binutils-gdb/gdb/arc-tdep.c

2479 lines
86 KiB
C
Raw Normal View History

[gdb] Fix more typos in comments Fix typos in comments. NFC. Tested on x86_64-linux. gdb/ChangeLog: 2019-10-18 Tom de Vries <tdevries@suse.de> * aarch64-tdep.c: Fix typos in comments. * ada-lang.c: Same. * ada-tasks.c: Same. * alpha-tdep.c: Same. * alpha-tdep.h: Same. * amd64-nat.c: Same. * amd64-windows-tdep.c: Same. * arc-tdep.c: Same. * arc-tdep.h: Same. * arch-utils.c: Same. * arm-nbsd-tdep.c: Same. * arm-tdep.c: Same. * ax-gdb.c: Same. * blockframe.c: Same. * btrace.c: Same. * c-varobj.c: Same. * coff-pe-read.c: Same. * coffread.c: Same. * cris-tdep.c: Same. * darwin-nat.c: Same. * dbxread.c: Same. * dcache.c: Same. * disasm.c: Same. * dtrace-probe.c: Same. * dwarf-index-write.c: Same. * dwarf2-frame-tailcall.c: Same. * dwarf2-frame.c: Same. * dwarf2read.c: Same. * eval.c: Same. * exceptions.c: Same. * fbsd-tdep.c: Same. * findvar.c: Same. * frame.c: Same. * frv-tdep.c: Same. * gnu-v3-abi.c: Same. * go32-nat.c: Same. * h8300-tdep.c: Same. * hppa-tdep.c: Same. * i386-linux-tdep.c: Same. * i386-tdep.c: Same. * ia64-libunwind-tdep.c: Same. * ia64-tdep.c: Same. * infcmd.c: Same. * infrun.c: Same. * linespec.c: Same. * linux-nat.c: Same. * linux-thread-db.c: Same. * machoread.c: Same. * mdebugread.c: Same. * mep-tdep.c: Same. * mn10300-tdep.c: Same. * namespace.c: Same. * objfiles.c: Same. * opencl-lang.c: Same. * or1k-tdep.c: Same. * osabi.c: Same. * ppc-linux-nat.c: Same. * ppc-linux-tdep.c: Same. * ppc-sysv-tdep.c: Same. * printcmd.c: Same. * procfs.c: Same. * record-btrace.c: Same. * record-full.c: Same. * remote-fileio.c: Same. * remote.c: Same. * rs6000-tdep.c: Same. * s12z-tdep.c: Same. * score-tdep.c: Same. * ser-base.c: Same. * ser-go32.c: Same. * skip.c: Same. * sol-thread.c: Same. * solib-svr4.c: Same. * solib.c: Same. * source.c: Same. * sparc-nat.c: Same. * sparc-sol2-tdep.c: Same. * sparc-tdep.c: Same. * sparc64-tdep.c: Same. * stabsread.c: Same. * stack.c: Same. * symfile.c: Same. * symtab.c: Same. * target-descriptions.c: Same. * target-float.c: Same. * thread.c: Same. * utils.c: Same. * valops.c: Same. * valprint.c: Same. * value.c: Same. * varobj.c: Same. * windows-nat.c: Same. * xcoffread.c: Same. * xstormy16-tdep.c: Same. * xtensa-tdep.c: Same. Change-Id: I5175f1b107bfa4e1cdd4a3361ccb4739e53c75c4
2019-10-18 08:48:08 +08:00
/* Target dependent code for ARC architecture, for GDB.
2016-08-13 01:02:20 +08:00
Copyright 2005-2022 Free Software Foundation, Inc.
2016-08-13 01:02:20 +08:00
Contributed by Synopsys Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
/* GDB header files. */
#include "defs.h"
#include "arch-utils.h"
arc: Add ARCv2 XML target along with refactoring A few changes have been made to make the register support simpler, more flexible and extendible. The trigger for most of these changes are the remarks [1] made earlier for v2 of this patch. The noticeable improvements are: - The arc XML target features are placed under gdb/features/arc - There are two cores (based on ISA) and one auxiliary feature: v1-core: ARC600, ARC601, ARC700 v2-core: ARC EM, ARC HS aux: common in both - The XML target features represent a minimalistic sane set of registers irrespective of application (baremetal or linux). - A concept of "feature" class has been introduced in the code. The "feature" object is constructed from BFD and GDBARCH data. It contains necessary information (ISA and register size) to determine which XML target feature to use. - A new structure (ARC_REGISTER_FEATURE) is added that allows providing index, names, and the necessity of registers. This simplifies the sanity checks and future extendibility. - Documnetation has been updated to reflect ARC features better. - Although the feature names has changed, there still exists backward compatibility with older names through find_obsolete_[core,aux]_names() functions. The last two points were inspired from RiscV port. [1] https://sourceware.org/pipermail/gdb-patches/2020-May/168511.html gdb/ChangeLog: * arch/arc.h (arc_gdbarch_features): New class to stir the selection of target XML. (arc_create_target_description): Use FEATURES to choose XML target. (arc_lookup_target_description): Use arc_create_target_description to create _new_ target descriptions or return the already created ones if the FEATURES is the same. * arch/arc.c: Implementation of prototypes described above. * gdb/arc-tdep.h (arc_regnum enum): Add more registers. (arc_gdbarch_features_init): Initialize the FEATURES struct. * arc-tdep.c (*_feature_name): Make feature names consistent. (arc_register_feature): A new struct to hold information about registers of a particular target/feature. (arc_check_tdesc_feature): Check if XML provides registers in compliance with ARC_REGISTER_FEATURE structs. (arc_update_acc_reg_names): Add aliases for r58 and r59. (determine_*_reg_feature_set): Which feature name to look for. (arc_gdbarch_features_init): Given MACH and ABFD, initialize FEATURES. (mach_type_to_arc_isa): Convert from a set of binutils machine types to expected ISA enums to be used in arc_gdbarch_features structs. * features/Makefile (FEATURE_XMLFILES): Add new files. * gdb/features/arc/v1-aux.c: New file. * gdb/features/arc/v1-aux.xml: Likewise. * gdb/features/arc/v1-core.c: Likewise. * gdb/features/arc/v1-core.xml: Likewise. * gdb/features/arc/v2-aux.c: Likewise. * gdb/features/arc/v2-aux.xml: Likewise. * gdb/features/arc/v2-core.c: Likewise. * gdb/features/arc/v2-core.xml: Likewise. * NEWS (Changes since GDB 9): Announce obsolence of old feature names. gdb/doc/ChangeLog: * gdb.texinfo (Synopsys ARC): Update the documentation for ARC Features. gdb/testsuite/ChangeLog: * gdb.arch/arc-tdesc-cpu.xml: Use new feature names.
2020-07-09 23:43:13 +08:00
#include "elf-bfd.h"
2016-08-13 01:02:20 +08:00
#include "disasm.h"
Move DWARF code to dwarf2/ subdirectory This moves all the remaining DWARF code to the new dwarf2 subdirectory. This is just a simple renaming, with updates to includes as needed. gdb/ChangeLog 2020-02-08 Tom Tromey <tom@tromey.com> * dwarf2/expr.c: Rename from dwarf2expr.c. * dwarf2/expr.h: Rename from dwarf2expr.h. * dwarf2/frame-tailcall.c: Rename from dwarf2-frame-tailcall.c. * dwarf2/frame-tailcall.h: Rename from dwarf2-frame-tailcall.h. * dwarf2/frame.c: Rename from dwarf2-frame.c. * dwarf2/frame.h: Rename from dwarf2-frame.h. * dwarf2/index-cache.c: Rename from dwarf-index-cache.c. * dwarf2/index-cache.h: Rename from dwarf-index-cache.h. * dwarf2/index-common.c: Rename from dwarf-index-common.c. * dwarf2/index-common.h: Rename from dwarf-index-common.h. * dwarf2/index-write.c: Rename from dwarf-index-write.c. * dwarf2/index-write.h: Rename from dwarf-index-write.h. * dwarf2/loc.c: Rename from dwarf2loc.c. * dwarf2/loc.h: Rename from dwarf2loc.h. * dwarf2/read.c: Rename from dwarf2read.c. * dwarf2/read.h: Rename from dwarf2read.h. * dwarf2/abbrev.c, aarch64-tdep.c, alpha-tdep.c, amd64-darwin-tdep.c, arc-tdep.c, arm-tdep.c, bfin-tdep.c, compile/compile-c-symbols.c, compile/compile-cplus-symbols.c, compile/compile-loc2c.c, cris-tdep.c, csky-tdep.c, findvar.c, gdbtypes.c, guile/scm-type.c, h8300-tdep.c, hppa-bsd-tdep.c, hppa-linux-tdep.c, i386-darwin-tdep.c, i386-linux-tdep.c, i386-tdep.c, iq2000-tdep.c, m32c-tdep.c, m68hc11-tdep.c, m68k-tdep.c, microblaze-tdep.c, mips-tdep.c, mn10300-tdep.c, msp430-tdep.c, nds32-tdep.c, nios2-tdep.c, or1k-tdep.c, riscv-tdep.c, rl78-tdep.c, rs6000-tdep.c, rx-tdep.c, s12z-tdep.c, s390-tdep.c, score-tdep.c, sh-tdep.c, sparc-linux-tdep.c, sparc-tdep.c, sparc64-linux-tdep.c, sparc64-tdep.c, tic6x-tdep.c, tilegx-tdep.c, v850-tdep.c, xstormy16-tdep.c, xtensa-tdep.c: Update. * Makefile.in (COMMON_SFILES): Update. (HFILES_NO_SRCDIR): Update. Change-Id: Ied9ce1436cd27ac4a4cffef10ec92e396f181928
2020-02-09 04:40:54 +08:00
#include "dwarf2/frame.h"
2016-08-13 01:02:20 +08:00
#include "frame-base.h"
#include "frame-unwind.h"
Sort includes for files gdb/[a-f]*.[chyl]. This patch sorts the include files for the files [a-f]*.[chyl]. The patch was written by a script. Tested by the buildbot. I will follow up with patches to sort the remaining files, by sorting a subset, testing them, and then checking them in. gdb/ChangeLog 2019-04-05 Tom Tromey <tom@tromey.com> * ft32-tdep.c: Sort headers. * frv-tdep.c: Sort headers. * frv-linux-tdep.c: Sort headers. * frame.c: Sort headers. * frame-unwind.c: Sort headers. * frame-base.c: Sort headers. * fork-child.c: Sort headers. * findvar.c: Sort headers. * findcmd.c: Sort headers. * filesystem.c: Sort headers. * filename-seen-cache.h: Sort headers. * filename-seen-cache.c: Sort headers. * fbsd-tdep.c: Sort headers. * fbsd-nat.h: Sort headers. * fbsd-nat.c: Sort headers. * f-valprint.c: Sort headers. * f-typeprint.c: Sort headers. * f-lang.c: Sort headers. * extension.h: Sort headers. * extension.c: Sort headers. * extension-priv.h: Sort headers. * expprint.c: Sort headers. * exec.h: Sort headers. * exec.c: Sort headers. * exceptions.c: Sort headers. * event-top.c: Sort headers. * event-loop.c: Sort headers. * eval.c: Sort headers. * elfread.c: Sort headers. * dwarf2read.h: Sort headers. * dwarf2read.c: Sort headers. * dwarf2loc.c: Sort headers. * dwarf2expr.h: Sort headers. * dwarf2expr.c: Sort headers. * dwarf2-frame.c: Sort headers. * dwarf2-frame-tailcall.c: Sort headers. * dwarf-index-write.h: Sort headers. * dwarf-index-write.c: Sort headers. * dwarf-index-common.c: Sort headers. * dwarf-index-cache.h: Sort headers. * dwarf-index-cache.c: Sort headers. * dummy-frame.c: Sort headers. * dtrace-probe.c: Sort headers. * disasm.h: Sort headers. * disasm.c: Sort headers. * disasm-selftests.c: Sort headers. * dictionary.c: Sort headers. * dicos-tdep.c: Sort headers. * demangle.c: Sort headers. * dcache.h: Sort headers. * dcache.c: Sort headers. * darwin-nat.h: Sort headers. * darwin-nat.c: Sort headers. * darwin-nat-info.c: Sort headers. * d-valprint.c: Sort headers. * d-namespace.c: Sort headers. * d-lang.c: Sort headers. * ctf.c: Sort headers. * csky-tdep.c: Sort headers. * csky-linux-tdep.c: Sort headers. * cris-tdep.c: Sort headers. * cris-linux-tdep.c: Sort headers. * cp-valprint.c: Sort headers. * cp-support.c: Sort headers. * cp-namespace.c: Sort headers. * cp-abi.c: Sort headers. * corelow.c: Sort headers. * corefile.c: Sort headers. * continuations.c: Sort headers. * completer.h: Sort headers. * completer.c: Sort headers. * complaints.c: Sort headers. * coffread.c: Sort headers. * coff-pe-read.c: Sort headers. * cli-out.h: Sort headers. * cli-out.c: Sort headers. * charset.c: Sort headers. * c-varobj.c: Sort headers. * c-valprint.c: Sort headers. * c-typeprint.c: Sort headers. * c-lang.c: Sort headers. * buildsym.c: Sort headers. * buildsym-legacy.c: Sort headers. * build-id.h: Sort headers. * build-id.c: Sort headers. * btrace.c: Sort headers. * bsd-uthread.c: Sort headers. * breakpoint.h: Sort headers. * breakpoint.c: Sort headers. * break-catch-throw.c: Sort headers. * break-catch-syscall.c: Sort headers. * break-catch-sig.c: Sort headers. * blockframe.c: Sort headers. * block.c: Sort headers. * bfin-tdep.c: Sort headers. * bfin-linux-tdep.c: Sort headers. * bfd-target.c: Sort headers. * bcache.c: Sort headers. * ax-general.c: Sort headers. * ax-gdb.h: Sort headers. * ax-gdb.c: Sort headers. * avr-tdep.c: Sort headers. * auxv.c: Sort headers. * auto-load.c: Sort headers. * arm-wince-tdep.c: Sort headers. * arm-tdep.c: Sort headers. * arm-symbian-tdep.c: Sort headers. * arm-pikeos-tdep.c: Sort headers. * arm-obsd-tdep.c: Sort headers. * arm-nbsd-tdep.c: Sort headers. * arm-nbsd-nat.c: Sort headers. * arm-linux-tdep.c: Sort headers. * arm-linux-nat.c: Sort headers. * arm-fbsd-tdep.c: Sort headers. * arm-fbsd-nat.c: Sort headers. * arm-bsd-tdep.c: Sort headers. * arch-utils.c: Sort headers. * arc-tdep.c: Sort headers. * arc-newlib-tdep.c: Sort headers. * annotate.h: Sort headers. * annotate.c: Sort headers. * amd64-windows-tdep.c: Sort headers. * amd64-windows-nat.c: Sort headers. * amd64-tdep.c: Sort headers. * amd64-sol2-tdep.c: Sort headers. * amd64-obsd-tdep.c: Sort headers. * amd64-obsd-nat.c: Sort headers. * amd64-nbsd-tdep.c: Sort headers. * amd64-nbsd-nat.c: Sort headers. * amd64-nat.c: Sort headers. * amd64-linux-tdep.c: Sort headers. * amd64-linux-nat.c: Sort headers. * amd64-fbsd-tdep.c: Sort headers. * amd64-fbsd-nat.c: Sort headers. * amd64-dicos-tdep.c: Sort headers. * amd64-darwin-tdep.c: Sort headers. * amd64-bsd-nat.c: Sort headers. * alpha-tdep.c: Sort headers. * alpha-obsd-tdep.c: Sort headers. * alpha-nbsd-tdep.c: Sort headers. * alpha-mdebug-tdep.c: Sort headers. * alpha-linux-tdep.c: Sort headers. * alpha-linux-nat.c: Sort headers. * alpha-bsd-tdep.c: Sort headers. * alpha-bsd-nat.c: Sort headers. * aix-thread.c: Sort headers. * agent.c: Sort headers. * addrmap.c: Sort headers. * ada-varobj.c: Sort headers. * ada-valprint.c: Sort headers. * ada-typeprint.c: Sort headers. * ada-tasks.c: Sort headers. * ada-lang.c: Sort headers. * aarch64-tdep.c: Sort headers. * aarch64-ravenscar-thread.c: Sort headers. * aarch64-newlib-tdep.c: Sort headers. * aarch64-linux-tdep.c: Sort headers. * aarch64-linux-nat.c: Sort headers. * aarch64-fbsd-tdep.c: Sort headers. * aarch64-fbsd-nat.c: Sort headers. * aarch32-linux-nat.c: Sort headers.
2019-04-03 10:04:24 +08:00
#include "gdbcore.h"
#include "reggroups.h"
Revert the header-sorting patch Andreas Schwab and John Baldwin pointed out some bugs in the header sorting patch; and I noticed that the output was not correct when limited to a subset of files (a bug in my script). So, I'm reverting the patch. I may try again after fixing the issues pointed out. gdb/ChangeLog 2019-04-05 Tom Tromey <tom@tromey.com> Revert the header-sorting patch. * ft32-tdep.c: Revert. * frv-tdep.c: Revert. * frv-linux-tdep.c: Revert. * frame.c: Revert. * frame-unwind.c: Revert. * frame-base.c: Revert. * fork-child.c: Revert. * findvar.c: Revert. * findcmd.c: Revert. * filesystem.c: Revert. * filename-seen-cache.h: Revert. * filename-seen-cache.c: Revert. * fbsd-tdep.c: Revert. * fbsd-nat.h: Revert. * fbsd-nat.c: Revert. * f-valprint.c: Revert. * f-typeprint.c: Revert. * f-lang.c: Revert. * extension.h: Revert. * extension.c: Revert. * extension-priv.h: Revert. * expprint.c: Revert. * exec.h: Revert. * exec.c: Revert. * exceptions.c: Revert. * event-top.c: Revert. * event-loop.c: Revert. * eval.c: Revert. * elfread.c: Revert. * dwarf2read.h: Revert. * dwarf2read.c: Revert. * dwarf2loc.c: Revert. * dwarf2expr.h: Revert. * dwarf2expr.c: Revert. * dwarf2-frame.c: Revert. * dwarf2-frame-tailcall.c: Revert. * dwarf-index-write.h: Revert. * dwarf-index-write.c: Revert. * dwarf-index-common.c: Revert. * dwarf-index-cache.h: Revert. * dwarf-index-cache.c: Revert. * dummy-frame.c: Revert. * dtrace-probe.c: Revert. * disasm.h: Revert. * disasm.c: Revert. * disasm-selftests.c: Revert. * dictionary.c: Revert. * dicos-tdep.c: Revert. * demangle.c: Revert. * dcache.h: Revert. * dcache.c: Revert. * darwin-nat.h: Revert. * darwin-nat.c: Revert. * darwin-nat-info.c: Revert. * d-valprint.c: Revert. * d-namespace.c: Revert. * d-lang.c: Revert. * ctf.c: Revert. * csky-tdep.c: Revert. * csky-linux-tdep.c: Revert. * cris-tdep.c: Revert. * cris-linux-tdep.c: Revert. * cp-valprint.c: Revert. * cp-support.c: Revert. * cp-namespace.c: Revert. * cp-abi.c: Revert. * corelow.c: Revert. * corefile.c: Revert. * continuations.c: Revert. * completer.h: Revert. * completer.c: Revert. * complaints.c: Revert. * coffread.c: Revert. * coff-pe-read.c: Revert. * cli-out.h: Revert. * cli-out.c: Revert. * charset.c: Revert. * c-varobj.c: Revert. * c-valprint.c: Revert. * c-typeprint.c: Revert. * c-lang.c: Revert. * buildsym.c: Revert. * buildsym-legacy.c: Revert. * build-id.h: Revert. * build-id.c: Revert. * btrace.c: Revert. * bsd-uthread.c: Revert. * breakpoint.h: Revert. * breakpoint.c: Revert. * break-catch-throw.c: Revert. * break-catch-syscall.c: Revert. * break-catch-sig.c: Revert. * blockframe.c: Revert. * block.c: Revert. * bfin-tdep.c: Revert. * bfin-linux-tdep.c: Revert. * bfd-target.c: Revert. * bcache.c: Revert. * ax-general.c: Revert. * ax-gdb.h: Revert. * ax-gdb.c: Revert. * avr-tdep.c: Revert. * auxv.c: Revert. * auto-load.c: Revert. * arm-wince-tdep.c: Revert. * arm-tdep.c: Revert. * arm-symbian-tdep.c: Revert. * arm-pikeos-tdep.c: Revert. * arm-obsd-tdep.c: Revert. * arm-nbsd-tdep.c: Revert. * arm-nbsd-nat.c: Revert. * arm-linux-tdep.c: Revert. * arm-linux-nat.c: Revert. * arm-fbsd-tdep.c: Revert. * arm-fbsd-nat.c: Revert. * arm-bsd-tdep.c: Revert. * arch-utils.c: Revert. * arc-tdep.c: Revert. * arc-newlib-tdep.c: Revert. * annotate.h: Revert. * annotate.c: Revert. * amd64-windows-tdep.c: Revert. * amd64-windows-nat.c: Revert. * amd64-tdep.c: Revert. * amd64-sol2-tdep.c: Revert. * amd64-obsd-tdep.c: Revert. * amd64-obsd-nat.c: Revert. * amd64-nbsd-tdep.c: Revert. * amd64-nbsd-nat.c: Revert. * amd64-nat.c: Revert. * amd64-linux-tdep.c: Revert. * amd64-linux-nat.c: Revert. * amd64-fbsd-tdep.c: Revert. * amd64-fbsd-nat.c: Revert. * amd64-dicos-tdep.c: Revert. * amd64-darwin-tdep.c: Revert. * amd64-bsd-nat.c: Revert. * alpha-tdep.c: Revert. * alpha-obsd-tdep.c: Revert. * alpha-nbsd-tdep.c: Revert. * alpha-mdebug-tdep.c: Revert. * alpha-linux-tdep.c: Revert. * alpha-linux-nat.c: Revert. * alpha-bsd-tdep.c: Revert. * alpha-bsd-nat.c: Revert. * aix-thread.c: Revert. * agent.c: Revert. * addrmap.c: Revert. * ada-varobj.c: Revert. * ada-valprint.c: Revert. * ada-typeprint.c: Revert. * ada-tasks.c: Revert. * ada-lang.c: Revert. * aarch64-tdep.c: Revert. * aarch64-ravenscar-thread.c: Revert. * aarch64-newlib-tdep.c: Revert. * aarch64-linux-tdep.c: Revert. * aarch64-linux-nat.c: Revert. * aarch64-fbsd-tdep.c: Revert. * aarch64-fbsd-nat.c: Revert. * aarch32-linux-nat.c: Revert.
2019-04-07 03:38:10 +08:00
#include "gdbcmd.h"
2016-08-13 01:02:20 +08:00
#include "objfiles.h"
arc: Migrate to new target features This patch replaces usage of target descriptions in ARC, where the whole description is fixed in XML, with new target descriptions where XML describes individual features, and GDB assembles those features into actual target description. v2: Removed arc.c from ALLDEPFILES in gdb/Makefile.in. Removed vim modeline from arc-tdep.c to have it in a separate patch. Removed braces from one line "if/else". Undid the type change for "jb_pc" (kept it as "int"). Joined the unnecessary line breaks into one line. No more moving around arm targets in gdb/features/Makefile. Changed pattern checking for ARC features from "arc/{aux,core}" to "arc/". v3: Added include gaurds to arc.h. Added arc_read_description to _create_ target descriptions less. v4: Got rid of ARC_SYS_TYPE_NONE. Renamed ARC_SYS_TYPE_INVALID to ARC_SYS_TYPE_NUM. Fixed a few indentations/curly braces. Converted arc_sys_type_to_str from a macro to an inline function. gdb/ChangeLog: 2020-03-16 Anton Kolesov <anton.kolesov@synopsys.com> Shahab Vahedi <shahab@synopsys.com> * Makefile.in: Add arch/arc.o * configure.tgt: Likewise. * arc-tdep.c (arc_tdesc_init): Use arc_read_description. (_initialize_arc_tdep): Don't initialize old target descriptions. (arc_read_description): New function to cache target descriptions. * arc-tdep.h (arc_read_description): Add proto type. * arch/arc.c: New file. * arch/arc.h: Likewise. * features/Makefile: Replace old target descriptions with new. * features/arc-arcompact.c: Remove. * features/arc-arcompact.xml: Likewise. * features/arc-v2.c: Likewise * features/arc-v2.xml: Likewise * features/arc/aux-arcompact.xml: New file. * features/arc/aux-v2.xml: Likewise. * features/arc/core-arcompact.xml: Likewise. * features/arc/core-v2.xml: Likewise. * features/arc/aux-arcompact.c: Generate. * features/arc/aux-v2.c: Likewise. * features/arc/core-arcompact.c: Likewise. * features/arc/core-v2.c: Likewise. * target-descriptions (maint_print_c_tdesc_cmd): Support ARC features.
2017-10-26 02:51:54 +08:00
#include "osabi.h"
#include "prologue-value.h"
arc: Migrate to new target features This patch replaces usage of target descriptions in ARC, where the whole description is fixed in XML, with new target descriptions where XML describes individual features, and GDB assembles those features into actual target description. v2: Removed arc.c from ALLDEPFILES in gdb/Makefile.in. Removed vim modeline from arc-tdep.c to have it in a separate patch. Removed braces from one line "if/else". Undid the type change for "jb_pc" (kept it as "int"). Joined the unnecessary line breaks into one line. No more moving around arm targets in gdb/features/Makefile. Changed pattern checking for ARC features from "arc/{aux,core}" to "arc/". v3: Added include gaurds to arc.h. Added arc_read_description to _create_ target descriptions less. v4: Got rid of ARC_SYS_TYPE_NONE. Renamed ARC_SYS_TYPE_INVALID to ARC_SYS_TYPE_NUM. Fixed a few indentations/curly braces. Converted arc_sys_type_to_str from a macro to an inline function. gdb/ChangeLog: 2020-03-16 Anton Kolesov <anton.kolesov@synopsys.com> Shahab Vahedi <shahab@synopsys.com> * Makefile.in: Add arch/arc.o * configure.tgt: Likewise. * arc-tdep.c (arc_tdesc_init): Use arc_read_description. (_initialize_arc_tdep): Don't initialize old target descriptions. (arc_read_description): New function to cache target descriptions. * arc-tdep.h (arc_read_description): Add proto type. * arch/arc.c: New file. * arch/arc.h: Likewise. * features/Makefile: Replace old target descriptions with new. * features/arc-arcompact.c: Remove. * features/arc-arcompact.xml: Likewise. * features/arc-v2.c: Likewise * features/arc-v2.xml: Likewise * features/arc/aux-arcompact.xml: New file. * features/arc/aux-v2.xml: Likewise. * features/arc/core-arcompact.xml: Likewise. * features/arc/core-v2.xml: Likewise. * features/arc/aux-arcompact.c: Generate. * features/arc/aux-v2.c: Likewise. * features/arc/core-arcompact.c: Likewise. * features/arc/core-v2.c: Likewise. * target-descriptions (maint_print_c_tdesc_cmd): Support ARC features.
2017-10-26 02:51:54 +08:00
#include "target-descriptions.h"
2016-08-13 01:02:20 +08:00
#include "trad-frame.h"
/* ARC header files. */
#include "opcode/arc.h"
#include "opcodes/arc-dis.h"
2016-08-13 01:02:20 +08:00
#include "arc-tdep.h"
arc: Migrate to new target features This patch replaces usage of target descriptions in ARC, where the whole description is fixed in XML, with new target descriptions where XML describes individual features, and GDB assembles those features into actual target description. v2: Removed arc.c from ALLDEPFILES in gdb/Makefile.in. Removed vim modeline from arc-tdep.c to have it in a separate patch. Removed braces from one line "if/else". Undid the type change for "jb_pc" (kept it as "int"). Joined the unnecessary line breaks into one line. No more moving around arm targets in gdb/features/Makefile. Changed pattern checking for ARC features from "arc/{aux,core}" to "arc/". v3: Added include gaurds to arc.h. Added arc_read_description to _create_ target descriptions less. v4: Got rid of ARC_SYS_TYPE_NONE. Renamed ARC_SYS_TYPE_INVALID to ARC_SYS_TYPE_NUM. Fixed a few indentations/curly braces. Converted arc_sys_type_to_str from a macro to an inline function. gdb/ChangeLog: 2020-03-16 Anton Kolesov <anton.kolesov@synopsys.com> Shahab Vahedi <shahab@synopsys.com> * Makefile.in: Add arch/arc.o * configure.tgt: Likewise. * arc-tdep.c (arc_tdesc_init): Use arc_read_description. (_initialize_arc_tdep): Don't initialize old target descriptions. (arc_read_description): New function to cache target descriptions. * arc-tdep.h (arc_read_description): Add proto type. * arch/arc.c: New file. * arch/arc.h: Likewise. * features/Makefile: Replace old target descriptions with new. * features/arc-arcompact.c: Remove. * features/arc-arcompact.xml: Likewise. * features/arc-v2.c: Likewise * features/arc-v2.xml: Likewise * features/arc/aux-arcompact.xml: New file. * features/arc/aux-v2.xml: Likewise. * features/arc/core-arcompact.xml: Likewise. * features/arc/core-v2.xml: Likewise. * features/arc/aux-arcompact.c: Generate. * features/arc/aux-v2.c: Likewise. * features/arc/core-arcompact.c: Likewise. * features/arc/core-v2.c: Likewise. * target-descriptions (maint_print_c_tdesc_cmd): Support ARC features.
2017-10-26 02:51:54 +08:00
#include "arch/arc.h"
2016-08-13 01:02:20 +08:00
/* Standard headers. */
#include <algorithm>
arc: Add ARCv2 XML target along with refactoring A few changes have been made to make the register support simpler, more flexible and extendible. The trigger for most of these changes are the remarks [1] made earlier for v2 of this patch. The noticeable improvements are: - The arc XML target features are placed under gdb/features/arc - There are two cores (based on ISA) and one auxiliary feature: v1-core: ARC600, ARC601, ARC700 v2-core: ARC EM, ARC HS aux: common in both - The XML target features represent a minimalistic sane set of registers irrespective of application (baremetal or linux). - A concept of "feature" class has been introduced in the code. The "feature" object is constructed from BFD and GDBARCH data. It contains necessary information (ISA and register size) to determine which XML target feature to use. - A new structure (ARC_REGISTER_FEATURE) is added that allows providing index, names, and the necessity of registers. This simplifies the sanity checks and future extendibility. - Documnetation has been updated to reflect ARC features better. - Although the feature names has changed, there still exists backward compatibility with older names through find_obsolete_[core,aux]_names() functions. The last two points were inspired from RiscV port. [1] https://sourceware.org/pipermail/gdb-patches/2020-May/168511.html gdb/ChangeLog: * arch/arc.h (arc_gdbarch_features): New class to stir the selection of target XML. (arc_create_target_description): Use FEATURES to choose XML target. (arc_lookup_target_description): Use arc_create_target_description to create _new_ target descriptions or return the already created ones if the FEATURES is the same. * arch/arc.c: Implementation of prototypes described above. * gdb/arc-tdep.h (arc_regnum enum): Add more registers. (arc_gdbarch_features_init): Initialize the FEATURES struct. * arc-tdep.c (*_feature_name): Make feature names consistent. (arc_register_feature): A new struct to hold information about registers of a particular target/feature. (arc_check_tdesc_feature): Check if XML provides registers in compliance with ARC_REGISTER_FEATURE structs. (arc_update_acc_reg_names): Add aliases for r58 and r59. (determine_*_reg_feature_set): Which feature name to look for. (arc_gdbarch_features_init): Given MACH and ABFD, initialize FEATURES. (mach_type_to_arc_isa): Convert from a set of binutils machine types to expected ISA enums to be used in arc_gdbarch_features structs. * features/Makefile (FEATURE_XMLFILES): Add new files. * gdb/features/arc/v1-aux.c: New file. * gdb/features/arc/v1-aux.xml: Likewise. * gdb/features/arc/v1-core.c: Likewise. * gdb/features/arc/v1-core.xml: Likewise. * gdb/features/arc/v2-aux.c: Likewise. * gdb/features/arc/v2-aux.xml: Likewise. * gdb/features/arc/v2-core.c: Likewise. * gdb/features/arc/v2-core.xml: Likewise. * NEWS (Changes since GDB 9): Announce obsolence of old feature names. gdb/doc/ChangeLog: * gdb.texinfo (Synopsys ARC): Update the documentation for ARC Features. gdb/testsuite/ChangeLog: * gdb.arch/arc-tdesc-cpu.xml: Use new feature names.
2020-07-09 23:43:13 +08:00
#include <sstream>
2016-08-13 01:02:20 +08:00
/* The frame unwind cache for ARC. */
2016-08-13 01:02:20 +08:00
struct arc_frame_cache
{
/* The stack pointer at the time this frame was created; i.e. the caller's
stack pointer when this function was called. It is used to identify this
frame. */
CORE_ADDR prev_sp;
/* Register that is a base for this frame - FP for normal frame, SP for
non-FP frames. */
int frame_base_reg;
/* Offset from the previous SP to the current frame base. If GCC uses
`SUB SP,SP,offset` to allocate space for local variables, then it will be
done after setting up a frame pointer, but it still will be considered
part of prologue, therefore SP will be lesser than FP at the end of the
prologue analysis. In this case that would be an offset from old SP to a
new FP. But in case of non-FP frames, frame base is an SP and thus that
would be an offset from old SP to new SP. What is important is that this
is an offset from old SP to a known register, so it can be used to find
old SP.
Using FP is preferable, when possible, because SP can change in function
body after prologue due to alloca, variadic arguments or other shenanigans.
If that is the case in the caller frame, then PREV_SP will point to SP at
the moment of function call, but it will be different from SP value at the
end of the caller prologue. As a result it will not be possible to
reconstruct caller's frame and go past it in the backtrace. Those things
are unlikely to happen to FP - FP value at the moment of function call (as
stored on stack in callee prologue) is also an FP value at the end of the
caller's prologue. */
LONGEST frame_base_offset;
/* Store addresses for registers saved in prologue. During prologue analysis
GDB stores offsets relatively to "old SP", then after old SP is evaluated,
offsets are replaced with absolute addresses. */
Refactor struct trad_frame_saved_regs The following patch drops the overloading going on with the trad_frame_saved_reg struct and defines a new struct with a KIND enum and a union of different fields. The new struct looks like this: struct trad_frame_saved_reg { setters/getters ... private: trad_frame_saved_reg_kind m_kind; union { LONGEST value; int realreg; LONGEST addr; const gdb_byte *value_bytes; } m_reg; }; And the enums look like this: /* Describes the kind of encoding a stored register has. */ enum class trad_frame_saved_reg_kind { /* Register value is unknown. */ UNKNOWN = 0, /* Register value is a constant. */ VALUE, /* Register value is in another register. */ REALREG, /* Register value is at an address. */ ADDR, /* Register value is a sequence of bytes. */ VALUE_BYTES }; The patch also adds setters/getters and updates all the users of the old struct. It is worth mentioning that due to the previous overloaded nature of the fields, some tdep files like to store negative offsets and indexes in the ADDR field, so I kept the ADDR as LONGEST instead of CORE_ADDR. Those cases may be better supported by a new enum entry. I have not addressed those cases in this patch to prevent unwanted breakage, given I have no way to test some of the targets. But it would be nice to clean those up eventually. The change to frame-unwind.* is to constify the parameter being passed to the unwinding functions, given we now accept a "const gdb_byte *" for value bytes. Tested on aarch64-linux/Ubuntu 20.04/18.04 and by building GDB with --enable-targets=all. gdb/ChangeLog: 2021-01-04 Luis Machado <luis.machado@linaro.org> Update all users of trad_frame_saved_reg to use the new member functions. Remote all struct keywords from declarations of trad_frame_saved_reg types, except on forward declarations. * aarch64-tdep.c: Update. * alpha-mdebug-tdep.c: Update. * alpha-tdep.c: Update. * arc-tdep.c: Update. * arm-tdep.c: Update. * avr-tdep.c: Update. * cris-tdep.c: Update. * csky-tdep.c: Update. * frv-tdep.c: Update. * hppa-linux-tdep.c: Update. * hppa-tdep.c: Update. * hppa-tdep.h: Update. * lm32-tdep.c: Update. * m32r-linux-tdep.c: Update. * m32r-tdep.c: Update. * m68hc11-tdep.c: Update. * mips-tdep.c: Update. * moxie-tdep.c: Update. * riscv-tdep.c: Update. * rs6000-tdep.c: Update. * s390-linux-tdep.c: Update. * s390-tdep.c: Update. * score-tdep.c: Update. * sparc-netbsd-tdep.c: Update. * sparc-sol2-tdep.c: Update. * sparc64-fbsd-tdep.c: Update. * sparc64-netbsd-tdep.c: Update. * sparc64-obsd-tdep.c: Update. * sparc64-sol2-tdep.c: Update. * tilegx-tdep.c: Update. * v850-tdep.c: Update. * vax-tdep.c: Update. * frame-unwind.c (frame_unwind_got_bytes): Make parameter const. * frame-unwind.h (frame_unwind_got_bytes): Likewise. * trad-frame.c: Update. Remove TF_REG_* enum. (trad_frame_alloc_saved_regs): Add a static assertion to check for a trivially-constructible struct. (trad_frame_reset_saved_regs): Adjust to use member function. (trad_frame_value_p): Likewise. (trad_frame_addr_p): Likewise. (trad_frame_realreg_p): Likewise. (trad_frame_value_bytes_p): Likewise. (trad_frame_set_value): Likewise. (trad_frame_set_realreg): Likewise. (trad_frame_set_addr): Likewise. (trad_frame_set_unknown): Likewise. (trad_frame_set_value_bytes): Likewise. (trad_frame_get_prev_register): Likewise. * trad-frame.h: Update. (trad_frame_saved_reg_kind): New enum. (struct trad_frame_saved_reg) <addr, realreg, data>: Remove. <m_kind, m_reg>: New member fields. <set_value, set_realreg, set_addr, set_unknown, set_value_bytes> <kind, value, realreg, addr, value_bytes, is_value, is_realreg> <is_addr, is_unknown, is_value_bytes>: New member functions.
2020-12-23 04:45:21 +08:00
trad_frame_saved_reg *saved_regs;
2016-08-13 01:02:20 +08:00
};
/* Global debug flag. */
bool arc_debug;
2016-08-13 01:02:20 +08:00
/* List of "maintenance print arc" commands. */
static struct cmd_list_element *maintenance_print_arc_list = NULL;
arc: Add ARCv2 XML target along with refactoring A few changes have been made to make the register support simpler, more flexible and extendible. The trigger for most of these changes are the remarks [1] made earlier for v2 of this patch. The noticeable improvements are: - The arc XML target features are placed under gdb/features/arc - There are two cores (based on ISA) and one auxiliary feature: v1-core: ARC600, ARC601, ARC700 v2-core: ARC EM, ARC HS aux: common in both - The XML target features represent a minimalistic sane set of registers irrespective of application (baremetal or linux). - A concept of "feature" class has been introduced in the code. The "feature" object is constructed from BFD and GDBARCH data. It contains necessary information (ISA and register size) to determine which XML target feature to use. - A new structure (ARC_REGISTER_FEATURE) is added that allows providing index, names, and the necessity of registers. This simplifies the sanity checks and future extendibility. - Documnetation has been updated to reflect ARC features better. - Although the feature names has changed, there still exists backward compatibility with older names through find_obsolete_[core,aux]_names() functions. The last two points were inspired from RiscV port. [1] https://sourceware.org/pipermail/gdb-patches/2020-May/168511.html gdb/ChangeLog: * arch/arc.h (arc_gdbarch_features): New class to stir the selection of target XML. (arc_create_target_description): Use FEATURES to choose XML target. (arc_lookup_target_description): Use arc_create_target_description to create _new_ target descriptions or return the already created ones if the FEATURES is the same. * arch/arc.c: Implementation of prototypes described above. * gdb/arc-tdep.h (arc_regnum enum): Add more registers. (arc_gdbarch_features_init): Initialize the FEATURES struct. * arc-tdep.c (*_feature_name): Make feature names consistent. (arc_register_feature): A new struct to hold information about registers of a particular target/feature. (arc_check_tdesc_feature): Check if XML provides registers in compliance with ARC_REGISTER_FEATURE structs. (arc_update_acc_reg_names): Add aliases for r58 and r59. (determine_*_reg_feature_set): Which feature name to look for. (arc_gdbarch_features_init): Given MACH and ABFD, initialize FEATURES. (mach_type_to_arc_isa): Convert from a set of binutils machine types to expected ISA enums to be used in arc_gdbarch_features structs. * features/Makefile (FEATURE_XMLFILES): Add new files. * gdb/features/arc/v1-aux.c: New file. * gdb/features/arc/v1-aux.xml: Likewise. * gdb/features/arc/v1-core.c: Likewise. * gdb/features/arc/v1-core.xml: Likewise. * gdb/features/arc/v2-aux.c: Likewise. * gdb/features/arc/v2-aux.xml: Likewise. * gdb/features/arc/v2-core.c: Likewise. * gdb/features/arc/v2-core.xml: Likewise. * NEWS (Changes since GDB 9): Announce obsolence of old feature names. gdb/doc/ChangeLog: * gdb.texinfo (Synopsys ARC): Update the documentation for ARC Features. gdb/testsuite/ChangeLog: * gdb.arch/arc-tdesc-cpu.xml: Use new feature names.
2020-07-09 23:43:13 +08:00
/* A set of registers that we expect to find in a tdesc_feature. These
are used in ARC_TDESC_INIT when processing the target description. */
struct arc_register_feature
{
/* Information for a single register. */
struct register_info
{
/* The GDB register number for this register. */
int regnum;
/* List of names for this register. The first name in this list is the
preferred name, the name GDB will use when describing this register. */
std::vector<const char *> names;
/* When true, this register must be present in this feature set. */
bool required_p;
};
/* The name for this feature. This is the name used to find this feature
within the target description. */
const char *name;
/* List of all the registers that we expect to encounter in this register
set. */
std::vector<struct register_info> registers;
2016-08-13 01:02:20 +08:00
};
arc: Add ARCv2 XML target along with refactoring A few changes have been made to make the register support simpler, more flexible and extendible. The trigger for most of these changes are the remarks [1] made earlier for v2 of this patch. The noticeable improvements are: - The arc XML target features are placed under gdb/features/arc - There are two cores (based on ISA) and one auxiliary feature: v1-core: ARC600, ARC601, ARC700 v2-core: ARC EM, ARC HS aux: common in both - The XML target features represent a minimalistic sane set of registers irrespective of application (baremetal or linux). - A concept of "feature" class has been introduced in the code. The "feature" object is constructed from BFD and GDBARCH data. It contains necessary information (ISA and register size) to determine which XML target feature to use. - A new structure (ARC_REGISTER_FEATURE) is added that allows providing index, names, and the necessity of registers. This simplifies the sanity checks and future extendibility. - Documnetation has been updated to reflect ARC features better. - Although the feature names has changed, there still exists backward compatibility with older names through find_obsolete_[core,aux]_names() functions. The last two points were inspired from RiscV port. [1] https://sourceware.org/pipermail/gdb-patches/2020-May/168511.html gdb/ChangeLog: * arch/arc.h (arc_gdbarch_features): New class to stir the selection of target XML. (arc_create_target_description): Use FEATURES to choose XML target. (arc_lookup_target_description): Use arc_create_target_description to create _new_ target descriptions or return the already created ones if the FEATURES is the same. * arch/arc.c: Implementation of prototypes described above. * gdb/arc-tdep.h (arc_regnum enum): Add more registers. (arc_gdbarch_features_init): Initialize the FEATURES struct. * arc-tdep.c (*_feature_name): Make feature names consistent. (arc_register_feature): A new struct to hold information about registers of a particular target/feature. (arc_check_tdesc_feature): Check if XML provides registers in compliance with ARC_REGISTER_FEATURE structs. (arc_update_acc_reg_names): Add aliases for r58 and r59. (determine_*_reg_feature_set): Which feature name to look for. (arc_gdbarch_features_init): Given MACH and ABFD, initialize FEATURES. (mach_type_to_arc_isa): Convert from a set of binutils machine types to expected ISA enums to be used in arc_gdbarch_features structs. * features/Makefile (FEATURE_XMLFILES): Add new files. * gdb/features/arc/v1-aux.c: New file. * gdb/features/arc/v1-aux.xml: Likewise. * gdb/features/arc/v1-core.c: Likewise. * gdb/features/arc/v1-core.xml: Likewise. * gdb/features/arc/v2-aux.c: Likewise. * gdb/features/arc/v2-aux.xml: Likewise. * gdb/features/arc/v2-core.c: Likewise. * gdb/features/arc/v2-core.xml: Likewise. * NEWS (Changes since GDB 9): Announce obsolence of old feature names. gdb/doc/ChangeLog: * gdb.texinfo (Synopsys ARC): Update the documentation for ARC Features. gdb/testsuite/ChangeLog: * gdb.arch/arc-tdesc-cpu.xml: Use new feature names.
2020-07-09 23:43:13 +08:00
/* Obsolete feature names for backward compatibility. */
static const char *ARC_CORE_V1_OBSOLETE_FEATURE_NAME
= "org.gnu.gdb.arc.core.arcompact";
static const char *ARC_CORE_V2_OBSOLETE_FEATURE_NAME
= "org.gnu.gdb.arc.core.v2";
static const char *ARC_CORE_V2_REDUCED_OBSOLETE_FEATURE_NAME
= "org.gnu.gdb.arc.core-reduced.v2";
static const char *ARC_AUX_OBSOLETE_FEATURE_NAME
= "org.gnu.gdb.arc.aux-minimal";
/* Modern feature names. */
static const char *ARC_CORE_FEATURE_NAME = "org.gnu.gdb.arc.core";
static const char *ARC_AUX_FEATURE_NAME = "org.gnu.gdb.arc.aux";
/* ARCv1 (ARC600, ARC601, ARC700) general core registers feature set.
See also arc_update_acc_reg_names() for "accl/acch" names. */
static struct arc_register_feature arc_v1_core_reg_feature =
{
ARC_CORE_FEATURE_NAME,
{
{ ARC_R0_REGNUM + 0, { "r0" }, true },
{ ARC_R0_REGNUM + 1, { "r1" }, true },
{ ARC_R0_REGNUM + 2, { "r2" }, true },
{ ARC_R0_REGNUM + 3, { "r3" }, true },
{ ARC_R0_REGNUM + 4, { "r4" }, false },
{ ARC_R0_REGNUM + 5, { "r5" }, false },
{ ARC_R0_REGNUM + 6, { "r6" }, false },
{ ARC_R0_REGNUM + 7, { "r7" }, false },
{ ARC_R0_REGNUM + 8, { "r8" }, false },
{ ARC_R0_REGNUM + 9, { "r9" }, false },
{ ARC_R0_REGNUM + 10, { "r10" }, true },
{ ARC_R0_REGNUM + 11, { "r11" }, true },
{ ARC_R0_REGNUM + 12, { "r12" }, true },
{ ARC_R0_REGNUM + 13, { "r13" }, true },
{ ARC_R0_REGNUM + 14, { "r14" }, true },
{ ARC_R0_REGNUM + 15, { "r15" }, true },
{ ARC_R0_REGNUM + 16, { "r16" }, false },
{ ARC_R0_REGNUM + 17, { "r17" }, false },
{ ARC_R0_REGNUM + 18, { "r18" }, false },
{ ARC_R0_REGNUM + 19, { "r19" }, false },
{ ARC_R0_REGNUM + 20, { "r20" }, false },
{ ARC_R0_REGNUM + 21, { "r21" }, false },
{ ARC_R0_REGNUM + 22, { "r22" }, false },
{ ARC_R0_REGNUM + 23, { "r23" }, false },
{ ARC_R0_REGNUM + 24, { "r24" }, false },
{ ARC_R0_REGNUM + 25, { "r25" }, false },
{ ARC_R0_REGNUM + 26, { "gp" }, true },
{ ARC_R0_REGNUM + 27, { "fp" }, true },
{ ARC_R0_REGNUM + 28, { "sp" }, true },
{ ARC_R0_REGNUM + 29, { "ilink1" }, false },
{ ARC_R0_REGNUM + 30, { "ilink2" }, false },
{ ARC_R0_REGNUM + 31, { "blink" }, true },
{ ARC_R0_REGNUM + 32, { "r32" }, false },
{ ARC_R0_REGNUM + 33, { "r33" }, false },
{ ARC_R0_REGNUM + 34, { "r34" }, false },
{ ARC_R0_REGNUM + 35, { "r35" }, false },
{ ARC_R0_REGNUM + 36, { "r36" }, false },
{ ARC_R0_REGNUM + 37, { "r37" }, false },
{ ARC_R0_REGNUM + 38, { "r38" }, false },
{ ARC_R0_REGNUM + 39, { "r39" }, false },
{ ARC_R0_REGNUM + 40, { "r40" }, false },
{ ARC_R0_REGNUM + 41, { "r41" }, false },
{ ARC_R0_REGNUM + 42, { "r42" }, false },
{ ARC_R0_REGNUM + 43, { "r43" }, false },
{ ARC_R0_REGNUM + 44, { "r44" }, false },
{ ARC_R0_REGNUM + 45, { "r45" }, false },
{ ARC_R0_REGNUM + 46, { "r46" }, false },
{ ARC_R0_REGNUM + 47, { "r47" }, false },
{ ARC_R0_REGNUM + 48, { "r48" }, false },
{ ARC_R0_REGNUM + 49, { "r49" }, false },
{ ARC_R0_REGNUM + 50, { "r50" }, false },
{ ARC_R0_REGNUM + 51, { "r51" }, false },
{ ARC_R0_REGNUM + 52, { "r52" }, false },
{ ARC_R0_REGNUM + 53, { "r53" }, false },
{ ARC_R0_REGNUM + 54, { "r54" }, false },
{ ARC_R0_REGNUM + 55, { "r55" }, false },
{ ARC_R0_REGNUM + 56, { "r56" }, false },
{ ARC_R0_REGNUM + 57, { "r57" }, false },
{ ARC_R0_REGNUM + 58, { "r58", "accl" }, false },
{ ARC_R0_REGNUM + 59, { "r59", "acch" }, false },
{ ARC_R0_REGNUM + 60, { "lp_count" }, false },
{ ARC_R0_REGNUM + 61, { "reserved" }, false },
{ ARC_R0_REGNUM + 62, { "limm" }, false },
{ ARC_R0_REGNUM + 63, { "pcl" }, true }
}
2016-08-13 01:02:20 +08:00
};
arc: Add ARCv2 XML target along with refactoring A few changes have been made to make the register support simpler, more flexible and extendible. The trigger for most of these changes are the remarks [1] made earlier for v2 of this patch. The noticeable improvements are: - The arc XML target features are placed under gdb/features/arc - There are two cores (based on ISA) and one auxiliary feature: v1-core: ARC600, ARC601, ARC700 v2-core: ARC EM, ARC HS aux: common in both - The XML target features represent a minimalistic sane set of registers irrespective of application (baremetal or linux). - A concept of "feature" class has been introduced in the code. The "feature" object is constructed from BFD and GDBARCH data. It contains necessary information (ISA and register size) to determine which XML target feature to use. - A new structure (ARC_REGISTER_FEATURE) is added that allows providing index, names, and the necessity of registers. This simplifies the sanity checks and future extendibility. - Documnetation has been updated to reflect ARC features better. - Although the feature names has changed, there still exists backward compatibility with older names through find_obsolete_[core,aux]_names() functions. The last two points were inspired from RiscV port. [1] https://sourceware.org/pipermail/gdb-patches/2020-May/168511.html gdb/ChangeLog: * arch/arc.h (arc_gdbarch_features): New class to stir the selection of target XML. (arc_create_target_description): Use FEATURES to choose XML target. (arc_lookup_target_description): Use arc_create_target_description to create _new_ target descriptions or return the already created ones if the FEATURES is the same. * arch/arc.c: Implementation of prototypes described above. * gdb/arc-tdep.h (arc_regnum enum): Add more registers. (arc_gdbarch_features_init): Initialize the FEATURES struct. * arc-tdep.c (*_feature_name): Make feature names consistent. (arc_register_feature): A new struct to hold information about registers of a particular target/feature. (arc_check_tdesc_feature): Check if XML provides registers in compliance with ARC_REGISTER_FEATURE structs. (arc_update_acc_reg_names): Add aliases for r58 and r59. (determine_*_reg_feature_set): Which feature name to look for. (arc_gdbarch_features_init): Given MACH and ABFD, initialize FEATURES. (mach_type_to_arc_isa): Convert from a set of binutils machine types to expected ISA enums to be used in arc_gdbarch_features structs. * features/Makefile (FEATURE_XMLFILES): Add new files. * gdb/features/arc/v1-aux.c: New file. * gdb/features/arc/v1-aux.xml: Likewise. * gdb/features/arc/v1-core.c: Likewise. * gdb/features/arc/v1-core.xml: Likewise. * gdb/features/arc/v2-aux.c: Likewise. * gdb/features/arc/v2-aux.xml: Likewise. * gdb/features/arc/v2-core.c: Likewise. * gdb/features/arc/v2-core.xml: Likewise. * NEWS (Changes since GDB 9): Announce obsolence of old feature names. gdb/doc/ChangeLog: * gdb.texinfo (Synopsys ARC): Update the documentation for ARC Features. gdb/testsuite/ChangeLog: * gdb.arch/arc-tdesc-cpu.xml: Use new feature names.
2020-07-09 23:43:13 +08:00
/* ARCv2 (ARCHS) general core registers feature set. See also
arc_update_acc_reg_names() for "accl/acch" names. */
static struct arc_register_feature arc_v2_core_reg_feature =
{
ARC_CORE_FEATURE_NAME,
{
{ ARC_R0_REGNUM + 0, { "r0" }, true },
{ ARC_R0_REGNUM + 1, { "r1" }, true },
{ ARC_R0_REGNUM + 2, { "r2" }, true },
{ ARC_R0_REGNUM + 3, { "r3" }, true },
{ ARC_R0_REGNUM + 4, { "r4" }, false },
{ ARC_R0_REGNUM + 5, { "r5" }, false },
{ ARC_R0_REGNUM + 6, { "r6" }, false },
{ ARC_R0_REGNUM + 7, { "r7" }, false },
{ ARC_R0_REGNUM + 8, { "r8" }, false },
{ ARC_R0_REGNUM + 9, { "r9" }, false },
{ ARC_R0_REGNUM + 10, { "r10" }, true },
{ ARC_R0_REGNUM + 11, { "r11" }, true },
{ ARC_R0_REGNUM + 12, { "r12" }, true },
{ ARC_R0_REGNUM + 13, { "r13" }, true },
{ ARC_R0_REGNUM + 14, { "r14" }, true },
{ ARC_R0_REGNUM + 15, { "r15" }, true },
{ ARC_R0_REGNUM + 16, { "r16" }, false },
{ ARC_R0_REGNUM + 17, { "r17" }, false },
{ ARC_R0_REGNUM + 18, { "r18" }, false },
{ ARC_R0_REGNUM + 19, { "r19" }, false },
{ ARC_R0_REGNUM + 20, { "r20" }, false },
{ ARC_R0_REGNUM + 21, { "r21" }, false },
{ ARC_R0_REGNUM + 22, { "r22" }, false },
{ ARC_R0_REGNUM + 23, { "r23" }, false },
{ ARC_R0_REGNUM + 24, { "r24" }, false },
{ ARC_R0_REGNUM + 25, { "r25" }, false },
{ ARC_R0_REGNUM + 26, { "gp" }, true },
{ ARC_R0_REGNUM + 27, { "fp" }, true },
{ ARC_R0_REGNUM + 28, { "sp" }, true },
{ ARC_R0_REGNUM + 29, { "ilink" }, false },
{ ARC_R0_REGNUM + 30, { "r30" }, true },
{ ARC_R0_REGNUM + 31, { "blink" }, true },
{ ARC_R0_REGNUM + 32, { "r32" }, false },
{ ARC_R0_REGNUM + 33, { "r33" }, false },
{ ARC_R0_REGNUM + 34, { "r34" }, false },
{ ARC_R0_REGNUM + 35, { "r35" }, false },
{ ARC_R0_REGNUM + 36, { "r36" }, false },
{ ARC_R0_REGNUM + 37, { "r37" }, false },
{ ARC_R0_REGNUM + 38, { "r38" }, false },
{ ARC_R0_REGNUM + 39, { "r39" }, false },
{ ARC_R0_REGNUM + 40, { "r40" }, false },
{ ARC_R0_REGNUM + 41, { "r41" }, false },
{ ARC_R0_REGNUM + 42, { "r42" }, false },
{ ARC_R0_REGNUM + 43, { "r43" }, false },
{ ARC_R0_REGNUM + 44, { "r44" }, false },
{ ARC_R0_REGNUM + 45, { "r45" }, false },
{ ARC_R0_REGNUM + 46, { "r46" }, false },
{ ARC_R0_REGNUM + 47, { "r47" }, false },
{ ARC_R0_REGNUM + 48, { "r48" }, false },
{ ARC_R0_REGNUM + 49, { "r49" }, false },
{ ARC_R0_REGNUM + 50, { "r50" }, false },
{ ARC_R0_REGNUM + 51, { "r51" }, false },
{ ARC_R0_REGNUM + 52, { "r52" }, false },
{ ARC_R0_REGNUM + 53, { "r53" }, false },
{ ARC_R0_REGNUM + 54, { "r54" }, false },
{ ARC_R0_REGNUM + 55, { "r55" }, false },
{ ARC_R0_REGNUM + 56, { "r56" }, false },
{ ARC_R0_REGNUM + 57, { "r57" }, false },
{ ARC_R0_REGNUM + 58, { "r58", "accl" }, false },
{ ARC_R0_REGNUM + 59, { "r59", "acch" }, false },
{ ARC_R0_REGNUM + 60, { "lp_count" }, false },
{ ARC_R0_REGNUM + 61, { "reserved" }, false },
{ ARC_R0_REGNUM + 62, { "limm" }, false },
{ ARC_R0_REGNUM + 63, { "pcl" }, true }
}
2016-08-13 01:02:20 +08:00
};
arc: Add ARCv2 XML target along with refactoring A few changes have been made to make the register support simpler, more flexible and extendible. The trigger for most of these changes are the remarks [1] made earlier for v2 of this patch. The noticeable improvements are: - The arc XML target features are placed under gdb/features/arc - There are two cores (based on ISA) and one auxiliary feature: v1-core: ARC600, ARC601, ARC700 v2-core: ARC EM, ARC HS aux: common in both - The XML target features represent a minimalistic sane set of registers irrespective of application (baremetal or linux). - A concept of "feature" class has been introduced in the code. The "feature" object is constructed from BFD and GDBARCH data. It contains necessary information (ISA and register size) to determine which XML target feature to use. - A new structure (ARC_REGISTER_FEATURE) is added that allows providing index, names, and the necessity of registers. This simplifies the sanity checks and future extendibility. - Documnetation has been updated to reflect ARC features better. - Although the feature names has changed, there still exists backward compatibility with older names through find_obsolete_[core,aux]_names() functions. The last two points were inspired from RiscV port. [1] https://sourceware.org/pipermail/gdb-patches/2020-May/168511.html gdb/ChangeLog: * arch/arc.h (arc_gdbarch_features): New class to stir the selection of target XML. (arc_create_target_description): Use FEATURES to choose XML target. (arc_lookup_target_description): Use arc_create_target_description to create _new_ target descriptions or return the already created ones if the FEATURES is the same. * arch/arc.c: Implementation of prototypes described above. * gdb/arc-tdep.h (arc_regnum enum): Add more registers. (arc_gdbarch_features_init): Initialize the FEATURES struct. * arc-tdep.c (*_feature_name): Make feature names consistent. (arc_register_feature): A new struct to hold information about registers of a particular target/feature. (arc_check_tdesc_feature): Check if XML provides registers in compliance with ARC_REGISTER_FEATURE structs. (arc_update_acc_reg_names): Add aliases for r58 and r59. (determine_*_reg_feature_set): Which feature name to look for. (arc_gdbarch_features_init): Given MACH and ABFD, initialize FEATURES. (mach_type_to_arc_isa): Convert from a set of binutils machine types to expected ISA enums to be used in arc_gdbarch_features structs. * features/Makefile (FEATURE_XMLFILES): Add new files. * gdb/features/arc/v1-aux.c: New file. * gdb/features/arc/v1-aux.xml: Likewise. * gdb/features/arc/v1-core.c: Likewise. * gdb/features/arc/v1-core.xml: Likewise. * gdb/features/arc/v2-aux.c: Likewise. * gdb/features/arc/v2-aux.xml: Likewise. * gdb/features/arc/v2-core.c: Likewise. * gdb/features/arc/v2-core.xml: Likewise. * NEWS (Changes since GDB 9): Announce obsolence of old feature names. gdb/doc/ChangeLog: * gdb.texinfo (Synopsys ARC): Update the documentation for ARC Features. gdb/testsuite/ChangeLog: * gdb.arch/arc-tdesc-cpu.xml: Use new feature names.
2020-07-09 23:43:13 +08:00
/* The common auxiliary registers feature set. The REGNUM field
must match the ARC_REGNUM enum in arc-tdep.h. */
arc: Add ARCv2 XML target along with refactoring A few changes have been made to make the register support simpler, more flexible and extendible. The trigger for most of these changes are the remarks [1] made earlier for v2 of this patch. The noticeable improvements are: - The arc XML target features are placed under gdb/features/arc - There are two cores (based on ISA) and one auxiliary feature: v1-core: ARC600, ARC601, ARC700 v2-core: ARC EM, ARC HS aux: common in both - The XML target features represent a minimalistic sane set of registers irrespective of application (baremetal or linux). - A concept of "feature" class has been introduced in the code. The "feature" object is constructed from BFD and GDBARCH data. It contains necessary information (ISA and register size) to determine which XML target feature to use. - A new structure (ARC_REGISTER_FEATURE) is added that allows providing index, names, and the necessity of registers. This simplifies the sanity checks and future extendibility. - Documnetation has been updated to reflect ARC features better. - Although the feature names has changed, there still exists backward compatibility with older names through find_obsolete_[core,aux]_names() functions. The last two points were inspired from RiscV port. [1] https://sourceware.org/pipermail/gdb-patches/2020-May/168511.html gdb/ChangeLog: * arch/arc.h (arc_gdbarch_features): New class to stir the selection of target XML. (arc_create_target_description): Use FEATURES to choose XML target. (arc_lookup_target_description): Use arc_create_target_description to create _new_ target descriptions or return the already created ones if the FEATURES is the same. * arch/arc.c: Implementation of prototypes described above. * gdb/arc-tdep.h (arc_regnum enum): Add more registers. (arc_gdbarch_features_init): Initialize the FEATURES struct. * arc-tdep.c (*_feature_name): Make feature names consistent. (arc_register_feature): A new struct to hold information about registers of a particular target/feature. (arc_check_tdesc_feature): Check if XML provides registers in compliance with ARC_REGISTER_FEATURE structs. (arc_update_acc_reg_names): Add aliases for r58 and r59. (determine_*_reg_feature_set): Which feature name to look for. (arc_gdbarch_features_init): Given MACH and ABFD, initialize FEATURES. (mach_type_to_arc_isa): Convert from a set of binutils machine types to expected ISA enums to be used in arc_gdbarch_features structs. * features/Makefile (FEATURE_XMLFILES): Add new files. * gdb/features/arc/v1-aux.c: New file. * gdb/features/arc/v1-aux.xml: Likewise. * gdb/features/arc/v1-core.c: Likewise. * gdb/features/arc/v1-core.xml: Likewise. * gdb/features/arc/v2-aux.c: Likewise. * gdb/features/arc/v2-aux.xml: Likewise. * gdb/features/arc/v2-core.c: Likewise. * gdb/features/arc/v2-core.xml: Likewise. * NEWS (Changes since GDB 9): Announce obsolence of old feature names. gdb/doc/ChangeLog: * gdb.texinfo (Synopsys ARC): Update the documentation for ARC Features. gdb/testsuite/ChangeLog: * gdb.arch/arc-tdesc-cpu.xml: Use new feature names.
2020-07-09 23:43:13 +08:00
static const struct arc_register_feature arc_common_aux_reg_feature =
{
ARC_AUX_FEATURE_NAME,
{
{ ARC_FIRST_AUX_REGNUM + 0, { "pc" }, true },
{ ARC_FIRST_AUX_REGNUM + 1, { "status32" }, true },
{ ARC_FIRST_AUX_REGNUM + 2, { "lp_start" }, false },
{ ARC_FIRST_AUX_REGNUM + 3, { "lp_end" }, false },
{ ARC_FIRST_AUX_REGNUM + 4, { "bta" }, false }
}
};
static char *arc_disassembler_options = NULL;
arc: Migrate to new target features This patch replaces usage of target descriptions in ARC, where the whole description is fixed in XML, with new target descriptions where XML describes individual features, and GDB assembles those features into actual target description. v2: Removed arc.c from ALLDEPFILES in gdb/Makefile.in. Removed vim modeline from arc-tdep.c to have it in a separate patch. Removed braces from one line "if/else". Undid the type change for "jb_pc" (kept it as "int"). Joined the unnecessary line breaks into one line. No more moving around arm targets in gdb/features/Makefile. Changed pattern checking for ARC features from "arc/{aux,core}" to "arc/". v3: Added include gaurds to arc.h. Added arc_read_description to _create_ target descriptions less. v4: Got rid of ARC_SYS_TYPE_NONE. Renamed ARC_SYS_TYPE_INVALID to ARC_SYS_TYPE_NUM. Fixed a few indentations/curly braces. Converted arc_sys_type_to_str from a macro to an inline function. gdb/ChangeLog: 2020-03-16 Anton Kolesov <anton.kolesov@synopsys.com> Shahab Vahedi <shahab@synopsys.com> * Makefile.in: Add arch/arc.o * configure.tgt: Likewise. * arc-tdep.c (arc_tdesc_init): Use arc_read_description. (_initialize_arc_tdep): Don't initialize old target descriptions. (arc_read_description): New function to cache target descriptions. * arc-tdep.h (arc_read_description): Add proto type. * arch/arc.c: New file. * arch/arc.h: Likewise. * features/Makefile: Replace old target descriptions with new. * features/arc-arcompact.c: Remove. * features/arc-arcompact.xml: Likewise. * features/arc-v2.c: Likewise * features/arc-v2.xml: Likewise * features/arc/aux-arcompact.xml: New file. * features/arc/aux-v2.xml: Likewise. * features/arc/core-arcompact.xml: Likewise. * features/arc/core-v2.xml: Likewise. * features/arc/aux-arcompact.c: Generate. * features/arc/aux-v2.c: Likewise. * features/arc/core-arcompact.c: Likewise. * features/arc/core-v2.c: Likewise. * target-descriptions (maint_print_c_tdesc_cmd): Support ARC features.
2017-10-26 02:51:54 +08:00
/* Functions are sorted in the order as they are used in the
_initialize_arc_tdep (), which uses the same order as gdbarch.h. Static
functions are defined before the first invocation. */
arc: Add disassembler helper Add disassembler helper for GDB, that uses opcodes structure arc_instruction and adds convenience functions to handle instruction operands. This interface solves at least those problems with arc_instruction: * Some instructions, like "push_s", have implicit operands which are not directly present in arc_instruction. * Operands of particular meaning, like branch/jump targets, have various locations and meaning depending on type of branch/target. * Access to operand value is abstracted into a separate function, so callee code shouldn't bother if operand value is an immediate value or in a register. Testcases included in this commit are fairly limited - they test exclusively branch instructions, something that will be used in software single stepping. Most of the other parts of this disassembler helper are tested during prologue analysis testing. gdb/ChangeLog: yyyy-mm-dd Anton Kolesov <anton.kolesov@synopsys.com> * configure.tgt: Add arc-insn.o. * arc-tdep.c (arc_delayed_print_insn): Make non-static. (dump_arc_instruction_command): New function. (arc_fprintf_disasm): Likewise. (arc_disassemble_info): Likewise. (arc_insn_get_operand_value): Likewise. (arc_insn_get_operand_value_signed): Likewise. (arc_insn_get_memory_base_reg): Likewise. (arc_insn_get_memory_offset): Likewise. (arc_insn_get_branch_target): Likewise. (arc_insn_dump): Likewise. (arc_insn_get_linear_next_pc): Likewise. * arc-tdep.h (arc_delayed_print_insn): Add function declaration. (arc_disassemble_info): Likewise. (arc_insn_get_branch_target): Likewise. (arc_insn_get_linear_next_pc): Likewise. * NEWS: Mention new "maint print arc arc-instruction". gdb/doc/ChangeLog: yyyy-mm-dd Anton Kolesov <anton.kolesov@synopsys.com> * gdb.texinfo (Synopsys ARC): Add "maint print arc arc-instruction". gdb/testsuite/ChangeLog: yyyy-mm-dd Anton Kolesov <anton.kolesov@synopsys.com> * gdb.arch/arc-decode-insn.S: New file. * gdb.arch/arc-decode-insn.exp: Likewise.
2017-02-10 19:12:06 +08:00
/* Returns an unsigned value of OPERAND_NUM in instruction INSN.
For relative branch instructions returned value is an offset, not an actual
branch target. */
static ULONGEST
arc_insn_get_operand_value (const struct arc_instruction &insn,
unsigned int operand_num)
{
switch (insn.operands[operand_num].kind)
{
case ARC_OPERAND_KIND_LIMM:
gdb_assert (insn.limm_p);
return insn.limm_value;
case ARC_OPERAND_KIND_SHIMM:
return insn.operands[operand_num].value;
default:
/* Value in instruction is a register number. */
struct regcache *regcache = get_current_regcache ();
ULONGEST value;
regcache_cooked_read_unsigned (regcache,
insn.operands[operand_num].value,
&value);
return value;
}
}
/* Like arc_insn_get_operand_value, but returns a signed value. */
static LONGEST
arc_insn_get_operand_value_signed (const struct arc_instruction &insn,
unsigned int operand_num)
{
switch (insn.operands[operand_num].kind)
{
case ARC_OPERAND_KIND_LIMM:
gdb_assert (insn.limm_p);
/* Convert unsigned raw value to signed one. This assumes 2's
complement arithmetic, but so is the LONG_MIN value from generic
defs.h and that assumption is true for ARC. */
gdb_static_assert (sizeof (insn.limm_value) == sizeof (int));
return (((LONGEST) insn.limm_value) ^ INT_MIN) - INT_MIN;
case ARC_OPERAND_KIND_SHIMM:
/* Sign conversion has been done by binutils. */
return insn.operands[operand_num].value;
default:
/* Value in instruction is a register number. */
struct regcache *regcache = get_current_regcache ();
LONGEST value;
regcache_cooked_read_signed (regcache,
insn.operands[operand_num].value,
&value);
return value;
}
}
/* Get register with base address of memory operation. */
static int
arc: Add disassembler helper Add disassembler helper for GDB, that uses opcodes structure arc_instruction and adds convenience functions to handle instruction operands. This interface solves at least those problems with arc_instruction: * Some instructions, like "push_s", have implicit operands which are not directly present in arc_instruction. * Operands of particular meaning, like branch/jump targets, have various locations and meaning depending on type of branch/target. * Access to operand value is abstracted into a separate function, so callee code shouldn't bother if operand value is an immediate value or in a register. Testcases included in this commit are fairly limited - they test exclusively branch instructions, something that will be used in software single stepping. Most of the other parts of this disassembler helper are tested during prologue analysis testing. gdb/ChangeLog: yyyy-mm-dd Anton Kolesov <anton.kolesov@synopsys.com> * configure.tgt: Add arc-insn.o. * arc-tdep.c (arc_delayed_print_insn): Make non-static. (dump_arc_instruction_command): New function. (arc_fprintf_disasm): Likewise. (arc_disassemble_info): Likewise. (arc_insn_get_operand_value): Likewise. (arc_insn_get_operand_value_signed): Likewise. (arc_insn_get_memory_base_reg): Likewise. (arc_insn_get_memory_offset): Likewise. (arc_insn_get_branch_target): Likewise. (arc_insn_dump): Likewise. (arc_insn_get_linear_next_pc): Likewise. * arc-tdep.h (arc_delayed_print_insn): Add function declaration. (arc_disassemble_info): Likewise. (arc_insn_get_branch_target): Likewise. (arc_insn_get_linear_next_pc): Likewise. * NEWS: Mention new "maint print arc arc-instruction". gdb/doc/ChangeLog: yyyy-mm-dd Anton Kolesov <anton.kolesov@synopsys.com> * gdb.texinfo (Synopsys ARC): Add "maint print arc arc-instruction". gdb/testsuite/ChangeLog: yyyy-mm-dd Anton Kolesov <anton.kolesov@synopsys.com> * gdb.arch/arc-decode-insn.S: New file. * gdb.arch/arc-decode-insn.exp: Likewise.
2017-02-10 19:12:06 +08:00
arc_insn_get_memory_base_reg (const struct arc_instruction &insn)
{
/* POP_S and PUSH_S have SP as an implicit argument in a disassembler. */
if (insn.insn_class == PUSH || insn.insn_class == POP)
return ARC_SP_REGNUM;
gdb_assert (insn.insn_class == LOAD || insn.insn_class == STORE);
/* Other instructions all have at least two operands: operand 0 is data,
operand 1 is address. Operand 2 is offset from address. However, see
comment to arc_instruction.operands - in some cases, third operand may be
missing, namely if it is 0. */
gdb_assert (insn.operands_count >= 2);
return insn.operands[1].value;
}
/* Get offset of a memory operation INSN. */
static CORE_ADDR
arc: Add disassembler helper Add disassembler helper for GDB, that uses opcodes structure arc_instruction and adds convenience functions to handle instruction operands. This interface solves at least those problems with arc_instruction: * Some instructions, like "push_s", have implicit operands which are not directly present in arc_instruction. * Operands of particular meaning, like branch/jump targets, have various locations and meaning depending on type of branch/target. * Access to operand value is abstracted into a separate function, so callee code shouldn't bother if operand value is an immediate value or in a register. Testcases included in this commit are fairly limited - they test exclusively branch instructions, something that will be used in software single stepping. Most of the other parts of this disassembler helper are tested during prologue analysis testing. gdb/ChangeLog: yyyy-mm-dd Anton Kolesov <anton.kolesov@synopsys.com> * configure.tgt: Add arc-insn.o. * arc-tdep.c (arc_delayed_print_insn): Make non-static. (dump_arc_instruction_command): New function. (arc_fprintf_disasm): Likewise. (arc_disassemble_info): Likewise. (arc_insn_get_operand_value): Likewise. (arc_insn_get_operand_value_signed): Likewise. (arc_insn_get_memory_base_reg): Likewise. (arc_insn_get_memory_offset): Likewise. (arc_insn_get_branch_target): Likewise. (arc_insn_dump): Likewise. (arc_insn_get_linear_next_pc): Likewise. * arc-tdep.h (arc_delayed_print_insn): Add function declaration. (arc_disassemble_info): Likewise. (arc_insn_get_branch_target): Likewise. (arc_insn_get_linear_next_pc): Likewise. * NEWS: Mention new "maint print arc arc-instruction". gdb/doc/ChangeLog: yyyy-mm-dd Anton Kolesov <anton.kolesov@synopsys.com> * gdb.texinfo (Synopsys ARC): Add "maint print arc arc-instruction". gdb/testsuite/ChangeLog: yyyy-mm-dd Anton Kolesov <anton.kolesov@synopsys.com> * gdb.arch/arc-decode-insn.S: New file. * gdb.arch/arc-decode-insn.exp: Likewise.
2017-02-10 19:12:06 +08:00
arc_insn_get_memory_offset (const struct arc_instruction &insn)
{
/* POP_S and PUSH_S have offset as an implicit argument in a
disassembler. */
if (insn.insn_class == POP)
return 4;
else if (insn.insn_class == PUSH)
return -4;
gdb_assert (insn.insn_class == LOAD || insn.insn_class == STORE);
/* Other instructions all have at least two operands: operand 0 is data,
operand 1 is address. Operand 2 is offset from address. However, see
comment to arc_instruction.operands - in some cases, third operand may be
missing, namely if it is 0. */
if (insn.operands_count < 3)
return 0;
CORE_ADDR value = arc_insn_get_operand_value (insn, 2);
/* Handle scaling. */
if (insn.writeback_mode == ARC_WRITEBACK_AS)
{
/* Byte data size is not valid for AS. Halfword means shift by 1 bit.
Word and double word means shift by 2 bits. */
gdb_assert (insn.data_size_mode != ARC_SCALING_B);
if (insn.data_size_mode == ARC_SCALING_H)
value <<= 1;
else
value <<= 2;
}
return value;
}
CORE_ADDR
arc_insn_get_branch_target (const struct arc_instruction &insn)
{
gdb_assert (insn.is_control_flow);
/* BI [c]: PC = nextPC + (c << 2). */
if (insn.insn_class == BI)
{
ULONGEST reg_value = arc_insn_get_operand_value (insn, 0);
return arc_insn_get_linear_next_pc (insn) + (reg_value << 2);
}
/* BIH [c]: PC = nextPC + (c << 1). */
else if (insn.insn_class == BIH)
{
ULONGEST reg_value = arc_insn_get_operand_value (insn, 0);
return arc_insn_get_linear_next_pc (insn) + (reg_value << 1);
}
/* JLI and EI. */
/* JLI and EI depend on optional AUX registers. Not supported right now. */
else if (insn.insn_class == JLI)
{
gdb_printf (gdb_stderr,
"JLI_S instruction is not supported by the GDB.");
arc: Add disassembler helper Add disassembler helper for GDB, that uses opcodes structure arc_instruction and adds convenience functions to handle instruction operands. This interface solves at least those problems with arc_instruction: * Some instructions, like "push_s", have implicit operands which are not directly present in arc_instruction. * Operands of particular meaning, like branch/jump targets, have various locations and meaning depending on type of branch/target. * Access to operand value is abstracted into a separate function, so callee code shouldn't bother if operand value is an immediate value or in a register. Testcases included in this commit are fairly limited - they test exclusively branch instructions, something that will be used in software single stepping. Most of the other parts of this disassembler helper are tested during prologue analysis testing. gdb/ChangeLog: yyyy-mm-dd Anton Kolesov <anton.kolesov@synopsys.com> * configure.tgt: Add arc-insn.o. * arc-tdep.c (arc_delayed_print_insn): Make non-static. (dump_arc_instruction_command): New function. (arc_fprintf_disasm): Likewise. (arc_disassemble_info): Likewise. (arc_insn_get_operand_value): Likewise. (arc_insn_get_operand_value_signed): Likewise. (arc_insn_get_memory_base_reg): Likewise. (arc_insn_get_memory_offset): Likewise. (arc_insn_get_branch_target): Likewise. (arc_insn_dump): Likewise. (arc_insn_get_linear_next_pc): Likewise. * arc-tdep.h (arc_delayed_print_insn): Add function declaration. (arc_disassemble_info): Likewise. (arc_insn_get_branch_target): Likewise. (arc_insn_get_linear_next_pc): Likewise. * NEWS: Mention new "maint print arc arc-instruction". gdb/doc/ChangeLog: yyyy-mm-dd Anton Kolesov <anton.kolesov@synopsys.com> * gdb.texinfo (Synopsys ARC): Add "maint print arc arc-instruction". gdb/testsuite/ChangeLog: yyyy-mm-dd Anton Kolesov <anton.kolesov@synopsys.com> * gdb.arch/arc-decode-insn.S: New file. * gdb.arch/arc-decode-insn.exp: Likewise.
2017-02-10 19:12:06 +08:00
return 0;
}
else if (insn.insn_class == EI)
{
gdb_printf (gdb_stderr,
"EI_S instruction is not supported by the GDB.");
arc: Add disassembler helper Add disassembler helper for GDB, that uses opcodes structure arc_instruction and adds convenience functions to handle instruction operands. This interface solves at least those problems with arc_instruction: * Some instructions, like "push_s", have implicit operands which are not directly present in arc_instruction. * Operands of particular meaning, like branch/jump targets, have various locations and meaning depending on type of branch/target. * Access to operand value is abstracted into a separate function, so callee code shouldn't bother if operand value is an immediate value or in a register. Testcases included in this commit are fairly limited - they test exclusively branch instructions, something that will be used in software single stepping. Most of the other parts of this disassembler helper are tested during prologue analysis testing. gdb/ChangeLog: yyyy-mm-dd Anton Kolesov <anton.kolesov@synopsys.com> * configure.tgt: Add arc-insn.o. * arc-tdep.c (arc_delayed_print_insn): Make non-static. (dump_arc_instruction_command): New function. (arc_fprintf_disasm): Likewise. (arc_disassemble_info): Likewise. (arc_insn_get_operand_value): Likewise. (arc_insn_get_operand_value_signed): Likewise. (arc_insn_get_memory_base_reg): Likewise. (arc_insn_get_memory_offset): Likewise. (arc_insn_get_branch_target): Likewise. (arc_insn_dump): Likewise. (arc_insn_get_linear_next_pc): Likewise. * arc-tdep.h (arc_delayed_print_insn): Add function declaration. (arc_disassemble_info): Likewise. (arc_insn_get_branch_target): Likewise. (arc_insn_get_linear_next_pc): Likewise. * NEWS: Mention new "maint print arc arc-instruction". gdb/doc/ChangeLog: yyyy-mm-dd Anton Kolesov <anton.kolesov@synopsys.com> * gdb.texinfo (Synopsys ARC): Add "maint print arc arc-instruction". gdb/testsuite/ChangeLog: yyyy-mm-dd Anton Kolesov <anton.kolesov@synopsys.com> * gdb.arch/arc-decode-insn.S: New file. * gdb.arch/arc-decode-insn.exp: Likewise.
2017-02-10 19:12:06 +08:00
return 0;
}
/* LEAVE_S: PC = BLINK. */
else if (insn.insn_class == LEAVE)
{
struct regcache *regcache = get_current_regcache ();
ULONGEST value;
regcache_cooked_read_unsigned (regcache, ARC_BLINK_REGNUM, &value);
return value;
}
/* BBIT0/1, BRcc: PC = currentPC + operand. */
else if (insn.insn_class == BBIT0 || insn.insn_class == BBIT1
|| insn.insn_class == BRCC)
{
/* Most instructions has branch target as their sole argument. However
conditional brcc/bbit has it as a third operand. */
CORE_ADDR pcrel_addr = arc_insn_get_operand_value (insn, 2);
/* Offset is relative to the 4-byte aligned address of the current
instruction, hence last two bits should be truncated. */
return pcrel_addr + align_down (insn.address, 4);
}
/* B, Bcc, BL, BLcc, LP, LPcc: PC = currentPC + operand. */
else if (insn.insn_class == BRANCH || insn.insn_class == LOOP)
{
CORE_ADDR pcrel_addr = arc_insn_get_operand_value (insn, 0);
/* Offset is relative to the 4-byte aligned address of the current
instruction, hence last two bits should be truncated. */
return pcrel_addr + align_down (insn.address, 4);
}
/* J, Jcc, JL, JLcc: PC = operand. */
else if (insn.insn_class == JUMP)
{
/* All jumps are single-operand. */
return arc_insn_get_operand_value (insn, 0);
}
/* This is some new and unknown instruction. */
gdb_assert_not_reached ("Unknown branch instruction.");
}
/* Dump INSN into gdb_stdlog. */
static void
arc: Add disassembler helper Add disassembler helper for GDB, that uses opcodes structure arc_instruction and adds convenience functions to handle instruction operands. This interface solves at least those problems with arc_instruction: * Some instructions, like "push_s", have implicit operands which are not directly present in arc_instruction. * Operands of particular meaning, like branch/jump targets, have various locations and meaning depending on type of branch/target. * Access to operand value is abstracted into a separate function, so callee code shouldn't bother if operand value is an immediate value or in a register. Testcases included in this commit are fairly limited - they test exclusively branch instructions, something that will be used in software single stepping. Most of the other parts of this disassembler helper are tested during prologue analysis testing. gdb/ChangeLog: yyyy-mm-dd Anton Kolesov <anton.kolesov@synopsys.com> * configure.tgt: Add arc-insn.o. * arc-tdep.c (arc_delayed_print_insn): Make non-static. (dump_arc_instruction_command): New function. (arc_fprintf_disasm): Likewise. (arc_disassemble_info): Likewise. (arc_insn_get_operand_value): Likewise. (arc_insn_get_operand_value_signed): Likewise. (arc_insn_get_memory_base_reg): Likewise. (arc_insn_get_memory_offset): Likewise. (arc_insn_get_branch_target): Likewise. (arc_insn_dump): Likewise. (arc_insn_get_linear_next_pc): Likewise. * arc-tdep.h (arc_delayed_print_insn): Add function declaration. (arc_disassemble_info): Likewise. (arc_insn_get_branch_target): Likewise. (arc_insn_get_linear_next_pc): Likewise. * NEWS: Mention new "maint print arc arc-instruction". gdb/doc/ChangeLog: yyyy-mm-dd Anton Kolesov <anton.kolesov@synopsys.com> * gdb.texinfo (Synopsys ARC): Add "maint print arc arc-instruction". gdb/testsuite/ChangeLog: yyyy-mm-dd Anton Kolesov <anton.kolesov@synopsys.com> * gdb.arch/arc-decode-insn.S: New file. * gdb.arch/arc-decode-insn.exp: Likewise.
2017-02-10 19:12:06 +08:00
arc_insn_dump (const struct arc_instruction &insn)
{
struct gdbarch *gdbarch = target_gdbarch ();
arc_print ("Dumping arc_instruction at %s\n",
paddress (gdbarch, insn.address));
arc_print ("\tlength = %u\n", insn.length);
if (!insn.valid)
{
arc_print ("\tThis is not a valid ARC instruction.\n");
return;
}
arc_print ("\tlength_with_limm = %u\n", insn.length + (insn.limm_p ? 4 : 0));
arc_print ("\tcc = 0x%x\n", insn.condition_code);
arc_print ("\tinsn_class = %u\n", insn.insn_class);
arc_print ("\tis_control_flow = %i\n", insn.is_control_flow);
arc_print ("\thas_delay_slot = %i\n", insn.has_delay_slot);
CORE_ADDR next_pc = arc_insn_get_linear_next_pc (insn);
arc_print ("\tlinear_next_pc = %s\n", paddress (gdbarch, next_pc));
if (insn.is_control_flow)
{
CORE_ADDR t = arc_insn_get_branch_target (insn);
arc_print ("\tbranch_target = %s\n", paddress (gdbarch, t));
}
arc_print ("\tlimm_p = %i\n", insn.limm_p);
if (insn.limm_p)
arc_print ("\tlimm_value = 0x%08x\n", insn.limm_value);
if (insn.insn_class == STORE || insn.insn_class == LOAD
|| insn.insn_class == PUSH || insn.insn_class == POP)
{
arc_print ("\twriteback_mode = %u\n", insn.writeback_mode);
arc_print ("\tdata_size_mode = %u\n", insn.data_size_mode);
arc_print ("\tmemory_base_register = %s\n",
gdbarch_register_name (gdbarch,
arc_insn_get_memory_base_reg (insn)));
/* get_memory_offset returns an unsigned CORE_ADDR, but treat it as a
LONGEST for a nicer representation. */
arc_print ("\taddr_offset = %s\n",
plongest (arc_insn_get_memory_offset (insn)));
}
arc_print ("\toperands_count = %u\n", insn.operands_count);
for (unsigned int i = 0; i < insn.operands_count; ++i)
{
int is_reg = (insn.operands[i].kind == ARC_OPERAND_KIND_REG);
arc_print ("\toperand[%u] = {\n", i);
arc_print ("\t\tis_reg = %i\n", is_reg);
if (is_reg)
arc_print ("\t\tregister = %s\n",
gdbarch_register_name (gdbarch, insn.operands[i].value));
/* Don't know if this value is signed or not, so print both
representations. This tends to look quite ugly, especially for big
numbers. */
arc_print ("\t\tunsigned value = %s\n",
pulongest (arc_insn_get_operand_value (insn, i)));
arc_print ("\t\tsigned value = %s\n",
plongest (arc_insn_get_operand_value_signed (insn, i)));
arc_print ("\t}\n");
}
}
CORE_ADDR
arc_insn_get_linear_next_pc (const struct arc_instruction &insn)
{
/* In ARC long immediate is always 4 bytes. */
return (insn.address + insn.length + (insn.limm_p ? 4 : 0));
}
2016-08-13 01:02:20 +08:00
/* Implement the "write_pc" gdbarch method.
In ARC PC register is a normal register so in most cases setting PC value
is a straightforward process: debugger just writes PC value. However it
gets trickier in case when current instruction is an instruction in delay
slot. In this case CPU will execute instruction at current PC value, then
will set PC to the current value of BTA register; also current instruction
cannot be branch/jump and some of the other instruction types. Thus if
debugger would try to just change PC value in this case, this instruction
will get executed, but then core will "jump" to the original branch target.
Whether current instruction is a delay-slot instruction or not is indicated
by DE bit in STATUS32 register indicates if current instruction is a delay
slot instruction. This bit is writable by debug host, which allows debug
host to prevent core from jumping after the delay slot instruction. It
also works in another direction: setting this bit will make core to treat
any current instructions as a delay slot instruction and to set PC to the
current value of BTA register.
To workaround issues with changing PC register while in delay slot
instruction, debugger should check for the STATUS32.DE bit and reset it if
it is set. No other change is required in this function. Most common
case, where this function might be required is calling inferior functions
from debugger. Generic GDB logic handles this pretty well: current values
of registers are stored, value of PC is changed (that is the job of this
function), and after inferior function is executed, GDB restores all
registers, include BTA and STATUS32, which also means that core is returned
to its original state of being halted on delay slot instructions.
This method is useless for ARC 600, because it doesn't have externally
exposed BTA register. In the case of ARC 600 it is impossible to restore
core to its state in all occasions thus core should never be halted (from
the perspective of debugger host) in the delay slot. */
static void
arc_write_pc (struct regcache *regcache, CORE_ADDR new_pc)
{
s/get_regcache_arch (regcache)/regcache->arch ()/g This patches removes get_regcache_arch, and use regache->arch () instead. The motivation of this change is that I am going to move some basic stuff into a base class of regcache. I don't need to update "client" code regcache->arch (). On the other hand, this patch shortens the code a little bit. gdb: 2017-10-25 Yao Qi <yao.qi@linaro.org> * aarch32-linux-nat.c (aarch32_gp_regcache_supply): Use regcache->arch () instead get_regcache_arch. * aarch64-fbsd-nat.c (aarch64_fbsd_fetch_inferior_registers): Likewise. (aarch64_fbsd_store_inferior_registers): Likewise. * aarch64-linux-nat.c (fetch_gregs_from_thread): Likewise. (store_gregs_to_thread): Likewise. (fetch_fpregs_from_thread): Likewise. (store_fpregs_to_thread): Likewise. * aarch64-tdep.c (aarch64_extract_return_value): Likewise. (aarch64_store_return_value): Likewise. (aarch64_software_single_step): Likewise. * aix-thread.c (aix_thread_wait): Likewise. (supply_reg32): Likewise. (supply_sprs64): Likewise. (supply_sprs32): Likewise. (fill_gprs64): Likewise. (fill_gprs32): Likewise. (fill_sprs64): Likewise. (fill_sprs32): Likewise. (store_regs_user_thread): Likewise. (store_regs_kernel_thread): Likewise. * alpha-bsd-nat.c (alphabsd_fetch_inferior_registers): Likewise. (alphabsd_store_inferior_registers): Likewise. * alpha-tdep.c (alpha_extract_return_value): Likewise. (alpha_store_return_value): Likewise. (alpha_deal_with_atomic_sequence): Likewise. (alpha_next_pc): Likewise. (alpha_software_single_step): Likewise. * amd64-bsd-nat.c (amd64bsd_fetch_inferior_registers): Likewise. (amd64bsd_store_inferior_registers): Likewise. * amd64-linux-nat.c (amd64_linux_fetch_inferior_registers): Likewise. (amd64_linux_store_inferior_registers): Likewise. * amd64-nat.c (amd64_supply_native_gregset): Likewise. (amd64_collect_native_gregset): Likewise. * amd64-obsd-tdep.c (amd64obsd_supply_uthread): Likewise. (amd64obsd_collect_uthread): Likewise. * amd64-tdep.c (amd64_supply_fpregset): Likewise. (amd64_collect_fpregset): Likewise. (amd64_supply_fxsave): Likewise. (amd64_supply_xsave): Likewise. (amd64_collect_fxsave): Likewise. (amd64_collect_xsave): Likewise. * arc-tdep.c (arc_write_pc): Likewise. * arch-utils.c (default_skip_permanent_breakpoint): Likewise. * arm-fbsd-nat.c (arm_fbsd_fetch_inferior_registers): Likewise. (arm_fbsd_store_inferior_registers): Likewise. * arm-linux-nat.c (fetch_vfp_regs): Likewise. (store_vfp_regs): Likewise. (arm_linux_fetch_inferior_registers): Likewise. (arm_linux_store_inferior_registers): Likewise. * arm-linux-tdep.c (arm_linux_supply_gregset): Likewise. (arm_linux_sigreturn_next_pc): Likewise. (arm_linux_get_next_pcs_syscall_next_pc): Likewise. * arm-nbsd-nat.c (arm_supply_gregset): Likewise. (fetch_register): Likewise. (store_register): Likewise. * arm-tdep.c (arm_is_thumb): Likewise. (displaced_in_arm_mode): Likewise. (bx_write_pc): Likewise. (arm_get_next_pcs_addr_bits_remove): Likewise. (arm_software_single_step): Likewise. (arm_extract_return_value): Likewise. (arm_store_return_value): Likewise. (arm_write_pc): Likewise. * bfin-tdep.c (bfin_extract_return_value): Likewise. * bsd-uthread.c (bsd_uthread_fetch_registers): Likewise. (bsd_uthread_store_registers): Likewise. * core-regset.c (fetch_core_registers): Likewise. * corelow.c (get_core_registers): Likewise. * cris-tdep.c (cris_store_return_value): Likewise. (cris_extract_return_value): Likewise. (find_step_target): Likewise. (find_step_target): Likewise. (cris_software_single_step): Likewise. * ctf.c (ctf_fetch_registers): Likewise. * darwin-nat.c (cancel_breakpoint): Likewise. * fbsd-tdep.c (fbsd_collect_thread_registers): Likewise. * frv-tdep.c (frv_extract_return_value): Likewise. * ft32-tdep.c (ft32_store_return_value): Likewise. (ft32_extract_return_value): Likewise. * go32-nat.c (fetch_register): Likewise. (go32_fetch_registers): Likewise. (go32_store_registers): Likewise. (store_register): Likewise. * h8300-tdep.c (h8300_extract_return_value): Likewise. (h8300_store_return_value): Likewise. * hppa-linux-nat.c (fetch_register): Likewise. (store_register): Likewise. (hppa_linux_fetch_inferior_registers): Likewise. (hppa_linux_store_inferior_registers): Likewise. * i386-darwin-nat.c (i386_darwin_fetch_inferior_registers): Likewise. (i386_darwin_store_inferior_registers): Likewise. * i386-gnu-nat.c (gnu_fetch_registers): Likewise. (gnu_store_registers): Likewise. * i386-linux-nat.c (fetch_register): Likewise. (store_register): Likewise. (supply_gregset): Likewise. (fill_gregset): Likewise. (i386_linux_fetch_inferior_registers): Likewise. (i386_linux_store_inferior_registers): Likewise. (i386_linux_resume): Likewise. * i386-linux-tdep.c (i386_linux_get_syscall_number_from_regcache): Likewise. * i386-nto-tdep.c (i386nto_supply_gregset): Likewise. * i386-obsd-nat.c (i386obsd_supply_pcb): Likewise. * i386-obsd-tdep.c (i386obsd_supply_uthread): Likewise. (i386obsd_collect_uthread): Likewise. * i386-tdep.c (i386_mmx_regnum_to_fp_regnum): Likewise. (i386_supply_gregset): Likewise. (i386_collect_gregset): Likewise. (i386_supply_fpregset): Likewise. (i386_collect_fpregset): Likewise. (i386_mpx_bd_base): Likewise. * i386-v4-nat.c (supply_fpregset): Likewise. (fill_fpregset): Likewise. * i387-tdep.c (i387_supply_fsave): Likewise. (i387_collect_fsave): Likewise. (i387_supply_fxsave): Likewise. (i387_collect_fxsave): Likewise. (i387_supply_xsave): Likewise. (i387_collect_xsave): Likewise. * ia64-linux-nat.c (ia64_linux_fetch_registers): Likewise. (ia64_linux_store_registers): Likewise. * ia64-tdep.c (ia64_access_rse_reg): Likewise. (ia64_extract_return_value): Likewise. (ia64_store_return_value): Likewise. (find_func_descr): Likewise. * inf-child.c (inf_child_fetch_inferior_registers): Likewise. * inf-ptrace.c (inf_ptrace_fetch_registers): Likewise. (inf_ptrace_store_registers): Likewise. * infrun.c (use_displaced_stepping): Likewise. (displaced_step_prepare_throw): Likewise. (resume): Likewise. (proceed): Likewise. (do_target_wait): Likewise. (adjust_pc_after_break): Likewise. (handle_inferior_event_1): Likewise. (handle_signal_stop): Likewise. (save_infcall_suspend_state): Likewise. (restore_infcall_suspend_state): Likewise. * iq2000-tdep.c (iq2000_extract_return_value): Likewise. * jit.c (jit_frame_prev_register): Likewise. * linux-nat.c (save_stop_reason): Likewise. (linux_nat_wait_1): Likewise. (resume_stopped_resumed_lwps): Likewise. * linux-record.c (record_linux_sockaddr): Likewise. (record_linux_msghdr): Likewise. (record_linux_system_call): Likewise. * linux-tdep.c (linux_collect_thread_registers): Likewise. * lm32-tdep.c (lm32_extract_return_value): Likewise. (lm32_store_return_value): Likewise. * m32c-tdep.c (m32c_read_flg): Likewise. (m32c_pseudo_register_read): Likewise. (m32c_pseudo_register_write): Likewise. * m32r-linux-tdep.c (m32r_linux_supply_gregset): Likewise. (m32r_linux_collect_gregset): Likewise. * m32r-tdep.c (m32r_store_return_value): Likewise. (m32r_extract_return_value): Likewise. * m68k-bsd-nat.c (m68kbsd_supply_fpregset): Likewise. (m68kbsd_collect_fpregset): Likewise. * m68k-bsd-tdep.c (m68kbsd_supply_fpregset): Likewise. * m68k-linux-nat.c (fetch_register): Likewise. (old_fetch_inferior_registers): Likewise. (old_store_inferior_registers): Likewise. (store_regs): Likewise. * m68k-tdep.c (m68k_svr4_extract_return_value): Likewise. (m68k_svr4_store_return_value): Likewise. * m88k-tdep.c (m88k_store_arguments): Likewise. * mi/mi-main.c (mi_cmd_data_list_changed_registers): Likewise. (mi_cmd_data_write_register_values): Likewise. * mips-fbsd-nat.c (mips_fbsd_fetch_inferior_registers): Likewise. (mips_fbsd_store_inferior_registers): Likewise. * mips-fbsd-tdep.c (mips_fbsd_supply_fpregs): Likewise. (mips_fbsd_supply_gregs): Likewise. (mips_fbsd_collect_fpregs): Likewise. (mips_fbsd_collect_gregs): Likewise. (mips_fbsd_supply_fpregset): Likewise. (mips_fbsd_collect_fpregset): Likewise. (mips_fbsd_supply_gregset): Likewise. (mips_fbsd_collect_gregset): Likewise. * mips-linux-nat.c (supply_gregset): Likewise. (fill_gregset): Likewise. (supply_fpregset): Likewise. (fill_fpregset): Likewise. * mips-linux-tdep.c (mips_supply_gregset): Likewise. (mips_fill_gregset): Likewise. (mips_supply_fpregset): Likewise. (mips_fill_fpregset): Likewise. (mips64_supply_gregset): Likewise. (micromips_linux_sigframe_validate): Likewise. * mips-nbsd-nat.c (mipsnbsd_fetch_inferior_registers): Likewise. (mipsnbsd_fetch_inferior_registers): Likewise. (mipsnbsd_store_inferior_registers): Likewise. * mips-nbsd-tdep.c (mipsnbsd_supply_fpregset): Likewise. (mipsnbsd_supply_gregset): Likewise. (mipsnbsd_iterate_over_regset_sections): Likewise. (mipsnbsd_supply_reg): Likewise. (mipsnbsd_supply_fpreg): Likewise. * mips-tdep.c (mips_in_frame_stub): Likewise. (mips_dummy_id): Likewise. (is_octeon_bbit_op): Likewise. (micromips_bc1_pc): Likewise. (extended_mips16_next_pc): Likewise. (mips16_next_pc): Likewise. (deal_with_atomic_sequence): Likewise. * moxie-tdep.c (moxie_process_readu): Likewise. * nios2-tdep.c (nios2_get_next_pc): Likewise. * nto-procfs.c (procfs_store_registers): Likewise. * ppc-fbsd-nat.c (ppcfbsd_fetch_inferior_registers): Likewise. (ppcfbsd_store_inferior_registers): Likewise. * ppc-linux-nat.c (fetch_vsx_register): Likewise. (fetch_altivec_register): Likewise. (get_spe_registers): Likewise. (fetch_spe_register): Likewise. (fetch_altivec_registers): Likewise. (fetch_all_gp_regs): Likewise. (fetch_all_fp_regs): Likewise. (store_vsx_register): Likewise. (store_altivec_register): Likewise. (set_spe_registers): Likewise. (store_spe_register): Likewise. (store_altivec_registers): Likewise. (store_all_gp_regs): Likewise. (store_all_fp_regs): Likewise. * ppc-linux-tdep.c (ppc_linux_supply_gregset): Likewise. (ppc_linux_collect_gregset): Likewise. (ppc_canonicalize_syscall): Likewise. (ppc_linux_record_signal): Likewise. (ppu2spu_prev_register): Likewise. * ppc-nbsd-nat.c (ppcnbsd_supply_pcb): Likewise. * ppc-obsd-nat.c (ppcobsd_fetch_registers): Likewise. (ppcobsd_store_registers): Likewise. * ppc-ravenscar-thread.c (ppc_ravenscar_generic_fetch_registers): Likewise. (ppc_ravenscar_generic_store_registers): Likewise. * procfs.c (procfs_fetch_registers): Likewise. (procfs_store_registers): Likewise. * ravenscar-thread.c (ravenscar_fetch_registers): Likewise. (ravenscar_store_registers): Likewise. (ravenscar_prepare_to_store): Likewise. * record-btrace.c (record_btrace_fetch_registers): Likewise. * record-full.c (record_full_wait_1): Likewise. (record_full_registers_change): Likewise. (record_full_store_registers): Likewise. (record_full_core_fetch_registers): Likewise. (record_full_save): Likewise. (record_full_goto_insn): Likewise. * regcache.c (regcache_register_size): Likewise. (get_regcache_arch): Remove. (regcache_read_pc): Likewise. * regcache.h (get_regcache_arch): Remove. * remote-sim.c (gdbsim_fetch_register): Likewise. (gdbsim_store_register): Likewise. * remote.c (fetch_register_using_p): Likewise. (send_g_packet): Likewise. (remote_prepare_to_store): Likewise. (store_registers_using_G): Likewise. * reverse.c (save_bookmark_command): Likewise. (goto_bookmark_command): Likewise. * rs6000-aix-tdep.c (branch_dest): Likewise. * rs6000-nat.c (rs6000_ptrace64): Likewise. (fetch_register): Likewise. * rs6000-tdep.c (ppc_supply_reg): Likewise. (ppc_collect_reg): Likewise. (ppc_collect_gregset): Likewise. (ppc_collect_fpregset): Likewise. (ppc_collect_vsxregset): Likewise. (ppc_collect_vrregset): Likewise. (ppc_displaced_step_hw_singlestep): Likewise. (rs6000_pseudo_register_read): Likewise. (rs6000_pseudo_register_write): Likewise. * s390-linux-nat.c (supply_gregset): Likewise. (fill_gregset): Likewise. (s390_linux_fetch_inferior_registers): Likewise. * s390-linux-tdep.c (s390_write_pc): Likewise. (s390_software_single_step): Likewise. (s390_all_but_pc_registers_record): Likewise. (s390_linux_syscall_record): Likewise. * sentinel-frame.c (sentinel_frame_prev_arch): Likewise. * sh-nbsd-nat.c (shnbsd_fetch_inferior_registers): Likewise. (shnbsd_store_inferior_registers): Likewise. * sh-tdep.c (sh_extract_return_value_nofpu): Likewise. (sh_extract_return_value_fpu): Likewise. (sh_store_return_value_nofpu): Likewise. (sh_corefile_supply_regset): Likewise. (sh_corefile_collect_regset): Likewise. * sh64-tdep.c (sh64_extract_return_value): Likewise. (sh64_store_return_value): Likewise. * sparc-linux-tdep.c (sparc32_linux_collect_core_fpregset): Likewise. * sparc-nat.c (sparc_fetch_inferior_registers): Likewise. (sparc_store_inferior_registers): Likewise. * sparc-ravenscar-thread.c (register_in_thread_descriptor_p): Likewise. (sparc_ravenscar_prepare_to_store): Likewise. * sparc-tdep.c (sparc32_store_arguments): Likewise. (sparc_analyze_control_transfer): Likewise. (sparc_step_trap): Likewise. (sparc_software_single_step): Likewise. (sparc32_gdbarch_init): Likewise. (sparc_supply_rwindow): Likewise. (sparc_collect_rwindow): Likewise. * sparc64-linux-tdep.c (sparc64_linux_collect_core_fpregset): Likewise. * sparc64-nbsd-nat.c (sparc64nbsd_supply_gregset): Likewise. (sparc64nbsd_collect_gregset): Likewise. (sparc64nbsd_supply_fpregset): Likewise. (sparc64nbsd_collect_fpregset): Likewise. * sparc64-tdep.c (sparc64_store_arguments): Likewise. (sparc64_supply_gregset): Likewise. (sparc64_collect_gregset): Likewise. (sparc64_supply_fpregset): Likewise. (sparc64_collect_fpregset): Likewise. * spu-linux-nat.c (spu_fetch_inferior_registers): Likewise. * spu-tdep.c (spu_unwind_sp): Likewise. (spu2ppu_prev_register): Likewise. (spu_memory_remove_breakpoint): Likewise. * stack.c (return_command): Likewise. * tic6x-tdep.c (tic6x_extract_signed_field): Likewise. * tracefile-tfile.c (tfile_fetch_registers): Likewise. * tracefile.c (trace_save_ctf): Likewise. * windows-nat.c (do_windows_fetch_inferior_registers): Likewise. (do_windows_store_inferior_registers): Likewise. (windows_resume): Likewise. * xtensa-linux-nat.c (fill_gregset): Likewise. (supply_gregset_reg): Likewise. * xtensa-tdep.c (xtensa_register_write_masked): Likewise. (xtensa_register_read_masked): Likewise. (xtensa_supply_gregset): Likewise. (xtensa_extract_return_value): Likewise. (xtensa_store_return_value): Likewise.
2017-10-25 23:37:03 +08:00
struct gdbarch *gdbarch = regcache->arch ();
2016-08-13 01:02:20 +08:00
arc_debug_printf ("Writing PC, new value=%s",
paddress (gdbarch, new_pc));
2016-08-13 01:02:20 +08:00
regcache_cooked_write_unsigned (regcache, gdbarch_pc_regnum (gdbarch),
new_pc);
ULONGEST status32;
regcache_cooked_read_unsigned (regcache, gdbarch_ps_regnum (gdbarch),
&status32);
arc: Add GNU/Linux support for ARC ARC Linux targets differences from baremetal: - No support for hardware single instruction stepping. - Different access rules to registers. - Use of another instruction for breakpoints. v2: Changes after Tom's remarks [1] arc-linux-tdep.c - Use true/false instead of TRUE/FALSE. - arc_linux_sw_breakpoint_from_kind (): Break long lines into two. - arc_linux_sw_breakpoint_from_kind (): Remove starting blank line. - Use explicit number evaluation, e.g: if (a & b) -> if ((a & b) != 0) arc-tdep.c - Use explicit number evaluation, e.g: if (a & b) -> if ((a & b) != 0) gdb/configure.tgt - arc*-*-linux*): Remove "build_gdbserver=yes". v3: Changes after Simon's remarks [2] arc-linux-tdep.c - Use "return trap_size" instead of cryptic "return 2". - Removed unnecessary curly braces. - Removed "void" from "_initialize_arc_linux_tdep (void)". v5: Changes after Simon's remarks [3] - Remove unnecessary empty lines. - Replace "breakpoint uses" with "breakpoints use" in a comment. - "return condition;" i.s.o. "if (condition) return true; else return false;" [1] Tom's remarks https://sourceware.org/pipermail/gdb-patches/2020-April/167887.html [2] Simon's remarks on v2 https://sourceware.org/pipermail/gdb-patches/2020-May/168513.html [3] Simon's remarks on v4 https://sourceware.org/pipermail/gdb-patches/2020-August/170994.html gdb/ChangeLog: 2020-08-25 Anton Kolesov <anton.kolesov@synopsys.com> * configure.tgt: ARC support for GNU/Linux. * Makefile.in (ALL_TARGET_OBJS): Likewise. * arc-linux-tdep.c: New file. * arc-tdep.h (ARC_STATUS32_L_MASK, ARC_STATUS32_DE_MASK): Declare. * arc-tdep.c (arc_write_pc): Use it.
2016-07-07 01:36:49 +08:00
if ((status32 & ARC_STATUS32_DE_MASK) != 0)
2016-08-13 01:02:20 +08:00
{
arc_debug_printf ("Changing PC while in delay slot. Will "
2016-08-13 01:02:20 +08:00
"reset STATUS32.DE bit to zero. Value of STATUS32 "
"register is 0x%s",
2016-08-13 01:02:20 +08:00
phex (status32, ARC_REGISTER_SIZE));
/* Reset bit and write to the cache. */
status32 &= ~0x40;
regcache_cooked_write_unsigned (regcache, gdbarch_ps_regnum (gdbarch),
status32);
}
}
/* Implement the "virtual_frame_pointer" gdbarch method.
According to ABI the FP (r27) is used to point to the middle of the current
stack frame, just below the saved FP and before local variables, register
spill area and outgoing args. However for optimization levels above O2 and
in any case in leaf functions, the frame pointer is usually not set at all.
The exception being when handling nested functions.
We use this function to return a "virtual" frame pointer, marking the start
of the current stack frame as a register-offset pair. If the FP is not
being used, then it should return SP, with an offset of the frame size.
The current implementation doesn't actually know the frame size, nor
whether the FP is actually being used, so for now we just return SP and an
offset of zero. This is no worse than other architectures, but is needed
to avoid assertion failures.
TODO: Can we determine the frame size to get a correct offset?
PC is a program counter where we need the virtual FP. REG_PTR is the base
register used for the virtual FP. OFFSET_PTR is the offset used for the
virtual FP. */
static void
arc_virtual_frame_pointer (struct gdbarch *gdbarch, CORE_ADDR pc,
int *reg_ptr, LONGEST *offset_ptr)
{
*reg_ptr = gdbarch_sp_regnum (gdbarch);
*offset_ptr = 0;
}
/* Implement the "push_dummy_call" gdbarch method.
Stack Frame Layout
This shows the layout of the stack frame for the general case of a
function call; a given function might not have a variable number of
arguments or local variables, or might not save any registers, so it would
not have the corresponding frame areas. Additionally, a leaf function
(i.e. one which calls no other functions) does not need to save the
contents of the BLINK register (which holds its return address), and a
function might not have a frame pointer.
The stack grows downward, so SP points below FP in memory; SP always
points to the last used word on the stack, not the first one.
gdb, gdbserver, gdbsupport: fix leading space vs tabs issues Many spots incorrectly use only spaces for indentation (for example, there are a lot of spots in ada-lang.c). I've always found it awkward when I needed to edit one of these spots: do I keep the original wrong indentation, or do I fix it? What if the lines around it are also wrong, do I fix them too? I probably don't want to fix them in the same patch, to avoid adding noise to my patch. So I propose to fix as much as possible once and for all (hopefully). One typical counter argument for this is that it makes code archeology more difficult, because git-blame will show this commit as the last change for these lines. My counter counter argument is: when git-blaming, you often need to do "blame the file at the parent commit" anyway, to go past some other refactor that touched the line you are interested in, but is not the change you are looking for. So you already need a somewhat efficient way to do this. Using some interactive tool, rather than plain git-blame, makes this trivial. For example, I use "tig blame <file>", where going back past the commit that changed the currently selected line is one keystroke. It looks like Magit in Emacs does it too (though I've never used it). Web viewers of Github and Gitlab do it too. My point is that it won't really make archeology more difficult. The other typical counter argument is that it will cause conflicts with existing patches. That's true... but it's a one time cost, and those are not conflicts that are difficult to resolve. I have also tried "git rebase --ignore-whitespace", it seems to work well. Although that will re-introduce the faulty indentation, so one needs to take care of fixing the indentation in the patch after that (which is easy). gdb/ChangeLog: * aarch64-linux-tdep.c: Fix indentation. * aarch64-ravenscar-thread.c: Fix indentation. * aarch64-tdep.c: Fix indentation. * aarch64-tdep.h: Fix indentation. * ada-lang.c: Fix indentation. * ada-lang.h: Fix indentation. * ada-tasks.c: Fix indentation. * ada-typeprint.c: Fix indentation. * ada-valprint.c: Fix indentation. * ada-varobj.c: Fix indentation. * addrmap.c: Fix indentation. * addrmap.h: Fix indentation. * agent.c: Fix indentation. * aix-thread.c: Fix indentation. * alpha-bsd-nat.c: Fix indentation. * alpha-linux-tdep.c: Fix indentation. * alpha-mdebug-tdep.c: Fix indentation. * alpha-nbsd-tdep.c: Fix indentation. * alpha-obsd-tdep.c: Fix indentation. * alpha-tdep.c: Fix indentation. * amd64-bsd-nat.c: Fix indentation. * amd64-darwin-tdep.c: Fix indentation. * amd64-linux-nat.c: Fix indentation. * amd64-linux-tdep.c: Fix indentation. * amd64-nat.c: Fix indentation. * amd64-obsd-tdep.c: Fix indentation. * amd64-tdep.c: Fix indentation. * amd64-windows-tdep.c: Fix indentation. * annotate.c: Fix indentation. * arc-tdep.c: Fix indentation. * arch-utils.c: Fix indentation. * arch/arm-get-next-pcs.c: Fix indentation. * arch/arm.c: Fix indentation. * arm-linux-nat.c: Fix indentation. * arm-linux-tdep.c: Fix indentation. * arm-nbsd-tdep.c: Fix indentation. * arm-pikeos-tdep.c: Fix indentation. * arm-tdep.c: Fix indentation. * arm-tdep.h: Fix indentation. * arm-wince-tdep.c: Fix indentation. * auto-load.c: Fix indentation. * auxv.c: Fix indentation. * avr-tdep.c: Fix indentation. * ax-gdb.c: Fix indentation. * ax-general.c: Fix indentation. * bfin-linux-tdep.c: Fix indentation. * block.c: Fix indentation. * block.h: Fix indentation. * blockframe.c: Fix indentation. * bpf-tdep.c: Fix indentation. * break-catch-sig.c: Fix indentation. * break-catch-syscall.c: Fix indentation. * break-catch-throw.c: Fix indentation. * breakpoint.c: Fix indentation. * breakpoint.h: Fix indentation. * bsd-uthread.c: Fix indentation. * btrace.c: Fix indentation. * build-id.c: Fix indentation. * buildsym-legacy.h: Fix indentation. * buildsym.c: Fix indentation. * c-typeprint.c: Fix indentation. * c-valprint.c: Fix indentation. * c-varobj.c: Fix indentation. * charset.c: Fix indentation. * cli/cli-cmds.c: Fix indentation. * cli/cli-decode.c: Fix indentation. * cli/cli-decode.h: Fix indentation. * cli/cli-script.c: Fix indentation. * cli/cli-setshow.c: Fix indentation. * coff-pe-read.c: Fix indentation. * coffread.c: Fix indentation. * compile/compile-cplus-types.c: Fix indentation. * compile/compile-object-load.c: Fix indentation. * compile/compile-object-run.c: Fix indentation. * completer.c: Fix indentation. * corefile.c: Fix indentation. * corelow.c: Fix indentation. * cp-abi.h: Fix indentation. * cp-namespace.c: Fix indentation. * cp-support.c: Fix indentation. * cp-valprint.c: Fix indentation. * cris-linux-tdep.c: Fix indentation. * cris-tdep.c: Fix indentation. * darwin-nat-info.c: Fix indentation. * darwin-nat.c: Fix indentation. * darwin-nat.h: Fix indentation. * dbxread.c: Fix indentation. * dcache.c: Fix indentation. * disasm.c: Fix indentation. * dtrace-probe.c: Fix indentation. * dwarf2/abbrev.c: Fix indentation. * dwarf2/attribute.c: Fix indentation. * dwarf2/expr.c: Fix indentation. * dwarf2/frame.c: Fix indentation. * dwarf2/index-cache.c: Fix indentation. * dwarf2/index-write.c: Fix indentation. * dwarf2/line-header.c: Fix indentation. * dwarf2/loc.c: Fix indentation. * dwarf2/macro.c: Fix indentation. * dwarf2/read.c: Fix indentation. * dwarf2/read.h: Fix indentation. * elfread.c: Fix indentation. * eval.c: Fix indentation. * event-top.c: Fix indentation. * exec.c: Fix indentation. * exec.h: Fix indentation. * expprint.c: Fix indentation. * f-lang.c: Fix indentation. * f-typeprint.c: Fix indentation. * f-valprint.c: Fix indentation. * fbsd-nat.c: Fix indentation. * fbsd-tdep.c: Fix indentation. * findvar.c: Fix indentation. * fork-child.c: Fix indentation. * frame-unwind.c: Fix indentation. * frame-unwind.h: Fix indentation. * frame.c: Fix indentation. * frv-linux-tdep.c: Fix indentation. * frv-tdep.c: Fix indentation. * frv-tdep.h: Fix indentation. * ft32-tdep.c: Fix indentation. * gcore.c: Fix indentation. * gdb_bfd.c: Fix indentation. * gdbarch.sh: Fix indentation. * gdbarch.c: Re-generate * gdbarch.h: Re-generate. * gdbcore.h: Fix indentation. * gdbthread.h: Fix indentation. * gdbtypes.c: Fix indentation. * gdbtypes.h: Fix indentation. * glibc-tdep.c: Fix indentation. * gnu-nat.c: Fix indentation. * gnu-nat.h: Fix indentation. * gnu-v2-abi.c: Fix indentation. * gnu-v3-abi.c: Fix indentation. * go32-nat.c: Fix indentation. * guile/guile-internal.h: Fix indentation. * guile/scm-cmd.c: Fix indentation. * guile/scm-frame.c: Fix indentation. * guile/scm-iterator.c: Fix indentation. * guile/scm-math.c: Fix indentation. * guile/scm-ports.c: Fix indentation. * guile/scm-pretty-print.c: Fix indentation. * guile/scm-value.c: Fix indentation. * h8300-tdep.c: Fix indentation. * hppa-linux-nat.c: Fix indentation. * hppa-linux-tdep.c: Fix indentation. * hppa-nbsd-nat.c: Fix indentation. * hppa-nbsd-tdep.c: Fix indentation. * hppa-obsd-nat.c: Fix indentation. * hppa-tdep.c: Fix indentation. * hppa-tdep.h: Fix indentation. * i386-bsd-nat.c: Fix indentation. * i386-darwin-nat.c: Fix indentation. * i386-darwin-tdep.c: Fix indentation. * i386-dicos-tdep.c: Fix indentation. * i386-gnu-nat.c: Fix indentation. * i386-linux-nat.c: Fix indentation. * i386-linux-tdep.c: Fix indentation. * i386-nto-tdep.c: Fix indentation. * i386-obsd-tdep.c: Fix indentation. * i386-sol2-nat.c: Fix indentation. * i386-tdep.c: Fix indentation. * i386-tdep.h: Fix indentation. * i386-windows-tdep.c: Fix indentation. * i387-tdep.c: Fix indentation. * i387-tdep.h: Fix indentation. * ia64-libunwind-tdep.c: Fix indentation. * ia64-libunwind-tdep.h: Fix indentation. * ia64-linux-nat.c: Fix indentation. * ia64-linux-tdep.c: Fix indentation. * ia64-tdep.c: Fix indentation. * ia64-tdep.h: Fix indentation. * ia64-vms-tdep.c: Fix indentation. * infcall.c: Fix indentation. * infcmd.c: Fix indentation. * inferior.c: Fix indentation. * infrun.c: Fix indentation. * iq2000-tdep.c: Fix indentation. * language.c: Fix indentation. * linespec.c: Fix indentation. * linux-fork.c: Fix indentation. * linux-nat.c: Fix indentation. * linux-tdep.c: Fix indentation. * linux-thread-db.c: Fix indentation. * lm32-tdep.c: Fix indentation. * m2-lang.c: Fix indentation. * m2-typeprint.c: Fix indentation. * m2-valprint.c: Fix indentation. * m32c-tdep.c: Fix indentation. * m32r-linux-tdep.c: Fix indentation. * m32r-tdep.c: Fix indentation. * m68hc11-tdep.c: Fix indentation. * m68k-bsd-nat.c: Fix indentation. * m68k-linux-nat.c: Fix indentation. * m68k-linux-tdep.c: Fix indentation. * m68k-tdep.c: Fix indentation. * machoread.c: Fix indentation. * macrocmd.c: Fix indentation. * macroexp.c: Fix indentation. * macroscope.c: Fix indentation. * macrotab.c: Fix indentation. * macrotab.h: Fix indentation. * main.c: Fix indentation. * mdebugread.c: Fix indentation. * mep-tdep.c: Fix indentation. * mi/mi-cmd-catch.c: Fix indentation. * mi/mi-cmd-disas.c: Fix indentation. * mi/mi-cmd-env.c: Fix indentation. * mi/mi-cmd-stack.c: Fix indentation. * mi/mi-cmd-var.c: Fix indentation. * mi/mi-cmds.c: Fix indentation. * mi/mi-main.c: Fix indentation. * mi/mi-parse.c: Fix indentation. * microblaze-tdep.c: Fix indentation. * minidebug.c: Fix indentation. * minsyms.c: Fix indentation. * mips-linux-nat.c: Fix indentation. * mips-linux-tdep.c: Fix indentation. * mips-nbsd-tdep.c: Fix indentation. * mips-tdep.c: Fix indentation. * mn10300-linux-tdep.c: Fix indentation. * mn10300-tdep.c: Fix indentation. * moxie-tdep.c: Fix indentation. * msp430-tdep.c: Fix indentation. * namespace.h: Fix indentation. * nat/fork-inferior.c: Fix indentation. * nat/gdb_ptrace.h: Fix indentation. * nat/linux-namespaces.c: Fix indentation. * nat/linux-osdata.c: Fix indentation. * nat/netbsd-nat.c: Fix indentation. * nat/x86-dregs.c: Fix indentation. * nbsd-nat.c: Fix indentation. * nbsd-tdep.c: Fix indentation. * nios2-linux-tdep.c: Fix indentation. * nios2-tdep.c: Fix indentation. * nto-procfs.c: Fix indentation. * nto-tdep.c: Fix indentation. * objfiles.c: Fix indentation. * objfiles.h: Fix indentation. * opencl-lang.c: Fix indentation. * or1k-tdep.c: Fix indentation. * osabi.c: Fix indentation. * osabi.h: Fix indentation. * osdata.c: Fix indentation. * p-lang.c: Fix indentation. * p-typeprint.c: Fix indentation. * p-valprint.c: Fix indentation. * parse.c: Fix indentation. * ppc-linux-nat.c: Fix indentation. * ppc-linux-tdep.c: Fix indentation. * ppc-nbsd-nat.c: Fix indentation. * ppc-nbsd-tdep.c: Fix indentation. * ppc-obsd-nat.c: Fix indentation. * ppc-ravenscar-thread.c: Fix indentation. * ppc-sysv-tdep.c: Fix indentation. * ppc64-tdep.c: Fix indentation. * printcmd.c: Fix indentation. * proc-api.c: Fix indentation. * producer.c: Fix indentation. * producer.h: Fix indentation. * prologue-value.c: Fix indentation. * prologue-value.h: Fix indentation. * psymtab.c: Fix indentation. * python/py-arch.c: Fix indentation. * python/py-bpevent.c: Fix indentation. * python/py-event.c: Fix indentation. * python/py-event.h: Fix indentation. * python/py-finishbreakpoint.c: Fix indentation. * python/py-frame.c: Fix indentation. * python/py-framefilter.c: Fix indentation. * python/py-inferior.c: Fix indentation. * python/py-infthread.c: Fix indentation. * python/py-objfile.c: Fix indentation. * python/py-prettyprint.c: Fix indentation. * python/py-registers.c: Fix indentation. * python/py-signalevent.c: Fix indentation. * python/py-stopevent.c: Fix indentation. * python/py-stopevent.h: Fix indentation. * python/py-threadevent.c: Fix indentation. * python/py-tui.c: Fix indentation. * python/py-unwind.c: Fix indentation. * python/py-value.c: Fix indentation. * python/py-xmethods.c: Fix indentation. * python/python-internal.h: Fix indentation. * python/python.c: Fix indentation. * ravenscar-thread.c: Fix indentation. * record-btrace.c: Fix indentation. * record-full.c: Fix indentation. * record.c: Fix indentation. * reggroups.c: Fix indentation. * regset.h: Fix indentation. * remote-fileio.c: Fix indentation. * remote.c: Fix indentation. * reverse.c: Fix indentation. * riscv-linux-tdep.c: Fix indentation. * riscv-ravenscar-thread.c: Fix indentation. * riscv-tdep.c: Fix indentation. * rl78-tdep.c: Fix indentation. * rs6000-aix-tdep.c: Fix indentation. * rs6000-lynx178-tdep.c: Fix indentation. * rs6000-nat.c: Fix indentation. * rs6000-tdep.c: Fix indentation. * rust-lang.c: Fix indentation. * rx-tdep.c: Fix indentation. * s12z-tdep.c: Fix indentation. * s390-linux-tdep.c: Fix indentation. * score-tdep.c: Fix indentation. * ser-base.c: Fix indentation. * ser-mingw.c: Fix indentation. * ser-uds.c: Fix indentation. * ser-unix.c: Fix indentation. * serial.c: Fix indentation. * sh-linux-tdep.c: Fix indentation. * sh-nbsd-tdep.c: Fix indentation. * sh-tdep.c: Fix indentation. * skip.c: Fix indentation. * sol-thread.c: Fix indentation. * solib-aix.c: Fix indentation. * solib-darwin.c: Fix indentation. * solib-frv.c: Fix indentation. * solib-svr4.c: Fix indentation. * solib.c: Fix indentation. * source.c: Fix indentation. * sparc-linux-tdep.c: Fix indentation. * sparc-nbsd-tdep.c: Fix indentation. * sparc-obsd-tdep.c: Fix indentation. * sparc-ravenscar-thread.c: Fix indentation. * sparc-tdep.c: Fix indentation. * sparc64-linux-tdep.c: Fix indentation. * sparc64-nbsd-tdep.c: Fix indentation. * sparc64-obsd-tdep.c: Fix indentation. * sparc64-tdep.c: Fix indentation. * stabsread.c: Fix indentation. * stack.c: Fix indentation. * stap-probe.c: Fix indentation. * stubs/ia64vms-stub.c: Fix indentation. * stubs/m32r-stub.c: Fix indentation. * stubs/m68k-stub.c: Fix indentation. * stubs/sh-stub.c: Fix indentation. * stubs/sparc-stub.c: Fix indentation. * symfile-mem.c: Fix indentation. * symfile.c: Fix indentation. * symfile.h: Fix indentation. * symmisc.c: Fix indentation. * symtab.c: Fix indentation. * symtab.h: Fix indentation. * target-float.c: Fix indentation. * target.c: Fix indentation. * target.h: Fix indentation. * tic6x-tdep.c: Fix indentation. * tilegx-linux-tdep.c: Fix indentation. * tilegx-tdep.c: Fix indentation. * top.c: Fix indentation. * tracefile-tfile.c: Fix indentation. * tracepoint.c: Fix indentation. * tui/tui-disasm.c: Fix indentation. * tui/tui-io.c: Fix indentation. * tui/tui-regs.c: Fix indentation. * tui/tui-stack.c: Fix indentation. * tui/tui-win.c: Fix indentation. * tui/tui-winsource.c: Fix indentation. * tui/tui.c: Fix indentation. * typeprint.c: Fix indentation. * ui-out.h: Fix indentation. * unittests/copy_bitwise-selftests.c: Fix indentation. * unittests/memory-map-selftests.c: Fix indentation. * utils.c: Fix indentation. * v850-tdep.c: Fix indentation. * valarith.c: Fix indentation. * valops.c: Fix indentation. * valprint.c: Fix indentation. * valprint.h: Fix indentation. * value.c: Fix indentation. * value.h: Fix indentation. * varobj.c: Fix indentation. * vax-tdep.c: Fix indentation. * windows-nat.c: Fix indentation. * windows-tdep.c: Fix indentation. * xcoffread.c: Fix indentation. * xml-syscall.c: Fix indentation. * xml-tdesc.c: Fix indentation. * xstormy16-tdep.c: Fix indentation. * xtensa-config.c: Fix indentation. * xtensa-linux-nat.c: Fix indentation. * xtensa-linux-tdep.c: Fix indentation. * xtensa-tdep.c: Fix indentation. gdbserver/ChangeLog: * ax.cc: Fix indentation. * dll.cc: Fix indentation. * inferiors.h: Fix indentation. * linux-low.cc: Fix indentation. * linux-nios2-low.cc: Fix indentation. * linux-ppc-ipa.cc: Fix indentation. * linux-ppc-low.cc: Fix indentation. * linux-x86-low.cc: Fix indentation. * linux-xtensa-low.cc: Fix indentation. * regcache.cc: Fix indentation. * server.cc: Fix indentation. * tracepoint.cc: Fix indentation. gdbsupport/ChangeLog: * common-exceptions.h: Fix indentation. * event-loop.cc: Fix indentation. * fileio.cc: Fix indentation. * filestuff.cc: Fix indentation. * gdb-dlfcn.cc: Fix indentation. * gdb_string_view.h: Fix indentation. * job-control.cc: Fix indentation. * signals.cc: Fix indentation. Change-Id: I4bad7ae6be0fbe14168b8ebafb98ffe14964a695
2020-11-02 23:26:14 +08:00
| | |
| arg word N | | caller's
| : | | frame
| arg word 10 | |
| arg word 9 | |
old SP ---> +-----------------------+ --+
| | |
| callee-saved | |
| registers | |
| including fp, blink | |
| | | callee's
new FP ---> +-----------------------+ | frame
| | |
| local | |
| variables | |
| | |
| register | |
| spill area | |
| | |
| outgoing args | |
| | |
new SP ---> +-----------------------+ --+
| |
| unused |
| |
|
|
V
downwards
2016-08-13 01:02:20 +08:00
The list of arguments to be passed to a function is considered to be a
sequence of _N_ words (as though all the parameters were stored in order in
memory with each parameter occupying an integral number of words). Words
1..8 are passed in registers 0..7; if the function has more than 8 words of
arguments then words 9..@em N are passed on the stack in the caller's frame.
If the function has a variable number of arguments, e.g. it has a form such
as `function (p1, p2, ...);' and _P_ words are required to hold the values
of the named parameters (which are passed in registers 0..@em P -1), then
the remaining 8 - _P_ words passed in registers _P_..7 are spilled into the
top of the frame so that the anonymous parameter words occupy a continuous
region.
Any arguments are already in target byte order. We just need to store
them!
BP_ADDR is the return address where breakpoint must be placed. NARGS is
the number of arguments to the function. ARGS is the arguments values (in
target byte order). SP is the Current value of SP register. STRUCT_RETURN
is TRUE if structures are returned by the function. STRUCT_ADDR is the
hidden address for returning a struct. Returns SP of a new frame. */
static CORE_ADDR
arc_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
Pass return_method to _push_dummy_call gdb/ChangeLog: * aarch64-tdep.c (aarch64_push_dummy_call): Replace arg with return_method. * alpha-tdep.c (alpha_push_dummy_call): Likewise. * amd64-tdep.c (amd64_push_arguments): Likewise. (amd64_push_dummy_call): Likewise. * amd64-windows-tdep.c (amd64_windows_push_arguments): Likewise. * arc-tdep.c (arc_push_dummy_call): Likewise. * arm-tdep.c (arm_push_dummy_call): Likewise. * avr-tdep.c (avr_push_dummy_call): Likewise. * bfin-tdep.c (bfin_push_dummy_call): Likewise. * cris-tdep.c (cris_push_dummy_call): Likewise. * csky-tdep.c (csky_push_dummy_call): Likewise. * frv-tdep.c (frv_push_dummy_call): Likewise. * gdbarch.c: Regenerate. * gdbarch.h: Regenerate. * gdbarch.sh (gdbarch_push_dummy_call): Replace arg with return_method. * h8300-tdep.c (h8300_push_dummy_call): Likewise. * hppa-tdep.c (hppa32_push_dummy_call): Likewise. (hppa64_push_dummy_call): Likewise. * i386-darwin-tdep.c (i386_darwin_push_dummy_call): Likewise. * i386-tdep.c (i386_push_dummy_call): Likewise. * ia64-tdep.c (ia64_push_dummy_call): Likewise. * infcall.c (call_function_by_hand_dummy): Likewise. * iq2000-tdep.c (iq2000_push_dummy_call): Likewise. * lm32-tdep.c (lm32_push_dummy_call): Likewise. * m32c-tdep.c (m32c_push_dummy_call): Likewise. * m32r-tdep.c (m32r_push_dummy_call): Likewise. * m68hc11-tdep.c (m68hc11_push_dummy_call): Likewise. * m68k-tdep.c (m68k_push_dummy_call): Likewise. * mep-tdep.c (mep_push_dummy_call): Likewise. * mips-tdep.c (mips_eabi_push_dummy_call): Likewise. (mips_n32n64_push_dummy_call): Likewise. (mips_o32_push_dummy_call): Likewise. (mips_o64_push_dummy_call): Likewise. * mn10300-tdep.c (mn10300_push_dummy_call): Likewise. * msp430-tdep.c (msp430_push_dummy_call): Likewise. * nds32-tdep.c (nds32_push_dummy_call): Likewise. * nios2-tdep.c (nios2_push_dummy_call): Likewise. * or1k-tdep.c (or1k_push_dummy_call): Likewise. * ppc-sysv-tdep.c (ppc_sysv_abi_push_dummy_call): Likewise. (ppc64_sysv_abi_push_dummy_call): Likewise. * ppc-tdep.h (ppc_sysv_abi_push_dummy_call): Likewise. (ppc64_sysv_abi_push_dummy_call): Likewise. * riscv-tdep.c (riscv_push_dummy_call): Likewise. * rl78-tdep.c (rl78_push_dummy_call): Likewise. * rs6000-aix-tdep.c (rs6000_push_dummy_call): Likewise. * rs6000-lynx178-tdep.c (rs6000_lynx178_push_dummy_call): Likewise. * rx-tdep.c (rx_push_dummy_call): Likewise. * s390-tdep.c (s390_push_dummy_call): Likewise. * score-tdep.c (score_push_dummy_call): Likewise. * sh-tdep.c (sh_push_dummy_call_fpu): Likewise. (sh_push_dummy_call_nofpu): Likewise. * sparc-tdep.c (sparc32_store_arguments): Likewise. (sparc32_push_dummy_call): Likewise. * sparc64-tdep.c (sparc64_store_arguments): Likewise. (sparc64_push_dummy_call): Likewise. * spu-tdep.c (spu_push_dummy_call): Likewise. * tic6x-tdep.c (tic6x_push_dummy_call): Likewise. * tilegx-tdep.c (tilegx_push_dummy_call): Likewise. * v850-tdep.c (v850_push_dummy_call): Likewise. * vax-tdep.c (vax_push_dummy_call): Likewise. * xstormy16-tdep.c (xstormy16_push_dummy_call): Likewise. * xtensa-tdep.c (xtensa_push_dummy_call): Likewise.
2018-11-16 19:21:04 +08:00
struct value **args, CORE_ADDR sp,
function_call_return_method return_method,
2016-08-13 01:02:20 +08:00
CORE_ADDR struct_addr)
{
arc_debug_printf ("nargs = %d", nargs);
2016-08-13 01:02:20 +08:00
int arg_reg = ARC_FIRST_ARG_REGNUM;
/* Push the return address. */
regcache_cooked_write_unsigned (regcache, ARC_BLINK_REGNUM, bp_addr);
/* Are we returning a value using a structure return instead of a normal
value return? If so, struct_addr is the address of the reserved space for
the return structure to be written on the stack, and that address is
passed to that function as a hidden first argument. */
Pass return_method to _push_dummy_call gdb/ChangeLog: * aarch64-tdep.c (aarch64_push_dummy_call): Replace arg with return_method. * alpha-tdep.c (alpha_push_dummy_call): Likewise. * amd64-tdep.c (amd64_push_arguments): Likewise. (amd64_push_dummy_call): Likewise. * amd64-windows-tdep.c (amd64_windows_push_arguments): Likewise. * arc-tdep.c (arc_push_dummy_call): Likewise. * arm-tdep.c (arm_push_dummy_call): Likewise. * avr-tdep.c (avr_push_dummy_call): Likewise. * bfin-tdep.c (bfin_push_dummy_call): Likewise. * cris-tdep.c (cris_push_dummy_call): Likewise. * csky-tdep.c (csky_push_dummy_call): Likewise. * frv-tdep.c (frv_push_dummy_call): Likewise. * gdbarch.c: Regenerate. * gdbarch.h: Regenerate. * gdbarch.sh (gdbarch_push_dummy_call): Replace arg with return_method. * h8300-tdep.c (h8300_push_dummy_call): Likewise. * hppa-tdep.c (hppa32_push_dummy_call): Likewise. (hppa64_push_dummy_call): Likewise. * i386-darwin-tdep.c (i386_darwin_push_dummy_call): Likewise. * i386-tdep.c (i386_push_dummy_call): Likewise. * ia64-tdep.c (ia64_push_dummy_call): Likewise. * infcall.c (call_function_by_hand_dummy): Likewise. * iq2000-tdep.c (iq2000_push_dummy_call): Likewise. * lm32-tdep.c (lm32_push_dummy_call): Likewise. * m32c-tdep.c (m32c_push_dummy_call): Likewise. * m32r-tdep.c (m32r_push_dummy_call): Likewise. * m68hc11-tdep.c (m68hc11_push_dummy_call): Likewise. * m68k-tdep.c (m68k_push_dummy_call): Likewise. * mep-tdep.c (mep_push_dummy_call): Likewise. * mips-tdep.c (mips_eabi_push_dummy_call): Likewise. (mips_n32n64_push_dummy_call): Likewise. (mips_o32_push_dummy_call): Likewise. (mips_o64_push_dummy_call): Likewise. * mn10300-tdep.c (mn10300_push_dummy_call): Likewise. * msp430-tdep.c (msp430_push_dummy_call): Likewise. * nds32-tdep.c (nds32_push_dummy_call): Likewise. * nios2-tdep.c (nios2_push_dummy_call): Likewise. * or1k-tdep.c (or1k_push_dummy_call): Likewise. * ppc-sysv-tdep.c (ppc_sysv_abi_push_dummy_call): Likewise. (ppc64_sysv_abi_push_dummy_call): Likewise. * ppc-tdep.h (ppc_sysv_abi_push_dummy_call): Likewise. (ppc64_sysv_abi_push_dummy_call): Likewise. * riscv-tdep.c (riscv_push_dummy_call): Likewise. * rl78-tdep.c (rl78_push_dummy_call): Likewise. * rs6000-aix-tdep.c (rs6000_push_dummy_call): Likewise. * rs6000-lynx178-tdep.c (rs6000_lynx178_push_dummy_call): Likewise. * rx-tdep.c (rx_push_dummy_call): Likewise. * s390-tdep.c (s390_push_dummy_call): Likewise. * score-tdep.c (score_push_dummy_call): Likewise. * sh-tdep.c (sh_push_dummy_call_fpu): Likewise. (sh_push_dummy_call_nofpu): Likewise. * sparc-tdep.c (sparc32_store_arguments): Likewise. (sparc32_push_dummy_call): Likewise. * sparc64-tdep.c (sparc64_store_arguments): Likewise. (sparc64_push_dummy_call): Likewise. * spu-tdep.c (spu_push_dummy_call): Likewise. * tic6x-tdep.c (tic6x_push_dummy_call): Likewise. * tilegx-tdep.c (tilegx_push_dummy_call): Likewise. * v850-tdep.c (v850_push_dummy_call): Likewise. * vax-tdep.c (vax_push_dummy_call): Likewise. * xstormy16-tdep.c (xstormy16_push_dummy_call): Likewise. * xtensa-tdep.c (xtensa_push_dummy_call): Likewise.
2018-11-16 19:21:04 +08:00
if (return_method == return_method_struct)
2016-08-13 01:02:20 +08:00
{
/* Pass the return address in the first argument register. */
regcache_cooked_write_unsigned (regcache, arg_reg, struct_addr);
arc_debug_printf ("struct return address %s passed in R%d",
print_core_address (gdbarch, struct_addr), arg_reg);
2016-08-13 01:02:20 +08:00
arg_reg++;
}
if (nargs > 0)
{
unsigned int total_space = 0;
/* How much space do the arguments occupy in total? Must round each
argument's size up to an integral number of words. */
for (int i = 0; i < nargs; i++)
{
unsigned int len = TYPE_LENGTH (value_type (args[i]));
unsigned int space = align_up (len, 4);
total_space += space;
arc_debug_printf ("arg %d: %u bytes -> %u", i, len, space);
2016-08-13 01:02:20 +08:00
}
/* Allocate a buffer to hold a memory image of the arguments. */
gdb_byte *memory_image = XCNEWVEC (gdb_byte, total_space);
/* Now copy all of the arguments into the buffer, correctly aligned. */
gdb_byte *data = memory_image;
for (int i = 0; i < nargs; i++)
{
unsigned int len = TYPE_LENGTH (value_type (args[i]));
unsigned int space = align_up (len, 4);
memcpy (data, value_contents (args[i]).data (), (size_t) len);
arc_debug_printf ("copying arg %d, val 0x%08x, len %d to mem",
i, *((int *) value_contents (args[i]).data ()),
len);
2016-08-13 01:02:20 +08:00
data += space;
}
/* Now load as much as possible of the memory image into registers. */
data = memory_image;
while (arg_reg <= ARC_LAST_ARG_REGNUM)
{
arc_debug_printf ("passing 0x%02x%02x%02x%02x in register R%d",
data[0], data[1], data[2], data[3], arg_reg);
2016-08-13 01:02:20 +08:00
/* Note we don't use write_unsigned here, since that would convert
the byte order, but we are already in the correct byte order. */
regcache->cooked_write (arg_reg, data);
2016-08-13 01:02:20 +08:00
data += ARC_REGISTER_SIZE;
total_space -= ARC_REGISTER_SIZE;
/* All the data is now in registers. */
if (total_space == 0)
break;
arg_reg++;
}
/* If there is any data left, push it onto the stack (in a single write
operation). */
if (total_space > 0)
{
arc_debug_printf ("passing %d bytes on stack\n", total_space);
2016-08-13 01:02:20 +08:00
sp -= total_space;
write_memory (sp, data, (int) total_space);
}
xfree (memory_image);
}
/* Finally, update the SP register. */
regcache_cooked_write_unsigned (regcache, gdbarch_sp_regnum (gdbarch), sp);
return sp;
}
/* Implement the "push_dummy_code" gdbarch method.
We don't actually push any code. We just identify where a breakpoint can
be inserted to which we are can return and the resume address where we
should be called.
ARC does not necessarily have an executable stack, so we can't put the
return breakpoint there. Instead we put it at the entry point of the
function. This means the SP is unchanged.
SP is a current stack pointer FUNADDR is an address of the function to be
called. ARGS is arguments to pass. NARGS is a number of args to pass.
VALUE_TYPE is a type of value returned. REAL_PC is a resume address when
the function is called. BP_ADDR is an address where breakpoint should be
set. Returns the updated stack pointer. */
static CORE_ADDR
arc_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp, CORE_ADDR funaddr,
struct value **args, int nargs, struct type *value_type,
CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
struct regcache *regcache)
{
*real_pc = funaddr;
*bp_addr = entry_point_address ();
return sp;
}
/* Implement the "cannot_fetch_register" gdbarch method. */
static int
arc_cannot_fetch_register (struct gdbarch *gdbarch, int regnum)
{
/* Assume that register is readable if it is unknown. LIMM and RESERVED are
not real registers, but specific register numbers. They are available as
regnums to align architectural register numbers with GDB internal regnums,
but they shouldn't appear in target descriptions generated by
GDB-servers. */
switch (regnum)
{
case ARC_RESERVED_REGNUM:
case ARC_LIMM_REGNUM:
return true;
default:
return false;
}
2016-08-13 01:02:20 +08:00
}
/* Implement the "cannot_store_register" gdbarch method. */
static int
arc_cannot_store_register (struct gdbarch *gdbarch, int regnum)
{
/* Assume that register is writable if it is unknown. See comment in
arc_cannot_fetch_register about LIMM and RESERVED. */
2016-08-13 01:02:20 +08:00
switch (regnum)
{
case ARC_RESERVED_REGNUM:
case ARC_LIMM_REGNUM:
2016-08-13 01:02:20 +08:00
case ARC_PCL_REGNUM:
return true;
2016-08-13 01:02:20 +08:00
default:
return false;
2016-08-13 01:02:20 +08:00
}
}
/* Get the return value of a function from the registers/memory used to
return it, according to the convention used by the ABI - 4-bytes values are
in the R0, while 8-byte values are in the R0-R1.
TODO: This implementation ignores the case of "complex double", where
according to ABI, value is returned in the R0-R3 registers.
TYPE is a returned value's type. VALBUF is a buffer for the returned
value. */
static void
arc_extract_return_value (struct gdbarch *gdbarch, struct type *type,
struct regcache *regcache, gdb_byte *valbuf)
{
unsigned int len = TYPE_LENGTH (type);
arc_debug_printf ("called");
2016-08-13 01:02:20 +08:00
if (len <= ARC_REGISTER_SIZE)
{
ULONGEST val;
/* Get the return value from one register. */
regcache_cooked_read_unsigned (regcache, ARC_R0_REGNUM, &val);
store_unsigned_integer (valbuf, (int) len,
gdbarch_byte_order (gdbarch), val);
arc_debug_printf ("returning 0x%s", phex (val, ARC_REGISTER_SIZE));
2016-08-13 01:02:20 +08:00
}
else if (len <= ARC_REGISTER_SIZE * 2)
{
ULONGEST low, high;
/* Get the return value from two registers. */
regcache_cooked_read_unsigned (regcache, ARC_R0_REGNUM, &low);
regcache_cooked_read_unsigned (regcache, ARC_R1_REGNUM, &high);
store_unsigned_integer (valbuf, ARC_REGISTER_SIZE,
gdbarch_byte_order (gdbarch), low);
store_unsigned_integer (valbuf + ARC_REGISTER_SIZE,
(int) len - ARC_REGISTER_SIZE,
gdbarch_byte_order (gdbarch), high);
arc_debug_printf ("returning 0x%s%s",
phex (high, ARC_REGISTER_SIZE),
phex (low, ARC_REGISTER_SIZE));
2016-08-13 01:02:20 +08:00
}
else
error (_("arc: extract_return_value: type length %u too large"), len);
}
/* Store the return value of a function into the registers/memory used to
return it, according to the convention used by the ABI.
TODO: This implementation ignores the case of "complex double", where
according to ABI, value is returned in the R0-R3 registers.
TYPE is a returned value's type. VALBUF is a buffer with the value to
return. */
static void
arc_store_return_value (struct gdbarch *gdbarch, struct type *type,
struct regcache *regcache, const gdb_byte *valbuf)
{
unsigned int len = TYPE_LENGTH (type);
arc_debug_printf ("called");
2016-08-13 01:02:20 +08:00
if (len <= ARC_REGISTER_SIZE)
{
ULONGEST val;
/* Put the return value into one register. */
val = extract_unsigned_integer (valbuf, (int) len,
gdbarch_byte_order (gdbarch));
regcache_cooked_write_unsigned (regcache, ARC_R0_REGNUM, val);
arc_debug_printf ("storing 0x%s", phex (val, ARC_REGISTER_SIZE));
2016-08-13 01:02:20 +08:00
}
else if (len <= ARC_REGISTER_SIZE * 2)
{
ULONGEST low, high;
/* Put the return value into two registers. */
low = extract_unsigned_integer (valbuf, ARC_REGISTER_SIZE,
gdbarch_byte_order (gdbarch));
high = extract_unsigned_integer (valbuf + ARC_REGISTER_SIZE,
(int) len - ARC_REGISTER_SIZE,
gdbarch_byte_order (gdbarch));
regcache_cooked_write_unsigned (regcache, ARC_R0_REGNUM, low);
regcache_cooked_write_unsigned (regcache, ARC_R1_REGNUM, high);
arc_debug_printf ("storing 0x%s%s",
phex (high, ARC_REGISTER_SIZE),
phex (low, ARC_REGISTER_SIZE));
2016-08-13 01:02:20 +08:00
}
else
error (_("arc_store_return_value: type length too large."));
}
/* Implement the "get_longjmp_target" gdbarch method. */
static int
arc_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
{
arc_debug_printf ("called");
struct gdbarch *gdbarch = get_frame_arch (frame);
gdb: move the type cast into gdbarch_tdep I built GDB for all targets on a x86-64/GNU-Linux system, and then (accidentally) passed GDB a RISC-V binary, and asked GDB to "run" the binary on the native target. I got this error: (gdb) show architecture The target architecture is set to "auto" (currently "i386"). (gdb) file /tmp/hello.rv32.exe Reading symbols from /tmp/hello.rv32.exe... (gdb) show architecture The target architecture is set to "auto" (currently "riscv:rv32"). (gdb) run Starting program: /tmp/hello.rv32.exe ../../src/gdb/i387-tdep.c:596: internal-error: i387_supply_fxsave: Assertion `tdep->st0_regnum >= I386_ST0_REGNUM' failed. What's going on here is this; initially the architecture is i386, this is based on the default architecture, which is set based on the native target. After loading the RISC-V executable the architecture of the current inferior is updated based on the architecture of the executable. When we "run", GDB does a fork & exec, with the inferior being controlled through ptrace. GDB sees an initial stop from the inferior as soon as the inferior comes to life. In response to this stop GDB ends up calling save_stop_reason (linux-nat.c), which ends up trying to read register from the inferior, to do this we end up calling target_ops::fetch_registers, which, for the x86-64 native target, calls amd64_linux_nat_target::fetch_registers. After this I eventually end up in i387_supply_fxsave, different x86 based targets will end in different functions to fetch registers, but it doesn't really matter which function we end up in, the problem is this line, which is repeated in many places: i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (arch); The problem here is that the ARCH in this line comes from the current inferior, which, as we discussed above, will be a RISC-V gdbarch, the tdep field will actually be of type riscv_gdbarch_tdep, not i386_gdbarch_tdep. After this cast we are relying on undefined behaviour, in my case I happen to trigger an assert, but this might not always be the case. The thing I tried that exposed this problem was of course, trying to start an executable of the wrong architecture on a native target. I don't think that the correct solution for this problem is to detect, at the point of cast, that the gdbarch_tdep object is of the wrong type, but, I did wonder, is there a way that we could protect ourselves from incorrectly casting the gdbarch_tdep object? I think that there is something we can do here, and this commit is the first step in that direction, though no actual check is added by this commit. This commit can be split into two parts: (1) In gdbarch.h and arch-utils.c. In these files I have modified gdbarch_tdep (the function) so that it now takes a template argument, like this: template<typename TDepType> static inline TDepType * gdbarch_tdep (struct gdbarch *gdbarch) { struct gdbarch_tdep *tdep = gdbarch_tdep_1 (gdbarch); return static_cast<TDepType *> (tdep); } After this change we are no better protected, but the cast is now done within the gdbarch_tdep function rather than at the call sites, this leads to the second, much larger change in this commit, (2) Everywhere gdbarch_tdep is called, we make changes like this: - i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (arch); + i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (arch); There should be no functional change after this commit. In the next commit I will build on this change to add an assertion in gdbarch_tdep that checks we are casting to the correct type.
2022-05-19 20:20:17 +08:00
arc_gdbarch_tdep *tdep = gdbarch_tdep<arc_gdbarch_tdep> (gdbarch);
int pc_offset = tdep->jb_pc * ARC_REGISTER_SIZE;
gdb_byte buf[ARC_REGISTER_SIZE];
CORE_ADDR jb_addr = get_frame_register_unsigned (frame, ARC_FIRST_ARG_REGNUM);
if (target_read_memory (jb_addr + pc_offset, buf, ARC_REGISTER_SIZE))
return 0; /* Failed to read from memory. */
*pc = extract_unsigned_integer (buf, ARC_REGISTER_SIZE,
gdbarch_byte_order (gdbarch));
return 1;
}
2016-08-13 01:02:20 +08:00
/* Implement the "return_value" gdbarch method. */
static enum return_value_convention
arc_return_value (struct gdbarch *gdbarch, struct value *function,
struct type *valtype, struct regcache *regcache,
gdb_byte *readbuf, const gdb_byte *writebuf)
{
/* If the return type is a struct, or a union, or would occupy more than two
registers, the ABI uses the "struct return convention": the calling
function passes a hidden first parameter to the callee (in R0). That
parameter is the address at which the value being returned should be
stored. Otherwise, the result is returned in registers. */
int is_struct_return = (valtype->code () == TYPE_CODE_STRUCT
|| valtype->code () == TYPE_CODE_UNION
2016-08-13 01:02:20 +08:00
|| TYPE_LENGTH (valtype) > 2 * ARC_REGISTER_SIZE);
arc_debug_printf ("readbuf = %s, writebuf = %s",
host_address_to_string (readbuf),
host_address_to_string (writebuf));
2016-08-13 01:02:20 +08:00
if (writebuf != NULL)
{
/* Case 1. GDB should not ask us to set a struct return value: it
should know the struct return location and write the value there
itself. */
gdb_assert (!is_struct_return);
arc_store_return_value (gdbarch, valtype, regcache, writebuf);
}
else if (readbuf != NULL)
{
/* Case 2. GDB should not ask us to get a struct return value: it
should know the struct return location and read the value from there
itself. */
gdb_assert (!is_struct_return);
arc_extract_return_value (gdbarch, valtype, regcache, readbuf);
}
return (is_struct_return
? RETURN_VALUE_STRUCT_CONVENTION
: RETURN_VALUE_REGISTER_CONVENTION);
}
/* Return the base address of the frame. For ARC, the base address is the
frame pointer. */
static CORE_ADDR
arc_frame_base_address (struct frame_info *this_frame, void **prologue_cache)
{
return (CORE_ADDR) get_frame_register_unsigned (this_frame, ARC_FP_REGNUM);
}
/* Helper function that returns valid pv_t for an instruction operand:
either a register or a constant. */
static pv_t
arc_pv_get_operand (pv_t *regs, const struct arc_instruction &insn, int operand)
{
if (insn.operands[operand].kind == ARC_OPERAND_KIND_REG)
return regs[insn.operands[operand].value];
else
return pv_constant (arc_insn_get_operand_value (insn, operand));
}
/* Determine whether the given disassembled instruction may be part of a
function prologue. If it is, the information in the frame unwind cache will
be updated. */
static bool
arc_is_in_prologue (struct gdbarch *gdbarch, const struct arc_instruction &insn,
pv_t *regs, struct pv_area *stack)
{
/* It might be that currently analyzed address doesn't contain an
instruction, hence INSN is not valid. It likely means that address points
to a data, non-initialized memory, or middle of a 32-bit instruction. In
practice this may happen if GDB connects to a remote target that has
non-zeroed memory. GDB would read PC value and would try to analyze
prologue, but there is no guarantee that memory contents at the address
specified in PC is address is a valid instruction. There is not much that
that can be done about that. */
if (!insn.valid)
return false;
/* Branch/jump or a predicated instruction. */
if (insn.is_control_flow || insn.condition_code != ARC_CC_AL)
return false;
/* Store of some register. May or may not update base address register. */
if (insn.insn_class == STORE || insn.insn_class == PUSH)
{
[gdb] Fix more typos in comments (2) Fix typos in comments. NFC. Tested on x86_64-linux. gdb/ChangeLog: 2019-10-26 Tom de Vries <tdevries@suse.de> * aarch64-linux-tdep.c: Fix typos in comments. * aarch64-tdep.c: Same. * ada-lang.c: Same. * amd64-nat.c: Same. * arc-tdep.c: Same. * arch/aarch64-insn.c: Same. * block.c: Same. * breakpoint.h: Same. * btrace.h: Same. * c-varobj.c: Same. * cli/cli-decode.c: Same. * cli/cli-script.c: Same. * cli/cli-utils.h: Same. * coff-pe-read.c: Same. * coffread.c: Same. * compile/compile-cplus-symbols.c: Same. * compile/compile-object-run.c: Same. * completer.c: Same. * corelow.c: Same. * cp-support.c: Same. * demangle.c: Same. * dwarf-index-write.c: Same. * dwarf2-frame.c: Same. * dwarf2-frame.h: Same. * eval.c: Same. * frame-base.h: Same. * frame.h: Same. * gdbcmd.h: Same. * gdbtypes.h: Same. * gnu-nat.c: Same. * guile/scm-objfile.c: Same. * i386-tdep.c: Same. * i386-tdep.h: Same. * infcall.c: Same. * infcall.h: Same. * linux-nat.c: Same. * m68k-tdep.c: Same. * macroexp.c: Same. * memattr.c: Same. * mi/mi-cmd-disas.c: Same. * mi/mi-getopt.h: Same. * mi/mi-main.c: Same. * minsyms.c: Same. * nat/aarch64-sve-linux-sigcontext.h: Same. * objfiles.h: Same. * ppc-linux-nat.c: Same. * ppc-linux-tdep.c: Same. * ppc-tdep.h: Same. * progspace.h: Same. * prologue-value.h: Same. * python/py-evtregistry.c: Same. * python/py-instruction.h: Same. * record-btrace.c: Same. * record-full.c: Same. * remote.c: Same. * rs6000-tdep.c: Same. * ser-tcp.c: Same. * sol-thread.c: Same. * sparc-sol2-tdep.c: Same. * sparc64-tdep.c: Same. * stabsread.c: Same. * symfile.c: Same. * symtab.h: Same. * target.c: Same. * tracepoint.c: Same. * tui/tui-data.h: Same. * tui/tui-io.c: Same. * tui/tui-win.c: Same. * tui/tui.c: Same. * unittests/rsp-low-selftests.c: Same. * user-regs.h: Same. * utils.c: Same. * utils.h: Same. * valarith.c: Same. * valops.c: Same. * valprint.c: Same. * valprint.h: Same. * value.c: Same. * value.h: Same. * varobj.c: Same. * x86-nat.h: Same. * xtensa-tdep.c: Same. gdb/gdbserver/ChangeLog: 2019-10-26 Tom de Vries <tdevries@suse.de> * linux-aarch64-low.c: Fix typos in comments. * linux-arm-low.c: Same. * linux-low.c: Same. * linux-ppc-low.c: Same. * proc-service.c: Same. * regcache.h: Same. * server.c: Same. * tracepoint.c: Same. * win32-low.c: Same. gdb/stubs/ChangeLog: 2019-10-26 Tom de Vries <tdevries@suse.de> * ia64vms-stub.c: Fix typos in comments. * m32r-stub.c: Same. * m68k-stub.c: Same. * sh-stub.c: Same. gdb/testsuite/ChangeLog: 2019-10-26 Tom de Vries <tdevries@suse.de> * gdb.base/bigcore.c: Fix typos in comments. * gdb.base/ctf-ptype.c: Same. * gdb.base/long_long.c: Same. * gdb.dwarf2/dw2-op-out-param.S: Same. * gdb.python/py-evthreads.c: Same. * gdb.reverse/i387-stack-reverse.c: Same. * gdb.trace/tfile.c: Same. * lib/compiler.c: Same. * lib/compiler.cc: Same. Change-Id: I8573d84a577894270179ae30f46c48d806fc1beb
2019-10-26 15:55:32 +08:00
/* There is definitely at least one operand - register/value being
stored. */
gdb_assert (insn.operands_count > 0);
/* Store at some constant address. */
if (insn.operands_count > 1
&& insn.operands[1].kind != ARC_OPERAND_KIND_REG)
return false;
/* Writeback modes:
Mode Address used Writeback value
--------------------------------------------------
No reg + offset no
A/AW reg + offset reg + offset
AB reg reg + offset
AS reg + (offset << scaling) no
"PUSH reg" is an alias to "ST.AW reg, [SP, -4]" encoding. However
16-bit PUSH_S is a distinct instruction encoding, where offset and
base register are implied through opcode. */
/* Register with base memory address. */
int base_reg = arc_insn_get_memory_base_reg (insn);
/* Address where to write. arc_insn_get_memory_offset returns scaled
value for ARC_WRITEBACK_AS. */
pv_t addr;
if (insn.writeback_mode == ARC_WRITEBACK_AB)
addr = regs[base_reg];
else
addr = pv_add_constant (regs[base_reg],
arc_insn_get_memory_offset (insn));
C++-ify prologue-value's pv_area This patch is an initial C++-ification of pv_area, from prologue-value. It turns pv_area into a class with a constructor and destructor; renames the data members; and changes various functions to be member functions. This allows the removal of make_cleanup_free_pv_area. gdb/ChangeLog 2017-10-12 Tom Tromey <tom@tromey.com> * s390-linux-tdep.c (s390_store, s390_load) (s390_check_for_saved, s390_analyze_prologue): Update. * rx-tdep.c (check_for_saved, rx_analyze_prologue): Update. * rl78-tdep.c (rl78_analyze_prologue, check_for_saved): Update. * prologue-value.h (class pv_area): Move from prologue-value.c. Change names of members. Add constructor, destructor, member functions. (make_pv_area, free_pv_area, make_cleanup_free_pv_area) (pv_area_store, pv_area_fetch, pv_area_store_would_trash) (pv_area_fetch, pv_area_scan): Don't declare. * prologue-value.c (struct pv_area::area_entry): Now member of pv_area. (struct pv_area): Move to prologue-value.h. (pv_area::pv_area): Rename from make_pv_area. (pv_area::~pv_area): Rename from free_pv_area. (do_free_pv_area_cleanup, make_cleanup_free_pv_area): Remove. (clear_entries, find_entry, overlaps, store_would_trash, store) (fetch, find_reg, scan): Now member of pv_area. Remove "area" argument. Update. * msp430-tdep.c (check_for_saved, msp430_analyze_prologue): Update. * mn10300-tdep.c (push_reg, check_for_saved) (mn10300_analyze_prologue): Update. * mep-tdep.c (is_arg_spill, check_for_saved) (mep_analyze_prologue): Update. * m32c-tdep.c (m32c_pv_push, m32c_srcdest_fetch) (m32c_srcdest_store, m32c_pv_enter, m32c_is_arg_spill) (m32c_is_struct_return, m32c_analyze_prologue): Update. * arm-tdep.c (thumb_analyze_prologue, arm_analyze_prologue): Update. * arc-tdep.c (arc_is_in_prologue, arc_analyze_prologue): Update. * aarch64-tdep.c (aarch64_analyze_prologue): Update.
2017-10-08 08:23:36 +08:00
if (stack->store_would_trash (addr))
return false;
if (insn.data_size_mode != ARC_SCALING_D)
{
/* Find the value being stored. */
pv_t store_value = arc_pv_get_operand (regs, insn, 0);
/* What is the size of a the stored value? */
CORE_ADDR size;
if (insn.data_size_mode == ARC_SCALING_B)
size = 1;
else if (insn.data_size_mode == ARC_SCALING_H)
size = 2;
else
size = ARC_REGISTER_SIZE;
C++-ify prologue-value's pv_area This patch is an initial C++-ification of pv_area, from prologue-value. It turns pv_area into a class with a constructor and destructor; renames the data members; and changes various functions to be member functions. This allows the removal of make_cleanup_free_pv_area. gdb/ChangeLog 2017-10-12 Tom Tromey <tom@tromey.com> * s390-linux-tdep.c (s390_store, s390_load) (s390_check_for_saved, s390_analyze_prologue): Update. * rx-tdep.c (check_for_saved, rx_analyze_prologue): Update. * rl78-tdep.c (rl78_analyze_prologue, check_for_saved): Update. * prologue-value.h (class pv_area): Move from prologue-value.c. Change names of members. Add constructor, destructor, member functions. (make_pv_area, free_pv_area, make_cleanup_free_pv_area) (pv_area_store, pv_area_fetch, pv_area_store_would_trash) (pv_area_fetch, pv_area_scan): Don't declare. * prologue-value.c (struct pv_area::area_entry): Now member of pv_area. (struct pv_area): Move to prologue-value.h. (pv_area::pv_area): Rename from make_pv_area. (pv_area::~pv_area): Rename from free_pv_area. (do_free_pv_area_cleanup, make_cleanup_free_pv_area): Remove. (clear_entries, find_entry, overlaps, store_would_trash, store) (fetch, find_reg, scan): Now member of pv_area. Remove "area" argument. Update. * msp430-tdep.c (check_for_saved, msp430_analyze_prologue): Update. * mn10300-tdep.c (push_reg, check_for_saved) (mn10300_analyze_prologue): Update. * mep-tdep.c (is_arg_spill, check_for_saved) (mep_analyze_prologue): Update. * m32c-tdep.c (m32c_pv_push, m32c_srcdest_fetch) (m32c_srcdest_store, m32c_pv_enter, m32c_is_arg_spill) (m32c_is_struct_return, m32c_analyze_prologue): Update. * arm-tdep.c (thumb_analyze_prologue, arm_analyze_prologue): Update. * arc-tdep.c (arc_is_in_prologue, arc_analyze_prologue): Update. * aarch64-tdep.c (aarch64_analyze_prologue): Update.
2017-10-08 08:23:36 +08:00
stack->store (addr, size, store_value);
}
else
{
if (insn.operands[0].kind == ARC_OPERAND_KIND_REG)
{
/* If this is a double store, than write N+1 register as well. */
pv_t store_value1 = regs[insn.operands[0].value];
pv_t store_value2 = regs[insn.operands[0].value + 1];
C++-ify prologue-value's pv_area This patch is an initial C++-ification of pv_area, from prologue-value. It turns pv_area into a class with a constructor and destructor; renames the data members; and changes various functions to be member functions. This allows the removal of make_cleanup_free_pv_area. gdb/ChangeLog 2017-10-12 Tom Tromey <tom@tromey.com> * s390-linux-tdep.c (s390_store, s390_load) (s390_check_for_saved, s390_analyze_prologue): Update. * rx-tdep.c (check_for_saved, rx_analyze_prologue): Update. * rl78-tdep.c (rl78_analyze_prologue, check_for_saved): Update. * prologue-value.h (class pv_area): Move from prologue-value.c. Change names of members. Add constructor, destructor, member functions. (make_pv_area, free_pv_area, make_cleanup_free_pv_area) (pv_area_store, pv_area_fetch, pv_area_store_would_trash) (pv_area_fetch, pv_area_scan): Don't declare. * prologue-value.c (struct pv_area::area_entry): Now member of pv_area. (struct pv_area): Move to prologue-value.h. (pv_area::pv_area): Rename from make_pv_area. (pv_area::~pv_area): Rename from free_pv_area. (do_free_pv_area_cleanup, make_cleanup_free_pv_area): Remove. (clear_entries, find_entry, overlaps, store_would_trash, store) (fetch, find_reg, scan): Now member of pv_area. Remove "area" argument. Update. * msp430-tdep.c (check_for_saved, msp430_analyze_prologue): Update. * mn10300-tdep.c (push_reg, check_for_saved) (mn10300_analyze_prologue): Update. * mep-tdep.c (is_arg_spill, check_for_saved) (mep_analyze_prologue): Update. * m32c-tdep.c (m32c_pv_push, m32c_srcdest_fetch) (m32c_srcdest_store, m32c_pv_enter, m32c_is_arg_spill) (m32c_is_struct_return, m32c_analyze_prologue): Update. * arm-tdep.c (thumb_analyze_prologue, arm_analyze_prologue): Update. * arc-tdep.c (arc_is_in_prologue, arc_analyze_prologue): Update. * aarch64-tdep.c (aarch64_analyze_prologue): Update.
2017-10-08 08:23:36 +08:00
stack->store (addr, ARC_REGISTER_SIZE, store_value1);
stack->store (pv_add_constant (addr, ARC_REGISTER_SIZE),
ARC_REGISTER_SIZE, store_value2);
}
else
{
pv_t store_value
= pv_constant (arc_insn_get_operand_value (insn, 0));
C++-ify prologue-value's pv_area This patch is an initial C++-ification of pv_area, from prologue-value. It turns pv_area into a class with a constructor and destructor; renames the data members; and changes various functions to be member functions. This allows the removal of make_cleanup_free_pv_area. gdb/ChangeLog 2017-10-12 Tom Tromey <tom@tromey.com> * s390-linux-tdep.c (s390_store, s390_load) (s390_check_for_saved, s390_analyze_prologue): Update. * rx-tdep.c (check_for_saved, rx_analyze_prologue): Update. * rl78-tdep.c (rl78_analyze_prologue, check_for_saved): Update. * prologue-value.h (class pv_area): Move from prologue-value.c. Change names of members. Add constructor, destructor, member functions. (make_pv_area, free_pv_area, make_cleanup_free_pv_area) (pv_area_store, pv_area_fetch, pv_area_store_would_trash) (pv_area_fetch, pv_area_scan): Don't declare. * prologue-value.c (struct pv_area::area_entry): Now member of pv_area. (struct pv_area): Move to prologue-value.h. (pv_area::pv_area): Rename from make_pv_area. (pv_area::~pv_area): Rename from free_pv_area. (do_free_pv_area_cleanup, make_cleanup_free_pv_area): Remove. (clear_entries, find_entry, overlaps, store_would_trash, store) (fetch, find_reg, scan): Now member of pv_area. Remove "area" argument. Update. * msp430-tdep.c (check_for_saved, msp430_analyze_prologue): Update. * mn10300-tdep.c (push_reg, check_for_saved) (mn10300_analyze_prologue): Update. * mep-tdep.c (is_arg_spill, check_for_saved) (mep_analyze_prologue): Update. * m32c-tdep.c (m32c_pv_push, m32c_srcdest_fetch) (m32c_srcdest_store, m32c_pv_enter, m32c_is_arg_spill) (m32c_is_struct_return, m32c_analyze_prologue): Update. * arm-tdep.c (thumb_analyze_prologue, arm_analyze_prologue): Update. * arc-tdep.c (arc_is_in_prologue, arc_analyze_prologue): Update. * aarch64-tdep.c (aarch64_analyze_prologue): Update.
2017-10-08 08:23:36 +08:00
stack->store (addr, ARC_REGISTER_SIZE * 2, store_value);
}
}
/* Is base register updated? */
if (insn.writeback_mode == ARC_WRITEBACK_A
|| insn.writeback_mode == ARC_WRITEBACK_AB)
regs[base_reg] = pv_add_constant (regs[base_reg],
arc_insn_get_memory_offset (insn));
return true;
}
else if (insn.insn_class == MOVE)
{
gdb_assert (insn.operands_count == 2);
/* Destination argument can be "0", so nothing will happen. */
if (insn.operands[0].kind == ARC_OPERAND_KIND_REG)
{
int dst_regnum = insn.operands[0].value;
regs[dst_regnum] = arc_pv_get_operand (regs, insn, 1);
}
return true;
}
else if (insn.insn_class == SUB)
{
gdb_assert (insn.operands_count == 3);
/* SUB 0,b,c. */
if (insn.operands[0].kind != ARC_OPERAND_KIND_REG)
return true;
int dst_regnum = insn.operands[0].value;
regs[dst_regnum] = pv_subtract (arc_pv_get_operand (regs, insn, 1),
arc_pv_get_operand (regs, insn, 2));
return true;
}
else if (insn.insn_class == ENTER)
{
/* ENTER_S is a prologue-in-instruction - it saves all callee-saved
registers according to given arguments thus greatly reducing code
size. Which registers will be actually saved depends on arguments.
ENTER_S {R13-...,FP,BLINK} stores registers in following order:
new SP ->
BLINK
R13
R14
R15
...
FP
old SP ->
There are up to three arguments for this opcode, as presented by ARC
disassembler:
1) amount of general-purpose registers to be saved - this argument is
always present even when it is 0;
2) FP register number (27) if FP has to be stored, otherwise argument
is not present;
3) BLINK register number (31) if BLINK has to be stored, otherwise
argument is not present. If both FP and BLINK are stored, then FP
is present before BLINK in argument list. */
gdb_assert (insn.operands_count > 0);
int regs_saved = arc_insn_get_operand_value (insn, 0);
bool is_fp_saved;
if (insn.operands_count > 1)
is_fp_saved = (insn.operands[1].value == ARC_FP_REGNUM);
else
is_fp_saved = false;
bool is_blink_saved;
if (insn.operands_count > 1)
is_blink_saved = (insn.operands[insn.operands_count - 1].value
== ARC_BLINK_REGNUM);
else
is_blink_saved = false;
/* Amount of bytes to be allocated to store specified registers. */
CORE_ADDR st_size = ((regs_saved + is_fp_saved + is_blink_saved)
* ARC_REGISTER_SIZE);
pv_t new_sp = pv_add_constant (regs[ARC_SP_REGNUM], -st_size);
/* Assume that if the last register (closest to new SP) can be written,
then it is possible to write all of them. */
C++-ify prologue-value's pv_area This patch is an initial C++-ification of pv_area, from prologue-value. It turns pv_area into a class with a constructor and destructor; renames the data members; and changes various functions to be member functions. This allows the removal of make_cleanup_free_pv_area. gdb/ChangeLog 2017-10-12 Tom Tromey <tom@tromey.com> * s390-linux-tdep.c (s390_store, s390_load) (s390_check_for_saved, s390_analyze_prologue): Update. * rx-tdep.c (check_for_saved, rx_analyze_prologue): Update. * rl78-tdep.c (rl78_analyze_prologue, check_for_saved): Update. * prologue-value.h (class pv_area): Move from prologue-value.c. Change names of members. Add constructor, destructor, member functions. (make_pv_area, free_pv_area, make_cleanup_free_pv_area) (pv_area_store, pv_area_fetch, pv_area_store_would_trash) (pv_area_fetch, pv_area_scan): Don't declare. * prologue-value.c (struct pv_area::area_entry): Now member of pv_area. (struct pv_area): Move to prologue-value.h. (pv_area::pv_area): Rename from make_pv_area. (pv_area::~pv_area): Rename from free_pv_area. (do_free_pv_area_cleanup, make_cleanup_free_pv_area): Remove. (clear_entries, find_entry, overlaps, store_would_trash, store) (fetch, find_reg, scan): Now member of pv_area. Remove "area" argument. Update. * msp430-tdep.c (check_for_saved, msp430_analyze_prologue): Update. * mn10300-tdep.c (push_reg, check_for_saved) (mn10300_analyze_prologue): Update. * mep-tdep.c (is_arg_spill, check_for_saved) (mep_analyze_prologue): Update. * m32c-tdep.c (m32c_pv_push, m32c_srcdest_fetch) (m32c_srcdest_store, m32c_pv_enter, m32c_is_arg_spill) (m32c_is_struct_return, m32c_analyze_prologue): Update. * arm-tdep.c (thumb_analyze_prologue, arm_analyze_prologue): Update. * arc-tdep.c (arc_is_in_prologue, arc_analyze_prologue): Update. * aarch64-tdep.c (aarch64_analyze_prologue): Update.
2017-10-08 08:23:36 +08:00
if (stack->store_would_trash (new_sp))
return false;
/* Current store address. */
pv_t addr = regs[ARC_SP_REGNUM];
if (is_fp_saved)
{
addr = pv_add_constant (addr, -ARC_REGISTER_SIZE);
C++-ify prologue-value's pv_area This patch is an initial C++-ification of pv_area, from prologue-value. It turns pv_area into a class with a constructor and destructor; renames the data members; and changes various functions to be member functions. This allows the removal of make_cleanup_free_pv_area. gdb/ChangeLog 2017-10-12 Tom Tromey <tom@tromey.com> * s390-linux-tdep.c (s390_store, s390_load) (s390_check_for_saved, s390_analyze_prologue): Update. * rx-tdep.c (check_for_saved, rx_analyze_prologue): Update. * rl78-tdep.c (rl78_analyze_prologue, check_for_saved): Update. * prologue-value.h (class pv_area): Move from prologue-value.c. Change names of members. Add constructor, destructor, member functions. (make_pv_area, free_pv_area, make_cleanup_free_pv_area) (pv_area_store, pv_area_fetch, pv_area_store_would_trash) (pv_area_fetch, pv_area_scan): Don't declare. * prologue-value.c (struct pv_area::area_entry): Now member of pv_area. (struct pv_area): Move to prologue-value.h. (pv_area::pv_area): Rename from make_pv_area. (pv_area::~pv_area): Rename from free_pv_area. (do_free_pv_area_cleanup, make_cleanup_free_pv_area): Remove. (clear_entries, find_entry, overlaps, store_would_trash, store) (fetch, find_reg, scan): Now member of pv_area. Remove "area" argument. Update. * msp430-tdep.c (check_for_saved, msp430_analyze_prologue): Update. * mn10300-tdep.c (push_reg, check_for_saved) (mn10300_analyze_prologue): Update. * mep-tdep.c (is_arg_spill, check_for_saved) (mep_analyze_prologue): Update. * m32c-tdep.c (m32c_pv_push, m32c_srcdest_fetch) (m32c_srcdest_store, m32c_pv_enter, m32c_is_arg_spill) (m32c_is_struct_return, m32c_analyze_prologue): Update. * arm-tdep.c (thumb_analyze_prologue, arm_analyze_prologue): Update. * arc-tdep.c (arc_is_in_prologue, arc_analyze_prologue): Update. * aarch64-tdep.c (aarch64_analyze_prologue): Update.
2017-10-08 08:23:36 +08:00
stack->store (addr, ARC_REGISTER_SIZE, regs[ARC_FP_REGNUM]);
}
/* Registers are stored in backward order: from GP (R26) to R13. */
for (int i = ARC_R13_REGNUM + regs_saved - 1; i >= ARC_R13_REGNUM; i--)
{
addr = pv_add_constant (addr, -ARC_REGISTER_SIZE);
C++-ify prologue-value's pv_area This patch is an initial C++-ification of pv_area, from prologue-value. It turns pv_area into a class with a constructor and destructor; renames the data members; and changes various functions to be member functions. This allows the removal of make_cleanup_free_pv_area. gdb/ChangeLog 2017-10-12 Tom Tromey <tom@tromey.com> * s390-linux-tdep.c (s390_store, s390_load) (s390_check_for_saved, s390_analyze_prologue): Update. * rx-tdep.c (check_for_saved, rx_analyze_prologue): Update. * rl78-tdep.c (rl78_analyze_prologue, check_for_saved): Update. * prologue-value.h (class pv_area): Move from prologue-value.c. Change names of members. Add constructor, destructor, member functions. (make_pv_area, free_pv_area, make_cleanup_free_pv_area) (pv_area_store, pv_area_fetch, pv_area_store_would_trash) (pv_area_fetch, pv_area_scan): Don't declare. * prologue-value.c (struct pv_area::area_entry): Now member of pv_area. (struct pv_area): Move to prologue-value.h. (pv_area::pv_area): Rename from make_pv_area. (pv_area::~pv_area): Rename from free_pv_area. (do_free_pv_area_cleanup, make_cleanup_free_pv_area): Remove. (clear_entries, find_entry, overlaps, store_would_trash, store) (fetch, find_reg, scan): Now member of pv_area. Remove "area" argument. Update. * msp430-tdep.c (check_for_saved, msp430_analyze_prologue): Update. * mn10300-tdep.c (push_reg, check_for_saved) (mn10300_analyze_prologue): Update. * mep-tdep.c (is_arg_spill, check_for_saved) (mep_analyze_prologue): Update. * m32c-tdep.c (m32c_pv_push, m32c_srcdest_fetch) (m32c_srcdest_store, m32c_pv_enter, m32c_is_arg_spill) (m32c_is_struct_return, m32c_analyze_prologue): Update. * arm-tdep.c (thumb_analyze_prologue, arm_analyze_prologue): Update. * arc-tdep.c (arc_is_in_prologue, arc_analyze_prologue): Update. * aarch64-tdep.c (aarch64_analyze_prologue): Update.
2017-10-08 08:23:36 +08:00
stack->store (addr, ARC_REGISTER_SIZE, regs[i]);
}
if (is_blink_saved)
{
addr = pv_add_constant (addr, -ARC_REGISTER_SIZE);
C++-ify prologue-value's pv_area This patch is an initial C++-ification of pv_area, from prologue-value. It turns pv_area into a class with a constructor and destructor; renames the data members; and changes various functions to be member functions. This allows the removal of make_cleanup_free_pv_area. gdb/ChangeLog 2017-10-12 Tom Tromey <tom@tromey.com> * s390-linux-tdep.c (s390_store, s390_load) (s390_check_for_saved, s390_analyze_prologue): Update. * rx-tdep.c (check_for_saved, rx_analyze_prologue): Update. * rl78-tdep.c (rl78_analyze_prologue, check_for_saved): Update. * prologue-value.h (class pv_area): Move from prologue-value.c. Change names of members. Add constructor, destructor, member functions. (make_pv_area, free_pv_area, make_cleanup_free_pv_area) (pv_area_store, pv_area_fetch, pv_area_store_would_trash) (pv_area_fetch, pv_area_scan): Don't declare. * prologue-value.c (struct pv_area::area_entry): Now member of pv_area. (struct pv_area): Move to prologue-value.h. (pv_area::pv_area): Rename from make_pv_area. (pv_area::~pv_area): Rename from free_pv_area. (do_free_pv_area_cleanup, make_cleanup_free_pv_area): Remove. (clear_entries, find_entry, overlaps, store_would_trash, store) (fetch, find_reg, scan): Now member of pv_area. Remove "area" argument. Update. * msp430-tdep.c (check_for_saved, msp430_analyze_prologue): Update. * mn10300-tdep.c (push_reg, check_for_saved) (mn10300_analyze_prologue): Update. * mep-tdep.c (is_arg_spill, check_for_saved) (mep_analyze_prologue): Update. * m32c-tdep.c (m32c_pv_push, m32c_srcdest_fetch) (m32c_srcdest_store, m32c_pv_enter, m32c_is_arg_spill) (m32c_is_struct_return, m32c_analyze_prologue): Update. * arm-tdep.c (thumb_analyze_prologue, arm_analyze_prologue): Update. * arc-tdep.c (arc_is_in_prologue, arc_analyze_prologue): Update. * aarch64-tdep.c (aarch64_analyze_prologue): Update.
2017-10-08 08:23:36 +08:00
stack->store (addr, ARC_REGISTER_SIZE,
regs[ARC_BLINK_REGNUM]);
}
gdb_assert (pv_is_identical (addr, new_sp));
regs[ARC_SP_REGNUM] = new_sp;
if (is_fp_saved)
regs[ARC_FP_REGNUM] = regs[ARC_SP_REGNUM];
return true;
}
/* Some other architectures, like nds32 or arm, try to continue as far as
possible when building a prologue cache (as opposed to when skipping
prologue), so that cache will be as full as possible. However current
code for ARC doesn't recognize some instructions that may modify SP, like
ADD, AND, OR, etc, hence there is no way to guarantee that SP wasn't
clobbered by the skipped instruction. Potential existence of extension
instruction, which may do anything they want makes this even more complex,
so it is just better to halt on a first unrecognized instruction. */
return false;
}
/* Analyze the prologue and update the corresponding frame cache for the frame
unwinder for unwinding frames that doesn't have debug info. In such
situation GDB attempts to parse instructions in the prologue to understand
where each register is saved.
If CACHE is not NULL, then it will be filled with information about saved
registers.
[gdb] Fix more typos in comments Fix typos in comments. NFC. Tested on x86_64-linux. gdb/ChangeLog: 2019-10-18 Tom de Vries <tdevries@suse.de> * aarch64-tdep.c: Fix typos in comments. * ada-lang.c: Same. * ada-tasks.c: Same. * alpha-tdep.c: Same. * alpha-tdep.h: Same. * amd64-nat.c: Same. * amd64-windows-tdep.c: Same. * arc-tdep.c: Same. * arc-tdep.h: Same. * arch-utils.c: Same. * arm-nbsd-tdep.c: Same. * arm-tdep.c: Same. * ax-gdb.c: Same. * blockframe.c: Same. * btrace.c: Same. * c-varobj.c: Same. * coff-pe-read.c: Same. * coffread.c: Same. * cris-tdep.c: Same. * darwin-nat.c: Same. * dbxread.c: Same. * dcache.c: Same. * disasm.c: Same. * dtrace-probe.c: Same. * dwarf-index-write.c: Same. * dwarf2-frame-tailcall.c: Same. * dwarf2-frame.c: Same. * dwarf2read.c: Same. * eval.c: Same. * exceptions.c: Same. * fbsd-tdep.c: Same. * findvar.c: Same. * frame.c: Same. * frv-tdep.c: Same. * gnu-v3-abi.c: Same. * go32-nat.c: Same. * h8300-tdep.c: Same. * hppa-tdep.c: Same. * i386-linux-tdep.c: Same. * i386-tdep.c: Same. * ia64-libunwind-tdep.c: Same. * ia64-tdep.c: Same. * infcmd.c: Same. * infrun.c: Same. * linespec.c: Same. * linux-nat.c: Same. * linux-thread-db.c: Same. * machoread.c: Same. * mdebugread.c: Same. * mep-tdep.c: Same. * mn10300-tdep.c: Same. * namespace.c: Same. * objfiles.c: Same. * opencl-lang.c: Same. * or1k-tdep.c: Same. * osabi.c: Same. * ppc-linux-nat.c: Same. * ppc-linux-tdep.c: Same. * ppc-sysv-tdep.c: Same. * printcmd.c: Same. * procfs.c: Same. * record-btrace.c: Same. * record-full.c: Same. * remote-fileio.c: Same. * remote.c: Same. * rs6000-tdep.c: Same. * s12z-tdep.c: Same. * score-tdep.c: Same. * ser-base.c: Same. * ser-go32.c: Same. * skip.c: Same. * sol-thread.c: Same. * solib-svr4.c: Same. * solib.c: Same. * source.c: Same. * sparc-nat.c: Same. * sparc-sol2-tdep.c: Same. * sparc-tdep.c: Same. * sparc64-tdep.c: Same. * stabsread.c: Same. * stack.c: Same. * symfile.c: Same. * symtab.c: Same. * target-descriptions.c: Same. * target-float.c: Same. * thread.c: Same. * utils.c: Same. * valops.c: Same. * valprint.c: Same. * value.c: Same. * varobj.c: Same. * windows-nat.c: Same. * xcoffread.c: Same. * xstormy16-tdep.c: Same. * xtensa-tdep.c: Same. Change-Id: I5175f1b107bfa4e1cdd4a3361ccb4739e53c75c4
2019-10-18 08:48:08 +08:00
There are several variations of prologue which GDB may encounter. "Full"
prologue looks like this:
sub sp,sp,<imm> ; Space for variadic arguments.
push blink ; Store return address.
push r13 ; Store callee saved registers (up to R26/GP).
push r14
push fp ; Store frame pointer.
mov fp,sp ; Update frame pointer.
sub sp,sp,<imm> ; Create space for local vars on the stack.
Depending on compiler options lots of things may change:
1) BLINK is not saved in leaf functions.
2) Frame pointer is not saved and updated if -fomit-frame-pointer is used.
3) 16-bit versions of those instructions may be used.
4) Instead of a sequence of several push'es, compiler may instead prefer to
do one subtract on stack pointer and then store registers using normal
store, that doesn't update SP. Like this:
[gdb] Fix more typos in comments Fix typos in comments. NFC. Tested on x86_64-linux. gdb/ChangeLog: 2019-10-18 Tom de Vries <tdevries@suse.de> * aarch64-tdep.c: Fix typos in comments. * ada-lang.c: Same. * ada-tasks.c: Same. * alpha-tdep.c: Same. * alpha-tdep.h: Same. * amd64-nat.c: Same. * amd64-windows-tdep.c: Same. * arc-tdep.c: Same. * arc-tdep.h: Same. * arch-utils.c: Same. * arm-nbsd-tdep.c: Same. * arm-tdep.c: Same. * ax-gdb.c: Same. * blockframe.c: Same. * btrace.c: Same. * c-varobj.c: Same. * coff-pe-read.c: Same. * coffread.c: Same. * cris-tdep.c: Same. * darwin-nat.c: Same. * dbxread.c: Same. * dcache.c: Same. * disasm.c: Same. * dtrace-probe.c: Same. * dwarf-index-write.c: Same. * dwarf2-frame-tailcall.c: Same. * dwarf2-frame.c: Same. * dwarf2read.c: Same. * eval.c: Same. * exceptions.c: Same. * fbsd-tdep.c: Same. * findvar.c: Same. * frame.c: Same. * frv-tdep.c: Same. * gnu-v3-abi.c: Same. * go32-nat.c: Same. * h8300-tdep.c: Same. * hppa-tdep.c: Same. * i386-linux-tdep.c: Same. * i386-tdep.c: Same. * ia64-libunwind-tdep.c: Same. * ia64-tdep.c: Same. * infcmd.c: Same. * infrun.c: Same. * linespec.c: Same. * linux-nat.c: Same. * linux-thread-db.c: Same. * machoread.c: Same. * mdebugread.c: Same. * mep-tdep.c: Same. * mn10300-tdep.c: Same. * namespace.c: Same. * objfiles.c: Same. * opencl-lang.c: Same. * or1k-tdep.c: Same. * osabi.c: Same. * ppc-linux-nat.c: Same. * ppc-linux-tdep.c: Same. * ppc-sysv-tdep.c: Same. * printcmd.c: Same. * procfs.c: Same. * record-btrace.c: Same. * record-full.c: Same. * remote-fileio.c: Same. * remote.c: Same. * rs6000-tdep.c: Same. * s12z-tdep.c: Same. * score-tdep.c: Same. * ser-base.c: Same. * ser-go32.c: Same. * skip.c: Same. * sol-thread.c: Same. * solib-svr4.c: Same. * solib.c: Same. * source.c: Same. * sparc-nat.c: Same. * sparc-sol2-tdep.c: Same. * sparc-tdep.c: Same. * sparc64-tdep.c: Same. * stabsread.c: Same. * stack.c: Same. * symfile.c: Same. * symtab.c: Same. * target-descriptions.c: Same. * target-float.c: Same. * thread.c: Same. * utils.c: Same. * valops.c: Same. * valprint.c: Same. * value.c: Same. * varobj.c: Same. * windows-nat.c: Same. * xcoffread.c: Same. * xstormy16-tdep.c: Same. * xtensa-tdep.c: Same. Change-Id: I5175f1b107bfa4e1cdd4a3361ccb4739e53c75c4
2019-10-18 08:48:08 +08:00
sub sp,sp,8 ; Create space for callee-saved registers.
st r13,[sp,4] ; Store callee saved registers (up to R26/GP).
st r14,[sp,0]
5) ENTER_S instruction can encode most of prologue sequence in one
instruction (except for those subtracts for variadic arguments and local
variables).
6) GCC may use "millicode" functions from libgcc to store callee-saved
registers with minimal code-size requirements. This function currently
doesn't support this.
ENTRYPOINT is a function entry point where prologue starts.
LIMIT_PC is a maximum possible end address of prologue (meaning address
of first instruction after the prologue). It might also point to the middle
of prologue if execution has been stopped by the breakpoint at this address
- in this case debugger should analyze prologue only up to this address,
because further instructions haven't been executed yet.
Returns address of the first instruction after the prologue. */
static CORE_ADDR
arc_analyze_prologue (struct gdbarch *gdbarch, const CORE_ADDR entrypoint,
const CORE_ADDR limit_pc, struct arc_frame_cache *cache)
{
arc_debug_printf ("entrypoint=%s, limit_pc=%s",
paddress (gdbarch, entrypoint),
paddress (gdbarch, limit_pc));
/* Prologue values. Only core registers can be stored. */
pv_t regs[ARC_LAST_CORE_REGNUM + 1];
for (int i = 0; i <= ARC_LAST_CORE_REGNUM; i++)
regs[i] = pv_register (i, 0);
C++-ify prologue-value's pv_area This patch is an initial C++-ification of pv_area, from prologue-value. It turns pv_area into a class with a constructor and destructor; renames the data members; and changes various functions to be member functions. This allows the removal of make_cleanup_free_pv_area. gdb/ChangeLog 2017-10-12 Tom Tromey <tom@tromey.com> * s390-linux-tdep.c (s390_store, s390_load) (s390_check_for_saved, s390_analyze_prologue): Update. * rx-tdep.c (check_for_saved, rx_analyze_prologue): Update. * rl78-tdep.c (rl78_analyze_prologue, check_for_saved): Update. * prologue-value.h (class pv_area): Move from prologue-value.c. Change names of members. Add constructor, destructor, member functions. (make_pv_area, free_pv_area, make_cleanup_free_pv_area) (pv_area_store, pv_area_fetch, pv_area_store_would_trash) (pv_area_fetch, pv_area_scan): Don't declare. * prologue-value.c (struct pv_area::area_entry): Now member of pv_area. (struct pv_area): Move to prologue-value.h. (pv_area::pv_area): Rename from make_pv_area. (pv_area::~pv_area): Rename from free_pv_area. (do_free_pv_area_cleanup, make_cleanup_free_pv_area): Remove. (clear_entries, find_entry, overlaps, store_would_trash, store) (fetch, find_reg, scan): Now member of pv_area. Remove "area" argument. Update. * msp430-tdep.c (check_for_saved, msp430_analyze_prologue): Update. * mn10300-tdep.c (push_reg, check_for_saved) (mn10300_analyze_prologue): Update. * mep-tdep.c (is_arg_spill, check_for_saved) (mep_analyze_prologue): Update. * m32c-tdep.c (m32c_pv_push, m32c_srcdest_fetch) (m32c_srcdest_store, m32c_pv_enter, m32c_is_arg_spill) (m32c_is_struct_return, m32c_analyze_prologue): Update. * arm-tdep.c (thumb_analyze_prologue, arm_analyze_prologue): Update. * arc-tdep.c (arc_is_in_prologue, arc_analyze_prologue): Update. * aarch64-tdep.c (aarch64_analyze_prologue): Update.
2017-10-08 08:23:36 +08:00
pv_area stack (ARC_SP_REGNUM, gdbarch_addr_bit (gdbarch));
CORE_ADDR current_prologue_end = entrypoint;
/* Look at each instruction in the prologue. */
while (current_prologue_end < limit_pc)
{
struct arc_instruction insn;
gdb: refactor the non-printing disassemblers This commit started from an observation I made while working on some other disassembler patches, that is, that the function gdb_buffered_insn_length, is broken ... sort of. I noticed that the gdb_buffered_insn_length function doesn't set up the application data field if the disassemble_info structure. Further, I noticed that some architectures, for example, ARM, require that the application_data field be set, see gdb_print_insn_arm in arm-tdep.c. And so, if we ever use gdb_buffered_insn_length for ARM, then GDB will likely crash. Which is why I said only "sort of" broken. Right now we don't use gdb_buffered_insn_length with ARM, so maybe it isn't broken yet? Anyway to prove to myself that there was a problem here I extended the disassembler self tests in disasm-selftests.c to include a test of gdb_buffered_insn_length. As I run the test for all architectures, I do indeed see GDB crash for ARM. To fix this we need gdb_buffered_insn_length to create a disassembler that inherits from gdb_disassemble_info, but we also need this new disassembler to not print anything. And so, I introduce a new gdb_non_printing_disassembler class, this is a disassembler that doesn't print anything to the output stream. I then observed that both ARC and S12Z also create non-printing disassemblers, but these are slightly different. While the disassembler in gdb_non_printing_disassembler reads the instruction from a buffer, the ARC and S12Z disassemblers read from target memory using target_read_code. And so, I further split gdb_non_printing_disassembler into two sub-classes, gdb_non_printing_memory_disassembler and gdb_non_printing_buffer_disassembler. The new selftests now pass, but otherwise, there should be no user visible changes after this commit.
2022-04-04 22:48:19 +08:00
struct gdb_non_printing_memory_disassembler dis (gdbarch);
arc_insn_decode (current_prologue_end, dis.disasm_info (),
arc_delayed_print_insn, &insn);
if (arc_debug)
arc_insn_dump (insn);
/* If this instruction is in the prologue, fields in the cache will be
updated, and the saved registers mask may be updated. */
C++-ify prologue-value's pv_area This patch is an initial C++-ification of pv_area, from prologue-value. It turns pv_area into a class with a constructor and destructor; renames the data members; and changes various functions to be member functions. This allows the removal of make_cleanup_free_pv_area. gdb/ChangeLog 2017-10-12 Tom Tromey <tom@tromey.com> * s390-linux-tdep.c (s390_store, s390_load) (s390_check_for_saved, s390_analyze_prologue): Update. * rx-tdep.c (check_for_saved, rx_analyze_prologue): Update. * rl78-tdep.c (rl78_analyze_prologue, check_for_saved): Update. * prologue-value.h (class pv_area): Move from prologue-value.c. Change names of members. Add constructor, destructor, member functions. (make_pv_area, free_pv_area, make_cleanup_free_pv_area) (pv_area_store, pv_area_fetch, pv_area_store_would_trash) (pv_area_fetch, pv_area_scan): Don't declare. * prologue-value.c (struct pv_area::area_entry): Now member of pv_area. (struct pv_area): Move to prologue-value.h. (pv_area::pv_area): Rename from make_pv_area. (pv_area::~pv_area): Rename from free_pv_area. (do_free_pv_area_cleanup, make_cleanup_free_pv_area): Remove. (clear_entries, find_entry, overlaps, store_would_trash, store) (fetch, find_reg, scan): Now member of pv_area. Remove "area" argument. Update. * msp430-tdep.c (check_for_saved, msp430_analyze_prologue): Update. * mn10300-tdep.c (push_reg, check_for_saved) (mn10300_analyze_prologue): Update. * mep-tdep.c (is_arg_spill, check_for_saved) (mep_analyze_prologue): Update. * m32c-tdep.c (m32c_pv_push, m32c_srcdest_fetch) (m32c_srcdest_store, m32c_pv_enter, m32c_is_arg_spill) (m32c_is_struct_return, m32c_analyze_prologue): Update. * arm-tdep.c (thumb_analyze_prologue, arm_analyze_prologue): Update. * arc-tdep.c (arc_is_in_prologue, arc_analyze_prologue): Update. * aarch64-tdep.c (aarch64_analyze_prologue): Update.
2017-10-08 08:23:36 +08:00
if (!arc_is_in_prologue (gdbarch, insn, regs, &stack))
{
/* Found an instruction that is not in the prologue. */
arc_debug_printf ("End of prologue reached at address %s",
paddress (gdbarch, insn.address));
break;
}
current_prologue_end = arc_insn_get_linear_next_pc (insn);
}
if (cache != NULL)
{
/* Figure out if it is a frame pointer or just a stack pointer. */
if (pv_is_register (regs[ARC_FP_REGNUM], ARC_SP_REGNUM))
{
cache->frame_base_reg = ARC_FP_REGNUM;
cache->frame_base_offset = -regs[ARC_FP_REGNUM].k;
}
else
{
cache->frame_base_reg = ARC_SP_REGNUM;
cache->frame_base_offset = -regs[ARC_SP_REGNUM].k;
}
/* Assign offset from old SP to all saved registers. */
for (int i = 0; i <= ARC_LAST_CORE_REGNUM; i++)
{
CORE_ADDR offset;
C++-ify prologue-value's pv_area This patch is an initial C++-ification of pv_area, from prologue-value. It turns pv_area into a class with a constructor and destructor; renames the data members; and changes various functions to be member functions. This allows the removal of make_cleanup_free_pv_area. gdb/ChangeLog 2017-10-12 Tom Tromey <tom@tromey.com> * s390-linux-tdep.c (s390_store, s390_load) (s390_check_for_saved, s390_analyze_prologue): Update. * rx-tdep.c (check_for_saved, rx_analyze_prologue): Update. * rl78-tdep.c (rl78_analyze_prologue, check_for_saved): Update. * prologue-value.h (class pv_area): Move from prologue-value.c. Change names of members. Add constructor, destructor, member functions. (make_pv_area, free_pv_area, make_cleanup_free_pv_area) (pv_area_store, pv_area_fetch, pv_area_store_would_trash) (pv_area_fetch, pv_area_scan): Don't declare. * prologue-value.c (struct pv_area::area_entry): Now member of pv_area. (struct pv_area): Move to prologue-value.h. (pv_area::pv_area): Rename from make_pv_area. (pv_area::~pv_area): Rename from free_pv_area. (do_free_pv_area_cleanup, make_cleanup_free_pv_area): Remove. (clear_entries, find_entry, overlaps, store_would_trash, store) (fetch, find_reg, scan): Now member of pv_area. Remove "area" argument. Update. * msp430-tdep.c (check_for_saved, msp430_analyze_prologue): Update. * mn10300-tdep.c (push_reg, check_for_saved) (mn10300_analyze_prologue): Update. * mep-tdep.c (is_arg_spill, check_for_saved) (mep_analyze_prologue): Update. * m32c-tdep.c (m32c_pv_push, m32c_srcdest_fetch) (m32c_srcdest_store, m32c_pv_enter, m32c_is_arg_spill) (m32c_is_struct_return, m32c_analyze_prologue): Update. * arm-tdep.c (thumb_analyze_prologue, arm_analyze_prologue): Update. * arc-tdep.c (arc_is_in_prologue, arc_analyze_prologue): Update. * aarch64-tdep.c (aarch64_analyze_prologue): Update.
2017-10-08 08:23:36 +08:00
if (stack.find_reg (gdbarch, i, &offset))
Refactor struct trad_frame_saved_regs The following patch drops the overloading going on with the trad_frame_saved_reg struct and defines a new struct with a KIND enum and a union of different fields. The new struct looks like this: struct trad_frame_saved_reg { setters/getters ... private: trad_frame_saved_reg_kind m_kind; union { LONGEST value; int realreg; LONGEST addr; const gdb_byte *value_bytes; } m_reg; }; And the enums look like this: /* Describes the kind of encoding a stored register has. */ enum class trad_frame_saved_reg_kind { /* Register value is unknown. */ UNKNOWN = 0, /* Register value is a constant. */ VALUE, /* Register value is in another register. */ REALREG, /* Register value is at an address. */ ADDR, /* Register value is a sequence of bytes. */ VALUE_BYTES }; The patch also adds setters/getters and updates all the users of the old struct. It is worth mentioning that due to the previous overloaded nature of the fields, some tdep files like to store negative offsets and indexes in the ADDR field, so I kept the ADDR as LONGEST instead of CORE_ADDR. Those cases may be better supported by a new enum entry. I have not addressed those cases in this patch to prevent unwanted breakage, given I have no way to test some of the targets. But it would be nice to clean those up eventually. The change to frame-unwind.* is to constify the parameter being passed to the unwinding functions, given we now accept a "const gdb_byte *" for value bytes. Tested on aarch64-linux/Ubuntu 20.04/18.04 and by building GDB with --enable-targets=all. gdb/ChangeLog: 2021-01-04 Luis Machado <luis.machado@linaro.org> Update all users of trad_frame_saved_reg to use the new member functions. Remote all struct keywords from declarations of trad_frame_saved_reg types, except on forward declarations. * aarch64-tdep.c: Update. * alpha-mdebug-tdep.c: Update. * alpha-tdep.c: Update. * arc-tdep.c: Update. * arm-tdep.c: Update. * avr-tdep.c: Update. * cris-tdep.c: Update. * csky-tdep.c: Update. * frv-tdep.c: Update. * hppa-linux-tdep.c: Update. * hppa-tdep.c: Update. * hppa-tdep.h: Update. * lm32-tdep.c: Update. * m32r-linux-tdep.c: Update. * m32r-tdep.c: Update. * m68hc11-tdep.c: Update. * mips-tdep.c: Update. * moxie-tdep.c: Update. * riscv-tdep.c: Update. * rs6000-tdep.c: Update. * s390-linux-tdep.c: Update. * s390-tdep.c: Update. * score-tdep.c: Update. * sparc-netbsd-tdep.c: Update. * sparc-sol2-tdep.c: Update. * sparc64-fbsd-tdep.c: Update. * sparc64-netbsd-tdep.c: Update. * sparc64-obsd-tdep.c: Update. * sparc64-sol2-tdep.c: Update. * tilegx-tdep.c: Update. * v850-tdep.c: Update. * vax-tdep.c: Update. * frame-unwind.c (frame_unwind_got_bytes): Make parameter const. * frame-unwind.h (frame_unwind_got_bytes): Likewise. * trad-frame.c: Update. Remove TF_REG_* enum. (trad_frame_alloc_saved_regs): Add a static assertion to check for a trivially-constructible struct. (trad_frame_reset_saved_regs): Adjust to use member function. (trad_frame_value_p): Likewise. (trad_frame_addr_p): Likewise. (trad_frame_realreg_p): Likewise. (trad_frame_value_bytes_p): Likewise. (trad_frame_set_value): Likewise. (trad_frame_set_realreg): Likewise. (trad_frame_set_addr): Likewise. (trad_frame_set_unknown): Likewise. (trad_frame_set_value_bytes): Likewise. (trad_frame_get_prev_register): Likewise. * trad-frame.h: Update. (trad_frame_saved_reg_kind): New enum. (struct trad_frame_saved_reg) <addr, realreg, data>: Remove. <m_kind, m_reg>: New member fields. <set_value, set_realreg, set_addr, set_unknown, set_value_bytes> <kind, value, realreg, addr, value_bytes, is_value, is_realreg> <is_addr, is_unknown, is_value_bytes>: New member functions.
2020-12-23 04:45:21 +08:00
cache->saved_regs[i].set_addr (offset);
}
}
return current_prologue_end;
}
/* Estimated maximum prologue length in bytes. This should include:
1) Store instruction for each callee-saved register (R25 - R13 + 1)
2) Two instructions for FP
3) One for BLINK
4) Three substract instructions for SP (for variadic args, for
callee saved regs and for local vars) and assuming that those SUB use
long-immediate (hence double length).
5) Stores of arguments registers are considered part of prologue too
(R7 - R1 + 1).
This is quite an extreme case, because even with -O0 GCC will collapse first
two SUBs into one and long immediate values are quite unlikely to appear in
this case, but still better to overshoot a bit - prologue analysis will
anyway stop at the first instruction that doesn't fit prologue, so this
limit will be rarely reached. */
const static int MAX_PROLOGUE_LENGTH
= 4 * (ARC_R25_REGNUM - ARC_R13_REGNUM + 1 + 2 + 1 + 6
+ ARC_LAST_ARG_REGNUM - ARC_FIRST_ARG_REGNUM + 1);
2016-08-13 01:02:20 +08:00
/* Implement the "skip_prologue" gdbarch method.
Skip the prologue for the function at PC. This is done by checking from
the line information read from the DWARF, if possible; otherwise, we scan
the function prologue to find its end. */
static CORE_ADDR
arc_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
{
arc_debug_printf ("pc = %s", paddress (gdbarch, pc));
2016-08-13 01:02:20 +08:00
CORE_ADDR func_addr;
const char *func_name;
/* See what the symbol table says. */
if (find_pc_partial_function (pc, &func_name, &func_addr, NULL))
{
/* Found a function. */
CORE_ADDR postprologue_pc
= skip_prologue_using_sal (gdbarch, func_addr);
if (postprologue_pc != 0)
return std::max (pc, postprologue_pc);
}
/* No prologue info in symbol table, have to analyze prologue. */
/* Find an upper limit on the function prologue using the debug
information. If there is no debug information about prologue end, then
skip_prologue_using_sal will return 0. */
2016-08-13 01:02:20 +08:00
CORE_ADDR limit_pc = skip_prologue_using_sal (gdbarch, pc);
/* If there is no debug information at all, it is required to give some
semi-arbitrary hard limit on amount of bytes to scan during prologue
analysis. */
if (limit_pc == 0)
limit_pc = pc + MAX_PROLOGUE_LENGTH;
/* Find the address of the first instruction after the prologue by scanning
through it - no other information is needed, so pass NULL as a cache. */
return arc_analyze_prologue (gdbarch, pc, limit_pc, NULL);
2016-08-13 01:02:20 +08:00
}
/* Implement the "print_insn" gdbarch method.
arc_get_disassembler () may return different functions depending on bfd
type, so it is not possible to pass print_insn directly to
set_gdbarch_print_insn (). Instead this wrapper function is used. It also
may be used by other functions to get disassemble_info for address. It is
important to note, that those print_insn from opcodes always print
instruction to the stream specified in the INFO. If this is not desired,
then either `print_insn` function in INFO should be set to some function
that will not print, or `stream` should be different from standard
gdb_stdlog. */
arc: Add disassembler helper Add disassembler helper for GDB, that uses opcodes structure arc_instruction and adds convenience functions to handle instruction operands. This interface solves at least those problems with arc_instruction: * Some instructions, like "push_s", have implicit operands which are not directly present in arc_instruction. * Operands of particular meaning, like branch/jump targets, have various locations and meaning depending on type of branch/target. * Access to operand value is abstracted into a separate function, so callee code shouldn't bother if operand value is an immediate value or in a register. Testcases included in this commit are fairly limited - they test exclusively branch instructions, something that will be used in software single stepping. Most of the other parts of this disassembler helper are tested during prologue analysis testing. gdb/ChangeLog: yyyy-mm-dd Anton Kolesov <anton.kolesov@synopsys.com> * configure.tgt: Add arc-insn.o. * arc-tdep.c (arc_delayed_print_insn): Make non-static. (dump_arc_instruction_command): New function. (arc_fprintf_disasm): Likewise. (arc_disassemble_info): Likewise. (arc_insn_get_operand_value): Likewise. (arc_insn_get_operand_value_signed): Likewise. (arc_insn_get_memory_base_reg): Likewise. (arc_insn_get_memory_offset): Likewise. (arc_insn_get_branch_target): Likewise. (arc_insn_dump): Likewise. (arc_insn_get_linear_next_pc): Likewise. * arc-tdep.h (arc_delayed_print_insn): Add function declaration. (arc_disassemble_info): Likewise. (arc_insn_get_branch_target): Likewise. (arc_insn_get_linear_next_pc): Likewise. * NEWS: Mention new "maint print arc arc-instruction". gdb/doc/ChangeLog: yyyy-mm-dd Anton Kolesov <anton.kolesov@synopsys.com> * gdb.texinfo (Synopsys ARC): Add "maint print arc arc-instruction". gdb/testsuite/ChangeLog: yyyy-mm-dd Anton Kolesov <anton.kolesov@synopsys.com> * gdb.arch/arc-decode-insn.S: New file. * gdb.arch/arc-decode-insn.exp: Likewise.
2017-02-10 19:12:06 +08:00
int
2016-08-13 01:02:20 +08:00
arc_delayed_print_insn (bfd_vma addr, struct disassemble_info *info)
{
[gdb] Fix more typos in comments Fix typos in comments. NFC. Tested on x86_64-linux. gdb/ChangeLog: 2019-10-18 Tom de Vries <tdevries@suse.de> * aarch64-tdep.c: Fix typos in comments. * ada-lang.c: Same. * ada-tasks.c: Same. * alpha-tdep.c: Same. * alpha-tdep.h: Same. * amd64-nat.c: Same. * amd64-windows-tdep.c: Same. * arc-tdep.c: Same. * arc-tdep.h: Same. * arch-utils.c: Same. * arm-nbsd-tdep.c: Same. * arm-tdep.c: Same. * ax-gdb.c: Same. * blockframe.c: Same. * btrace.c: Same. * c-varobj.c: Same. * coff-pe-read.c: Same. * coffread.c: Same. * cris-tdep.c: Same. * darwin-nat.c: Same. * dbxread.c: Same. * dcache.c: Same. * disasm.c: Same. * dtrace-probe.c: Same. * dwarf-index-write.c: Same. * dwarf2-frame-tailcall.c: Same. * dwarf2-frame.c: Same. * dwarf2read.c: Same. * eval.c: Same. * exceptions.c: Same. * fbsd-tdep.c: Same. * findvar.c: Same. * frame.c: Same. * frv-tdep.c: Same. * gnu-v3-abi.c: Same. * go32-nat.c: Same. * h8300-tdep.c: Same. * hppa-tdep.c: Same. * i386-linux-tdep.c: Same. * i386-tdep.c: Same. * ia64-libunwind-tdep.c: Same. * ia64-tdep.c: Same. * infcmd.c: Same. * infrun.c: Same. * linespec.c: Same. * linux-nat.c: Same. * linux-thread-db.c: Same. * machoread.c: Same. * mdebugread.c: Same. * mep-tdep.c: Same. * mn10300-tdep.c: Same. * namespace.c: Same. * objfiles.c: Same. * opencl-lang.c: Same. * or1k-tdep.c: Same. * osabi.c: Same. * ppc-linux-nat.c: Same. * ppc-linux-tdep.c: Same. * ppc-sysv-tdep.c: Same. * printcmd.c: Same. * procfs.c: Same. * record-btrace.c: Same. * record-full.c: Same. * remote-fileio.c: Same. * remote.c: Same. * rs6000-tdep.c: Same. * s12z-tdep.c: Same. * score-tdep.c: Same. * ser-base.c: Same. * ser-go32.c: Same. * skip.c: Same. * sol-thread.c: Same. * solib-svr4.c: Same. * solib.c: Same. * source.c: Same. * sparc-nat.c: Same. * sparc-sol2-tdep.c: Same. * sparc-tdep.c: Same. * sparc64-tdep.c: Same. * stabsread.c: Same. * stack.c: Same. * symfile.c: Same. * symtab.c: Same. * target-descriptions.c: Same. * target-float.c: Same. * thread.c: Same. * utils.c: Same. * valops.c: Same. * valprint.c: Same. * value.c: Same. * varobj.c: Same. * windows-nat.c: Same. * xcoffread.c: Same. * xstormy16-tdep.c: Same. * xtensa-tdep.c: Same. Change-Id: I5175f1b107bfa4e1cdd4a3361ccb4739e53c75c4
2019-10-18 08:48:08 +08:00
/* Standard BFD "machine number" field allows libopcodes disassembler to
distinguish ARC 600, 700 and v2 cores, however v2 encompasses both ARC EM
and HS, which have some difference between. There are two ways to specify
what is the target core:
1) via the disassemble_info->disassembler_options;
2) otherwise libopcodes will use private (architecture-specific) ELF
header.
Using disassembler_options is preferable, because it comes directly from
GDBserver which scanned an actual ARC core identification info. However,
not all GDBservers report core architecture, so as a fallback GDB still
should support analysis of ELF header. The libopcodes disassembly code
uses the section to find the BFD and the BFD to find the ELF header,
therefore this function should set disassemble_info->section properly.
disassembler_options was already set by non-target specific code with
proper options obtained via gdbarch_disassembler_options ().
This function might be called multiple times in a sequence, reusing same
disassemble_info. */
if ((info->disassembler_options == NULL) && (info->section == NULL))
{
struct obj_section *s = find_pc_section (addr);
if (s != NULL)
info->section = s->the_bfd_section;
}
return default_print_insn (addr, info);
2016-08-13 01:02:20 +08:00
}
/* Baremetal breakpoint instructions.
ARC supports both big- and little-endian. However, instructions for
little-endian processors are encoded in the middle-endian: half-words are
in big-endian, while bytes inside the half-words are in little-endian; data
is represented in the "normal" little-endian. Big-endian processors treat
data and code identically.
Assuming the number 0x01020304, it will be presented this way:
Address : N N+1 N+2 N+3
little-endian : 0x04 0x03 0x02 0x01
big-endian : 0x01 0x02 0x03 0x04
ARC middle-endian : 0x02 0x01 0x04 0x03
*/
static const gdb_byte arc_brk_s_be[] = { 0x7f, 0xff };
static const gdb_byte arc_brk_s_le[] = { 0xff, 0x7f };
static const gdb_byte arc_brk_be[] = { 0x25, 0x6f, 0x00, 0x3f };
static const gdb_byte arc_brk_le[] = { 0x6f, 0x25, 0x3f, 0x00 };
/* For ARC ELF, breakpoint uses the 16-bit BRK_S instruction, which is 0x7fff
2016-08-13 01:02:20 +08:00
(little endian) or 0xff7f (big endian). We used to insert BRK_S even
instead of 32-bit instructions, which works mostly ok, unless breakpoint is
inserted into delay slot instruction. In this case if branch is taken
BLINK value will be set to address of instruction after delay slot, however
if we replaced 32-bit instruction in delay slot with 16-bit long BRK_S,
then BLINK value will have an invalid value - it will point to the address
after the BRK_S (which was there at the moment of branch execution) while
it should point to the address after the 32-bit long instruction. To avoid
such issues this function disassembles instruction at target location and
evaluates it value.
ARC 600 supports only 16-bit BRK_S.
NB: Baremetal GDB uses BRK[_S], while user-space GDB uses TRAP_S. BRK[_S]
is much better because it doesn't commit unlike TRAP_S, so it can be set in
delay slots; however it cannot be used in user-mode, hence usage of TRAP_S
in GDB for user-space. */
2016-08-13 01:02:20 +08:00
/* Implement the "breakpoint_kind_from_pc" gdbarch method. */
2016-08-13 01:02:20 +08:00
static int
arc_breakpoint_kind_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr)
2016-08-13 01:02:20 +08:00
{
size_t length_with_limm = gdb_insn_length (gdbarch, *pcptr);
/* Replace 16-bit instruction with BRK_S, replace 32-bit instructions with
BRK. LIMM is part of instruction length, so it can be either 4 or 8
bytes for 32-bit instructions. */
if ((length_with_limm == 4 || length_with_limm == 8)
&& !arc_mach_is_arc600 (gdbarch))
return sizeof (arc_brk_le);
else
return sizeof (arc_brk_s_le);
}
/* Implement the "sw_breakpoint_from_kind" gdbarch method. */
static const gdb_byte *
arc_sw_breakpoint_from_kind (struct gdbarch *gdbarch, int kind, int *size)
{
gdb_assert (kind == 2 || kind == 4);
*size = kind;
if (kind == sizeof (arc_brk_le))
2016-08-13 01:02:20 +08:00
{
return ((gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
? arc_brk_be
: arc_brk_le);
}
else
{
return ((gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
? arc_brk_s_be
: arc_brk_s_le);
}
}
/* Implement the "frame_align" gdbarch method. */
static CORE_ADDR
arc_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
{
return align_down (sp, 4);
}
/* Dump the frame info. Used for internal debugging only. */
static void
-Wwrite-strings: The Rest This is the remainder boring constification that all looks more of less borderline obvious IMO. gdb/ChangeLog: 2017-04-05 Pedro Alves <palves@redhat.com> * ada-exp.y (yyerror): Constify. * ada-lang.c (bound_name, get_selections) (ada_variant_discrim_type) (ada_variant_discrim_name, ada_value_struct_elt) (ada_lookup_struct_elt_type, is_unchecked_variant) (ada_which_variant_applies, standard_exc, ada_get_next_arg) (catch_ada_exception_command_split) (catch_ada_assert_command_split, catch_assert_command) (ada_op_name): Constify. * ada-lang.h (ada_yyerror, get_selections) (ada_variant_discrim_name, ada_value_struct_elt): Constify. * arc-tdep.c (arc_print_frame_cache): Constify. * arm-tdep.c (arm_skip_stub): Constify. * ax-gdb.c (gen_binop, gen_struct_ref_recursive, gen_struct_ref) (gen_aggregate_elt_ref): Constify. * bcache.c (print_bcache_statistics): Constify. * bcache.h (print_bcache_statistics): Constify. * break-catch-throw.c (catch_exception_command_1): * breakpoint.c (struct ep_type_description::description): Constify. (add_solib_catchpoint): Constify. (catch_fork_command_1): Add cast. (add_catch_command): Constify. * breakpoint.h (add_catch_command, add_solib_catchpoint): Constify. * bsd-uthread.c (bsd_uthread_state): Constify. * buildsym.c (patch_subfile_names): Constify. * buildsym.h (next_symbol_text_func, patch_subfile_names): Constify. * c-exp.y (yyerror): Constify. (token::oper): Constify. * c-lang.h (c_yyerror, cp_print_class_member): Constify. * c-varobj.c (cplus_describe_child): Constify. * charset.c (find_charset_names): Add cast. (find_charset_names): Constify array and add const_cast. * cli/cli-cmds.c (complete_command, cd_command): Constify. (edit_command): Constify. * cli/cli-decode.c (lookup_cmd): Constify. * cli/cli-dump.c (dump_memory_command, dump_value_command): Constify. (struct dump_context): Constify. (add_dump_command, restore_command): Constify. * cli/cli-script.c (get_command_line): Constify. * cli/cli-script.h (get_command_line): Constify. * cli/cli-utils.c (check_for_argument): Constify. * cli/cli-utils.h (check_for_argument): Constify. * coff-pe-read.c (struct read_pe_section_data): Constify. * command.h (lookup_cmd): Constify. * common/print-utils.c (decimal2str): Constify. * completer.c (gdb_print_filename): Constify. * corefile.c (set_gnutarget): Constify. * cp-name-parser.y (yyerror): Constify. * cp-valprint.c (cp_print_class_member): Constify. * cris-tdep.c (cris_register_name, crisv32_register_name): Constify. * d-exp.y (yyerror): Constify. (struct token::oper): Constify. * d-lang.h (d_yyerror): Constify. * dbxread.c (struct header_file_location::name): Constify. (add_old_header_file, add_new_header_file, last_function_name) (dbx_next_symbol_text, add_bincl_to_list) (find_corresponding_bincl_psymtab, set_namestring) (find_stab_function_addr, read_dbx_symtab, start_psymtab) (dbx_end_psymtab, read_ofile_symtab, process_one_symbol): * defs.h (command_line_input, print_address_symbolic) (deprecated_readline_begin_hook): Constify. * dwarf2read.c (anonymous_struct_prefix, dwarf_bool_name): Constify. * event-top.c (handle_line_of_input): Constify and add cast. * exceptions.c (catch_errors): Constify. * exceptions.h (catch_errors): Constify. * expprint.c (print_subexp_standard, op_string, op_name) (op_name_standard, dump_raw_expression, dump_raw_expression): * expression.h (op_name, op_string, dump_raw_expression): Constify. * f-exp.y (yyerror): Constify. (struct token::oper): Constify. (struct f77_boolean_val::name): Constify. * f-lang.c (f_word_break_characters): Constify. * f-lang.h (f_yyerror): Constify. * fork-child.c (fork_inferior): Add cast. * frv-tdep.c (struct gdbarch_tdep::register_names): Constify. (new_variant): Constify. * gdbarch.sh (pstring_ptr, pstring_list): Constify. * gdbarch.c: Regenerate. * gdbcore.h (set_gnutarget): Constify. * go-exp.y (yyerror): Constify. (token::oper): Constify. * go-lang.h (go_yyerror): Constify. * go32-nat.c (go32_sysinfo): Constify. * guile/scm-breakpoint.c (gdbscm_breakpoint_expression): Constify. * guile/scm-cmd.c (cmdscm_function): Constify. * guile/scm-param.c (pascm_param_value): Constify. * h8300-tdep.c (h8300_register_name, h8300s_register_name) (h8300sx_register_name): Constify. * hppa-tdep.c (hppa32_register_name, hppa64_register_name): Constify. * ia64-tdep.c (ia64_register_names): Constify. * infcmd.c (construct_inferior_arguments): Constify. (path_command, attach_post_wait): Constify. * language.c (show_range_command, show_case_command) (unk_lang_error): Constify. * language.h (language_defn::la_error) (language_defn::la_name_of_this): Constify. * linespec.c (decode_line_2): Constify. * linux-thread-db.c (thread_db_err_str): Constify. * lm32-tdep.c (lm32_register_name): Constify. * m2-exp.y (yyerror): Constify. * m2-lang.h (m2_yyerror): Constify. * m32r-tdep.c (m32r_register_names): Constify and make static. * m68hc11-tdep.c (m68hc11_register_names): Constify. * m88k-tdep.c (m88k_register_name): Constify. * macroexp.c (appendmem): Constify. * mdebugread.c (fdr_name, add_data_symbol, parse_type) (upgrade_type, parse_external, parse_partial_symbols) (mdebug_next_symbol_text, cross_ref, mylookup_symbol, new_psymtab) (new_symbol): Constify. * memattr.c (mem_info_command): Constify. * mep-tdep.c (register_name_from_keyword): Constify. * mi/mi-cmd-env.c (mi_cmd_env_path, _initialize_mi_cmd_env): Constify. * mi/mi-cmd-stack.c (list_args_or_locals): Constify. * mi/mi-cmd-var.c (mi_cmd_var_show_attributes): Constify. * mi/mi-main.c (captured_mi_execute_command): Constify and add cast. (mi_execute_async_cli_command): Constify. * mips-tdep.c (mips_register_name): Constify. * mn10300-tdep.c (register_name, mn10300_generic_register_name) (am33_register_name, am33_2_register_name) * moxie-tdep.c (moxie_register_names): Constify. * nat/linux-osdata.c (osdata_type): Constify fields. * nto-tdep.c (nto_parse_redirection): Constify. * objc-lang.c (lookup_struct_typedef, lookup_objc_class) (lookup_child_selector): Constify. (objc_methcall::name): Constify. * objc-lang.h (lookup_objc_class, lookup_child_selector) (lookup_struct_typedef): Constify. * objfiles.c (pc_in_section): Constify. * objfiles.h (pc_in_section): Constify. * p-exp.y (struct token::oper): Constify. (yyerror): Constify. * p-lang.h (pascal_yyerror): Constify. * parser-defs.h (op_name_standard): Constify. (op_print::string): Constify. (exp_descriptor::op_name): Constify. * printcmd.c (print_address_symbolic): Constify. * psymtab.c (print_partial_symbols): Constify. * python/py-breakpoint.c (stop_func): Constify. (bppy_get_expression): Constify. * python/py-cmd.c (cmdpy_completer::name): Constify. (cmdpy_function): Constify. * python/py-event.c (evpy_add_attribute) (gdbpy_initialize_event_generic): Constify. * python/py-event.h (evpy_add_attribute) (gdbpy_initialize_event_generic): Constify. * python/py-evts.c (add_new_registry): Constify. * python/py-finishbreakpoint.c (outofscope_func): Constify. * python/py-framefilter.c (get_py_iter_from_func): Constify. * python/py-inferior.c (get_buffer): Add cast. * python/py-param.c (parm_constant::name): Constify. * python/py-unwind.c (fprint_frame_id): Constify. * python/python.c (gdbpy_parameter_value): Constify. * remote-fileio.c (remote_fio_func_map): Make 'name' const. * remote.c (memory_packet_config::name): Constify. (show_packet_config_cmd, remote_write_bytes) (remote_buffer_add_string): * reverse.c (exec_reverse_once): Constify. * rs6000-tdep.c (variant::name, variant::description): Constify. * rust-exp.y (rustyyerror): Constify. * rust-lang.c (rust_op_name): Constify. * rust-lang.h (rustyyerror): Constify. * serial.h (serial_ops::name): Constify. * sh-tdep.c (sh_sh_register_name, sh_sh3_register_name) (sh_sh3e_register_name, sh_sh2e_register_name) (sh_sh2a_register_name, sh_sh2a_nofpu_register_name) (sh_sh_dsp_register_name, sh_sh3_dsp_register_name) (sh_sh4_register_name, sh_sh4_nofpu_register_name) (sh_sh4al_dsp_register_name): Constify. * sh64-tdep.c (sh64_register_name): Constify. * solib-darwin.c (lookup_symbol_from_bfd): Constify. * spu-tdep.c (spu_register_name, info_spu_dma_cmdlist): Constify. * stabsread.c (patch_block_stabs, read_type_number) (ref_map::stabs, ref_add, process_reference) (symbol_reference_defined, define_symbol, define_symbol) (error_type, read_type, read_member_functions, read_cpp_abbrev) (read_one_struct_field, read_struct_fields, read_baseclasses) (read_tilde_fields, read_struct_type, read_array_type) (read_enum_type, read_sun_builtin_type, read_sun_floating_type) (read_huge_number, read_range_type, read_args, common_block_start) (find_name_end): Constify. * stabsread.h (common_block_start, define_symbol) (process_one_symbol, symbol_reference_defined, ref_add): * symfile.c (get_section_index, add_symbol_file_command): * symfile.h (get_section_index): Constify. * target-descriptions.c (tdesc_type::name): Constify. (tdesc_free_type): Add cast. * target.c (find_default_run_target): (add_deprecated_target_alias, find_default_run_target) (target_announce_detach): Constify. (do_option): Constify. * target.h (add_deprecated_target_alias): Constify. * thread.c (print_thread_info_1): Constify. * top.c (deprecated_readline_begin_hook, command_line_input): Constify. (init_main): Add casts. * top.h (handle_line_of_input): Constify. * tracefile-tfile.c (tfile_write_uploaded_tsv): Constify. * tracepoint.c (tvariables_info_1, trace_status_mi): Constify. (tfind_command): Rename to ... (tfind_command_1): ... this and constify. (tfind_command): New function. (tfind_end_command, tfind_start_command): Adjust. (encode_source_string): Constify. * tracepoint.h (encode_source_string): Constify. * tui/tui-data.c (tui_partial_win_by_name): Constify. * tui/tui-data.h (tui_partial_win_by_name): Constify. * tui/tui-source.c (tui_set_source_content_nil): Constify. * tui/tui-source.h (tui_set_source_content_nil): Constify. * tui/tui-win.c (parse_scrolling_args): Constify. * tui/tui-windata.c (tui_erase_data_content): Constify. * tui/tui-windata.h (tui_erase_data_content): Constify. * tui/tui-winsource.c (tui_erase_source_content): Constify. * tui/tui.c (tui_enable): Add cast. * utils.c (defaulted_query): Constify. (init_page_info): Add cast. (puts_debug, subset_compare): Constify. * utils.h (subset_compare): Constify. * varobj.c (varobj_format_string): Constify. * varobj.h (varobj_format_string): Constify. * vax-tdep.c (vax_register_name): Constify. * windows-nat.c (windows_detach): Constify. * xcoffread.c (process_linenos, xcoff_next_symbol_text): Constify. * xml-support.c (gdb_xml_end_element): Constify. * xml-tdesc.c (tdesc_start_reg): Constify. * xstormy16-tdep.c (xstormy16_register_name): Constify. * xtensa-tdep.c (xtensa_find_register_by_name): Constify. * xtensa-tdep.h (xtensa_register_t::name): Constify. gdb/gdbserver/ChangeLog: 2017-04-05 Pedro Alves <palves@redhat.com> * gdbreplay.c (sync_error): Constify. * linux-x86-low.c (push_opcode): Constify.
2017-04-06 02:21:37 +08:00
arc_print_frame_cache (struct gdbarch *gdbarch, const char *message,
struct arc_frame_cache *cache, int addresses_known)
{
arc_debug_printf ("frame_info %s", message);
arc_debug_printf ("prev_sp = %s", paddress (gdbarch, cache->prev_sp));
arc_debug_printf ("frame_base_reg = %i", cache->frame_base_reg);
arc_debug_printf ("frame_base_offset = %s",
plongest (cache->frame_base_offset));
for (int i = 0; i <= ARC_BLINK_REGNUM; i++)
{
trad-frame cleanups With the new member functions for struct trad_frame_saved_reg, there is no need to invoke some of the set/get functions anymore. This patch removes those and adjusts all callers. Even though the most natural initial state of a saved register value is UNKNOWN, there are target backends relying on the previous initial state of REALREG set to a register's own number. I noticed this in at least a couple targets: aarch64 and riscv. Because of that, I decided to keep the reset function that sets the set of register values to REALREG. I can't exercise all the targets to make sure the initial state change won't break things, hence why it is risky to change the default. Validated with --enable-targets=all on aarch64-linux Ubuntu 18.04/20.04. gdb/ChangeLog 2021-01-19 Luis Machado <luis.machado@linaro.org> * trad-frame.h (trad_frame_saved_reg) <set_value_bytes>: Allocate memory and save data. (trad_frame_set_value, trad_frame_set_realreg, trad_frame_set_addr) (trad_frame_set_unknown, trad_frame_set_value_bytes) (trad_frame_value_p, trad_frame_addr_p, trad_frame_realreg_p) (trad_frame_value_bytes_p): Remove. (trad_frame_reset_saved_regs): Adjust documentation. * trad-frame.c (trad_frame_alloc_saved_regs): Initialize via a constructor and reset the state of the registers. (trad_frame_value_p, trad_frame_addr_p, trad_frame_realreg_p) (trad_frame_value_bytes_p, trad_frame_set_value) (trad_frame_set_realreg, trad_frame_set_addr) (trad_frame_set_unknown, trad_frame_set_value_bytes): Remove. (trad_frame_set_reg_realreg): Update to call member function. (trad_frame_set_reg_addr, trad_frame_set_reg_value_bytes): Likewise. (trad_frame_get_prev_register): Likewise. * aarch64-tdep.c (aarch64_analyze_prologue) (aarch64_analyze_prologue_test, aarch64_make_prologue_cache_1) (aarch64_prologue_prev_register): Update to use member functions. * alpha-mdebug-tdep.c (alpha_mdebug_frame_unwind_cache): Likewise. * alpha-tdep.c (alpha_heuristic_frame_unwind_cache): Likewise. * arc-tdep.c (arc_print_frame_cache, arc_make_frame_cache): Likewise. * arm-tdep.c (arm_make_prologue_cache, arm_exidx_fill_cache) (arm_make_epilogue_frame_cache): Likewise. * avr-tdep.c (avr_frame_unwind_cache) (avr_frame_prev_register): Likewise. * cris-tdep.c (cris_scan_prologue): Likewise. * csky-tdep.c (csky_frame_unwind_cache): Likewise. * frv-tdep.c (frv_analyze_prologue): Likewise. * hppa-tdep.c (hppa_frame_cache, hppa_fallback_frame_cache): Likewise. * lm32-tdep.c (lm32_frame_cache): Likewise. * m32r-tdep.c (m32r_frame_unwind_cache): Likewise. * m68hc11-tdep.c (m68hc11_frame_unwind_cache): Likewise. * mips-tdep.c (set_reg_offset, mips_insn16_frame_cache) (mips_micro_frame_cache, mips_insn32_frame_cache): Likewise. (reset_saved_regs): Adjust to set realreg. * riscv-tdep.c (riscv_scan_prologue, riscv_frame_cache): Adjust to call member functions. * rs6000-tdep.c (rs6000_frame_cache, rs6000_epilogue_frame_cache) * s390-tdep.c (s390_prologue_frame_unwind_cache) (s390_backchain_frame_unwind_cache): Likewise. * score-tdep.c (score7_analyze_prologue) (score3_analyze_prologue, score_make_prologue_cache): Likewise. * sparc-netbsd-tdep.c (sparc32nbsd_sigcontext_saved_regs): Likewise. * sparc-sol2-tdep.c (sparc32_sol2_sigtramp_frame_cache): Likewise. * sparc64-netbsd-tdep.c (sparc64nbsd_sigcontext_saved_regs): Likewise. * sparc64-sol2-tdep.c (sparc64_sol2_sigtramp_frame_cache): Likewise. * tilegx-tdep.c (tilegx_analyze_prologue) (tilegx_frame_cache): Likewise. * v850-tdep.c (v850_frame_cache): Likewise. * vax-tdep.c (vax_frame_cache): Likewise.
2021-01-15 02:43:28 +08:00
if (cache->saved_regs[i].is_addr ())
arc_debug_printf ("saved register %s at %s %s",
gdbarch_register_name (gdbarch, i),
(addresses_known) ? "address" : "offset",
paddress (gdbarch, cache->saved_regs[i].addr ()));
}
}
2016-08-13 01:02:20 +08:00
/* Frame unwinder for normal frames. */
static struct arc_frame_cache *
arc_make_frame_cache (struct frame_info *this_frame)
{
arc_debug_printf ("called");
2016-08-13 01:02:20 +08:00
struct gdbarch *gdbarch = get_frame_arch (this_frame);
CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
CORE_ADDR entrypoint, prologue_end;
if (find_pc_partial_function (block_addr, NULL, &entrypoint, &prologue_end))
{
struct symtab_and_line sal = find_pc_line (entrypoint, 0);
CORE_ADDR prev_pc = get_frame_pc (this_frame);
2016-08-13 01:02:20 +08:00
if (sal.line == 0)
/* No line info so use current PC. */
prologue_end = prev_pc;
else if (sal.end < prologue_end)
/* The next line begins after the function end. */
prologue_end = sal.end;
prologue_end = std::min (prologue_end, prev_pc);
}
else
{
/* If find_pc_partial_function returned nothing then there is no symbol
information at all for this PC. Currently it is assumed in this case
that current PC is entrypoint to function and try to construct the
frame from that. This is, probably, suboptimal, for example ARM
assumes in this case that program is inside the normal frame (with
frame pointer). ARC, perhaps, should try to do the same. */
2016-08-13 01:02:20 +08:00
entrypoint = get_frame_register_unsigned (this_frame,
gdbarch_pc_regnum (gdbarch));
prologue_end = entrypoint + MAX_PROLOGUE_LENGTH;
2016-08-13 01:02:20 +08:00
}
/* Allocate new frame cache instance and space for saved register info.
FRAME_OBSTACK_ZALLOC will initialize fields to zeroes. */
2016-08-13 01:02:20 +08:00
struct arc_frame_cache *cache
= FRAME_OBSTACK_ZALLOC (struct arc_frame_cache);
cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
arc_analyze_prologue (gdbarch, entrypoint, prologue_end, cache);
if (arc_debug)
arc_print_frame_cache (gdbarch, "after prologue", cache, false);
CORE_ADDR unwound_fb = get_frame_register_unsigned (this_frame,
cache->frame_base_reg);
if (unwound_fb == 0)
return cache;
cache->prev_sp = unwound_fb + cache->frame_base_offset;
for (int i = 0; i <= ARC_LAST_CORE_REGNUM; i++)
{
trad-frame cleanups With the new member functions for struct trad_frame_saved_reg, there is no need to invoke some of the set/get functions anymore. This patch removes those and adjusts all callers. Even though the most natural initial state of a saved register value is UNKNOWN, there are target backends relying on the previous initial state of REALREG set to a register's own number. I noticed this in at least a couple targets: aarch64 and riscv. Because of that, I decided to keep the reset function that sets the set of register values to REALREG. I can't exercise all the targets to make sure the initial state change won't break things, hence why it is risky to change the default. Validated with --enable-targets=all on aarch64-linux Ubuntu 18.04/20.04. gdb/ChangeLog 2021-01-19 Luis Machado <luis.machado@linaro.org> * trad-frame.h (trad_frame_saved_reg) <set_value_bytes>: Allocate memory and save data. (trad_frame_set_value, trad_frame_set_realreg, trad_frame_set_addr) (trad_frame_set_unknown, trad_frame_set_value_bytes) (trad_frame_value_p, trad_frame_addr_p, trad_frame_realreg_p) (trad_frame_value_bytes_p): Remove. (trad_frame_reset_saved_regs): Adjust documentation. * trad-frame.c (trad_frame_alloc_saved_regs): Initialize via a constructor and reset the state of the registers. (trad_frame_value_p, trad_frame_addr_p, trad_frame_realreg_p) (trad_frame_value_bytes_p, trad_frame_set_value) (trad_frame_set_realreg, trad_frame_set_addr) (trad_frame_set_unknown, trad_frame_set_value_bytes): Remove. (trad_frame_set_reg_realreg): Update to call member function. (trad_frame_set_reg_addr, trad_frame_set_reg_value_bytes): Likewise. (trad_frame_get_prev_register): Likewise. * aarch64-tdep.c (aarch64_analyze_prologue) (aarch64_analyze_prologue_test, aarch64_make_prologue_cache_1) (aarch64_prologue_prev_register): Update to use member functions. * alpha-mdebug-tdep.c (alpha_mdebug_frame_unwind_cache): Likewise. * alpha-tdep.c (alpha_heuristic_frame_unwind_cache): Likewise. * arc-tdep.c (arc_print_frame_cache, arc_make_frame_cache): Likewise. * arm-tdep.c (arm_make_prologue_cache, arm_exidx_fill_cache) (arm_make_epilogue_frame_cache): Likewise. * avr-tdep.c (avr_frame_unwind_cache) (avr_frame_prev_register): Likewise. * cris-tdep.c (cris_scan_prologue): Likewise. * csky-tdep.c (csky_frame_unwind_cache): Likewise. * frv-tdep.c (frv_analyze_prologue): Likewise. * hppa-tdep.c (hppa_frame_cache, hppa_fallback_frame_cache): Likewise. * lm32-tdep.c (lm32_frame_cache): Likewise. * m32r-tdep.c (m32r_frame_unwind_cache): Likewise. * m68hc11-tdep.c (m68hc11_frame_unwind_cache): Likewise. * mips-tdep.c (set_reg_offset, mips_insn16_frame_cache) (mips_micro_frame_cache, mips_insn32_frame_cache): Likewise. (reset_saved_regs): Adjust to set realreg. * riscv-tdep.c (riscv_scan_prologue, riscv_frame_cache): Adjust to call member functions. * rs6000-tdep.c (rs6000_frame_cache, rs6000_epilogue_frame_cache) * s390-tdep.c (s390_prologue_frame_unwind_cache) (s390_backchain_frame_unwind_cache): Likewise. * score-tdep.c (score7_analyze_prologue) (score3_analyze_prologue, score_make_prologue_cache): Likewise. * sparc-netbsd-tdep.c (sparc32nbsd_sigcontext_saved_regs): Likewise. * sparc-sol2-tdep.c (sparc32_sol2_sigtramp_frame_cache): Likewise. * sparc64-netbsd-tdep.c (sparc64nbsd_sigcontext_saved_regs): Likewise. * sparc64-sol2-tdep.c (sparc64_sol2_sigtramp_frame_cache): Likewise. * tilegx-tdep.c (tilegx_analyze_prologue) (tilegx_frame_cache): Likewise. * v850-tdep.c (v850_frame_cache): Likewise. * vax-tdep.c (vax_frame_cache): Likewise.
2021-01-15 02:43:28 +08:00
if (cache->saved_regs[i].is_addr ())
Refactor struct trad_frame_saved_regs The following patch drops the overloading going on with the trad_frame_saved_reg struct and defines a new struct with a KIND enum and a union of different fields. The new struct looks like this: struct trad_frame_saved_reg { setters/getters ... private: trad_frame_saved_reg_kind m_kind; union { LONGEST value; int realreg; LONGEST addr; const gdb_byte *value_bytes; } m_reg; }; And the enums look like this: /* Describes the kind of encoding a stored register has. */ enum class trad_frame_saved_reg_kind { /* Register value is unknown. */ UNKNOWN = 0, /* Register value is a constant. */ VALUE, /* Register value is in another register. */ REALREG, /* Register value is at an address. */ ADDR, /* Register value is a sequence of bytes. */ VALUE_BYTES }; The patch also adds setters/getters and updates all the users of the old struct. It is worth mentioning that due to the previous overloaded nature of the fields, some tdep files like to store negative offsets and indexes in the ADDR field, so I kept the ADDR as LONGEST instead of CORE_ADDR. Those cases may be better supported by a new enum entry. I have not addressed those cases in this patch to prevent unwanted breakage, given I have no way to test some of the targets. But it would be nice to clean those up eventually. The change to frame-unwind.* is to constify the parameter being passed to the unwinding functions, given we now accept a "const gdb_byte *" for value bytes. Tested on aarch64-linux/Ubuntu 20.04/18.04 and by building GDB with --enable-targets=all. gdb/ChangeLog: 2021-01-04 Luis Machado <luis.machado@linaro.org> Update all users of trad_frame_saved_reg to use the new member functions. Remote all struct keywords from declarations of trad_frame_saved_reg types, except on forward declarations. * aarch64-tdep.c: Update. * alpha-mdebug-tdep.c: Update. * alpha-tdep.c: Update. * arc-tdep.c: Update. * arm-tdep.c: Update. * avr-tdep.c: Update. * cris-tdep.c: Update. * csky-tdep.c: Update. * frv-tdep.c: Update. * hppa-linux-tdep.c: Update. * hppa-tdep.c: Update. * hppa-tdep.h: Update. * lm32-tdep.c: Update. * m32r-linux-tdep.c: Update. * m32r-tdep.c: Update. * m68hc11-tdep.c: Update. * mips-tdep.c: Update. * moxie-tdep.c: Update. * riscv-tdep.c: Update. * rs6000-tdep.c: Update. * s390-linux-tdep.c: Update. * s390-tdep.c: Update. * score-tdep.c: Update. * sparc-netbsd-tdep.c: Update. * sparc-sol2-tdep.c: Update. * sparc64-fbsd-tdep.c: Update. * sparc64-netbsd-tdep.c: Update. * sparc64-obsd-tdep.c: Update. * sparc64-sol2-tdep.c: Update. * tilegx-tdep.c: Update. * v850-tdep.c: Update. * vax-tdep.c: Update. * frame-unwind.c (frame_unwind_got_bytes): Make parameter const. * frame-unwind.h (frame_unwind_got_bytes): Likewise. * trad-frame.c: Update. Remove TF_REG_* enum. (trad_frame_alloc_saved_regs): Add a static assertion to check for a trivially-constructible struct. (trad_frame_reset_saved_regs): Adjust to use member function. (trad_frame_value_p): Likewise. (trad_frame_addr_p): Likewise. (trad_frame_realreg_p): Likewise. (trad_frame_value_bytes_p): Likewise. (trad_frame_set_value): Likewise. (trad_frame_set_realreg): Likewise. (trad_frame_set_addr): Likewise. (trad_frame_set_unknown): Likewise. (trad_frame_set_value_bytes): Likewise. (trad_frame_get_prev_register): Likewise. * trad-frame.h: Update. (trad_frame_saved_reg_kind): New enum. (struct trad_frame_saved_reg) <addr, realreg, data>: Remove. <m_kind, m_reg>: New member fields. <set_value, set_realreg, set_addr, set_unknown, set_value_bytes> <kind, value, realreg, addr, value_bytes, is_value, is_realreg> <is_addr, is_unknown, is_value_bytes>: New member functions.
2020-12-23 04:45:21 +08:00
cache->saved_regs[i].set_addr (cache->saved_regs[i].addr ()
+ cache->prev_sp);
}
if (arc_debug)
arc_print_frame_cache (gdbarch, "after previous SP found", cache, true);
2016-08-13 01:02:20 +08:00
return cache;
}
/* Implement the "this_id" frame_unwind method. */
static void
arc_frame_this_id (struct frame_info *this_frame, void **this_cache,
struct frame_id *this_id)
{
arc_debug_printf ("called");
2016-08-13 01:02:20 +08:00
struct gdbarch *gdbarch = get_frame_arch (this_frame);
if (*this_cache == NULL)
*this_cache = arc_make_frame_cache (this_frame);
struct arc_frame_cache *cache = (struct arc_frame_cache *) (*this_cache);
CORE_ADDR stack_addr = cache->prev_sp;
/* There are 4 possible situation which decide how frame_id->code_addr is
evaluated:
1) Function is compiled with option -g. Then frame_id will be created
in dwarf_* function and not in this function. NB: even if target
binary is compiled with -g, some std functions like __start and _init
are not, so they still will follow one of the following choices.
2) Function is compiled without -g and binary hasn't been stripped in
any way. In this case GDB still has enough information to evaluate
frame code_addr properly. This case is covered by call to
get_frame_func ().
3) Binary has been striped with option -g (strip debug symbols). In
this case there is still enough symbols for get_frame_func () to work
properly, so this case is also covered by it.
4) Binary has been striped with option -s (strip all symbols). In this
case GDB cannot get function start address properly, so we return current
PC value instead.
*/
CORE_ADDR code_addr = get_frame_func (this_frame);
if (code_addr == 0)
code_addr = get_frame_register_unsigned (this_frame,
gdbarch_pc_regnum (gdbarch));
*this_id = frame_id_build (stack_addr, code_addr);
}
/* Implement the "prev_register" frame_unwind method. */
static struct value *
arc_frame_prev_register (struct frame_info *this_frame,
void **this_cache, int regnum)
{
if (*this_cache == NULL)
*this_cache = arc_make_frame_cache (this_frame);
struct arc_frame_cache *cache = (struct arc_frame_cache *) (*this_cache);
struct gdbarch *gdbarch = get_frame_arch (this_frame);
/* If we are asked to unwind the PC, then we need to return BLINK instead:
the saved value of PC points into this frame's function's prologue, not
the next frame's function's resume location. */
if (regnum == gdbarch_pc_regnum (gdbarch))
regnum = ARC_BLINK_REGNUM;
/* SP is a special case - we should return prev_sp, because
trad_frame_get_prev_register will return _current_ SP value.
Alternatively we could have stored cache->prev_sp in the cache->saved
regs, but here we follow the lead of AArch64, ARM and Xtensa and will
leave that logic in this function, instead of prologue analyzers. That I
think is a bit more clear as `saved_regs` should contain saved regs, not
computable.
Because value has been computed, "got_constant" should be used, so that
returned value will be a "not_lval" - immutable. */
if (regnum == gdbarch_sp_regnum (gdbarch))
return frame_unwind_got_constant (this_frame, regnum, cache->prev_sp);
return trad_frame_get_prev_register (this_frame, cache->saved_regs, regnum);
}
/* Implement the "init_reg" dwarf2_frame method. */
static void
arc_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
struct dwarf2_frame_state_reg *reg,
struct frame_info *info)
{
if (regnum == gdbarch_pc_regnum (gdbarch))
/* The return address column. */
reg->how = DWARF2_FRAME_REG_RA;
else if (regnum == gdbarch_sp_regnum (gdbarch))
/* The call frame address. */
reg->how = DWARF2_FRAME_REG_CFA;
}
/* Signal trampoline frame unwinder. Allows frame unwinding to happen
from within signal handlers. */
static struct arc_frame_cache *
arc_make_sigtramp_frame_cache (struct frame_info *this_frame)
{
arc_debug_printf ("called");
gdbarch *arch = get_frame_arch (this_frame);
gdb: move the type cast into gdbarch_tdep I built GDB for all targets on a x86-64/GNU-Linux system, and then (accidentally) passed GDB a RISC-V binary, and asked GDB to "run" the binary on the native target. I got this error: (gdb) show architecture The target architecture is set to "auto" (currently "i386"). (gdb) file /tmp/hello.rv32.exe Reading symbols from /tmp/hello.rv32.exe... (gdb) show architecture The target architecture is set to "auto" (currently "riscv:rv32"). (gdb) run Starting program: /tmp/hello.rv32.exe ../../src/gdb/i387-tdep.c:596: internal-error: i387_supply_fxsave: Assertion `tdep->st0_regnum >= I386_ST0_REGNUM' failed. What's going on here is this; initially the architecture is i386, this is based on the default architecture, which is set based on the native target. After loading the RISC-V executable the architecture of the current inferior is updated based on the architecture of the executable. When we "run", GDB does a fork & exec, with the inferior being controlled through ptrace. GDB sees an initial stop from the inferior as soon as the inferior comes to life. In response to this stop GDB ends up calling save_stop_reason (linux-nat.c), which ends up trying to read register from the inferior, to do this we end up calling target_ops::fetch_registers, which, for the x86-64 native target, calls amd64_linux_nat_target::fetch_registers. After this I eventually end up in i387_supply_fxsave, different x86 based targets will end in different functions to fetch registers, but it doesn't really matter which function we end up in, the problem is this line, which is repeated in many places: i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (arch); The problem here is that the ARCH in this line comes from the current inferior, which, as we discussed above, will be a RISC-V gdbarch, the tdep field will actually be of type riscv_gdbarch_tdep, not i386_gdbarch_tdep. After this cast we are relying on undefined behaviour, in my case I happen to trigger an assert, but this might not always be the case. The thing I tried that exposed this problem was of course, trying to start an executable of the wrong architecture on a native target. I don't think that the correct solution for this problem is to detect, at the point of cast, that the gdbarch_tdep object is of the wrong type, but, I did wonder, is there a way that we could protect ourselves from incorrectly casting the gdbarch_tdep object? I think that there is something we can do here, and this commit is the first step in that direction, though no actual check is added by this commit. This commit can be split into two parts: (1) In gdbarch.h and arch-utils.c. In these files I have modified gdbarch_tdep (the function) so that it now takes a template argument, like this: template<typename TDepType> static inline TDepType * gdbarch_tdep (struct gdbarch *gdbarch) { struct gdbarch_tdep *tdep = gdbarch_tdep_1 (gdbarch); return static_cast<TDepType *> (tdep); } After this change we are no better protected, but the cast is now done within the gdbarch_tdep function rather than at the call sites, this leads to the second, much larger change in this commit, (2) Everywhere gdbarch_tdep is called, we make changes like this: - i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (arch); + i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (arch); There should be no functional change after this commit. In the next commit I will build on this change to add an assertion in gdbarch_tdep that checks we are casting to the correct type.
2022-05-19 20:20:17 +08:00
arc_gdbarch_tdep *tdep = gdbarch_tdep<arc_gdbarch_tdep> (arch);
/* Allocate new frame cache instance and space for saved register info. */
struct arc_frame_cache *cache = FRAME_OBSTACK_ZALLOC (struct arc_frame_cache);
cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
/* Get the stack pointer and use it as the frame base. */
cache->prev_sp = arc_frame_base_address (this_frame, NULL);
/* If the ARC-private target-dependent info doesn't have a table of
offsets of saved register contents within an OS signal context
structure, then there is nothing to analyze. */
if (tdep->sc_reg_offset == NULL)
return cache;
/* Find the address of the sigcontext structure. */
CORE_ADDR addr = tdep->sigcontext_addr (this_frame);
/* For each register, if its contents have been saved within the
sigcontext structure, determine the address of those contents. */
gdb_assert (tdep->sc_num_regs <= (ARC_LAST_REGNUM + 1));
for (int i = 0; i < tdep->sc_num_regs; i++)
{
if (tdep->sc_reg_offset[i] != ARC_OFFSET_NO_REGISTER)
Refactor struct trad_frame_saved_regs The following patch drops the overloading going on with the trad_frame_saved_reg struct and defines a new struct with a KIND enum and a union of different fields. The new struct looks like this: struct trad_frame_saved_reg { setters/getters ... private: trad_frame_saved_reg_kind m_kind; union { LONGEST value; int realreg; LONGEST addr; const gdb_byte *value_bytes; } m_reg; }; And the enums look like this: /* Describes the kind of encoding a stored register has. */ enum class trad_frame_saved_reg_kind { /* Register value is unknown. */ UNKNOWN = 0, /* Register value is a constant. */ VALUE, /* Register value is in another register. */ REALREG, /* Register value is at an address. */ ADDR, /* Register value is a sequence of bytes. */ VALUE_BYTES }; The patch also adds setters/getters and updates all the users of the old struct. It is worth mentioning that due to the previous overloaded nature of the fields, some tdep files like to store negative offsets and indexes in the ADDR field, so I kept the ADDR as LONGEST instead of CORE_ADDR. Those cases may be better supported by a new enum entry. I have not addressed those cases in this patch to prevent unwanted breakage, given I have no way to test some of the targets. But it would be nice to clean those up eventually. The change to frame-unwind.* is to constify the parameter being passed to the unwinding functions, given we now accept a "const gdb_byte *" for value bytes. Tested on aarch64-linux/Ubuntu 20.04/18.04 and by building GDB with --enable-targets=all. gdb/ChangeLog: 2021-01-04 Luis Machado <luis.machado@linaro.org> Update all users of trad_frame_saved_reg to use the new member functions. Remote all struct keywords from declarations of trad_frame_saved_reg types, except on forward declarations. * aarch64-tdep.c: Update. * alpha-mdebug-tdep.c: Update. * alpha-tdep.c: Update. * arc-tdep.c: Update. * arm-tdep.c: Update. * avr-tdep.c: Update. * cris-tdep.c: Update. * csky-tdep.c: Update. * frv-tdep.c: Update. * hppa-linux-tdep.c: Update. * hppa-tdep.c: Update. * hppa-tdep.h: Update. * lm32-tdep.c: Update. * m32r-linux-tdep.c: Update. * m32r-tdep.c: Update. * m68hc11-tdep.c: Update. * mips-tdep.c: Update. * moxie-tdep.c: Update. * riscv-tdep.c: Update. * rs6000-tdep.c: Update. * s390-linux-tdep.c: Update. * s390-tdep.c: Update. * score-tdep.c: Update. * sparc-netbsd-tdep.c: Update. * sparc-sol2-tdep.c: Update. * sparc64-fbsd-tdep.c: Update. * sparc64-netbsd-tdep.c: Update. * sparc64-obsd-tdep.c: Update. * sparc64-sol2-tdep.c: Update. * tilegx-tdep.c: Update. * v850-tdep.c: Update. * vax-tdep.c: Update. * frame-unwind.c (frame_unwind_got_bytes): Make parameter const. * frame-unwind.h (frame_unwind_got_bytes): Likewise. * trad-frame.c: Update. Remove TF_REG_* enum. (trad_frame_alloc_saved_regs): Add a static assertion to check for a trivially-constructible struct. (trad_frame_reset_saved_regs): Adjust to use member function. (trad_frame_value_p): Likewise. (trad_frame_addr_p): Likewise. (trad_frame_realreg_p): Likewise. (trad_frame_value_bytes_p): Likewise. (trad_frame_set_value): Likewise. (trad_frame_set_realreg): Likewise. (trad_frame_set_addr): Likewise. (trad_frame_set_unknown): Likewise. (trad_frame_set_value_bytes): Likewise. (trad_frame_get_prev_register): Likewise. * trad-frame.h: Update. (trad_frame_saved_reg_kind): New enum. (struct trad_frame_saved_reg) <addr, realreg, data>: Remove. <m_kind, m_reg>: New member fields. <set_value, set_realreg, set_addr, set_unknown, set_value_bytes> <kind, value, realreg, addr, value_bytes, is_value, is_realreg> <is_addr, is_unknown, is_value_bytes>: New member functions.
2020-12-23 04:45:21 +08:00
cache->saved_regs[i].set_addr (addr + tdep->sc_reg_offset[i]);
}
return cache;
}
/* Implement the "this_id" frame_unwind method for signal trampoline
frames. */
static void
arc_sigtramp_frame_this_id (struct frame_info *this_frame,
void **this_cache, struct frame_id *this_id)
{
arc_debug_printf ("called");
if (*this_cache == NULL)
*this_cache = arc_make_sigtramp_frame_cache (this_frame);
struct gdbarch *gdbarch = get_frame_arch (this_frame);
struct arc_frame_cache *cache = (struct arc_frame_cache *) *this_cache;
CORE_ADDR stack_addr = cache->prev_sp;
CORE_ADDR code_addr
= get_frame_register_unsigned (this_frame, gdbarch_pc_regnum (gdbarch));
*this_id = frame_id_build (stack_addr, code_addr);
}
/* Get a register from a signal handler frame. */
static struct value *
arc_sigtramp_frame_prev_register (struct frame_info *this_frame,
void **this_cache, int regnum)
{
arc_debug_printf ("regnum = %d", regnum);
/* Make sure we've initialized the cache. */
if (*this_cache == NULL)
*this_cache = arc_make_sigtramp_frame_cache (this_frame);
struct arc_frame_cache *cache = (struct arc_frame_cache *) *this_cache;
return trad_frame_get_prev_register (this_frame, cache->saved_regs, regnum);
}
/* Frame sniffer for signal handler frame. Only recognize a frame if we
have a sigcontext_addr handler in the target dependency. */
static int
arc_sigtramp_frame_sniffer (const struct frame_unwind *self,
struct frame_info *this_frame,
void **this_cache)
{
arc_debug_printf ("called");
gdbarch *arch = get_frame_arch (this_frame);
gdb: move the type cast into gdbarch_tdep I built GDB for all targets on a x86-64/GNU-Linux system, and then (accidentally) passed GDB a RISC-V binary, and asked GDB to "run" the binary on the native target. I got this error: (gdb) show architecture The target architecture is set to "auto" (currently "i386"). (gdb) file /tmp/hello.rv32.exe Reading symbols from /tmp/hello.rv32.exe... (gdb) show architecture The target architecture is set to "auto" (currently "riscv:rv32"). (gdb) run Starting program: /tmp/hello.rv32.exe ../../src/gdb/i387-tdep.c:596: internal-error: i387_supply_fxsave: Assertion `tdep->st0_regnum >= I386_ST0_REGNUM' failed. What's going on here is this; initially the architecture is i386, this is based on the default architecture, which is set based on the native target. After loading the RISC-V executable the architecture of the current inferior is updated based on the architecture of the executable. When we "run", GDB does a fork & exec, with the inferior being controlled through ptrace. GDB sees an initial stop from the inferior as soon as the inferior comes to life. In response to this stop GDB ends up calling save_stop_reason (linux-nat.c), which ends up trying to read register from the inferior, to do this we end up calling target_ops::fetch_registers, which, for the x86-64 native target, calls amd64_linux_nat_target::fetch_registers. After this I eventually end up in i387_supply_fxsave, different x86 based targets will end in different functions to fetch registers, but it doesn't really matter which function we end up in, the problem is this line, which is repeated in many places: i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (arch); The problem here is that the ARCH in this line comes from the current inferior, which, as we discussed above, will be a RISC-V gdbarch, the tdep field will actually be of type riscv_gdbarch_tdep, not i386_gdbarch_tdep. After this cast we are relying on undefined behaviour, in my case I happen to trigger an assert, but this might not always be the case. The thing I tried that exposed this problem was of course, trying to start an executable of the wrong architecture on a native target. I don't think that the correct solution for this problem is to detect, at the point of cast, that the gdbarch_tdep object is of the wrong type, but, I did wonder, is there a way that we could protect ourselves from incorrectly casting the gdbarch_tdep object? I think that there is something we can do here, and this commit is the first step in that direction, though no actual check is added by this commit. This commit can be split into two parts: (1) In gdbarch.h and arch-utils.c. In these files I have modified gdbarch_tdep (the function) so that it now takes a template argument, like this: template<typename TDepType> static inline TDepType * gdbarch_tdep (struct gdbarch *gdbarch) { struct gdbarch_tdep *tdep = gdbarch_tdep_1 (gdbarch); return static_cast<TDepType *> (tdep); } After this change we are no better protected, but the cast is now done within the gdbarch_tdep function rather than at the call sites, this leads to the second, much larger change in this commit, (2) Everywhere gdbarch_tdep is called, we make changes like this: - i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (arch); + i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (arch); There should be no functional change after this commit. In the next commit I will build on this change to add an assertion in gdbarch_tdep that checks we are casting to the correct type.
2022-05-19 20:20:17 +08:00
arc_gdbarch_tdep *tdep = gdbarch_tdep<arc_gdbarch_tdep> (arch);
/* If we have a sigcontext_addr handler, then just return 1 (same as the
"default_frame_sniffer ()"). */
return (tdep->sigcontext_addr != NULL && tdep->is_sigtramp != NULL
&& tdep->is_sigtramp (this_frame));
}
2016-08-13 01:02:20 +08:00
/* Structure defining the ARC ordinary frame unwind functions. Since we are
the fallback unwinder, we use the default frame sniffer, which always
accepts the frame. */
static const struct frame_unwind arc_frame_unwind = {
gdb: add names to unwinders, add debug messages when looking for unwinder I wrote this while debugging a problem where the expected unwinder for a frame wasn't used. It adds messages to show which unwinders are considered for a frame, why they are not selected (if an exception is thrown), and finally which unwinder is selected in the end. To be able to show a meaningful, human-readable name for the unwinders, add a "name" field to struct frame_unwind, and update all instances to include a name. Here's an example of the output: [frame] frame_unwind_find_by_frame: this_frame=0 [frame] frame_unwind_try_unwinder: trying unwinder "dummy" [frame] frame_unwind_try_unwinder: no [frame] frame_unwind_try_unwinder: trying unwinder "dwarf2 tailcall" [frame] frame_unwind_try_unwinder: no [frame] frame_unwind_try_unwinder: trying unwinder "inline" [frame] frame_unwind_try_unwinder: no [frame] frame_unwind_try_unwinder: trying unwinder "jit" [frame] frame_unwind_try_unwinder: no [frame] frame_unwind_try_unwinder: trying unwinder "python" [frame] frame_unwind_try_unwinder: no [frame] frame_unwind_try_unwinder: trying unwinder "amd64 epilogue" [frame] frame_unwind_try_unwinder: no [frame] frame_unwind_try_unwinder: trying unwinder "i386 epilogue" [frame] frame_unwind_try_unwinder: no [frame] frame_unwind_try_unwinder: trying unwinder "dwarf2" [frame] frame_unwind_try_unwinder: yes gdb/ChangeLog: * frame-unwind.h (struct frame_unwind) <name>: New. Update instances everywhere to include this field. * frame-unwind.c (frame_unwind_try_unwinder, frame_unwind_find_by_frame): Add debug messages. Change-Id: I813f17777422425f0d08b22499817b23922e8ddb
2021-06-30 00:05:03 +08:00
"arc prologue",
2016-08-13 01:02:20 +08:00
NORMAL_FRAME,
default_frame_unwind_stop_reason,
arc_frame_this_id,
arc_frame_prev_register,
NULL,
default_frame_sniffer,
NULL,
NULL
};
/* Structure defining the ARC signal frame unwind functions. Custom
sniffer is used, because this frame must be accepted only in the right
context. */
static const struct frame_unwind arc_sigtramp_frame_unwind = {
gdb: add names to unwinders, add debug messages when looking for unwinder I wrote this while debugging a problem where the expected unwinder for a frame wasn't used. It adds messages to show which unwinders are considered for a frame, why they are not selected (if an exception is thrown), and finally which unwinder is selected in the end. To be able to show a meaningful, human-readable name for the unwinders, add a "name" field to struct frame_unwind, and update all instances to include a name. Here's an example of the output: [frame] frame_unwind_find_by_frame: this_frame=0 [frame] frame_unwind_try_unwinder: trying unwinder "dummy" [frame] frame_unwind_try_unwinder: no [frame] frame_unwind_try_unwinder: trying unwinder "dwarf2 tailcall" [frame] frame_unwind_try_unwinder: no [frame] frame_unwind_try_unwinder: trying unwinder "inline" [frame] frame_unwind_try_unwinder: no [frame] frame_unwind_try_unwinder: trying unwinder "jit" [frame] frame_unwind_try_unwinder: no [frame] frame_unwind_try_unwinder: trying unwinder "python" [frame] frame_unwind_try_unwinder: no [frame] frame_unwind_try_unwinder: trying unwinder "amd64 epilogue" [frame] frame_unwind_try_unwinder: no [frame] frame_unwind_try_unwinder: trying unwinder "i386 epilogue" [frame] frame_unwind_try_unwinder: no [frame] frame_unwind_try_unwinder: trying unwinder "dwarf2" [frame] frame_unwind_try_unwinder: yes gdb/ChangeLog: * frame-unwind.h (struct frame_unwind) <name>: New. Update instances everywhere to include this field. * frame-unwind.c (frame_unwind_try_unwinder, frame_unwind_find_by_frame): Add debug messages. Change-Id: I813f17777422425f0d08b22499817b23922e8ddb
2021-06-30 00:05:03 +08:00
"arc sigtramp",
SIGTRAMP_FRAME,
default_frame_unwind_stop_reason,
arc_sigtramp_frame_this_id,
arc_sigtramp_frame_prev_register,
NULL,
arc_sigtramp_frame_sniffer,
NULL,
NULL
};
2016-08-13 01:02:20 +08:00
static const struct frame_base arc_normal_base = {
&arc_frame_unwind,
arc_frame_base_address,
arc_frame_base_address,
arc_frame_base_address
};
arc: Add ARCv2 XML target along with refactoring A few changes have been made to make the register support simpler, more flexible and extendible. The trigger for most of these changes are the remarks [1] made earlier for v2 of this patch. The noticeable improvements are: - The arc XML target features are placed under gdb/features/arc - There are two cores (based on ISA) and one auxiliary feature: v1-core: ARC600, ARC601, ARC700 v2-core: ARC EM, ARC HS aux: common in both - The XML target features represent a minimalistic sane set of registers irrespective of application (baremetal or linux). - A concept of "feature" class has been introduced in the code. The "feature" object is constructed from BFD and GDBARCH data. It contains necessary information (ISA and register size) to determine which XML target feature to use. - A new structure (ARC_REGISTER_FEATURE) is added that allows providing index, names, and the necessity of registers. This simplifies the sanity checks and future extendibility. - Documnetation has been updated to reflect ARC features better. - Although the feature names has changed, there still exists backward compatibility with older names through find_obsolete_[core,aux]_names() functions. The last two points were inspired from RiscV port. [1] https://sourceware.org/pipermail/gdb-patches/2020-May/168511.html gdb/ChangeLog: * arch/arc.h (arc_gdbarch_features): New class to stir the selection of target XML. (arc_create_target_description): Use FEATURES to choose XML target. (arc_lookup_target_description): Use arc_create_target_description to create _new_ target descriptions or return the already created ones if the FEATURES is the same. * arch/arc.c: Implementation of prototypes described above. * gdb/arc-tdep.h (arc_regnum enum): Add more registers. (arc_gdbarch_features_init): Initialize the FEATURES struct. * arc-tdep.c (*_feature_name): Make feature names consistent. (arc_register_feature): A new struct to hold information about registers of a particular target/feature. (arc_check_tdesc_feature): Check if XML provides registers in compliance with ARC_REGISTER_FEATURE structs. (arc_update_acc_reg_names): Add aliases for r58 and r59. (determine_*_reg_feature_set): Which feature name to look for. (arc_gdbarch_features_init): Given MACH and ABFD, initialize FEATURES. (mach_type_to_arc_isa): Convert from a set of binutils machine types to expected ISA enums to be used in arc_gdbarch_features structs. * features/Makefile (FEATURE_XMLFILES): Add new files. * gdb/features/arc/v1-aux.c: New file. * gdb/features/arc/v1-aux.xml: Likewise. * gdb/features/arc/v1-core.c: Likewise. * gdb/features/arc/v1-core.xml: Likewise. * gdb/features/arc/v2-aux.c: Likewise. * gdb/features/arc/v2-aux.xml: Likewise. * gdb/features/arc/v2-core.c: Likewise. * gdb/features/arc/v2-core.xml: Likewise. * NEWS (Changes since GDB 9): Announce obsolence of old feature names. gdb/doc/ChangeLog: * gdb.texinfo (Synopsys ARC): Update the documentation for ARC Features. gdb/testsuite/ChangeLog: * gdb.arch/arc-tdesc-cpu.xml: Use new feature names.
2020-07-09 23:43:13 +08:00
static enum arc_isa
mach_type_to_arc_isa (const unsigned long mach)
2016-08-13 01:02:20 +08:00
{
arc: Add ARCv2 XML target along with refactoring A few changes have been made to make the register support simpler, more flexible and extendible. The trigger for most of these changes are the remarks [1] made earlier for v2 of this patch. The noticeable improvements are: - The arc XML target features are placed under gdb/features/arc - There are two cores (based on ISA) and one auxiliary feature: v1-core: ARC600, ARC601, ARC700 v2-core: ARC EM, ARC HS aux: common in both - The XML target features represent a minimalistic sane set of registers irrespective of application (baremetal or linux). - A concept of "feature" class has been introduced in the code. The "feature" object is constructed from BFD and GDBARCH data. It contains necessary information (ISA and register size) to determine which XML target feature to use. - A new structure (ARC_REGISTER_FEATURE) is added that allows providing index, names, and the necessity of registers. This simplifies the sanity checks and future extendibility. - Documnetation has been updated to reflect ARC features better. - Although the feature names has changed, there still exists backward compatibility with older names through find_obsolete_[core,aux]_names() functions. The last two points were inspired from RiscV port. [1] https://sourceware.org/pipermail/gdb-patches/2020-May/168511.html gdb/ChangeLog: * arch/arc.h (arc_gdbarch_features): New class to stir the selection of target XML. (arc_create_target_description): Use FEATURES to choose XML target. (arc_lookup_target_description): Use arc_create_target_description to create _new_ target descriptions or return the already created ones if the FEATURES is the same. * arch/arc.c: Implementation of prototypes described above. * gdb/arc-tdep.h (arc_regnum enum): Add more registers. (arc_gdbarch_features_init): Initialize the FEATURES struct. * arc-tdep.c (*_feature_name): Make feature names consistent. (arc_register_feature): A new struct to hold information about registers of a particular target/feature. (arc_check_tdesc_feature): Check if XML provides registers in compliance with ARC_REGISTER_FEATURE structs. (arc_update_acc_reg_names): Add aliases for r58 and r59. (determine_*_reg_feature_set): Which feature name to look for. (arc_gdbarch_features_init): Given MACH and ABFD, initialize FEATURES. (mach_type_to_arc_isa): Convert from a set of binutils machine types to expected ISA enums to be used in arc_gdbarch_features structs. * features/Makefile (FEATURE_XMLFILES): Add new files. * gdb/features/arc/v1-aux.c: New file. * gdb/features/arc/v1-aux.xml: Likewise. * gdb/features/arc/v1-core.c: Likewise. * gdb/features/arc/v1-core.xml: Likewise. * gdb/features/arc/v2-aux.c: Likewise. * gdb/features/arc/v2-aux.xml: Likewise. * gdb/features/arc/v2-core.c: Likewise. * gdb/features/arc/v2-core.xml: Likewise. * NEWS (Changes since GDB 9): Announce obsolence of old feature names. gdb/doc/ChangeLog: * gdb.texinfo (Synopsys ARC): Update the documentation for ARC Features. gdb/testsuite/ChangeLog: * gdb.arch/arc-tdesc-cpu.xml: Use new feature names.
2020-07-09 23:43:13 +08:00
switch (mach)
{
case bfd_mach_arc_arc600:
case bfd_mach_arc_arc601:
case bfd_mach_arc_arc700:
return ARC_ISA_ARCV1;
case bfd_mach_arc_arcv2:
return ARC_ISA_ARCV2;
default:
internal_error (__FILE__, __LINE__,
_("unknown machine id %lu"), mach);
}
}
2016-08-13 01:02:20 +08:00
arc: Add support for Linux coredump files With the implemenations in this patch, ARC gdb can handle coredump related matters. The binutils counter part of this patch has already been pushed [1]. v2 [2]: - arc_linux_collect_gregset: Use "reg <= ARC_LAST_REGNUM" instead of "reg < ARC_LAST_REGNUM" for the condition check of the for-loop. - arc-linux-tdep.c: Use "ARC_LAST_REGNUM < ARRAY_SIZE (...)" instead of "ARC_LAST_REGNUM <= ARRAY_SIZE (...)" for the "asserts". - Use "buf + arc_linux_core_reg_offsets[ARC_ERET_REGNUM]" instead of "buf + REG_OFF (6)". - Fix a few typos/indentation. v3 [3]: - Use gdb_assert_not_reached(text) instead of gdb_assert (!text). - Remove unnecessary braces in the for loop. [1] arc: Add support for ARC HS extra registers in core files https://sourceware.org/git/?p=binutils-gdb.git;a=commit;h=2745674244d6aecddcf636475034bdb9c0a6b4a0 [2] First remarks https://sourceware.org/pipermail/gdb-patches/2020-September/171912.html [3] Second remarks https://sourceware.org/pipermail/gdb-patches/2020-October/172302.html gdb/ChangeLog: * arc-linux-tdep.h: New file. * arc-linux-tdep.c (arc_linux_core_reg_offsets, arc_linux_supply_gregset, arc_linux_supply_v2_regset, arc_linux_collect_gregset, arc_linux_collect_v2_regset, arc_linux_gregset, arc_linux_v2_regset, arc_linux_iterate_over_regset_sections, arc_linux_core_read_description): Implement. (arc_linux_init_osabi): Set iterate_over_regset_sections. * arc-tdep.h (ARC_OFFSET_NO_REGISTER): Declare. (arc_gdbarch_features_create): Add. * arc-tdep.c (arc_gdbarch_features_create): Not static anymore.
2017-01-30 23:32:10 +08:00
/* See arc-tdep.h. */
2016-08-13 01:02:20 +08:00
arc: Add support for Linux coredump files With the implemenations in this patch, ARC gdb can handle coredump related matters. The binutils counter part of this patch has already been pushed [1]. v2 [2]: - arc_linux_collect_gregset: Use "reg <= ARC_LAST_REGNUM" instead of "reg < ARC_LAST_REGNUM" for the condition check of the for-loop. - arc-linux-tdep.c: Use "ARC_LAST_REGNUM < ARRAY_SIZE (...)" instead of "ARC_LAST_REGNUM <= ARRAY_SIZE (...)" for the "asserts". - Use "buf + arc_linux_core_reg_offsets[ARC_ERET_REGNUM]" instead of "buf + REG_OFF (6)". - Fix a few typos/indentation. v3 [3]: - Use gdb_assert_not_reached(text) instead of gdb_assert (!text). - Remove unnecessary braces in the for loop. [1] arc: Add support for ARC HS extra registers in core files https://sourceware.org/git/?p=binutils-gdb.git;a=commit;h=2745674244d6aecddcf636475034bdb9c0a6b4a0 [2] First remarks https://sourceware.org/pipermail/gdb-patches/2020-September/171912.html [3] Second remarks https://sourceware.org/pipermail/gdb-patches/2020-October/172302.html gdb/ChangeLog: * arc-linux-tdep.h: New file. * arc-linux-tdep.c (arc_linux_core_reg_offsets, arc_linux_supply_gregset, arc_linux_supply_v2_regset, arc_linux_collect_gregset, arc_linux_collect_v2_regset, arc_linux_gregset, arc_linux_v2_regset, arc_linux_iterate_over_regset_sections, arc_linux_core_read_description): Implement. (arc_linux_init_osabi): Set iterate_over_regset_sections. * arc-tdep.h (ARC_OFFSET_NO_REGISTER): Declare. (arc_gdbarch_features_create): Add. * arc-tdep.c (arc_gdbarch_features_create): Not static anymore.
2017-01-30 23:32:10 +08:00
arc_arch_features
arc_arch_features_create (const bfd *abfd, const unsigned long mach)
arc: Add ARCv2 XML target along with refactoring A few changes have been made to make the register support simpler, more flexible and extendible. The trigger for most of these changes are the remarks [1] made earlier for v2 of this patch. The noticeable improvements are: - The arc XML target features are placed under gdb/features/arc - There are two cores (based on ISA) and one auxiliary feature: v1-core: ARC600, ARC601, ARC700 v2-core: ARC EM, ARC HS aux: common in both - The XML target features represent a minimalistic sane set of registers irrespective of application (baremetal or linux). - A concept of "feature" class has been introduced in the code. The "feature" object is constructed from BFD and GDBARCH data. It contains necessary information (ISA and register size) to determine which XML target feature to use. - A new structure (ARC_REGISTER_FEATURE) is added that allows providing index, names, and the necessity of registers. This simplifies the sanity checks and future extendibility. - Documnetation has been updated to reflect ARC features better. - Although the feature names has changed, there still exists backward compatibility with older names through find_obsolete_[core,aux]_names() functions. The last two points were inspired from RiscV port. [1] https://sourceware.org/pipermail/gdb-patches/2020-May/168511.html gdb/ChangeLog: * arch/arc.h (arc_gdbarch_features): New class to stir the selection of target XML. (arc_create_target_description): Use FEATURES to choose XML target. (arc_lookup_target_description): Use arc_create_target_description to create _new_ target descriptions or return the already created ones if the FEATURES is the same. * arch/arc.c: Implementation of prototypes described above. * gdb/arc-tdep.h (arc_regnum enum): Add more registers. (arc_gdbarch_features_init): Initialize the FEATURES struct. * arc-tdep.c (*_feature_name): Make feature names consistent. (arc_register_feature): A new struct to hold information about registers of a particular target/feature. (arc_check_tdesc_feature): Check if XML provides registers in compliance with ARC_REGISTER_FEATURE structs. (arc_update_acc_reg_names): Add aliases for r58 and r59. (determine_*_reg_feature_set): Which feature name to look for. (arc_gdbarch_features_init): Given MACH and ABFD, initialize FEATURES. (mach_type_to_arc_isa): Convert from a set of binutils machine types to expected ISA enums to be used in arc_gdbarch_features structs. * features/Makefile (FEATURE_XMLFILES): Add new files. * gdb/features/arc/v1-aux.c: New file. * gdb/features/arc/v1-aux.xml: Likewise. * gdb/features/arc/v1-core.c: Likewise. * gdb/features/arc/v1-core.xml: Likewise. * gdb/features/arc/v2-aux.c: Likewise. * gdb/features/arc/v2-aux.xml: Likewise. * gdb/features/arc/v2-core.c: Likewise. * gdb/features/arc/v2-core.xml: Likewise. * NEWS (Changes since GDB 9): Announce obsolence of old feature names. gdb/doc/ChangeLog: * gdb.texinfo (Synopsys ARC): Update the documentation for ARC Features. gdb/testsuite/ChangeLog: * gdb.arch/arc-tdesc-cpu.xml: Use new feature names.
2020-07-09 23:43:13 +08:00
{
/* Use 4 as a fallback value. */
int reg_size = 4;
/* Try to guess the features parameters by looking at the binary to be
executed. If the user is providing a binary that does not match the
target, then tough luck. This is the last effort to makes sense of
what's going on. */
if (abfd != nullptr && bfd_get_flavour (abfd) == bfd_target_elf_flavour)
2016-08-13 01:02:20 +08:00
{
arc: Add ARCv2 XML target along with refactoring A few changes have been made to make the register support simpler, more flexible and extendible. The trigger for most of these changes are the remarks [1] made earlier for v2 of this patch. The noticeable improvements are: - The arc XML target features are placed under gdb/features/arc - There are two cores (based on ISA) and one auxiliary feature: v1-core: ARC600, ARC601, ARC700 v2-core: ARC EM, ARC HS aux: common in both - The XML target features represent a minimalistic sane set of registers irrespective of application (baremetal or linux). - A concept of "feature" class has been introduced in the code. The "feature" object is constructed from BFD and GDBARCH data. It contains necessary information (ISA and register size) to determine which XML target feature to use. - A new structure (ARC_REGISTER_FEATURE) is added that allows providing index, names, and the necessity of registers. This simplifies the sanity checks and future extendibility. - Documnetation has been updated to reflect ARC features better. - Although the feature names has changed, there still exists backward compatibility with older names through find_obsolete_[core,aux]_names() functions. The last two points were inspired from RiscV port. [1] https://sourceware.org/pipermail/gdb-patches/2020-May/168511.html gdb/ChangeLog: * arch/arc.h (arc_gdbarch_features): New class to stir the selection of target XML. (arc_create_target_description): Use FEATURES to choose XML target. (arc_lookup_target_description): Use arc_create_target_description to create _new_ target descriptions or return the already created ones if the FEATURES is the same. * arch/arc.c: Implementation of prototypes described above. * gdb/arc-tdep.h (arc_regnum enum): Add more registers. (arc_gdbarch_features_init): Initialize the FEATURES struct. * arc-tdep.c (*_feature_name): Make feature names consistent. (arc_register_feature): A new struct to hold information about registers of a particular target/feature. (arc_check_tdesc_feature): Check if XML provides registers in compliance with ARC_REGISTER_FEATURE structs. (arc_update_acc_reg_names): Add aliases for r58 and r59. (determine_*_reg_feature_set): Which feature name to look for. (arc_gdbarch_features_init): Given MACH and ABFD, initialize FEATURES. (mach_type_to_arc_isa): Convert from a set of binutils machine types to expected ISA enums to be used in arc_gdbarch_features structs. * features/Makefile (FEATURE_XMLFILES): Add new files. * gdb/features/arc/v1-aux.c: New file. * gdb/features/arc/v1-aux.xml: Likewise. * gdb/features/arc/v1-core.c: Likewise. * gdb/features/arc/v1-core.xml: Likewise. * gdb/features/arc/v2-aux.c: Likewise. * gdb/features/arc/v2-aux.xml: Likewise. * gdb/features/arc/v2-core.c: Likewise. * gdb/features/arc/v2-core.xml: Likewise. * NEWS (Changes since GDB 9): Announce obsolence of old feature names. gdb/doc/ChangeLog: * gdb.texinfo (Synopsys ARC): Update the documentation for ARC Features. gdb/testsuite/ChangeLog: * gdb.arch/arc-tdesc-cpu.xml: Use new feature names.
2020-07-09 23:43:13 +08:00
unsigned char eclass = elf_elfheader (abfd)->e_ident[EI_CLASS];
if (eclass == ELFCLASS32)
reg_size = 4;
else if (eclass == ELFCLASS64)
reg_size = 8;
2016-08-13 01:02:20 +08:00
else
arc: Add ARCv2 XML target along with refactoring A few changes have been made to make the register support simpler, more flexible and extendible. The trigger for most of these changes are the remarks [1] made earlier for v2 of this patch. The noticeable improvements are: - The arc XML target features are placed under gdb/features/arc - There are two cores (based on ISA) and one auxiliary feature: v1-core: ARC600, ARC601, ARC700 v2-core: ARC EM, ARC HS aux: common in both - The XML target features represent a minimalistic sane set of registers irrespective of application (baremetal or linux). - A concept of "feature" class has been introduced in the code. The "feature" object is constructed from BFD and GDBARCH data. It contains necessary information (ISA and register size) to determine which XML target feature to use. - A new structure (ARC_REGISTER_FEATURE) is added that allows providing index, names, and the necessity of registers. This simplifies the sanity checks and future extendibility. - Documnetation has been updated to reflect ARC features better. - Although the feature names has changed, there still exists backward compatibility with older names through find_obsolete_[core,aux]_names() functions. The last two points were inspired from RiscV port. [1] https://sourceware.org/pipermail/gdb-patches/2020-May/168511.html gdb/ChangeLog: * arch/arc.h (arc_gdbarch_features): New class to stir the selection of target XML. (arc_create_target_description): Use FEATURES to choose XML target. (arc_lookup_target_description): Use arc_create_target_description to create _new_ target descriptions or return the already created ones if the FEATURES is the same. * arch/arc.c: Implementation of prototypes described above. * gdb/arc-tdep.h (arc_regnum enum): Add more registers. (arc_gdbarch_features_init): Initialize the FEATURES struct. * arc-tdep.c (*_feature_name): Make feature names consistent. (arc_register_feature): A new struct to hold information about registers of a particular target/feature. (arc_check_tdesc_feature): Check if XML provides registers in compliance with ARC_REGISTER_FEATURE structs. (arc_update_acc_reg_names): Add aliases for r58 and r59. (determine_*_reg_feature_set): Which feature name to look for. (arc_gdbarch_features_init): Given MACH and ABFD, initialize FEATURES. (mach_type_to_arc_isa): Convert from a set of binutils machine types to expected ISA enums to be used in arc_gdbarch_features structs. * features/Makefile (FEATURE_XMLFILES): Add new files. * gdb/features/arc/v1-aux.c: New file. * gdb/features/arc/v1-aux.xml: Likewise. * gdb/features/arc/v1-core.c: Likewise. * gdb/features/arc/v1-core.xml: Likewise. * gdb/features/arc/v2-aux.c: Likewise. * gdb/features/arc/v2-aux.xml: Likewise. * gdb/features/arc/v2-core.c: Likewise. * gdb/features/arc/v2-core.xml: Likewise. * NEWS (Changes since GDB 9): Announce obsolence of old feature names. gdb/doc/ChangeLog: * gdb.texinfo (Synopsys ARC): Update the documentation for ARC Features. gdb/testsuite/ChangeLog: * gdb.arch/arc-tdesc-cpu.xml: Use new feature names.
2020-07-09 23:43:13 +08:00
internal_error (__FILE__, __LINE__,
_("unknown ELF header class %d"), eclass);
2016-08-13 01:02:20 +08:00
}
arc: Add ARCv2 XML target along with refactoring A few changes have been made to make the register support simpler, more flexible and extendible. The trigger for most of these changes are the remarks [1] made earlier for v2 of this patch. The noticeable improvements are: - The arc XML target features are placed under gdb/features/arc - There are two cores (based on ISA) and one auxiliary feature: v1-core: ARC600, ARC601, ARC700 v2-core: ARC EM, ARC HS aux: common in both - The XML target features represent a minimalistic sane set of registers irrespective of application (baremetal or linux). - A concept of "feature" class has been introduced in the code. The "feature" object is constructed from BFD and GDBARCH data. It contains necessary information (ISA and register size) to determine which XML target feature to use. - A new structure (ARC_REGISTER_FEATURE) is added that allows providing index, names, and the necessity of registers. This simplifies the sanity checks and future extendibility. - Documnetation has been updated to reflect ARC features better. - Although the feature names has changed, there still exists backward compatibility with older names through find_obsolete_[core,aux]_names() functions. The last two points were inspired from RiscV port. [1] https://sourceware.org/pipermail/gdb-patches/2020-May/168511.html gdb/ChangeLog: * arch/arc.h (arc_gdbarch_features): New class to stir the selection of target XML. (arc_create_target_description): Use FEATURES to choose XML target. (arc_lookup_target_description): Use arc_create_target_description to create _new_ target descriptions or return the already created ones if the FEATURES is the same. * arch/arc.c: Implementation of prototypes described above. * gdb/arc-tdep.h (arc_regnum enum): Add more registers. (arc_gdbarch_features_init): Initialize the FEATURES struct. * arc-tdep.c (*_feature_name): Make feature names consistent. (arc_register_feature): A new struct to hold information about registers of a particular target/feature. (arc_check_tdesc_feature): Check if XML provides registers in compliance with ARC_REGISTER_FEATURE structs. (arc_update_acc_reg_names): Add aliases for r58 and r59. (determine_*_reg_feature_set): Which feature name to look for. (arc_gdbarch_features_init): Given MACH and ABFD, initialize FEATURES. (mach_type_to_arc_isa): Convert from a set of binutils machine types to expected ISA enums to be used in arc_gdbarch_features structs. * features/Makefile (FEATURE_XMLFILES): Add new files. * gdb/features/arc/v1-aux.c: New file. * gdb/features/arc/v1-aux.xml: Likewise. * gdb/features/arc/v1-core.c: Likewise. * gdb/features/arc/v1-core.xml: Likewise. * gdb/features/arc/v2-aux.c: Likewise. * gdb/features/arc/v2-aux.xml: Likewise. * gdb/features/arc/v2-core.c: Likewise. * gdb/features/arc/v2-core.xml: Likewise. * NEWS (Changes since GDB 9): Announce obsolence of old feature names. gdb/doc/ChangeLog: * gdb.texinfo (Synopsys ARC): Update the documentation for ARC Features. gdb/testsuite/ChangeLog: * gdb.arch/arc-tdesc-cpu.xml: Use new feature names.
2020-07-09 23:43:13 +08:00
/* MACH from a bfd_arch_info struct is used here. It should be a safe
bet, as it looks like the struct is always initialized even when we
don't pass any elf file to GDB at all (it uses default arch in that
case). */
arc_isa isa = mach_type_to_arc_isa (mach);
return arc_arch_features (reg_size, isa);
arc: Add ARCv2 XML target along with refactoring A few changes have been made to make the register support simpler, more flexible and extendible. The trigger for most of these changes are the remarks [1] made earlier for v2 of this patch. The noticeable improvements are: - The arc XML target features are placed under gdb/features/arc - There are two cores (based on ISA) and one auxiliary feature: v1-core: ARC600, ARC601, ARC700 v2-core: ARC EM, ARC HS aux: common in both - The XML target features represent a minimalistic sane set of registers irrespective of application (baremetal or linux). - A concept of "feature" class has been introduced in the code. The "feature" object is constructed from BFD and GDBARCH data. It contains necessary information (ISA and register size) to determine which XML target feature to use. - A new structure (ARC_REGISTER_FEATURE) is added that allows providing index, names, and the necessity of registers. This simplifies the sanity checks and future extendibility. - Documnetation has been updated to reflect ARC features better. - Although the feature names has changed, there still exists backward compatibility with older names through find_obsolete_[core,aux]_names() functions. The last two points were inspired from RiscV port. [1] https://sourceware.org/pipermail/gdb-patches/2020-May/168511.html gdb/ChangeLog: * arch/arc.h (arc_gdbarch_features): New class to stir the selection of target XML. (arc_create_target_description): Use FEATURES to choose XML target. (arc_lookup_target_description): Use arc_create_target_description to create _new_ target descriptions or return the already created ones if the FEATURES is the same. * arch/arc.c: Implementation of prototypes described above. * gdb/arc-tdep.h (arc_regnum enum): Add more registers. (arc_gdbarch_features_init): Initialize the FEATURES struct. * arc-tdep.c (*_feature_name): Make feature names consistent. (arc_register_feature): A new struct to hold information about registers of a particular target/feature. (arc_check_tdesc_feature): Check if XML provides registers in compliance with ARC_REGISTER_FEATURE structs. (arc_update_acc_reg_names): Add aliases for r58 and r59. (determine_*_reg_feature_set): Which feature name to look for. (arc_gdbarch_features_init): Given MACH and ABFD, initialize FEATURES. (mach_type_to_arc_isa): Convert from a set of binutils machine types to expected ISA enums to be used in arc_gdbarch_features structs. * features/Makefile (FEATURE_XMLFILES): Add new files. * gdb/features/arc/v1-aux.c: New file. * gdb/features/arc/v1-aux.xml: Likewise. * gdb/features/arc/v1-core.c: Likewise. * gdb/features/arc/v1-core.xml: Likewise. * gdb/features/arc/v2-aux.c: Likewise. * gdb/features/arc/v2-aux.xml: Likewise. * gdb/features/arc/v2-core.c: Likewise. * gdb/features/arc/v2-core.xml: Likewise. * NEWS (Changes since GDB 9): Announce obsolence of old feature names. gdb/doc/ChangeLog: * gdb.texinfo (Synopsys ARC): Update the documentation for ARC Features. gdb/testsuite/ChangeLog: * gdb.arch/arc-tdesc-cpu.xml: Use new feature names.
2020-07-09 23:43:13 +08:00
}
/* Look for obsolete core feature names in TDESC. */
static const struct tdesc_feature *
find_obsolete_core_names (const struct target_desc *tdesc)
{
const struct tdesc_feature *feat = nullptr;
feat = tdesc_find_feature (tdesc, ARC_CORE_V1_OBSOLETE_FEATURE_NAME);
if (feat == nullptr)
feat = tdesc_find_feature (tdesc, ARC_CORE_V2_OBSOLETE_FEATURE_NAME);
if (feat == nullptr)
feat = tdesc_find_feature
(tdesc, ARC_CORE_V2_REDUCED_OBSOLETE_FEATURE_NAME);
return feat;
}
/* Look for obsolete aux feature names in TDESC. */
static const struct tdesc_feature *
find_obsolete_aux_names (const struct target_desc *tdesc)
{
return tdesc_find_feature (tdesc, ARC_AUX_OBSOLETE_FEATURE_NAME);
}
/* Based on the MACH value, determines which core register features set
must be used. */
static arc_register_feature *
determine_core_reg_feature_set (const unsigned long mach)
{
switch (mach_type_to_arc_isa (mach))
2016-08-13 01:02:20 +08:00
{
arc: Add ARCv2 XML target along with refactoring A few changes have been made to make the register support simpler, more flexible and extendible. The trigger for most of these changes are the remarks [1] made earlier for v2 of this patch. The noticeable improvements are: - The arc XML target features are placed under gdb/features/arc - There are two cores (based on ISA) and one auxiliary feature: v1-core: ARC600, ARC601, ARC700 v2-core: ARC EM, ARC HS aux: common in both - The XML target features represent a minimalistic sane set of registers irrespective of application (baremetal or linux). - A concept of "feature" class has been introduced in the code. The "feature" object is constructed from BFD and GDBARCH data. It contains necessary information (ISA and register size) to determine which XML target feature to use. - A new structure (ARC_REGISTER_FEATURE) is added that allows providing index, names, and the necessity of registers. This simplifies the sanity checks and future extendibility. - Documnetation has been updated to reflect ARC features better. - Although the feature names has changed, there still exists backward compatibility with older names through find_obsolete_[core,aux]_names() functions. The last two points were inspired from RiscV port. [1] https://sourceware.org/pipermail/gdb-patches/2020-May/168511.html gdb/ChangeLog: * arch/arc.h (arc_gdbarch_features): New class to stir the selection of target XML. (arc_create_target_description): Use FEATURES to choose XML target. (arc_lookup_target_description): Use arc_create_target_description to create _new_ target descriptions or return the already created ones if the FEATURES is the same. * arch/arc.c: Implementation of prototypes described above. * gdb/arc-tdep.h (arc_regnum enum): Add more registers. (arc_gdbarch_features_init): Initialize the FEATURES struct. * arc-tdep.c (*_feature_name): Make feature names consistent. (arc_register_feature): A new struct to hold information about registers of a particular target/feature. (arc_check_tdesc_feature): Check if XML provides registers in compliance with ARC_REGISTER_FEATURE structs. (arc_update_acc_reg_names): Add aliases for r58 and r59. (determine_*_reg_feature_set): Which feature name to look for. (arc_gdbarch_features_init): Given MACH and ABFD, initialize FEATURES. (mach_type_to_arc_isa): Convert from a set of binutils machine types to expected ISA enums to be used in arc_gdbarch_features structs. * features/Makefile (FEATURE_XMLFILES): Add new files. * gdb/features/arc/v1-aux.c: New file. * gdb/features/arc/v1-aux.xml: Likewise. * gdb/features/arc/v1-core.c: Likewise. * gdb/features/arc/v1-core.xml: Likewise. * gdb/features/arc/v2-aux.c: Likewise. * gdb/features/arc/v2-aux.xml: Likewise. * gdb/features/arc/v2-core.c: Likewise. * gdb/features/arc/v2-core.xml: Likewise. * NEWS (Changes since GDB 9): Announce obsolence of old feature names. gdb/doc/ChangeLog: * gdb.texinfo (Synopsys ARC): Update the documentation for ARC Features. gdb/testsuite/ChangeLog: * gdb.arch/arc-tdesc-cpu.xml: Use new feature names.
2020-07-09 23:43:13 +08:00
case ARC_ISA_ARCV1:
return &arc_v1_core_reg_feature;
case ARC_ISA_ARCV2:
return &arc_v2_core_reg_feature;
default:
gdb_assert_not_reached
gdb, gdbserver, gdbsupport: fix leading space vs tabs issues Many spots incorrectly use only spaces for indentation (for example, there are a lot of spots in ada-lang.c). I've always found it awkward when I needed to edit one of these spots: do I keep the original wrong indentation, or do I fix it? What if the lines around it are also wrong, do I fix them too? I probably don't want to fix them in the same patch, to avoid adding noise to my patch. So I propose to fix as much as possible once and for all (hopefully). One typical counter argument for this is that it makes code archeology more difficult, because git-blame will show this commit as the last change for these lines. My counter counter argument is: when git-blaming, you often need to do "blame the file at the parent commit" anyway, to go past some other refactor that touched the line you are interested in, but is not the change you are looking for. So you already need a somewhat efficient way to do this. Using some interactive tool, rather than plain git-blame, makes this trivial. For example, I use "tig blame <file>", where going back past the commit that changed the currently selected line is one keystroke. It looks like Magit in Emacs does it too (though I've never used it). Web viewers of Github and Gitlab do it too. My point is that it won't really make archeology more difficult. The other typical counter argument is that it will cause conflicts with existing patches. That's true... but it's a one time cost, and those are not conflicts that are difficult to resolve. I have also tried "git rebase --ignore-whitespace", it seems to work well. Although that will re-introduce the faulty indentation, so one needs to take care of fixing the indentation in the patch after that (which is easy). gdb/ChangeLog: * aarch64-linux-tdep.c: Fix indentation. * aarch64-ravenscar-thread.c: Fix indentation. * aarch64-tdep.c: Fix indentation. * aarch64-tdep.h: Fix indentation. * ada-lang.c: Fix indentation. * ada-lang.h: Fix indentation. * ada-tasks.c: Fix indentation. * ada-typeprint.c: Fix indentation. * ada-valprint.c: Fix indentation. * ada-varobj.c: Fix indentation. * addrmap.c: Fix indentation. * addrmap.h: Fix indentation. * agent.c: Fix indentation. * aix-thread.c: Fix indentation. * alpha-bsd-nat.c: Fix indentation. * alpha-linux-tdep.c: Fix indentation. * alpha-mdebug-tdep.c: Fix indentation. * alpha-nbsd-tdep.c: Fix indentation. * alpha-obsd-tdep.c: Fix indentation. * alpha-tdep.c: Fix indentation. * amd64-bsd-nat.c: Fix indentation. * amd64-darwin-tdep.c: Fix indentation. * amd64-linux-nat.c: Fix indentation. * amd64-linux-tdep.c: Fix indentation. * amd64-nat.c: Fix indentation. * amd64-obsd-tdep.c: Fix indentation. * amd64-tdep.c: Fix indentation. * amd64-windows-tdep.c: Fix indentation. * annotate.c: Fix indentation. * arc-tdep.c: Fix indentation. * arch-utils.c: Fix indentation. * arch/arm-get-next-pcs.c: Fix indentation. * arch/arm.c: Fix indentation. * arm-linux-nat.c: Fix indentation. * arm-linux-tdep.c: Fix indentation. * arm-nbsd-tdep.c: Fix indentation. * arm-pikeos-tdep.c: Fix indentation. * arm-tdep.c: Fix indentation. * arm-tdep.h: Fix indentation. * arm-wince-tdep.c: Fix indentation. * auto-load.c: Fix indentation. * auxv.c: Fix indentation. * avr-tdep.c: Fix indentation. * ax-gdb.c: Fix indentation. * ax-general.c: Fix indentation. * bfin-linux-tdep.c: Fix indentation. * block.c: Fix indentation. * block.h: Fix indentation. * blockframe.c: Fix indentation. * bpf-tdep.c: Fix indentation. * break-catch-sig.c: Fix indentation. * break-catch-syscall.c: Fix indentation. * break-catch-throw.c: Fix indentation. * breakpoint.c: Fix indentation. * breakpoint.h: Fix indentation. * bsd-uthread.c: Fix indentation. * btrace.c: Fix indentation. * build-id.c: Fix indentation. * buildsym-legacy.h: Fix indentation. * buildsym.c: Fix indentation. * c-typeprint.c: Fix indentation. * c-valprint.c: Fix indentation. * c-varobj.c: Fix indentation. * charset.c: Fix indentation. * cli/cli-cmds.c: Fix indentation. * cli/cli-decode.c: Fix indentation. * cli/cli-decode.h: Fix indentation. * cli/cli-script.c: Fix indentation. * cli/cli-setshow.c: Fix indentation. * coff-pe-read.c: Fix indentation. * coffread.c: Fix indentation. * compile/compile-cplus-types.c: Fix indentation. * compile/compile-object-load.c: Fix indentation. * compile/compile-object-run.c: Fix indentation. * completer.c: Fix indentation. * corefile.c: Fix indentation. * corelow.c: Fix indentation. * cp-abi.h: Fix indentation. * cp-namespace.c: Fix indentation. * cp-support.c: Fix indentation. * cp-valprint.c: Fix indentation. * cris-linux-tdep.c: Fix indentation. * cris-tdep.c: Fix indentation. * darwin-nat-info.c: Fix indentation. * darwin-nat.c: Fix indentation. * darwin-nat.h: Fix indentation. * dbxread.c: Fix indentation. * dcache.c: Fix indentation. * disasm.c: Fix indentation. * dtrace-probe.c: Fix indentation. * dwarf2/abbrev.c: Fix indentation. * dwarf2/attribute.c: Fix indentation. * dwarf2/expr.c: Fix indentation. * dwarf2/frame.c: Fix indentation. * dwarf2/index-cache.c: Fix indentation. * dwarf2/index-write.c: Fix indentation. * dwarf2/line-header.c: Fix indentation. * dwarf2/loc.c: Fix indentation. * dwarf2/macro.c: Fix indentation. * dwarf2/read.c: Fix indentation. * dwarf2/read.h: Fix indentation. * elfread.c: Fix indentation. * eval.c: Fix indentation. * event-top.c: Fix indentation. * exec.c: Fix indentation. * exec.h: Fix indentation. * expprint.c: Fix indentation. * f-lang.c: Fix indentation. * f-typeprint.c: Fix indentation. * f-valprint.c: Fix indentation. * fbsd-nat.c: Fix indentation. * fbsd-tdep.c: Fix indentation. * findvar.c: Fix indentation. * fork-child.c: Fix indentation. * frame-unwind.c: Fix indentation. * frame-unwind.h: Fix indentation. * frame.c: Fix indentation. * frv-linux-tdep.c: Fix indentation. * frv-tdep.c: Fix indentation. * frv-tdep.h: Fix indentation. * ft32-tdep.c: Fix indentation. * gcore.c: Fix indentation. * gdb_bfd.c: Fix indentation. * gdbarch.sh: Fix indentation. * gdbarch.c: Re-generate * gdbarch.h: Re-generate. * gdbcore.h: Fix indentation. * gdbthread.h: Fix indentation. * gdbtypes.c: Fix indentation. * gdbtypes.h: Fix indentation. * glibc-tdep.c: Fix indentation. * gnu-nat.c: Fix indentation. * gnu-nat.h: Fix indentation. * gnu-v2-abi.c: Fix indentation. * gnu-v3-abi.c: Fix indentation. * go32-nat.c: Fix indentation. * guile/guile-internal.h: Fix indentation. * guile/scm-cmd.c: Fix indentation. * guile/scm-frame.c: Fix indentation. * guile/scm-iterator.c: Fix indentation. * guile/scm-math.c: Fix indentation. * guile/scm-ports.c: Fix indentation. * guile/scm-pretty-print.c: Fix indentation. * guile/scm-value.c: Fix indentation. * h8300-tdep.c: Fix indentation. * hppa-linux-nat.c: Fix indentation. * hppa-linux-tdep.c: Fix indentation. * hppa-nbsd-nat.c: Fix indentation. * hppa-nbsd-tdep.c: Fix indentation. * hppa-obsd-nat.c: Fix indentation. * hppa-tdep.c: Fix indentation. * hppa-tdep.h: Fix indentation. * i386-bsd-nat.c: Fix indentation. * i386-darwin-nat.c: Fix indentation. * i386-darwin-tdep.c: Fix indentation. * i386-dicos-tdep.c: Fix indentation. * i386-gnu-nat.c: Fix indentation. * i386-linux-nat.c: Fix indentation. * i386-linux-tdep.c: Fix indentation. * i386-nto-tdep.c: Fix indentation. * i386-obsd-tdep.c: Fix indentation. * i386-sol2-nat.c: Fix indentation. * i386-tdep.c: Fix indentation. * i386-tdep.h: Fix indentation. * i386-windows-tdep.c: Fix indentation. * i387-tdep.c: Fix indentation. * i387-tdep.h: Fix indentation. * ia64-libunwind-tdep.c: Fix indentation. * ia64-libunwind-tdep.h: Fix indentation. * ia64-linux-nat.c: Fix indentation. * ia64-linux-tdep.c: Fix indentation. * ia64-tdep.c: Fix indentation. * ia64-tdep.h: Fix indentation. * ia64-vms-tdep.c: Fix indentation. * infcall.c: Fix indentation. * infcmd.c: Fix indentation. * inferior.c: Fix indentation. * infrun.c: Fix indentation. * iq2000-tdep.c: Fix indentation. * language.c: Fix indentation. * linespec.c: Fix indentation. * linux-fork.c: Fix indentation. * linux-nat.c: Fix indentation. * linux-tdep.c: Fix indentation. * linux-thread-db.c: Fix indentation. * lm32-tdep.c: Fix indentation. * m2-lang.c: Fix indentation. * m2-typeprint.c: Fix indentation. * m2-valprint.c: Fix indentation. * m32c-tdep.c: Fix indentation. * m32r-linux-tdep.c: Fix indentation. * m32r-tdep.c: Fix indentation. * m68hc11-tdep.c: Fix indentation. * m68k-bsd-nat.c: Fix indentation. * m68k-linux-nat.c: Fix indentation. * m68k-linux-tdep.c: Fix indentation. * m68k-tdep.c: Fix indentation. * machoread.c: Fix indentation. * macrocmd.c: Fix indentation. * macroexp.c: Fix indentation. * macroscope.c: Fix indentation. * macrotab.c: Fix indentation. * macrotab.h: Fix indentation. * main.c: Fix indentation. * mdebugread.c: Fix indentation. * mep-tdep.c: Fix indentation. * mi/mi-cmd-catch.c: Fix indentation. * mi/mi-cmd-disas.c: Fix indentation. * mi/mi-cmd-env.c: Fix indentation. * mi/mi-cmd-stack.c: Fix indentation. * mi/mi-cmd-var.c: Fix indentation. * mi/mi-cmds.c: Fix indentation. * mi/mi-main.c: Fix indentation. * mi/mi-parse.c: Fix indentation. * microblaze-tdep.c: Fix indentation. * minidebug.c: Fix indentation. * minsyms.c: Fix indentation. * mips-linux-nat.c: Fix indentation. * mips-linux-tdep.c: Fix indentation. * mips-nbsd-tdep.c: Fix indentation. * mips-tdep.c: Fix indentation. * mn10300-linux-tdep.c: Fix indentation. * mn10300-tdep.c: Fix indentation. * moxie-tdep.c: Fix indentation. * msp430-tdep.c: Fix indentation. * namespace.h: Fix indentation. * nat/fork-inferior.c: Fix indentation. * nat/gdb_ptrace.h: Fix indentation. * nat/linux-namespaces.c: Fix indentation. * nat/linux-osdata.c: Fix indentation. * nat/netbsd-nat.c: Fix indentation. * nat/x86-dregs.c: Fix indentation. * nbsd-nat.c: Fix indentation. * nbsd-tdep.c: Fix indentation. * nios2-linux-tdep.c: Fix indentation. * nios2-tdep.c: Fix indentation. * nto-procfs.c: Fix indentation. * nto-tdep.c: Fix indentation. * objfiles.c: Fix indentation. * objfiles.h: Fix indentation. * opencl-lang.c: Fix indentation. * or1k-tdep.c: Fix indentation. * osabi.c: Fix indentation. * osabi.h: Fix indentation. * osdata.c: Fix indentation. * p-lang.c: Fix indentation. * p-typeprint.c: Fix indentation. * p-valprint.c: Fix indentation. * parse.c: Fix indentation. * ppc-linux-nat.c: Fix indentation. * ppc-linux-tdep.c: Fix indentation. * ppc-nbsd-nat.c: Fix indentation. * ppc-nbsd-tdep.c: Fix indentation. * ppc-obsd-nat.c: Fix indentation. * ppc-ravenscar-thread.c: Fix indentation. * ppc-sysv-tdep.c: Fix indentation. * ppc64-tdep.c: Fix indentation. * printcmd.c: Fix indentation. * proc-api.c: Fix indentation. * producer.c: Fix indentation. * producer.h: Fix indentation. * prologue-value.c: Fix indentation. * prologue-value.h: Fix indentation. * psymtab.c: Fix indentation. * python/py-arch.c: Fix indentation. * python/py-bpevent.c: Fix indentation. * python/py-event.c: Fix indentation. * python/py-event.h: Fix indentation. * python/py-finishbreakpoint.c: Fix indentation. * python/py-frame.c: Fix indentation. * python/py-framefilter.c: Fix indentation. * python/py-inferior.c: Fix indentation. * python/py-infthread.c: Fix indentation. * python/py-objfile.c: Fix indentation. * python/py-prettyprint.c: Fix indentation. * python/py-registers.c: Fix indentation. * python/py-signalevent.c: Fix indentation. * python/py-stopevent.c: Fix indentation. * python/py-stopevent.h: Fix indentation. * python/py-threadevent.c: Fix indentation. * python/py-tui.c: Fix indentation. * python/py-unwind.c: Fix indentation. * python/py-value.c: Fix indentation. * python/py-xmethods.c: Fix indentation. * python/python-internal.h: Fix indentation. * python/python.c: Fix indentation. * ravenscar-thread.c: Fix indentation. * record-btrace.c: Fix indentation. * record-full.c: Fix indentation. * record.c: Fix indentation. * reggroups.c: Fix indentation. * regset.h: Fix indentation. * remote-fileio.c: Fix indentation. * remote.c: Fix indentation. * reverse.c: Fix indentation. * riscv-linux-tdep.c: Fix indentation. * riscv-ravenscar-thread.c: Fix indentation. * riscv-tdep.c: Fix indentation. * rl78-tdep.c: Fix indentation. * rs6000-aix-tdep.c: Fix indentation. * rs6000-lynx178-tdep.c: Fix indentation. * rs6000-nat.c: Fix indentation. * rs6000-tdep.c: Fix indentation. * rust-lang.c: Fix indentation. * rx-tdep.c: Fix indentation. * s12z-tdep.c: Fix indentation. * s390-linux-tdep.c: Fix indentation. * score-tdep.c: Fix indentation. * ser-base.c: Fix indentation. * ser-mingw.c: Fix indentation. * ser-uds.c: Fix indentation. * ser-unix.c: Fix indentation. * serial.c: Fix indentation. * sh-linux-tdep.c: Fix indentation. * sh-nbsd-tdep.c: Fix indentation. * sh-tdep.c: Fix indentation. * skip.c: Fix indentation. * sol-thread.c: Fix indentation. * solib-aix.c: Fix indentation. * solib-darwin.c: Fix indentation. * solib-frv.c: Fix indentation. * solib-svr4.c: Fix indentation. * solib.c: Fix indentation. * source.c: Fix indentation. * sparc-linux-tdep.c: Fix indentation. * sparc-nbsd-tdep.c: Fix indentation. * sparc-obsd-tdep.c: Fix indentation. * sparc-ravenscar-thread.c: Fix indentation. * sparc-tdep.c: Fix indentation. * sparc64-linux-tdep.c: Fix indentation. * sparc64-nbsd-tdep.c: Fix indentation. * sparc64-obsd-tdep.c: Fix indentation. * sparc64-tdep.c: Fix indentation. * stabsread.c: Fix indentation. * stack.c: Fix indentation. * stap-probe.c: Fix indentation. * stubs/ia64vms-stub.c: Fix indentation. * stubs/m32r-stub.c: Fix indentation. * stubs/m68k-stub.c: Fix indentation. * stubs/sh-stub.c: Fix indentation. * stubs/sparc-stub.c: Fix indentation. * symfile-mem.c: Fix indentation. * symfile.c: Fix indentation. * symfile.h: Fix indentation. * symmisc.c: Fix indentation. * symtab.c: Fix indentation. * symtab.h: Fix indentation. * target-float.c: Fix indentation. * target.c: Fix indentation. * target.h: Fix indentation. * tic6x-tdep.c: Fix indentation. * tilegx-linux-tdep.c: Fix indentation. * tilegx-tdep.c: Fix indentation. * top.c: Fix indentation. * tracefile-tfile.c: Fix indentation. * tracepoint.c: Fix indentation. * tui/tui-disasm.c: Fix indentation. * tui/tui-io.c: Fix indentation. * tui/tui-regs.c: Fix indentation. * tui/tui-stack.c: Fix indentation. * tui/tui-win.c: Fix indentation. * tui/tui-winsource.c: Fix indentation. * tui/tui.c: Fix indentation. * typeprint.c: Fix indentation. * ui-out.h: Fix indentation. * unittests/copy_bitwise-selftests.c: Fix indentation. * unittests/memory-map-selftests.c: Fix indentation. * utils.c: Fix indentation. * v850-tdep.c: Fix indentation. * valarith.c: Fix indentation. * valops.c: Fix indentation. * valprint.c: Fix indentation. * valprint.h: Fix indentation. * value.c: Fix indentation. * value.h: Fix indentation. * varobj.c: Fix indentation. * vax-tdep.c: Fix indentation. * windows-nat.c: Fix indentation. * windows-tdep.c: Fix indentation. * xcoffread.c: Fix indentation. * xml-syscall.c: Fix indentation. * xml-tdesc.c: Fix indentation. * xstormy16-tdep.c: Fix indentation. * xtensa-config.c: Fix indentation. * xtensa-linux-nat.c: Fix indentation. * xtensa-linux-tdep.c: Fix indentation. * xtensa-tdep.c: Fix indentation. gdbserver/ChangeLog: * ax.cc: Fix indentation. * dll.cc: Fix indentation. * inferiors.h: Fix indentation. * linux-low.cc: Fix indentation. * linux-nios2-low.cc: Fix indentation. * linux-ppc-ipa.cc: Fix indentation. * linux-ppc-low.cc: Fix indentation. * linux-x86-low.cc: Fix indentation. * linux-xtensa-low.cc: Fix indentation. * regcache.cc: Fix indentation. * server.cc: Fix indentation. * tracepoint.cc: Fix indentation. gdbsupport/ChangeLog: * common-exceptions.h: Fix indentation. * event-loop.cc: Fix indentation. * fileio.cc: Fix indentation. * filestuff.cc: Fix indentation. * gdb-dlfcn.cc: Fix indentation. * gdb_string_view.h: Fix indentation. * job-control.cc: Fix indentation. * signals.cc: Fix indentation. Change-Id: I4bad7ae6be0fbe14168b8ebafb98ffe14964a695
2020-11-02 23:26:14 +08:00
("Unknown machine type to determine the core feature set.");
2016-08-13 01:02:20 +08:00
}
arc: Add ARCv2 XML target along with refactoring A few changes have been made to make the register support simpler, more flexible and extendible. The trigger for most of these changes are the remarks [1] made earlier for v2 of this patch. The noticeable improvements are: - The arc XML target features are placed under gdb/features/arc - There are two cores (based on ISA) and one auxiliary feature: v1-core: ARC600, ARC601, ARC700 v2-core: ARC EM, ARC HS aux: common in both - The XML target features represent a minimalistic sane set of registers irrespective of application (baremetal or linux). - A concept of "feature" class has been introduced in the code. The "feature" object is constructed from BFD and GDBARCH data. It contains necessary information (ISA and register size) to determine which XML target feature to use. - A new structure (ARC_REGISTER_FEATURE) is added that allows providing index, names, and the necessity of registers. This simplifies the sanity checks and future extendibility. - Documnetation has been updated to reflect ARC features better. - Although the feature names has changed, there still exists backward compatibility with older names through find_obsolete_[core,aux]_names() functions. The last two points were inspired from RiscV port. [1] https://sourceware.org/pipermail/gdb-patches/2020-May/168511.html gdb/ChangeLog: * arch/arc.h (arc_gdbarch_features): New class to stir the selection of target XML. (arc_create_target_description): Use FEATURES to choose XML target. (arc_lookup_target_description): Use arc_create_target_description to create _new_ target descriptions or return the already created ones if the FEATURES is the same. * arch/arc.c: Implementation of prototypes described above. * gdb/arc-tdep.h (arc_regnum enum): Add more registers. (arc_gdbarch_features_init): Initialize the FEATURES struct. * arc-tdep.c (*_feature_name): Make feature names consistent. (arc_register_feature): A new struct to hold information about registers of a particular target/feature. (arc_check_tdesc_feature): Check if XML provides registers in compliance with ARC_REGISTER_FEATURE structs. (arc_update_acc_reg_names): Add aliases for r58 and r59. (determine_*_reg_feature_set): Which feature name to look for. (arc_gdbarch_features_init): Given MACH and ABFD, initialize FEATURES. (mach_type_to_arc_isa): Convert from a set of binutils machine types to expected ISA enums to be used in arc_gdbarch_features structs. * features/Makefile (FEATURE_XMLFILES): Add new files. * gdb/features/arc/v1-aux.c: New file. * gdb/features/arc/v1-aux.xml: Likewise. * gdb/features/arc/v1-core.c: Likewise. * gdb/features/arc/v1-core.xml: Likewise. * gdb/features/arc/v2-aux.c: Likewise. * gdb/features/arc/v2-aux.xml: Likewise. * gdb/features/arc/v2-core.c: Likewise. * gdb/features/arc/v2-core.xml: Likewise. * NEWS (Changes since GDB 9): Announce obsolence of old feature names. gdb/doc/ChangeLog: * gdb.texinfo (Synopsys ARC): Update the documentation for ARC Features. gdb/testsuite/ChangeLog: * gdb.arch/arc-tdesc-cpu.xml: Use new feature names.
2020-07-09 23:43:13 +08:00
}
2016-08-13 01:02:20 +08:00
arc: Add ARCv2 XML target along with refactoring A few changes have been made to make the register support simpler, more flexible and extendible. The trigger for most of these changes are the remarks [1] made earlier for v2 of this patch. The noticeable improvements are: - The arc XML target features are placed under gdb/features/arc - There are two cores (based on ISA) and one auxiliary feature: v1-core: ARC600, ARC601, ARC700 v2-core: ARC EM, ARC HS aux: common in both - The XML target features represent a minimalistic sane set of registers irrespective of application (baremetal or linux). - A concept of "feature" class has been introduced in the code. The "feature" object is constructed from BFD and GDBARCH data. It contains necessary information (ISA and register size) to determine which XML target feature to use. - A new structure (ARC_REGISTER_FEATURE) is added that allows providing index, names, and the necessity of registers. This simplifies the sanity checks and future extendibility. - Documnetation has been updated to reflect ARC features better. - Although the feature names has changed, there still exists backward compatibility with older names through find_obsolete_[core,aux]_names() functions. The last two points were inspired from RiscV port. [1] https://sourceware.org/pipermail/gdb-patches/2020-May/168511.html gdb/ChangeLog: * arch/arc.h (arc_gdbarch_features): New class to stir the selection of target XML. (arc_create_target_description): Use FEATURES to choose XML target. (arc_lookup_target_description): Use arc_create_target_description to create _new_ target descriptions or return the already created ones if the FEATURES is the same. * arch/arc.c: Implementation of prototypes described above. * gdb/arc-tdep.h (arc_regnum enum): Add more registers. (arc_gdbarch_features_init): Initialize the FEATURES struct. * arc-tdep.c (*_feature_name): Make feature names consistent. (arc_register_feature): A new struct to hold information about registers of a particular target/feature. (arc_check_tdesc_feature): Check if XML provides registers in compliance with ARC_REGISTER_FEATURE structs. (arc_update_acc_reg_names): Add aliases for r58 and r59. (determine_*_reg_feature_set): Which feature name to look for. (arc_gdbarch_features_init): Given MACH and ABFD, initialize FEATURES. (mach_type_to_arc_isa): Convert from a set of binutils machine types to expected ISA enums to be used in arc_gdbarch_features structs. * features/Makefile (FEATURE_XMLFILES): Add new files. * gdb/features/arc/v1-aux.c: New file. * gdb/features/arc/v1-aux.xml: Likewise. * gdb/features/arc/v1-core.c: Likewise. * gdb/features/arc/v1-core.xml: Likewise. * gdb/features/arc/v2-aux.c: Likewise. * gdb/features/arc/v2-aux.xml: Likewise. * gdb/features/arc/v2-core.c: Likewise. * gdb/features/arc/v2-core.xml: Likewise. * NEWS (Changes since GDB 9): Announce obsolence of old feature names. gdb/doc/ChangeLog: * gdb.texinfo (Synopsys ARC): Update the documentation for ARC Features. gdb/testsuite/ChangeLog: * gdb.arch/arc-tdesc-cpu.xml: Use new feature names.
2020-07-09 23:43:13 +08:00
/* At the moment, there is only 1 auxiliary register features set.
This is a place holder for future extendability. */
2016-08-13 01:02:20 +08:00
arc: Add ARCv2 XML target along with refactoring A few changes have been made to make the register support simpler, more flexible and extendible. The trigger for most of these changes are the remarks [1] made earlier for v2 of this patch. The noticeable improvements are: - The arc XML target features are placed under gdb/features/arc - There are two cores (based on ISA) and one auxiliary feature: v1-core: ARC600, ARC601, ARC700 v2-core: ARC EM, ARC HS aux: common in both - The XML target features represent a minimalistic sane set of registers irrespective of application (baremetal or linux). - A concept of "feature" class has been introduced in the code. The "feature" object is constructed from BFD and GDBARCH data. It contains necessary information (ISA and register size) to determine which XML target feature to use. - A new structure (ARC_REGISTER_FEATURE) is added that allows providing index, names, and the necessity of registers. This simplifies the sanity checks and future extendibility. - Documnetation has been updated to reflect ARC features better. - Although the feature names has changed, there still exists backward compatibility with older names through find_obsolete_[core,aux]_names() functions. The last two points were inspired from RiscV port. [1] https://sourceware.org/pipermail/gdb-patches/2020-May/168511.html gdb/ChangeLog: * arch/arc.h (arc_gdbarch_features): New class to stir the selection of target XML. (arc_create_target_description): Use FEATURES to choose XML target. (arc_lookup_target_description): Use arc_create_target_description to create _new_ target descriptions or return the already created ones if the FEATURES is the same. * arch/arc.c: Implementation of prototypes described above. * gdb/arc-tdep.h (arc_regnum enum): Add more registers. (arc_gdbarch_features_init): Initialize the FEATURES struct. * arc-tdep.c (*_feature_name): Make feature names consistent. (arc_register_feature): A new struct to hold information about registers of a particular target/feature. (arc_check_tdesc_feature): Check if XML provides registers in compliance with ARC_REGISTER_FEATURE structs. (arc_update_acc_reg_names): Add aliases for r58 and r59. (determine_*_reg_feature_set): Which feature name to look for. (arc_gdbarch_features_init): Given MACH and ABFD, initialize FEATURES. (mach_type_to_arc_isa): Convert from a set of binutils machine types to expected ISA enums to be used in arc_gdbarch_features structs. * features/Makefile (FEATURE_XMLFILES): Add new files. * gdb/features/arc/v1-aux.c: New file. * gdb/features/arc/v1-aux.xml: Likewise. * gdb/features/arc/v1-core.c: Likewise. * gdb/features/arc/v1-core.xml: Likewise. * gdb/features/arc/v2-aux.c: Likewise. * gdb/features/arc/v2-aux.xml: Likewise. * gdb/features/arc/v2-core.c: Likewise. * gdb/features/arc/v2-core.xml: Likewise. * NEWS (Changes since GDB 9): Announce obsolence of old feature names. gdb/doc/ChangeLog: * gdb.texinfo (Synopsys ARC): Update the documentation for ARC Features. gdb/testsuite/ChangeLog: * gdb.arch/arc-tdesc-cpu.xml: Use new feature names.
2020-07-09 23:43:13 +08:00
static const arc_register_feature *
determine_aux_reg_feature_set ()
{
return &arc_common_aux_reg_feature;
}
2016-08-13 01:02:20 +08:00
arc: Add ARCv2 XML target along with refactoring A few changes have been made to make the register support simpler, more flexible and extendible. The trigger for most of these changes are the remarks [1] made earlier for v2 of this patch. The noticeable improvements are: - The arc XML target features are placed under gdb/features/arc - There are two cores (based on ISA) and one auxiliary feature: v1-core: ARC600, ARC601, ARC700 v2-core: ARC EM, ARC HS aux: common in both - The XML target features represent a minimalistic sane set of registers irrespective of application (baremetal or linux). - A concept of "feature" class has been introduced in the code. The "feature" object is constructed from BFD and GDBARCH data. It contains necessary information (ISA and register size) to determine which XML target feature to use. - A new structure (ARC_REGISTER_FEATURE) is added that allows providing index, names, and the necessity of registers. This simplifies the sanity checks and future extendibility. - Documnetation has been updated to reflect ARC features better. - Although the feature names has changed, there still exists backward compatibility with older names through find_obsolete_[core,aux]_names() functions. The last two points were inspired from RiscV port. [1] https://sourceware.org/pipermail/gdb-patches/2020-May/168511.html gdb/ChangeLog: * arch/arc.h (arc_gdbarch_features): New class to stir the selection of target XML. (arc_create_target_description): Use FEATURES to choose XML target. (arc_lookup_target_description): Use arc_create_target_description to create _new_ target descriptions or return the already created ones if the FEATURES is the same. * arch/arc.c: Implementation of prototypes described above. * gdb/arc-tdep.h (arc_regnum enum): Add more registers. (arc_gdbarch_features_init): Initialize the FEATURES struct. * arc-tdep.c (*_feature_name): Make feature names consistent. (arc_register_feature): A new struct to hold information about registers of a particular target/feature. (arc_check_tdesc_feature): Check if XML provides registers in compliance with ARC_REGISTER_FEATURE structs. (arc_update_acc_reg_names): Add aliases for r58 and r59. (determine_*_reg_feature_set): Which feature name to look for. (arc_gdbarch_features_init): Given MACH and ABFD, initialize FEATURES. (mach_type_to_arc_isa): Convert from a set of binutils machine types to expected ISA enums to be used in arc_gdbarch_features structs. * features/Makefile (FEATURE_XMLFILES): Add new files. * gdb/features/arc/v1-aux.c: New file. * gdb/features/arc/v1-aux.xml: Likewise. * gdb/features/arc/v1-core.c: Likewise. * gdb/features/arc/v1-core.xml: Likewise. * gdb/features/arc/v2-aux.c: Likewise. * gdb/features/arc/v2-aux.xml: Likewise. * gdb/features/arc/v2-core.c: Likewise. * gdb/features/arc/v2-core.xml: Likewise. * NEWS (Changes since GDB 9): Announce obsolence of old feature names. gdb/doc/ChangeLog: * gdb.texinfo (Synopsys ARC): Update the documentation for ARC Features. gdb/testsuite/ChangeLog: * gdb.arch/arc-tdesc-cpu.xml: Use new feature names.
2020-07-09 23:43:13 +08:00
/* Update accumulator register names (ACCH/ACCL) for r58 and r59 in the
register sets. The endianness determines the assignment:
2016-08-13 01:02:20 +08:00
gdb, gdbserver, gdbsupport: fix leading space vs tabs issues Many spots incorrectly use only spaces for indentation (for example, there are a lot of spots in ada-lang.c). I've always found it awkward when I needed to edit one of these spots: do I keep the original wrong indentation, or do I fix it? What if the lines around it are also wrong, do I fix them too? I probably don't want to fix them in the same patch, to avoid adding noise to my patch. So I propose to fix as much as possible once and for all (hopefully). One typical counter argument for this is that it makes code archeology more difficult, because git-blame will show this commit as the last change for these lines. My counter counter argument is: when git-blaming, you often need to do "blame the file at the parent commit" anyway, to go past some other refactor that touched the line you are interested in, but is not the change you are looking for. So you already need a somewhat efficient way to do this. Using some interactive tool, rather than plain git-blame, makes this trivial. For example, I use "tig blame <file>", where going back past the commit that changed the currently selected line is one keystroke. It looks like Magit in Emacs does it too (though I've never used it). Web viewers of Github and Gitlab do it too. My point is that it won't really make archeology more difficult. The other typical counter argument is that it will cause conflicts with existing patches. That's true... but it's a one time cost, and those are not conflicts that are difficult to resolve. I have also tried "git rebase --ignore-whitespace", it seems to work well. Although that will re-introduce the faulty indentation, so one needs to take care of fixing the indentation in the patch after that (which is easy). gdb/ChangeLog: * aarch64-linux-tdep.c: Fix indentation. * aarch64-ravenscar-thread.c: Fix indentation. * aarch64-tdep.c: Fix indentation. * aarch64-tdep.h: Fix indentation. * ada-lang.c: Fix indentation. * ada-lang.h: Fix indentation. * ada-tasks.c: Fix indentation. * ada-typeprint.c: Fix indentation. * ada-valprint.c: Fix indentation. * ada-varobj.c: Fix indentation. * addrmap.c: Fix indentation. * addrmap.h: Fix indentation. * agent.c: Fix indentation. * aix-thread.c: Fix indentation. * alpha-bsd-nat.c: Fix indentation. * alpha-linux-tdep.c: Fix indentation. * alpha-mdebug-tdep.c: Fix indentation. * alpha-nbsd-tdep.c: Fix indentation. * alpha-obsd-tdep.c: Fix indentation. * alpha-tdep.c: Fix indentation. * amd64-bsd-nat.c: Fix indentation. * amd64-darwin-tdep.c: Fix indentation. * amd64-linux-nat.c: Fix indentation. * amd64-linux-tdep.c: Fix indentation. * amd64-nat.c: Fix indentation. * amd64-obsd-tdep.c: Fix indentation. * amd64-tdep.c: Fix indentation. * amd64-windows-tdep.c: Fix indentation. * annotate.c: Fix indentation. * arc-tdep.c: Fix indentation. * arch-utils.c: Fix indentation. * arch/arm-get-next-pcs.c: Fix indentation. * arch/arm.c: Fix indentation. * arm-linux-nat.c: Fix indentation. * arm-linux-tdep.c: Fix indentation. * arm-nbsd-tdep.c: Fix indentation. * arm-pikeos-tdep.c: Fix indentation. * arm-tdep.c: Fix indentation. * arm-tdep.h: Fix indentation. * arm-wince-tdep.c: Fix indentation. * auto-load.c: Fix indentation. * auxv.c: Fix indentation. * avr-tdep.c: Fix indentation. * ax-gdb.c: Fix indentation. * ax-general.c: Fix indentation. * bfin-linux-tdep.c: Fix indentation. * block.c: Fix indentation. * block.h: Fix indentation. * blockframe.c: Fix indentation. * bpf-tdep.c: Fix indentation. * break-catch-sig.c: Fix indentation. * break-catch-syscall.c: Fix indentation. * break-catch-throw.c: Fix indentation. * breakpoint.c: Fix indentation. * breakpoint.h: Fix indentation. * bsd-uthread.c: Fix indentation. * btrace.c: Fix indentation. * build-id.c: Fix indentation. * buildsym-legacy.h: Fix indentation. * buildsym.c: Fix indentation. * c-typeprint.c: Fix indentation. * c-valprint.c: Fix indentation. * c-varobj.c: Fix indentation. * charset.c: Fix indentation. * cli/cli-cmds.c: Fix indentation. * cli/cli-decode.c: Fix indentation. * cli/cli-decode.h: Fix indentation. * cli/cli-script.c: Fix indentation. * cli/cli-setshow.c: Fix indentation. * coff-pe-read.c: Fix indentation. * coffread.c: Fix indentation. * compile/compile-cplus-types.c: Fix indentation. * compile/compile-object-load.c: Fix indentation. * compile/compile-object-run.c: Fix indentation. * completer.c: Fix indentation. * corefile.c: Fix indentation. * corelow.c: Fix indentation. * cp-abi.h: Fix indentation. * cp-namespace.c: Fix indentation. * cp-support.c: Fix indentation. * cp-valprint.c: Fix indentation. * cris-linux-tdep.c: Fix indentation. * cris-tdep.c: Fix indentation. * darwin-nat-info.c: Fix indentation. * darwin-nat.c: Fix indentation. * darwin-nat.h: Fix indentation. * dbxread.c: Fix indentation. * dcache.c: Fix indentation. * disasm.c: Fix indentation. * dtrace-probe.c: Fix indentation. * dwarf2/abbrev.c: Fix indentation. * dwarf2/attribute.c: Fix indentation. * dwarf2/expr.c: Fix indentation. * dwarf2/frame.c: Fix indentation. * dwarf2/index-cache.c: Fix indentation. * dwarf2/index-write.c: Fix indentation. * dwarf2/line-header.c: Fix indentation. * dwarf2/loc.c: Fix indentation. * dwarf2/macro.c: Fix indentation. * dwarf2/read.c: Fix indentation. * dwarf2/read.h: Fix indentation. * elfread.c: Fix indentation. * eval.c: Fix indentation. * event-top.c: Fix indentation. * exec.c: Fix indentation. * exec.h: Fix indentation. * expprint.c: Fix indentation. * f-lang.c: Fix indentation. * f-typeprint.c: Fix indentation. * f-valprint.c: Fix indentation. * fbsd-nat.c: Fix indentation. * fbsd-tdep.c: Fix indentation. * findvar.c: Fix indentation. * fork-child.c: Fix indentation. * frame-unwind.c: Fix indentation. * frame-unwind.h: Fix indentation. * frame.c: Fix indentation. * frv-linux-tdep.c: Fix indentation. * frv-tdep.c: Fix indentation. * frv-tdep.h: Fix indentation. * ft32-tdep.c: Fix indentation. * gcore.c: Fix indentation. * gdb_bfd.c: Fix indentation. * gdbarch.sh: Fix indentation. * gdbarch.c: Re-generate * gdbarch.h: Re-generate. * gdbcore.h: Fix indentation. * gdbthread.h: Fix indentation. * gdbtypes.c: Fix indentation. * gdbtypes.h: Fix indentation. * glibc-tdep.c: Fix indentation. * gnu-nat.c: Fix indentation. * gnu-nat.h: Fix indentation. * gnu-v2-abi.c: Fix indentation. * gnu-v3-abi.c: Fix indentation. * go32-nat.c: Fix indentation. * guile/guile-internal.h: Fix indentation. * guile/scm-cmd.c: Fix indentation. * guile/scm-frame.c: Fix indentation. * guile/scm-iterator.c: Fix indentation. * guile/scm-math.c: Fix indentation. * guile/scm-ports.c: Fix indentation. * guile/scm-pretty-print.c: Fix indentation. * guile/scm-value.c: Fix indentation. * h8300-tdep.c: Fix indentation. * hppa-linux-nat.c: Fix indentation. * hppa-linux-tdep.c: Fix indentation. * hppa-nbsd-nat.c: Fix indentation. * hppa-nbsd-tdep.c: Fix indentation. * hppa-obsd-nat.c: Fix indentation. * hppa-tdep.c: Fix indentation. * hppa-tdep.h: Fix indentation. * i386-bsd-nat.c: Fix indentation. * i386-darwin-nat.c: Fix indentation. * i386-darwin-tdep.c: Fix indentation. * i386-dicos-tdep.c: Fix indentation. * i386-gnu-nat.c: Fix indentation. * i386-linux-nat.c: Fix indentation. * i386-linux-tdep.c: Fix indentation. * i386-nto-tdep.c: Fix indentation. * i386-obsd-tdep.c: Fix indentation. * i386-sol2-nat.c: Fix indentation. * i386-tdep.c: Fix indentation. * i386-tdep.h: Fix indentation. * i386-windows-tdep.c: Fix indentation. * i387-tdep.c: Fix indentation. * i387-tdep.h: Fix indentation. * ia64-libunwind-tdep.c: Fix indentation. * ia64-libunwind-tdep.h: Fix indentation. * ia64-linux-nat.c: Fix indentation. * ia64-linux-tdep.c: Fix indentation. * ia64-tdep.c: Fix indentation. * ia64-tdep.h: Fix indentation. * ia64-vms-tdep.c: Fix indentation. * infcall.c: Fix indentation. * infcmd.c: Fix indentation. * inferior.c: Fix indentation. * infrun.c: Fix indentation. * iq2000-tdep.c: Fix indentation. * language.c: Fix indentation. * linespec.c: Fix indentation. * linux-fork.c: Fix indentation. * linux-nat.c: Fix indentation. * linux-tdep.c: Fix indentation. * linux-thread-db.c: Fix indentation. * lm32-tdep.c: Fix indentation. * m2-lang.c: Fix indentation. * m2-typeprint.c: Fix indentation. * m2-valprint.c: Fix indentation. * m32c-tdep.c: Fix indentation. * m32r-linux-tdep.c: Fix indentation. * m32r-tdep.c: Fix indentation. * m68hc11-tdep.c: Fix indentation. * m68k-bsd-nat.c: Fix indentation. * m68k-linux-nat.c: Fix indentation. * m68k-linux-tdep.c: Fix indentation. * m68k-tdep.c: Fix indentation. * machoread.c: Fix indentation. * macrocmd.c: Fix indentation. * macroexp.c: Fix indentation. * macroscope.c: Fix indentation. * macrotab.c: Fix indentation. * macrotab.h: Fix indentation. * main.c: Fix indentation. * mdebugread.c: Fix indentation. * mep-tdep.c: Fix indentation. * mi/mi-cmd-catch.c: Fix indentation. * mi/mi-cmd-disas.c: Fix indentation. * mi/mi-cmd-env.c: Fix indentation. * mi/mi-cmd-stack.c: Fix indentation. * mi/mi-cmd-var.c: Fix indentation. * mi/mi-cmds.c: Fix indentation. * mi/mi-main.c: Fix indentation. * mi/mi-parse.c: Fix indentation. * microblaze-tdep.c: Fix indentation. * minidebug.c: Fix indentation. * minsyms.c: Fix indentation. * mips-linux-nat.c: Fix indentation. * mips-linux-tdep.c: Fix indentation. * mips-nbsd-tdep.c: Fix indentation. * mips-tdep.c: Fix indentation. * mn10300-linux-tdep.c: Fix indentation. * mn10300-tdep.c: Fix indentation. * moxie-tdep.c: Fix indentation. * msp430-tdep.c: Fix indentation. * namespace.h: Fix indentation. * nat/fork-inferior.c: Fix indentation. * nat/gdb_ptrace.h: Fix indentation. * nat/linux-namespaces.c: Fix indentation. * nat/linux-osdata.c: Fix indentation. * nat/netbsd-nat.c: Fix indentation. * nat/x86-dregs.c: Fix indentation. * nbsd-nat.c: Fix indentation. * nbsd-tdep.c: Fix indentation. * nios2-linux-tdep.c: Fix indentation. * nios2-tdep.c: Fix indentation. * nto-procfs.c: Fix indentation. * nto-tdep.c: Fix indentation. * objfiles.c: Fix indentation. * objfiles.h: Fix indentation. * opencl-lang.c: Fix indentation. * or1k-tdep.c: Fix indentation. * osabi.c: Fix indentation. * osabi.h: Fix indentation. * osdata.c: Fix indentation. * p-lang.c: Fix indentation. * p-typeprint.c: Fix indentation. * p-valprint.c: Fix indentation. * parse.c: Fix indentation. * ppc-linux-nat.c: Fix indentation. * ppc-linux-tdep.c: Fix indentation. * ppc-nbsd-nat.c: Fix indentation. * ppc-nbsd-tdep.c: Fix indentation. * ppc-obsd-nat.c: Fix indentation. * ppc-ravenscar-thread.c: Fix indentation. * ppc-sysv-tdep.c: Fix indentation. * ppc64-tdep.c: Fix indentation. * printcmd.c: Fix indentation. * proc-api.c: Fix indentation. * producer.c: Fix indentation. * producer.h: Fix indentation. * prologue-value.c: Fix indentation. * prologue-value.h: Fix indentation. * psymtab.c: Fix indentation. * python/py-arch.c: Fix indentation. * python/py-bpevent.c: Fix indentation. * python/py-event.c: Fix indentation. * python/py-event.h: Fix indentation. * python/py-finishbreakpoint.c: Fix indentation. * python/py-frame.c: Fix indentation. * python/py-framefilter.c: Fix indentation. * python/py-inferior.c: Fix indentation. * python/py-infthread.c: Fix indentation. * python/py-objfile.c: Fix indentation. * python/py-prettyprint.c: Fix indentation. * python/py-registers.c: Fix indentation. * python/py-signalevent.c: Fix indentation. * python/py-stopevent.c: Fix indentation. * python/py-stopevent.h: Fix indentation. * python/py-threadevent.c: Fix indentation. * python/py-tui.c: Fix indentation. * python/py-unwind.c: Fix indentation. * python/py-value.c: Fix indentation. * python/py-xmethods.c: Fix indentation. * python/python-internal.h: Fix indentation. * python/python.c: Fix indentation. * ravenscar-thread.c: Fix indentation. * record-btrace.c: Fix indentation. * record-full.c: Fix indentation. * record.c: Fix indentation. * reggroups.c: Fix indentation. * regset.h: Fix indentation. * remote-fileio.c: Fix indentation. * remote.c: Fix indentation. * reverse.c: Fix indentation. * riscv-linux-tdep.c: Fix indentation. * riscv-ravenscar-thread.c: Fix indentation. * riscv-tdep.c: Fix indentation. * rl78-tdep.c: Fix indentation. * rs6000-aix-tdep.c: Fix indentation. * rs6000-lynx178-tdep.c: Fix indentation. * rs6000-nat.c: Fix indentation. * rs6000-tdep.c: Fix indentation. * rust-lang.c: Fix indentation. * rx-tdep.c: Fix indentation. * s12z-tdep.c: Fix indentation. * s390-linux-tdep.c: Fix indentation. * score-tdep.c: Fix indentation. * ser-base.c: Fix indentation. * ser-mingw.c: Fix indentation. * ser-uds.c: Fix indentation. * ser-unix.c: Fix indentation. * serial.c: Fix indentation. * sh-linux-tdep.c: Fix indentation. * sh-nbsd-tdep.c: Fix indentation. * sh-tdep.c: Fix indentation. * skip.c: Fix indentation. * sol-thread.c: Fix indentation. * solib-aix.c: Fix indentation. * solib-darwin.c: Fix indentation. * solib-frv.c: Fix indentation. * solib-svr4.c: Fix indentation. * solib.c: Fix indentation. * source.c: Fix indentation. * sparc-linux-tdep.c: Fix indentation. * sparc-nbsd-tdep.c: Fix indentation. * sparc-obsd-tdep.c: Fix indentation. * sparc-ravenscar-thread.c: Fix indentation. * sparc-tdep.c: Fix indentation. * sparc64-linux-tdep.c: Fix indentation. * sparc64-nbsd-tdep.c: Fix indentation. * sparc64-obsd-tdep.c: Fix indentation. * sparc64-tdep.c: Fix indentation. * stabsread.c: Fix indentation. * stack.c: Fix indentation. * stap-probe.c: Fix indentation. * stubs/ia64vms-stub.c: Fix indentation. * stubs/m32r-stub.c: Fix indentation. * stubs/m68k-stub.c: Fix indentation. * stubs/sh-stub.c: Fix indentation. * stubs/sparc-stub.c: Fix indentation. * symfile-mem.c: Fix indentation. * symfile.c: Fix indentation. * symfile.h: Fix indentation. * symmisc.c: Fix indentation. * symtab.c: Fix indentation. * symtab.h: Fix indentation. * target-float.c: Fix indentation. * target.c: Fix indentation. * target.h: Fix indentation. * tic6x-tdep.c: Fix indentation. * tilegx-linux-tdep.c: Fix indentation. * tilegx-tdep.c: Fix indentation. * top.c: Fix indentation. * tracefile-tfile.c: Fix indentation. * tracepoint.c: Fix indentation. * tui/tui-disasm.c: Fix indentation. * tui/tui-io.c: Fix indentation. * tui/tui-regs.c: Fix indentation. * tui/tui-stack.c: Fix indentation. * tui/tui-win.c: Fix indentation. * tui/tui-winsource.c: Fix indentation. * tui/tui.c: Fix indentation. * typeprint.c: Fix indentation. * ui-out.h: Fix indentation. * unittests/copy_bitwise-selftests.c: Fix indentation. * unittests/memory-map-selftests.c: Fix indentation. * utils.c: Fix indentation. * v850-tdep.c: Fix indentation. * valarith.c: Fix indentation. * valops.c: Fix indentation. * valprint.c: Fix indentation. * valprint.h: Fix indentation. * value.c: Fix indentation. * value.h: Fix indentation. * varobj.c: Fix indentation. * vax-tdep.c: Fix indentation. * windows-nat.c: Fix indentation. * windows-tdep.c: Fix indentation. * xcoffread.c: Fix indentation. * xml-syscall.c: Fix indentation. * xml-tdesc.c: Fix indentation. * xstormy16-tdep.c: Fix indentation. * xtensa-config.c: Fix indentation. * xtensa-linux-nat.c: Fix indentation. * xtensa-linux-tdep.c: Fix indentation. * xtensa-tdep.c: Fix indentation. gdbserver/ChangeLog: * ax.cc: Fix indentation. * dll.cc: Fix indentation. * inferiors.h: Fix indentation. * linux-low.cc: Fix indentation. * linux-nios2-low.cc: Fix indentation. * linux-ppc-ipa.cc: Fix indentation. * linux-ppc-low.cc: Fix indentation. * linux-x86-low.cc: Fix indentation. * linux-xtensa-low.cc: Fix indentation. * regcache.cc: Fix indentation. * server.cc: Fix indentation. * tracepoint.cc: Fix indentation. gdbsupport/ChangeLog: * common-exceptions.h: Fix indentation. * event-loop.cc: Fix indentation. * fileio.cc: Fix indentation. * filestuff.cc: Fix indentation. * gdb-dlfcn.cc: Fix indentation. * gdb_string_view.h: Fix indentation. * job-control.cc: Fix indentation. * signals.cc: Fix indentation. Change-Id: I4bad7ae6be0fbe14168b8ebafb98ffe14964a695
2020-11-02 23:26:14 +08:00
,------.------.
| acch | accl |
arc: Add ARCv2 XML target along with refactoring A few changes have been made to make the register support simpler, more flexible and extendible. The trigger for most of these changes are the remarks [1] made earlier for v2 of this patch. The noticeable improvements are: - The arc XML target features are placed under gdb/features/arc - There are two cores (based on ISA) and one auxiliary feature: v1-core: ARC600, ARC601, ARC700 v2-core: ARC EM, ARC HS aux: common in both - The XML target features represent a minimalistic sane set of registers irrespective of application (baremetal or linux). - A concept of "feature" class has been introduced in the code. The "feature" object is constructed from BFD and GDBARCH data. It contains necessary information (ISA and register size) to determine which XML target feature to use. - A new structure (ARC_REGISTER_FEATURE) is added that allows providing index, names, and the necessity of registers. This simplifies the sanity checks and future extendibility. - Documnetation has been updated to reflect ARC features better. - Although the feature names has changed, there still exists backward compatibility with older names through find_obsolete_[core,aux]_names() functions. The last two points were inspired from RiscV port. [1] https://sourceware.org/pipermail/gdb-patches/2020-May/168511.html gdb/ChangeLog: * arch/arc.h (arc_gdbarch_features): New class to stir the selection of target XML. (arc_create_target_description): Use FEATURES to choose XML target. (arc_lookup_target_description): Use arc_create_target_description to create _new_ target descriptions or return the already created ones if the FEATURES is the same. * arch/arc.c: Implementation of prototypes described above. * gdb/arc-tdep.h (arc_regnum enum): Add more registers. (arc_gdbarch_features_init): Initialize the FEATURES struct. * arc-tdep.c (*_feature_name): Make feature names consistent. (arc_register_feature): A new struct to hold information about registers of a particular target/feature. (arc_check_tdesc_feature): Check if XML provides registers in compliance with ARC_REGISTER_FEATURE structs. (arc_update_acc_reg_names): Add aliases for r58 and r59. (determine_*_reg_feature_set): Which feature name to look for. (arc_gdbarch_features_init): Given MACH and ABFD, initialize FEATURES. (mach_type_to_arc_isa): Convert from a set of binutils machine types to expected ISA enums to be used in arc_gdbarch_features structs. * features/Makefile (FEATURE_XMLFILES): Add new files. * gdb/features/arc/v1-aux.c: New file. * gdb/features/arc/v1-aux.xml: Likewise. * gdb/features/arc/v1-core.c: Likewise. * gdb/features/arc/v1-core.xml: Likewise. * gdb/features/arc/v2-aux.c: Likewise. * gdb/features/arc/v2-aux.xml: Likewise. * gdb/features/arc/v2-core.c: Likewise. * gdb/features/arc/v2-core.xml: Likewise. * NEWS (Changes since GDB 9): Announce obsolence of old feature names. gdb/doc/ChangeLog: * gdb.texinfo (Synopsys ARC): Update the documentation for ARC Features. gdb/testsuite/ChangeLog: * gdb.arch/arc-tdesc-cpu.xml: Use new feature names.
2020-07-09 23:43:13 +08:00
,----|------+------|
| LE | r59 | r58 |
| BE | r58 | r59 |
`----^------^------' */
static void
arc_update_acc_reg_names (const int byte_order)
{
const char *r58_alias
= byte_order == BFD_ENDIAN_LITTLE ? "accl" : "acch";
const char *r59_alias
= byte_order == BFD_ENDIAN_LITTLE ? "acch" : "accl";
/* Subscript 1 must be OK because those registers have 2 names. */
arc_v1_core_reg_feature.registers[ARC_R58_REGNUM].names[1] = r58_alias;
arc_v1_core_reg_feature.registers[ARC_R59_REGNUM].names[1] = r59_alias;
arc_v2_core_reg_feature.registers[ARC_R58_REGNUM].names[1] = r58_alias;
arc_v2_core_reg_feature.registers[ARC_R59_REGNUM].names[1] = r59_alias;
}
/* Go through all the registers in REG_SET and check if they exist
in FEATURE. The TDESC_DATA is updated with the register number
in REG_SET if it is found in the feature. If a required register
is not found, this function returns false. */
static bool
arc_check_tdesc_feature (struct tdesc_arch_data *tdesc_data,
const struct tdesc_feature *feature,
const struct arc_register_feature *reg_set)
{
for (const auto &reg : reg_set->registers)
2016-08-13 01:02:20 +08:00
{
arc: Add ARCv2 XML target along with refactoring A few changes have been made to make the register support simpler, more flexible and extendible. The trigger for most of these changes are the remarks [1] made earlier for v2 of this patch. The noticeable improvements are: - The arc XML target features are placed under gdb/features/arc - There are two cores (based on ISA) and one auxiliary feature: v1-core: ARC600, ARC601, ARC700 v2-core: ARC EM, ARC HS aux: common in both - The XML target features represent a minimalistic sane set of registers irrespective of application (baremetal or linux). - A concept of "feature" class has been introduced in the code. The "feature" object is constructed from BFD and GDBARCH data. It contains necessary information (ISA and register size) to determine which XML target feature to use. - A new structure (ARC_REGISTER_FEATURE) is added that allows providing index, names, and the necessity of registers. This simplifies the sanity checks and future extendibility. - Documnetation has been updated to reflect ARC features better. - Although the feature names has changed, there still exists backward compatibility with older names through find_obsolete_[core,aux]_names() functions. The last two points were inspired from RiscV port. [1] https://sourceware.org/pipermail/gdb-patches/2020-May/168511.html gdb/ChangeLog: * arch/arc.h (arc_gdbarch_features): New class to stir the selection of target XML. (arc_create_target_description): Use FEATURES to choose XML target. (arc_lookup_target_description): Use arc_create_target_description to create _new_ target descriptions or return the already created ones if the FEATURES is the same. * arch/arc.c: Implementation of prototypes described above. * gdb/arc-tdep.h (arc_regnum enum): Add more registers. (arc_gdbarch_features_init): Initialize the FEATURES struct. * arc-tdep.c (*_feature_name): Make feature names consistent. (arc_register_feature): A new struct to hold information about registers of a particular target/feature. (arc_check_tdesc_feature): Check if XML provides registers in compliance with ARC_REGISTER_FEATURE structs. (arc_update_acc_reg_names): Add aliases for r58 and r59. (determine_*_reg_feature_set): Which feature name to look for. (arc_gdbarch_features_init): Given MACH and ABFD, initialize FEATURES. (mach_type_to_arc_isa): Convert from a set of binutils machine types to expected ISA enums to be used in arc_gdbarch_features structs. * features/Makefile (FEATURE_XMLFILES): Add new files. * gdb/features/arc/v1-aux.c: New file. * gdb/features/arc/v1-aux.xml: Likewise. * gdb/features/arc/v1-core.c: Likewise. * gdb/features/arc/v1-core.xml: Likewise. * gdb/features/arc/v2-aux.c: Likewise. * gdb/features/arc/v2-aux.xml: Likewise. * gdb/features/arc/v2-core.c: Likewise. * gdb/features/arc/v2-core.xml: Likewise. * NEWS (Changes since GDB 9): Announce obsolence of old feature names. gdb/doc/ChangeLog: * gdb.texinfo (Synopsys ARC): Update the documentation for ARC Features. gdb/testsuite/ChangeLog: * gdb.arch/arc-tdesc-cpu.xml: Use new feature names.
2020-07-09 23:43:13 +08:00
bool found = false;
for (const char *name : reg.names)
2016-08-13 01:02:20 +08:00
{
arc: Add ARCv2 XML target along with refactoring A few changes have been made to make the register support simpler, more flexible and extendible. The trigger for most of these changes are the remarks [1] made earlier for v2 of this patch. The noticeable improvements are: - The arc XML target features are placed under gdb/features/arc - There are two cores (based on ISA) and one auxiliary feature: v1-core: ARC600, ARC601, ARC700 v2-core: ARC EM, ARC HS aux: common in both - The XML target features represent a minimalistic sane set of registers irrespective of application (baremetal or linux). - A concept of "feature" class has been introduced in the code. The "feature" object is constructed from BFD and GDBARCH data. It contains necessary information (ISA and register size) to determine which XML target feature to use. - A new structure (ARC_REGISTER_FEATURE) is added that allows providing index, names, and the necessity of registers. This simplifies the sanity checks and future extendibility. - Documnetation has been updated to reflect ARC features better. - Although the feature names has changed, there still exists backward compatibility with older names through find_obsolete_[core,aux]_names() functions. The last two points were inspired from RiscV port. [1] https://sourceware.org/pipermail/gdb-patches/2020-May/168511.html gdb/ChangeLog: * arch/arc.h (arc_gdbarch_features): New class to stir the selection of target XML. (arc_create_target_description): Use FEATURES to choose XML target. (arc_lookup_target_description): Use arc_create_target_description to create _new_ target descriptions or return the already created ones if the FEATURES is the same. * arch/arc.c: Implementation of prototypes described above. * gdb/arc-tdep.h (arc_regnum enum): Add more registers. (arc_gdbarch_features_init): Initialize the FEATURES struct. * arc-tdep.c (*_feature_name): Make feature names consistent. (arc_register_feature): A new struct to hold information about registers of a particular target/feature. (arc_check_tdesc_feature): Check if XML provides registers in compliance with ARC_REGISTER_FEATURE structs. (arc_update_acc_reg_names): Add aliases for r58 and r59. (determine_*_reg_feature_set): Which feature name to look for. (arc_gdbarch_features_init): Given MACH and ABFD, initialize FEATURES. (mach_type_to_arc_isa): Convert from a set of binutils machine types to expected ISA enums to be used in arc_gdbarch_features structs. * features/Makefile (FEATURE_XMLFILES): Add new files. * gdb/features/arc/v1-aux.c: New file. * gdb/features/arc/v1-aux.xml: Likewise. * gdb/features/arc/v1-core.c: Likewise. * gdb/features/arc/v1-core.xml: Likewise. * gdb/features/arc/v2-aux.c: Likewise. * gdb/features/arc/v2-aux.xml: Likewise. * gdb/features/arc/v2-core.c: Likewise. * gdb/features/arc/v2-core.xml: Likewise. * NEWS (Changes since GDB 9): Announce obsolence of old feature names. gdb/doc/ChangeLog: * gdb.texinfo (Synopsys ARC): Update the documentation for ARC Features. gdb/testsuite/ChangeLog: * gdb.arch/arc-tdesc-cpu.xml: Use new feature names.
2020-07-09 23:43:13 +08:00
found
= tdesc_numbered_register (feature, tdesc_data, reg.regnum, name);
2016-08-13 01:02:20 +08:00
arc: Add ARCv2 XML target along with refactoring A few changes have been made to make the register support simpler, more flexible and extendible. The trigger for most of these changes are the remarks [1] made earlier for v2 of this patch. The noticeable improvements are: - The arc XML target features are placed under gdb/features/arc - There are two cores (based on ISA) and one auxiliary feature: v1-core: ARC600, ARC601, ARC700 v2-core: ARC EM, ARC HS aux: common in both - The XML target features represent a minimalistic sane set of registers irrespective of application (baremetal or linux). - A concept of "feature" class has been introduced in the code. The "feature" object is constructed from BFD and GDBARCH data. It contains necessary information (ISA and register size) to determine which XML target feature to use. - A new structure (ARC_REGISTER_FEATURE) is added that allows providing index, names, and the necessity of registers. This simplifies the sanity checks and future extendibility. - Documnetation has been updated to reflect ARC features better. - Although the feature names has changed, there still exists backward compatibility with older names through find_obsolete_[core,aux]_names() functions. The last two points were inspired from RiscV port. [1] https://sourceware.org/pipermail/gdb-patches/2020-May/168511.html gdb/ChangeLog: * arch/arc.h (arc_gdbarch_features): New class to stir the selection of target XML. (arc_create_target_description): Use FEATURES to choose XML target. (arc_lookup_target_description): Use arc_create_target_description to create _new_ target descriptions or return the already created ones if the FEATURES is the same. * arch/arc.c: Implementation of prototypes described above. * gdb/arc-tdep.h (arc_regnum enum): Add more registers. (arc_gdbarch_features_init): Initialize the FEATURES struct. * arc-tdep.c (*_feature_name): Make feature names consistent. (arc_register_feature): A new struct to hold information about registers of a particular target/feature. (arc_check_tdesc_feature): Check if XML provides registers in compliance with ARC_REGISTER_FEATURE structs. (arc_update_acc_reg_names): Add aliases for r58 and r59. (determine_*_reg_feature_set): Which feature name to look for. (arc_gdbarch_features_init): Given MACH and ABFD, initialize FEATURES. (mach_type_to_arc_isa): Convert from a set of binutils machine types to expected ISA enums to be used in arc_gdbarch_features structs. * features/Makefile (FEATURE_XMLFILES): Add new files. * gdb/features/arc/v1-aux.c: New file. * gdb/features/arc/v1-aux.xml: Likewise. * gdb/features/arc/v1-core.c: Likewise. * gdb/features/arc/v1-core.xml: Likewise. * gdb/features/arc/v2-aux.c: Likewise. * gdb/features/arc/v2-aux.xml: Likewise. * gdb/features/arc/v2-core.c: Likewise. * gdb/features/arc/v2-core.xml: Likewise. * NEWS (Changes since GDB 9): Announce obsolence of old feature names. gdb/doc/ChangeLog: * gdb.texinfo (Synopsys ARC): Update the documentation for ARC Features. gdb/testsuite/ChangeLog: * gdb.arch/arc-tdesc-cpu.xml: Use new feature names.
2020-07-09 23:43:13 +08:00
if (found)
break;
2016-08-13 01:02:20 +08:00
}
arc: Add ARCv2 XML target along with refactoring A few changes have been made to make the register support simpler, more flexible and extendible. The trigger for most of these changes are the remarks [1] made earlier for v2 of this patch. The noticeable improvements are: - The arc XML target features are placed under gdb/features/arc - There are two cores (based on ISA) and one auxiliary feature: v1-core: ARC600, ARC601, ARC700 v2-core: ARC EM, ARC HS aux: common in both - The XML target features represent a minimalistic sane set of registers irrespective of application (baremetal or linux). - A concept of "feature" class has been introduced in the code. The "feature" object is constructed from BFD and GDBARCH data. It contains necessary information (ISA and register size) to determine which XML target feature to use. - A new structure (ARC_REGISTER_FEATURE) is added that allows providing index, names, and the necessity of registers. This simplifies the sanity checks and future extendibility. - Documnetation has been updated to reflect ARC features better. - Although the feature names has changed, there still exists backward compatibility with older names through find_obsolete_[core,aux]_names() functions. The last two points were inspired from RiscV port. [1] https://sourceware.org/pipermail/gdb-patches/2020-May/168511.html gdb/ChangeLog: * arch/arc.h (arc_gdbarch_features): New class to stir the selection of target XML. (arc_create_target_description): Use FEATURES to choose XML target. (arc_lookup_target_description): Use arc_create_target_description to create _new_ target descriptions or return the already created ones if the FEATURES is the same. * arch/arc.c: Implementation of prototypes described above. * gdb/arc-tdep.h (arc_regnum enum): Add more registers. (arc_gdbarch_features_init): Initialize the FEATURES struct. * arc-tdep.c (*_feature_name): Make feature names consistent. (arc_register_feature): A new struct to hold information about registers of a particular target/feature. (arc_check_tdesc_feature): Check if XML provides registers in compliance with ARC_REGISTER_FEATURE structs. (arc_update_acc_reg_names): Add aliases for r58 and r59. (determine_*_reg_feature_set): Which feature name to look for. (arc_gdbarch_features_init): Given MACH and ABFD, initialize FEATURES. (mach_type_to_arc_isa): Convert from a set of binutils machine types to expected ISA enums to be used in arc_gdbarch_features structs. * features/Makefile (FEATURE_XMLFILES): Add new files. * gdb/features/arc/v1-aux.c: New file. * gdb/features/arc/v1-aux.xml: Likewise. * gdb/features/arc/v1-core.c: Likewise. * gdb/features/arc/v1-core.xml: Likewise. * gdb/features/arc/v2-aux.c: Likewise. * gdb/features/arc/v2-aux.xml: Likewise. * gdb/features/arc/v2-core.c: Likewise. * gdb/features/arc/v2-core.xml: Likewise. * NEWS (Changes since GDB 9): Announce obsolence of old feature names. gdb/doc/ChangeLog: * gdb.texinfo (Synopsys ARC): Update the documentation for ARC Features. gdb/testsuite/ChangeLog: * gdb.arch/arc-tdesc-cpu.xml: Use new feature names.
2020-07-09 23:43:13 +08:00
if (!found && reg.required_p)
2016-08-13 01:02:20 +08:00
{
arc: Add ARCv2 XML target along with refactoring A few changes have been made to make the register support simpler, more flexible and extendible. The trigger for most of these changes are the remarks [1] made earlier for v2 of this patch. The noticeable improvements are: - The arc XML target features are placed under gdb/features/arc - There are two cores (based on ISA) and one auxiliary feature: v1-core: ARC600, ARC601, ARC700 v2-core: ARC EM, ARC HS aux: common in both - The XML target features represent a minimalistic sane set of registers irrespective of application (baremetal or linux). - A concept of "feature" class has been introduced in the code. The "feature" object is constructed from BFD and GDBARCH data. It contains necessary information (ISA and register size) to determine which XML target feature to use. - A new structure (ARC_REGISTER_FEATURE) is added that allows providing index, names, and the necessity of registers. This simplifies the sanity checks and future extendibility. - Documnetation has been updated to reflect ARC features better. - Although the feature names has changed, there still exists backward compatibility with older names through find_obsolete_[core,aux]_names() functions. The last two points were inspired from RiscV port. [1] https://sourceware.org/pipermail/gdb-patches/2020-May/168511.html gdb/ChangeLog: * arch/arc.h (arc_gdbarch_features): New class to stir the selection of target XML. (arc_create_target_description): Use FEATURES to choose XML target. (arc_lookup_target_description): Use arc_create_target_description to create _new_ target descriptions or return the already created ones if the FEATURES is the same. * arch/arc.c: Implementation of prototypes described above. * gdb/arc-tdep.h (arc_regnum enum): Add more registers. (arc_gdbarch_features_init): Initialize the FEATURES struct. * arc-tdep.c (*_feature_name): Make feature names consistent. (arc_register_feature): A new struct to hold information about registers of a particular target/feature. (arc_check_tdesc_feature): Check if XML provides registers in compliance with ARC_REGISTER_FEATURE structs. (arc_update_acc_reg_names): Add aliases for r58 and r59. (determine_*_reg_feature_set): Which feature name to look for. (arc_gdbarch_features_init): Given MACH and ABFD, initialize FEATURES. (mach_type_to_arc_isa): Convert from a set of binutils machine types to expected ISA enums to be used in arc_gdbarch_features structs. * features/Makefile (FEATURE_XMLFILES): Add new files. * gdb/features/arc/v1-aux.c: New file. * gdb/features/arc/v1-aux.xml: Likewise. * gdb/features/arc/v1-core.c: Likewise. * gdb/features/arc/v1-core.xml: Likewise. * gdb/features/arc/v2-aux.c: Likewise. * gdb/features/arc/v2-aux.xml: Likewise. * gdb/features/arc/v2-core.c: Likewise. * gdb/features/arc/v2-core.xml: Likewise. * NEWS (Changes since GDB 9): Announce obsolence of old feature names. gdb/doc/ChangeLog: * gdb.texinfo (Synopsys ARC): Update the documentation for ARC Features. gdb/testsuite/ChangeLog: * gdb.arch/arc-tdesc-cpu.xml: Use new feature names.
2020-07-09 23:43:13 +08:00
std::ostringstream reg_names;
for (std::size_t i = 0; i < reg.names.size(); ++i)
2016-08-13 01:02:20 +08:00
{
arc: Add ARCv2 XML target along with refactoring A few changes have been made to make the register support simpler, more flexible and extendible. The trigger for most of these changes are the remarks [1] made earlier for v2 of this patch. The noticeable improvements are: - The arc XML target features are placed under gdb/features/arc - There are two cores (based on ISA) and one auxiliary feature: v1-core: ARC600, ARC601, ARC700 v2-core: ARC EM, ARC HS aux: common in both - The XML target features represent a minimalistic sane set of registers irrespective of application (baremetal or linux). - A concept of "feature" class has been introduced in the code. The "feature" object is constructed from BFD and GDBARCH data. It contains necessary information (ISA and register size) to determine which XML target feature to use. - A new structure (ARC_REGISTER_FEATURE) is added that allows providing index, names, and the necessity of registers. This simplifies the sanity checks and future extendibility. - Documnetation has been updated to reflect ARC features better. - Although the feature names has changed, there still exists backward compatibility with older names through find_obsolete_[core,aux]_names() functions. The last two points were inspired from RiscV port. [1] https://sourceware.org/pipermail/gdb-patches/2020-May/168511.html gdb/ChangeLog: * arch/arc.h (arc_gdbarch_features): New class to stir the selection of target XML. (arc_create_target_description): Use FEATURES to choose XML target. (arc_lookup_target_description): Use arc_create_target_description to create _new_ target descriptions or return the already created ones if the FEATURES is the same. * arch/arc.c: Implementation of prototypes described above. * gdb/arc-tdep.h (arc_regnum enum): Add more registers. (arc_gdbarch_features_init): Initialize the FEATURES struct. * arc-tdep.c (*_feature_name): Make feature names consistent. (arc_register_feature): A new struct to hold information about registers of a particular target/feature. (arc_check_tdesc_feature): Check if XML provides registers in compliance with ARC_REGISTER_FEATURE structs. (arc_update_acc_reg_names): Add aliases for r58 and r59. (determine_*_reg_feature_set): Which feature name to look for. (arc_gdbarch_features_init): Given MACH and ABFD, initialize FEATURES. (mach_type_to_arc_isa): Convert from a set of binutils machine types to expected ISA enums to be used in arc_gdbarch_features structs. * features/Makefile (FEATURE_XMLFILES): Add new files. * gdb/features/arc/v1-aux.c: New file. * gdb/features/arc/v1-aux.xml: Likewise. * gdb/features/arc/v1-core.c: Likewise. * gdb/features/arc/v1-core.xml: Likewise. * gdb/features/arc/v2-aux.c: Likewise. * gdb/features/arc/v2-aux.xml: Likewise. * gdb/features/arc/v2-core.c: Likewise. * gdb/features/arc/v2-core.xml: Likewise. * NEWS (Changes since GDB 9): Announce obsolence of old feature names. gdb/doc/ChangeLog: * gdb.texinfo (Synopsys ARC): Update the documentation for ARC Features. gdb/testsuite/ChangeLog: * gdb.arch/arc-tdesc-cpu.xml: Use new feature names.
2020-07-09 23:43:13 +08:00
if (i == 0)
reg_names << "'" << reg.names[0] << "'";
else
reg_names << " or '" << reg.names[0] << "'";
2016-08-13 01:02:20 +08:00
}
arc: Add ARCv2 XML target along with refactoring A few changes have been made to make the register support simpler, more flexible and extendible. The trigger for most of these changes are the remarks [1] made earlier for v2 of this patch. The noticeable improvements are: - The arc XML target features are placed under gdb/features/arc - There are two cores (based on ISA) and one auxiliary feature: v1-core: ARC600, ARC601, ARC700 v2-core: ARC EM, ARC HS aux: common in both - The XML target features represent a minimalistic sane set of registers irrespective of application (baremetal or linux). - A concept of "feature" class has been introduced in the code. The "feature" object is constructed from BFD and GDBARCH data. It contains necessary information (ISA and register size) to determine which XML target feature to use. - A new structure (ARC_REGISTER_FEATURE) is added that allows providing index, names, and the necessity of registers. This simplifies the sanity checks and future extendibility. - Documnetation has been updated to reflect ARC features better. - Although the feature names has changed, there still exists backward compatibility with older names through find_obsolete_[core,aux]_names() functions. The last two points were inspired from RiscV port. [1] https://sourceware.org/pipermail/gdb-patches/2020-May/168511.html gdb/ChangeLog: * arch/arc.h (arc_gdbarch_features): New class to stir the selection of target XML. (arc_create_target_description): Use FEATURES to choose XML target. (arc_lookup_target_description): Use arc_create_target_description to create _new_ target descriptions or return the already created ones if the FEATURES is the same. * arch/arc.c: Implementation of prototypes described above. * gdb/arc-tdep.h (arc_regnum enum): Add more registers. (arc_gdbarch_features_init): Initialize the FEATURES struct. * arc-tdep.c (*_feature_name): Make feature names consistent. (arc_register_feature): A new struct to hold information about registers of a particular target/feature. (arc_check_tdesc_feature): Check if XML provides registers in compliance with ARC_REGISTER_FEATURE structs. (arc_update_acc_reg_names): Add aliases for r58 and r59. (determine_*_reg_feature_set): Which feature name to look for. (arc_gdbarch_features_init): Given MACH and ABFD, initialize FEATURES. (mach_type_to_arc_isa): Convert from a set of binutils machine types to expected ISA enums to be used in arc_gdbarch_features structs. * features/Makefile (FEATURE_XMLFILES): Add new files. * gdb/features/arc/v1-aux.c: New file. * gdb/features/arc/v1-aux.xml: Likewise. * gdb/features/arc/v1-core.c: Likewise. * gdb/features/arc/v1-core.xml: Likewise. * gdb/features/arc/v2-aux.c: Likewise. * gdb/features/arc/v2-aux.xml: Likewise. * gdb/features/arc/v2-core.c: Likewise. * gdb/features/arc/v2-core.xml: Likewise. * NEWS (Changes since GDB 9): Announce obsolence of old feature names. gdb/doc/ChangeLog: * gdb.texinfo (Synopsys ARC): Update the documentation for ARC Features. gdb/testsuite/ChangeLog: * gdb.arch/arc-tdesc-cpu.xml: Use new feature names.
2020-07-09 23:43:13 +08:00
arc_print (_("Error: Cannot find required register(s) %s "
"in feature '%s'.\n"), reg_names.str ().c_str (),
feature->name.c_str ());
return false;
2016-08-13 01:02:20 +08:00
}
}
arc: Add ARCv2 XML target along with refactoring A few changes have been made to make the register support simpler, more flexible and extendible. The trigger for most of these changes are the remarks [1] made earlier for v2 of this patch. The noticeable improvements are: - The arc XML target features are placed under gdb/features/arc - There are two cores (based on ISA) and one auxiliary feature: v1-core: ARC600, ARC601, ARC700 v2-core: ARC EM, ARC HS aux: common in both - The XML target features represent a minimalistic sane set of registers irrespective of application (baremetal or linux). - A concept of "feature" class has been introduced in the code. The "feature" object is constructed from BFD and GDBARCH data. It contains necessary information (ISA and register size) to determine which XML target feature to use. - A new structure (ARC_REGISTER_FEATURE) is added that allows providing index, names, and the necessity of registers. This simplifies the sanity checks and future extendibility. - Documnetation has been updated to reflect ARC features better. - Although the feature names has changed, there still exists backward compatibility with older names through find_obsolete_[core,aux]_names() functions. The last two points were inspired from RiscV port. [1] https://sourceware.org/pipermail/gdb-patches/2020-May/168511.html gdb/ChangeLog: * arch/arc.h (arc_gdbarch_features): New class to stir the selection of target XML. (arc_create_target_description): Use FEATURES to choose XML target. (arc_lookup_target_description): Use arc_create_target_description to create _new_ target descriptions or return the already created ones if the FEATURES is the same. * arch/arc.c: Implementation of prototypes described above. * gdb/arc-tdep.h (arc_regnum enum): Add more registers. (arc_gdbarch_features_init): Initialize the FEATURES struct. * arc-tdep.c (*_feature_name): Make feature names consistent. (arc_register_feature): A new struct to hold information about registers of a particular target/feature. (arc_check_tdesc_feature): Check if XML provides registers in compliance with ARC_REGISTER_FEATURE structs. (arc_update_acc_reg_names): Add aliases for r58 and r59. (determine_*_reg_feature_set): Which feature name to look for. (arc_gdbarch_features_init): Given MACH and ABFD, initialize FEATURES. (mach_type_to_arc_isa): Convert from a set of binutils machine types to expected ISA enums to be used in arc_gdbarch_features structs. * features/Makefile (FEATURE_XMLFILES): Add new files. * gdb/features/arc/v1-aux.c: New file. * gdb/features/arc/v1-aux.xml: Likewise. * gdb/features/arc/v1-core.c: Likewise. * gdb/features/arc/v1-core.xml: Likewise. * gdb/features/arc/v2-aux.c: Likewise. * gdb/features/arc/v2-aux.xml: Likewise. * gdb/features/arc/v2-core.c: Likewise. * gdb/features/arc/v2-core.xml: Likewise. * NEWS (Changes since GDB 9): Announce obsolence of old feature names. gdb/doc/ChangeLog: * gdb.texinfo (Synopsys ARC): Update the documentation for ARC Features. gdb/testsuite/ChangeLog: * gdb.arch/arc-tdesc-cpu.xml: Use new feature names.
2020-07-09 23:43:13 +08:00
return true;
}
2016-08-13 01:02:20 +08:00
/* Check for the existance of "lp_start" and "lp_end" in target description.
If both are present, assume there is hardware loop support in the target.
This can be improved by looking into "lpc_size" field of "isa_config"
auxiliary register. */
static bool
arc_check_for_hw_loops (const struct target_desc *tdesc,
struct tdesc_arch_data *data)
{
const auto feature_aux = tdesc_find_feature (tdesc, ARC_AUX_FEATURE_NAME);
const auto aux_regset = determine_aux_reg_feature_set ();
if (feature_aux == nullptr)
return false;
bool hw_loop_p = false;
const auto lp_start_name =
aux_regset->registers[ARC_LP_START_REGNUM - ARC_FIRST_AUX_REGNUM].names[0];
const auto lp_end_name =
aux_regset->registers[ARC_LP_END_REGNUM - ARC_FIRST_AUX_REGNUM].names[0];
hw_loop_p = tdesc_numbered_register (feature_aux, data,
ARC_LP_START_REGNUM, lp_start_name);
hw_loop_p &= tdesc_numbered_register (feature_aux, data,
ARC_LP_END_REGNUM, lp_end_name);
return hw_loop_p;
}
arc: Add ARCv2 XML target along with refactoring A few changes have been made to make the register support simpler, more flexible and extendible. The trigger for most of these changes are the remarks [1] made earlier for v2 of this patch. The noticeable improvements are: - The arc XML target features are placed under gdb/features/arc - There are two cores (based on ISA) and one auxiliary feature: v1-core: ARC600, ARC601, ARC700 v2-core: ARC EM, ARC HS aux: common in both - The XML target features represent a minimalistic sane set of registers irrespective of application (baremetal or linux). - A concept of "feature" class has been introduced in the code. The "feature" object is constructed from BFD and GDBARCH data. It contains necessary information (ISA and register size) to determine which XML target feature to use. - A new structure (ARC_REGISTER_FEATURE) is added that allows providing index, names, and the necessity of registers. This simplifies the sanity checks and future extendibility. - Documnetation has been updated to reflect ARC features better. - Although the feature names has changed, there still exists backward compatibility with older names through find_obsolete_[core,aux]_names() functions. The last two points were inspired from RiscV port. [1] https://sourceware.org/pipermail/gdb-patches/2020-May/168511.html gdb/ChangeLog: * arch/arc.h (arc_gdbarch_features): New class to stir the selection of target XML. (arc_create_target_description): Use FEATURES to choose XML target. (arc_lookup_target_description): Use arc_create_target_description to create _new_ target descriptions or return the already created ones if the FEATURES is the same. * arch/arc.c: Implementation of prototypes described above. * gdb/arc-tdep.h (arc_regnum enum): Add more registers. (arc_gdbarch_features_init): Initialize the FEATURES struct. * arc-tdep.c (*_feature_name): Make feature names consistent. (arc_register_feature): A new struct to hold information about registers of a particular target/feature. (arc_check_tdesc_feature): Check if XML provides registers in compliance with ARC_REGISTER_FEATURE structs. (arc_update_acc_reg_names): Add aliases for r58 and r59. (determine_*_reg_feature_set): Which feature name to look for. (arc_gdbarch_features_init): Given MACH and ABFD, initialize FEATURES. (mach_type_to_arc_isa): Convert from a set of binutils machine types to expected ISA enums to be used in arc_gdbarch_features structs. * features/Makefile (FEATURE_XMLFILES): Add new files. * gdb/features/arc/v1-aux.c: New file. * gdb/features/arc/v1-aux.xml: Likewise. * gdb/features/arc/v1-core.c: Likewise. * gdb/features/arc/v1-core.xml: Likewise. * gdb/features/arc/v2-aux.c: Likewise. * gdb/features/arc/v2-aux.xml: Likewise. * gdb/features/arc/v2-core.c: Likewise. * gdb/features/arc/v2-core.xml: Likewise. * NEWS (Changes since GDB 9): Announce obsolence of old feature names. gdb/doc/ChangeLog: * gdb.texinfo (Synopsys ARC): Update the documentation for ARC Features. gdb/testsuite/ChangeLog: * gdb.arch/arc-tdesc-cpu.xml: Use new feature names.
2020-07-09 23:43:13 +08:00
/* Initialize target description for the ARC.
2016-08-13 01:02:20 +08:00
arc: Add ARCv2 XML target along with refactoring A few changes have been made to make the register support simpler, more flexible and extendible. The trigger for most of these changes are the remarks [1] made earlier for v2 of this patch. The noticeable improvements are: - The arc XML target features are placed under gdb/features/arc - There are two cores (based on ISA) and one auxiliary feature: v1-core: ARC600, ARC601, ARC700 v2-core: ARC EM, ARC HS aux: common in both - The XML target features represent a minimalistic sane set of registers irrespective of application (baremetal or linux). - A concept of "feature" class has been introduced in the code. The "feature" object is constructed from BFD and GDBARCH data. It contains necessary information (ISA and register size) to determine which XML target feature to use. - A new structure (ARC_REGISTER_FEATURE) is added that allows providing index, names, and the necessity of registers. This simplifies the sanity checks and future extendibility. - Documnetation has been updated to reflect ARC features better. - Although the feature names has changed, there still exists backward compatibility with older names through find_obsolete_[core,aux]_names() functions. The last two points were inspired from RiscV port. [1] https://sourceware.org/pipermail/gdb-patches/2020-May/168511.html gdb/ChangeLog: * arch/arc.h (arc_gdbarch_features): New class to stir the selection of target XML. (arc_create_target_description): Use FEATURES to choose XML target. (arc_lookup_target_description): Use arc_create_target_description to create _new_ target descriptions or return the already created ones if the FEATURES is the same. * arch/arc.c: Implementation of prototypes described above. * gdb/arc-tdep.h (arc_regnum enum): Add more registers. (arc_gdbarch_features_init): Initialize the FEATURES struct. * arc-tdep.c (*_feature_name): Make feature names consistent. (arc_register_feature): A new struct to hold information about registers of a particular target/feature. (arc_check_tdesc_feature): Check if XML provides registers in compliance with ARC_REGISTER_FEATURE structs. (arc_update_acc_reg_names): Add aliases for r58 and r59. (determine_*_reg_feature_set): Which feature name to look for. (arc_gdbarch_features_init): Given MACH and ABFD, initialize FEATURES. (mach_type_to_arc_isa): Convert from a set of binutils machine types to expected ISA enums to be used in arc_gdbarch_features structs. * features/Makefile (FEATURE_XMLFILES): Add new files. * gdb/features/arc/v1-aux.c: New file. * gdb/features/arc/v1-aux.xml: Likewise. * gdb/features/arc/v1-core.c: Likewise. * gdb/features/arc/v1-core.xml: Likewise. * gdb/features/arc/v2-aux.c: Likewise. * gdb/features/arc/v2-aux.xml: Likewise. * gdb/features/arc/v2-core.c: Likewise. * gdb/features/arc/v2-core.xml: Likewise. * NEWS (Changes since GDB 9): Announce obsolence of old feature names. gdb/doc/ChangeLog: * gdb.texinfo (Synopsys ARC): Update the documentation for ARC Features. gdb/testsuite/ChangeLog: * gdb.arch/arc-tdesc-cpu.xml: Use new feature names.
2020-07-09 23:43:13 +08:00
Returns true if input TDESC was valid and in this case it will assign TDESC
and TDESC_DATA output parameters. */
static bool
arc_tdesc_init (struct gdbarch_info info, const struct target_desc **tdesc,
Change management of tdesc_arch_data While working on something else, I noticed that tdesc_data_cleanup took a void* parameter. Looking more into this, I found that tdesc_use_registers expected a transfer of ownership. I think it's better to express this sort of thing via the type system, when possible. This patch changes tdesc_data_alloc to return a unique pointer, changes tdesc_use_registers to accept an rvalue reference, and then adapts all the users. Note that a deleter structure is introduced to avoid having to move tdesc_arch_data to the header file. 2020-09-17 Tom Tromey <tromey@adacore.com> * tic6x-tdep.c (tic6x_gdbarch_init): Update. * target-descriptions.h (struct tdesc_arch_data_deleter): New. (tdesc_arch_data_up): New typedef. (tdesc_use_registers, tdesc_data_alloc): Update. (tdesc_data_cleanup): Don't declare. * target-descriptions.c (tdesc_data_alloc): Return a tdesc_arch_data_up. (tdesc_arch_data_deleter::operator()): Rename from tdesc_data_cleanup. Change argument type. (tdesc_use_registers): Change early_data to an rvalue reference. (tdesc_use_registers): Don't use delete. * sparc-tdep.c (sparc32_gdbarch_init): Update. * s390-tdep.c (s390_gdbarch_init): Update. * rx-tdep.c (rx_gdbarch_init): Update. * rs6000-tdep.c (rs6000_gdbarch_init): Update. * riscv-tdep.c (riscv_gdbarch_init): Update. * or1k-tdep.c (or1k_gdbarch_init): Update. * nios2-tdep.c (nios2_gdbarch_init): Update. * nds32-tdep.c (nds32_gdbarch_init): Update. * mips-tdep.c (mips_gdbarch_init): Update. * microblaze-tdep.c (microblaze_gdbarch_init): Update. * m68k-tdep.c (m68k_gdbarch_init): Update. * i386-tdep.c (i386_gdbarch_init): Update. * arm-tdep.c (arm_gdbarch_init): Update. * arc-tdep.c (arc_tdesc_init): Update. (arc_gdbarch_init): Update. * aarch64-tdep.c (aarch64_gdbarch_init): Update.
2020-09-18 04:11:38 +08:00
tdesc_arch_data_up *tdesc_data)
arc: Add ARCv2 XML target along with refactoring A few changes have been made to make the register support simpler, more flexible and extendible. The trigger for most of these changes are the remarks [1] made earlier for v2 of this patch. The noticeable improvements are: - The arc XML target features are placed under gdb/features/arc - There are two cores (based on ISA) and one auxiliary feature: v1-core: ARC600, ARC601, ARC700 v2-core: ARC EM, ARC HS aux: common in both - The XML target features represent a minimalistic sane set of registers irrespective of application (baremetal or linux). - A concept of "feature" class has been introduced in the code. The "feature" object is constructed from BFD and GDBARCH data. It contains necessary information (ISA and register size) to determine which XML target feature to use. - A new structure (ARC_REGISTER_FEATURE) is added that allows providing index, names, and the necessity of registers. This simplifies the sanity checks and future extendibility. - Documnetation has been updated to reflect ARC features better. - Although the feature names has changed, there still exists backward compatibility with older names through find_obsolete_[core,aux]_names() functions. The last two points were inspired from RiscV port. [1] https://sourceware.org/pipermail/gdb-patches/2020-May/168511.html gdb/ChangeLog: * arch/arc.h (arc_gdbarch_features): New class to stir the selection of target XML. (arc_create_target_description): Use FEATURES to choose XML target. (arc_lookup_target_description): Use arc_create_target_description to create _new_ target descriptions or return the already created ones if the FEATURES is the same. * arch/arc.c: Implementation of prototypes described above. * gdb/arc-tdep.h (arc_regnum enum): Add more registers. (arc_gdbarch_features_init): Initialize the FEATURES struct. * arc-tdep.c (*_feature_name): Make feature names consistent. (arc_register_feature): A new struct to hold information about registers of a particular target/feature. (arc_check_tdesc_feature): Check if XML provides registers in compliance with ARC_REGISTER_FEATURE structs. (arc_update_acc_reg_names): Add aliases for r58 and r59. (determine_*_reg_feature_set): Which feature name to look for. (arc_gdbarch_features_init): Given MACH and ABFD, initialize FEATURES. (mach_type_to_arc_isa): Convert from a set of binutils machine types to expected ISA enums to be used in arc_gdbarch_features structs. * features/Makefile (FEATURE_XMLFILES): Add new files. * gdb/features/arc/v1-aux.c: New file. * gdb/features/arc/v1-aux.xml: Likewise. * gdb/features/arc/v1-core.c: Likewise. * gdb/features/arc/v1-core.xml: Likewise. * gdb/features/arc/v2-aux.c: Likewise. * gdb/features/arc/v2-aux.xml: Likewise. * gdb/features/arc/v2-core.c: Likewise. * gdb/features/arc/v2-core.xml: Likewise. * NEWS (Changes since GDB 9): Announce obsolence of old feature names. gdb/doc/ChangeLog: * gdb.texinfo (Synopsys ARC): Update the documentation for ARC Features. gdb/testsuite/ChangeLog: * gdb.arch/arc-tdesc-cpu.xml: Use new feature names.
2020-07-09 23:43:13 +08:00
{
const struct target_desc *tdesc_loc = info.target_desc;
arc_debug_printf ("Target description initialization.");
arc: Add ARCv2 XML target along with refactoring A few changes have been made to make the register support simpler, more flexible and extendible. The trigger for most of these changes are the remarks [1] made earlier for v2 of this patch. The noticeable improvements are: - The arc XML target features are placed under gdb/features/arc - There are two cores (based on ISA) and one auxiliary feature: v1-core: ARC600, ARC601, ARC700 v2-core: ARC EM, ARC HS aux: common in both - The XML target features represent a minimalistic sane set of registers irrespective of application (baremetal or linux). - A concept of "feature" class has been introduced in the code. The "feature" object is constructed from BFD and GDBARCH data. It contains necessary information (ISA and register size) to determine which XML target feature to use. - A new structure (ARC_REGISTER_FEATURE) is added that allows providing index, names, and the necessity of registers. This simplifies the sanity checks and future extendibility. - Documnetation has been updated to reflect ARC features better. - Although the feature names has changed, there still exists backward compatibility with older names through find_obsolete_[core,aux]_names() functions. The last two points were inspired from RiscV port. [1] https://sourceware.org/pipermail/gdb-patches/2020-May/168511.html gdb/ChangeLog: * arch/arc.h (arc_gdbarch_features): New class to stir the selection of target XML. (arc_create_target_description): Use FEATURES to choose XML target. (arc_lookup_target_description): Use arc_create_target_description to create _new_ target descriptions or return the already created ones if the FEATURES is the same. * arch/arc.c: Implementation of prototypes described above. * gdb/arc-tdep.h (arc_regnum enum): Add more registers. (arc_gdbarch_features_init): Initialize the FEATURES struct. * arc-tdep.c (*_feature_name): Make feature names consistent. (arc_register_feature): A new struct to hold information about registers of a particular target/feature. (arc_check_tdesc_feature): Check if XML provides registers in compliance with ARC_REGISTER_FEATURE structs. (arc_update_acc_reg_names): Add aliases for r58 and r59. (determine_*_reg_feature_set): Which feature name to look for. (arc_gdbarch_features_init): Given MACH and ABFD, initialize FEATURES. (mach_type_to_arc_isa): Convert from a set of binutils machine types to expected ISA enums to be used in arc_gdbarch_features structs. * features/Makefile (FEATURE_XMLFILES): Add new files. * gdb/features/arc/v1-aux.c: New file. * gdb/features/arc/v1-aux.xml: Likewise. * gdb/features/arc/v1-core.c: Likewise. * gdb/features/arc/v1-core.xml: Likewise. * gdb/features/arc/v2-aux.c: Likewise. * gdb/features/arc/v2-aux.xml: Likewise. * gdb/features/arc/v2-core.c: Likewise. * gdb/features/arc/v2-core.xml: Likewise. * NEWS (Changes since GDB 9): Announce obsolence of old feature names. gdb/doc/ChangeLog: * gdb.texinfo (Synopsys ARC): Update the documentation for ARC Features. gdb/testsuite/ChangeLog: * gdb.arch/arc-tdesc-cpu.xml: Use new feature names.
2020-07-09 23:43:13 +08:00
/* If target doesn't provide a description, use the default ones. */
if (!tdesc_has_registers (tdesc_loc))
2016-08-13 01:02:20 +08:00
{
arc_arch_features features
= arc_arch_features_create (info.abfd,
info.bfd_arch_info->mach);
arc: Add ARCv2 XML target along with refactoring A few changes have been made to make the register support simpler, more flexible and extendible. The trigger for most of these changes are the remarks [1] made earlier for v2 of this patch. The noticeable improvements are: - The arc XML target features are placed under gdb/features/arc - There are two cores (based on ISA) and one auxiliary feature: v1-core: ARC600, ARC601, ARC700 v2-core: ARC EM, ARC HS aux: common in both - The XML target features represent a minimalistic sane set of registers irrespective of application (baremetal or linux). - A concept of "feature" class has been introduced in the code. The "feature" object is constructed from BFD and GDBARCH data. It contains necessary information (ISA and register size) to determine which XML target feature to use. - A new structure (ARC_REGISTER_FEATURE) is added that allows providing index, names, and the necessity of registers. This simplifies the sanity checks and future extendibility. - Documnetation has been updated to reflect ARC features better. - Although the feature names has changed, there still exists backward compatibility with older names through find_obsolete_[core,aux]_names() functions. The last two points were inspired from RiscV port. [1] https://sourceware.org/pipermail/gdb-patches/2020-May/168511.html gdb/ChangeLog: * arch/arc.h (arc_gdbarch_features): New class to stir the selection of target XML. (arc_create_target_description): Use FEATURES to choose XML target. (arc_lookup_target_description): Use arc_create_target_description to create _new_ target descriptions or return the already created ones if the FEATURES is the same. * arch/arc.c: Implementation of prototypes described above. * gdb/arc-tdep.h (arc_regnum enum): Add more registers. (arc_gdbarch_features_init): Initialize the FEATURES struct. * arc-tdep.c (*_feature_name): Make feature names consistent. (arc_register_feature): A new struct to hold information about registers of a particular target/feature. (arc_check_tdesc_feature): Check if XML provides registers in compliance with ARC_REGISTER_FEATURE structs. (arc_update_acc_reg_names): Add aliases for r58 and r59. (determine_*_reg_feature_set): Which feature name to look for. (arc_gdbarch_features_init): Given MACH and ABFD, initialize FEATURES. (mach_type_to_arc_isa): Convert from a set of binutils machine types to expected ISA enums to be used in arc_gdbarch_features structs. * features/Makefile (FEATURE_XMLFILES): Add new files. * gdb/features/arc/v1-aux.c: New file. * gdb/features/arc/v1-aux.xml: Likewise. * gdb/features/arc/v1-core.c: Likewise. * gdb/features/arc/v1-core.xml: Likewise. * gdb/features/arc/v2-aux.c: Likewise. * gdb/features/arc/v2-aux.xml: Likewise. * gdb/features/arc/v2-core.c: Likewise. * gdb/features/arc/v2-core.xml: Likewise. * NEWS (Changes since GDB 9): Announce obsolence of old feature names. gdb/doc/ChangeLog: * gdb.texinfo (Synopsys ARC): Update the documentation for ARC Features. gdb/testsuite/ChangeLog: * gdb.arch/arc-tdesc-cpu.xml: Use new feature names.
2020-07-09 23:43:13 +08:00
tdesc_loc = arc_lookup_target_description (features);
}
gdb_assert (tdesc_loc != nullptr);
arc_debug_printf ("Have got a target description");
arc: Add ARCv2 XML target along with refactoring A few changes have been made to make the register support simpler, more flexible and extendible. The trigger for most of these changes are the remarks [1] made earlier for v2 of this patch. The noticeable improvements are: - The arc XML target features are placed under gdb/features/arc - There are two cores (based on ISA) and one auxiliary feature: v1-core: ARC600, ARC601, ARC700 v2-core: ARC EM, ARC HS aux: common in both - The XML target features represent a minimalistic sane set of registers irrespective of application (baremetal or linux). - A concept of "feature" class has been introduced in the code. The "feature" object is constructed from BFD and GDBARCH data. It contains necessary information (ISA and register size) to determine which XML target feature to use. - A new structure (ARC_REGISTER_FEATURE) is added that allows providing index, names, and the necessity of registers. This simplifies the sanity checks and future extendibility. - Documnetation has been updated to reflect ARC features better. - Although the feature names has changed, there still exists backward compatibility with older names through find_obsolete_[core,aux]_names() functions. The last two points were inspired from RiscV port. [1] https://sourceware.org/pipermail/gdb-patches/2020-May/168511.html gdb/ChangeLog: * arch/arc.h (arc_gdbarch_features): New class to stir the selection of target XML. (arc_create_target_description): Use FEATURES to choose XML target. (arc_lookup_target_description): Use arc_create_target_description to create _new_ target descriptions or return the already created ones if the FEATURES is the same. * arch/arc.c: Implementation of prototypes described above. * gdb/arc-tdep.h (arc_regnum enum): Add more registers. (arc_gdbarch_features_init): Initialize the FEATURES struct. * arc-tdep.c (*_feature_name): Make feature names consistent. (arc_register_feature): A new struct to hold information about registers of a particular target/feature. (arc_check_tdesc_feature): Check if XML provides registers in compliance with ARC_REGISTER_FEATURE structs. (arc_update_acc_reg_names): Add aliases for r58 and r59. (determine_*_reg_feature_set): Which feature name to look for. (arc_gdbarch_features_init): Given MACH and ABFD, initialize FEATURES. (mach_type_to_arc_isa): Convert from a set of binutils machine types to expected ISA enums to be used in arc_gdbarch_features structs. * features/Makefile (FEATURE_XMLFILES): Add new files. * gdb/features/arc/v1-aux.c: New file. * gdb/features/arc/v1-aux.xml: Likewise. * gdb/features/arc/v1-core.c: Likewise. * gdb/features/arc/v1-core.xml: Likewise. * gdb/features/arc/v2-aux.c: Likewise. * gdb/features/arc/v2-aux.xml: Likewise. * gdb/features/arc/v2-core.c: Likewise. * gdb/features/arc/v2-core.xml: Likewise. * NEWS (Changes since GDB 9): Announce obsolence of old feature names. gdb/doc/ChangeLog: * gdb.texinfo (Synopsys ARC): Update the documentation for ARC Features. gdb/testsuite/ChangeLog: * gdb.arch/arc-tdesc-cpu.xml: Use new feature names.
2020-07-09 23:43:13 +08:00
const struct tdesc_feature *feature_core
= tdesc_find_feature (tdesc_loc, ARC_CORE_FEATURE_NAME);
const struct tdesc_feature *feature_aux
= tdesc_find_feature (tdesc_loc, ARC_AUX_FEATURE_NAME);
/* Maybe there still is a chance to salvage the input. */
if (feature_core == nullptr)
feature_core = find_obsolete_core_names (tdesc_loc);
if (feature_aux == nullptr)
feature_aux = find_obsolete_aux_names (tdesc_loc);
if (feature_core == nullptr)
{
arc_print (_("Error: Cannot find required feature '%s' in supplied "
"target description.\n"), ARC_CORE_FEATURE_NAME);
return false;
2016-08-13 01:02:20 +08:00
}
arc: Add ARCv2 XML target along with refactoring A few changes have been made to make the register support simpler, more flexible and extendible. The trigger for most of these changes are the remarks [1] made earlier for v2 of this patch. The noticeable improvements are: - The arc XML target features are placed under gdb/features/arc - There are two cores (based on ISA) and one auxiliary feature: v1-core: ARC600, ARC601, ARC700 v2-core: ARC EM, ARC HS aux: common in both - The XML target features represent a minimalistic sane set of registers irrespective of application (baremetal or linux). - A concept of "feature" class has been introduced in the code. The "feature" object is constructed from BFD and GDBARCH data. It contains necessary information (ISA and register size) to determine which XML target feature to use. - A new structure (ARC_REGISTER_FEATURE) is added that allows providing index, names, and the necessity of registers. This simplifies the sanity checks and future extendibility. - Documnetation has been updated to reflect ARC features better. - Although the feature names has changed, there still exists backward compatibility with older names through find_obsolete_[core,aux]_names() functions. The last two points were inspired from RiscV port. [1] https://sourceware.org/pipermail/gdb-patches/2020-May/168511.html gdb/ChangeLog: * arch/arc.h (arc_gdbarch_features): New class to stir the selection of target XML. (arc_create_target_description): Use FEATURES to choose XML target. (arc_lookup_target_description): Use arc_create_target_description to create _new_ target descriptions or return the already created ones if the FEATURES is the same. * arch/arc.c: Implementation of prototypes described above. * gdb/arc-tdep.h (arc_regnum enum): Add more registers. (arc_gdbarch_features_init): Initialize the FEATURES struct. * arc-tdep.c (*_feature_name): Make feature names consistent. (arc_register_feature): A new struct to hold information about registers of a particular target/feature. (arc_check_tdesc_feature): Check if XML provides registers in compliance with ARC_REGISTER_FEATURE structs. (arc_update_acc_reg_names): Add aliases for r58 and r59. (determine_*_reg_feature_set): Which feature name to look for. (arc_gdbarch_features_init): Given MACH and ABFD, initialize FEATURES. (mach_type_to_arc_isa): Convert from a set of binutils machine types to expected ISA enums to be used in arc_gdbarch_features structs. * features/Makefile (FEATURE_XMLFILES): Add new files. * gdb/features/arc/v1-aux.c: New file. * gdb/features/arc/v1-aux.xml: Likewise. * gdb/features/arc/v1-core.c: Likewise. * gdb/features/arc/v1-core.xml: Likewise. * gdb/features/arc/v2-aux.c: Likewise. * gdb/features/arc/v2-aux.xml: Likewise. * gdb/features/arc/v2-core.c: Likewise. * gdb/features/arc/v2-core.xml: Likewise. * NEWS (Changes since GDB 9): Announce obsolence of old feature names. gdb/doc/ChangeLog: * gdb.texinfo (Synopsys ARC): Update the documentation for ARC Features. gdb/testsuite/ChangeLog: * gdb.arch/arc-tdesc-cpu.xml: Use new feature names.
2020-07-09 23:43:13 +08:00
if (feature_aux == nullptr)
2016-08-13 01:02:20 +08:00
{
arc: Add ARCv2 XML target along with refactoring A few changes have been made to make the register support simpler, more flexible and extendible. The trigger for most of these changes are the remarks [1] made earlier for v2 of this patch. The noticeable improvements are: - The arc XML target features are placed under gdb/features/arc - There are two cores (based on ISA) and one auxiliary feature: v1-core: ARC600, ARC601, ARC700 v2-core: ARC EM, ARC HS aux: common in both - The XML target features represent a minimalistic sane set of registers irrespective of application (baremetal or linux). - A concept of "feature" class has been introduced in the code. The "feature" object is constructed from BFD and GDBARCH data. It contains necessary information (ISA and register size) to determine which XML target feature to use. - A new structure (ARC_REGISTER_FEATURE) is added that allows providing index, names, and the necessity of registers. This simplifies the sanity checks and future extendibility. - Documnetation has been updated to reflect ARC features better. - Although the feature names has changed, there still exists backward compatibility with older names through find_obsolete_[core,aux]_names() functions. The last two points were inspired from RiscV port. [1] https://sourceware.org/pipermail/gdb-patches/2020-May/168511.html gdb/ChangeLog: * arch/arc.h (arc_gdbarch_features): New class to stir the selection of target XML. (arc_create_target_description): Use FEATURES to choose XML target. (arc_lookup_target_description): Use arc_create_target_description to create _new_ target descriptions or return the already created ones if the FEATURES is the same. * arch/arc.c: Implementation of prototypes described above. * gdb/arc-tdep.h (arc_regnum enum): Add more registers. (arc_gdbarch_features_init): Initialize the FEATURES struct. * arc-tdep.c (*_feature_name): Make feature names consistent. (arc_register_feature): A new struct to hold information about registers of a particular target/feature. (arc_check_tdesc_feature): Check if XML provides registers in compliance with ARC_REGISTER_FEATURE structs. (arc_update_acc_reg_names): Add aliases for r58 and r59. (determine_*_reg_feature_set): Which feature name to look for. (arc_gdbarch_features_init): Given MACH and ABFD, initialize FEATURES. (mach_type_to_arc_isa): Convert from a set of binutils machine types to expected ISA enums to be used in arc_gdbarch_features structs. * features/Makefile (FEATURE_XMLFILES): Add new files. * gdb/features/arc/v1-aux.c: New file. * gdb/features/arc/v1-aux.xml: Likewise. * gdb/features/arc/v1-core.c: Likewise. * gdb/features/arc/v1-core.xml: Likewise. * gdb/features/arc/v2-aux.c: Likewise. * gdb/features/arc/v2-aux.xml: Likewise. * gdb/features/arc/v2-core.c: Likewise. * gdb/features/arc/v2-core.xml: Likewise. * NEWS (Changes since GDB 9): Announce obsolence of old feature names. gdb/doc/ChangeLog: * gdb.texinfo (Synopsys ARC): Update the documentation for ARC Features. gdb/testsuite/ChangeLog: * gdb.arch/arc-tdesc-cpu.xml: Use new feature names.
2020-07-09 23:43:13 +08:00
arc_print (_("Error: Cannot find required feature '%s' in supplied "
"target description.\n"), ARC_AUX_FEATURE_NAME);
return false;
2016-08-13 01:02:20 +08:00
}
arc: Add ARCv2 XML target along with refactoring A few changes have been made to make the register support simpler, more flexible and extendible. The trigger for most of these changes are the remarks [1] made earlier for v2 of this patch. The noticeable improvements are: - The arc XML target features are placed under gdb/features/arc - There are two cores (based on ISA) and one auxiliary feature: v1-core: ARC600, ARC601, ARC700 v2-core: ARC EM, ARC HS aux: common in both - The XML target features represent a minimalistic sane set of registers irrespective of application (baremetal or linux). - A concept of "feature" class has been introduced in the code. The "feature" object is constructed from BFD and GDBARCH data. It contains necessary information (ISA and register size) to determine which XML target feature to use. - A new structure (ARC_REGISTER_FEATURE) is added that allows providing index, names, and the necessity of registers. This simplifies the sanity checks and future extendibility. - Documnetation has been updated to reflect ARC features better. - Although the feature names has changed, there still exists backward compatibility with older names through find_obsolete_[core,aux]_names() functions. The last two points were inspired from RiscV port. [1] https://sourceware.org/pipermail/gdb-patches/2020-May/168511.html gdb/ChangeLog: * arch/arc.h (arc_gdbarch_features): New class to stir the selection of target XML. (arc_create_target_description): Use FEATURES to choose XML target. (arc_lookup_target_description): Use arc_create_target_description to create _new_ target descriptions or return the already created ones if the FEATURES is the same. * arch/arc.c: Implementation of prototypes described above. * gdb/arc-tdep.h (arc_regnum enum): Add more registers. (arc_gdbarch_features_init): Initialize the FEATURES struct. * arc-tdep.c (*_feature_name): Make feature names consistent. (arc_register_feature): A new struct to hold information about registers of a particular target/feature. (arc_check_tdesc_feature): Check if XML provides registers in compliance with ARC_REGISTER_FEATURE structs. (arc_update_acc_reg_names): Add aliases for r58 and r59. (determine_*_reg_feature_set): Which feature name to look for. (arc_gdbarch_features_init): Given MACH and ABFD, initialize FEATURES. (mach_type_to_arc_isa): Convert from a set of binutils machine types to expected ISA enums to be used in arc_gdbarch_features structs. * features/Makefile (FEATURE_XMLFILES): Add new files. * gdb/features/arc/v1-aux.c: New file. * gdb/features/arc/v1-aux.xml: Likewise. * gdb/features/arc/v1-core.c: Likewise. * gdb/features/arc/v1-core.xml: Likewise. * gdb/features/arc/v2-aux.c: Likewise. * gdb/features/arc/v2-aux.xml: Likewise. * gdb/features/arc/v2-core.c: Likewise. * gdb/features/arc/v2-core.xml: Likewise. * NEWS (Changes since GDB 9): Announce obsolence of old feature names. gdb/doc/ChangeLog: * gdb.texinfo (Synopsys ARC): Update the documentation for ARC Features. gdb/testsuite/ChangeLog: * gdb.arch/arc-tdesc-cpu.xml: Use new feature names.
2020-07-09 23:43:13 +08:00
const arc_register_feature *arc_core_reg_feature
= determine_core_reg_feature_set (info.bfd_arch_info->mach);
const arc_register_feature *arc_aux_reg_feature
= determine_aux_reg_feature_set ();
Change management of tdesc_arch_data While working on something else, I noticed that tdesc_data_cleanup took a void* parameter. Looking more into this, I found that tdesc_use_registers expected a transfer of ownership. I think it's better to express this sort of thing via the type system, when possible. This patch changes tdesc_data_alloc to return a unique pointer, changes tdesc_use_registers to accept an rvalue reference, and then adapts all the users. Note that a deleter structure is introduced to avoid having to move tdesc_arch_data to the header file. 2020-09-17 Tom Tromey <tromey@adacore.com> * tic6x-tdep.c (tic6x_gdbarch_init): Update. * target-descriptions.h (struct tdesc_arch_data_deleter): New. (tdesc_arch_data_up): New typedef. (tdesc_use_registers, tdesc_data_alloc): Update. (tdesc_data_cleanup): Don't declare. * target-descriptions.c (tdesc_data_alloc): Return a tdesc_arch_data_up. (tdesc_arch_data_deleter::operator()): Rename from tdesc_data_cleanup. Change argument type. (tdesc_use_registers): Change early_data to an rvalue reference. (tdesc_use_registers): Don't use delete. * sparc-tdep.c (sparc32_gdbarch_init): Update. * s390-tdep.c (s390_gdbarch_init): Update. * rx-tdep.c (rx_gdbarch_init): Update. * rs6000-tdep.c (rs6000_gdbarch_init): Update. * riscv-tdep.c (riscv_gdbarch_init): Update. * or1k-tdep.c (or1k_gdbarch_init): Update. * nios2-tdep.c (nios2_gdbarch_init): Update. * nds32-tdep.c (nds32_gdbarch_init): Update. * mips-tdep.c (mips_gdbarch_init): Update. * microblaze-tdep.c (microblaze_gdbarch_init): Update. * m68k-tdep.c (m68k_gdbarch_init): Update. * i386-tdep.c (i386_gdbarch_init): Update. * arm-tdep.c (arm_gdbarch_init): Update. * arc-tdep.c (arc_tdesc_init): Update. (arc_gdbarch_init): Update. * aarch64-tdep.c (aarch64_gdbarch_init): Update.
2020-09-18 04:11:38 +08:00
tdesc_arch_data_up tdesc_data_loc = tdesc_data_alloc ();
arc: Add ARCv2 XML target along with refactoring A few changes have been made to make the register support simpler, more flexible and extendible. The trigger for most of these changes are the remarks [1] made earlier for v2 of this patch. The noticeable improvements are: - The arc XML target features are placed under gdb/features/arc - There are two cores (based on ISA) and one auxiliary feature: v1-core: ARC600, ARC601, ARC700 v2-core: ARC EM, ARC HS aux: common in both - The XML target features represent a minimalistic sane set of registers irrespective of application (baremetal or linux). - A concept of "feature" class has been introduced in the code. The "feature" object is constructed from BFD and GDBARCH data. It contains necessary information (ISA and register size) to determine which XML target feature to use. - A new structure (ARC_REGISTER_FEATURE) is added that allows providing index, names, and the necessity of registers. This simplifies the sanity checks and future extendibility. - Documnetation has been updated to reflect ARC features better. - Although the feature names has changed, there still exists backward compatibility with older names through find_obsolete_[core,aux]_names() functions. The last two points were inspired from RiscV port. [1] https://sourceware.org/pipermail/gdb-patches/2020-May/168511.html gdb/ChangeLog: * arch/arc.h (arc_gdbarch_features): New class to stir the selection of target XML. (arc_create_target_description): Use FEATURES to choose XML target. (arc_lookup_target_description): Use arc_create_target_description to create _new_ target descriptions or return the already created ones if the FEATURES is the same. * arch/arc.c: Implementation of prototypes described above. * gdb/arc-tdep.h (arc_regnum enum): Add more registers. (arc_gdbarch_features_init): Initialize the FEATURES struct. * arc-tdep.c (*_feature_name): Make feature names consistent. (arc_register_feature): A new struct to hold information about registers of a particular target/feature. (arc_check_tdesc_feature): Check if XML provides registers in compliance with ARC_REGISTER_FEATURE structs. (arc_update_acc_reg_names): Add aliases for r58 and r59. (determine_*_reg_feature_set): Which feature name to look for. (arc_gdbarch_features_init): Given MACH and ABFD, initialize FEATURES. (mach_type_to_arc_isa): Convert from a set of binutils machine types to expected ISA enums to be used in arc_gdbarch_features structs. * features/Makefile (FEATURE_XMLFILES): Add new files. * gdb/features/arc/v1-aux.c: New file. * gdb/features/arc/v1-aux.xml: Likewise. * gdb/features/arc/v1-core.c: Likewise. * gdb/features/arc/v1-core.xml: Likewise. * gdb/features/arc/v2-aux.c: Likewise. * gdb/features/arc/v2-aux.xml: Likewise. * gdb/features/arc/v2-core.c: Likewise. * gdb/features/arc/v2-core.xml: Likewise. * NEWS (Changes since GDB 9): Announce obsolence of old feature names. gdb/doc/ChangeLog: * gdb.texinfo (Synopsys ARC): Update the documentation for ARC Features. gdb/testsuite/ChangeLog: * gdb.arch/arc-tdesc-cpu.xml: Use new feature names.
2020-07-09 23:43:13 +08:00
arc_update_acc_reg_names (info.byte_order);
Change management of tdesc_arch_data While working on something else, I noticed that tdesc_data_cleanup took a void* parameter. Looking more into this, I found that tdesc_use_registers expected a transfer of ownership. I think it's better to express this sort of thing via the type system, when possible. This patch changes tdesc_data_alloc to return a unique pointer, changes tdesc_use_registers to accept an rvalue reference, and then adapts all the users. Note that a deleter structure is introduced to avoid having to move tdesc_arch_data to the header file. 2020-09-17 Tom Tromey <tromey@adacore.com> * tic6x-tdep.c (tic6x_gdbarch_init): Update. * target-descriptions.h (struct tdesc_arch_data_deleter): New. (tdesc_arch_data_up): New typedef. (tdesc_use_registers, tdesc_data_alloc): Update. (tdesc_data_cleanup): Don't declare. * target-descriptions.c (tdesc_data_alloc): Return a tdesc_arch_data_up. (tdesc_arch_data_deleter::operator()): Rename from tdesc_data_cleanup. Change argument type. (tdesc_use_registers): Change early_data to an rvalue reference. (tdesc_use_registers): Don't use delete. * sparc-tdep.c (sparc32_gdbarch_init): Update. * s390-tdep.c (s390_gdbarch_init): Update. * rx-tdep.c (rx_gdbarch_init): Update. * rs6000-tdep.c (rs6000_gdbarch_init): Update. * riscv-tdep.c (riscv_gdbarch_init): Update. * or1k-tdep.c (or1k_gdbarch_init): Update. * nios2-tdep.c (nios2_gdbarch_init): Update. * nds32-tdep.c (nds32_gdbarch_init): Update. * mips-tdep.c (mips_gdbarch_init): Update. * microblaze-tdep.c (microblaze_gdbarch_init): Update. * m68k-tdep.c (m68k_gdbarch_init): Update. * i386-tdep.c (i386_gdbarch_init): Update. * arm-tdep.c (arm_gdbarch_init): Update. * arc-tdep.c (arc_tdesc_init): Update. (arc_gdbarch_init): Update. * aarch64-tdep.c (aarch64_gdbarch_init): Update.
2020-09-18 04:11:38 +08:00
bool valid_p = arc_check_tdesc_feature (tdesc_data_loc.get (),
arc: Add ARCv2 XML target along with refactoring A few changes have been made to make the register support simpler, more flexible and extendible. The trigger for most of these changes are the remarks [1] made earlier for v2 of this patch. The noticeable improvements are: - The arc XML target features are placed under gdb/features/arc - There are two cores (based on ISA) and one auxiliary feature: v1-core: ARC600, ARC601, ARC700 v2-core: ARC EM, ARC HS aux: common in both - The XML target features represent a minimalistic sane set of registers irrespective of application (baremetal or linux). - A concept of "feature" class has been introduced in the code. The "feature" object is constructed from BFD and GDBARCH data. It contains necessary information (ISA and register size) to determine which XML target feature to use. - A new structure (ARC_REGISTER_FEATURE) is added that allows providing index, names, and the necessity of registers. This simplifies the sanity checks and future extendibility. - Documnetation has been updated to reflect ARC features better. - Although the feature names has changed, there still exists backward compatibility with older names through find_obsolete_[core,aux]_names() functions. The last two points were inspired from RiscV port. [1] https://sourceware.org/pipermail/gdb-patches/2020-May/168511.html gdb/ChangeLog: * arch/arc.h (arc_gdbarch_features): New class to stir the selection of target XML. (arc_create_target_description): Use FEATURES to choose XML target. (arc_lookup_target_description): Use arc_create_target_description to create _new_ target descriptions or return the already created ones if the FEATURES is the same. * arch/arc.c: Implementation of prototypes described above. * gdb/arc-tdep.h (arc_regnum enum): Add more registers. (arc_gdbarch_features_init): Initialize the FEATURES struct. * arc-tdep.c (*_feature_name): Make feature names consistent. (arc_register_feature): A new struct to hold information about registers of a particular target/feature. (arc_check_tdesc_feature): Check if XML provides registers in compliance with ARC_REGISTER_FEATURE structs. (arc_update_acc_reg_names): Add aliases for r58 and r59. (determine_*_reg_feature_set): Which feature name to look for. (arc_gdbarch_features_init): Given MACH and ABFD, initialize FEATURES. (mach_type_to_arc_isa): Convert from a set of binutils machine types to expected ISA enums to be used in arc_gdbarch_features structs. * features/Makefile (FEATURE_XMLFILES): Add new files. * gdb/features/arc/v1-aux.c: New file. * gdb/features/arc/v1-aux.xml: Likewise. * gdb/features/arc/v1-core.c: Likewise. * gdb/features/arc/v1-core.xml: Likewise. * gdb/features/arc/v2-aux.c: Likewise. * gdb/features/arc/v2-aux.xml: Likewise. * gdb/features/arc/v2-core.c: Likewise. * gdb/features/arc/v2-core.xml: Likewise. * NEWS (Changes since GDB 9): Announce obsolence of old feature names. gdb/doc/ChangeLog: * gdb.texinfo (Synopsys ARC): Update the documentation for ARC Features. gdb/testsuite/ChangeLog: * gdb.arch/arc-tdesc-cpu.xml: Use new feature names.
2020-07-09 23:43:13 +08:00
feature_core,
arc_core_reg_feature);
Change management of tdesc_arch_data While working on something else, I noticed that tdesc_data_cleanup took a void* parameter. Looking more into this, I found that tdesc_use_registers expected a transfer of ownership. I think it's better to express this sort of thing via the type system, when possible. This patch changes tdesc_data_alloc to return a unique pointer, changes tdesc_use_registers to accept an rvalue reference, and then adapts all the users. Note that a deleter structure is introduced to avoid having to move tdesc_arch_data to the header file. 2020-09-17 Tom Tromey <tromey@adacore.com> * tic6x-tdep.c (tic6x_gdbarch_init): Update. * target-descriptions.h (struct tdesc_arch_data_deleter): New. (tdesc_arch_data_up): New typedef. (tdesc_use_registers, tdesc_data_alloc): Update. (tdesc_data_cleanup): Don't declare. * target-descriptions.c (tdesc_data_alloc): Return a tdesc_arch_data_up. (tdesc_arch_data_deleter::operator()): Rename from tdesc_data_cleanup. Change argument type. (tdesc_use_registers): Change early_data to an rvalue reference. (tdesc_use_registers): Don't use delete. * sparc-tdep.c (sparc32_gdbarch_init): Update. * s390-tdep.c (s390_gdbarch_init): Update. * rx-tdep.c (rx_gdbarch_init): Update. * rs6000-tdep.c (rs6000_gdbarch_init): Update. * riscv-tdep.c (riscv_gdbarch_init): Update. * or1k-tdep.c (or1k_gdbarch_init): Update. * nios2-tdep.c (nios2_gdbarch_init): Update. * nds32-tdep.c (nds32_gdbarch_init): Update. * mips-tdep.c (mips_gdbarch_init): Update. * microblaze-tdep.c (microblaze_gdbarch_init): Update. * m68k-tdep.c (m68k_gdbarch_init): Update. * i386-tdep.c (i386_gdbarch_init): Update. * arm-tdep.c (arm_gdbarch_init): Update. * arc-tdep.c (arc_tdesc_init): Update. (arc_gdbarch_init): Update. * aarch64-tdep.c (aarch64_gdbarch_init): Update.
2020-09-18 04:11:38 +08:00
valid_p &= arc_check_tdesc_feature (tdesc_data_loc.get (),
arc: Add ARCv2 XML target along with refactoring A few changes have been made to make the register support simpler, more flexible and extendible. The trigger for most of these changes are the remarks [1] made earlier for v2 of this patch. The noticeable improvements are: - The arc XML target features are placed under gdb/features/arc - There are two cores (based on ISA) and one auxiliary feature: v1-core: ARC600, ARC601, ARC700 v2-core: ARC EM, ARC HS aux: common in both - The XML target features represent a minimalistic sane set of registers irrespective of application (baremetal or linux). - A concept of "feature" class has been introduced in the code. The "feature" object is constructed from BFD and GDBARCH data. It contains necessary information (ISA and register size) to determine which XML target feature to use. - A new structure (ARC_REGISTER_FEATURE) is added that allows providing index, names, and the necessity of registers. This simplifies the sanity checks and future extendibility. - Documnetation has been updated to reflect ARC features better. - Although the feature names has changed, there still exists backward compatibility with older names through find_obsolete_[core,aux]_names() functions. The last two points were inspired from RiscV port. [1] https://sourceware.org/pipermail/gdb-patches/2020-May/168511.html gdb/ChangeLog: * arch/arc.h (arc_gdbarch_features): New class to stir the selection of target XML. (arc_create_target_description): Use FEATURES to choose XML target. (arc_lookup_target_description): Use arc_create_target_description to create _new_ target descriptions or return the already created ones if the FEATURES is the same. * arch/arc.c: Implementation of prototypes described above. * gdb/arc-tdep.h (arc_regnum enum): Add more registers. (arc_gdbarch_features_init): Initialize the FEATURES struct. * arc-tdep.c (*_feature_name): Make feature names consistent. (arc_register_feature): A new struct to hold information about registers of a particular target/feature. (arc_check_tdesc_feature): Check if XML provides registers in compliance with ARC_REGISTER_FEATURE structs. (arc_update_acc_reg_names): Add aliases for r58 and r59. (determine_*_reg_feature_set): Which feature name to look for. (arc_gdbarch_features_init): Given MACH and ABFD, initialize FEATURES. (mach_type_to_arc_isa): Convert from a set of binutils machine types to expected ISA enums to be used in arc_gdbarch_features structs. * features/Makefile (FEATURE_XMLFILES): Add new files. * gdb/features/arc/v1-aux.c: New file. * gdb/features/arc/v1-aux.xml: Likewise. * gdb/features/arc/v1-core.c: Likewise. * gdb/features/arc/v1-core.xml: Likewise. * gdb/features/arc/v2-aux.c: Likewise. * gdb/features/arc/v2-aux.xml: Likewise. * gdb/features/arc/v2-core.c: Likewise. * gdb/features/arc/v2-core.xml: Likewise. * NEWS (Changes since GDB 9): Announce obsolence of old feature names. gdb/doc/ChangeLog: * gdb.texinfo (Synopsys ARC): Update the documentation for ARC Features. gdb/testsuite/ChangeLog: * gdb.arch/arc-tdesc-cpu.xml: Use new feature names.
2020-07-09 23:43:13 +08:00
feature_aux,
arc_aux_reg_feature);
if (!valid_p)
2016-08-13 01:02:20 +08:00
{
arc_debug_printf ("Target description is not valid");
arc: Add ARCv2 XML target along with refactoring A few changes have been made to make the register support simpler, more flexible and extendible. The trigger for most of these changes are the remarks [1] made earlier for v2 of this patch. The noticeable improvements are: - The arc XML target features are placed under gdb/features/arc - There are two cores (based on ISA) and one auxiliary feature: v1-core: ARC600, ARC601, ARC700 v2-core: ARC EM, ARC HS aux: common in both - The XML target features represent a minimalistic sane set of registers irrespective of application (baremetal or linux). - A concept of "feature" class has been introduced in the code. The "feature" object is constructed from BFD and GDBARCH data. It contains necessary information (ISA and register size) to determine which XML target feature to use. - A new structure (ARC_REGISTER_FEATURE) is added that allows providing index, names, and the necessity of registers. This simplifies the sanity checks and future extendibility. - Documnetation has been updated to reflect ARC features better. - Although the feature names has changed, there still exists backward compatibility with older names through find_obsolete_[core,aux]_names() functions. The last two points were inspired from RiscV port. [1] https://sourceware.org/pipermail/gdb-patches/2020-May/168511.html gdb/ChangeLog: * arch/arc.h (arc_gdbarch_features): New class to stir the selection of target XML. (arc_create_target_description): Use FEATURES to choose XML target. (arc_lookup_target_description): Use arc_create_target_description to create _new_ target descriptions or return the already created ones if the FEATURES is the same. * arch/arc.c: Implementation of prototypes described above. * gdb/arc-tdep.h (arc_regnum enum): Add more registers. (arc_gdbarch_features_init): Initialize the FEATURES struct. * arc-tdep.c (*_feature_name): Make feature names consistent. (arc_register_feature): A new struct to hold information about registers of a particular target/feature. (arc_check_tdesc_feature): Check if XML provides registers in compliance with ARC_REGISTER_FEATURE structs. (arc_update_acc_reg_names): Add aliases for r58 and r59. (determine_*_reg_feature_set): Which feature name to look for. (arc_gdbarch_features_init): Given MACH and ABFD, initialize FEATURES. (mach_type_to_arc_isa): Convert from a set of binutils machine types to expected ISA enums to be used in arc_gdbarch_features structs. * features/Makefile (FEATURE_XMLFILES): Add new files. * gdb/features/arc/v1-aux.c: New file. * gdb/features/arc/v1-aux.xml: Likewise. * gdb/features/arc/v1-core.c: Likewise. * gdb/features/arc/v1-core.xml: Likewise. * gdb/features/arc/v2-aux.c: Likewise. * gdb/features/arc/v2-aux.xml: Likewise. * gdb/features/arc/v2-core.c: Likewise. * gdb/features/arc/v2-core.xml: Likewise. * NEWS (Changes since GDB 9): Announce obsolence of old feature names. gdb/doc/ChangeLog: * gdb.texinfo (Synopsys ARC): Update the documentation for ARC Features. gdb/testsuite/ChangeLog: * gdb.arch/arc-tdesc-cpu.xml: Use new feature names.
2020-07-09 23:43:13 +08:00
return false;
2016-08-13 01:02:20 +08:00
}
*tdesc = tdesc_loc;
Change management of tdesc_arch_data While working on something else, I noticed that tdesc_data_cleanup took a void* parameter. Looking more into this, I found that tdesc_use_registers expected a transfer of ownership. I think it's better to express this sort of thing via the type system, when possible. This patch changes tdesc_data_alloc to return a unique pointer, changes tdesc_use_registers to accept an rvalue reference, and then adapts all the users. Note that a deleter structure is introduced to avoid having to move tdesc_arch_data to the header file. 2020-09-17 Tom Tromey <tromey@adacore.com> * tic6x-tdep.c (tic6x_gdbarch_init): Update. * target-descriptions.h (struct tdesc_arch_data_deleter): New. (tdesc_arch_data_up): New typedef. (tdesc_use_registers, tdesc_data_alloc): Update. (tdesc_data_cleanup): Don't declare. * target-descriptions.c (tdesc_data_alloc): Return a tdesc_arch_data_up. (tdesc_arch_data_deleter::operator()): Rename from tdesc_data_cleanup. Change argument type. (tdesc_use_registers): Change early_data to an rvalue reference. (tdesc_use_registers): Don't use delete. * sparc-tdep.c (sparc32_gdbarch_init): Update. * s390-tdep.c (s390_gdbarch_init): Update. * rx-tdep.c (rx_gdbarch_init): Update. * rs6000-tdep.c (rs6000_gdbarch_init): Update. * riscv-tdep.c (riscv_gdbarch_init): Update. * or1k-tdep.c (or1k_gdbarch_init): Update. * nios2-tdep.c (nios2_gdbarch_init): Update. * nds32-tdep.c (nds32_gdbarch_init): Update. * mips-tdep.c (mips_gdbarch_init): Update. * microblaze-tdep.c (microblaze_gdbarch_init): Update. * m68k-tdep.c (m68k_gdbarch_init): Update. * i386-tdep.c (i386_gdbarch_init): Update. * arm-tdep.c (arm_gdbarch_init): Update. * arc-tdep.c (arc_tdesc_init): Update. (arc_gdbarch_init): Update. * aarch64-tdep.c (aarch64_gdbarch_init): Update.
2020-09-18 04:11:38 +08:00
*tdesc_data = std::move (tdesc_data_loc);
2016-08-13 01:02:20 +08:00
return true;
2016-08-13 01:02:20 +08:00
}
/* Implement the type_align gdbarch function. */
static ULONGEST
arc_type_align (struct gdbarch *gdbarch, struct type *type)
{
switch (type->code ())
gdb: Restructure type_align and gdbarch_type_align This commit restructures the relationship between the type_align function and the gdbarch_type_align method. The problem being addressed with this commit is this; previously the type_align function was structured so that for "basic" types (int, float, etc) the gdbarch_type_align hook was called, which for "compound" types (arrays, structs, etc) the common type_align code has a fixed method for how to extract a "basic" type and would then call itself on that "basic" type. The problem is that if an architecture wants to modify the alignment rules for a "compound" type then this is not currently possible. In the revised structure, all types pass through the gdbarch_type_align method. If this method returns 0 then this indicates that the architecture has no special rules for this type, and GDB should apply the default rules for alignment. However, the architecture is free to provide an alignment for any type, both "basic" and "compound". After this commit the default alignment rules now all live in the type_align function, the default_type_align only ever returns 0, meaning apply the default rules. I've updated the 3 targets (arc, i386, and nios2) that already override the gdbarch_type_align method to fit the new scheme. Tested on X86-64/GNU Linux with no regressions. gdb/ChangeLog: * arc-tdep.c (arc_type_align): Provide alignment for basic types, return 0 for other types. * arch-utils.c (default_type_align): Always return 0. * gdbarch.h: Regenerate. * gdbarch.sh (type_align): Extend comment. * gdbtypes.c (type_align): Add additional comments, always call gdbarch_type_align before applying the default rules. * i386-tdep.c (i386_type_align): Return 0 as the default rule, generic code will then apply a suitable default. * nios2-tdep.c (nios2_type_align): Provide alignment for basic types, return 0 for other types.
2019-02-23 04:49:04 +08:00
{
case TYPE_CODE_PTR:
case TYPE_CODE_FUNC:
case TYPE_CODE_FLAGS:
case TYPE_CODE_INT:
case TYPE_CODE_RANGE:
case TYPE_CODE_FLT:
case TYPE_CODE_ENUM:
case TYPE_CODE_REF:
case TYPE_CODE_RVALUE_REF:
case TYPE_CODE_CHAR:
case TYPE_CODE_BOOL:
case TYPE_CODE_DECFLOAT:
case TYPE_CODE_METHODPTR:
case TYPE_CODE_MEMBERPTR:
type = check_typedef (type);
return std::min<ULONGEST> (4, TYPE_LENGTH (type));
default:
return 0;
}
}
2016-08-13 01:02:20 +08:00
/* Implement the "init" gdbarch method. */
static struct gdbarch *
arc_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
{
const struct target_desc *tdesc;
Change management of tdesc_arch_data While working on something else, I noticed that tdesc_data_cleanup took a void* parameter. Looking more into this, I found that tdesc_use_registers expected a transfer of ownership. I think it's better to express this sort of thing via the type system, when possible. This patch changes tdesc_data_alloc to return a unique pointer, changes tdesc_use_registers to accept an rvalue reference, and then adapts all the users. Note that a deleter structure is introduced to avoid having to move tdesc_arch_data to the header file. 2020-09-17 Tom Tromey <tromey@adacore.com> * tic6x-tdep.c (tic6x_gdbarch_init): Update. * target-descriptions.h (struct tdesc_arch_data_deleter): New. (tdesc_arch_data_up): New typedef. (tdesc_use_registers, tdesc_data_alloc): Update. (tdesc_data_cleanup): Don't declare. * target-descriptions.c (tdesc_data_alloc): Return a tdesc_arch_data_up. (tdesc_arch_data_deleter::operator()): Rename from tdesc_data_cleanup. Change argument type. (tdesc_use_registers): Change early_data to an rvalue reference. (tdesc_use_registers): Don't use delete. * sparc-tdep.c (sparc32_gdbarch_init): Update. * s390-tdep.c (s390_gdbarch_init): Update. * rx-tdep.c (rx_gdbarch_init): Update. * rs6000-tdep.c (rs6000_gdbarch_init): Update. * riscv-tdep.c (riscv_gdbarch_init): Update. * or1k-tdep.c (or1k_gdbarch_init): Update. * nios2-tdep.c (nios2_gdbarch_init): Update. * nds32-tdep.c (nds32_gdbarch_init): Update. * mips-tdep.c (mips_gdbarch_init): Update. * microblaze-tdep.c (microblaze_gdbarch_init): Update. * m68k-tdep.c (m68k_gdbarch_init): Update. * i386-tdep.c (i386_gdbarch_init): Update. * arm-tdep.c (arm_gdbarch_init): Update. * arc-tdep.c (arc_tdesc_init): Update. (arc_gdbarch_init): Update. * aarch64-tdep.c (aarch64_gdbarch_init): Update.
2020-09-18 04:11:38 +08:00
tdesc_arch_data_up tdesc_data;
2016-08-13 01:02:20 +08:00
arc_debug_printf ("Architecture initialization.");
2016-08-13 01:02:20 +08:00
if (!arc_tdesc_init (info, &tdesc, &tdesc_data))
return nullptr;
2016-08-13 01:02:20 +08:00
/* Allocate the ARC-private target-dependent information structure, and the
GDB target-independent information structure. */
std::unique_ptr<arc_gdbarch_tdep> tdep_holder (new arc_gdbarch_tdep);
arc_gdbarch_tdep *tdep = tdep_holder.get ();
tdep->jb_pc = -1; /* No longjmp support by default. */
Change management of tdesc_arch_data While working on something else, I noticed that tdesc_data_cleanup took a void* parameter. Looking more into this, I found that tdesc_use_registers expected a transfer of ownership. I think it's better to express this sort of thing via the type system, when possible. This patch changes tdesc_data_alloc to return a unique pointer, changes tdesc_use_registers to accept an rvalue reference, and then adapts all the users. Note that a deleter structure is introduced to avoid having to move tdesc_arch_data to the header file. 2020-09-17 Tom Tromey <tromey@adacore.com> * tic6x-tdep.c (tic6x_gdbarch_init): Update. * target-descriptions.h (struct tdesc_arch_data_deleter): New. (tdesc_arch_data_up): New typedef. (tdesc_use_registers, tdesc_data_alloc): Update. (tdesc_data_cleanup): Don't declare. * target-descriptions.c (tdesc_data_alloc): Return a tdesc_arch_data_up. (tdesc_arch_data_deleter::operator()): Rename from tdesc_data_cleanup. Change argument type. (tdesc_use_registers): Change early_data to an rvalue reference. (tdesc_use_registers): Don't use delete. * sparc-tdep.c (sparc32_gdbarch_init): Update. * s390-tdep.c (s390_gdbarch_init): Update. * rx-tdep.c (rx_gdbarch_init): Update. * rs6000-tdep.c (rs6000_gdbarch_init): Update. * riscv-tdep.c (riscv_gdbarch_init): Update. * or1k-tdep.c (or1k_gdbarch_init): Update. * nios2-tdep.c (nios2_gdbarch_init): Update. * nds32-tdep.c (nds32_gdbarch_init): Update. * mips-tdep.c (mips_gdbarch_init): Update. * microblaze-tdep.c (microblaze_gdbarch_init): Update. * m68k-tdep.c (m68k_gdbarch_init): Update. * i386-tdep.c (i386_gdbarch_init): Update. * arm-tdep.c (arm_gdbarch_init): Update. * arc-tdep.c (arc_tdesc_init): Update. (arc_gdbarch_init): Update. * aarch64-tdep.c (aarch64_gdbarch_init): Update.
2020-09-18 04:11:38 +08:00
tdep->has_hw_loops = arc_check_for_hw_loops (tdesc, tdesc_data.get ());
struct gdbarch *gdbarch = gdbarch_alloc (&info, tdep_holder.release ());
2016-08-13 01:02:20 +08:00
/* Data types. */
set_gdbarch_short_bit (gdbarch, 16);
set_gdbarch_int_bit (gdbarch, 32);
set_gdbarch_long_bit (gdbarch, 32);
set_gdbarch_long_long_bit (gdbarch, 64);
set_gdbarch_type_align (gdbarch, arc_type_align);
2016-08-13 01:02:20 +08:00
set_gdbarch_float_bit (gdbarch, 32);
set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
set_gdbarch_double_bit (gdbarch, 64);
set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
set_gdbarch_ptr_bit (gdbarch, 32);
set_gdbarch_addr_bit (gdbarch, 32);
set_gdbarch_char_signed (gdbarch, 0);
set_gdbarch_write_pc (gdbarch, arc_write_pc);
set_gdbarch_virtual_frame_pointer (gdbarch, arc_virtual_frame_pointer);
/* tdesc_use_registers expects gdbarch_num_regs to return number of registers
parsed by gdbarch_init, and then it will add all of the remaining
registers and will increase number of registers. */
set_gdbarch_num_regs (gdbarch, ARC_LAST_REGNUM + 1);
set_gdbarch_num_pseudo_regs (gdbarch, 0);
set_gdbarch_sp_regnum (gdbarch, ARC_SP_REGNUM);
set_gdbarch_pc_regnum (gdbarch, ARC_PC_REGNUM);
set_gdbarch_ps_regnum (gdbarch, ARC_STATUS32_REGNUM);
set_gdbarch_fp0_regnum (gdbarch, -1); /* No FPU registers. */
set_gdbarch_push_dummy_call (gdbarch, arc_push_dummy_call);
set_gdbarch_push_dummy_code (gdbarch, arc_push_dummy_code);
set_gdbarch_cannot_fetch_register (gdbarch, arc_cannot_fetch_register);
set_gdbarch_cannot_store_register (gdbarch, arc_cannot_store_register);
set_gdbarch_believe_pcc_promotion (gdbarch, 1);
set_gdbarch_return_value (gdbarch, arc_return_value);
set_gdbarch_skip_prologue (gdbarch, arc_skip_prologue);
set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
Remove GDBARCH_BREAKPOINT_MANIPULATION and SET_GDBARCH_BREAKPOINT_MANIPULATION Both of them are used in conversion. We can remove them since the conversion is done. There are many architectures only have one breakpoint instruction, so their gdbarch methods breakpoint_kind_from_pc and sw_breakpoint_from_kind look very similar. Instead of macro, we use template "template <size_t, const gdb_byte *> struct bp_manipulation" for these architectures. In order to use template, I also change breakpoint instruction of type "static const gdb_byte[]" to "constexpr gdb_byte[]", and rename them to ARCH_break_insn. gdb: 2016-11-03 Yao Qi <yao.qi@linaro.org> Pedro Alves <palves@redhat.com> * aarch64-tdep.c (aarch64_default_breakpoint): Change it to constexpr. Don't use GDBARCH_BREAKPOINT_MANIPULATION. (aarch64_gdbarch_init): Don't use SET_GDBARCH_BREAKPOINT_MANIPULATION. * alpha-tdep.c (break_insn): Rename to alpha_break_insn. Don't use GDBARCH_BREAKPOINT_MANIPULATION. (alpha_gdbarch_init): Don't use SET_GDBARCH_BREAKPOINT_MANIPULATION. * arc-tdep.c (arc_gdbarch_init): Don't use SET_GDBARCH_BREAKPOINT_MANIPULATION. * arch-utils.h (GDBARCH_BREAKPOINT_MANIPULATION): Remove. (struct bp_manipulation): New. (SET_GDBARCH_BREAKPOINT_MANIPULATION): Remove. (struct bp_manipulation_endian): New. (BP_MANIPULATION): New. (BP_MANIPULATION_ENDIAN): New. * arm-tdep.c (arm_gdbarch_init): Don't use SET_GDBARCH_BREAKPOINT_MANIPULATION. * avr-tdep.c (avr_break_insn): Change it constexpr. (avr_gdbarch_init): Don't use SET_GDBARCH_BREAKPOINT_MANIPULATION. * bfin-tdep.c (bfin_gdbarch_init): Likewise. * cris-tdep.c (cris_gdbarch_init): Likewise. * frv-tdep.c (breakpoint): Rename it to frv_break_insn, and change its type to constexpr. Don't use GDBARCH_BREAKPOINT_MANIPULATION. (frv_gdbarch_init): Don't use SET_GDBARCH_BREAKPOINT_MANIPULATION. * ft32-tdep.c (breakpoint): Rename it to ft32_break_insn and change its type to constexpr. Don't use GDBARCH_BREAKPOINT_MANIPULATION. (ft32_gdbarch_init): Don't use SET_GDBARCH_BREAKPOINT_MANIPULATION. * h8300-tdep.c (breakpoint): Rename it to h8300_break_insn. Don't use GDBARCH_BREAKPOINT_MANIPULATION. (h8300_gdbarch_init): Don't use SET_GDBARCH_BREAKPOINT_MANIPULATION. * hppa-tdep.c (breakpoint): Rename it to h8300_break_insn. Don't use GDBARCH_BREAKPOINT_MANIPULATION. (hppa_gdbarch_init): Don't use SET_GDBARCH_BREAKPOINT_MANIPULATION. * i386-tdep.c (break_insn): Rename it to i386_break_insn. Don't use GDBARCH_BREAKPOINT_MANIPULATION. (i386_gdbarch_init): Don't use SET_GDBARCH_BREAKPOINT_MANIPULATION. * iq2000-tdep.c (iq2000_gdbarch_init): Don't use SET_GDBARCH_BREAKPOINT_MANIPULATION. * lm32-tdep.c (breakpoint): Rename it to lm32_break_insn and change its type to constexpr. Don't use GDBARCH_BREAKPOINT_MANIPULATION. (lm32_gdbarch_init): Don't use SET_GDBARCH_BREAKPOINT_MANIPULATION. * m32c-tdep.c (break_insn): Rename it to m32c_break_insn and change its type to constexpr. Don't use GDBARCH_BREAKPOINT_MANIPULATION. (m32c_gdbarch_init): Don't use SET_GDBARCH_BREAKPOINT_MANIPULATION. * m32r-tdep.c (m32r_gdbarch_init): Likewise. * m68hc11-tdep.c (breakpoint): Rename it to m68hc11_break_insn and change its type to constexpr. Don't use GDBARCH_BREAKPOINT_MANIPULATION. (m68hc11_gdbarch_init): Don't use SET_GDBARCH_BREAKPOINT_MANIPULATION. * m68k-tdep.c (break_insn): Rename it to m68k_break_insn and change its type to constexpr. Don't use GDBARCH_BREAKPOINT_MANIPULATION. (m68k_gdbarch_init): Don't use SET_GDBARCH_BREAKPOINT_MANIPULATION. * m88k-tdep.c (break_insn): Rename it to m88k_break_insn and change its type to constexpr. Don't use GDBARCH_BREAKPOINT_MANIPULATION. (m88k_gdbarch_init): Don't use SET_GDBARCH_BREAKPOINT_MANIPULATION. * mep-tdep.c (breakpoint): Rename it to mep_break_insn and change its type to constexpr. Don't use GDBARCH_BREAKPOINT_MANIPULATION. (mep_gdbarch_init): Don't use SET_GDBARCH_BREAKPOINT_MANIPULATION. * microblaze-tdep.c (break_insn): Rename it to microblaze_break_insn and change its type to constexpr. Don't use GDBARCH_BREAKPOINT_MANIPULATION. (microblaze_gdbarch_init): Don't use SET_GDBARCH_BREAKPOINT_MANIPULATION. * mips-tdep.c (mips_gdbarch_init): Likewise. * mn10300-tdep.c (breakpoint): Rename it to mn10300_break_insn and change its type to constexpr. Don't use GDBARCH_BREAKPOINT_MANIPULATION. (mn10300_gdbarch_init): Don't use SET_GDBARCH_BREAKPOINT_MANIPULATION. * moxie-tdep.c (breakpoint): Rename it to moxie_break_insn and change its type to constexpr. Don't use GDBARCH_BREAKPOINT_MANIPULATION. (moxie_gdbarch_init): Don't use SET_GDBARCH_BREAKPOINT_MANIPULATION. * msp430-tdep.c (breakpoint): Rename it to msp430_break_insn and change its type to constexpr. Don't use GDBARCH_BREAKPOINT_MANIPULATION. (msp430_gdbarch_init): Don't use SET_GDBARCH_BREAKPOINT_MANIPULATION. * mt-tdep.c (mt_gdbarch_init): Likewise. * nds32-tdep.c (break_insn): Rename it to nds32_break_insn and change its type to constexpr. Don't use GDBARCH_BREAKPOINT_MANIPULATION. (nds32_gdbarch_init): Don't use SET_GDBARCH_BREAKPOINT_MANIPULATION. * nios2-tdep.c (nios2_gdbarch_init): Likewise. * rl78-tdep.c (breakpoint): Rename it to rl78_break_ins and change its type to rl78_break_insn. Don't use GDBARCH_BREAKPOINT_MANIPULATION. (rl78_gdbarch_init): Don't use SET_GDBARCH_BREAKPOINT_MANIPULATION. * rs6000-tdep.c (big_breakpoint): Change its type to constexpr. (little_breakpoint): Likewise. Don't use GDBARCH_BREAKPOINT_MANIPULATION_ENDIAN. (rs6000_gdbarch_init): Don't use SET_GDBARCH_BREAKPOINT_MANIPULATION. * rx-tdep.c (breakpoint): Rename it to rx_break_insn and change its type to constexpr. Don't use GDBARCH_BREAKPOINT_MANIPULATION. (rx_gdbarch_init): Don't use SET_GDBARCH_BREAKPOINT_MANIPULATION. * s390-linux-tdep.c (breakpoint): Rename it to s390_break_insn and change its type to constexpr. Don't use GDBARCH_BREAKPOINT_MANIPULATION (s390_gdbarch_init): Don't use SET_GDBARCH_BREAKPOINT_MANIPULATION. * score-tdep.c (score_gdbarch_init): Likewise. * sh-tdep.c (sh_gdbarch_init): Likewise. * sh64-tdep.c (sh64_gdbarch_init): Likewise. * sparc-tdep.c (break_insn): Rename it to sparc_break_insn and change its type to constexpr. Don't use GDBARCH_BREAKPOINT_MANIPULATION. (sparc32_gdbarch_init): Don't use SET_GDBARCH_BREAKPOINT_MANIPULATION. * spu-tdep.c (breakpoint): Rename it to spu_break_insn and change its type to constexpr. Don't use GDBARCH_BREAKPOINT_MANIPULATION. (spu_gdbarch_init): Don't use SET_GDBARCH_BREAKPOINT_MANIPULATION. * tic6x-tdep.c (tic6x_gdbarch_init): Likewise. * tilegx-tdep.c (breakpoint): Rename it to tilegx_break_insn and change its type to constexpr. Don't use GDBARCH_BREAKPOINT_MANIPULATION. (tilegx_gdbarch_init): Don't use SET_GDBARCH_BREAKPOINT_MANIPULATION. * v850-tdep.c (v850_gdbarch_init): Likewise. * vax-tdep.c (break_insn): Rename it to vax_break_insn and change its type to constexpr. Don't use GDBARCH_BREAKPOINT_MANIPULATION. (vax_gdbarch_init): Don't use SET_GDBARCH_BREAKPOINT_MANIPULATION. * xstormy16-tdep.c (breakpoint): Rename it to xstormy16_break_insn and change its type to constexpr. Don't use GDBARCH_BREAKPOINT_MANIPULATION. (xstormy16_gdbarch_init): Don't use SET_GDBARCH_BREAKPOINT_MANIPULATION. * xtensa-tdep.c (xtensa_gdbarch_init): Likewise.
2016-11-03 22:35:14 +08:00
set_gdbarch_breakpoint_kind_from_pc (gdbarch, arc_breakpoint_kind_from_pc);
set_gdbarch_sw_breakpoint_from_kind (gdbarch, arc_sw_breakpoint_from_kind);
2016-08-13 01:02:20 +08:00
/* On ARC 600 BRK_S instruction advances PC, unlike other ARC cores. */
if (!arc_mach_is_arc600 (gdbarch))
set_gdbarch_decr_pc_after_break (gdbarch, 0);
else
set_gdbarch_decr_pc_after_break (gdbarch, 2);
set_gdbarch_frame_align (gdbarch, arc_frame_align);
set_gdbarch_print_insn (gdbarch, arc_delayed_print_insn);
2016-08-13 01:02:20 +08:00
set_gdbarch_cannot_step_breakpoint (gdbarch, 1);
/* "nonsteppable" watchpoint means that watchpoint triggers before
instruction is committed, therefore it is required to remove watchpoint
to step though instruction that triggers it. ARC watchpoints trigger
only after instruction is committed, thus there is no need to remove
them. In fact on ARC watchpoint for memory writes may trigger with more
significant delay, like one or two instructions, depending on type of
memory where write is performed (CCM or external) and next instruction
after the memory write. */
set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 0);
/* This doesn't include possible long-immediate value. */
set_gdbarch_max_insn_length (gdbarch, 4);
/* Frame unwinders and sniffers. */
dwarf2_frame_set_init_reg (gdbarch, arc_dwarf2_frame_init_reg);
dwarf2_append_unwinders (gdbarch);
frame_unwind_append_unwinder (gdbarch, &arc_sigtramp_frame_unwind);
2016-08-13 01:02:20 +08:00
frame_unwind_append_unwinder (gdbarch, &arc_frame_unwind);
frame_base_set_default (gdbarch, &arc_normal_base);
/* Setup stuff specific to a particular environment (baremetal or Linux).
It can override functions set earlier. */
gdbarch_init_osabi (info, gdbarch);
if (tdep->jb_pc >= 0)
set_gdbarch_get_longjmp_target (gdbarch, arc_get_longjmp_target);
/* Disassembler options. Enforce CPU if it was specified in XML target
description, otherwise use default method of determining CPU (ELF private
header). */
if (info.target_desc != NULL)
{
const struct bfd_arch_info *tdesc_arch
= tdesc_architecture (info.target_desc);
if (tdesc_arch != NULL)
{
xfree (arc_disassembler_options);
/* FIXME: It is not really good to change disassembler options
behind the scene, because that might override options
specified by the user. However as of now ARC doesn't support
`set disassembler-options' hence this code is the only place
where options are changed. It also changes options for all
existing gdbarches, which also can be problematic, if
arc_gdbarch_init will start reusing existing gdbarch
instances. */
/* Target description specifies a BFD architecture, which is
different from ARC cpu, as accepted by disassembler (and most
other ARC tools), because cpu values are much more fine grained -
there can be multiple cpu values per single BFD architecture. As
a result this code should translate architecture to some cpu
value. Since there is no info on exact cpu configuration, it is
best to use the most feature-rich CPU, so that disassembler will
recognize all instructions available to the specified
architecture. */
switch (tdesc_arch->mach)
{
case bfd_mach_arc_arc601:
arc_disassembler_options = xstrdup ("cpu=arc601");
break;
case bfd_mach_arc_arc600:
arc_disassembler_options = xstrdup ("cpu=arc600");
break;
case bfd_mach_arc_arc700:
arc_disassembler_options = xstrdup ("cpu=arc700");
break;
case bfd_mach_arc_arcv2:
/* Machine arcv2 has three arches: ARCv2, EM and HS; where ARCv2
is treated as EM. */
if (arc_arch_is_hs (tdesc_arch))
arc_disassembler_options = xstrdup ("cpu=hs38_linux");
else
arc_disassembler_options = xstrdup ("cpu=em4_fpuda");
break;
default:
arc_disassembler_options = NULL;
break;
}
}
}
set_gdbarch_disassembler_options (gdbarch, &arc_disassembler_options);
set_gdbarch_valid_disassembler_options (gdbarch,
disassembler_options_arc ());
Change management of tdesc_arch_data While working on something else, I noticed that tdesc_data_cleanup took a void* parameter. Looking more into this, I found that tdesc_use_registers expected a transfer of ownership. I think it's better to express this sort of thing via the type system, when possible. This patch changes tdesc_data_alloc to return a unique pointer, changes tdesc_use_registers to accept an rvalue reference, and then adapts all the users. Note that a deleter structure is introduced to avoid having to move tdesc_arch_data to the header file. 2020-09-17 Tom Tromey <tromey@adacore.com> * tic6x-tdep.c (tic6x_gdbarch_init): Update. * target-descriptions.h (struct tdesc_arch_data_deleter): New. (tdesc_arch_data_up): New typedef. (tdesc_use_registers, tdesc_data_alloc): Update. (tdesc_data_cleanup): Don't declare. * target-descriptions.c (tdesc_data_alloc): Return a tdesc_arch_data_up. (tdesc_arch_data_deleter::operator()): Rename from tdesc_data_cleanup. Change argument type. (tdesc_use_registers): Change early_data to an rvalue reference. (tdesc_use_registers): Don't use delete. * sparc-tdep.c (sparc32_gdbarch_init): Update. * s390-tdep.c (s390_gdbarch_init): Update. * rx-tdep.c (rx_gdbarch_init): Update. * rs6000-tdep.c (rs6000_gdbarch_init): Update. * riscv-tdep.c (riscv_gdbarch_init): Update. * or1k-tdep.c (or1k_gdbarch_init): Update. * nios2-tdep.c (nios2_gdbarch_init): Update. * nds32-tdep.c (nds32_gdbarch_init): Update. * mips-tdep.c (mips_gdbarch_init): Update. * microblaze-tdep.c (microblaze_gdbarch_init): Update. * m68k-tdep.c (m68k_gdbarch_init): Update. * i386-tdep.c (i386_gdbarch_init): Update. * arm-tdep.c (arm_gdbarch_init): Update. * arc-tdep.c (arc_tdesc_init): Update. (arc_gdbarch_init): Update. * aarch64-tdep.c (aarch64_gdbarch_init): Update.
2020-09-18 04:11:38 +08:00
tdesc_use_registers (gdbarch, tdesc, std::move (tdesc_data));
2016-08-13 01:02:20 +08:00
return gdbarch;
}
/* Implement the "dump_tdep" gdbarch method. */
static void
arc_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
{
gdb: move the type cast into gdbarch_tdep I built GDB for all targets on a x86-64/GNU-Linux system, and then (accidentally) passed GDB a RISC-V binary, and asked GDB to "run" the binary on the native target. I got this error: (gdb) show architecture The target architecture is set to "auto" (currently "i386"). (gdb) file /tmp/hello.rv32.exe Reading symbols from /tmp/hello.rv32.exe... (gdb) show architecture The target architecture is set to "auto" (currently "riscv:rv32"). (gdb) run Starting program: /tmp/hello.rv32.exe ../../src/gdb/i387-tdep.c:596: internal-error: i387_supply_fxsave: Assertion `tdep->st0_regnum >= I386_ST0_REGNUM' failed. What's going on here is this; initially the architecture is i386, this is based on the default architecture, which is set based on the native target. After loading the RISC-V executable the architecture of the current inferior is updated based on the architecture of the executable. When we "run", GDB does a fork & exec, with the inferior being controlled through ptrace. GDB sees an initial stop from the inferior as soon as the inferior comes to life. In response to this stop GDB ends up calling save_stop_reason (linux-nat.c), which ends up trying to read register from the inferior, to do this we end up calling target_ops::fetch_registers, which, for the x86-64 native target, calls amd64_linux_nat_target::fetch_registers. After this I eventually end up in i387_supply_fxsave, different x86 based targets will end in different functions to fetch registers, but it doesn't really matter which function we end up in, the problem is this line, which is repeated in many places: i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (arch); The problem here is that the ARCH in this line comes from the current inferior, which, as we discussed above, will be a RISC-V gdbarch, the tdep field will actually be of type riscv_gdbarch_tdep, not i386_gdbarch_tdep. After this cast we are relying on undefined behaviour, in my case I happen to trigger an assert, but this might not always be the case. The thing I tried that exposed this problem was of course, trying to start an executable of the wrong architecture on a native target. I don't think that the correct solution for this problem is to detect, at the point of cast, that the gdbarch_tdep object is of the wrong type, but, I did wonder, is there a way that we could protect ourselves from incorrectly casting the gdbarch_tdep object? I think that there is something we can do here, and this commit is the first step in that direction, though no actual check is added by this commit. This commit can be split into two parts: (1) In gdbarch.h and arch-utils.c. In these files I have modified gdbarch_tdep (the function) so that it now takes a template argument, like this: template<typename TDepType> static inline TDepType * gdbarch_tdep (struct gdbarch *gdbarch) { struct gdbarch_tdep *tdep = gdbarch_tdep_1 (gdbarch); return static_cast<TDepType *> (tdep); } After this change we are no better protected, but the cast is now done within the gdbarch_tdep function rather than at the call sites, this leads to the second, much larger change in this commit, (2) Everywhere gdbarch_tdep is called, we make changes like this: - i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (arch); + i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (arch); There should be no functional change after this commit. In the next commit I will build on this change to add an assertion in gdbarch_tdep that checks we are casting to the correct type.
2022-05-19 20:20:17 +08:00
arc_gdbarch_tdep *tdep = gdbarch_tdep<arc_gdbarch_tdep> (gdbarch);
gdb_printf (file, "arc_dump_tdep: jb_pc = %i\n", tdep->jb_pc);
gdb_printf (file, "arc_dump_tdep: is_sigtramp = <%s>\n",
host_address_to_string (tdep->is_sigtramp));
gdb_printf (file, "arc_dump_tdep: sigcontext_addr = <%s>\n",
host_address_to_string (tdep->sigcontext_addr));
gdb_printf (file, "arc_dump_tdep: sc_reg_offset = <%s>\n",
host_address_to_string (tdep->sc_reg_offset));
gdb_printf (file, "arc_dump_tdep: sc_num_regs = %d\n",
tdep->sc_num_regs);
2016-08-13 01:02:20 +08:00
}
arc: Add disassembler helper Add disassembler helper for GDB, that uses opcodes structure arc_instruction and adds convenience functions to handle instruction operands. This interface solves at least those problems with arc_instruction: * Some instructions, like "push_s", have implicit operands which are not directly present in arc_instruction. * Operands of particular meaning, like branch/jump targets, have various locations and meaning depending on type of branch/target. * Access to operand value is abstracted into a separate function, so callee code shouldn't bother if operand value is an immediate value or in a register. Testcases included in this commit are fairly limited - they test exclusively branch instructions, something that will be used in software single stepping. Most of the other parts of this disassembler helper are tested during prologue analysis testing. gdb/ChangeLog: yyyy-mm-dd Anton Kolesov <anton.kolesov@synopsys.com> * configure.tgt: Add arc-insn.o. * arc-tdep.c (arc_delayed_print_insn): Make non-static. (dump_arc_instruction_command): New function. (arc_fprintf_disasm): Likewise. (arc_disassemble_info): Likewise. (arc_insn_get_operand_value): Likewise. (arc_insn_get_operand_value_signed): Likewise. (arc_insn_get_memory_base_reg): Likewise. (arc_insn_get_memory_offset): Likewise. (arc_insn_get_branch_target): Likewise. (arc_insn_dump): Likewise. (arc_insn_get_linear_next_pc): Likewise. * arc-tdep.h (arc_delayed_print_insn): Add function declaration. (arc_disassemble_info): Likewise. (arc_insn_get_branch_target): Likewise. (arc_insn_get_linear_next_pc): Likewise. * NEWS: Mention new "maint print arc arc-instruction". gdb/doc/ChangeLog: yyyy-mm-dd Anton Kolesov <anton.kolesov@synopsys.com> * gdb.texinfo (Synopsys ARC): Add "maint print arc arc-instruction". gdb/testsuite/ChangeLog: yyyy-mm-dd Anton Kolesov <anton.kolesov@synopsys.com> * gdb.arch/arc-decode-insn.S: New file. * gdb.arch/arc-decode-insn.exp: Likewise.
2017-02-10 19:12:06 +08:00
/* This command accepts single argument - address of instruction to
disassemble. */
static void
dump_arc_instruction_command (const char *args, int from_tty)
arc: Add disassembler helper Add disassembler helper for GDB, that uses opcodes structure arc_instruction and adds convenience functions to handle instruction operands. This interface solves at least those problems with arc_instruction: * Some instructions, like "push_s", have implicit operands which are not directly present in arc_instruction. * Operands of particular meaning, like branch/jump targets, have various locations and meaning depending on type of branch/target. * Access to operand value is abstracted into a separate function, so callee code shouldn't bother if operand value is an immediate value or in a register. Testcases included in this commit are fairly limited - they test exclusively branch instructions, something that will be used in software single stepping. Most of the other parts of this disassembler helper are tested during prologue analysis testing. gdb/ChangeLog: yyyy-mm-dd Anton Kolesov <anton.kolesov@synopsys.com> * configure.tgt: Add arc-insn.o. * arc-tdep.c (arc_delayed_print_insn): Make non-static. (dump_arc_instruction_command): New function. (arc_fprintf_disasm): Likewise. (arc_disassemble_info): Likewise. (arc_insn_get_operand_value): Likewise. (arc_insn_get_operand_value_signed): Likewise. (arc_insn_get_memory_base_reg): Likewise. (arc_insn_get_memory_offset): Likewise. (arc_insn_get_branch_target): Likewise. (arc_insn_dump): Likewise. (arc_insn_get_linear_next_pc): Likewise. * arc-tdep.h (arc_delayed_print_insn): Add function declaration. (arc_disassemble_info): Likewise. (arc_insn_get_branch_target): Likewise. (arc_insn_get_linear_next_pc): Likewise. * NEWS: Mention new "maint print arc arc-instruction". gdb/doc/ChangeLog: yyyy-mm-dd Anton Kolesov <anton.kolesov@synopsys.com> * gdb.texinfo (Synopsys ARC): Add "maint print arc arc-instruction". gdb/testsuite/ChangeLog: yyyy-mm-dd Anton Kolesov <anton.kolesov@synopsys.com> * gdb.arch/arc-decode-insn.S: New file. * gdb.arch/arc-decode-insn.exp: Likewise.
2017-02-10 19:12:06 +08:00
{
struct value *val;
if (args != NULL && strlen (args) > 0)
val = evaluate_expression (parse_expression (args).get ());
else
val = access_value_history (0);
record_latest_value (val);
CORE_ADDR address = value_as_address (val);
struct arc_instruction insn;
gdb: refactor the non-printing disassemblers This commit started from an observation I made while working on some other disassembler patches, that is, that the function gdb_buffered_insn_length, is broken ... sort of. I noticed that the gdb_buffered_insn_length function doesn't set up the application data field if the disassemble_info structure. Further, I noticed that some architectures, for example, ARM, require that the application_data field be set, see gdb_print_insn_arm in arm-tdep.c. And so, if we ever use gdb_buffered_insn_length for ARM, then GDB will likely crash. Which is why I said only "sort of" broken. Right now we don't use gdb_buffered_insn_length with ARM, so maybe it isn't broken yet? Anyway to prove to myself that there was a problem here I extended the disassembler self tests in disasm-selftests.c to include a test of gdb_buffered_insn_length. As I run the test for all architectures, I do indeed see GDB crash for ARM. To fix this we need gdb_buffered_insn_length to create a disassembler that inherits from gdb_disassemble_info, but we also need this new disassembler to not print anything. And so, I introduce a new gdb_non_printing_disassembler class, this is a disassembler that doesn't print anything to the output stream. I then observed that both ARC and S12Z also create non-printing disassemblers, but these are slightly different. While the disassembler in gdb_non_printing_disassembler reads the instruction from a buffer, the ARC and S12Z disassemblers read from target memory using target_read_code. And so, I further split gdb_non_printing_disassembler into two sub-classes, gdb_non_printing_memory_disassembler and gdb_non_printing_buffer_disassembler. The new selftests now pass, but otherwise, there should be no user visible changes after this commit.
2022-04-04 22:48:19 +08:00
struct gdb_non_printing_memory_disassembler dis (target_gdbarch ());
arc_insn_decode (address, dis.disasm_info (), arc_delayed_print_insn, &insn);
arc: Add disassembler helper Add disassembler helper for GDB, that uses opcodes structure arc_instruction and adds convenience functions to handle instruction operands. This interface solves at least those problems with arc_instruction: * Some instructions, like "push_s", have implicit operands which are not directly present in arc_instruction. * Operands of particular meaning, like branch/jump targets, have various locations and meaning depending on type of branch/target. * Access to operand value is abstracted into a separate function, so callee code shouldn't bother if operand value is an immediate value or in a register. Testcases included in this commit are fairly limited - they test exclusively branch instructions, something that will be used in software single stepping. Most of the other parts of this disassembler helper are tested during prologue analysis testing. gdb/ChangeLog: yyyy-mm-dd Anton Kolesov <anton.kolesov@synopsys.com> * configure.tgt: Add arc-insn.o. * arc-tdep.c (arc_delayed_print_insn): Make non-static. (dump_arc_instruction_command): New function. (arc_fprintf_disasm): Likewise. (arc_disassemble_info): Likewise. (arc_insn_get_operand_value): Likewise. (arc_insn_get_operand_value_signed): Likewise. (arc_insn_get_memory_base_reg): Likewise. (arc_insn_get_memory_offset): Likewise. (arc_insn_get_branch_target): Likewise. (arc_insn_dump): Likewise. (arc_insn_get_linear_next_pc): Likewise. * arc-tdep.h (arc_delayed_print_insn): Add function declaration. (arc_disassemble_info): Likewise. (arc_insn_get_branch_target): Likewise. (arc_insn_get_linear_next_pc): Likewise. * NEWS: Mention new "maint print arc arc-instruction". gdb/doc/ChangeLog: yyyy-mm-dd Anton Kolesov <anton.kolesov@synopsys.com> * gdb.texinfo (Synopsys ARC): Add "maint print arc arc-instruction". gdb/testsuite/ChangeLog: yyyy-mm-dd Anton Kolesov <anton.kolesov@synopsys.com> * gdb.arch/arc-decode-insn.S: New file. * gdb.arch/arc-decode-insn.exp: Likewise.
2017-02-10 19:12:06 +08:00
arc_insn_dump (insn);
}
gdb: add back declarations for _initialize functions I'd like to enable the -Wmissing-declarations warning. However, it warns for every _initialize function, for example: CXX dcache.o /home/smarchi/src/binutils-gdb/gdb/dcache.c: In function ‘void _initialize_dcache()’: /home/smarchi/src/binutils-gdb/gdb/dcache.c:688:1: error: no previous declaration for ‘void _initialize_dcache()’ [-Werror=missing-declarations] _initialize_dcache (void) ^~~~~~~~~~~~~~~~~~ The only practical way forward I found is to add back the declarations, which were removed by this commit: commit 481695ed5f6e0a8a9c9c50bfac1cdd2b3151e6c9 Author: John Baldwin <jhb@FreeBSD.org> Date: Sat Sep 9 11:02:37 2017 -0700 Remove unnecessary function prototypes. I don't think it's a big problem to have the declarations for these functions, but if anybody has a better solution for this, I'll be happy to use it. gdb/ChangeLog: * aarch64-fbsd-nat.c (_initialize_aarch64_fbsd_nat): Add declaration. * aarch64-fbsd-tdep.c (_initialize_aarch64_fbsd_tdep): Add declaration. * aarch64-linux-nat.c (_initialize_aarch64_linux_nat): Add declaration. * aarch64-linux-tdep.c (_initialize_aarch64_linux_tdep): Add declaration. * aarch64-newlib-tdep.c (_initialize_aarch64_newlib_tdep): Add declaration. * aarch64-tdep.c (_initialize_aarch64_tdep): Add declaration. * ada-exp.y (_initialize_ada_exp): Add declaration. * ada-lang.c (_initialize_ada_language): Add declaration. * ada-tasks.c (_initialize_tasks): Add declaration. * agent.c (_initialize_agent): Add declaration. * aix-thread.c (_initialize_aix_thread): Add declaration. * alpha-bsd-nat.c (_initialize_alphabsd_nat): Add declaration. * alpha-linux-nat.c (_initialize_alpha_linux_nat): Add declaration. * alpha-linux-tdep.c (_initialize_alpha_linux_tdep): Add declaration. * alpha-nbsd-tdep.c (_initialize_alphanbsd_tdep): Add declaration. * alpha-obsd-tdep.c (_initialize_alphaobsd_tdep): Add declaration. * alpha-tdep.c (_initialize_alpha_tdep): Add declaration. * amd64-darwin-tdep.c (_initialize_amd64_darwin_tdep): Add declaration. * amd64-dicos-tdep.c (_initialize_amd64_dicos_tdep): Add declaration. * amd64-fbsd-nat.c (_initialize_amd64fbsd_nat): Add declaration. * amd64-fbsd-tdep.c (_initialize_amd64fbsd_tdep): Add declaration. * amd64-linux-nat.c (_initialize_amd64_linux_nat): Add declaration. * amd64-linux-tdep.c (_initialize_amd64_linux_tdep): Add declaration. * amd64-nbsd-nat.c (_initialize_amd64nbsd_nat): Add declaration. * amd64-nbsd-tdep.c (_initialize_amd64nbsd_tdep): Add declaration. * amd64-obsd-nat.c (_initialize_amd64obsd_nat): Add declaration. * amd64-obsd-tdep.c (_initialize_amd64obsd_tdep): Add declaration. * amd64-sol2-tdep.c (_initialize_amd64_sol2_tdep): Add declaration. * amd64-tdep.c (_initialize_amd64_tdep): Add declaration. * amd64-windows-nat.c (_initialize_amd64_windows_nat): Add declaration. * amd64-windows-tdep.c (_initialize_amd64_windows_tdep): Add declaration. * annotate.c (_initialize_annotate): Add declaration. * arc-newlib-tdep.c (_initialize_arc_newlib_tdep): Add declaration. * arc-tdep.c (_initialize_arc_tdep): Add declaration. * arch-utils.c (_initialize_gdbarch_utils): Add declaration. * arm-fbsd-nat.c (_initialize_arm_fbsd_nat): Add declaration. * arm-fbsd-tdep.c (_initialize_arm_fbsd_tdep): Add declaration. * arm-linux-nat.c (_initialize_arm_linux_nat): Add declaration. * arm-linux-tdep.c (_initialize_arm_linux_tdep): Add declaration. * arm-nbsd-nat.c (_initialize_arm_netbsd_nat): Add declaration. * arm-nbsd-tdep.c (_initialize_arm_netbsd_tdep): Add declaration. * arm-obsd-tdep.c (_initialize_armobsd_tdep): Add declaration. * arm-pikeos-tdep.c (_initialize_arm_pikeos_tdep): Add declaration. * arm-symbian-tdep.c (_initialize_arm_symbian_tdep): Add declaration. * arm-tdep.c (_initialize_arm_tdep): Add declaration. * arm-wince-tdep.c (_initialize_arm_wince_tdep): Add declaration. * auto-load.c (_initialize_auto_load): Add declaration. * auxv.c (_initialize_auxv): Add declaration. * avr-tdep.c (_initialize_avr_tdep): Add declaration. * ax-gdb.c (_initialize_ax_gdb): Add declaration. * bfin-linux-tdep.c (_initialize_bfin_linux_tdep): Add declaration. * bfin-tdep.c (_initialize_bfin_tdep): Add declaration. * break-catch-sig.c (_initialize_break_catch_sig): Add declaration. * break-catch-syscall.c (_initialize_break_catch_syscall): Add declaration. * break-catch-throw.c (_initialize_break_catch_throw): Add declaration. * breakpoint.c (_initialize_breakpoint): Add declaration. * bsd-uthread.c (_initialize_bsd_uthread): Add declaration. * btrace.c (_initialize_btrace): Add declaration. * charset.c (_initialize_charset): Add declaration. * cli/cli-cmds.c (_initialize_cli_cmds): Add declaration. * cli/cli-dump.c (_initialize_cli_dump): Add declaration. * cli/cli-interp.c (_initialize_cli_interp): Add declaration. * cli/cli-logging.c (_initialize_cli_logging): Add declaration. * cli/cli-script.c (_initialize_cli_script): Add declaration. * cli/cli-style.c (_initialize_cli_style): Add declaration. * coff-pe-read.c (_initialize_coff_pe_read): Add declaration. * coffread.c (_initialize_coffread): Add declaration. * compile/compile-cplus-types.c (_initialize_compile_cplus_types): Add declaration. * compile/compile.c (_initialize_compile): Add declaration. * complaints.c (_initialize_complaints): Add declaration. * completer.c (_initialize_completer): Add declaration. * copying.c (_initialize_copying): Add declaration. * corefile.c (_initialize_core): Add declaration. * corelow.c (_initialize_corelow): Add declaration. * cp-abi.c (_initialize_cp_abi): Add declaration. * cp-namespace.c (_initialize_cp_namespace): Add declaration. * cp-support.c (_initialize_cp_support): Add declaration. * cp-valprint.c (_initialize_cp_valprint): Add declaration. * cris-linux-tdep.c (_initialize_cris_linux_tdep): Add declaration. * cris-tdep.c (_initialize_cris_tdep): Add declaration. * csky-linux-tdep.c (_initialize_csky_linux_tdep): Add declaration. * csky-tdep.c (_initialize_csky_tdep): Add declaration. * ctfread.c (_initialize_ctfread): Add declaration. * d-lang.c (_initialize_d_language): Add declaration. * darwin-nat-info.c (_initialize_darwin_info_commands): Add declaration. * darwin-nat.c (_initialize_darwin_nat): Add declaration. * dbxread.c (_initialize_dbxread): Add declaration. * dcache.c (_initialize_dcache): Add declaration. * disasm-selftests.c (_initialize_disasm_selftests): Add declaration. * disasm.c (_initialize_disasm): Add declaration. * dtrace-probe.c (_initialize_dtrace_probe): Add declaration. * dummy-frame.c (_initialize_dummy_frame): Add declaration. * dwarf-index-cache.c (_initialize_index_cache): Add declaration. * dwarf-index-write.c (_initialize_dwarf_index_write): Add declaration. * dwarf2-frame-tailcall.c (_initialize_tailcall_frame): Add declaration. * dwarf2-frame.c (_initialize_dwarf2_frame): Add declaration. * dwarf2expr.c (_initialize_dwarf2expr): Add declaration. * dwarf2loc.c (_initialize_dwarf2loc): Add declaration. * dwarf2read.c (_initialize_dwarf2_read): Add declaration. * elfread.c (_initialize_elfread): Add declaration. * exec.c (_initialize_exec): Add declaration. * extension.c (_initialize_extension): Add declaration. * f-lang.c (_initialize_f_language): Add declaration. * f-valprint.c (_initialize_f_valprint): Add declaration. * fbsd-nat.c (_initialize_fbsd_nat): Add declaration. * fbsd-tdep.c (_initialize_fbsd_tdep): Add declaration. * filesystem.c (_initialize_filesystem): Add declaration. * findcmd.c (_initialize_mem_search): Add declaration. * findvar.c (_initialize_findvar): Add declaration. * fork-child.c (_initialize_fork_child): Add declaration. * frame-base.c (_initialize_frame_base): Add declaration. * frame-unwind.c (_initialize_frame_unwind): Add declaration. * frame.c (_initialize_frame): Add declaration. * frv-linux-tdep.c (_initialize_frv_linux_tdep): Add declaration. * frv-tdep.c (_initialize_frv_tdep): Add declaration. * ft32-tdep.c (_initialize_ft32_tdep): Add declaration. * gcore.c (_initialize_gcore): Add declaration. * gdb-demangle.c (_initialize_gdb_demangle): Add declaration. * gdb_bfd.c (_initialize_gdb_bfd): Add declaration. * gdbarch-selftests.c (_initialize_gdbarch_selftests): Add declaration. * gdbarch.c (_initialize_gdbarch): Add declaration. * gdbtypes.c (_initialize_gdbtypes): Add declaration. * gnu-nat.c (_initialize_gnu_nat): Add declaration. * gnu-v2-abi.c (_initialize_gnu_v2_abi): Add declaration. * gnu-v3-abi.c (_initialize_gnu_v3_abi): Add declaration. * go-lang.c (_initialize_go_language): Add declaration. * go32-nat.c (_initialize_go32_nat): Add declaration. * guile/guile.c (_initialize_guile): Add declaration. * h8300-tdep.c (_initialize_h8300_tdep): Add declaration. * hppa-linux-nat.c (_initialize_hppa_linux_nat): Add declaration. * hppa-linux-tdep.c (_initialize_hppa_linux_tdep): Add declaration. * hppa-nbsd-nat.c (_initialize_hppanbsd_nat): Add declaration. * hppa-nbsd-tdep.c (_initialize_hppanbsd_tdep): Add declaration. * hppa-obsd-nat.c (_initialize_hppaobsd_nat): Add declaration. * hppa-obsd-tdep.c (_initialize_hppabsd_tdep): Add declaration. * hppa-tdep.c (_initialize_hppa_tdep): Add declaration. * i386-bsd-nat.c (_initialize_i386bsd_nat): Add declaration. * i386-cygwin-tdep.c (_initialize_i386_cygwin_tdep): Add declaration. * i386-darwin-nat.c (_initialize_i386_darwin_nat): Add declaration. * i386-darwin-tdep.c (_initialize_i386_darwin_tdep): Add declaration. * i386-dicos-tdep.c (_initialize_i386_dicos_tdep): Add declaration. * i386-fbsd-nat.c (_initialize_i386fbsd_nat): Add declaration. * i386-fbsd-tdep.c (_initialize_i386fbsd_tdep): Add declaration. * i386-gnu-nat.c (_initialize_i386gnu_nat): Add declaration. * i386-gnu-tdep.c (_initialize_i386gnu_tdep): Add declaration. * i386-go32-tdep.c (_initialize_i386_go32_tdep): Add declaration. * i386-linux-nat.c (_initialize_i386_linux_nat): Add declaration. * i386-linux-tdep.c (_initialize_i386_linux_tdep): Add declaration. * i386-nbsd-nat.c (_initialize_i386nbsd_nat): Add declaration. * i386-nbsd-tdep.c (_initialize_i386nbsd_tdep): Add declaration. * i386-nto-tdep.c (_initialize_i386nto_tdep): Add declaration. * i386-obsd-nat.c (_initialize_i386obsd_nat): Add declaration. * i386-obsd-tdep.c (_initialize_i386obsd_tdep): Add declaration. * i386-sol2-nat.c (_initialize_amd64_sol2_nat): Add declaration. * i386-sol2-tdep.c (_initialize_i386_sol2_tdep): Add declaration. * i386-tdep.c (_initialize_i386_tdep): Add declaration. * i386-windows-nat.c (_initialize_i386_windows_nat): Add declaration. * ia64-libunwind-tdep.c (_initialize_libunwind_frame): Add declaration. * ia64-linux-nat.c (_initialize_ia64_linux_nat): Add declaration. * ia64-linux-tdep.c (_initialize_ia64_linux_tdep): Add declaration. * ia64-tdep.c (_initialize_ia64_tdep): Add declaration. * ia64-vms-tdep.c (_initialize_ia64_vms_tdep): Add declaration. * infcall.c (_initialize_infcall): Add declaration. * infcmd.c (_initialize_infcmd): Add declaration. * inflow.c (_initialize_inflow): Add declaration. * infrun.c (_initialize_infrun): Add declaration. * interps.c (_initialize_interpreter): Add declaration. * iq2000-tdep.c (_initialize_iq2000_tdep): Add declaration. * jit.c (_initialize_jit): Add declaration. * language.c (_initialize_language): Add declaration. * linux-fork.c (_initialize_linux_fork): Add declaration. * linux-nat.c (_initialize_linux_nat): Add declaration. * linux-tdep.c (_initialize_linux_tdep): Add declaration. * linux-thread-db.c (_initialize_thread_db): Add declaration. * lm32-tdep.c (_initialize_lm32_tdep): Add declaration. * m2-lang.c (_initialize_m2_language): Add declaration. * m32c-tdep.c (_initialize_m32c_tdep): Add declaration. * m32r-linux-nat.c (_initialize_m32r_linux_nat): Add declaration. * m32r-linux-tdep.c (_initialize_m32r_linux_tdep): Add declaration. * m32r-tdep.c (_initialize_m32r_tdep): Add declaration. * m68hc11-tdep.c (_initialize_m68hc11_tdep): Add declaration. * m68k-bsd-nat.c (_initialize_m68kbsd_nat): Add declaration. * m68k-bsd-tdep.c (_initialize_m68kbsd_tdep): Add declaration. * m68k-linux-nat.c (_initialize_m68k_linux_nat): Add declaration. * m68k-linux-tdep.c (_initialize_m68k_linux_tdep): Add declaration. * m68k-tdep.c (_initialize_m68k_tdep): Add declaration. * machoread.c (_initialize_machoread): Add declaration. * macrocmd.c (_initialize_macrocmd): Add declaration. * macroscope.c (_initialize_macroscope): Add declaration. * maint-test-options.c (_initialize_maint_test_options): Add declaration. * maint-test-settings.c (_initialize_maint_test_settings): Add declaration. * maint.c (_initialize_maint_cmds): Add declaration. * mdebugread.c (_initialize_mdebugread): Add declaration. * memattr.c (_initialize_mem): Add declaration. * mep-tdep.c (_initialize_mep_tdep): Add declaration. * mi/mi-cmd-env.c (_initialize_mi_cmd_env): Add declaration. * mi/mi-cmds.c (_initialize_mi_cmds): Add declaration. * mi/mi-interp.c (_initialize_mi_interp): Add declaration. * mi/mi-main.c (_initialize_mi_main): Add declaration. * microblaze-linux-tdep.c (_initialize_microblaze_linux_tdep): Add declaration. * microblaze-tdep.c (_initialize_microblaze_tdep): Add declaration. * mips-fbsd-nat.c (_initialize_mips_fbsd_nat): Add declaration. * mips-fbsd-tdep.c (_initialize_mips_fbsd_tdep): Add declaration. * mips-linux-nat.c (_initialize_mips_linux_nat): Add declaration. * mips-linux-tdep.c (_initialize_mips_linux_tdep): Add declaration. * mips-nbsd-nat.c (_initialize_mipsnbsd_nat): Add declaration. * mips-nbsd-tdep.c (_initialize_mipsnbsd_tdep): Add declaration. * mips-sde-tdep.c (_initialize_mips_sde_tdep): Add declaration. * mips-tdep.c (_initialize_mips_tdep): Add declaration. * mips64-obsd-nat.c (_initialize_mips64obsd_nat): Add declaration. * mips64-obsd-tdep.c (_initialize_mips64obsd_tdep): Add declaration. * mipsread.c (_initialize_mipsread): Add declaration. * mn10300-linux-tdep.c (_initialize_mn10300_linux_tdep): Add declaration. * mn10300-tdep.c (_initialize_mn10300_tdep): Add declaration. * moxie-tdep.c (_initialize_moxie_tdep): Add declaration. * msp430-tdep.c (_initialize_msp430_tdep): Add declaration. * nds32-tdep.c (_initialize_nds32_tdep): Add declaration. * nios2-linux-tdep.c (_initialize_nios2_linux_tdep): Add declaration. * nios2-tdep.c (_initialize_nios2_tdep): Add declaration. * nto-procfs.c (_initialize_procfs): Add declaration. * objc-lang.c (_initialize_objc_language): Add declaration. * observable.c (_initialize_observer): Add declaration. * opencl-lang.c (_initialize_opencl_language): Add declaration. * or1k-linux-tdep.c (_initialize_or1k_linux_tdep): Add declaration. * or1k-tdep.c (_initialize_or1k_tdep): Add declaration. * osabi.c (_initialize_gdb_osabi): Add declaration. * osdata.c (_initialize_osdata): Add declaration. * p-valprint.c (_initialize_pascal_valprint): Add declaration. * parse.c (_initialize_parse): Add declaration. * ppc-fbsd-nat.c (_initialize_ppcfbsd_nat): Add declaration. * ppc-fbsd-tdep.c (_initialize_ppcfbsd_tdep): Add declaration. * ppc-linux-nat.c (_initialize_ppc_linux_nat): Add declaration. * ppc-linux-tdep.c (_initialize_ppc_linux_tdep): Add declaration. * ppc-nbsd-nat.c (_initialize_ppcnbsd_nat): Add declaration. * ppc-nbsd-tdep.c (_initialize_ppcnbsd_tdep): Add declaration. * ppc-obsd-nat.c (_initialize_ppcobsd_nat): Add declaration. * ppc-obsd-tdep.c (_initialize_ppcobsd_tdep): Add declaration. * printcmd.c (_initialize_printcmd): Add declaration. * probe.c (_initialize_probe): Add declaration. * proc-api.c (_initialize_proc_api): Add declaration. * proc-events.c (_initialize_proc_events): Add declaration. * proc-service.c (_initialize_proc_service): Add declaration. * procfs.c (_initialize_procfs): Add declaration. * producer.c (_initialize_producer): Add declaration. * psymtab.c (_initialize_psymtab): Add declaration. * python/python.c (_initialize_python): Add declaration. * ravenscar-thread.c (_initialize_ravenscar): Add declaration. * record-btrace.c (_initialize_record_btrace): Add declaration. * record-full.c (_initialize_record_full): Add declaration. * record.c (_initialize_record): Add declaration. * regcache-dump.c (_initialize_regcache_dump): Add declaration. * regcache.c (_initialize_regcache): Add declaration. * reggroups.c (_initialize_reggroup): Add declaration. * remote-notif.c (_initialize_notif): Add declaration. * remote-sim.c (_initialize_remote_sim): Add declaration. * remote.c (_initialize_remote): Add declaration. * reverse.c (_initialize_reverse): Add declaration. * riscv-fbsd-nat.c (_initialize_riscv_fbsd_nat): Add declaration. * riscv-fbsd-tdep.c (_initialize_riscv_fbsd_tdep): Add declaration. * riscv-linux-nat.c (_initialize_riscv_linux_nat): Add declaration. * riscv-linux-tdep.c (_initialize_riscv_linux_tdep): Add declaration. * riscv-tdep.c (_initialize_riscv_tdep): Add declaration. * rl78-tdep.c (_initialize_rl78_tdep): Add declaration. * rs6000-aix-tdep.c (_initialize_rs6000_aix_tdep): Add declaration. * rs6000-lynx178-tdep.c (_initialize_rs6000_lynx178_tdep): Add declaration. * rs6000-nat.c (_initialize_rs6000_nat): Add declaration. * rs6000-tdep.c (_initialize_rs6000_tdep): Add declaration. * run-on-main-thread.c (_initialize_run_on_main_thread): Add declaration. * rust-exp.y (_initialize_rust_exp): Add declaration. * rx-tdep.c (_initialize_rx_tdep): Add declaration. * s12z-tdep.c (_initialize_s12z_tdep): Add declaration. * s390-linux-nat.c (_initialize_s390_nat): Add declaration. * s390-linux-tdep.c (_initialize_s390_linux_tdep): Add declaration. * s390-tdep.c (_initialize_s390_tdep): Add declaration. * score-tdep.c (_initialize_score_tdep): Add declaration. * ser-go32.c (_initialize_ser_dos): Add declaration. * ser-mingw.c (_initialize_ser_windows): Add declaration. * ser-pipe.c (_initialize_ser_pipe): Add declaration. * ser-tcp.c (_initialize_ser_tcp): Add declaration. * ser-uds.c (_initialize_ser_socket): Add declaration. * ser-unix.c (_initialize_ser_hardwire): Add declaration. * serial.c (_initialize_serial): Add declaration. * sh-linux-tdep.c (_initialize_sh_linux_tdep): Add declaration. * sh-nbsd-nat.c (_initialize_shnbsd_nat): Add declaration. * sh-nbsd-tdep.c (_initialize_shnbsd_tdep): Add declaration. * sh-tdep.c (_initialize_sh_tdep): Add declaration. * skip.c (_initialize_step_skip): Add declaration. * sol-thread.c (_initialize_sol_thread): Add declaration. * solib-aix.c (_initialize_solib_aix): Add declaration. * solib-darwin.c (_initialize_darwin_solib): Add declaration. * solib-dsbt.c (_initialize_dsbt_solib): Add declaration. * solib-frv.c (_initialize_frv_solib): Add declaration. * solib-svr4.c (_initialize_svr4_solib): Add declaration. * solib-target.c (_initialize_solib_target): Add declaration. * solib.c (_initialize_solib): Add declaration. * source-cache.c (_initialize_source_cache): Add declaration. * source.c (_initialize_source): Add declaration. * sparc-linux-nat.c (_initialize_sparc_linux_nat): Add declaration. * sparc-linux-tdep.c (_initialize_sparc_linux_tdep): Add declaration. * sparc-nat.c (_initialize_sparc_nat): Add declaration. * sparc-nbsd-nat.c (_initialize_sparcnbsd_nat): Add declaration. * sparc-nbsd-tdep.c (_initialize_sparcnbsd_tdep): Add declaration. * sparc-obsd-tdep.c (_initialize_sparc32obsd_tdep): Add declaration. * sparc-sol2-tdep.c (_initialize_sparc_sol2_tdep): Add declaration. * sparc-tdep.c (_initialize_sparc_tdep): Add declaration. * sparc64-fbsd-nat.c (_initialize_sparc64fbsd_nat): Add declaration. * sparc64-fbsd-tdep.c (_initialize_sparc64fbsd_tdep): Add declaration. * sparc64-linux-nat.c (_initialize_sparc64_linux_nat): Add declaration. * sparc64-linux-tdep.c (_initialize_sparc64_linux_tdep): Add declaration. * sparc64-nat.c (_initialize_sparc64_nat): Add declaration. * sparc64-nbsd-nat.c (_initialize_sparc64nbsd_nat): Add declaration. * sparc64-nbsd-tdep.c (_initialize_sparc64nbsd_tdep): Add declaration. * sparc64-obsd-nat.c (_initialize_sparc64obsd_nat): Add declaration. * sparc64-obsd-tdep.c (_initialize_sparc64obsd_tdep): Add declaration. * sparc64-sol2-tdep.c (_initialize_sparc64_sol2_tdep): Add declaration. * sparc64-tdep.c (_initialize_sparc64_adi_tdep): Add declaration. * stabsread.c (_initialize_stabsread): Add declaration. * stack.c (_initialize_stack): Add declaration. * stap-probe.c (_initialize_stap_probe): Add declaration. * std-regs.c (_initialize_frame_reg): Add declaration. * symfile-debug.c (_initialize_symfile_debug): Add declaration. * symfile-mem.c (_initialize_symfile_mem): Add declaration. * symfile.c (_initialize_symfile): Add declaration. * symmisc.c (_initialize_symmisc): Add declaration. * symtab.c (_initialize_symtab): Add declaration. * target.c (_initialize_target): Add declaration. * target-connection.c (_initialize_target_connection): Add declaration. * target-dcache.c (_initialize_target_dcache): Add declaration. * target-descriptions.c (_initialize_target_descriptions): Add declaration. * thread.c (_initialize_thread): Add declaration. * tic6x-linux-tdep.c (_initialize_tic6x_linux_tdep): Add declaration. * tic6x-tdep.c (_initialize_tic6x_tdep): Add declaration. * tilegx-linux-nat.c (_initialize_tile_linux_nat): Add declaration. * tilegx-linux-tdep.c (_initialize_tilegx_linux_tdep): Add declaration. * tilegx-tdep.c (_initialize_tilegx_tdep): Add declaration. * tracectf.c (_initialize_ctf): Add declaration. * tracefile-tfile.c (_initialize_tracefile_tfile): Add declaration. * tracefile.c (_initialize_tracefile): Add declaration. * tracepoint.c (_initialize_tracepoint): Add declaration. * tui/tui-hooks.c (_initialize_tui_hooks): Add declaration. * tui/tui-interp.c (_initialize_tui_interp): Add declaration. * tui/tui-layout.c (_initialize_tui_layout): Add declaration. * tui/tui-regs.c (_initialize_tui_regs): Add declaration. * tui/tui-stack.c (_initialize_tui_stack): Add declaration. * tui/tui-win.c (_initialize_tui_win): Add declaration. * tui/tui.c (_initialize_tui): Add declaration. * typeprint.c (_initialize_typeprint): Add declaration. * ui-style.c (_initialize_ui_style): Add declaration. * unittests/array-view-selftests.c (_initialize_array_view_selftests): Add declaration. * unittests/child-path-selftests.c (_initialize_child_path_selftests): Add declaration. * unittests/cli-utils-selftests.c (_initialize_cli_utils_selftests): Add declaration. * unittests/common-utils-selftests.c (_initialize_common_utils_selftests): Add declaration. * unittests/copy_bitwise-selftests.c (_initialize_copy_bitwise_utils_selftests): Add declaration. * unittests/environ-selftests.c (_initialize_environ_selftests): Add declaration. * unittests/filtered_iterator-selftests.c (_initialize_filtered_iterator_selftests): Add declaration. * unittests/format_pieces-selftests.c (_initialize_format_pieces_selftests): Add declaration. * unittests/function-view-selftests.c (_initialize_function_view_selftests): Add declaration. * unittests/help-doc-selftests.c (_initialize_help_doc_selftests): Add declaration. * unittests/lookup_name_info-selftests.c (_initialize_lookup_name_info_selftests): Add declaration. * unittests/main-thread-selftests.c (_initialize_main_thread_selftests): Add declaration. * unittests/memory-map-selftests.c (_initialize_memory_map_selftests): Add declaration. * unittests/memrange-selftests.c (_initialize_memrange_selftests): Add declaration. * unittests/mkdir-recursive-selftests.c (_initialize_mkdir_recursive_selftests): Add declaration. * unittests/observable-selftests.c (_initialize_observer_selftest): Add declaration. * unittests/offset-type-selftests.c (_initialize_offset_type_selftests): Add declaration. * unittests/optional-selftests.c (_initialize_optional_selftests): Add declaration. * unittests/parse-connection-spec-selftests.c (_initialize_parse_connection_spec_selftests): Add declaration. * unittests/rsp-low-selftests.c (_initialize_rsp_low_selftests): Add declaration. * unittests/scoped_fd-selftests.c (_initialize_scoped_fd_selftests): Add declaration. * unittests/scoped_mmap-selftests.c (_initialize_scoped_mmap_selftests): Add declaration. * unittests/scoped_restore-selftests.c (_initialize_scoped_restore_selftests): Add declaration. * unittests/string_view-selftests.c (_initialize_string_view_selftests): Add declaration. * unittests/style-selftests.c (_initialize_style_selftest): Add declaration. * unittests/tracepoint-selftests.c (_initialize_tracepoint_selftests): Add declaration. * unittests/tui-selftests.c (_initialize_tui_selftest): Add declaration. * unittests/unpack-selftests.c (_initialize_unpack_selftests): Add declaration. * unittests/utils-selftests.c (_initialize_utils_selftests): Add declaration. * unittests/vec-utils-selftests.c (_initialize_vec_utils_selftests): Add declaration. * unittests/xml-utils-selftests.c (_initialize_xml_utils): Add declaration. * user-regs.c (_initialize_user_regs): Add declaration. * utils.c (_initialize_utils): Add declaration. * v850-tdep.c (_initialize_v850_tdep): Add declaration. * valops.c (_initialize_valops): Add declaration. * valprint.c (_initialize_valprint): Add declaration. * value.c (_initialize_values): Add declaration. * varobj.c (_initialize_varobj): Add declaration. * vax-bsd-nat.c (_initialize_vaxbsd_nat): Add declaration. * vax-nbsd-tdep.c (_initialize_vaxnbsd_tdep): Add declaration. * vax-tdep.c (_initialize_vax_tdep): Add declaration. * windows-nat.c (_initialize_windows_nat): Add declaration. (_initialize_check_for_gdb_ini): Add declaration. (_initialize_loadable): Add declaration. * windows-tdep.c (_initialize_windows_tdep): Add declaration. * x86-bsd-nat.c (_initialize_x86_bsd_nat): Add declaration. * x86-linux-nat.c (_initialize_x86_linux_nat): Add declaration. * xcoffread.c (_initialize_xcoffread): Add declaration. * xml-support.c (_initialize_xml_support): Add declaration. * xstormy16-tdep.c (_initialize_xstormy16_tdep): Add declaration. * xtensa-linux-nat.c (_initialize_xtensa_linux_nat): Add declaration. * xtensa-linux-tdep.c (_initialize_xtensa_linux_tdep): Add declaration. * xtensa-tdep.c (_initialize_xtensa_tdep): Add declaration. Change-Id: I13eec7e0ed2b3c427377a7bdb055cf46da64def9
2020-01-14 03:01:38 +08:00
void _initialize_arc_tdep ();
2016-08-13 01:02:20 +08:00
void
gdb: add back declarations for _initialize functions I'd like to enable the -Wmissing-declarations warning. However, it warns for every _initialize function, for example: CXX dcache.o /home/smarchi/src/binutils-gdb/gdb/dcache.c: In function ‘void _initialize_dcache()’: /home/smarchi/src/binutils-gdb/gdb/dcache.c:688:1: error: no previous declaration for ‘void _initialize_dcache()’ [-Werror=missing-declarations] _initialize_dcache (void) ^~~~~~~~~~~~~~~~~~ The only practical way forward I found is to add back the declarations, which were removed by this commit: commit 481695ed5f6e0a8a9c9c50bfac1cdd2b3151e6c9 Author: John Baldwin <jhb@FreeBSD.org> Date: Sat Sep 9 11:02:37 2017 -0700 Remove unnecessary function prototypes. I don't think it's a big problem to have the declarations for these functions, but if anybody has a better solution for this, I'll be happy to use it. gdb/ChangeLog: * aarch64-fbsd-nat.c (_initialize_aarch64_fbsd_nat): Add declaration. * aarch64-fbsd-tdep.c (_initialize_aarch64_fbsd_tdep): Add declaration. * aarch64-linux-nat.c (_initialize_aarch64_linux_nat): Add declaration. * aarch64-linux-tdep.c (_initialize_aarch64_linux_tdep): Add declaration. * aarch64-newlib-tdep.c (_initialize_aarch64_newlib_tdep): Add declaration. * aarch64-tdep.c (_initialize_aarch64_tdep): Add declaration. * ada-exp.y (_initialize_ada_exp): Add declaration. * ada-lang.c (_initialize_ada_language): Add declaration. * ada-tasks.c (_initialize_tasks): Add declaration. * agent.c (_initialize_agent): Add declaration. * aix-thread.c (_initialize_aix_thread): Add declaration. * alpha-bsd-nat.c (_initialize_alphabsd_nat): Add declaration. * alpha-linux-nat.c (_initialize_alpha_linux_nat): Add declaration. * alpha-linux-tdep.c (_initialize_alpha_linux_tdep): Add declaration. * alpha-nbsd-tdep.c (_initialize_alphanbsd_tdep): Add declaration. * alpha-obsd-tdep.c (_initialize_alphaobsd_tdep): Add declaration. * alpha-tdep.c (_initialize_alpha_tdep): Add declaration. * amd64-darwin-tdep.c (_initialize_amd64_darwin_tdep): Add declaration. * amd64-dicos-tdep.c (_initialize_amd64_dicos_tdep): Add declaration. * amd64-fbsd-nat.c (_initialize_amd64fbsd_nat): Add declaration. * amd64-fbsd-tdep.c (_initialize_amd64fbsd_tdep): Add declaration. * amd64-linux-nat.c (_initialize_amd64_linux_nat): Add declaration. * amd64-linux-tdep.c (_initialize_amd64_linux_tdep): Add declaration. * amd64-nbsd-nat.c (_initialize_amd64nbsd_nat): Add declaration. * amd64-nbsd-tdep.c (_initialize_amd64nbsd_tdep): Add declaration. * amd64-obsd-nat.c (_initialize_amd64obsd_nat): Add declaration. * amd64-obsd-tdep.c (_initialize_amd64obsd_tdep): Add declaration. * amd64-sol2-tdep.c (_initialize_amd64_sol2_tdep): Add declaration. * amd64-tdep.c (_initialize_amd64_tdep): Add declaration. * amd64-windows-nat.c (_initialize_amd64_windows_nat): Add declaration. * amd64-windows-tdep.c (_initialize_amd64_windows_tdep): Add declaration. * annotate.c (_initialize_annotate): Add declaration. * arc-newlib-tdep.c (_initialize_arc_newlib_tdep): Add declaration. * arc-tdep.c (_initialize_arc_tdep): Add declaration. * arch-utils.c (_initialize_gdbarch_utils): Add declaration. * arm-fbsd-nat.c (_initialize_arm_fbsd_nat): Add declaration. * arm-fbsd-tdep.c (_initialize_arm_fbsd_tdep): Add declaration. * arm-linux-nat.c (_initialize_arm_linux_nat): Add declaration. * arm-linux-tdep.c (_initialize_arm_linux_tdep): Add declaration. * arm-nbsd-nat.c (_initialize_arm_netbsd_nat): Add declaration. * arm-nbsd-tdep.c (_initialize_arm_netbsd_tdep): Add declaration. * arm-obsd-tdep.c (_initialize_armobsd_tdep): Add declaration. * arm-pikeos-tdep.c (_initialize_arm_pikeos_tdep): Add declaration. * arm-symbian-tdep.c (_initialize_arm_symbian_tdep): Add declaration. * arm-tdep.c (_initialize_arm_tdep): Add declaration. * arm-wince-tdep.c (_initialize_arm_wince_tdep): Add declaration. * auto-load.c (_initialize_auto_load): Add declaration. * auxv.c (_initialize_auxv): Add declaration. * avr-tdep.c (_initialize_avr_tdep): Add declaration. * ax-gdb.c (_initialize_ax_gdb): Add declaration. * bfin-linux-tdep.c (_initialize_bfin_linux_tdep): Add declaration. * bfin-tdep.c (_initialize_bfin_tdep): Add declaration. * break-catch-sig.c (_initialize_break_catch_sig): Add declaration. * break-catch-syscall.c (_initialize_break_catch_syscall): Add declaration. * break-catch-throw.c (_initialize_break_catch_throw): Add declaration. * breakpoint.c (_initialize_breakpoint): Add declaration. * bsd-uthread.c (_initialize_bsd_uthread): Add declaration. * btrace.c (_initialize_btrace): Add declaration. * charset.c (_initialize_charset): Add declaration. * cli/cli-cmds.c (_initialize_cli_cmds): Add declaration. * cli/cli-dump.c (_initialize_cli_dump): Add declaration. * cli/cli-interp.c (_initialize_cli_interp): Add declaration. * cli/cli-logging.c (_initialize_cli_logging): Add declaration. * cli/cli-script.c (_initialize_cli_script): Add declaration. * cli/cli-style.c (_initialize_cli_style): Add declaration. * coff-pe-read.c (_initialize_coff_pe_read): Add declaration. * coffread.c (_initialize_coffread): Add declaration. * compile/compile-cplus-types.c (_initialize_compile_cplus_types): Add declaration. * compile/compile.c (_initialize_compile): Add declaration. * complaints.c (_initialize_complaints): Add declaration. * completer.c (_initialize_completer): Add declaration. * copying.c (_initialize_copying): Add declaration. * corefile.c (_initialize_core): Add declaration. * corelow.c (_initialize_corelow): Add declaration. * cp-abi.c (_initialize_cp_abi): Add declaration. * cp-namespace.c (_initialize_cp_namespace): Add declaration. * cp-support.c (_initialize_cp_support): Add declaration. * cp-valprint.c (_initialize_cp_valprint): Add declaration. * cris-linux-tdep.c (_initialize_cris_linux_tdep): Add declaration. * cris-tdep.c (_initialize_cris_tdep): Add declaration. * csky-linux-tdep.c (_initialize_csky_linux_tdep): Add declaration. * csky-tdep.c (_initialize_csky_tdep): Add declaration. * ctfread.c (_initialize_ctfread): Add declaration. * d-lang.c (_initialize_d_language): Add declaration. * darwin-nat-info.c (_initialize_darwin_info_commands): Add declaration. * darwin-nat.c (_initialize_darwin_nat): Add declaration. * dbxread.c (_initialize_dbxread): Add declaration. * dcache.c (_initialize_dcache): Add declaration. * disasm-selftests.c (_initialize_disasm_selftests): Add declaration. * disasm.c (_initialize_disasm): Add declaration. * dtrace-probe.c (_initialize_dtrace_probe): Add declaration. * dummy-frame.c (_initialize_dummy_frame): Add declaration. * dwarf-index-cache.c (_initialize_index_cache): Add declaration. * dwarf-index-write.c (_initialize_dwarf_index_write): Add declaration. * dwarf2-frame-tailcall.c (_initialize_tailcall_frame): Add declaration. * dwarf2-frame.c (_initialize_dwarf2_frame): Add declaration. * dwarf2expr.c (_initialize_dwarf2expr): Add declaration. * dwarf2loc.c (_initialize_dwarf2loc): Add declaration. * dwarf2read.c (_initialize_dwarf2_read): Add declaration. * elfread.c (_initialize_elfread): Add declaration. * exec.c (_initialize_exec): Add declaration. * extension.c (_initialize_extension): Add declaration. * f-lang.c (_initialize_f_language): Add declaration. * f-valprint.c (_initialize_f_valprint): Add declaration. * fbsd-nat.c (_initialize_fbsd_nat): Add declaration. * fbsd-tdep.c (_initialize_fbsd_tdep): Add declaration. * filesystem.c (_initialize_filesystem): Add declaration. * findcmd.c (_initialize_mem_search): Add declaration. * findvar.c (_initialize_findvar): Add declaration. * fork-child.c (_initialize_fork_child): Add declaration. * frame-base.c (_initialize_frame_base): Add declaration. * frame-unwind.c (_initialize_frame_unwind): Add declaration. * frame.c (_initialize_frame): Add declaration. * frv-linux-tdep.c (_initialize_frv_linux_tdep): Add declaration. * frv-tdep.c (_initialize_frv_tdep): Add declaration. * ft32-tdep.c (_initialize_ft32_tdep): Add declaration. * gcore.c (_initialize_gcore): Add declaration. * gdb-demangle.c (_initialize_gdb_demangle): Add declaration. * gdb_bfd.c (_initialize_gdb_bfd): Add declaration. * gdbarch-selftests.c (_initialize_gdbarch_selftests): Add declaration. * gdbarch.c (_initialize_gdbarch): Add declaration. * gdbtypes.c (_initialize_gdbtypes): Add declaration. * gnu-nat.c (_initialize_gnu_nat): Add declaration. * gnu-v2-abi.c (_initialize_gnu_v2_abi): Add declaration. * gnu-v3-abi.c (_initialize_gnu_v3_abi): Add declaration. * go-lang.c (_initialize_go_language): Add declaration. * go32-nat.c (_initialize_go32_nat): Add declaration. * guile/guile.c (_initialize_guile): Add declaration. * h8300-tdep.c (_initialize_h8300_tdep): Add declaration. * hppa-linux-nat.c (_initialize_hppa_linux_nat): Add declaration. * hppa-linux-tdep.c (_initialize_hppa_linux_tdep): Add declaration. * hppa-nbsd-nat.c (_initialize_hppanbsd_nat): Add declaration. * hppa-nbsd-tdep.c (_initialize_hppanbsd_tdep): Add declaration. * hppa-obsd-nat.c (_initialize_hppaobsd_nat): Add declaration. * hppa-obsd-tdep.c (_initialize_hppabsd_tdep): Add declaration. * hppa-tdep.c (_initialize_hppa_tdep): Add declaration. * i386-bsd-nat.c (_initialize_i386bsd_nat): Add declaration. * i386-cygwin-tdep.c (_initialize_i386_cygwin_tdep): Add declaration. * i386-darwin-nat.c (_initialize_i386_darwin_nat): Add declaration. * i386-darwin-tdep.c (_initialize_i386_darwin_tdep): Add declaration. * i386-dicos-tdep.c (_initialize_i386_dicos_tdep): Add declaration. * i386-fbsd-nat.c (_initialize_i386fbsd_nat): Add declaration. * i386-fbsd-tdep.c (_initialize_i386fbsd_tdep): Add declaration. * i386-gnu-nat.c (_initialize_i386gnu_nat): Add declaration. * i386-gnu-tdep.c (_initialize_i386gnu_tdep): Add declaration. * i386-go32-tdep.c (_initialize_i386_go32_tdep): Add declaration. * i386-linux-nat.c (_initialize_i386_linux_nat): Add declaration. * i386-linux-tdep.c (_initialize_i386_linux_tdep): Add declaration. * i386-nbsd-nat.c (_initialize_i386nbsd_nat): Add declaration. * i386-nbsd-tdep.c (_initialize_i386nbsd_tdep): Add declaration. * i386-nto-tdep.c (_initialize_i386nto_tdep): Add declaration. * i386-obsd-nat.c (_initialize_i386obsd_nat): Add declaration. * i386-obsd-tdep.c (_initialize_i386obsd_tdep): Add declaration. * i386-sol2-nat.c (_initialize_amd64_sol2_nat): Add declaration. * i386-sol2-tdep.c (_initialize_i386_sol2_tdep): Add declaration. * i386-tdep.c (_initialize_i386_tdep): Add declaration. * i386-windows-nat.c (_initialize_i386_windows_nat): Add declaration. * ia64-libunwind-tdep.c (_initialize_libunwind_frame): Add declaration. * ia64-linux-nat.c (_initialize_ia64_linux_nat): Add declaration. * ia64-linux-tdep.c (_initialize_ia64_linux_tdep): Add declaration. * ia64-tdep.c (_initialize_ia64_tdep): Add declaration. * ia64-vms-tdep.c (_initialize_ia64_vms_tdep): Add declaration. * infcall.c (_initialize_infcall): Add declaration. * infcmd.c (_initialize_infcmd): Add declaration. * inflow.c (_initialize_inflow): Add declaration. * infrun.c (_initialize_infrun): Add declaration. * interps.c (_initialize_interpreter): Add declaration. * iq2000-tdep.c (_initialize_iq2000_tdep): Add declaration. * jit.c (_initialize_jit): Add declaration. * language.c (_initialize_language): Add declaration. * linux-fork.c (_initialize_linux_fork): Add declaration. * linux-nat.c (_initialize_linux_nat): Add declaration. * linux-tdep.c (_initialize_linux_tdep): Add declaration. * linux-thread-db.c (_initialize_thread_db): Add declaration. * lm32-tdep.c (_initialize_lm32_tdep): Add declaration. * m2-lang.c (_initialize_m2_language): Add declaration. * m32c-tdep.c (_initialize_m32c_tdep): Add declaration. * m32r-linux-nat.c (_initialize_m32r_linux_nat): Add declaration. * m32r-linux-tdep.c (_initialize_m32r_linux_tdep): Add declaration. * m32r-tdep.c (_initialize_m32r_tdep): Add declaration. * m68hc11-tdep.c (_initialize_m68hc11_tdep): Add declaration. * m68k-bsd-nat.c (_initialize_m68kbsd_nat): Add declaration. * m68k-bsd-tdep.c (_initialize_m68kbsd_tdep): Add declaration. * m68k-linux-nat.c (_initialize_m68k_linux_nat): Add declaration. * m68k-linux-tdep.c (_initialize_m68k_linux_tdep): Add declaration. * m68k-tdep.c (_initialize_m68k_tdep): Add declaration. * machoread.c (_initialize_machoread): Add declaration. * macrocmd.c (_initialize_macrocmd): Add declaration. * macroscope.c (_initialize_macroscope): Add declaration. * maint-test-options.c (_initialize_maint_test_options): Add declaration. * maint-test-settings.c (_initialize_maint_test_settings): Add declaration. * maint.c (_initialize_maint_cmds): Add declaration. * mdebugread.c (_initialize_mdebugread): Add declaration. * memattr.c (_initialize_mem): Add declaration. * mep-tdep.c (_initialize_mep_tdep): Add declaration. * mi/mi-cmd-env.c (_initialize_mi_cmd_env): Add declaration. * mi/mi-cmds.c (_initialize_mi_cmds): Add declaration. * mi/mi-interp.c (_initialize_mi_interp): Add declaration. * mi/mi-main.c (_initialize_mi_main): Add declaration. * microblaze-linux-tdep.c (_initialize_microblaze_linux_tdep): Add declaration. * microblaze-tdep.c (_initialize_microblaze_tdep): Add declaration. * mips-fbsd-nat.c (_initialize_mips_fbsd_nat): Add declaration. * mips-fbsd-tdep.c (_initialize_mips_fbsd_tdep): Add declaration. * mips-linux-nat.c (_initialize_mips_linux_nat): Add declaration. * mips-linux-tdep.c (_initialize_mips_linux_tdep): Add declaration. * mips-nbsd-nat.c (_initialize_mipsnbsd_nat): Add declaration. * mips-nbsd-tdep.c (_initialize_mipsnbsd_tdep): Add declaration. * mips-sde-tdep.c (_initialize_mips_sde_tdep): Add declaration. * mips-tdep.c (_initialize_mips_tdep): Add declaration. * mips64-obsd-nat.c (_initialize_mips64obsd_nat): Add declaration. * mips64-obsd-tdep.c (_initialize_mips64obsd_tdep): Add declaration. * mipsread.c (_initialize_mipsread): Add declaration. * mn10300-linux-tdep.c (_initialize_mn10300_linux_tdep): Add declaration. * mn10300-tdep.c (_initialize_mn10300_tdep): Add declaration. * moxie-tdep.c (_initialize_moxie_tdep): Add declaration. * msp430-tdep.c (_initialize_msp430_tdep): Add declaration. * nds32-tdep.c (_initialize_nds32_tdep): Add declaration. * nios2-linux-tdep.c (_initialize_nios2_linux_tdep): Add declaration. * nios2-tdep.c (_initialize_nios2_tdep): Add declaration. * nto-procfs.c (_initialize_procfs): Add declaration. * objc-lang.c (_initialize_objc_language): Add declaration. * observable.c (_initialize_observer): Add declaration. * opencl-lang.c (_initialize_opencl_language): Add declaration. * or1k-linux-tdep.c (_initialize_or1k_linux_tdep): Add declaration. * or1k-tdep.c (_initialize_or1k_tdep): Add declaration. * osabi.c (_initialize_gdb_osabi): Add declaration. * osdata.c (_initialize_osdata): Add declaration. * p-valprint.c (_initialize_pascal_valprint): Add declaration. * parse.c (_initialize_parse): Add declaration. * ppc-fbsd-nat.c (_initialize_ppcfbsd_nat): Add declaration. * ppc-fbsd-tdep.c (_initialize_ppcfbsd_tdep): Add declaration. * ppc-linux-nat.c (_initialize_ppc_linux_nat): Add declaration. * ppc-linux-tdep.c (_initialize_ppc_linux_tdep): Add declaration. * ppc-nbsd-nat.c (_initialize_ppcnbsd_nat): Add declaration. * ppc-nbsd-tdep.c (_initialize_ppcnbsd_tdep): Add declaration. * ppc-obsd-nat.c (_initialize_ppcobsd_nat): Add declaration. * ppc-obsd-tdep.c (_initialize_ppcobsd_tdep): Add declaration. * printcmd.c (_initialize_printcmd): Add declaration. * probe.c (_initialize_probe): Add declaration. * proc-api.c (_initialize_proc_api): Add declaration. * proc-events.c (_initialize_proc_events): Add declaration. * proc-service.c (_initialize_proc_service): Add declaration. * procfs.c (_initialize_procfs): Add declaration. * producer.c (_initialize_producer): Add declaration. * psymtab.c (_initialize_psymtab): Add declaration. * python/python.c (_initialize_python): Add declaration. * ravenscar-thread.c (_initialize_ravenscar): Add declaration. * record-btrace.c (_initialize_record_btrace): Add declaration. * record-full.c (_initialize_record_full): Add declaration. * record.c (_initialize_record): Add declaration. * regcache-dump.c (_initialize_regcache_dump): Add declaration. * regcache.c (_initialize_regcache): Add declaration. * reggroups.c (_initialize_reggroup): Add declaration. * remote-notif.c (_initialize_notif): Add declaration. * remote-sim.c (_initialize_remote_sim): Add declaration. * remote.c (_initialize_remote): Add declaration. * reverse.c (_initialize_reverse): Add declaration. * riscv-fbsd-nat.c (_initialize_riscv_fbsd_nat): Add declaration. * riscv-fbsd-tdep.c (_initialize_riscv_fbsd_tdep): Add declaration. * riscv-linux-nat.c (_initialize_riscv_linux_nat): Add declaration. * riscv-linux-tdep.c (_initialize_riscv_linux_tdep): Add declaration. * riscv-tdep.c (_initialize_riscv_tdep): Add declaration. * rl78-tdep.c (_initialize_rl78_tdep): Add declaration. * rs6000-aix-tdep.c (_initialize_rs6000_aix_tdep): Add declaration. * rs6000-lynx178-tdep.c (_initialize_rs6000_lynx178_tdep): Add declaration. * rs6000-nat.c (_initialize_rs6000_nat): Add declaration. * rs6000-tdep.c (_initialize_rs6000_tdep): Add declaration. * run-on-main-thread.c (_initialize_run_on_main_thread): Add declaration. * rust-exp.y (_initialize_rust_exp): Add declaration. * rx-tdep.c (_initialize_rx_tdep): Add declaration. * s12z-tdep.c (_initialize_s12z_tdep): Add declaration. * s390-linux-nat.c (_initialize_s390_nat): Add declaration. * s390-linux-tdep.c (_initialize_s390_linux_tdep): Add declaration. * s390-tdep.c (_initialize_s390_tdep): Add declaration. * score-tdep.c (_initialize_score_tdep): Add declaration. * ser-go32.c (_initialize_ser_dos): Add declaration. * ser-mingw.c (_initialize_ser_windows): Add declaration. * ser-pipe.c (_initialize_ser_pipe): Add declaration. * ser-tcp.c (_initialize_ser_tcp): Add declaration. * ser-uds.c (_initialize_ser_socket): Add declaration. * ser-unix.c (_initialize_ser_hardwire): Add declaration. * serial.c (_initialize_serial): Add declaration. * sh-linux-tdep.c (_initialize_sh_linux_tdep): Add declaration. * sh-nbsd-nat.c (_initialize_shnbsd_nat): Add declaration. * sh-nbsd-tdep.c (_initialize_shnbsd_tdep): Add declaration. * sh-tdep.c (_initialize_sh_tdep): Add declaration. * skip.c (_initialize_step_skip): Add declaration. * sol-thread.c (_initialize_sol_thread): Add declaration. * solib-aix.c (_initialize_solib_aix): Add declaration. * solib-darwin.c (_initialize_darwin_solib): Add declaration. * solib-dsbt.c (_initialize_dsbt_solib): Add declaration. * solib-frv.c (_initialize_frv_solib): Add declaration. * solib-svr4.c (_initialize_svr4_solib): Add declaration. * solib-target.c (_initialize_solib_target): Add declaration. * solib.c (_initialize_solib): Add declaration. * source-cache.c (_initialize_source_cache): Add declaration. * source.c (_initialize_source): Add declaration. * sparc-linux-nat.c (_initialize_sparc_linux_nat): Add declaration. * sparc-linux-tdep.c (_initialize_sparc_linux_tdep): Add declaration. * sparc-nat.c (_initialize_sparc_nat): Add declaration. * sparc-nbsd-nat.c (_initialize_sparcnbsd_nat): Add declaration. * sparc-nbsd-tdep.c (_initialize_sparcnbsd_tdep): Add declaration. * sparc-obsd-tdep.c (_initialize_sparc32obsd_tdep): Add declaration. * sparc-sol2-tdep.c (_initialize_sparc_sol2_tdep): Add declaration. * sparc-tdep.c (_initialize_sparc_tdep): Add declaration. * sparc64-fbsd-nat.c (_initialize_sparc64fbsd_nat): Add declaration. * sparc64-fbsd-tdep.c (_initialize_sparc64fbsd_tdep): Add declaration. * sparc64-linux-nat.c (_initialize_sparc64_linux_nat): Add declaration. * sparc64-linux-tdep.c (_initialize_sparc64_linux_tdep): Add declaration. * sparc64-nat.c (_initialize_sparc64_nat): Add declaration. * sparc64-nbsd-nat.c (_initialize_sparc64nbsd_nat): Add declaration. * sparc64-nbsd-tdep.c (_initialize_sparc64nbsd_tdep): Add declaration. * sparc64-obsd-nat.c (_initialize_sparc64obsd_nat): Add declaration. * sparc64-obsd-tdep.c (_initialize_sparc64obsd_tdep): Add declaration. * sparc64-sol2-tdep.c (_initialize_sparc64_sol2_tdep): Add declaration. * sparc64-tdep.c (_initialize_sparc64_adi_tdep): Add declaration. * stabsread.c (_initialize_stabsread): Add declaration. * stack.c (_initialize_stack): Add declaration. * stap-probe.c (_initialize_stap_probe): Add declaration. * std-regs.c (_initialize_frame_reg): Add declaration. * symfile-debug.c (_initialize_symfile_debug): Add declaration. * symfile-mem.c (_initialize_symfile_mem): Add declaration. * symfile.c (_initialize_symfile): Add declaration. * symmisc.c (_initialize_symmisc): Add declaration. * symtab.c (_initialize_symtab): Add declaration. * target.c (_initialize_target): Add declaration. * target-connection.c (_initialize_target_connection): Add declaration. * target-dcache.c (_initialize_target_dcache): Add declaration. * target-descriptions.c (_initialize_target_descriptions): Add declaration. * thread.c (_initialize_thread): Add declaration. * tic6x-linux-tdep.c (_initialize_tic6x_linux_tdep): Add declaration. * tic6x-tdep.c (_initialize_tic6x_tdep): Add declaration. * tilegx-linux-nat.c (_initialize_tile_linux_nat): Add declaration. * tilegx-linux-tdep.c (_initialize_tilegx_linux_tdep): Add declaration. * tilegx-tdep.c (_initialize_tilegx_tdep): Add declaration. * tracectf.c (_initialize_ctf): Add declaration. * tracefile-tfile.c (_initialize_tracefile_tfile): Add declaration. * tracefile.c (_initialize_tracefile): Add declaration. * tracepoint.c (_initialize_tracepoint): Add declaration. * tui/tui-hooks.c (_initialize_tui_hooks): Add declaration. * tui/tui-interp.c (_initialize_tui_interp): Add declaration. * tui/tui-layout.c (_initialize_tui_layout): Add declaration. * tui/tui-regs.c (_initialize_tui_regs): Add declaration. * tui/tui-stack.c (_initialize_tui_stack): Add declaration. * tui/tui-win.c (_initialize_tui_win): Add declaration. * tui/tui.c (_initialize_tui): Add declaration. * typeprint.c (_initialize_typeprint): Add declaration. * ui-style.c (_initialize_ui_style): Add declaration. * unittests/array-view-selftests.c (_initialize_array_view_selftests): Add declaration. * unittests/child-path-selftests.c (_initialize_child_path_selftests): Add declaration. * unittests/cli-utils-selftests.c (_initialize_cli_utils_selftests): Add declaration. * unittests/common-utils-selftests.c (_initialize_common_utils_selftests): Add declaration. * unittests/copy_bitwise-selftests.c (_initialize_copy_bitwise_utils_selftests): Add declaration. * unittests/environ-selftests.c (_initialize_environ_selftests): Add declaration. * unittests/filtered_iterator-selftests.c (_initialize_filtered_iterator_selftests): Add declaration. * unittests/format_pieces-selftests.c (_initialize_format_pieces_selftests): Add declaration. * unittests/function-view-selftests.c (_initialize_function_view_selftests): Add declaration. * unittests/help-doc-selftests.c (_initialize_help_doc_selftests): Add declaration. * unittests/lookup_name_info-selftests.c (_initialize_lookup_name_info_selftests): Add declaration. * unittests/main-thread-selftests.c (_initialize_main_thread_selftests): Add declaration. * unittests/memory-map-selftests.c (_initialize_memory_map_selftests): Add declaration. * unittests/memrange-selftests.c (_initialize_memrange_selftests): Add declaration. * unittests/mkdir-recursive-selftests.c (_initialize_mkdir_recursive_selftests): Add declaration. * unittests/observable-selftests.c (_initialize_observer_selftest): Add declaration. * unittests/offset-type-selftests.c (_initialize_offset_type_selftests): Add declaration. * unittests/optional-selftests.c (_initialize_optional_selftests): Add declaration. * unittests/parse-connection-spec-selftests.c (_initialize_parse_connection_spec_selftests): Add declaration. * unittests/rsp-low-selftests.c (_initialize_rsp_low_selftests): Add declaration. * unittests/scoped_fd-selftests.c (_initialize_scoped_fd_selftests): Add declaration. * unittests/scoped_mmap-selftests.c (_initialize_scoped_mmap_selftests): Add declaration. * unittests/scoped_restore-selftests.c (_initialize_scoped_restore_selftests): Add declaration. * unittests/string_view-selftests.c (_initialize_string_view_selftests): Add declaration. * unittests/style-selftests.c (_initialize_style_selftest): Add declaration. * unittests/tracepoint-selftests.c (_initialize_tracepoint_selftests): Add declaration. * unittests/tui-selftests.c (_initialize_tui_selftest): Add declaration. * unittests/unpack-selftests.c (_initialize_unpack_selftests): Add declaration. * unittests/utils-selftests.c (_initialize_utils_selftests): Add declaration. * unittests/vec-utils-selftests.c (_initialize_vec_utils_selftests): Add declaration. * unittests/xml-utils-selftests.c (_initialize_xml_utils): Add declaration. * user-regs.c (_initialize_user_regs): Add declaration. * utils.c (_initialize_utils): Add declaration. * v850-tdep.c (_initialize_v850_tdep): Add declaration. * valops.c (_initialize_valops): Add declaration. * valprint.c (_initialize_valprint): Add declaration. * value.c (_initialize_values): Add declaration. * varobj.c (_initialize_varobj): Add declaration. * vax-bsd-nat.c (_initialize_vaxbsd_nat): Add declaration. * vax-nbsd-tdep.c (_initialize_vaxnbsd_tdep): Add declaration. * vax-tdep.c (_initialize_vax_tdep): Add declaration. * windows-nat.c (_initialize_windows_nat): Add declaration. (_initialize_check_for_gdb_ini): Add declaration. (_initialize_loadable): Add declaration. * windows-tdep.c (_initialize_windows_tdep): Add declaration. * x86-bsd-nat.c (_initialize_x86_bsd_nat): Add declaration. * x86-linux-nat.c (_initialize_x86_linux_nat): Add declaration. * xcoffread.c (_initialize_xcoffread): Add declaration. * xml-support.c (_initialize_xml_support): Add declaration. * xstormy16-tdep.c (_initialize_xstormy16_tdep): Add declaration. * xtensa-linux-nat.c (_initialize_xtensa_linux_nat): Add declaration. * xtensa-linux-tdep.c (_initialize_xtensa_linux_tdep): Add declaration. * xtensa-tdep.c (_initialize_xtensa_tdep): Add declaration. Change-Id: I13eec7e0ed2b3c427377a7bdb055cf46da64def9
2020-01-14 03:01:38 +08:00
_initialize_arc_tdep ()
2016-08-13 01:02:20 +08:00
{
gdbarch_register (bfd_arch_arc, arc_gdbarch_init, arc_dump_tdep);
/* Register ARC-specific commands with gdb. */
/* Add root prefix command for "maintenance print arc" commands. */
add_basic_prefix_cmd ("arc", class_maintenance,
_("ARC-specific maintenance commands for printing GDB "
"internal state."),
&maintenance_print_arc_list,
0, &maintenanceprintlist);
arc: Add disassembler helper Add disassembler helper for GDB, that uses opcodes structure arc_instruction and adds convenience functions to handle instruction operands. This interface solves at least those problems with arc_instruction: * Some instructions, like "push_s", have implicit operands which are not directly present in arc_instruction. * Operands of particular meaning, like branch/jump targets, have various locations and meaning depending on type of branch/target. * Access to operand value is abstracted into a separate function, so callee code shouldn't bother if operand value is an immediate value or in a register. Testcases included in this commit are fairly limited - they test exclusively branch instructions, something that will be used in software single stepping. Most of the other parts of this disassembler helper are tested during prologue analysis testing. gdb/ChangeLog: yyyy-mm-dd Anton Kolesov <anton.kolesov@synopsys.com> * configure.tgt: Add arc-insn.o. * arc-tdep.c (arc_delayed_print_insn): Make non-static. (dump_arc_instruction_command): New function. (arc_fprintf_disasm): Likewise. (arc_disassemble_info): Likewise. (arc_insn_get_operand_value): Likewise. (arc_insn_get_operand_value_signed): Likewise. (arc_insn_get_memory_base_reg): Likewise. (arc_insn_get_memory_offset): Likewise. (arc_insn_get_branch_target): Likewise. (arc_insn_dump): Likewise. (arc_insn_get_linear_next_pc): Likewise. * arc-tdep.h (arc_delayed_print_insn): Add function declaration. (arc_disassemble_info): Likewise. (arc_insn_get_branch_target): Likewise. (arc_insn_get_linear_next_pc): Likewise. * NEWS: Mention new "maint print arc arc-instruction". gdb/doc/ChangeLog: yyyy-mm-dd Anton Kolesov <anton.kolesov@synopsys.com> * gdb.texinfo (Synopsys ARC): Add "maint print arc arc-instruction". gdb/testsuite/ChangeLog: yyyy-mm-dd Anton Kolesov <anton.kolesov@synopsys.com> * gdb.arch/arc-decode-insn.S: New file. * gdb.arch/arc-decode-insn.exp: Likewise.
2017-02-10 19:12:06 +08:00
add_cmd ("arc-instruction", class_maintenance,
dump_arc_instruction_command,
_("Dump arc_instruction structure for specified address."),
&maintenance_print_arc_list);
2016-08-13 01:02:20 +08:00
/* Debug internals for ARC GDB. */
add_setshow_boolean_cmd ("arc", class_maintenance,
&arc_debug,
_("Set ARC specific debugging."),
_("Show ARC specific debugging."),
_("When set, ARC specific debugging is enabled."),
NULL, NULL, &setdebuglist, &showdebuglist);
2016-08-13 01:02:20 +08:00
}