjust. (target_regsets): Rename to ... (s390_regsets): ... this, and make static. (s390_get_pc, s390_set_pc): Adjust. (s390_get_hwcap): New target_desc parameter, and use it. [__s390x__] (have_hwcap_s390_high_gprs): New global. (s390_arch_setup): Adjust to set the current process'es target description. Don't adjust the regmap. (s390_usrregs_info, s390_regsets_info, regs_info): New globals. [__s390x__] (s390_usrregs_info_3264, s390_regsets_info_3264) (regs_info_3264): New globals. (s390_regs_info): New function. (the_low_target): Adjust. (initialize_low_arch): New function. * linux-mips-low.c (tdesc_mips_linux, tdesc_mips_dsp_linux) (tdesc_mips64_linux, tdesc_mips64_dsp_linux): Declare. [__mips64] (init_registers_mips_linux) (init_registers_mips_dsp_linux): Delete defines. [__mips64] (tdesc_mips_linux, tdesc_mips_dsp_linux): New defines. (have_dsp): New global. (mips_read_description): New, based on mips_arch_setup. (mips_arch_setup): Reimplement. (get_usrregs_info): New function. (mips_cannot_fetch_register, mips_cannot_store_register) (mips_get_pc, mips_set_pc, mips_fill_gregset, mips_store_gregset) (mips_fill_fpregset, mips_store_fpregset): Adjust. (target_regsets): Rename to ... (mips_regsets): ... this, and make static. (mips_regsets_info, mips_dsp_usrregs_info, mips_usrregs_info) (dsp_regs_info, regs_info): New globals. (mips_regs_info): New function. (the_low_target): Adjust. (initialize_low_arch): New function. * linux-arm-low.c (tdesc_arm, tdesc_arm_with_iwmmxt) (tdesc_arm_with_vfpv2, tdesc_arm_with_vfpv3, tdesc_arm_with_neon): Declare. (arm_fill_vfpregset, arm_store_vfpregset): Adjust. (arm_read_description): New, with bits factored from arm_arch_setup. (arm_arch_setup): Reimplement. (target_regsets): Rename to ... (arm_regsets): ... this, and make static. (arm_regsets_info, arm_usrregs_info, regs_info): New globals. (arm_regs_info): New function. (the_low_target): Adjust. (initialize_low_arch): New function. * linux-m68k-low.c (tdesc_m68k): Declare. (target_regsets): Rename to ... (m68k_regsets): ... this, and make static. (m68k_regsets_info, m68k_usrregs_info, regs_info): New globals. (m68k_regs_info): New function. (m68k_arch_setup): New function. (the_low_target): Adjust. (initialize_low_arch): New function. * linux-sh-low.c (tdesc_sharch): Declare. (target_regsets): Rename to ... (sh_regsets): ... this, and make static. (sh_regsets_info, sh_usrregs_info, regs_info): New globals. (sh_regs_info, sh_arch_setup): New functions. (the_low_target): Adjust. (initialize_low_arch): New function. * linux-bfin-low.c (tdesc_bfin): Declare. (bfin_arch_setup): New function. (bfin_usrregs_info, regs_info): New globals. (bfin_regs_info): New function. (the_low_target): Adjust. (initialize_low_arch): New function. * linux-cris-low.c (tdesc_cris): Declare. (cris_arch_setup): New function. (cris_usrregs_info, regs_info): New globals. (cris_regs_info): New function. (the_low_target): Adjust. (initialize_low_arch): New function. * linux-cris-low.c (tdesc_crisv32): Declare. (cris_arch_setup): New function. (cris_regsets_info, cris_usrregs_info, regs_info): New globals. (cris_regs_info): New function. (the_low_target): Adjust. (initialize_low_arch): New function. * linux-m32r-low.c (tdesc_m32r): Declare. (m32r_arch_setup): New function. (m32r_usrregs_info, regs_info): New globals. (m32r_regs_info): Adjust. (initialize_low_arch): New function. * linux-tic6x-low.c (tdesc_tic6x_c64xp_linux) (tdesc_tic6x_c64x_linux, tdesc_tic6x_c62x_linux): Declare. (tic6x_usrregs_info): Forward declare. (tic6x_read_description): New function, based on ... (tic6x_arch_setup): ... this. Reimplement. (target_regsets): Rename to ... (tic6x_regsets): ... this, and make static. (tic6x_regsets_info, tic6x_usrregs_info, regs_info): New globals. (tic6x_regs_info): New function. (the_low_target): Adjust. (initialize_low_arch): New function. * linux-xtensa-low.c (tdesc_xtensa): Declare. (xtensa_fill_gregset, xtensa_store_gregset): Adjust. (target_regsets): Rename to ... (xtensa_regsets): ... this, and make static. (xtensa_regsets_info, xtensa_usrregs_info, regs_info): New globals. (xtensa_arch_setup, xtensa_regs_info): New functions. (the_low_target): Adjust. (initialize_low_arch): New function. * linux-nios2-low.c (tdesc_nios2_linux): Declare. (nios2_arch_setup): Set the current process'es tdesc. (target_regsets): Rename to ... (nios2_regsets): ... this. (nios2_regsets_info, nios2_usrregs_info, regs_info): New globals. (nios2_regs_info): New function. (the_low_target): Adjust. (initialize_low_arch): New function. * linux-aarch64-low.c (tdesc_aarch64): Declare. (aarch64_arch_setup): Set the current process'es tdesc. (target_regsets): Rename to ... (aarch64_regsets): ... this. (aarch64_regsets_info, aarch64_usrregs_info, regs_info): New globals. (aarch64_regs_info): New function. (the_low_target): Adjust. (initialize_low_arch): New function. * linux-tile-low.c (tdesc_tilegx, tdesc_tilegx32): Declare globals. (target_regsets): Rename to ... (tile_regsets): ... this. (tile_regsets_info, tile_usrregs_info, regs_info): New globals. (tile_regs_info): New function. (tile_arch_setup): Set the current process'es tdesc. (the_low_target): Adjust. (initialize_low_arch): New function. * spu-low.c (tdesc_spu): Declare. (spu_create_inferior, spu_attach): Set the new process'es tdesc. * win32-arm-low.c (tdesc_arm): Declare. (arm_arch_setup): New function. (the_low_target): Install arm_arch_setup instead of init_registers_arm. * win32-i386-low.c (tdesc_i386, tdesc_amd64): Declare. (init_windows_x86): Rename to ... (i386_arch_setup): ... this. Set `win32_tdesc'. (the_low_target): Adjust. * win32-low.c (win32_tdesc): New global. (child_add_thread): Don't create the thread cache here. (do_initial_child_stuff): Set the new process'es tdesc. * win32-low.h (struct target_desc): Forward declare. (win32_tdesc): Declare. * lynx-i386-low.c (tdesc_i386): Declare global. (lynx_i386_arch_setup): Set `lynx_tdesc'. * lynx-low.c (lynx_tdesc): New global. (lynx_add_process): Set the new process'es tdesc. * lynx-low.h (struct target_desc): Forward declare. (lynx_tdesc): Declare global. * lynx-ppc-low.c (tdesc_powerpc_32): Declare global. (lynx_ppc_arch_setup): Set `lynx_tdesc'. * nto-low.c (nto_tdesc): New global. (do_attach): Set the new process'es tdesc. * nto-low.h (struct target_desc): Forward declare. (nto_tdesc): Declare. * nto-x86-low.c (tdesc_i386): Declare. (nto_x86_arch_setup): Set `nto_tdesc'. gdb/ 2013-06-07 Pedro Alves <palves@redhat.com> * regformats/regdat.sh: Output #include tdesc.h. Make globals static. Output a global target description pointer. (init_registers_${name}): Adjust to initialize a target description structure.
2013-06-07 18:46:59 +08:00
const struct target_desc *lynx_tdesc;
gdbserver/lynx178: spurious SIG61 signal when resuming inferior. On ppc-lynx178, resuming the execution of a program after hitting a breakpoint sometimes triggers a spurious SIG61 event: (gdb) cont Continuing. Program received signal SIG61, Real-time event 61. [Switching to Thread 39] 0x10002324 in a_test.task1 (<_task>=0x3ffff774) at a_test.adb:30 30 select -- Task 1 From this point on, continuing again lets the signal kill the program. Using "signal 0" or configuring GDB to discard the signal does not help either, as the program immediately reports the same signal again. What happens is the following: - GDB sends a single-step order to gdbserver: $vCont;s:31 This tells GDBserver to do a step using thread 0x31=49. GDBserver does the step, and thread 49 receives the SIGTRAP indicating that the step has finished. - GDB then sends a "continue", but this time does not specify which thread to continue: $vCont;c GDBserver uses an arbitrary thread's ptid to resume the program's execution (the current_inferior's ptid was chosen for that). See lynx-low.c:lynx_resume: if (ptid_equal (ptid, minus_one_ptid)) ptid = thread_to_gdb_id (current_inferior); So far on all LynxOS platforms, this has been good enough. But not so on LynxOS 178. If the ptid used to resume the execution is not the same as the thread that did the step, we get the weird signal. This patch fixes the problem by saving the ptid of the thread that last caused an event, received during a call to waitpid. The ptid is saved in per-process private data. gdb/gdbserver/ChangeLog: * lynx-low.c (struct process_info_private): New type. (lynx_add_process): New function. (lynx_create_inferior, lynx_attach): Replace calls to add_process by calls to lynx_add_process. (lynx_resume): If PTID is null, then try using current_process()->private->last_wait_event_ptid. Add comments. (lynx_clear_inferiors): Delete. The contents of that function has been inlined in lynx_mourn; (lynx_wait_1): Save the ptid in the process's private data. (lynx_mourn): Free the process' private data. Replace call to lynx_clear_inferiors by call to clear_inferiors.
2013-05-17 14:47:44 +08:00
/* Per-process private data. */
struct process_info_private
{
/* The PTID obtained from the last wait performed on this process.
Initialized to null_ptid until the first wait is performed. */
ptid_t last_wait_event_ptid;
};
/* Print a debug trace on standard output if debug_threads is set. */
static void
lynx_debug (char *string, ...)
{
va_list args;
if (!debug_threads)
return;
va_start (args, string);
fprintf (stderr, "DEBUG(lynx): ");
vfprintf (stderr, string, args);
fprintf (stderr, "\n");
va_end (args);
}
/* Build a ptid_t given a PID and a LynxOS TID. */
static ptid_t
lynx_ptid_t (int pid, long tid)
{
/* brobecker/2010-06-21: It looks like the LWP field in ptids
should be distinct for each thread (see write_ptid where it
writes the thread ID from the LWP). So instead of storing
the LynxOS tid in the tid field of the ptid, we store it in
the lwp field. */
return ptid_t (pid, tid, 0);
}
/* Return the process ID of the given PTID.
This function has little reason to exist, it's just a wrapper around
ptid_get_pid. But since we have a getter function for the lynxos
ptid, it feels cleaner to have a getter for the pid as well. */
static int
lynx_ptid_get_pid (ptid_t ptid)
{
Remove ptid_get_pid This removes ptid_get_pid in favor of calling the ptid_t::pid method. gdb/ChangeLog 2018-07-03 Tom Tromey <tom@tromey.com> * common/ptid.c (ptid_get_pid): Remove. * common/ptid.h (ptid_get_pid): Don't declare. * aarch64-linux-nat.c: Update. * ada-lang.c: Update. * aix-thread.c: Update. * alpha-bsd-nat.c: Update. * amd64-fbsd-nat.c: Update. * amd64-linux-nat.c: Update. * arm-linux-nat.c: Update. * arm-nbsd-nat.c: Update. * auxv.c: Update. * break-catch-syscall.c: Update. * breakpoint.c: Update. * bsd-uthread.c: Update. * corelow.c: Update. * ctf.c: Update. * darwin-nat.c: Update. * fbsd-nat.c: Update. * fbsd-tdep.c: Update. * gcore.c: Update. * gnu-nat.c: Update. * hppa-nbsd-nat.c: Update. * hppa-obsd-nat.c: Update. * i386-fbsd-nat.c: Update. * ia64-linux-nat.c: Update. * inf-ptrace.c: Update. * infcmd.c: Update. * inferior.c: Update. * inferior.h: Update. * inflow.c: Update. * infrun.c: Update. * linux-fork.c: Update. * linux-nat.c: Update. * linux-tdep.c: Update. * linux-thread-db.c: Update. * m68k-bsd-nat.c: Update. * mi/mi-interp.c: Update. * mi/mi-main.c: Update. * mips-linux-nat.c: Update. * mips-nbsd-nat.c: Update. * mips64-obsd-nat.c: Update. * nat/aarch64-linux-hw-point.c: Update. * nat/aarch64-linux.c: Update. * nat/linux-btrace.c: Update. * nat/linux-osdata.c: Update. * nat/linux-procfs.c: Update. * nat/x86-linux-dregs.c: Update. * nto-procfs.c: Update. * obsd-nat.c: Update. * ppc-linux-nat.c: Update. * ppc-nbsd-nat.c: Update. * ppc-obsd-nat.c: Update. * proc-service.c: Update. * procfs.c: Update. * python/py-inferior.c: Update. * python/py-infthread.c: Update. * ravenscar-thread.c: Update. * record.c: Update. * remote-sim.c: Update. * remote.c: Update. * rs6000-nat.c: Update. * s390-linux-nat.c: Update. * sh-nbsd-nat.c: Update. * sol-thread.c: Update. * sparc-nat.c: Update. * sparc64-tdep.c: Update. * spu-linux-nat.c: Update. * spu-tdep.c: Update. * target-debug.h: Update. * target.c: Update. * thread.c: Update. * tid-parse.c: Update. * tracefile-tfile.c: Update. * vax-bsd-nat.c: Update. * windows-nat.c: Update. * x86-linux-nat.c: Update. * x86-nat.c: Update. gdb/gdbserver/ChangeLog 2018-07-03 Tom Tromey <tom@tromey.com> * linux-low.c: Update. * linux-mips-low.c: Update. * lynx-low.c: Update. * mem-break.c: Update. * nto-low.c: Update. * remote-utils.c: Update. * server.c: Update. * spu-low.c: Update. * target.c: Update. * tracepoint.c: Update.
2018-06-12 02:05:27 +08:00
return ptid.pid ();
}
/* Return the LynxOS tid of the given PTID. */
static long
lynx_ptid_get_tid (ptid_t ptid)
{
/* See lynx_ptid_t: The LynxOS tid is stored inside the lwp field
of the ptid. */
Remove ptid_get_lwp This removes ptid_get_lwp in favor of calling the ptid_t::lwp method. gdb/ChangeLog 2018-07-03 Tom Tromey <tom@tromey.com> * common/ptid.c (ptid_get_lwp): Remove. * common/ptid.h (ptid_get_lwp): Don't declare. * aarch64-linux-nat.c: Update. * ada-tasks.c: Update. * aix-thread.c: Update. * amd64-linux-nat.c: Update. * arm-linux-nat.c: Update. * corelow.c: Update. * fbsd-nat.c: Update. * fbsd-tdep.c: Update. * gnu-nat.c: Update. * i386-cygwin-tdep.c: Update. * i386-gnu-nat.c: Update. * i386-linux-nat.c: Update. * ia64-linux-nat.c: Update. * inf-ptrace.c: Update. * infrun.c: Update. * linux-fork.c: Update. * linux-nat.c: Update. * linux-tdep.c: Update. * linux-thread-db.c: Update. * mips-linux-nat.c: Update. * nat/aarch64-linux-hw-point.c: Update. * nat/aarch64-linux.c: Update. * nat/linux-btrace.c: Update. * nat/linux-osdata.c: Update. * nat/linux-procfs.c: Update. * nat/x86-linux-dregs.c: Update. * obsd-nat.c: Update. * ppc-fbsd-nat.c: Update. * ppc-linux-nat.c: Update. * procfs.c: Update. * python/py-infthread.c: Update. * ravenscar-thread.c: Update. * remote.c: Update. * s390-linux-nat.c: Update. * sol-thread.c: Update. * sol2-tdep.c: Update. * spu-linux-nat.c: Update. * x86-linux-nat.c: Update. * xtensa-linux-nat.c: Update. gdb/gdbserver/ChangeLog 2018-07-03 Tom Tromey <tom@tromey.com> * linux-low.c: Update. * linux-mips-low.c: Update. * lynx-low.c: Update. * nto-low.c: Update. * remote-utils.c: Update. * server.c: Update. * spu-low.c: Update. * target.c: Update. * thread-db.c: Update.
2018-06-12 02:10:09 +08:00
return ptid.lwp ();
}
/* For a given PTID, return the associated PID as known by the LynxOS
ptrace layer. */
static int
lynx_ptrace_pid_from_ptid (ptid_t ptid)
{
return BUILDPID (lynx_ptid_get_pid (ptid), lynx_ptid_get_tid (ptid));
}
/* Return a string image of the ptrace REQUEST number. */
static char *
ptrace_request_to_str (int request)
{
#define CASE(X) case X: return #X
switch (request)
{
CASE(PTRACE_TRACEME);
CASE(PTRACE_PEEKTEXT);
CASE(PTRACE_PEEKDATA);
CASE(PTRACE_PEEKUSER);
CASE(PTRACE_POKETEXT);
CASE(PTRACE_POKEDATA);
CASE(PTRACE_POKEUSER);
CASE(PTRACE_CONT);
CASE(PTRACE_KILL);
CASE(PTRACE_SINGLESTEP);
CASE(PTRACE_ATTACH);
CASE(PTRACE_DETACH);
CASE(PTRACE_GETREGS);
CASE(PTRACE_SETREGS);
CASE(PTRACE_GETFPREGS);
CASE(PTRACE_SETFPREGS);
CASE(PTRACE_READDATA);
CASE(PTRACE_WRITEDATA);
CASE(PTRACE_READTEXT);
CASE(PTRACE_WRITETEXT);
CASE(PTRACE_GETFPAREGS);
CASE(PTRACE_SETFPAREGS);
CASE(PTRACE_GETWINDOW);
CASE(PTRACE_SETWINDOW);
CASE(PTRACE_SYSCALL);
CASE(PTRACE_DUMPCORE);
CASE(PTRACE_SETWRBKPT);
CASE(PTRACE_SETACBKPT);
CASE(PTRACE_CLRBKPT);
CASE(PTRACE_GET_UCODE);
#ifdef PT_READ_GPR
CASE(PT_READ_GPR);
#endif
#ifdef PT_WRITE_GPR
CASE(PT_WRITE_GPR);
#endif
#ifdef PT_READ_FPR
CASE(PT_READ_FPR);
#endif
#ifdef PT_WRITE_FPR
CASE(PT_WRITE_FPR);
#endif
#ifdef PT_READ_VPR
CASE(PT_READ_VPR);
#endif
#ifdef PT_WRITE_VPR
CASE(PT_WRITE_VPR);
#endif
#ifdef PTRACE_PEEKUSP
CASE(PTRACE_PEEKUSP);
#endif
#ifdef PTRACE_POKEUSP
CASE(PTRACE_POKEUSP);
#endif
CASE(PTRACE_PEEKTHREAD);
CASE(PTRACE_THREADUSER);
CASE(PTRACE_FPREAD);
CASE(PTRACE_FPWRITE);
CASE(PTRACE_SETSIG);
CASE(PTRACE_CONT_ONE);
CASE(PTRACE_KILL_ONE);
CASE(PTRACE_SINGLESTEP_ONE);
CASE(PTRACE_GETLOADINFO);
CASE(PTRACE_GETTRACESIG);
#ifdef PTRACE_GETTHREADLIST
CASE(PTRACE_GETTHREADLIST);
#endif
}
#undef CASE
return "<unknown-request>";
}
/* A wrapper around ptrace that allows us to print debug traces of
ptrace calls if debug traces are activated. */
static int
lynx_ptrace (int request, ptid_t ptid, int addr, int data, int addr2)
{
int result;
const int pid = lynx_ptrace_pid_from_ptid (ptid);
int saved_errno;
if (debug_threads)
fprintf (stderr, "PTRACE (%s, pid=%d(pid=%d, tid=%d), addr=0x%x, "
"data=0x%x, addr2=0x%x)",
ptrace_request_to_str (request), pid, PIDGET (pid), TIDGET (pid),
addr, data, addr2);
result = ptrace (request, pid, addr, data, addr2);
saved_errno = errno;
if (debug_threads)
fprintf (stderr, " -> %d (=0x%x)\n", result, result);
errno = saved_errno;
return result;
}
gdbserver/lynx178: spurious SIG61 signal when resuming inferior. On ppc-lynx178, resuming the execution of a program after hitting a breakpoint sometimes triggers a spurious SIG61 event: (gdb) cont Continuing. Program received signal SIG61, Real-time event 61. [Switching to Thread 39] 0x10002324 in a_test.task1 (<_task>=0x3ffff774) at a_test.adb:30 30 select -- Task 1 From this point on, continuing again lets the signal kill the program. Using "signal 0" or configuring GDB to discard the signal does not help either, as the program immediately reports the same signal again. What happens is the following: - GDB sends a single-step order to gdbserver: $vCont;s:31 This tells GDBserver to do a step using thread 0x31=49. GDBserver does the step, and thread 49 receives the SIGTRAP indicating that the step has finished. - GDB then sends a "continue", but this time does not specify which thread to continue: $vCont;c GDBserver uses an arbitrary thread's ptid to resume the program's execution (the current_inferior's ptid was chosen for that). See lynx-low.c:lynx_resume: if (ptid_equal (ptid, minus_one_ptid)) ptid = thread_to_gdb_id (current_inferior); So far on all LynxOS platforms, this has been good enough. But not so on LynxOS 178. If the ptid used to resume the execution is not the same as the thread that did the step, we get the weird signal. This patch fixes the problem by saving the ptid of the thread that last caused an event, received during a call to waitpid. The ptid is saved in per-process private data. gdb/gdbserver/ChangeLog: * lynx-low.c (struct process_info_private): New type. (lynx_add_process): New function. (lynx_create_inferior, lynx_attach): Replace calls to add_process by calls to lynx_add_process. (lynx_resume): If PTID is null, then try using current_process()->private->last_wait_event_ptid. Add comments. (lynx_clear_inferiors): Delete. The contents of that function has been inlined in lynx_mourn; (lynx_wait_1): Save the ptid in the process's private data. (lynx_mourn): Free the process' private data. Replace call to lynx_clear_inferiors by call to clear_inferiors.
2013-05-17 14:47:44 +08:00
/* Call add_process with the given parameters, and initializes
the process' private data. */
static struct process_info *
lynx_add_process (int pid, int attached)
{
struct process_info *proc;
proc = add_process (pid, attached);
[GDBserver] Multi-process + multi-arch This patch makes GDBserver support multi-process + biarch. Currently, if you're debugging more than one process at once with a single gdbserver (in extended-remote mode), then all processes must have the same architecture (e.g., 64-bit vs 32-bit). Otherwise, you see this: Added inferior 2 [Switching to inferior 2 [<null>] (<noexec>)] Reading symbols from /home/pedro/gdb/tests/main32...done. Temporary breakpoint 2 at 0x4004cf: main. (2 locations) Starting program: /home/pedro/gdb/tests/main32 warning: Selected architecture i386 is not compatible with reported target architecture i386:x86-64 warning: Architecture rejected target-supplied description Remote 'g' packet reply is too long: 000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000090cfffff0000000000000000000000000000000000000000000000000000000000020000000000000000000000000000000000000000000000000000000000000000000000000000b042f7460000000000020000230000002b0000002b0000002b000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000007f03000000000000ffff0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000801f00003b0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 ... etc, etc ... Even though the process was running a 32-bit program, GDBserver sent back to GDB a register set in 64-bit layout. A patch (http://sourceware.org/ml/gdb-patches/2012-11/msg00228.html) a while ago made GDB track a target_gdbarch per inferior, and as consequence, fetch a target description per-inferior. This patch is the GDBserver counterpart, that makes GDBserver keep track of each process'es XML target description and register layout. So in the example above, GDBserver will send the correct register set in 32-bit layout to GDB. A new "struct target_desc" object (tdesc for short) is added, that holds the target description and register layout information about each process. Each `struct process_info' holds a pointer to a target description. The regcache also gains a pointer to a target description, mainly for convenience, and parallel with GDB (and possible future support for programs that flip processor modes). The low target's arch_setup routines are responsible for setting the process'es correct tdesc. This isn't that much different to how things were done before, except that instead of detecting the inferior process'es architecture and calling the corresponding init_registers_FOO routine, which would change the regcache layout globals and recreate the threads' regcaches, the regcache.c globals are gone, and the init_registers_$BAR routines now each initialize a separate global struct target_desc object (one for each arch variant GDBserver supports), and so all the init_registers_$BAR routines that are built into GDBserver are called early at GDBserver startup time (similarly to how GDB handles its built-in target descriptions), and then the arch_setup routine is responsible for making process_info->tdesc point to one of these target description globals. The regcache module is all parameterized to get the regcache's layout from the tdesc object instead of the old register_bytes, etc. globals. The threads' regcaches are now created lazily. The old scheme where we created each of them when we added a new thread doesn't work anymore, because we add the main thread/lwp before we see it stop for the first time, and it is only when we see the thread stop for the first time that we have a chance of determining the inferior's architecture (through the_low_target.arch_setup). Therefore when we add the main thread we don't know which architecture/tdesc its regcache should have. This patch makes the gdb.multi/multi-arch.exp test now pass against (extended-remote) GDBserver. It currently fails, without this patch. The IPA also uses the regcache, so it gains a new global struct target_desc pointer, which points at the description of the process it is loaded in. Re. the linux-low.c & friends changes. Since the register map etc. may differ between processes (64-bit vs 32-bit) etc., the linux_target_ops num_regs, regmap and regset_bitmap data fields are no longer sufficient. A new method is added in their place that returns a pointer to a new struct that includes all info linux-low.c needs to access registers of the current inferior. The patch/discussion that originally introduced linux-low.c:disabled_regsets mentions that the disabled_regsets set may be different per mode (in a biarch setup), and indeed that is cleared whenever we start a new (first) inferior, so that global is moved as well behind the new `struct regs_info'. On the x86 side: I simply replaced the i387-fp.c:num_xmm_registers global with a check for 64-bit or 32-bit process, which is equivalent to how the global was set. This avoided coming up with some more general mechanism that would work for all targets that use this module (GNU/Linux, Windows, etc.). Tested: GNU/Linux IA64 GNU/Linux MIPS64 GNU/Linux PowerPC (Fedora 16) GNU/Linux s390x (Fedora 16) GNU/Linux sparc64 (Debian) GNU/Linux x86_64, -m64 and -m32 (Fedora 17) Cross built, and smoke tested: i686-w64-mingw32, under Wine. GNU/Linux TI C6x, by Yao Qi. Cross built but otherwise not tested: aarch64-linux-gnu arm-linux-gnu m68k-linux nios2-linux-gnu sh-linux-gnu spu tilegx-unknown-linux-gnu Completely untested: GNU/Linux Blackfin GNU/Linux CRIS GNU/Linux CRISv32 GNU/Linux TI Xtensa GNU/Linux M32R LynxOS QNX NTO gdb/gdbserver/ 2013-06-07 Pedro Alves <palves@redhat.com> * Makefile.in (OBS): Add tdesc.o. (IPA_OBJS): Add tdesc-ipa.o. (tdesc-ipa.o): New rule. * ax.c (gdb_eval_agent_expr): Adjust register_size call to new interface. * linux-low.c (new_inferior): Delete. (disabled_regsets, num_regsets): Delete. (linux_add_process): Adjust to set the new per-process new_inferior flag. (linux_detach_one_lwp): Adjust to call regcache_invalidate_thread. (linux_wait_for_lwp): Adjust. Only call arch_setup if the event was a stop. When calling arch_setup, switch the current inferior to the thread that got an event. (linux_resume_one_lwp): Adjust to call regcache_invalidate_thread. (regsets_fetch_inferior_registers) (regsets_store_inferior_registers): New regsets_info parameter. Adjust to use it. (linux_register_in_regsets): New regs_info parameter. Adjust to use it. (register_addr, fetch_register, store_register): New usrregs_info parameter. Adjust to use it. (usr_fetch_inferior_registers, usr_store_inferior_registers): New parameter regs_info. Adjust to use it. (linux_fetch_registers): Get the current inferior's regs_info, and adjust to use it. (linux_store_registers): Ditto. [HAVE_LINUX_REGSETS] (initialize_regsets_info): New. (initialize_low): Don't initialize the target_regsets here. Call initialize_low_arch. * linux-low.h (target_regsets): Delete declaration. (struct regsets_info): New. (struct usrregs_info): New. (struct regs_info): New. (struct process_info_private) <new_inferior>: New field. (struct linux_target_ops): Delete the num_regs, regmap, and regset_bitmap fields. New field regs_info. [HAVE_LINUX_REGSETS] (initialize_regsets_info): Declare. * i387-fp.c (num_xmm_registers): Delete. (i387_cache_to_fsave, i387_fsave_to_cache): Adjust find_regno calls to new interface. (i387_cache_to_fxsave, i387_cache_to_xsave, i387_fxsave_to_cache) (i387_xsave_to_cache): Adjust find_regno calls to new interface. Infer the number of xmm registers from the regcache's target description. * i387-fp.h (num_xmm_registers): Delete. * inferiors.c (add_thread): Don't install the thread's regcache here. * proc-service.c (gregset_info): Fetch the current inferior's regs_info. Adjust to use it. * regcache.c: Include tdesc.h. (register_bytes, reg_defs, num_registers) (gdbserver_expedite_regs): Delete. (get_thread_regcache): If the thread doesn't have a regcache yet, create one, instead of aborting gdbserver. (regcache_invalidate_one): Rename to ... (regcache_invalidate_thread): ... this. (regcache_invalidate_one): New. (regcache_invalidate): Only invalidate registers of the current process. (init_register_cache): Add target_desc parameter, and use it. (new_register_cache): Ditto. Assert the target description has a non zero registers_size. (regcache_cpy): Add assertions. Adjust. (realloc_register_cache, set_register_cache): Delete. (registers_to_string, registers_from_string): Adjust. (find_register_by_name, find_regno, find_register_by_number) (register_cache_size): Add target_desc parameter, and use it. (free_register_cache_thread, free_register_cache_thread_one) (regcache_release, register_cache_size): New. (register_size): Add target_desc parameter, and use it. (register_data, supply_register, supply_register_zeroed) (supply_regblock, supply_register_by_name, collect_register) (collect_register_as_string, collect_register_by_name): Adjust. * regcache.h (struct target_desc): Forward declare. (struct regcache) <tdesc>: New field. (init_register_cache, new_register_cache): Add target_desc parameter. (regcache_invalidate_thread): Declare. (regcache_invalidate_one): Delete declaration. (regcache_release): Declare. (find_register_by_number, register_cache_size, register_size) (find_regno): Add target_desc parameter. (gdbserver_expedite_regs, gdbserver_xmltarget): Delete declarations. * remote-utils.c: Include tdesc.h. (outreg, prepare_resume_reply): Adjust. * server.c: Include tdesc.h. (gdbserver_xmltarget): Delete declaration. (get_features_xml, process_serial_event): Adjust. * server.h [IN_PROCESS_AGENT] (struct target_desc): Forward declare. (struct process_info) <tdesc>: New field. (ipa_tdesc): Declare. * tdesc.c: New file. * tdesc.h: New file. * tracepoint.c: Include tdesc.h. [IN_PROCESS_AGENT] (ipa_tdesc): Define. (get_context_regcache): Adjust to pass ipa_tdesc down. (do_action_at_tracepoint): Adjust to get the register cache size from the context regcache's description. (traceframe_walk_blocks): Adjust to get the register cache size from the current trace frame's description. (traceframe_get_pc): Adjust to get current trace frame's description and pass it down. (gdb_collect): Adjust to get the register cache size from the IPA's description. * linux-amd64-ipa.c (tdesc_amd64_linux): Declare. (gdbserver_xmltarget): Delete. (initialize_low_tracepoint): Set the ipa's target description. * linux-i386-ipa.c (tdesc_i386_linux): Declare. (initialize_low_tracepoint): Set the ipa's target description. * linux-x86-low.c: Include tdesc.h. [__x86_64__] (is_64bit_tdesc): New. (ps_get_thread_area, x86_get_thread_area): Use it. (i386_cannot_store_register): Rename to ... (x86_cannot_store_register): ... this. Use is_64bit_tdesc. (i386_cannot_fetch_register): Rename to ... (x86_cannot_fetch_register): ... this. Use is_64bit_tdesc. (x86_fill_gregset, x86_store_gregset): Adjust register_size calls to new interface. (target_regsets): Rename to ... (x86_regsets): ... this. (x86_get_pc, x86_set_pc): Adjust register_size calls to new interface. (x86_siginfo_fixup): Use is_64bit_tdesc. [__x86_64__] (tdesc_amd64_linux, tdesc_amd64_avx_linux) (tdesc_x32_avx_linux, tdesc_x32_linux) (tdesc_i386_linux, tdesc_i386_mmx_linux, tdesc_i386_avx_linux): Declare. (x86_linux_update_xmltarget): Delete. (I386_LINUX_XSAVE_XCR0_OFFSET): Define. (have_ptrace_getfpxregs, have_ptrace_getregset): New. (AMD64_LINUX_USER64_CS): New. (x86_linux_read_description): New, based on x86_linux_update_xmltarget. (same_process_callback): New. (x86_arch_setup_process_callback): New. (x86_linux_update_xmltarget): New. (x86_regsets_info): New. (amd64_linux_regs_info): New. (i386_linux_usrregs_info): New. (i386_linux_regs_info): New. (x86_linux_regs_info): New. (x86_arch_setup): Reimplement. (x86_install_fast_tracepoint_jump_pad): Use is_64bit_tdesc. (x86_emit_ops): Ditto. (the_low_target): Adjust. Install x86_linux_regs_info, x86_cannot_fetch_register, and x86_cannot_store_register. (initialize_low_arch): New. * linux-ia64-low.c (tdesc_ia64): Declare. (ia64_fetch_register): Adjust. (ia64_usrregs_info, regs_info): New globals. (ia64_regs_info): New function. (the_low_target): Adjust. (initialize_low_arch): New function. * linux-sparc-low.c (tdesc_sparc64): Declare. (sparc_fill_gregset_to_stack, sparc_store_gregset_from_stack): Adjust. (sparc_arch_setup): New function. (sparc_regsets_info, sparc_usrregs_info, regs_info): New globals. (the_low_target): Adjust. (initialize_low_arch): New function. * linux-ppc-low.c (tdesc_powerpc_32l, tdesc_powerpc_altivec32l) (tdesc_powerpc_cell32l, tdesc_powerpc_vsx32l) (tdesc_powerpc_isa205_32l, tdesc_powerpc_isa205_altivec32l) (tdesc_powerpc_isa205_vsx32l, tdesc_powerpc_e500l) (tdesc_powerpc_64l, tdesc_powerpc_altivec64l) (tdesc_powerpc_cell64l, tdesc_powerpc_vsx64l) (tdesc_powerpc_isa205_64l, tdesc_powerpc_isa205_altivec64l) (tdesc_powerpc_isa205_vsx64l): Declare. (ppc_cannot_store_register, ppc_collect_ptrace_register) (ppc_supply_ptrace_register, parse_spufs_run, ppc_get_pc) (ppc_set_pc, ppc_get_hwcap): Adjust. (ppc_usrregs_info): Forward declare. (!__powerpc64__) ppc_regmap_adjusted: New global. (ppc_arch_setup): Adjust to the current process'es target description. (ppc_fill_vsxregset, ppc_store_vsxregset, ppc_fill_vrregset) (ppc_store_vrregset, ppc_fill_evrregset, ppc_store_evrregse) (ppc_store_evrregset): Adjust. (target_regsets): Rename to ... (ppc_regsets): ... this, and make static. (ppc_usrregs_info, ppc_regsets_info, regs_info): New globals. (ppc_regs_info): New function. (the_low_target): Adjust. (initialize_low_arch): New function. * linux-s390-low.c (tdesc_s390_linux32, tdesc_s390_linux32v1) (tdesc_s390_linux32v2, tdesc_s390_linux64, tdesc_s390_linux64v1) (tdesc_s390_linux64v2, tdesc_s390x_linux64, tdesc_s390x_linux64v1) (tdesc_s390x_linux64v2): Declare. (s390_collect_ptrace_register, s390_supply_ptrace_register) (s390_fill_gregset, s390_store_last_break): Adjust. (target_regsets): Rename to ... (s390_regsets): ... this, and make static. (s390_get_pc, s390_set_pc): Adjust. (s390_get_hwcap): New target_desc parameter, and use it. [__s390x__] (have_hwcap_s390_high_gprs): New global. (s390_arch_setup): Adjust to set the current process'es target description. Don't adjust the regmap. (s390_usrregs_info, s390_regsets_info, regs_info): New globals. [__s390x__] (s390_usrregs_info_3264, s390_regsets_info_3264) (regs_info_3264): New globals. (s390_regs_info): New function. (the_low_target): Adjust. (initialize_low_arch): New function. * linux-mips-low.c (tdesc_mips_linux, tdesc_mips_dsp_linux) (tdesc_mips64_linux, tdesc_mips64_dsp_linux): Declare. [__mips64] (init_registers_mips_linux) (init_registers_mips_dsp_linux): Delete defines. [__mips64] (tdesc_mips_linux, tdesc_mips_dsp_linux): New defines. (have_dsp): New global. (mips_read_description): New, based on mips_arch_setup. (mips_arch_setup): Reimplement. (get_usrregs_info): New function. (mips_cannot_fetch_register, mips_cannot_store_register) (mips_get_pc, mips_set_pc, mips_fill_gregset, mips_store_gregset) (mips_fill_fpregset, mips_store_fpregset): Adjust. (target_regsets): Rename to ... (mips_regsets): ... this, and make static. (mips_regsets_info, mips_dsp_usrregs_info, mips_usrregs_info) (dsp_regs_info, regs_info): New globals. (mips_regs_info): New function. (the_low_target): Adjust. (initialize_low_arch): New function. * linux-arm-low.c (tdesc_arm, tdesc_arm_with_iwmmxt) (tdesc_arm_with_vfpv2, tdesc_arm_with_vfpv3, tdesc_arm_with_neon): Declare. (arm_fill_vfpregset, arm_store_vfpregset): Adjust. (arm_read_description): New, with bits factored from arm_arch_setup. (arm_arch_setup): Reimplement. (target_regsets): Rename to ... (arm_regsets): ... this, and make static. (arm_regsets_info, arm_usrregs_info, regs_info): New globals. (arm_regs_info): New function. (the_low_target): Adjust. (initialize_low_arch): New function. * linux-m68k-low.c (tdesc_m68k): Declare. (target_regsets): Rename to ... (m68k_regsets): ... this, and make static. (m68k_regsets_info, m68k_usrregs_info, regs_info): New globals. (m68k_regs_info): New function. (m68k_arch_setup): New function. (the_low_target): Adjust. (initialize_low_arch): New function. * linux-sh-low.c (tdesc_sharch): Declare. (target_regsets): Rename to ... (sh_regsets): ... this, and make static. (sh_regsets_info, sh_usrregs_info, regs_info): New globals. (sh_regs_info, sh_arch_setup): New functions. (the_low_target): Adjust. (initialize_low_arch): New function. * linux-bfin-low.c (tdesc_bfin): Declare. (bfin_arch_setup): New function. (bfin_usrregs_info, regs_info): New globals. (bfin_regs_info): New function. (the_low_target): Adjust. (initialize_low_arch): New function. * linux-cris-low.c (tdesc_cris): Declare. (cris_arch_setup): New function. (cris_usrregs_info, regs_info): New globals. (cris_regs_info): New function. (the_low_target): Adjust. (initialize_low_arch): New function. * linux-cris-low.c (tdesc_crisv32): Declare. (cris_arch_setup): New function. (cris_regsets_info, cris_usrregs_info, regs_info): New globals. (cris_regs_info): New function. (the_low_target): Adjust. (initialize_low_arch): New function. * linux-m32r-low.c (tdesc_m32r): Declare. (m32r_arch_setup): New function. (m32r_usrregs_info, regs_info): New globals. (m32r_regs_info): Adjust. (initialize_low_arch): New function. * linux-tic6x-low.c (tdesc_tic6x_c64xp_linux) (tdesc_tic6x_c64x_linux, tdesc_tic6x_c62x_linux): Declare. (tic6x_usrregs_info): Forward declare. (tic6x_read_description): New function, based on ... (tic6x_arch_setup): ... this. Reimplement. (target_regsets): Rename to ... (tic6x_regsets): ... this, and make static. (tic6x_regsets_info, tic6x_usrregs_info, regs_info): New globals. (tic6x_regs_info): New function. (the_low_target): Adjust. (initialize_low_arch): New function. * linux-xtensa-low.c (tdesc_xtensa): Declare. (xtensa_fill_gregset, xtensa_store_gregset): Adjust. (target_regsets): Rename to ... (xtensa_regsets): ... this, and make static. (xtensa_regsets_info, xtensa_usrregs_info, regs_info): New globals. (xtensa_arch_setup, xtensa_regs_info): New functions. (the_low_target): Adjust. (initialize_low_arch): New function. * linux-nios2-low.c (tdesc_nios2_linux): Declare. (nios2_arch_setup): Set the current process'es tdesc. (target_regsets): Rename to ... (nios2_regsets): ... this. (nios2_regsets_info, nios2_usrregs_info, regs_info): New globals. (nios2_regs_info): New function. (the_low_target): Adjust. (initialize_low_arch): New function. * linux-aarch64-low.c (tdesc_aarch64): Declare. (aarch64_arch_setup): Set the current process'es tdesc. (target_regsets): Rename to ... (aarch64_regsets): ... this. (aarch64_regsets_info, aarch64_usrregs_info, regs_info): New globals. (aarch64_regs_info): New function. (the_low_target): Adjust. (initialize_low_arch): New function. * linux-tile-low.c (tdesc_tilegx, tdesc_tilegx32): Declare globals. (target_regsets): Rename to ... (tile_regsets): ... this. (tile_regsets_info, tile_usrregs_info, regs_info): New globals. (tile_regs_info): New function. (tile_arch_setup): Set the current process'es tdesc. (the_low_target): Adjust. (initialize_low_arch): New function. * spu-low.c (tdesc_spu): Declare. (spu_create_inferior, spu_attach): Set the new process'es tdesc. * win32-arm-low.c (tdesc_arm): Declare. (arm_arch_setup): New function. (the_low_target): Install arm_arch_setup instead of init_registers_arm. * win32-i386-low.c (tdesc_i386, tdesc_amd64): Declare. (init_windows_x86): Rename to ... (i386_arch_setup): ... this. Set `win32_tdesc'. (the_low_target): Adjust. * win32-low.c (win32_tdesc): New global. (child_add_thread): Don't create the thread cache here. (do_initial_child_stuff): Set the new process'es tdesc. * win32-low.h (struct target_desc): Forward declare. (win32_tdesc): Declare. * lynx-i386-low.c (tdesc_i386): Declare global. (lynx_i386_arch_setup): Set `lynx_tdesc'. * lynx-low.c (lynx_tdesc): New global. (lynx_add_process): Set the new process'es tdesc. * lynx-low.h (struct target_desc): Forward declare. (lynx_tdesc): Declare global. * lynx-ppc-low.c (tdesc_powerpc_32): Declare global. (lynx_ppc_arch_setup): Set `lynx_tdesc'. * nto-low.c (nto_tdesc): New global. (do_attach): Set the new process'es tdesc. * nto-low.h (struct target_desc): Forward declare. (nto_tdesc): Declare. * nto-x86-low.c (tdesc_i386): Declare. (nto_x86_arch_setup): Set `nto_tdesc'. gdb/ 2013-06-07 Pedro Alves <palves@redhat.com> * regformats/regdat.sh: Output #include tdesc.h. Make globals static. Output a global target description pointer. (init_registers_${name}): Adjust to initialize a target description structure.
2013-06-07 18:46:59 +08:00
proc->tdesc = lynx_tdesc;
Replace some xmalloc-family functions with XNEW-family ones This patch is part of the make-gdb-buildable-in-C++ effort. The idea is to change some calls to the xmalloc family of functions to calls to the equivalents in the XNEW family. This avoids adding an explicit cast, so it keeps the code a bit more readable. Some of them also map relatively well to a C++ equivalent (XNEW (struct foo) -> new foo), so it will be possible to do scripted replacements if needed. I only changed calls that were obviously allocating memory for one or multiple "objects". Allocation of variable sizes (such as strings or buffer handling) will be for later (and won't use XNEW). - xmalloc (sizeof (struct foo)) -> XNEW (struct foo) - xmalloc (num * sizeof (struct foo)) -> XNEWVEC (struct foo, num) - xcalloc (1, sizeof (struct foo)) -> XCNEW (struct foo) - xcalloc (num, sizeof (struct foo)) -> XCNEWVEC (struct foo, num) - xrealloc (p, num * sizeof (struct foo) -> XRESIZEVEC (struct foo, p, num) - obstack_alloc (ob, sizeof (struct foo)) -> XOBNEW (ob, struct foo) - obstack_alloc (ob, num * sizeof (struct foo)) -> XOBNEWVEC (ob, struct foo, num) - alloca (sizeof (struct foo)) -> XALLOCA (struct foo) - alloca (num * sizeof (struct foo)) -> XALLOCAVEC (struct foo, num) Some instances of xmalloc followed by memset to zero the buffer were replaced by XCNEW or XCNEWVEC. I regtested on x86-64, Ubuntu 14.04, but the patch touches many architecture-specific files. For those I'll have to rely on the buildbot or people complaining that I broke their gdb. gdb/ChangeLog: * aarch64-linux-nat.c (aarch64_add_process): Likewise. * aarch64-tdep.c (aarch64_gdbarch_init): Likewise. * ada-exp.y (write_ambiguous_var): Likewise. * ada-lang.c (resolve_subexp): Likewise. (user_select_syms): Likewise. (assign_aggregate): Likewise. (ada_evaluate_subexp): Likewise. (cache_symbol): Likewise. * addrmap.c (allocate_key): Likewise. (addrmap_create_mutable): Likewise. * aix-thread.c (sync_threadlists): Likewise. * alpha-tdep.c (alpha_push_dummy_call): Likewise. (alpha_gdbarch_init): Likewise. * amd64-windows-tdep.c (amd64_windows_push_arguments): Likewise. * arm-linux-nat.c (arm_linux_add_process): Likewise. * arm-linux-tdep.c (arm_linux_displaced_step_copy_insn): Likewise. * arm-tdep.c (push_stack_item): Likewise. (arm_displaced_step_copy_insn): Likewise. (arm_gdbarch_init): Likewise. (_initialize_arm_tdep): Likewise. * avr-tdep.c (push_stack_item): Likewise. * ax-general.c (new_agent_expr): Likewise. * block.c (block_initialize_namespace): Likewise. * breakpoint.c (alloc_counted_command_line): Likewise. (update_dprintf_command_list): Likewise. (parse_breakpoint_sals): Likewise. (decode_static_tracepoint_spec): Likewise. (until_break_command): Likewise. (clear_command): Likewise. (update_global_location_list): Likewise. (get_breakpoint_objfile_data) Likewise. * btrace.c (ftrace_new_function): Likewise. (btrace_set_insn_history): Likewise. (btrace_set_call_history): Likewise. * buildsym.c (add_symbol_to_list): Likewise. (record_pending_block): Likewise. (start_subfile): Likewise. (start_buildsym_compunit): Likewise. (push_subfile): Likewise. (end_symtab_get_static_block): Likewise. (buildsym_init): Likewise. * cli/cli-cmds.c (source_command): Likewise. * cli/cli-decode.c (add_cmd): Likewise. * cli/cli-script.c (build_command_line): Likewise. (setup_user_args): Likewise. (realloc_body_list): Likewise. (process_next_line): Likewise. (copy_command_lines): Likewise. * cli/cli-setshow.c (do_set_command): Likewise. * coff-pe-read.c (read_pe_exported_syms): Likewise. * coffread.c (coff_locate_sections): Likewise. (coff_symtab_read): Likewise. (coff_read_struct_type): Likewise. * common/cleanups.c (make_my_cleanup2): Likewise. * common/common-exceptions.c (throw_it): Likewise. * common/filestuff.c (make_cleanup_close): Likewise. * common/format.c (parse_format_string): Likewise. * common/queue.h (DEFINE_QUEUE_P): Likewise. * compile/compile-object-load.c (munmap_list_add): Likewise. (compile_object_load): Likewise. * compile/compile-object-run.c (compile_object_run): Likewise. * compile/compile.c (append_args): Likewise. * corefile.c (specify_exec_file_hook): Likewise. * cp-support.c (make_symbol_overload_list): Likewise. * cris-tdep.c (push_stack_item): Likewise. (cris_gdbarch_init): Likewise. * ctf.c (ctf_trace_file_writer_new): Likewise. * dbxread.c (init_header_files): Likewise. (add_new_header_file): Likewise. (init_bincl_list): Likewise. (dbx_end_psymtab): Likewise. (start_psymtab): Likewise. (dbx_end_psymtab): Likewise. * dcache.c (dcache_init): Likewise. * dictionary.c (dict_create_hashed): Likewise. (dict_create_hashed_expandable): Likewise. (dict_create_linear): Likewise. (dict_create_linear_expandable): Likewise. * dtrace-probe.c (dtrace_process_dof_probe): Likewise. * dummy-frame.c (register_dummy_frame_dtor): Likewise. * dwarf2-frame-tailcall.c (cache_new_ref1): Likewise. * dwarf2-frame.c (dwarf2_build_frame_info): Likewise. (decode_frame_entry_1): Likewise. * dwarf2expr.c (new_dwarf_expr_context): Likewise. * dwarf2loc.c (dwarf2_compile_expr_to_ax): Likewise. * dwarf2read.c (dwarf2_has_info): Likewise. (create_signatured_type_table_from_index): Likewise. (dwarf2_read_index): Likewise. (dw2_get_file_names_reader): Likewise. (create_all_type_units): Likewise. (read_cutu_die_from_dwo): Likewise. (init_tu_and_read_dwo_dies): Likewise. (init_cutu_and_read_dies): Likewise. (create_all_comp_units): Likewise. (queue_comp_unit): Likewise. (inherit_abstract_dies): Likewise. (read_call_site_scope): Likewise. (dwarf2_add_field): Likewise. (dwarf2_add_typedef): Likewise. (dwarf2_add_member_fn): Likewise. (attr_to_dynamic_prop): Likewise. (abbrev_table_alloc_abbrev): Likewise. (abbrev_table_read_table): Likewise. (add_include_dir): Likewise. (add_file_name): Likewise. (dwarf_decode_line_header): Likewise. (dwarf2_const_value_attr): Likewise. (dwarf_alloc_block): Likewise. (parse_macro_definition): Likewise. (set_die_type): Likewise. (write_psymtabs_to_index): Likewise. (create_cus_from_index): Likewise. (dwarf2_create_include_psymtab): Likewise. (process_psymtab_comp_unit_reader): Likewise. (build_type_psymtab_dependencies): Likewise. (read_comp_units_from_section): Likewise. (compute_compunit_symtab_includes): Likewise. (create_dwo_unit_in_dwp_v1): Likewise. (create_dwo_unit_in_dwp_v2): Likewise. (read_func_scope): Likewise. (process_structure_scope): Likewise. (mark_common_block_symbol_computed): Likewise. (load_partial_dies): Likewise. (dwarf2_symbol_mark_computed): Likewise. * elfread.c (elf_symfile_segments): Likewise. (elf_read_minimal_symbols): Likewise. * environ.c (make_environ): Likewise. * eval.c (evaluate_subexp_standard): Likewise. * event-loop.c (create_file_handler): Likewise. (create_async_signal_handler): Likewise. (create_async_event_handler): Likewise. (create_timer): Likewise. * exec.c (build_section_table): Likewise. * fbsd-nat.c (fbsd_remember_child): Likewise. * fork-child.c (fork_inferior): Likewise. * frv-tdep.c (new_variant): Likewise. * gdbarch.sh (gdbarch_alloc): Likewise. (append_name): Likewise. * gdbtypes.c (rank_function): Likewise. (copy_type_recursive): Likewise. (add_dyn_prop): Likewise. * gnu-nat.c (make_proc): Likewise. (make_inf): Likewise. (gnu_write_inferior): Likewise. * gnu-v3-abi.c (build_gdb_vtable_type): Likewise. (build_std_type_info_type): Likewise. * guile/scm-param.c (compute_enum_list): Likewise. * guile/scm-utils.c (gdbscm_parse_function_args): Likewise. * guile/scm-value.c (gdbscm_value_call): Likewise. * h8300-tdep.c (h8300_gdbarch_init): Likewise. * hppa-tdep.c (hppa_init_objfile_priv_data): Likewise. (read_unwind_info): Likewise. * ia64-tdep.c (ia64_gdbarch_init): Likewise. * infcall.c (dummy_frame_context_saver_setup): Likewise. (call_function_by_hand_dummy): Likewise. * infcmd.c (step_once): Likewise. (finish_forward): Likewise. (attach_command): Likewise. (notice_new_inferior): Likewise. * inferior.c (add_inferior_silent): Likewise. * infrun.c (add_displaced_stepping_state): Likewise. (save_infcall_control_state): Likewise. (save_inferior_ptid): Likewise. (_initialize_infrun): Likewise. * jit.c (bfd_open_from_target_memory): Likewise. (jit_gdbarch_data_init): Likewise. * language.c (add_language): Likewise. * linespec.c (decode_line_2): Likewise. * linux-nat.c (add_to_pid_list): Likewise. (add_initial_lwp): Likewise. * linux-thread-db.c (add_thread_db_info): Likewise. (record_thread): Likewise. (info_auto_load_libthread_db): Likewise. * m32c-tdep.c (m32c_gdbarch_init): Likewise. * m68hc11-tdep.c (m68hc11_gdbarch_init): Likewise. * m68k-tdep.c (m68k_gdbarch_init): Likewise. * m88k-tdep.c (m88k_analyze_prologue): Likewise. * macrocmd.c (macro_define_command): Likewise. * macroexp.c (gather_arguments): Likewise. * macroscope.c (sal_macro_scope): Likewise. * macrotab.c (new_macro_table): Likewise. * mdebugread.c (push_parse_stack): Likewise. (parse_partial_symbols): Likewise. (parse_symbol): Likewise. (psymtab_to_symtab_1): Likewise. (new_block): Likewise. (new_psymtab): Likewise. (mdebug_build_psymtabs): Likewise. (add_pending): Likewise. (elfmdebug_build_psymtabs): Likewise. * mep-tdep.c (mep_gdbarch_init): Likewise. * mi/mi-main.c (mi_execute_command): Likewise. * mi/mi-parse.c (mi_parse_argv): Likewise. * minidebug.c (lzma_open): Likewise. * minsyms.c (terminate_minimal_symbol_table): Likewise. * mips-linux-nat.c (mips_linux_insert_watchpoint): Likewise. * mips-tdep.c (mips_gdbarch_init): Likewise. * mn10300-tdep.c (mn10300_gdbarch_init): Likewise. * msp430-tdep.c (msp430_gdbarch_init): Likewise. * mt-tdep.c (mt_registers_info): Likewise. * nat/aarch64-linux.c (aarch64_linux_new_thread): Likewise. * nat/linux-btrace.c (linux_enable_bts): Likewise. (linux_enable_pt): Likewise. * nat/linux-osdata.c (linux_xfer_osdata_processes): Likewise. (linux_xfer_osdata_processgroups): Likewise. * nios2-tdep.c (nios2_gdbarch_init): Likewise. * nto-procfs.c (procfs_meminfo): Likewise. * objc-lang.c (start_msglist): Likewise. (selectors_info): Likewise. (classes_info): Likewise. (find_methods): Likewise. * objfiles.c (allocate_objfile): Likewise. (update_section_map): Likewise. * osabi.c (gdbarch_register_osabi): Likewise. (gdbarch_register_osabi_sniffer): Likewise. * parse.c (start_arglist): Likewise. * ppc-linux-nat.c (hwdebug_find_thread_points_by_tid): Likewise. (hwdebug_insert_point): Likewise. * printcmd.c (display_command): Likewise. (ui_printf): Likewise. * procfs.c (create_procinfo): Likewise. (load_syscalls): Likewise. (proc_get_LDT_entry): Likewise. (proc_update_threads): Likewise. * prologue-value.c (make_pv_area): Likewise. (pv_area_store): Likewise. * psymtab.c (extend_psymbol_list): Likewise. (init_psymbol_list): Likewise. (allocate_psymtab): Likewise. * python/py-inferior.c (add_thread_object): Likewise. * python/py-param.c (compute_enum_values): Likewise. * python/py-value.c (valpy_call): Likewise. * python/py-varobj.c (py_varobj_iter_next): Likewise. * python/python.c (ensure_python_env): Likewise. * record-btrace.c (record_btrace_start_replaying): Likewise. * record-full.c (record_full_reg_alloc): Likewise. (record_full_mem_alloc): Likewise. (record_full_end_alloc): Likewise. (record_full_core_xfer_partial): Likewise. * regcache.c (get_thread_arch_aspace_regcache): Likewise. * remote-fileio.c (remote_fileio_init_fd_map): Likewise. * remote-notif.c (remote_notif_state_allocate): Likewise. * remote.c (demand_private_info): Likewise. (remote_notif_stop_alloc_reply): Likewise. (remote_enable_btrace): Likewise. * reverse.c (save_bookmark_command): Likewise. * rl78-tdep.c (rl78_gdbarch_init): Likewise. * rx-tdep.c (rx_gdbarch_init): Likewise. * s390-linux-nat.c (s390_insert_watchpoint): Likewise. * ser-go32.c (dos_get_tty_state): Likewise. (dos_copy_tty_state): Likewise. * ser-mingw.c (ser_windows_open): Likewise. (ser_console_wait_handle): Likewise. (ser_console_get_tty_state): Likewise. (make_pipe_state): Likewise. (net_windows_open): Likewise. * ser-unix.c (hardwire_get_tty_state): Likewise. (hardwire_copy_tty_state): Likewise. * solib-aix.c (solib_aix_new_lm_info): Likewise. * solib-dsbt.c (dsbt_current_sos): Likewise. (dsbt_relocate_main_executable): Likewise. * solib-frv.c (frv_current_sos): Likewise. (frv_relocate_main_executable): Likewise. * solib-spu.c (spu_bfd_fopen): Likewise. * solib-svr4.c (lm_info_read): Likewise. (svr4_copy_library_list): Likewise. (svr4_default_sos): Likewise. * source.c (find_source_lines): Likewise. (line_info): Likewise. (add_substitute_path_rule): Likewise. * spu-linux-nat.c (spu_bfd_open): Likewise. * spu-tdep.c (info_spu_dma_cmdlist): Likewise. * stabsread.c (dbx_lookup_type): Likewise. (read_type): Likewise. (read_member_functions): Likewise. (read_struct_fields): Likewise. (read_baseclasses): Likewise. (read_args): Likewise. (_initialize_stabsread): Likewise. * stack.c (func_command): Likewise. * stap-probe.c (handle_stap_probe): Likewise. * symfile.c (addrs_section_sort): Likewise. (addr_info_make_relative): Likewise. (load_section_callback): Likewise. (add_symbol_file_command): Likewise. (init_filename_language_table): Likewise. * symtab.c (create_filename_seen_cache): Likewise. (sort_search_symbols_remove_dups): Likewise. (search_symbols): Likewise. * target.c (make_cleanup_restore_target_terminal): Likewise. * thread.c (new_thread): Likewise. (enable_thread_stack_temporaries): Likewise. (make_cleanup_restore_current_thread): Likewise. (thread_apply_all_command): Likewise. * tic6x-tdep.c (tic6x_gdbarch_init): Likewise. * top.c (gdb_readline_wrapper): Likewise. * tracefile-tfile.c (tfile_trace_file_writer_new): Likewise. * tracepoint.c (trace_find_line_command): Likewise. (all_tracepoint_actions_and_cleanup): Likewise. (make_cleanup_restore_current_traceframe): Likewise. (get_uploaded_tp): Likewise. (get_uploaded_tsv): Likewise. * tui/tui-data.c (tui_alloc_generic_win_info): Likewise. (tui_alloc_win_info): Likewise. (tui_alloc_content): Likewise. (tui_add_content_elements): Likewise. * tui/tui-disasm.c (tui_find_disassembly_address): Likewise. (tui_set_disassem_content): Likewise. * ui-file.c (ui_file_new): Likewise. (stdio_file_new): Likewise. (tee_file_new): Likewise. * utils.c (make_cleanup_restore_integer): Likewise. (add_internal_problem_command): Likewise. * v850-tdep.c (v850_gdbarch_init): Likewise. * valops.c (find_oload_champ): Likewise. * value.c (allocate_value_lazy): Likewise. (record_latest_value): Likewise. (create_internalvar): Likewise. * varobj.c (install_variable): Likewise. (new_variable): Likewise. (new_root_variable): Likewise. (cppush): Likewise. (_initialize_varobj): Likewise. * windows-nat.c (windows_make_so): Likewise. * x86-nat.c (x86_add_process): Likewise. * xcoffread.c (arrange_linetable): Likewise. (allocate_include_entry): Likewise. (process_linenos): Likewise. (SYMBOL_DUP): Likewise. (xcoff_start_psymtab): Likewise. (xcoff_end_psymtab): Likewise. * xml-support.c (gdb_xml_parse_attr_ulongest): Likewise. * xtensa-tdep.c (xtensa_register_type): Likewise. * gdbarch.c: Regenerate. * gdbarch.h: Regenerate. gdb/gdbserver/ChangeLog: * ax.c (gdb_parse_agent_expr): Likewise. (compile_bytecodes): Likewise. * dll.c (loaded_dll): Likewise. * event-loop.c (append_callback_event): Likewise. (create_file_handler): Likewise. (create_file_event): Likewise. * hostio.c (handle_open): Likewise. * inferiors.c (add_thread): Likewise. (add_process): Likewise. * linux-aarch64-low.c (aarch64_linux_new_process): Likewise. * linux-arm-low.c (arm_new_process): Likewise. (arm_new_thread): Likewise. * linux-low.c (add_to_pid_list): Likewise. (linux_add_process): Likewise. (handle_extended_wait): Likewise. (add_lwp): Likewise. (enqueue_one_deferred_signal): Likewise. (enqueue_pending_signal): Likewise. (linux_resume_one_lwp_throw): Likewise. (linux_resume_one_thread): Likewise. (linux_read_memory): Likewise. (linux_write_memory): Likewise. * linux-mips-low.c (mips_linux_new_process): Likewise. (mips_linux_new_thread): Likewise. (mips_add_watchpoint): Likewise. * linux-x86-low.c (initialize_low_arch): Likewise. * lynx-low.c (lynx_add_process): Likewise. * mem-break.c (set_raw_breakpoint_at): Likewise. (set_breakpoint): Likewise. (add_condition_to_breakpoint): Likewise. (add_commands_to_breakpoint): Likewise. (clone_agent_expr): Likewise. (clone_one_breakpoint): Likewise. * regcache.c (new_register_cache): Likewise. * remote-utils.c (look_up_one_symbol): Likewise. * server.c (queue_stop_reply): Likewise. (start_inferior): Likewise. (queue_stop_reply_callback): Likewise. (handle_target_event): Likewise. * spu-low.c (fetch_ppc_memory): Likewise. (store_ppc_memory): Likewise. * target.c (set_target_ops): Likewise. * thread-db.c (thread_db_load_search): Likewise. (try_thread_db_load_1): Likewise. * tracepoint.c (add_tracepoint): Likewise. (add_tracepoint_action): Likewise. (create_trace_state_variable): Likewise. (cmd_qtdpsrc): Likewise. (cmd_qtro): Likewise. (add_while_stepping_state): Likewise. * win32-low.c (child_add_thread): Likewise. (get_image_name): Likewise.
2015-08-27 05:16:07 +08:00
proc->priv = XCNEW (struct process_info_private);
proc->priv->last_wait_event_ptid = null_ptid;
gdbserver/lynx178: spurious SIG61 signal when resuming inferior. On ppc-lynx178, resuming the execution of a program after hitting a breakpoint sometimes triggers a spurious SIG61 event: (gdb) cont Continuing. Program received signal SIG61, Real-time event 61. [Switching to Thread 39] 0x10002324 in a_test.task1 (<_task>=0x3ffff774) at a_test.adb:30 30 select -- Task 1 From this point on, continuing again lets the signal kill the program. Using "signal 0" or configuring GDB to discard the signal does not help either, as the program immediately reports the same signal again. What happens is the following: - GDB sends a single-step order to gdbserver: $vCont;s:31 This tells GDBserver to do a step using thread 0x31=49. GDBserver does the step, and thread 49 receives the SIGTRAP indicating that the step has finished. - GDB then sends a "continue", but this time does not specify which thread to continue: $vCont;c GDBserver uses an arbitrary thread's ptid to resume the program's execution (the current_inferior's ptid was chosen for that). See lynx-low.c:lynx_resume: if (ptid_equal (ptid, minus_one_ptid)) ptid = thread_to_gdb_id (current_inferior); So far on all LynxOS platforms, this has been good enough. But not so on LynxOS 178. If the ptid used to resume the execution is not the same as the thread that did the step, we get the weird signal. This patch fixes the problem by saving the ptid of the thread that last caused an event, received during a call to waitpid. The ptid is saved in per-process private data. gdb/gdbserver/ChangeLog: * lynx-low.c (struct process_info_private): New type. (lynx_add_process): New function. (lynx_create_inferior, lynx_attach): Replace calls to add_process by calls to lynx_add_process. (lynx_resume): If PTID is null, then try using current_process()->private->last_wait_event_ptid. Add comments. (lynx_clear_inferiors): Delete. The contents of that function has been inlined in lynx_mourn; (lynx_wait_1): Save the ptid in the process's private data. (lynx_mourn): Free the process' private data. Replace call to lynx_clear_inferiors by call to clear_inferiors.
2013-05-17 14:47:44 +08:00
return proc;
}
Share fork_inferior et al with gdbserver This is the most important (and the biggest, sorry) patch of the series. It moves fork_inferior from gdb/fork-child.c to nat/fork-inferior.c and makes all the necessary adjustments to both GDB and gdbserver to make sure everything works OK. There is no "most important change" with this patch; all changes are made in a progressive way, making sure that gdbserver had the necessary features while not breaking GDB at the same time. I decided to go ahead and implement a partial support for starting the inferior with a shell on gdbserver, although the full feature comes in the next patch. The user won't have the option to disable the startup-with-shell, and also won't be able to change which shell gdbserver will use (other than setting the $SHELL environment variable, that is). Everything is working as expected, and no regressions were present during the tests. gdb/ChangeLog: 2017-06-07 Sergio Durigan Junior <sergiodj@redhat.com> Pedro Alves <palves@redhat.com> * Makefile.in (HFILES_NO_SRCDIR): Add "common/common-inferior.h" and "nat/fork-inferior.h". * common/common-inferior.h: New file, with contents from "gdb/inferior.h". * commom/common-utils.c: Include "common-utils.h". (stringify_argv): New function. * common/common-utils.h (stringify_argv): New prototype. * configure.nat: Add "fork-inferior.o" as a dependency for "*linux*", "fbsd*" and "nbsd*" hosts. * corefile.c (get_exec_file): Update comment. * darwin-nat.c (darwin_ptrace_him): Call "gdb_startup_inferior" instead of "startup_inferior". (darwin_create_inferior): Call "add_thread_silent" after "fork_inferior". * fork-child.c: Cleanup unnecessary includes. (SHELL_FILE): Move to "common/common-fork-child.c". (environ): Likewise. (exec_wrapper): Initialize. (get_exec_wrapper): New function. (breakup_args): Move to "common/common-fork-child.c"; rename to "breakup_args_for_exec". (escape_bang_in_quoted_argument): Move to "common/common-fork-child.c". (saved_ui): New variable. (prefork_hook): New function. (postfork_hook): Likewise. (postfork_child_hook): Likewise. (gdb_startup_inferior): Likewise. (fork_inferior): Move to "common/common-fork-child.c". Update function to support gdbserver. (startup_inferior): Likewise. * gdbcore.h (get_exec_file): Remove declaration. * gnu-nat.c (gnu_create_inferior): Call "gdb_startup_inferior" instead of "startup_inferior". Call "add_thread_silent" after "fork_inferior". * inf-ptrace.c: Include "nat/fork-inferior.h" and "utils.h". (inf_ptrace_create_inferior): Call "gdb_startup_inferior" instead of "startup_inferior". Call "add_thread_silent" after "fork_inferior". * inferior.h: Include "common-inferior.h". (trace_start_error): Move to "common/common-utils.h". (trace_start_error_with_name): Likewise. (fork_inferior): Move prototype to "nat/fork-inferior.h". (startup_inferior): Likewise. (gdb_startup_inferior): New prototype. * nat/fork-inferior.c: New file, with contents from "fork-child.c". * nat/fork-inferior.h: New file. * procfs.c (procfs_init_inferior): Call "gdb_startup_inferior" instead of "startup_inferior". Call "add_thread_silent" after "fork_inferior". * target.h (target_terminal_init): Move prototype to "target/target.h". (target_terminal_inferior): Likewise. (target_terminal_ours): Likewise. * target/target.h (target_terminal_init): New prototype, moved from "target.h". (target_terminal_inferior): Likewise. (target_terminal_ours): Likewise. * utils.c (gdb_flush_out_err): New function. gdb/gdbserver/ChangeLog: 2017-06-07 Sergio Durigan Junior <sergiodj@redhat.com> Pedro Alves <palves@redhat.com> * Makefile.in (SFILES): Add "nat/fork-inferior.o". * configure: Regenerate. * configure.srv (srv_linux_obj): Add "fork-child.o" and "fork-inferior.o". (i[34567]86-*-lynxos*): Likewise. (spu*-*-*): Likewise. * fork-child.c: New file. * linux-low.c: Include "common-inferior.h", "nat/fork-inferior.h" and "environ.h". (linux_ptrace_fun): New function. (linux_create_inferior): Adjust function prototype to reflect change on "target.h". Adjust function code to use "fork_inferior". (linux_request_interrupt): Delete "signal_pid". * lynx-low.c: Include "common-inferior.h" and "nat/fork-inferior.h". (lynx_ptrace_fun): New function. (lynx_create_inferior): Adjust function prototype to reflect change on "target.h". Adjust function code to use "fork_inferior". * nto-low.c (nto_create_inferior): Adjust function prototype and code to reflect change on "target.h". Update comments. * server.c: Include "common-inferior.h", "nat/fork-inferior.h", "common-terminal.h" and "environ.h". (terminal_fd): Moved to fork-child.c. (old_foreground_pgrp): Likewise. (restore_old_foreground_pgrp): Likewise. (last_status): Make it global. (last_ptid): Likewise. (our_environ): New variable. (startup_with_shell): Likewise. (program_name): Likewise. (program_argv): Rename to... (program_args): ...this. (wrapper_argv): New variable. (start_inferior): Delete function. (get_exec_wrapper): New function. (get_exec_file): Likewise. (get_environ): Likewise. (prefork_hook): Likewise. (post_fork_inferior): Likewise. (postfork_hook): Likewise. (postfork_child_hook): Likewise. (handle_v_run): Update code to deal with arguments coming from the remote host. Update calls from "start_inferior" to "create_inferior". (captured_main): Likewise. Initialize environment variable. Call "have_job_control". * server.h (post_fork_inferior): New prototype. (get_environ): Likewise. (last_status): Declare. (last_ptid): Likewise. (signal_pid): Likewise. * spu-low.c: Include "common-inferior.h" and "nat/fork-inferior.h". (spu_ptrace_fun): New function. (spu_create_inferior): Adjust function prototype to reflect change on "target.h". Adjust function code to use "fork_inferior". * target.c (target_terminal_init): New function. (target_terminal_inferior): Likewise. (target_terminal_ours): Likewise. * target.h: Include <vector>. (struct target_ops) <create_inferior>: Update prototype. (create_inferior): Update macro. * utils.c (gdb_flush_out_err): New function. * win32-low.c (win32_create_inferior): Adjust function prototype and code to reflect change on "target.h". gdb/testsuite/ChangeLog: 2017-06-07 Sergio Durigan Junior <sergiodj@redhat.com> * gdb.server/non-existing-program.exp: Update regex in order to reflect the fact that gdbserver is now using fork_inferior (with a shell) to startup the inferior.
2016-12-23 10:11:11 +08:00
/* Callback used by fork_inferior to start tracing the inferior. */
static void
lynx_ptrace_fun ()
{
int pgrp;
/* Switch child to its own process group so that signals won't
directly affect GDBserver. */
pgrp = getpid();
if (pgrp < 0)
trace_start_error_with_name ("pgrp");
if (setpgid (0, pgrp) < 0)
trace_start_error_with_name ("setpgid");
if (ioctl (0, TIOCSPGRP, &pgrp) < 0)
trace_start_error_with_name ("ioctl");
if (lynx_ptrace (PTRACE_TRACEME, null_ptid, 0, 0, 0) < 0)
trace_start_error_with_name ("lynx_ptrace");
}
/* Implement the create_inferior method of the target_ops vector. */
static int
Share fork_inferior et al with gdbserver This is the most important (and the biggest, sorry) patch of the series. It moves fork_inferior from gdb/fork-child.c to nat/fork-inferior.c and makes all the necessary adjustments to both GDB and gdbserver to make sure everything works OK. There is no "most important change" with this patch; all changes are made in a progressive way, making sure that gdbserver had the necessary features while not breaking GDB at the same time. I decided to go ahead and implement a partial support for starting the inferior with a shell on gdbserver, although the full feature comes in the next patch. The user won't have the option to disable the startup-with-shell, and also won't be able to change which shell gdbserver will use (other than setting the $SHELL environment variable, that is). Everything is working as expected, and no regressions were present during the tests. gdb/ChangeLog: 2017-06-07 Sergio Durigan Junior <sergiodj@redhat.com> Pedro Alves <palves@redhat.com> * Makefile.in (HFILES_NO_SRCDIR): Add "common/common-inferior.h" and "nat/fork-inferior.h". * common/common-inferior.h: New file, with contents from "gdb/inferior.h". * commom/common-utils.c: Include "common-utils.h". (stringify_argv): New function. * common/common-utils.h (stringify_argv): New prototype. * configure.nat: Add "fork-inferior.o" as a dependency for "*linux*", "fbsd*" and "nbsd*" hosts. * corefile.c (get_exec_file): Update comment. * darwin-nat.c (darwin_ptrace_him): Call "gdb_startup_inferior" instead of "startup_inferior". (darwin_create_inferior): Call "add_thread_silent" after "fork_inferior". * fork-child.c: Cleanup unnecessary includes. (SHELL_FILE): Move to "common/common-fork-child.c". (environ): Likewise. (exec_wrapper): Initialize. (get_exec_wrapper): New function. (breakup_args): Move to "common/common-fork-child.c"; rename to "breakup_args_for_exec". (escape_bang_in_quoted_argument): Move to "common/common-fork-child.c". (saved_ui): New variable. (prefork_hook): New function. (postfork_hook): Likewise. (postfork_child_hook): Likewise. (gdb_startup_inferior): Likewise. (fork_inferior): Move to "common/common-fork-child.c". Update function to support gdbserver. (startup_inferior): Likewise. * gdbcore.h (get_exec_file): Remove declaration. * gnu-nat.c (gnu_create_inferior): Call "gdb_startup_inferior" instead of "startup_inferior". Call "add_thread_silent" after "fork_inferior". * inf-ptrace.c: Include "nat/fork-inferior.h" and "utils.h". (inf_ptrace_create_inferior): Call "gdb_startup_inferior" instead of "startup_inferior". Call "add_thread_silent" after "fork_inferior". * inferior.h: Include "common-inferior.h". (trace_start_error): Move to "common/common-utils.h". (trace_start_error_with_name): Likewise. (fork_inferior): Move prototype to "nat/fork-inferior.h". (startup_inferior): Likewise. (gdb_startup_inferior): New prototype. * nat/fork-inferior.c: New file, with contents from "fork-child.c". * nat/fork-inferior.h: New file. * procfs.c (procfs_init_inferior): Call "gdb_startup_inferior" instead of "startup_inferior". Call "add_thread_silent" after "fork_inferior". * target.h (target_terminal_init): Move prototype to "target/target.h". (target_terminal_inferior): Likewise. (target_terminal_ours): Likewise. * target/target.h (target_terminal_init): New prototype, moved from "target.h". (target_terminal_inferior): Likewise. (target_terminal_ours): Likewise. * utils.c (gdb_flush_out_err): New function. gdb/gdbserver/ChangeLog: 2017-06-07 Sergio Durigan Junior <sergiodj@redhat.com> Pedro Alves <palves@redhat.com> * Makefile.in (SFILES): Add "nat/fork-inferior.o". * configure: Regenerate. * configure.srv (srv_linux_obj): Add "fork-child.o" and "fork-inferior.o". (i[34567]86-*-lynxos*): Likewise. (spu*-*-*): Likewise. * fork-child.c: New file. * linux-low.c: Include "common-inferior.h", "nat/fork-inferior.h" and "environ.h". (linux_ptrace_fun): New function. (linux_create_inferior): Adjust function prototype to reflect change on "target.h". Adjust function code to use "fork_inferior". (linux_request_interrupt): Delete "signal_pid". * lynx-low.c: Include "common-inferior.h" and "nat/fork-inferior.h". (lynx_ptrace_fun): New function. (lynx_create_inferior): Adjust function prototype to reflect change on "target.h". Adjust function code to use "fork_inferior". * nto-low.c (nto_create_inferior): Adjust function prototype and code to reflect change on "target.h". Update comments. * server.c: Include "common-inferior.h", "nat/fork-inferior.h", "common-terminal.h" and "environ.h". (terminal_fd): Moved to fork-child.c. (old_foreground_pgrp): Likewise. (restore_old_foreground_pgrp): Likewise. (last_status): Make it global. (last_ptid): Likewise. (our_environ): New variable. (startup_with_shell): Likewise. (program_name): Likewise. (program_argv): Rename to... (program_args): ...this. (wrapper_argv): New variable. (start_inferior): Delete function. (get_exec_wrapper): New function. (get_exec_file): Likewise. (get_environ): Likewise. (prefork_hook): Likewise. (post_fork_inferior): Likewise. (postfork_hook): Likewise. (postfork_child_hook): Likewise. (handle_v_run): Update code to deal with arguments coming from the remote host. Update calls from "start_inferior" to "create_inferior". (captured_main): Likewise. Initialize environment variable. Call "have_job_control". * server.h (post_fork_inferior): New prototype. (get_environ): Likewise. (last_status): Declare. (last_ptid): Likewise. (signal_pid): Likewise. * spu-low.c: Include "common-inferior.h" and "nat/fork-inferior.h". (spu_ptrace_fun): New function. (spu_create_inferior): Adjust function prototype to reflect change on "target.h". Adjust function code to use "fork_inferior". * target.c (target_terminal_init): New function. (target_terminal_inferior): Likewise. (target_terminal_ours): Likewise. * target.h: Include <vector>. (struct target_ops) <create_inferior>: Update prototype. (create_inferior): Update macro. * utils.c (gdb_flush_out_err): New function. * win32-low.c (win32_create_inferior): Adjust function prototype and code to reflect change on "target.h". gdb/testsuite/ChangeLog: 2017-06-07 Sergio Durigan Junior <sergiodj@redhat.com> * gdb.server/non-existing-program.exp: Update regex in order to reflect the fact that gdbserver is now using fork_inferior (with a shell) to startup the inferior.
2016-12-23 10:11:11 +08:00
lynx_create_inferior (const char *program,
const std::vector<char *> &program_args)
{
int pid;
Share fork_inferior et al with gdbserver This is the most important (and the biggest, sorry) patch of the series. It moves fork_inferior from gdb/fork-child.c to nat/fork-inferior.c and makes all the necessary adjustments to both GDB and gdbserver to make sure everything works OK. There is no "most important change" with this patch; all changes are made in a progressive way, making sure that gdbserver had the necessary features while not breaking GDB at the same time. I decided to go ahead and implement a partial support for starting the inferior with a shell on gdbserver, although the full feature comes in the next patch. The user won't have the option to disable the startup-with-shell, and also won't be able to change which shell gdbserver will use (other than setting the $SHELL environment variable, that is). Everything is working as expected, and no regressions were present during the tests. gdb/ChangeLog: 2017-06-07 Sergio Durigan Junior <sergiodj@redhat.com> Pedro Alves <palves@redhat.com> * Makefile.in (HFILES_NO_SRCDIR): Add "common/common-inferior.h" and "nat/fork-inferior.h". * common/common-inferior.h: New file, with contents from "gdb/inferior.h". * commom/common-utils.c: Include "common-utils.h". (stringify_argv): New function. * common/common-utils.h (stringify_argv): New prototype. * configure.nat: Add "fork-inferior.o" as a dependency for "*linux*", "fbsd*" and "nbsd*" hosts. * corefile.c (get_exec_file): Update comment. * darwin-nat.c (darwin_ptrace_him): Call "gdb_startup_inferior" instead of "startup_inferior". (darwin_create_inferior): Call "add_thread_silent" after "fork_inferior". * fork-child.c: Cleanup unnecessary includes. (SHELL_FILE): Move to "common/common-fork-child.c". (environ): Likewise. (exec_wrapper): Initialize. (get_exec_wrapper): New function. (breakup_args): Move to "common/common-fork-child.c"; rename to "breakup_args_for_exec". (escape_bang_in_quoted_argument): Move to "common/common-fork-child.c". (saved_ui): New variable. (prefork_hook): New function. (postfork_hook): Likewise. (postfork_child_hook): Likewise. (gdb_startup_inferior): Likewise. (fork_inferior): Move to "common/common-fork-child.c". Update function to support gdbserver. (startup_inferior): Likewise. * gdbcore.h (get_exec_file): Remove declaration. * gnu-nat.c (gnu_create_inferior): Call "gdb_startup_inferior" instead of "startup_inferior". Call "add_thread_silent" after "fork_inferior". * inf-ptrace.c: Include "nat/fork-inferior.h" and "utils.h". (inf_ptrace_create_inferior): Call "gdb_startup_inferior" instead of "startup_inferior". Call "add_thread_silent" after "fork_inferior". * inferior.h: Include "common-inferior.h". (trace_start_error): Move to "common/common-utils.h". (trace_start_error_with_name): Likewise. (fork_inferior): Move prototype to "nat/fork-inferior.h". (startup_inferior): Likewise. (gdb_startup_inferior): New prototype. * nat/fork-inferior.c: New file, with contents from "fork-child.c". * nat/fork-inferior.h: New file. * procfs.c (procfs_init_inferior): Call "gdb_startup_inferior" instead of "startup_inferior". Call "add_thread_silent" after "fork_inferior". * target.h (target_terminal_init): Move prototype to "target/target.h". (target_terminal_inferior): Likewise. (target_terminal_ours): Likewise. * target/target.h (target_terminal_init): New prototype, moved from "target.h". (target_terminal_inferior): Likewise. (target_terminal_ours): Likewise. * utils.c (gdb_flush_out_err): New function. gdb/gdbserver/ChangeLog: 2017-06-07 Sergio Durigan Junior <sergiodj@redhat.com> Pedro Alves <palves@redhat.com> * Makefile.in (SFILES): Add "nat/fork-inferior.o". * configure: Regenerate. * configure.srv (srv_linux_obj): Add "fork-child.o" and "fork-inferior.o". (i[34567]86-*-lynxos*): Likewise. (spu*-*-*): Likewise. * fork-child.c: New file. * linux-low.c: Include "common-inferior.h", "nat/fork-inferior.h" and "environ.h". (linux_ptrace_fun): New function. (linux_create_inferior): Adjust function prototype to reflect change on "target.h". Adjust function code to use "fork_inferior". (linux_request_interrupt): Delete "signal_pid". * lynx-low.c: Include "common-inferior.h" and "nat/fork-inferior.h". (lynx_ptrace_fun): New function. (lynx_create_inferior): Adjust function prototype to reflect change on "target.h". Adjust function code to use "fork_inferior". * nto-low.c (nto_create_inferior): Adjust function prototype and code to reflect change on "target.h". Update comments. * server.c: Include "common-inferior.h", "nat/fork-inferior.h", "common-terminal.h" and "environ.h". (terminal_fd): Moved to fork-child.c. (old_foreground_pgrp): Likewise. (restore_old_foreground_pgrp): Likewise. (last_status): Make it global. (last_ptid): Likewise. (our_environ): New variable. (startup_with_shell): Likewise. (program_name): Likewise. (program_argv): Rename to... (program_args): ...this. (wrapper_argv): New variable. (start_inferior): Delete function. (get_exec_wrapper): New function. (get_exec_file): Likewise. (get_environ): Likewise. (prefork_hook): Likewise. (post_fork_inferior): Likewise. (postfork_hook): Likewise. (postfork_child_hook): Likewise. (handle_v_run): Update code to deal with arguments coming from the remote host. Update calls from "start_inferior" to "create_inferior". (captured_main): Likewise. Initialize environment variable. Call "have_job_control". * server.h (post_fork_inferior): New prototype. (get_environ): Likewise. (last_status): Declare. (last_ptid): Likewise. (signal_pid): Likewise. * spu-low.c: Include "common-inferior.h" and "nat/fork-inferior.h". (spu_ptrace_fun): New function. (spu_create_inferior): Adjust function prototype to reflect change on "target.h". Adjust function code to use "fork_inferior". * target.c (target_terminal_init): New function. (target_terminal_inferior): Likewise. (target_terminal_ours): Likewise. * target.h: Include <vector>. (struct target_ops) <create_inferior>: Update prototype. (create_inferior): Update macro. * utils.c (gdb_flush_out_err): New function. * win32-low.c (win32_create_inferior): Adjust function prototype and code to reflect change on "target.h". gdb/testsuite/ChangeLog: 2017-06-07 Sergio Durigan Junior <sergiodj@redhat.com> * gdb.server/non-existing-program.exp: Update regex in order to reflect the fact that gdbserver is now using fork_inferior (with a shell) to startup the inferior.
2016-12-23 10:11:11 +08:00
std::string str_program_args = stringify_argv (program_args);
lynx_debug ("lynx_create_inferior ()");
Share fork_inferior et al with gdbserver This is the most important (and the biggest, sorry) patch of the series. It moves fork_inferior from gdb/fork-child.c to nat/fork-inferior.c and makes all the necessary adjustments to both GDB and gdbserver to make sure everything works OK. There is no "most important change" with this patch; all changes are made in a progressive way, making sure that gdbserver had the necessary features while not breaking GDB at the same time. I decided to go ahead and implement a partial support for starting the inferior with a shell on gdbserver, although the full feature comes in the next patch. The user won't have the option to disable the startup-with-shell, and also won't be able to change which shell gdbserver will use (other than setting the $SHELL environment variable, that is). Everything is working as expected, and no regressions were present during the tests. gdb/ChangeLog: 2017-06-07 Sergio Durigan Junior <sergiodj@redhat.com> Pedro Alves <palves@redhat.com> * Makefile.in (HFILES_NO_SRCDIR): Add "common/common-inferior.h" and "nat/fork-inferior.h". * common/common-inferior.h: New file, with contents from "gdb/inferior.h". * commom/common-utils.c: Include "common-utils.h". (stringify_argv): New function. * common/common-utils.h (stringify_argv): New prototype. * configure.nat: Add "fork-inferior.o" as a dependency for "*linux*", "fbsd*" and "nbsd*" hosts. * corefile.c (get_exec_file): Update comment. * darwin-nat.c (darwin_ptrace_him): Call "gdb_startup_inferior" instead of "startup_inferior". (darwin_create_inferior): Call "add_thread_silent" after "fork_inferior". * fork-child.c: Cleanup unnecessary includes. (SHELL_FILE): Move to "common/common-fork-child.c". (environ): Likewise. (exec_wrapper): Initialize. (get_exec_wrapper): New function. (breakup_args): Move to "common/common-fork-child.c"; rename to "breakup_args_for_exec". (escape_bang_in_quoted_argument): Move to "common/common-fork-child.c". (saved_ui): New variable. (prefork_hook): New function. (postfork_hook): Likewise. (postfork_child_hook): Likewise. (gdb_startup_inferior): Likewise. (fork_inferior): Move to "common/common-fork-child.c". Update function to support gdbserver. (startup_inferior): Likewise. * gdbcore.h (get_exec_file): Remove declaration. * gnu-nat.c (gnu_create_inferior): Call "gdb_startup_inferior" instead of "startup_inferior". Call "add_thread_silent" after "fork_inferior". * inf-ptrace.c: Include "nat/fork-inferior.h" and "utils.h". (inf_ptrace_create_inferior): Call "gdb_startup_inferior" instead of "startup_inferior". Call "add_thread_silent" after "fork_inferior". * inferior.h: Include "common-inferior.h". (trace_start_error): Move to "common/common-utils.h". (trace_start_error_with_name): Likewise. (fork_inferior): Move prototype to "nat/fork-inferior.h". (startup_inferior): Likewise. (gdb_startup_inferior): New prototype. * nat/fork-inferior.c: New file, with contents from "fork-child.c". * nat/fork-inferior.h: New file. * procfs.c (procfs_init_inferior): Call "gdb_startup_inferior" instead of "startup_inferior". Call "add_thread_silent" after "fork_inferior". * target.h (target_terminal_init): Move prototype to "target/target.h". (target_terminal_inferior): Likewise. (target_terminal_ours): Likewise. * target/target.h (target_terminal_init): New prototype, moved from "target.h". (target_terminal_inferior): Likewise. (target_terminal_ours): Likewise. * utils.c (gdb_flush_out_err): New function. gdb/gdbserver/ChangeLog: 2017-06-07 Sergio Durigan Junior <sergiodj@redhat.com> Pedro Alves <palves@redhat.com> * Makefile.in (SFILES): Add "nat/fork-inferior.o". * configure: Regenerate. * configure.srv (srv_linux_obj): Add "fork-child.o" and "fork-inferior.o". (i[34567]86-*-lynxos*): Likewise. (spu*-*-*): Likewise. * fork-child.c: New file. * linux-low.c: Include "common-inferior.h", "nat/fork-inferior.h" and "environ.h". (linux_ptrace_fun): New function. (linux_create_inferior): Adjust function prototype to reflect change on "target.h". Adjust function code to use "fork_inferior". (linux_request_interrupt): Delete "signal_pid". * lynx-low.c: Include "common-inferior.h" and "nat/fork-inferior.h". (lynx_ptrace_fun): New function. (lynx_create_inferior): Adjust function prototype to reflect change on "target.h". Adjust function code to use "fork_inferior". * nto-low.c (nto_create_inferior): Adjust function prototype and code to reflect change on "target.h". Update comments. * server.c: Include "common-inferior.h", "nat/fork-inferior.h", "common-terminal.h" and "environ.h". (terminal_fd): Moved to fork-child.c. (old_foreground_pgrp): Likewise. (restore_old_foreground_pgrp): Likewise. (last_status): Make it global. (last_ptid): Likewise. (our_environ): New variable. (startup_with_shell): Likewise. (program_name): Likewise. (program_argv): Rename to... (program_args): ...this. (wrapper_argv): New variable. (start_inferior): Delete function. (get_exec_wrapper): New function. (get_exec_file): Likewise. (get_environ): Likewise. (prefork_hook): Likewise. (post_fork_inferior): Likewise. (postfork_hook): Likewise. (postfork_child_hook): Likewise. (handle_v_run): Update code to deal with arguments coming from the remote host. Update calls from "start_inferior" to "create_inferior". (captured_main): Likewise. Initialize environment variable. Call "have_job_control". * server.h (post_fork_inferior): New prototype. (get_environ): Likewise. (last_status): Declare. (last_ptid): Likewise. (signal_pid): Likewise. * spu-low.c: Include "common-inferior.h" and "nat/fork-inferior.h". (spu_ptrace_fun): New function. (spu_create_inferior): Adjust function prototype to reflect change on "target.h". Adjust function code to use "fork_inferior". * target.c (target_terminal_init): New function. (target_terminal_inferior): Likewise. (target_terminal_ours): Likewise. * target.h: Include <vector>. (struct target_ops) <create_inferior>: Update prototype. (create_inferior): Update macro. * utils.c (gdb_flush_out_err): New function. * win32-low.c (win32_create_inferior): Adjust function prototype and code to reflect change on "target.h". gdb/testsuite/ChangeLog: 2017-06-07 Sergio Durigan Junior <sergiodj@redhat.com> * gdb.server/non-existing-program.exp: Update regex in order to reflect the fact that gdbserver is now using fork_inferior (with a shell) to startup the inferior.
2016-12-23 10:11:11 +08:00
pid = fork_inferior (program,
str_program_args.c_str (),
C++ify gdb/common/environ.c As part of the preparation necessary for my upcoming task, I'd like to propose that we turn gdb_environ into a class. The approach taken here is simple: the class gdb_environ contains everything that is needed to manipulate the environment variables. These variables are stored in an std::vector<char *>, which can be converted to a 'char **' and passed as argument to functions that need it. The usage has not changed much. As per Pedro's suggestion, this class uses a static factory method initialization. This means that when an instance is created, it is initially empty. When needed, it has to be initialized using the static method 'from_host_environ'. As mentioned before, this is a preparation for an upcoming work that I will be posting in the next few weeks or so. For that work, I'll probably create another data structure that will contain all the environment variables that were set by the user using the 'set environment' command, because I'll need access to them. This will be much easier with the class-ification of gdb_environ. As noted, this has been regression-tested with the new version of environ.exp and no regressions were found. gdb/ChangeLog: 2017-06-20 Sergio Durigan Junior <sergiodj@redhat.com> * Makefile.in (SUBDIR_UNITTESTS_SRCS): Add 'unittests/environ-selftests.c'. (SUBDIR_UNITTESTS_OBS): Add 'environ-selftests.o'. * charset.c (find_charset_names): Declare object 'iconv_env'. Update code to use 'iconv_env' object. Remove call to 'free_environ'. * common/environ.c: Include <utility>. (make_environ): Delete function. (free_environ): Delete function. (gdb_environ::clear): New function. (gdb_environ::operator=): New function. (gdb_environ::get): Likewise. (environ_vector): Delete function. (set_in_environ): Delete function. (gdb_environ::set): New function. (unset_in_environ): Delete function. (gdb_environ::unset): New function. (gdb_environ::envp): Likewise. * common/environ.h: Include <vector>. (struct gdb_environ): Delete; transform into... (class gdb_environ): ... this class. (free_environ): Delete prototype. (init_environ, get_in_environ, set_in_environ, unset_in_environ, environ_vector): Likewise. * infcmd.c (run_command_1): Update code to call 'envp' from 'gdb_environ' class. (environment_info): Update code to call methods from 'gdb_environ' class. (unset_environment_command): Likewise. (path_info): Likewise. (path_command): Likewise. * inferior.c (inferior::~inferior): Delete call to 'free_environ'. (inferior::inferior): Initialize 'environment' using the host's information. * inferior.h: Remove forward declaration of 'struct gdb_environ'. Include "environ.h". (class inferior) <environment>: Change type from 'struct gdb_environ' to 'gdb_environ'. * mi/mi-cmd-env.c (mi_cmd_env_path): Update code to call methods from 'gdb_environ' class. * solib.c (solib_find_1): Likewise * unittests/environ-selftests.c: New file. gdb/gdbserver/ChangeLog: 2017-06-20 Sergio Durigan Junior <sergiodj@redhat.com> * linux-low.c (linux_create_inferior): Adjust code to access the environment information via 'gdb_environ' class. * lynx-low.c (lynx_create_inferior): Likewise. * server.c (our_environ): Make it an instance of 'gdb_environ'. (get_environ): Return a pointer to 'our_environ'. (captured_main): Initialize 'our_environ'. * server.h (get_environ): Adjust prototype. * spu-low.c (spu_create_inferior): Adjust code to access the environment information via 'gdb_environ' class.
2017-02-11 10:19:44 +08:00
get_environ ()->envp (), lynx_ptrace_fun,
Share fork_inferior et al with gdbserver This is the most important (and the biggest, sorry) patch of the series. It moves fork_inferior from gdb/fork-child.c to nat/fork-inferior.c and makes all the necessary adjustments to both GDB and gdbserver to make sure everything works OK. There is no "most important change" with this patch; all changes are made in a progressive way, making sure that gdbserver had the necessary features while not breaking GDB at the same time. I decided to go ahead and implement a partial support for starting the inferior with a shell on gdbserver, although the full feature comes in the next patch. The user won't have the option to disable the startup-with-shell, and also won't be able to change which shell gdbserver will use (other than setting the $SHELL environment variable, that is). Everything is working as expected, and no regressions were present during the tests. gdb/ChangeLog: 2017-06-07 Sergio Durigan Junior <sergiodj@redhat.com> Pedro Alves <palves@redhat.com> * Makefile.in (HFILES_NO_SRCDIR): Add "common/common-inferior.h" and "nat/fork-inferior.h". * common/common-inferior.h: New file, with contents from "gdb/inferior.h". * commom/common-utils.c: Include "common-utils.h". (stringify_argv): New function. * common/common-utils.h (stringify_argv): New prototype. * configure.nat: Add "fork-inferior.o" as a dependency for "*linux*", "fbsd*" and "nbsd*" hosts. * corefile.c (get_exec_file): Update comment. * darwin-nat.c (darwin_ptrace_him): Call "gdb_startup_inferior" instead of "startup_inferior". (darwin_create_inferior): Call "add_thread_silent" after "fork_inferior". * fork-child.c: Cleanup unnecessary includes. (SHELL_FILE): Move to "common/common-fork-child.c". (environ): Likewise. (exec_wrapper): Initialize. (get_exec_wrapper): New function. (breakup_args): Move to "common/common-fork-child.c"; rename to "breakup_args_for_exec". (escape_bang_in_quoted_argument): Move to "common/common-fork-child.c". (saved_ui): New variable. (prefork_hook): New function. (postfork_hook): Likewise. (postfork_child_hook): Likewise. (gdb_startup_inferior): Likewise. (fork_inferior): Move to "common/common-fork-child.c". Update function to support gdbserver. (startup_inferior): Likewise. * gdbcore.h (get_exec_file): Remove declaration. * gnu-nat.c (gnu_create_inferior): Call "gdb_startup_inferior" instead of "startup_inferior". Call "add_thread_silent" after "fork_inferior". * inf-ptrace.c: Include "nat/fork-inferior.h" and "utils.h". (inf_ptrace_create_inferior): Call "gdb_startup_inferior" instead of "startup_inferior". Call "add_thread_silent" after "fork_inferior". * inferior.h: Include "common-inferior.h". (trace_start_error): Move to "common/common-utils.h". (trace_start_error_with_name): Likewise. (fork_inferior): Move prototype to "nat/fork-inferior.h". (startup_inferior): Likewise. (gdb_startup_inferior): New prototype. * nat/fork-inferior.c: New file, with contents from "fork-child.c". * nat/fork-inferior.h: New file. * procfs.c (procfs_init_inferior): Call "gdb_startup_inferior" instead of "startup_inferior". Call "add_thread_silent" after "fork_inferior". * target.h (target_terminal_init): Move prototype to "target/target.h". (target_terminal_inferior): Likewise. (target_terminal_ours): Likewise. * target/target.h (target_terminal_init): New prototype, moved from "target.h". (target_terminal_inferior): Likewise. (target_terminal_ours): Likewise. * utils.c (gdb_flush_out_err): New function. gdb/gdbserver/ChangeLog: 2017-06-07 Sergio Durigan Junior <sergiodj@redhat.com> Pedro Alves <palves@redhat.com> * Makefile.in (SFILES): Add "nat/fork-inferior.o". * configure: Regenerate. * configure.srv (srv_linux_obj): Add "fork-child.o" and "fork-inferior.o". (i[34567]86-*-lynxos*): Likewise. (spu*-*-*): Likewise. * fork-child.c: New file. * linux-low.c: Include "common-inferior.h", "nat/fork-inferior.h" and "environ.h". (linux_ptrace_fun): New function. (linux_create_inferior): Adjust function prototype to reflect change on "target.h". Adjust function code to use "fork_inferior". (linux_request_interrupt): Delete "signal_pid". * lynx-low.c: Include "common-inferior.h" and "nat/fork-inferior.h". (lynx_ptrace_fun): New function. (lynx_create_inferior): Adjust function prototype to reflect change on "target.h". Adjust function code to use "fork_inferior". * nto-low.c (nto_create_inferior): Adjust function prototype and code to reflect change on "target.h". Update comments. * server.c: Include "common-inferior.h", "nat/fork-inferior.h", "common-terminal.h" and "environ.h". (terminal_fd): Moved to fork-child.c. (old_foreground_pgrp): Likewise. (restore_old_foreground_pgrp): Likewise. (last_status): Make it global. (last_ptid): Likewise. (our_environ): New variable. (startup_with_shell): Likewise. (program_name): Likewise. (program_argv): Rename to... (program_args): ...this. (wrapper_argv): New variable. (start_inferior): Delete function. (get_exec_wrapper): New function. (get_exec_file): Likewise. (get_environ): Likewise. (prefork_hook): Likewise. (post_fork_inferior): Likewise. (postfork_hook): Likewise. (postfork_child_hook): Likewise. (handle_v_run): Update code to deal with arguments coming from the remote host. Update calls from "start_inferior" to "create_inferior". (captured_main): Likewise. Initialize environment variable. Call "have_job_control". * server.h (post_fork_inferior): New prototype. (get_environ): Likewise. (last_status): Declare. (last_ptid): Likewise. (signal_pid): Likewise. * spu-low.c: Include "common-inferior.h" and "nat/fork-inferior.h". (spu_ptrace_fun): New function. (spu_create_inferior): Adjust function prototype to reflect change on "target.h". Adjust function code to use "fork_inferior". * target.c (target_terminal_init): New function. (target_terminal_inferior): Likewise. (target_terminal_ours): Likewise. * target.h: Include <vector>. (struct target_ops) <create_inferior>: Update prototype. (create_inferior): Update macro. * utils.c (gdb_flush_out_err): New function. * win32-low.c (win32_create_inferior): Adjust function prototype and code to reflect change on "target.h". gdb/testsuite/ChangeLog: 2017-06-07 Sergio Durigan Junior <sergiodj@redhat.com> * gdb.server/non-existing-program.exp: Update regex in order to reflect the fact that gdbserver is now using fork_inferior (with a shell) to startup the inferior.
2016-12-23 10:11:11 +08:00
NULL, NULL, NULL, NULL);
Share fork_inferior et al with gdbserver This is the most important (and the biggest, sorry) patch of the series. It moves fork_inferior from gdb/fork-child.c to nat/fork-inferior.c and makes all the necessary adjustments to both GDB and gdbserver to make sure everything works OK. There is no "most important change" with this patch; all changes are made in a progressive way, making sure that gdbserver had the necessary features while not breaking GDB at the same time. I decided to go ahead and implement a partial support for starting the inferior with a shell on gdbserver, although the full feature comes in the next patch. The user won't have the option to disable the startup-with-shell, and also won't be able to change which shell gdbserver will use (other than setting the $SHELL environment variable, that is). Everything is working as expected, and no regressions were present during the tests. gdb/ChangeLog: 2017-06-07 Sergio Durigan Junior <sergiodj@redhat.com> Pedro Alves <palves@redhat.com> * Makefile.in (HFILES_NO_SRCDIR): Add "common/common-inferior.h" and "nat/fork-inferior.h". * common/common-inferior.h: New file, with contents from "gdb/inferior.h". * commom/common-utils.c: Include "common-utils.h". (stringify_argv): New function. * common/common-utils.h (stringify_argv): New prototype. * configure.nat: Add "fork-inferior.o" as a dependency for "*linux*", "fbsd*" and "nbsd*" hosts. * corefile.c (get_exec_file): Update comment. * darwin-nat.c (darwin_ptrace_him): Call "gdb_startup_inferior" instead of "startup_inferior". (darwin_create_inferior): Call "add_thread_silent" after "fork_inferior". * fork-child.c: Cleanup unnecessary includes. (SHELL_FILE): Move to "common/common-fork-child.c". (environ): Likewise. (exec_wrapper): Initialize. (get_exec_wrapper): New function. (breakup_args): Move to "common/common-fork-child.c"; rename to "breakup_args_for_exec". (escape_bang_in_quoted_argument): Move to "common/common-fork-child.c". (saved_ui): New variable. (prefork_hook): New function. (postfork_hook): Likewise. (postfork_child_hook): Likewise. (gdb_startup_inferior): Likewise. (fork_inferior): Move to "common/common-fork-child.c". Update function to support gdbserver. (startup_inferior): Likewise. * gdbcore.h (get_exec_file): Remove declaration. * gnu-nat.c (gnu_create_inferior): Call "gdb_startup_inferior" instead of "startup_inferior". Call "add_thread_silent" after "fork_inferior". * inf-ptrace.c: Include "nat/fork-inferior.h" and "utils.h". (inf_ptrace_create_inferior): Call "gdb_startup_inferior" instead of "startup_inferior". Call "add_thread_silent" after "fork_inferior". * inferior.h: Include "common-inferior.h". (trace_start_error): Move to "common/common-utils.h". (trace_start_error_with_name): Likewise. (fork_inferior): Move prototype to "nat/fork-inferior.h". (startup_inferior): Likewise. (gdb_startup_inferior): New prototype. * nat/fork-inferior.c: New file, with contents from "fork-child.c". * nat/fork-inferior.h: New file. * procfs.c (procfs_init_inferior): Call "gdb_startup_inferior" instead of "startup_inferior". Call "add_thread_silent" after "fork_inferior". * target.h (target_terminal_init): Move prototype to "target/target.h". (target_terminal_inferior): Likewise. (target_terminal_ours): Likewise. * target/target.h (target_terminal_init): New prototype, moved from "target.h". (target_terminal_inferior): Likewise. (target_terminal_ours): Likewise. * utils.c (gdb_flush_out_err): New function. gdb/gdbserver/ChangeLog: 2017-06-07 Sergio Durigan Junior <sergiodj@redhat.com> Pedro Alves <palves@redhat.com> * Makefile.in (SFILES): Add "nat/fork-inferior.o". * configure: Regenerate. * configure.srv (srv_linux_obj): Add "fork-child.o" and "fork-inferior.o". (i[34567]86-*-lynxos*): Likewise. (spu*-*-*): Likewise. * fork-child.c: New file. * linux-low.c: Include "common-inferior.h", "nat/fork-inferior.h" and "environ.h". (linux_ptrace_fun): New function. (linux_create_inferior): Adjust function prototype to reflect change on "target.h". Adjust function code to use "fork_inferior". (linux_request_interrupt): Delete "signal_pid". * lynx-low.c: Include "common-inferior.h" and "nat/fork-inferior.h". (lynx_ptrace_fun): New function. (lynx_create_inferior): Adjust function prototype to reflect change on "target.h". Adjust function code to use "fork_inferior". * nto-low.c (nto_create_inferior): Adjust function prototype and code to reflect change on "target.h". Update comments. * server.c: Include "common-inferior.h", "nat/fork-inferior.h", "common-terminal.h" and "environ.h". (terminal_fd): Moved to fork-child.c. (old_foreground_pgrp): Likewise. (restore_old_foreground_pgrp): Likewise. (last_status): Make it global. (last_ptid): Likewise. (our_environ): New variable. (startup_with_shell): Likewise. (program_name): Likewise. (program_argv): Rename to... (program_args): ...this. (wrapper_argv): New variable. (start_inferior): Delete function. (get_exec_wrapper): New function. (get_exec_file): Likewise. (get_environ): Likewise. (prefork_hook): Likewise. (post_fork_inferior): Likewise. (postfork_hook): Likewise. (postfork_child_hook): Likewise. (handle_v_run): Update code to deal with arguments coming from the remote host. Update calls from "start_inferior" to "create_inferior". (captured_main): Likewise. Initialize environment variable. Call "have_job_control". * server.h (post_fork_inferior): New prototype. (get_environ): Likewise. (last_status): Declare. (last_ptid): Likewise. (signal_pid): Likewise. * spu-low.c: Include "common-inferior.h" and "nat/fork-inferior.h". (spu_ptrace_fun): New function. (spu_create_inferior): Adjust function prototype to reflect change on "target.h". Adjust function code to use "fork_inferior". * target.c (target_terminal_init): New function. (target_terminal_inferior): Likewise. (target_terminal_ours): Likewise. * target.h: Include <vector>. (struct target_ops) <create_inferior>: Update prototype. (create_inferior): Update macro. * utils.c (gdb_flush_out_err): New function. * win32-low.c (win32_create_inferior): Adjust function prototype and code to reflect change on "target.h". gdb/testsuite/ChangeLog: 2017-06-07 Sergio Durigan Junior <sergiodj@redhat.com> * gdb.server/non-existing-program.exp: Update regex in order to reflect the fact that gdbserver is now using fork_inferior (with a shell) to startup the inferior.
2016-12-23 10:11:11 +08:00
post_fork_inferior (pid, program);
gdbserver/lynx178: spurious SIG61 signal when resuming inferior. On ppc-lynx178, resuming the execution of a program after hitting a breakpoint sometimes triggers a spurious SIG61 event: (gdb) cont Continuing. Program received signal SIG61, Real-time event 61. [Switching to Thread 39] 0x10002324 in a_test.task1 (<_task>=0x3ffff774) at a_test.adb:30 30 select -- Task 1 From this point on, continuing again lets the signal kill the program. Using "signal 0" or configuring GDB to discard the signal does not help either, as the program immediately reports the same signal again. What happens is the following: - GDB sends a single-step order to gdbserver: $vCont;s:31 This tells GDBserver to do a step using thread 0x31=49. GDBserver does the step, and thread 49 receives the SIGTRAP indicating that the step has finished. - GDB then sends a "continue", but this time does not specify which thread to continue: $vCont;c GDBserver uses an arbitrary thread's ptid to resume the program's execution (the current_inferior's ptid was chosen for that). See lynx-low.c:lynx_resume: if (ptid_equal (ptid, minus_one_ptid)) ptid = thread_to_gdb_id (current_inferior); So far on all LynxOS platforms, this has been good enough. But not so on LynxOS 178. If the ptid used to resume the execution is not the same as the thread that did the step, we get the weird signal. This patch fixes the problem by saving the ptid of the thread that last caused an event, received during a call to waitpid. The ptid is saved in per-process private data. gdb/gdbserver/ChangeLog: * lynx-low.c (struct process_info_private): New type. (lynx_add_process): New function. (lynx_create_inferior, lynx_attach): Replace calls to add_process by calls to lynx_add_process. (lynx_resume): If PTID is null, then try using current_process()->private->last_wait_event_ptid. Add comments. (lynx_clear_inferiors): Delete. The contents of that function has been inlined in lynx_mourn; (lynx_wait_1): Save the ptid in the process's private data. (lynx_mourn): Free the process' private data. Replace call to lynx_clear_inferiors by call to clear_inferiors.
2013-05-17 14:47:44 +08:00
lynx_add_process (pid, 0);
/* Do not add the process thread just yet, as we do not know its tid.
We will add it later, during the wait for the STOP event corresponding
to the lynx_ptrace (PTRACE_TRACEME) call above. */
return pid;
}
/* Assuming we've just attached to a running inferior whose pid is PID,
add all threads running in that process. */
static void
lynx_add_threads_after_attach (int pid)
{
/* Ugh! There appears to be no way to get the list of threads
in the program we just attached to. So get the list by calling
the "ps" command. This is only needed now, as we will then
keep the thread list up to date thanks to thread creation and
exit notifications. */
FILE *f;
char buf[256];
int thread_pid, thread_tid;
f = popen ("ps atx", "r");
if (f == NULL)
perror_with_name ("Cannot get thread list");
while (fgets (buf, sizeof (buf), f) != NULL)
if ((sscanf (buf, "%d %d", &thread_pid, &thread_tid) == 2
&& thread_pid == pid))
{
ptid_t thread_ptid = lynx_ptid_t (pid, thread_tid);
if (!find_thread_ptid (thread_ptid))
{
lynx_debug ("New thread: (pid = %d, tid = %d)",
pid, thread_tid);
add_thread (thread_ptid, NULL);
}
}
pclose (f);
}
/* Implement the attach target_ops method. */
static int
lynx_attach (unsigned long pid)
{
ptid_t ptid = lynx_ptid_t (pid, 0);
if (lynx_ptrace (PTRACE_ATTACH, ptid, 0, 0, 0) != 0)
error ("Cannot attach to process %lu: %s (%d)\n", pid,
strerror (errno), errno);
gdbserver/lynx178: spurious SIG61 signal when resuming inferior. On ppc-lynx178, resuming the execution of a program after hitting a breakpoint sometimes triggers a spurious SIG61 event: (gdb) cont Continuing. Program received signal SIG61, Real-time event 61. [Switching to Thread 39] 0x10002324 in a_test.task1 (<_task>=0x3ffff774) at a_test.adb:30 30 select -- Task 1 From this point on, continuing again lets the signal kill the program. Using "signal 0" or configuring GDB to discard the signal does not help either, as the program immediately reports the same signal again. What happens is the following: - GDB sends a single-step order to gdbserver: $vCont;s:31 This tells GDBserver to do a step using thread 0x31=49. GDBserver does the step, and thread 49 receives the SIGTRAP indicating that the step has finished. - GDB then sends a "continue", but this time does not specify which thread to continue: $vCont;c GDBserver uses an arbitrary thread's ptid to resume the program's execution (the current_inferior's ptid was chosen for that). See lynx-low.c:lynx_resume: if (ptid_equal (ptid, minus_one_ptid)) ptid = thread_to_gdb_id (current_inferior); So far on all LynxOS platforms, this has been good enough. But not so on LynxOS 178. If the ptid used to resume the execution is not the same as the thread that did the step, we get the weird signal. This patch fixes the problem by saving the ptid of the thread that last caused an event, received during a call to waitpid. The ptid is saved in per-process private data. gdb/gdbserver/ChangeLog: * lynx-low.c (struct process_info_private): New type. (lynx_add_process): New function. (lynx_create_inferior, lynx_attach): Replace calls to add_process by calls to lynx_add_process. (lynx_resume): If PTID is null, then try using current_process()->private->last_wait_event_ptid. Add comments. (lynx_clear_inferiors): Delete. The contents of that function has been inlined in lynx_mourn; (lynx_wait_1): Save the ptid in the process's private data. (lynx_mourn): Free the process' private data. Replace call to lynx_clear_inferiors by call to clear_inferiors.
2013-05-17 14:47:44 +08:00
lynx_add_process (pid, 1);
lynx_add_threads_after_attach (pid);
return 0;
}
/* Implement the resume target_ops method. */
static void
lynx_resume (struct thread_resume *resume_info, size_t n)
{
ptid_t ptid = resume_info[0].thread;
Use PTRACE_SINGLESTEP_ONE when single-stepping one thread. Currently, when we receive a request to single-step one single thread (Eg, when single-stepping out of a breakpoint), we use the PTRACE_SINGLESTEP pthread request, which does single-step the corresponding thread, but also resumes execution of all other threads in the inferior. This causes problems when debugging programs where another thread receives multiple debug events while trying to single-step a specific thread out of a breakpoint (with infrun traces turned on): (gdb) continue Continuing. infrun: clear_proceed_status_thread (Thread 126) [...] infrun: clear_proceed_status_thread (Thread 142) [...] infrun: clear_proceed_status_thread (Thread 146) infrun: clear_proceed_status_thread (Thread 125) infrun: proceed (addr=0xffffffff, signal=GDB_SIGNAL_DEFAULT, step=0) infrun: resume (step=1, signal=GDB_SIGNAL_0), trap_expected=1, current thread [Thread 142] at 0x10684838 infrun: wait_for_inferior () infrun: target_wait (-1, status) = infrun: 42000 [Thread 146], infrun: status->kind = stopped, signal = GDB_SIGNAL_REALTIME_34 infrun: infwait_normal_state infrun: TARGET_WAITKIND_STOPPED infrun: stop_pc = 0x10a187f4 infrun: context switch infrun: Switching context from Thread 142 to Thread 146 infrun: random signal (GDB_SIGNAL_REALTIME_34) infrun: switching back to stepped thread infrun: Switching context from Thread 146 to Thread 142 infrun: resume (step=1, signal=GDB_SIGNAL_0), trap_expected=1, current thread [Thread 142] at 0x10684838 infrun: prepare_to_wait [...handling of similar events for threads 145, 144 and 143 snipped...] infrun: prepare_to_wait infrun: target_wait (-1, status) = infrun: 42000 [Thread 146], infrun: status->kind = stopped, signal = GDB_SIGNAL_REALTIME_34 infrun: infwait_normal_state infrun: TARGET_WAITKIND_STOPPED infrun: stop_pc = 0x10a187f4 infrun: context switch infrun: Switching context from Thread 142 to Thread 146 ../../src/gdb/inline-frame.c:339: internal-error: skip_inline_frames: Assertion `find_inline_frame_state (ptid) == NULL' failed. What happens is that GDB keeps sending requests to resume one specific thread, and keeps receiving debugging events for other threads. Things break down when the one of the other threads receives a debug event for the second time (thread 146 in the example above). This patch fixes the problem by making sure that only one thread gets resumed, thus preventing the other threads from generating an unexpected event. gdb/gdbserver/ChangeLog: * lynx-low.c (lynx_resume): Use PTRACE_SINGLESTEP_ONE if N == 1. Remove FIXME comment about assumption about N.
2014-11-26 00:12:10 +08:00
const int request
= (resume_info[0].kind == resume_step
? (n == 1 ? PTRACE_SINGLESTEP_ONE : PTRACE_SINGLESTEP)
: PTRACE_CONT);
const int signal = resume_info[0].sig;
/* If given a minus_one_ptid, then try using the current_process'
gdbserver/lynx178: spurious SIG61 signal when resuming inferior. On ppc-lynx178, resuming the execution of a program after hitting a breakpoint sometimes triggers a spurious SIG61 event: (gdb) cont Continuing. Program received signal SIG61, Real-time event 61. [Switching to Thread 39] 0x10002324 in a_test.task1 (<_task>=0x3ffff774) at a_test.adb:30 30 select -- Task 1 From this point on, continuing again lets the signal kill the program. Using "signal 0" or configuring GDB to discard the signal does not help either, as the program immediately reports the same signal again. What happens is the following: - GDB sends a single-step order to gdbserver: $vCont;s:31 This tells GDBserver to do a step using thread 0x31=49. GDBserver does the step, and thread 49 receives the SIGTRAP indicating that the step has finished. - GDB then sends a "continue", but this time does not specify which thread to continue: $vCont;c GDBserver uses an arbitrary thread's ptid to resume the program's execution (the current_inferior's ptid was chosen for that). See lynx-low.c:lynx_resume: if (ptid_equal (ptid, minus_one_ptid)) ptid = thread_to_gdb_id (current_inferior); So far on all LynxOS platforms, this has been good enough. But not so on LynxOS 178. If the ptid used to resume the execution is not the same as the thread that did the step, we get the weird signal. This patch fixes the problem by saving the ptid of the thread that last caused an event, received during a call to waitpid. The ptid is saved in per-process private data. gdb/gdbserver/ChangeLog: * lynx-low.c (struct process_info_private): New type. (lynx_add_process): New function. (lynx_create_inferior, lynx_attach): Replace calls to add_process by calls to lynx_add_process. (lynx_resume): If PTID is null, then try using current_process()->private->last_wait_event_ptid. Add comments. (lynx_clear_inferiors): Delete. The contents of that function has been inlined in lynx_mourn; (lynx_wait_1): Save the ptid in the process's private data. (lynx_mourn): Free the process' private data. Replace call to lynx_clear_inferiors by call to clear_inferiors.
2013-05-17 14:47:44 +08:00
private->last_wait_event_ptid. On most LynxOS versions,
using any of the process' thread works well enough, but
LynxOS 178 is a little more sensitive, and triggers some
unexpected signals (Eg SIG61) when we resume the inferior
using a different thread. */
2018-06-12 04:45:22 +08:00
if (ptid == minus_one_ptid)
ptid = current_process()->priv->last_wait_event_ptid;
gdbserver/lynx178: spurious SIG61 signal when resuming inferior. On ppc-lynx178, resuming the execution of a program after hitting a breakpoint sometimes triggers a spurious SIG61 event: (gdb) cont Continuing. Program received signal SIG61, Real-time event 61. [Switching to Thread 39] 0x10002324 in a_test.task1 (<_task>=0x3ffff774) at a_test.adb:30 30 select -- Task 1 From this point on, continuing again lets the signal kill the program. Using "signal 0" or configuring GDB to discard the signal does not help either, as the program immediately reports the same signal again. What happens is the following: - GDB sends a single-step order to gdbserver: $vCont;s:31 This tells GDBserver to do a step using thread 0x31=49. GDBserver does the step, and thread 49 receives the SIGTRAP indicating that the step has finished. - GDB then sends a "continue", but this time does not specify which thread to continue: $vCont;c GDBserver uses an arbitrary thread's ptid to resume the program's execution (the current_inferior's ptid was chosen for that). See lynx-low.c:lynx_resume: if (ptid_equal (ptid, minus_one_ptid)) ptid = thread_to_gdb_id (current_inferior); So far on all LynxOS platforms, this has been good enough. But not so on LynxOS 178. If the ptid used to resume the execution is not the same as the thread that did the step, we get the weird signal. This patch fixes the problem by saving the ptid of the thread that last caused an event, received during a call to waitpid. The ptid is saved in per-process private data. gdb/gdbserver/ChangeLog: * lynx-low.c (struct process_info_private): New type. (lynx_add_process): New function. (lynx_create_inferior, lynx_attach): Replace calls to add_process by calls to lynx_add_process. (lynx_resume): If PTID is null, then try using current_process()->private->last_wait_event_ptid. Add comments. (lynx_clear_inferiors): Delete. The contents of that function has been inlined in lynx_mourn; (lynx_wait_1): Save the ptid in the process's private data. (lynx_mourn): Free the process' private data. Replace call to lynx_clear_inferiors by call to clear_inferiors.
2013-05-17 14:47:44 +08:00
/* The ptid might still be minus_one_ptid; this can happen between
the moment we create the inferior or attach to a process, and
the moment we resume its execution for the first time. It is
Rename current_inferior as current_thread in gdbserver GDB has a function named "current_inferior" and gdbserver has a global variable named "current_inferior", but the two are not equivalent; indeed, gdbserver does not have any real equivalent of what GDB calls an inferior. What gdbserver's "current_inferior" is actually pointing to is a structure describing the current thread. This commit renames current_inferior as current_thread in gdbserver to clarify this. It also renames the function "set_desired_inferior" to "set_desired_thread" and renames various local variables from foo_inferior to foo_thread. gdb/gdbserver/ChangeLog: * inferiors.h (current_inferior): Renamed as... (current_thread): New variable. All uses updated. * linux-low.c (get_pc): Renamed saved_inferior as saved_thread. (maybe_move_out_of_jump_pad): Likewise. (cancel_breakpoint): Likewise. (linux_low_filter_event): Likewise. (wait_for_sigstop): Likewise. (linux_resume_one_lwp): Likewise. (need_step_over_p): Likewise. (start_step_over): Likewise. (linux_stabilize_threads): Renamed save_inferior as saved_thread. * linux-x86-low.c (x86_linux_update_xmltarget): Likewise. * proc-service.c (ps_lgetregs): Renamed reg_inferior as reg_thread and save_inferior as saved_thread. * regcache.c (get_thread_regcache): Renamed saved_inferior as saved_thread. (regcache_invalidate_thread): Likewise. * remote-utils.c (prepare_resume_reply): Likewise. * thread-db.c (thread_db_get_tls_address): Likewise. (disable_thread_event_reporting): Likewise. (remove_thread_event_breakpoints): Likewise. * tracepoint.c (gdb_agent_about_to_close): Renamed save_inferior as saved_thread. * target.h (set_desired_inferior): Renamed as... (set_desired_thread): New declaration. All uses updated. * server.c (myresume): Updated comment to reference thread instead of inferior. (handle_serial_event): Likewise. (handle_target_event): Likewise.
2014-09-10 17:37:11 +08:00
fine to use the current_thread's ptid in those cases. */
2018-06-12 04:45:22 +08:00
if (ptid == minus_one_ptid)
ptid = ptid_of (current_thread);
Remove ptid_get_pid This removes ptid_get_pid in favor of calling the ptid_t::pid method. gdb/ChangeLog 2018-07-03 Tom Tromey <tom@tromey.com> * common/ptid.c (ptid_get_pid): Remove. * common/ptid.h (ptid_get_pid): Don't declare. * aarch64-linux-nat.c: Update. * ada-lang.c: Update. * aix-thread.c: Update. * alpha-bsd-nat.c: Update. * amd64-fbsd-nat.c: Update. * amd64-linux-nat.c: Update. * arm-linux-nat.c: Update. * arm-nbsd-nat.c: Update. * auxv.c: Update. * break-catch-syscall.c: Update. * breakpoint.c: Update. * bsd-uthread.c: Update. * corelow.c: Update. * ctf.c: Update. * darwin-nat.c: Update. * fbsd-nat.c: Update. * fbsd-tdep.c: Update. * gcore.c: Update. * gnu-nat.c: Update. * hppa-nbsd-nat.c: Update. * hppa-obsd-nat.c: Update. * i386-fbsd-nat.c: Update. * ia64-linux-nat.c: Update. * inf-ptrace.c: Update. * infcmd.c: Update. * inferior.c: Update. * inferior.h: Update. * inflow.c: Update. * infrun.c: Update. * linux-fork.c: Update. * linux-nat.c: Update. * linux-tdep.c: Update. * linux-thread-db.c: Update. * m68k-bsd-nat.c: Update. * mi/mi-interp.c: Update. * mi/mi-main.c: Update. * mips-linux-nat.c: Update. * mips-nbsd-nat.c: Update. * mips64-obsd-nat.c: Update. * nat/aarch64-linux-hw-point.c: Update. * nat/aarch64-linux.c: Update. * nat/linux-btrace.c: Update. * nat/linux-osdata.c: Update. * nat/linux-procfs.c: Update. * nat/x86-linux-dregs.c: Update. * nto-procfs.c: Update. * obsd-nat.c: Update. * ppc-linux-nat.c: Update. * ppc-nbsd-nat.c: Update. * ppc-obsd-nat.c: Update. * proc-service.c: Update. * procfs.c: Update. * python/py-inferior.c: Update. * python/py-infthread.c: Update. * ravenscar-thread.c: Update. * record.c: Update. * remote-sim.c: Update. * remote.c: Update. * rs6000-nat.c: Update. * s390-linux-nat.c: Update. * sh-nbsd-nat.c: Update. * sol-thread.c: Update. * sparc-nat.c: Update. * sparc64-tdep.c: Update. * spu-linux-nat.c: Update. * spu-tdep.c: Update. * target-debug.h: Update. * target.c: Update. * thread.c: Update. * tid-parse.c: Update. * tracefile-tfile.c: Update. * vax-bsd-nat.c: Update. * windows-nat.c: Update. * x86-linux-nat.c: Update. * x86-nat.c: Update. gdb/gdbserver/ChangeLog 2018-07-03 Tom Tromey <tom@tromey.com> * linux-low.c: Update. * linux-mips-low.c: Update. * lynx-low.c: Update. * mem-break.c: Update. * nto-low.c: Update. * remote-utils.c: Update. * server.c: Update. * spu-low.c: Update. * target.c: Update. * tracepoint.c: Update.
2018-06-12 02:05:27 +08:00
regcache_invalidate_pid (ptid.pid ());
errno = 0;
lynx_ptrace (request, ptid, 1, signal, 0);
if (errno)
perror_with_name ("ptrace");
}
/* Resume the execution of the given PTID. */
static void
lynx_continue (ptid_t ptid)
{
struct thread_resume resume_info;
resume_info.thread = ptid;
resume_info.kind = resume_continue;
resume_info.sig = 0;
lynx_resume (&resume_info, 1);
}
/* A wrapper around waitpid that handles the various idiosyncrasies
of LynxOS' waitpid. */
static int
lynx_waitpid (int pid, int *stat_loc)
{
int ret = 0;
while (1)
{
ret = waitpid (pid, stat_loc, WNOHANG);
if (ret < 0)
{
/* An ECHILD error is not indicative of a real problem.
It happens for instance while waiting for the inferior
to stop after attaching to it. */
if (errno != ECHILD)
perror_with_name ("waitpid (WNOHANG)");
}
if (ret > 0)
break;
/* No event with WNOHANG. See if there is one with WUNTRACED. */
ret = waitpid (pid, stat_loc, WNOHANG | WUNTRACED);
if (ret < 0)
{
/* An ECHILD error is not indicative of a real problem.
It happens for instance while waiting for the inferior
to stop after attaching to it. */
if (errno != ECHILD)
perror_with_name ("waitpid (WNOHANG|WUNTRACED)");
}
if (ret > 0)
break;
usleep (1000);
}
return ret;
}
/* Implement the wait target_ops method. */
static ptid_t
lynx_wait_1 (ptid_t ptid, struct target_waitstatus *status, int options)
{
int pid;
int ret;
int wstat;
ptid_t new_ptid;
2018-06-12 04:45:22 +08:00
if (ptid == minus_one_ptid)
pid = lynx_ptid_get_pid (ptid_of (current_thread));
else
pid = BUILDPID (lynx_ptid_get_pid (ptid), lynx_ptid_get_tid (ptid));
retry:
ret = lynx_waitpid (pid, &wstat);
new_ptid = lynx_ptid_t (ret, ((union wait *) &wstat)->w_tid);
find_process_pid (ret)->priv->last_wait_event_ptid = new_ptid;
/* If this is a new thread, then add it now. The reason why we do
this here instead of when handling new-thread events is because
we need to add the thread associated to the "main" thread - even
for non-threaded applications where the new-thread events are not
generated. */
if (!find_thread_ptid (new_ptid))
{
lynx_debug ("New thread: (pid = %d, tid = %d)",
lynx_ptid_get_pid (new_ptid), lynx_ptid_get_tid (new_ptid));
add_thread (new_ptid, NULL);
}
if (WIFSTOPPED (wstat))
{
status->kind = TARGET_WAITKIND_STOPPED;
status->value.integer = gdb_signal_from_host (WSTOPSIG (wstat));
lynx_debug ("process stopped with signal: %d",
status->value.integer);
}
else if (WIFEXITED (wstat))
{
status->kind = TARGET_WAITKIND_EXITED;
status->value.integer = WEXITSTATUS (wstat);
lynx_debug ("process exited with code: %d", status->value.integer);
}
else if (WIFSIGNALED (wstat))
{
status->kind = TARGET_WAITKIND_SIGNALLED;
status->value.integer = gdb_signal_from_host (WTERMSIG (wstat));
lynx_debug ("process terminated with code: %d",
status->value.integer);
}
else
{
/* Not sure what happened if we get here, or whether we can
in fact get here. But if we do, handle the event the best
we can. */
status->kind = TARGET_WAITKIND_STOPPED;
status->value.integer = gdb_signal_from_host (0);
lynx_debug ("unknown event ????");
}
/* SIGTRAP events are generated for situations other than single-step/
breakpoint events (Eg. new-thread events). Handle those other types
of events, and resume the execution if necessary. */
if (status->kind == TARGET_WAITKIND_STOPPED
gdb/ 2012-05-24 Pedro Alves <palves@redhat.com> PR gdb/7205 Replace TARGET_SIGNAL_ with GDB_SIGNAL_ throughout. gdb/gdbserver/ 2012-05-24 Pedro Alves <palves@redhat.com> PR gdb/7205 Replace TARGET_SIGNAL_ with GDB_SIGNAL_ throughout. include/gdb/ 2012-05-24 Pedro Alves <palves@redhat.com> PR gdb/7205 * gdb/signals.def: Replace TARGET_SIGNAL_ with GDB_SIGNAL_ throughout. sim/arm/ 2012-05-24 Pedro Alves <palves@redhat.com> PR gdb/7205 Replace TARGET_SIGNAL_ with GDB_SIGNAL_ throughout. sim/avr/ 2012-05-24 Pedro Alves <palves@redhat.com> PR gdb/7205 Replace TARGET_SIGNAL_ with GDB_SIGNAL_ throughout. sim/common/ 2012-05-24 Pedro Alves <palves@redhat.com> PR gdb/7205 Replace TARGET_SIGNAL_ with GDB_SIGNAL_ throughout. sim/cr16/ 2012-05-24 Pedro Alves <palves@redhat.com> PR gdb/7205 Replace TARGET_SIGNAL_ with GDB_SIGNAL_ throughout. sim/d10v/ 2012-05-24 Pedro Alves <palves@redhat.com> PR gdb/7205 Replace TARGET_SIGNAL_ with GDB_SIGNAL_ throughout. sim/erc32/ 2012-05-24 Pedro Alves <palves@redhat.com> PR gdb/7205 Replace TARGET_SIGNAL_ with GDB_SIGNAL_ throughout. sim/m32c/ 2012-05-24 Pedro Alves <palves@redhat.com> PR gdb/7205 Replace TARGET_SIGNAL_ with GDB_SIGNAL_ throughout. sim/ppc/ 2012-05-24 Pedro Alves <palves@redhat.com> PR gdb/7205 Replace TARGET_SIGNAL_ with GDB_SIGNAL_ throughout. sim/rl78/ 2012-05-24 Pedro Alves <palves@redhat.com> PR gdb/7205 Replace TARGET_SIGNAL_ with GDB_SIGNAL_ throughout. sim/rx/ 2012-05-24 Pedro Alves <palves@redhat.com> PR gdb/7205 Replace TARGET_SIGNAL_ with GDB_SIGNAL_ throughout.
2012-05-25 00:51:47 +08:00
&& status->value.integer == GDB_SIGNAL_TRAP)
{
const int realsig = lynx_ptrace (PTRACE_GETTRACESIG, new_ptid, 0, 0, 0);
lynx_debug ("(realsig = %d)", realsig);
switch (realsig)
{
case SIGNEWTHREAD:
/* We just added the new thread above. No need to do anything
further. Just resume the execution again. */
lynx_continue (new_ptid);
goto retry;
case SIGTHREADEXIT:
remove_thread (find_thread_ptid (new_ptid));
lynx_continue (new_ptid);
goto retry;
}
}
return new_ptid;
}
/* A wrapper around lynx_wait_1 that also prints debug traces when
such debug traces have been activated. */
static ptid_t
lynx_wait (ptid_t ptid, struct target_waitstatus *status, int options)
{
ptid_t new_ptid;
lynx_debug ("lynx_wait (pid = %d, tid = %ld)",
lynx_ptid_get_pid (ptid), lynx_ptid_get_tid (ptid));
new_ptid = lynx_wait_1 (ptid, status, options);
lynx_debug (" -> (pid=%d, tid=%ld, status->kind = %d)",
lynx_ptid_get_pid (new_ptid), lynx_ptid_get_tid (new_ptid),
status->kind);
return new_ptid;
}
/* Implement the kill target_ops method. */
static int
lynx_kill (process_info *process)
{
ptid_t ptid = lynx_ptid_t (process->pid, 0);
struct target_waitstatus status;
lynx_ptrace (PTRACE_KILL, ptid, 0, 0, 0);
lynx_wait (ptid, &status, 0);
the_target->mourn (process);
return 0;
}
/* Implement the detach target_ops method. */
static int
lynx_detach (process_info *process)
{
ptid_t ptid = lynx_ptid_t (process->pid, 0);
lynx_ptrace (PTRACE_DETACH, ptid, 0, 0, 0);
the_target->mourn (process);
return 0;
}
/* Implement the mourn target_ops method. */
static void
lynx_mourn (struct process_info *proc)
{
for_each_thread (proc->pid, remove_thread);
[lynxos] gdbserver hangs when killing inferior from GDB With any program under GDBserver control on LynxOS, killing the program from the debugger (using the "kill" command) causes GDBserver to properly kill the inferior but GDBserver then hangs. This change of behavior occured after the following change was applied: commit f0ea042932e6922c90df3fd0001497d287b97677 Date: Mon Nov 30 16:05:27 2015 +0000 Subject: gdbserver: don't exit until GDB disconnects One of the changes introduced by the commit above is that process_serial_event no longer calls exit after handling the vKill packet. Instead, what happens is that we wait until captured_main finds that we no longer have any inferior to debug, at which point it throws_quit. This (normal) exception is then expected to propagate all the way to the exception handle in function "main", which calls exit. However, before the exception gets propagated, the cleanups are first executed, and one of the cleanups in question is detach_or_kill_for_exit_cleanup, which was put in place by captured_main. detach_or_kill_for_exit_cleanup is basically a wrapper around detach_or_kill_for_exit, which iterates over all inferiors, and kills them all. In our case, we have only one inferior, which we have already killed during the handling for the "vKill" packet. Unfortunately, we did not properly clean our internal data for that inferior up, and so detach_or_kill_for_exit thinks that we still have one inferior, and therefore tries to kill it. This results in lynx_kill being called, doing the following: lynx_ptrace (PTRACE_KILL, ptid, 0, 0, 0); lynx_wait (ptid, &status, 0); the_target->mourn (process); The hang is caused by the call to lynx_wait, which waits for an event from a process which does not exist... This patch fixes the issue by enhancing lynx_mourn to clean the threads and process list up. gdb/gdbserver/ChangeLog: * lynx-low.c (lynx_delete_thread_callback): New function. (lynx_mourn): Properly delete our process and all of its threads. Remove call to clear_inferiors.
2015-12-20 22:39:40 +08:00
gdbserver/lynx178: spurious SIG61 signal when resuming inferior. On ppc-lynx178, resuming the execution of a program after hitting a breakpoint sometimes triggers a spurious SIG61 event: (gdb) cont Continuing. Program received signal SIG61, Real-time event 61. [Switching to Thread 39] 0x10002324 in a_test.task1 (<_task>=0x3ffff774) at a_test.adb:30 30 select -- Task 1 From this point on, continuing again lets the signal kill the program. Using "signal 0" or configuring GDB to discard the signal does not help either, as the program immediately reports the same signal again. What happens is the following: - GDB sends a single-step order to gdbserver: $vCont;s:31 This tells GDBserver to do a step using thread 0x31=49. GDBserver does the step, and thread 49 receives the SIGTRAP indicating that the step has finished. - GDB then sends a "continue", but this time does not specify which thread to continue: $vCont;c GDBserver uses an arbitrary thread's ptid to resume the program's execution (the current_inferior's ptid was chosen for that). See lynx-low.c:lynx_resume: if (ptid_equal (ptid, minus_one_ptid)) ptid = thread_to_gdb_id (current_inferior); So far on all LynxOS platforms, this has been good enough. But not so on LynxOS 178. If the ptid used to resume the execution is not the same as the thread that did the step, we get the weird signal. This patch fixes the problem by saving the ptid of the thread that last caused an event, received during a call to waitpid. The ptid is saved in per-process private data. gdb/gdbserver/ChangeLog: * lynx-low.c (struct process_info_private): New type. (lynx_add_process): New function. (lynx_create_inferior, lynx_attach): Replace calls to add_process by calls to lynx_add_process. (lynx_resume): If PTID is null, then try using current_process()->private->last_wait_event_ptid. Add comments. (lynx_clear_inferiors): Delete. The contents of that function has been inlined in lynx_mourn; (lynx_wait_1): Save the ptid in the process's private data. (lynx_mourn): Free the process' private data. Replace call to lynx_clear_inferiors by call to clear_inferiors.
2013-05-17 14:47:44 +08:00
/* Free our private data. */
free (proc->priv);
proc->priv = NULL;
gdbserver/lynx178: spurious SIG61 signal when resuming inferior. On ppc-lynx178, resuming the execution of a program after hitting a breakpoint sometimes triggers a spurious SIG61 event: (gdb) cont Continuing. Program received signal SIG61, Real-time event 61. [Switching to Thread 39] 0x10002324 in a_test.task1 (<_task>=0x3ffff774) at a_test.adb:30 30 select -- Task 1 From this point on, continuing again lets the signal kill the program. Using "signal 0" or configuring GDB to discard the signal does not help either, as the program immediately reports the same signal again. What happens is the following: - GDB sends a single-step order to gdbserver: $vCont;s:31 This tells GDBserver to do a step using thread 0x31=49. GDBserver does the step, and thread 49 receives the SIGTRAP indicating that the step has finished. - GDB then sends a "continue", but this time does not specify which thread to continue: $vCont;c GDBserver uses an arbitrary thread's ptid to resume the program's execution (the current_inferior's ptid was chosen for that). See lynx-low.c:lynx_resume: if (ptid_equal (ptid, minus_one_ptid)) ptid = thread_to_gdb_id (current_inferior); So far on all LynxOS platforms, this has been good enough. But not so on LynxOS 178. If the ptid used to resume the execution is not the same as the thread that did the step, we get the weird signal. This patch fixes the problem by saving the ptid of the thread that last caused an event, received during a call to waitpid. The ptid is saved in per-process private data. gdb/gdbserver/ChangeLog: * lynx-low.c (struct process_info_private): New type. (lynx_add_process): New function. (lynx_create_inferior, lynx_attach): Replace calls to add_process by calls to lynx_add_process. (lynx_resume): If PTID is null, then try using current_process()->private->last_wait_event_ptid. Add comments. (lynx_clear_inferiors): Delete. The contents of that function has been inlined in lynx_mourn; (lynx_wait_1): Save the ptid in the process's private data. (lynx_mourn): Free the process' private data. Replace call to lynx_clear_inferiors by call to clear_inferiors.
2013-05-17 14:47:44 +08:00
[lynxos] gdbserver hangs when killing inferior from GDB With any program under GDBserver control on LynxOS, killing the program from the debugger (using the "kill" command) causes GDBserver to properly kill the inferior but GDBserver then hangs. This change of behavior occured after the following change was applied: commit f0ea042932e6922c90df3fd0001497d287b97677 Date: Mon Nov 30 16:05:27 2015 +0000 Subject: gdbserver: don't exit until GDB disconnects One of the changes introduced by the commit above is that process_serial_event no longer calls exit after handling the vKill packet. Instead, what happens is that we wait until captured_main finds that we no longer have any inferior to debug, at which point it throws_quit. This (normal) exception is then expected to propagate all the way to the exception handle in function "main", which calls exit. However, before the exception gets propagated, the cleanups are first executed, and one of the cleanups in question is detach_or_kill_for_exit_cleanup, which was put in place by captured_main. detach_or_kill_for_exit_cleanup is basically a wrapper around detach_or_kill_for_exit, which iterates over all inferiors, and kills them all. In our case, we have only one inferior, which we have already killed during the handling for the "vKill" packet. Unfortunately, we did not properly clean our internal data for that inferior up, and so detach_or_kill_for_exit thinks that we still have one inferior, and therefore tries to kill it. This results in lynx_kill being called, doing the following: lynx_ptrace (PTRACE_KILL, ptid, 0, 0, 0); lynx_wait (ptid, &status, 0); the_target->mourn (process); The hang is caused by the call to lynx_wait, which waits for an event from a process which does not exist... This patch fixes the issue by enhancing lynx_mourn to clean the threads and process list up. gdb/gdbserver/ChangeLog: * lynx-low.c (lynx_delete_thread_callback): New function. (lynx_mourn): Properly delete our process and all of its threads. Remove call to clear_inferiors.
2015-12-20 22:39:40 +08:00
remove_process (proc);
}
/* Implement the join target_ops method. */
static void
lynx_join (int pid)
{
/* The PTRACE_DETACH is sufficient to detach from the process.
So no need to do anything extra. */
}
/* Implement the thread_alive target_ops method. */
static int
lynx_thread_alive (ptid_t ptid)
{
/* The list of threads is updated at the end of each wait, so it
should be up to date. No need to re-fetch it. */
return (find_thread_ptid (ptid) != NULL);
}
/* Implement the fetch_registers target_ops method. */
static void
lynx_fetch_registers (struct regcache *regcache, int regno)
{
struct lynx_regset_info *regset = lynx_target_regsets;
ptid_t inferior_ptid = ptid_of (current_thread);
lynx_debug ("lynx_fetch_registers (regno = %d)", regno);
while (regset->size >= 0)
{
char *buf;
int res;
buf = xmalloc (regset->size);
res = lynx_ptrace (regset->get_request, inferior_ptid, (int) buf, 0, 0);
if (res < 0)
perror ("ptrace");
regset->store_function (regcache, buf);
free (buf);
regset++;
}
}
/* Implement the store_registers target_ops method. */
static void
lynx_store_registers (struct regcache *regcache, int regno)
{
struct lynx_regset_info *regset = lynx_target_regsets;
ptid_t inferior_ptid = ptid_of (current_thread);
lynx_debug ("lynx_store_registers (regno = %d)", regno);
while (regset->size >= 0)
{
char *buf;
int res;
buf = xmalloc (regset->size);
res = lynx_ptrace (regset->get_request, inferior_ptid, (int) buf, 0, 0);
if (res == 0)
{
/* Then overlay our cached registers on that. */
regset->fill_function (regcache, buf);
/* Only now do we write the register set. */
res = lynx_ptrace (regset->set_request, inferior_ptid, (int) buf,
0, 0);
}
if (res < 0)
perror ("ptrace");
free (buf);
regset++;
}
}
/* Implement the read_memory target_ops method. */
static int
lynx_read_memory (CORE_ADDR memaddr, unsigned char *myaddr, int len)
{
/* On LynxOS, memory reads needs to be performed in chunks the size
of int types, and they should also be aligned accordingly. */
int buf;
const int xfer_size = sizeof (buf);
CORE_ADDR addr = memaddr & -(CORE_ADDR) xfer_size;
ptid_t inferior_ptid = ptid_of (current_thread);
while (addr < memaddr + len)
{
int skip = 0;
int truncate = 0;
errno = 0;
if (addr < memaddr)
skip = memaddr - addr;
if (addr + xfer_size > memaddr + len)
truncate = addr + xfer_size - memaddr - len;
buf = lynx_ptrace (PTRACE_PEEKTEXT, inferior_ptid, addr, 0, 0);
if (errno)
return errno;
memcpy (myaddr + (addr - memaddr) + skip, (gdb_byte *) &buf + skip,
xfer_size - skip - truncate);
addr += xfer_size;
}
return 0;
}
/* Implement the write_memory target_ops method. */
static int
lynx_write_memory (CORE_ADDR memaddr, const unsigned char *myaddr, int len)
{
/* On LynxOS, memory writes needs to be performed in chunks the size
of int types, and they should also be aligned accordingly. */
int buf;
const int xfer_size = sizeof (buf);
CORE_ADDR addr = memaddr & -(CORE_ADDR) xfer_size;
ptid_t inferior_ptid = ptid_of (current_thread);
while (addr < memaddr + len)
{
int skip = 0;
int truncate = 0;
if (addr < memaddr)
skip = memaddr - addr;
if (addr + xfer_size > memaddr + len)
truncate = addr + xfer_size - memaddr - len;
if (skip > 0 || truncate > 0)
[gdbserver/lynx] spurious failure to write in inferior memory We noticed the following error on ppc-lynx178, using just about any program: (gdb) tar remote mytarget:4444 Remote debugging using mytarget:4444 0x000100c8 in _start () (gdb) b try Breakpoint 1 at 0x10844: file try.adb, line 11. (gdb) cont Continuing. !!!-> Cannot remove breakpoints because program is no longer writable. !!!-> Further execution is probably impossible. Breakpoint 1, try () at try.adb:11 11 Local : Integer := 18; And, of course, trying to continue yielded the expected outcome: (gdb) c Continuing. warning: Error removing breakpoint 1 Cannot remove breakpoints because program is no longer writable. Further execution is probably impossible. It turns out that the problem is caused by an intentional test against a variable with an undefined value. After GDB receives notification of the inferior stopping, it tries to remove the breakpoint by sending a memory-write packet ("X10844,4:9 "). This leads us to lynx_write_memory, where it tries to split the memory-write into chunks of 4 bytes. And, in order to handle writes which are not aligned on word boundaries, we have the following code: if (skip > 0 || truncate > 0) /* We need to read the memory at this address in order to preserve the data that we are not overwriting. */ lynx_read_memory (addr, (unsigned char *) &buf, xfer_size); if (errno) return errno; (the comment explains what the code is about). Unfortunately, the not-so-glaring error that we've made here is that we're checking ERRNO regardless of whether we've called lynx_read_memory. In our case, because we are writing 4 bytes aligned on a word boundary, we do not call lynx_read_memory and therefore test an ERRNO with an undefined value. gdb/gdbserver/ChangeLog: * lynx-low.c (lynx_write_memory): Put lynx_read_memory and corresponding ERRNO check in same block.
2014-09-20 06:00:07 +08:00
{
/* We need to read the memory at this address in order to preserve
the data that we are not overwriting. */
lynx_read_memory (addr, (unsigned char *) &buf, xfer_size);
if (errno)
return errno;
}
memcpy ((gdb_byte *) &buf + skip, myaddr + (addr - memaddr) + skip,
xfer_size - skip - truncate);
errno = 0;
lynx_ptrace (PTRACE_POKETEXT, inferior_ptid, addr, buf, 0);
if (errno)
return errno;
addr += xfer_size;
}
return 0;
}
/* Implement the kill_request target_ops method. */
static void
lynx_request_interrupt (void)
{
ptid_t inferior_ptid = ptid_of (get_first_thread ());
kill (lynx_ptid_get_pid (inferior_ptid), SIGINT);
}
/* The LynxOS target_ops vector. */
static struct target_ops lynx_target_ops = {
lynx_create_inferior,
NULL, /* post_create_inferior */
lynx_attach,
lynx_kill,
lynx_detach,
lynx_mourn,
lynx_join,
lynx_thread_alive,
lynx_resume,
lynx_wait,
lynx_fetch_registers,
lynx_store_registers,
NULL, /* prepare_to_access_memory */
NULL, /* done_accessing_memory */
lynx_read_memory,
lynx_write_memory,
NULL, /* look_up_symbols */
lynx_request_interrupt,
NULL, /* read_auxv */
[GDBserver] Make Zx/zx packet handling idempotent. This patch fixes hardware breakpoint regressions exposed by my fix for "PR breakpoints/7143 - Watchpoint does not trigger when first set", at https://sourceware.org/ml/gdb-patches/2014-03/msg00167.html The testsuite caught them on Linux/x86_64, at least. gdb.sum: gdb.sum: FAIL: gdb.base/hbreak2.exp: next over recursive call FAIL: gdb.base/hbreak2.exp: backtrace from factorial(5.1) FAIL: gdb.base/hbreak2.exp: continue until exit at recursive next test gdb.log: (gdb) next Program received signal SIGTRAP, Trace/breakpoint trap. factorial (value=4) at ../../../src/gdb/testsuite/gdb.base/break.c:113 113 if (value > 1) { /* set breakpoint 7 here */ (gdb) FAIL: gdb.base/hbreak2.exp: next over recursive call Actually, that patch just exposed a latent issue to "breakpoints always-inserted off" mode, not really caused it. After that patch, GDB no longer removes breakpoints at each internal event, thus making some scenarios behave like breakpoint always-inserted on. The bug is easy to trigger with always-inserted on. The issue is that since the target-side breakpoint conditions support, if the stub/server supports evaluating breakpoint conditions on the target side, then GDB is sending duplicate Zx packets to the target without removing them before, and GDBserver is not really expecting that for Z packets other than Z0/z0. E.g., with "set breakpoint always-inserted on" and "set debug remote 1": (gdb) b main Sending packet: $m410943,1#ff...Packet received: 48 Breakpoint 4 at 0x410943: file ../../../src/gdb/gdbserver/server.c, line 3028. Sending packet: $Z0,410943,1#48...Packet received: OK ^^^^^^^^^^^^ (gdb) b main Note: breakpoint 4 also set at pc 0x410943. Sending packet: $m410943,1#ff...Packet received: 48 Breakpoint 5 at 0x410943: file ../../../src/gdb/gdbserver/server.c, line 3028. Sending packet: $Z0,410943,1#48...Packet received: OK ^^^^^^^^^^^^ (gdb) b main Note: breakpoints 4 and 5 also set at pc 0x410943. Sending packet: $m410943,1#ff...Packet received: 48 Breakpoint 6 at 0x410943: file ../../../src/gdb/gdbserver/server.c, line 3028. Sending packet: $Z0,410943,1#48...Packet received: OK ^^^^^^^^^^^^ (gdb) del Delete all breakpoints? (y or n) y Sending packet: $Z0,410943,1#48...Packet received: OK Sending packet: $Z0,410943,1#48...Packet received: OK Sending packet: $z0,410943,1#68...Packet received: OK And for Z1, similarly: (gdb) hbreak main Sending packet: $m410943,1#ff...Packet received: 48 Hardware assisted breakpoint 4 at 0x410943: file ../../../src/gdb/gdbserver/server.c, line 3028. Sending packet: $Z1,410943,1#49...Packet received: OK ^^^^^^^^^^^^ Packet Z1 (hardware-breakpoint) is supported (gdb) hbreak main Note: breakpoint 4 also set at pc 0x410943. Sending packet: $m410943,1#ff...Packet received: 48 Hardware assisted breakpoint 5 at 0x410943: file ../../../src/gdb/gdbserver/server.c, line 3028. Sending packet: $Z1,410943,1#49...Packet received: OK ^^^^^^^^^^^^ (gdb) hbreak main Note: breakpoints 4 and 5 also set at pc 0x410943. Sending packet: $m410943,1#ff...Packet received: 48 Hardware assisted breakpoint 6 at 0x410943: file ../../../src/gdb/gdbserver/server.c, line 3028. Sending packet: $Z1,410943,1#49...Packet received: OK ^^^^^^^^^^^^ (gdb) del Delete all breakpoints? (y or n) y Sending packet: $Z1,410943,1#49...Packet received: OK ^^^^^^^^^^^^ Sending packet: $Z1,410943,1#49...Packet received: OK ^^^^^^^^^^^^ Sending packet: $z1,410943,1#69...Packet received: OK ^^^^^^^^^^^^ So GDB sent a bunch of Z1 packets, and then when finally removing the breakpoint, only one z1 packet was sent. On the GDBserver side (with monitor set debug-hw-points 1), in the Z1 case, we see: $ ./gdbserver :9999 ./gdbserver Process ./gdbserver created; pid = 8629 Listening on port 9999 Remote debugging from host 127.0.0.1 insert_watchpoint (addr=410943, len=1, type=instruction-execute): CONTROL (DR7): 00000101 STATUS (DR6): 00000000 DR0: addr=0x410943, ref.count=1 DR1: addr=0x0, ref.count=0 DR2: addr=0x0, ref.count=0 DR3: addr=0x0, ref.count=0 insert_watchpoint (addr=410943, len=1, type=instruction-execute): CONTROL (DR7): 00000101 STATUS (DR6): 00000000 DR0: addr=0x410943, ref.count=2 DR1: addr=0x0, ref.count=0 DR2: addr=0x0, ref.count=0 DR3: addr=0x0, ref.count=0 insert_watchpoint (addr=410943, len=1, type=instruction-execute): CONTROL (DR7): 00000101 STATUS (DR6): 00000000 DR0: addr=0x410943, ref.count=3 DR1: addr=0x0, ref.count=0 DR2: addr=0x0, ref.count=0 DR3: addr=0x0, ref.count=0 insert_watchpoint (addr=410943, len=1, type=instruction-execute): CONTROL (DR7): 00000101 STATUS (DR6): 00000000 DR0: addr=0x410943, ref.count=4 DR1: addr=0x0, ref.count=0 DR2: addr=0x0, ref.count=0 DR3: addr=0x0, ref.count=0 insert_watchpoint (addr=410943, len=1, type=instruction-execute): CONTROL (DR7): 00000101 STATUS (DR6): 00000000 DR0: addr=0x410943, ref.count=5 DR1: addr=0x0, ref.count=0 DR2: addr=0x0, ref.count=0 DR3: addr=0x0, ref.count=0 remove_watchpoint (addr=410943, len=1, type=instruction-execute): CONTROL (DR7): 00000101 STATUS (DR6): 00000000 DR0: addr=0x410943, ref.count=4 DR1: addr=0x0, ref.count=0 DR2: addr=0x0, ref.count=0 DR3: addr=0x0, ref.count=0 That's one insert_watchpoint call for each Z1 packet, and then one remove_watchpoint call for the z1 packet. Notice how ref.count increased for each insert_watchpoint call, and then in the end, after GDB told GDBserver to forget about the hardware breakpoint, GDBserver ends with the the first debug register still with ref.count=4! IOW, the hardware breakpoint is left armed on the target, while on the GDB end it's gone. If the program happens to execute 0x410943 afterwards, then the CPU traps, GDBserver reports the trap to GDB, and GDB not having a breakpoint set at that address anymore, reports to the user a spurious SIGTRAP. This is exactly what is happening in the hbreak2.exp test, though in that case, it's a shared library event that triggers a breakpoint_re_set, when breakpoints are still inserted (because nowadays GDB doesn't remove breakpoints while handling internal events), and that recreates breakpoint locations, which likewise forces breakpoint reinsertion and Zx packet resends... That is a lot of bogus Zx duplication that should possibly be addressed on the GDB side. GDB resends Zx packets because the way to change the target-side condition, is to resend the breakpoint to the server with the new condition. (That's an option in the packet: e.g., "Z1,410943,1;X3,220027" for "hbreak main if 0". The packets in the examples above are shorter because the breakpoints don't have conditions attached). GDB doesn't remove the breakpoint first before reinserting it because that'd be bad for non-stop, as it'd open a window where the inferior could miss the breakpoint. The conditions actually haven't changed between the resends, but GDB isn't smart enough to realize that. (TBC, if the target doesn't support target-side conditions, then GDB doesn't trigger these resends (init_bp_location calls mark_breakpoint_location_modified, and that does nothing if condition evaluation is on the host side. The resends are caused by the 'loc->condition_changed = condition_modified.' line.) But, even if GDB was made smarter, GDBserver should really still handle the resends anyway. So target-side conditions also aren't really to blame. The documentation of the Z/z packets says: "To avoid potential problems with duplicate packets, the operations should be implemented in an idempotent way." As such, we may want to fix GDB, but we should definitely fix GDBserver. The fix is a prerequisite for target-side conditions on hardware breakpoints anyway (and while at it, on watchpoints too). GDBserver indeed already treats duplicate Z0 packets in an idempotent way. mem-break.c has the concept of high-level and low-level breakpoints, somewhat similar to GDB's split of breakpoints vs breakpoint locations, and keeps track of multiple breakpoints referencing the same address/location, for the case of an internal GDBserver breakpoint or a tracepoint being set at the same address as a GDB breakpoint. But, it only allows GDB to ever contribute one reference to a software breakpoint location. IOW, if gdbserver sees a Z0 packet for the same address where it already had a GDB breakpoint set, then GDBserver won't create another high-level GDB breakpoint. However, mem-break.c only tracks GDB Z0 breakpoints. The same logic should apply to all kinds of Zx packets. Currently, gdbserver passes down each duplicate Zx (other than Z0) request directly to the target->insert_point routine. The x86 watchpoint support itself refcounts watchpoint / hw breakpoint requests, to handle overlapping watchpoints, and save debug registers. But that code doesn't (and really shouldn't) handle the duplicate requests, assuming that for each insert there will be a corresponding remove. So the fix is to generalize mem-break.c to track all kinds of Zx breakpoints, and filter out duplicates. As mentioned, this ends up adding support for target-side conditions on hardware breakpoints and watchpoints too (though GDB itself doesn't support the latter yet). Probably the least obvious change in the patch is that it kind of turns the breakpoint insert/remove APIs inside out. Before, the target methods were only called for GDB breakpoints. The internal breakpoint set/delete methods inserted memory breakpoints directly bypassing the insert/remove target methods. That's not good when the target should use a debug API to set software breakpoints, instead of relying on GDBserver patching memory with breakpoint instructions, as is the case of NTO. Now removal/insertion of all kinds of breakpoints/watchpoints, either internal, or from GDB, always go through the target methods. The insert_point/remove_point methods no longer get passed a Z packet type, but an internal/raw breakpoint type. They're also passed a pointer to the raw breakpoint itself (note that's still opaque outside mem-break.c), so that insert_memory_breakpoint / remove_memory_breakpoint have access to the breakpoint's shadow buffer. I first tried passing down a new structure based on GDB's "struct bp_target_info" (actually with that name exactly), but then decided against it as unnecessary complication. As software/memory breakpoints work by poking at memory, when setting a GDB Z0 breakpoint (but not internal breakpoints, as those can assume the conditions are already right), we need to tell the target to prepare to access memory (which on Linux means stop threads). If that operation fails, we need to return error to GDB. Seeing an error, if this is the first breakpoint of that type that GDB tries to insert, GDB would then assume the breakpoint type is supported, but it may actually not be. So we need to check whether the type is supported at all before preparing to access memory. And to solve that, the patch adds a new target->supports_z_point_type method that is called before actually trying to insert the breakpoint. Other than that, hopefully the change is more or less obvious. New test added that exercises the hbreak2.exp regression in a more direct way, without relying on a breakpoint re-set happening before main is reached. Tested by building GDBserver for: aarch64-linux-gnu arm-linux-gnueabihf i686-pc-linux-gnu i686-w64-mingw32 m68k-linux-gnu mips-linux-gnu mips-uclinux nios2-linux-gnu powerpc-linux-gnu sh-linux-gnu tilegx-unknown-linux-gnu x86_64-redhat-linux x86_64-w64-mingw32 And also regression tested on x86_64 Fedora 20. gdb/gdbserver/ 2014-05-20 Pedro Alves <palves@redhat.com> * linux-aarch64-low.c (aarch64_insert_point) (aarch64_remove_point): No longer check whether the type is supported here. Adjust to new interface. (the_low_target): Install aarch64_supports_z_point_type as supports_z_point_type method. * linux-arm-low.c (raw_bkpt_type_to_arm_hwbp_type): New function. (arm_linux_hw_point_initialize): Take an enum raw_bkpt_type instead of a Z packet char. Adjust. (arm_supports_z_point_type): New function. (arm_insert_point, arm_remove_point): Adjust to new interface. (the_low_target): Install arm_supports_z_point_type. * linux-crisv32-low.c (cris_supports_z_point_type): New function. (cris_insert_point, cris_remove_point): Adjust to new interface. Don't check whether the type is supported here. (the_low_target): Install cris_supports_z_point_type. * linux-low.c (linux_supports_z_point_type): New function. (linux_insert_point, linux_remove_point): Adjust to new interface. * linux-low.h (struct linux_target_ops) <insert_point, remove_point>: Take an enum raw_bkpt_type instead of a char. Add raw_breakpoint pointer parameter. <supports_z_point_type>: New method. * linux-mips-low.c (mips_supports_z_point_type): New function. (mips_insert_point, mips_remove_point): Adjust to new interface. Use mips_supports_z_point_type. (the_low_target): Install mips_supports_z_point_type. * linux-ppc-low.c (the_low_target): Install NULL as supports_z_point_type method. * linux-s390-low.c (the_low_target): Install NULL as supports_z_point_type method. * linux-sparc-low.c (the_low_target): Install NULL as supports_z_point_type method. * linux-x86-low.c (x86_supports_z_point_type): New function. (x86_insert_point): Adjust to new insert_point interface. Use insert_memory_breakpoint. Adjust to new i386_low_insert_watchpoint interface. (x86_remove_point): Adjust to remove_point interface. Use remove_memory_breakpoint. Adjust to new i386_low_remove_watchpoint interface. (the_low_target): Install x86_supports_z_point_type. * lynx-low.c (lynx_target_ops): Install NULL as supports_z_point_type callback. * nto-low.c (nto_supports_z_point_type): New. (nto_insert_point, nto_remove_point): Adjust to new interface. (nto_target_ops): Install nto_supports_z_point_type. * mem-break.c: Adjust intro comment. (struct raw_breakpoint) <raw_type, size>: New fields. <inserted>: Update comment. <shlib_disabled>: Delete field. (enum bkpt_type) <gdb_breakpoint>: Delete value. <gdb_breakpoint_Z0, gdb_breakpoint_Z1, gdb_breakpoint_Z2, gdb_breakpoint_Z3, gdb_breakpoint_Z4>: New values. (raw_bkpt_type_to_target_hw_bp_type): New function. (find_enabled_raw_code_breakpoint_at): New function. (find_raw_breakpoint_at): New type and size parameters. Use them. (insert_memory_breakpoint): New function, based off set_raw_breakpoint_at. (remove_memory_breakpoint): New function. (set_raw_breakpoint_at): Reimplement. (set_breakpoint): New, based on set_breakpoint_at. (set_breakpoint_at): Reimplement. (delete_raw_breakpoint): Go through the_target->remove_point instead of assuming memory breakpoints. (find_gdb_breakpoint_at): Delete. (Z_packet_to_bkpt_type, Z_packet_to_raw_bkpt_type): New functions. (find_gdb_breakpoint): New function. (set_gdb_breakpoint_at): Delete. (z_type_supported): New function. (set_gdb_breakpoint_1): New function, loosely based off set_gdb_breakpoint_at. (check_gdb_bp_preconditions, set_gdb_breakpoint): New functions. (delete_gdb_breakpoint_at): Delete. (delete_gdb_breakpoint_1): New function, loosely based off delete_gdb_breakpoint_at. (delete_gdb_breakpoint): New function. (clear_gdb_breakpoint_conditions): Rename to ... (clear_breakpoint_conditions): ... this. Don't handle a NULL breakpoint. (add_condition_to_breakpoint): Make static. (add_breakpoint_condition): Take a struct breakpoint pointer instead of an address. Adjust. (gdb_condition_true_at_breakpoint): Rename to ... (gdb_condition_true_at_breakpoint_z_type): ... this, and add z_type parameter. (gdb_condition_true_at_breakpoint): Reimplement. (add_breakpoint_commands): Take a struct breakpoint pointer instead of an address. Adjust. (gdb_no_commands_at_breakpoint): Rename to ... (gdb_no_commands_at_breakpoint_z_type): ... this. Add z_type parameter. Return true if no breakpoint was found. Change debug output. (gdb_no_commands_at_breakpoint): Reimplement. (run_breakpoint_commands): Rename to ... (run_breakpoint_commands_z_type): ... this. Add z_type parameter, and change return type to boolean. (run_breakpoint_commands): New function. (gdb_breakpoint_here): Also check for Z1 breakpoints. (uninsert_raw_breakpoint): Don't try to reinsert a disabled breakpoint. Go through the_target->remove_point instead of assuming memory breakpoint. (uninsert_breakpoints_at, uninsert_all_breakpoints): Uninsert software and hardware breakpoints. (reinsert_raw_breakpoint): Go through the_target->insert_point instead of assuming memory breakpoint. (reinsert_breakpoints_at, reinsert_all_breakpoints): Reinsert software and hardware breakpoints. (check_breakpoints, breakpoint_here, breakpoint_inserted_here): Check both software and hardware breakpoints. (validate_inserted_breakpoint): Assert the breakpoint is a software breakpoint. Set the inserted flag to -1 instead of setting shlib_disabled. (delete_disabled_breakpoints): Adjust. (validate_breakpoints): Only validate software breakpoints. Adjust to inserted flag change. (check_mem_read, check_mem_write): Skip breakpoint types other than software breakpoints. Adjust to inserted flag change. * mem-break.h (enum raw_bkpt_type): New enum. (raw_breakpoint, struct process_info): Forward declare. (Z_packet_to_target_hw_bp_type): Delete declaration. (raw_bkpt_type_to_target_hw_bp_type, Z_packet_to_raw_bkpt_type) (set_gdb_breakpoint, delete_gdb_breakpoint) (clear_breakpoint_conditions): New declarations. (set_gdb_breakpoint_at, clear_gdb_breakpoint_conditions): Delete. (breakpoint_inserted_here): Update comment. (add_breakpoint_condition, add_breakpoint_commands): Replace address parameter with a breakpoint pointer parameter. (gdb_breakpoint_here): Update comment. (delete_gdb_breakpoint_at): Delete. (insert_memory_breakpoint, remove_memory_breakpoint): Declare. * server.c (process_point_options): Take a struct breakpoint pointer instead of an address. Adjust. (process_serial_event) <Z/z packets>: Use set_gdb_breakpoint and delete_gdb_breakpoint. * spu-low.c (spu_target_ops): Install NULL as supports_z_point_type method. * target.h: Include mem-break.h. (struct target_ops) <prepare_to_access_memory>: Update comment. <supports_z_point_type>: New field. <insert_point, remove_point>: Take an enum raw_bkpt_type argument instead of a char. Also take a raw breakpoint pointer. * win32-arm-low.c (the_low_target): Install NULL as supports_z_point_type. * win32-i386-low.c (i386_supports_z_point_type): New function. (i386_insert_point, i386_remove_point): Adjust to new interface. (the_low_target): Install i386_supports_z_point_type. * win32-low.c (win32_supports_z_point_type): New function. (win32_insert_point, win32_remove_point): Adjust to new interface. (win32_target_ops): Install win32_supports_z_point_type. * win32-low.h (struct win32_target_ops): <supports_z_point_type>: New method. <insert_point, remove_point>: Take an enum raw_bkpt_type argument instead of a char. Also take a raw breakpoint pointer. gdb/testsuite/ 2014-05-20 Pedro Alves <palves@redhat.com> * gdb.base/break-idempotent.c: New file. * gdb.base/break-idempotent.exp: New file.
2014-05-21 01:24:28 +08:00
NULL, /* supports_z_point_type */
NULL, /* insert_point */
NULL, /* remove_point */
NULL, /* stopped_by_sw_breakpoint */
NULL, /* supports_stopped_by_sw_breakpoint */
NULL, /* stopped_by_hw_breakpoint */
NULL, /* supports_stopped_by_hw_breakpoint */
target_can_do_hardware_single_step,
NULL, /* stopped_by_watchpoint */
NULL, /* stopped_data_address */
NULL, /* read_offsets */
NULL, /* get_tls_address */
NULL, /* qxfer_spu */
NULL, /* hostio_last_error */
NULL, /* qxfer_osdata */
NULL, /* qxfer_siginfo */
NULL, /* supports_non_stop */
NULL, /* async */
NULL, /* start_non_stop */
NULL, /* supports_multi_process */
Identify remote fork event support This patch implements a mechanism for GDB to determine whether fork events are supported in gdbserver. This is a preparatory patch for remote fork and exec event support. Two new RSP packets are defined to represent fork and vfork event support. These packets are used just like PACKET_multiprocess_feature to denote whether the corresponding event is supported. GDB sends fork-events+ and vfork-events+ to gdbserver to inquire about fork event support. If the response enables these packets, then GDB knows that gdbserver supports the corresponding events and will enable them. Target functions used to query for support are included along with each new packet. In order for gdbserver to know whether the events are supported at the point where the qSupported packet arrives, the code in nat/linux-ptrace.c had to be reorganized. Previously it would test for fork/exec event support, then enable the events using the pid of the inferior. When the qSupported packet arrives there may not be an inferior. So the mechanism was split into two parts: a function that checks whether the events are supported, called when gdbserver starts up, and another that enables the events when the inferior stops for the first time. Another gdbserver change was to add some global variables similar to multi_process, one per new packet. These are used to control whether the corresponding fork events are enabled. If GDB does not inquire about the event support in the qSupported packet, then gdbserver will not set these "report the event" flags. If the flags are not set, the events are ignored like they were in the past. Thus, gdbserver will never send fork event notification to an older GDB that doesn't recognize fork events. Tested on Ubuntu x64, native/remote/extended-remote, and as part of subsequent patches in the series. gdb/gdbserver/ChangeLog: * linux-low.c (linux_supports_fork_events): New function. (linux_supports_vfork_events): New function. (linux_target_ops): Initialize new structure members. (initialize_low): Call linux_check_ptrace_features. * lynx-low.c (lynx_target_ops): Initialize new structure members. * server.c (report_fork_events, report_vfork_events): New global flags. (handle_query): Add new features to qSupported packet and response. (captured_main): Initialize new global variables. * target.h (struct target_ops) <supports_fork_events>: New member. <supports_vfork_events>: New member. (target_supports_fork_events): New macro. (target_supports_vfork_events): New macro. * win32-low.c (win32_target_ops): Initialize new structure members. gdb/ChangeLog: * nat/linux-ptrace.c (linux_check_ptrace_features): Change from static to extern. * nat/linux-ptrace.h (linux_check_ptrace_features): Declare. * remote.c (anonymous enum): <PACKET_fork_event_feature, * PACKET_vfork_event_feature>: New enumeration constants. (remote_protocol_features): Add table entries for new packets. (remote_query_supported): Add new feature queries to qSupported packet. (_initialize_remote): Exempt new packets from the requirement to have 'set remote' commands.
2015-05-13 00:52:41 +08:00
NULL, /* supports_fork_events */
NULL, /* supports_vfork_events */
Extended-remote follow-exec This patch implements support for exec events on extended-remote Linux targets. Follow-exec-mode and rerun behave as expected. Catchpoints and test updates are implemented in subsequent patches. This patch was derived from a patch posted last October: https://sourceware.org/ml/gdb-patches/2014-10/msg00877.html. It was originally based on some work done by Luis Machado in 2013. IMPLEMENTATION ---------------- Exec events are enabled via ptrace options. When an exec event is detected by gdbserver, the existing process data, along with all its associated lwp and thread data, is deleted and replaced by data for a new single-threaded process. The new process data is initialized with the appropriate parts of the state of the execing process. This approach takes care of several potential pitfalls, including: * deleting the data for an execing non-leader thread before any wait/sigsuspend occurs * correctly initializing the architecture of the execed process We then report the exec event using a new RSP stop reason, "exec". When GDB receives an "exec" event, it saves the status in the event structure's target_waitstatus field, like what is done for remote fork events. Because the original and execed programs may have different architectures, we skip parsing the section of the stop reply packet that contains register data. The register data will be retrieved later after the inferior's architecture has been set up by infrun.c:follow_exec. At that point the exec event is handled by the existing event handling in GDB. However, a few changes were necessary so that infrun.c:follow_exec could accommodate the remote target. * Where follow-exec-mode "new" is handled, we now call add_inferior_with_spaces instead of add_inferior with separate calls to set up the program and address spaces. The motivation for this is that add_inferior_with_spaces also sets up the initial architecture for the inferior, which is needed later by target_find_description when it calls target_gdbarch. * We call a new target function, target_follow_exec. This function allows us to store the execd_pathname in the inferior, instead of using the static string remote_exec_file from remote.c. The static string didn't work for follow-exec-mode "new", since once you switched to the execed program, the original remote exec-file was lost. The execd_pathname is now stored in the inferior's program space as a REGISTRY field. All of the requisite mechanisms for this are defined in remote.c. gdb/gdbserver/ChangeLog: * linux-low.c (linux_mourn): Static declaration. (linux_arch_setup): Move in front of handle_extended_wait. (linux_arch_setup_thread): New function. (handle_extended_wait): Handle exec events. Call linux_arch_setup_thread. Make event_lwp argument a pointer-to-a-pointer. (check_zombie_leaders): Do not check stopped threads. (linux_low_ptrace_options): Add PTRACE_O_TRACEEXEC. (linux_low_filter_event): Add lwp and thread for exec'ing non-leader thread if leader thread has been deleted. Refactor code into linux_arch_setup_thread and call it. Pass child lwp pointer by reference to handle_extended_wait. (linux_wait_for_event_filtered): Update comment. (linux_wait_1): Prevent clobbering exec event status. (linux_supports_exec_events): New function. (linux_target_ops) <supports_exec_events>: Initialize new member. * lynx-low.c (lynx_target_ops) <supports_exec_events>: Initialize new member. * remote-utils.c (prepare_resume_reply): New stop reason 'exec'. * server.c (report_exec_events): New global variable. (handle_query): Handle qSupported query for exec-events feature. (captured_main): Initialize report_exec_events. * server.h (report_exec_events): Declare new global variable. * target.h (struct target_ops) <supports_exec_events>: New member. (target_supports_exec_events): New macro. * win32-low.c (win32_target_ops) <supports_exec_events>: Initialize new member. gdb/ChangeLog: * infrun.c (follow_exec): Use process-style ptid for exec message. Call add_inferior_with_spaces and target_follow_exec. * nat/linux-ptrace.c (linux_supports_traceexec): New function. * nat/linux-ptrace.h (linux_supports_traceexec): Declare. * remote.c (remote_pspace_data): New static variable. (remote_pspace_data_cleanup): New function. (get_remote_exec_file): New function. (set_remote_exec_file_1): New function. (set_remote_exec_file): New function. (show_remote_exec_file): New function. (remote_exec_file): Delete static variable. (anonymous enum) <PACKET_exec_event_feature> New enumeration constant. (remote_protocol_features): Add entry for exec-events feature. (remote_query_supported): Add client side of qSupported query for exec-events feature. (remote_follow_exec): New function. (remote_parse_stop_reply): Handle 'exec' stop reason. (extended_remote_run, extended_remote_create_inferior): Call get_remote_exec_file and set_remote_exec_file_1. (init_extended_remote_ops) <to_follow_exec>: Initialize new member. (_initialize_remote): Call register_program_space_data_with_cleanup. Call add_packet_config_cmd for remote exec-events feature. Modify call to add_setshow_string_noescape_cmd for exec-file to use new functions set_remote_exec_file and show_remote_exec_file. * target-debug.h, target-delegates.c: Regenerated. * target.c (target_follow_exec): New function. * target.h (struct target_ops) <to_follow_exec>: New member. (target_follow_exec): Declare new function.
2015-09-12 02:06:02 +08:00
NULL, /* supports_exec_events */
Extended-remote Linux follow fork This patch implements basic support for follow-fork and detach-on-fork on extended-remote Linux targets. Only 'fork' is supported in this patch; 'vfork' support is added n a subsequent patch. This patch depends on the previous patches in the patch series. Sufficient extended-remote functionality has been implemented here to pass gdb.base/multi-forks.exp, as well as gdb.base/foll-fork.exp with the catchpoint tests commented out. Some other fork tests fail with this patch because it doesn't provide the architecture support needed for watchpoint inheritance or fork catchpoints. The implementation follows the same general structure as for the native implementation as much as possible. This implementation includes: * enabling fork events in linux-low.c in initialize_low and linux_enable_extended_features * handling fork events in gdbserver/linux-low.c:handle_extended_wait - when a fork event occurs in gdbserver, we must do the full creation of the new process, thread, lwp, and breakpoint lists. This is required whether or not the new child is destined to be detached-on-fork, because GDB will make target calls that require all the structures. In particular we need the breakpoint lists in order to remove the breakpoints from a detaching child. If we are not detaching the child we will need all these structures anyway. - as part of this event handling we store the target_waitstatus in a new member of the parent lwp_info structure, 'waitstatus'. This is used to store extended event information for reporting to GDB. - handle_extended_wait is given a return value, denoting whether the handled event should be reported to GDB. Previously it had only handled clone events, which were never reported. * using a new predicate in gdbserver to control handling of the fork event (and eventually all extended events) in linux_wait_1. The predicate, extended_event_reported, checks a target_waitstatus.kind for an extended ptrace event. * implementing a new RSP 'T' Stop Reply Packet stop reason: "fork", in gdbserver/remote-utils.c and remote.c. * implementing new target and RSP support for target_follow_fork with target extended-remote. (The RSP components were actually defined in patch 1, but they see their first use here). - remote target routine remote_follow_fork, which just sends the 'D;pid' detach packet to detach the new fork child cleanly. We can't just call target_detach because the data structures for the forked child have not been allocated on the host side. Tested on x64 Ubuntu Lucid, native, remote, extended-remote. gdb/gdbserver/ChangeLog: * linux-low.c (handle_extended_wait): Implement return value, rename argument 'event_child' to 'event_lwp', handle PTRACE_EVENT_FORK, call internal_error for unrecognized event. (linux_low_ptrace_options): New function. (linux_low_filter_event): Call linux_low_ptrace_options, use different argument fo linux_enable_event_reporting, use return value from handle_extended_wait. (extended_event_reported): New function. (linux_wait_1): Call extended_event_reported and set status to report fork events. (linux_write_memory): Add pid to debug message. (reset_lwp_ptrace_options_callback): New function. (linux_handle_new_gdb_connection): New function. (linux_target_ops): Initialize new structure member. * linux-low.h (struct lwp_info) <waitstatus>: New member. * lynx-low.c: Initialize new structure member. * remote-utils.c (prepare_resume_reply): Implement stop reason "fork" for "T" stop message. * server.c (handle_query): Call handle_new_gdb_connection. * server.h (report_fork_events): Declare global flag. * target.h (struct target_ops) <handle_new_gdb_connection>: New member. (target_handle_new_gdb_connection): New macro. * win32-low.c: Initialize new structure member. gdb/ChangeLog: * linux-nat.c (linux_nat_ptrace_options): New function. (linux_init_ptrace, wait_lwp, linux_nat_filter_event): Call linux_nat_ptrace_options and use different argument to linux_enable_event_reporting. (_initialize_linux_nat): Delete call to linux_ptrace_set_additional_flags. * nat/linux-ptrace.c (current_ptrace_options): Rename to supported_ptrace_options. (additional_flags): Delete variable. (linux_check_ptrace_features): Use supported_ptrace_options. (linux_test_for_tracesysgood, linux_test_for_tracefork): Likewise, and remove additional_flags check. (linux_enable_event_reporting): Change 'attached' argument to 'options'. Use supported_ptrace_options. (ptrace_supports_feature): Change comment. Use supported_ptrace_options. (linux_ptrace_set_additional_flags): Delete function. * nat/linux-ptrace.h (linux_ptrace_set_additional_flags): Delete function prototype. * remote.c (remote_fork_event_p): New function. (remote_detach_pid): New function. (remote_detach_1): Call remote_detach_pid, don't mourn inferior if doing detach-on-fork. (remote_follow_fork): New function. (remote_parse_stop_reply): Handle new "T" stop reason "fork". (remote_pid_to_str): Print "process" strings for pid/0/0 ptids. (init_extended_remote_ops): Initialize to_follow_fork.
2015-05-13 00:52:43 +08:00
NULL, /* handle_new_gdb_connection */
NULL, /* handle_monitor_command */
};
void
initialize_low (void)
{
set_target_ops (&lynx_target_ops);
the_low_target.arch_setup ();
}