binutils-gdb/gdb/blockframe.c

1577 lines
47 KiB
C
Raw Normal View History

/* Get info from stack frames; convert between frames, blocks,
functions and pc values.
Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994,
1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002 Free Software
Foundation, Inc.
1999-07-08 04:19:36 +08:00
This file is part of GDB.
1999-07-08 04:19:36 +08:00
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
1999-07-08 04:19:36 +08:00
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
1999-07-08 04:19:36 +08:00
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
#include "defs.h"
#include "symtab.h"
#include "bfd.h"
#include "symfile.h"
#include "objfiles.h"
#include "frame.h"
#include "gdbcore.h"
#include "value.h" /* for read_register */
#include "target.h" /* for target_has_stack */
#include "inferior.h" /* for read_pc */
#include "annotate.h"
#include "regcache.h"
#include "gdb_assert.h"
/* Prototypes for exported functions. */
static void generic_call_dummy_register_unwind (struct frame_info *frame,
void **cache,
int regnum,
int *optimized,
enum lval_type *lval,
CORE_ADDR *addrp,
int *realnum,
void *raw_buffer);
static void frame_saved_regs_register_unwind (struct frame_info *frame,
void **cache,
int regnum,
int *optimized,
enum lval_type *lval,
CORE_ADDR *addrp,
int *realnum,
void *buffer);
1999-08-24 06:40:00 +08:00
void _initialize_blockframe (void);
/* A default FRAME_CHAIN_VALID, in the form that is suitable for most
targets. If FRAME_CHAIN_VALID returns zero it means that the given
frame is the outermost one and has no caller. */
int
2000-07-30 09:48:28 +08:00
file_frame_chain_valid (CORE_ADDR chain, struct frame_info *thisframe)
{
return ((chain) != 0
1999-12-14 09:06:04 +08:00
&& !inside_entry_file (FRAME_SAVED_PC (thisframe)));
}
/* Use the alternate method of avoiding running up off the end of the
frame chain or following frames back into the startup code. See
the comments in objfiles.h. */
1999-07-08 04:19:36 +08:00
int
2000-07-30 09:48:28 +08:00
func_frame_chain_valid (CORE_ADDR chain, struct frame_info *thisframe)
{
return ((chain) != 0
1999-12-14 09:06:04 +08:00
&& !inside_main_func ((thisframe)->pc)
&& !inside_entry_func ((thisframe)->pc));
}
/* A very simple method of determining a valid frame */
1999-07-08 04:19:36 +08:00
int
2000-07-30 09:48:28 +08:00
nonnull_frame_chain_valid (CORE_ADDR chain, struct frame_info *thisframe)
{
return ((chain) != 0);
}
/* Is ADDR inside the startup file? Note that if your machine
has a way to detect the bottom of the stack, there is no need
to call this function from FRAME_CHAIN_VALID; the reason for
doing so is that some machines have no way of detecting bottom
of stack.
A PC of zero is always considered to be the bottom of the stack. */
int
2000-07-30 09:48:28 +08:00
inside_entry_file (CORE_ADDR addr)
{
if (addr == 0)
return 1;
if (symfile_objfile == 0)
return 0;
1999-04-27 02:34:20 +08:00
if (CALL_DUMMY_LOCATION == AT_ENTRY_POINT)
{
/* Do not stop backtracing if the pc is in the call dummy
1999-07-08 04:19:36 +08:00
at the entry point. */
1999-04-27 02:34:20 +08:00
/* FIXME: Won't always work with zeros for the last two arguments */
1999-07-08 04:19:36 +08:00
if (PC_IN_CALL_DUMMY (addr, 0, 0))
1999-04-27 02:34:20 +08:00
return 0;
}
1999-07-08 04:19:36 +08:00
return (addr >= symfile_objfile->ei.entry_file_lowpc &&
addr < symfile_objfile->ei.entry_file_highpc);
}
/* Test a specified PC value to see if it is in the range of addresses
that correspond to the main() function. See comments above for why
we might want to do this.
Typically called from FRAME_CHAIN_VALID.
A PC of zero is always considered to be the bottom of the stack. */
int
2000-07-30 09:48:28 +08:00
inside_main_func (CORE_ADDR pc)
{
if (pc == 0)
return 1;
if (symfile_objfile == 0)
return 0;
/* If the addr range is not set up at symbol reading time, set it up now.
This is for FRAME_CHAIN_VALID_ALTERNATE. I do this for coff, because
it is unable to set it up and symbol reading time. */
1999-07-08 04:19:36 +08:00
if (symfile_objfile->ei.main_func_lowpc == INVALID_ENTRY_LOWPC &&
symfile_objfile->ei.main_func_highpc == INVALID_ENTRY_HIGHPC)
{
struct symbol *mainsym;
mainsym = lookup_symbol (main_name (), NULL, VAR_NAMESPACE, NULL, NULL);
1999-07-08 04:19:36 +08:00
if (mainsym && SYMBOL_CLASS (mainsym) == LOC_BLOCK)
{
symfile_objfile->ei.main_func_lowpc =
BLOCK_START (SYMBOL_BLOCK_VALUE (mainsym));
1999-07-08 04:19:36 +08:00
symfile_objfile->ei.main_func_highpc =
BLOCK_END (SYMBOL_BLOCK_VALUE (mainsym));
1999-07-08 04:19:36 +08:00
}
}
1999-07-08 04:19:36 +08:00
return (symfile_objfile->ei.main_func_lowpc <= pc &&
symfile_objfile->ei.main_func_highpc > pc);
}
/* Test a specified PC value to see if it is in the range of addresses
that correspond to the process entry point function. See comments
in objfiles.h for why we might want to do this.
Typically called from FRAME_CHAIN_VALID.
A PC of zero is always considered to be the bottom of the stack. */
int
2000-07-30 09:48:28 +08:00
inside_entry_func (CORE_ADDR pc)
{
if (pc == 0)
return 1;
if (symfile_objfile == 0)
return 0;
1999-04-27 02:34:20 +08:00
if (CALL_DUMMY_LOCATION == AT_ENTRY_POINT)
{
/* Do not stop backtracing if the pc is in the call dummy
1999-07-08 04:19:36 +08:00
at the entry point. */
1999-04-27 02:34:20 +08:00
/* FIXME: Won't always work with zeros for the last two arguments */
if (PC_IN_CALL_DUMMY (pc, 0, 0))
return 0;
}
1999-07-08 04:19:36 +08:00
return (symfile_objfile->ei.entry_func_lowpc <= pc &&
symfile_objfile->ei.entry_func_highpc > pc);
}
/* Info about the innermost stack frame (contents of FP register) */
static struct frame_info *current_frame;
/* Cache for frame addresses already read by gdb. Valid only while
inferior is stopped. Control variables for the frame cache should
be local to this module. */
static struct obstack frame_cache_obstack;
void *
2000-07-30 09:48:28 +08:00
frame_obstack_alloc (unsigned long size)
{
return obstack_alloc (&frame_cache_obstack, size);
}
void
2000-07-30 09:48:28 +08:00
frame_saved_regs_zalloc (struct frame_info *fi)
{
1999-07-08 04:19:36 +08:00
fi->saved_regs = (CORE_ADDR *)
frame_obstack_alloc (SIZEOF_FRAME_SAVED_REGS);
memset (fi->saved_regs, 0, SIZEOF_FRAME_SAVED_REGS);
}
/* Return the innermost (currently executing) stack frame. */
struct frame_info *
2000-07-30 09:48:28 +08:00
get_current_frame (void)
{
if (current_frame == NULL)
{
if (target_has_stack)
current_frame = create_new_frame (read_fp (), read_pc ());
else
error ("No stack.");
}
return current_frame;
}
void
2000-07-30 09:48:28 +08:00
set_current_frame (struct frame_info *frame)
{
current_frame = frame;
}
/* Using the PC, select a mechanism for unwinding a frame returning
the previous frame. The register unwind function should, on
demand, initialize the ->context object. */
static void
set_unwind_by_pc (CORE_ADDR pc, CORE_ADDR fp,
frame_register_unwind_ftype **unwind)
{
if (!USE_GENERIC_DUMMY_FRAMES)
/* Still need to set this to something. The ``info frame'' code
calls this function to find out where the saved registers are.
Hopefully this is robust enough to stop any core dumps and
return vaguely correct values.. */
*unwind = frame_saved_regs_register_unwind;
else if (PC_IN_CALL_DUMMY (pc, fp, fp))
*unwind = generic_call_dummy_register_unwind;
else
*unwind = frame_saved_regs_register_unwind;
}
/* Create an arbitrary (i.e. address specified by user) or innermost frame.
Always returns a non-NULL value. */
struct frame_info *
2000-07-30 09:48:28 +08:00
create_new_frame (CORE_ADDR addr, CORE_ADDR pc)
{
struct frame_info *fi;
char *name;
fi = (struct frame_info *)
obstack_alloc (&frame_cache_obstack,
sizeof (struct frame_info));
/* Zero all fields by default. */
memset (fi, 0, sizeof (struct frame_info));
fi->frame = addr;
fi->pc = pc;
1999-07-08 04:19:36 +08:00
find_pc_partial_function (pc, &name, (CORE_ADDR *) NULL, (CORE_ADDR *) NULL);
fi->signal_handler_caller = PC_IN_SIGTRAMP (fi->pc, name);
if (INIT_EXTRA_FRAME_INFO_P ())
INIT_EXTRA_FRAME_INFO (0, fi);
/* Select/initialize an unwind function. */
set_unwind_by_pc (fi->pc, fi->frame, &fi->register_unwind);
return fi;
}
/* Return the frame that FRAME calls (NULL if FRAME is the innermost
frame). */
struct frame_info *
2000-07-30 09:48:28 +08:00
get_next_frame (struct frame_info *frame)
{
return frame->next;
}
/* Flush the entire frame cache. */
void
2000-07-30 09:48:28 +08:00
flush_cached_frames (void)
{
/* Since we can't really be sure what the first object allocated was */
obstack_free (&frame_cache_obstack, 0);
obstack_init (&frame_cache_obstack);
1999-07-08 04:19:36 +08:00
current_frame = NULL; /* Invalidate cache */
select_frame (NULL);
annotate_frames_invalid ();
}
/* Flush the frame cache, and start a new one if necessary. */
void
2000-07-30 09:48:28 +08:00
reinit_frame_cache (void)
{
flush_cached_frames ();
2001-05-04 12:15:33 +08:00
/* FIXME: The inferior_ptid test is wrong if there is a corefile. */
if (PIDGET (inferior_ptid) != 0)
{
select_frame (get_current_frame ());
}
}
/* Return nonzero if the function for this frame lacks a prologue. Many
machines can define FRAMELESS_FUNCTION_INVOCATION to just call this
function. */
int
2000-07-30 09:48:28 +08:00
frameless_look_for_prologue (struct frame_info *frame)
{
CORE_ADDR func_start, after_prologue;
1999-08-24 06:40:00 +08:00
func_start = get_pc_function_start (frame->pc);
if (func_start)
{
func_start += FUNCTION_START_OFFSET;
1999-08-24 06:40:00 +08:00
/* This is faster, since only care whether there *is* a
prologue, not how long it is. */
return PROLOGUE_FRAMELESS_P (func_start);
}
else if (frame->pc == 0)
1999-08-24 06:40:00 +08:00
/* A frame with a zero PC is usually created by dereferencing a
NULL function pointer, normally causing an immediate core dump
of the inferior. Mark function as frameless, as the inferior
has no chance of setting up a stack frame. */
return 1;
else
/* If we can't find the start of the function, we don't really
know whether the function is frameless, but we should be able
to get a reasonable (i.e. best we can do under the
circumstances) backtrace by saying that it isn't. */
return 0;
}
/* Return a structure containing various interesting information
about the frame that called NEXT_FRAME. Returns NULL
if there is no such frame. */
struct frame_info *
2000-07-30 09:48:28 +08:00
get_prev_frame (struct frame_info *next_frame)
{
CORE_ADDR address = 0;
struct frame_info *prev;
int fromleaf = 0;
char *name;
/* If the requested entry is in the cache, return it.
Otherwise, figure out what the address should be for the entry
we're about to add to the cache. */
if (!next_frame)
{
#if 0
/* This screws value_of_variable, which just wants a nice clean
1999-07-08 04:19:36 +08:00
NULL return from block_innermost_frame if there are no frames.
I don't think I've ever seen this message happen otherwise.
And returning NULL here is a perfectly legitimate thing to do. */
if (!current_frame)
{
error ("You haven't set up a process's stack to examine.");
}
#endif
return current_frame;
}
/* If we have the prev one, return it */
if (next_frame->prev)
return next_frame->prev;
/* On some machines it is possible to call a function without
setting up a stack frame for it. On these machines, we
define this macro to take two args; a frameinfo pointer
identifying a frame and a variable to set or clear if it is
or isn't leafless. */
1999-05-26 02:09:09 +08:00
/* Still don't want to worry about this except on the innermost
frame. This macro will set FROMLEAF if NEXT_FRAME is a
frameless function invocation. */
if (!(next_frame->next))
{
1999-05-26 02:09:09 +08:00
fromleaf = FRAMELESS_FUNCTION_INVOCATION (next_frame);
if (fromleaf)
address = FRAME_FP (next_frame);
}
if (!fromleaf)
{
/* Two macros defined in tm.h specify the machine-dependent
1999-07-08 04:19:36 +08:00
actions to be performed here.
First, get the frame's chain-pointer.
If that is zero, the frame is the outermost frame or a leaf
called by the outermost frame. This means that if start
calls main without a frame, we'll return 0 (which is fine
anyway).
Nope; there's a problem. This also returns when the current
routine is a leaf of main. This is unacceptable. We move
this to after the ffi test; I'd rather have backtraces from
start go curfluy than have an abort called from main not show
main. */
address = FRAME_CHAIN (next_frame);
/* FIXME: cagney/2002-06-08: There should be two tests here.
The first would check for a valid frame chain based on a user
selectable policy. The default being ``stop at main'' (as
implemented by generic_func_frame_chain_valid()). Other
policies would be available - stop at NULL, .... The second
test, if provided by the target architecture, would check for
more exotic cases - most target architectures wouldn't bother
with this second case. */
if (!FRAME_CHAIN_VALID (address, next_frame))
return 0;
}
if (address == 0)
return 0;
prev = (struct frame_info *)
obstack_alloc (&frame_cache_obstack,
sizeof (struct frame_info));
/* Zero all fields by default. */
memset (prev, 0, sizeof (struct frame_info));
if (next_frame)
next_frame->prev = prev;
prev->next = next_frame;
prev->frame = address;
prev->level = next_frame->level + 1;
/* This change should not be needed, FIXME! We should
determine whether any targets *need* INIT_FRAME_PC to happen
after INIT_EXTRA_FRAME_INFO and come up with a simple way to
express what goes on here.
1999-07-08 04:19:36 +08:00
INIT_EXTRA_FRAME_INFO is called from two places: create_new_frame
(where the PC is already set up) and here (where it isn't).
INIT_FRAME_PC is only called from here, always after
INIT_EXTRA_FRAME_INFO.
The catch is the MIPS, where INIT_EXTRA_FRAME_INFO requires the PC
value (which hasn't been set yet). Some other machines appear to
require INIT_EXTRA_FRAME_INFO before they can do INIT_FRAME_PC. Phoo.
We shouldn't need INIT_FRAME_PC_FIRST to add more complication to
an already overcomplicated part of GDB. gnu@cygnus.com, 15Sep92.
Assuming that some machines need INIT_FRAME_PC after
INIT_EXTRA_FRAME_INFO, one possible scheme:
SETUP_INNERMOST_FRAME()
1999-07-08 04:19:36 +08:00
Default version is just create_new_frame (read_fp ()),
read_pc ()). Machines with extra frame info would do that (or the
local equivalent) and then set the extra fields.
SETUP_ARBITRARY_FRAME(argc, argv)
1999-07-08 04:19:36 +08:00
Only change here is that create_new_frame would no longer init extra
frame info; SETUP_ARBITRARY_FRAME would have to do that.
INIT_PREV_FRAME(fromleaf, prev)
1999-07-08 04:19:36 +08:00
Replace INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC. This should
also return a flag saying whether to keep the new frame, or
whether to discard it, because on some machines (e.g. mips) it
is really awkward to have FRAME_CHAIN_VALID called *before*
INIT_EXTRA_FRAME_INFO (there is no good way to get information
deduced in FRAME_CHAIN_VALID into the extra fields of the new frame).
std_frame_pc(fromleaf, prev)
1999-07-08 04:19:36 +08:00
This is the default setting for INIT_PREV_FRAME. It just does what
the default INIT_FRAME_PC does. Some machines will call it from
INIT_PREV_FRAME (either at the beginning, the end, or in the middle).
Some machines won't use it.
kingdon@cygnus.com, 13Apr93, 31Jan94, 14Dec94. */
INIT_FRAME_PC_FIRST (fromleaf, prev);
if (INIT_EXTRA_FRAME_INFO_P ())
INIT_EXTRA_FRAME_INFO (fromleaf, prev);
/* This entry is in the frame queue now, which is good since
FRAME_SAVED_PC may use that queue to figure out its value
(see tm-sparc.h). We want the pc saved in the inferior frame. */
1999-07-08 04:19:36 +08:00
INIT_FRAME_PC (fromleaf, prev);
/* If ->frame and ->pc are unchanged, we are in the process of getting
ourselves into an infinite backtrace. Some architectures check this
in FRAME_CHAIN or thereabouts, but it seems like there is no reason
this can't be an architecture-independent check. */
if (next_frame != NULL)
{
if (prev->frame == next_frame->frame
&& prev->pc == next_frame->pc)
{
next_frame->prev = NULL;
obstack_free (&frame_cache_obstack, prev);
return NULL;
}
}
/* Initialize the code used to unwind the frame PREV based on the PC
(and probably other architectural information). The PC lets you
check things like the debug info at that point (dwarf2cfi?) and
use that to decide how the frame should be unwound. */
set_unwind_by_pc (prev->pc, prev->frame, &prev->register_unwind);
find_pc_partial_function (prev->pc, &name,
1999-07-08 04:19:36 +08:00
(CORE_ADDR *) NULL, (CORE_ADDR *) NULL);
if (PC_IN_SIGTRAMP (prev->pc, name))
prev->signal_handler_caller = 1;
return prev;
}
CORE_ADDR
2000-07-30 09:48:28 +08:00
get_frame_pc (struct frame_info *frame)
{
return frame->pc;
}
#ifdef FRAME_FIND_SAVED_REGS
/* XXX - deprecated. This is a compatibility function for targets
that do not yet implement FRAME_INIT_SAVED_REGS. */
/* Find the addresses in which registers are saved in FRAME. */
void
2000-07-30 09:48:28 +08:00
get_frame_saved_regs (struct frame_info *frame,
struct frame_saved_regs *saved_regs_addr)
{
if (frame->saved_regs == NULL)
{
1999-07-08 04:19:36 +08:00
frame->saved_regs = (CORE_ADDR *)
frame_obstack_alloc (SIZEOF_FRAME_SAVED_REGS);
}
if (saved_regs_addr == NULL)
{
struct frame_saved_regs saved_regs;
FRAME_FIND_SAVED_REGS (frame, saved_regs);
memcpy (frame->saved_regs, &saved_regs, SIZEOF_FRAME_SAVED_REGS);
}
else
{
FRAME_FIND_SAVED_REGS (frame, *saved_regs_addr);
memcpy (frame->saved_regs, saved_regs_addr, SIZEOF_FRAME_SAVED_REGS);
}
}
#endif
/* Return the innermost lexical block in execution
in a specified stack frame. The frame address is assumed valid.
If ADDR_IN_BLOCK is non-zero, set *ADDR_IN_BLOCK to the exact code
address we used to choose the block. We use this to find a source
line, to decide which macro definitions are in scope.
The value returned in *ADDR_IN_BLOCK isn't necessarily the frame's
PC, and may not really be a valid PC at all. For example, in the
caller of a function declared to never return, the code at the
return address will never be reached, so the call instruction may
be the very last instruction in the block. So the address we use
to choose the block is actually one byte before the return address
--- hopefully pointing us at the call instruction, or its delay
slot instruction. */
struct block *
get_frame_block (struct frame_info *frame, CORE_ADDR *addr_in_block)
{
CORE_ADDR pc;
pc = frame->pc;
if (frame->next != 0 && frame->next->signal_handler_caller == 0)
/* We are not in the innermost frame and we were not interrupted
by a signal. We need to subtract one to get the correct block,
in case the call instruction was the last instruction of the block.
If there are any machines on which the saved pc does not point to
after the call insn, we probably want to make frame->pc point after
the call insn anyway. */
--pc;
if (addr_in_block)
*addr_in_block = pc;
return block_for_pc (pc);
}
struct block *
get_current_block (CORE_ADDR *addr_in_block)
{
CORE_ADDR pc = read_pc ();
if (addr_in_block)
*addr_in_block = pc;
return block_for_pc (pc);
}
CORE_ADDR
2000-07-30 09:48:28 +08:00
get_pc_function_start (CORE_ADDR pc)
{
register struct block *bl;
register struct symbol *symbol;
register struct minimal_symbol *msymbol;
CORE_ADDR fstart;
if ((bl = block_for_pc (pc)) != NULL &&
(symbol = block_function (bl)) != NULL)
{
bl = SYMBOL_BLOCK_VALUE (symbol);
fstart = BLOCK_START (bl);
}
else if ((msymbol = lookup_minimal_symbol_by_pc (pc)) != NULL)
{
fstart = SYMBOL_VALUE_ADDRESS (msymbol);
}
else
{
fstart = 0;
}
return (fstart);
}
/* Return the symbol for the function executing in frame FRAME. */
struct symbol *
2000-07-30 09:48:28 +08:00
get_frame_function (struct frame_info *frame)
{
register struct block *bl = get_frame_block (frame, 0);
if (bl == 0)
return 0;
return block_function (bl);
}
/* Return the blockvector immediately containing the innermost lexical block
containing the specified pc value and section, or 0 if there is none.
PINDEX is a pointer to the index value of the block. If PINDEX
is NULL, we don't pass this information back to the caller. */
struct blockvector *
2000-07-30 09:48:28 +08:00
blockvector_for_pc_sect (register CORE_ADDR pc, struct sec *section,
int *pindex, struct symtab *symtab)
{
register struct block *b;
register int bot, top, half;
struct blockvector *bl;
1999-07-08 04:19:36 +08:00
if (symtab == 0) /* if no symtab specified by caller */
{
/* First search all symtabs for one whose file contains our pc */
if ((symtab = find_pc_sect_symtab (pc, section)) == 0)
return 0;
}
bl = BLOCKVECTOR (symtab);
b = BLOCKVECTOR_BLOCK (bl, 0);
/* Then search that symtab for the smallest block that wins. */
/* Use binary search to find the last block that starts before PC. */
bot = 0;
top = BLOCKVECTOR_NBLOCKS (bl);
while (top - bot > 1)
{
half = (top - bot + 1) >> 1;
b = BLOCKVECTOR_BLOCK (bl, bot + half);
if (BLOCK_START (b) <= pc)
bot += half;
else
top = bot + half;
}
/* Now search backward for a block that ends after PC. */
while (bot >= 0)
{
b = BLOCKVECTOR_BLOCK (bl, bot);
1999-07-12 19:15:22 +08:00
if (BLOCK_END (b) > pc)
{
if (pindex)
*pindex = bot;
return bl;
}
bot--;
}
return 0;
}
/* Return the blockvector immediately containing the innermost lexical block
containing the specified pc value, or 0 if there is none.
Backward compatibility, no section. */
struct blockvector *
2000-07-30 09:48:28 +08:00
blockvector_for_pc (register CORE_ADDR pc, int *pindex)
{
return blockvector_for_pc_sect (pc, find_pc_mapped_section (pc),
pindex, NULL);
}
/* Return the innermost lexical block containing the specified pc value
in the specified section, or 0 if there is none. */
struct block *
2000-07-30 09:48:28 +08:00
block_for_pc_sect (register CORE_ADDR pc, struct sec *section)
{
register struct blockvector *bl;
int index;
bl = blockvector_for_pc_sect (pc, section, &index, NULL);
if (bl)
return BLOCKVECTOR_BLOCK (bl, index);
return 0;
}
/* Return the innermost lexical block containing the specified pc value,
or 0 if there is none. Backward compatibility, no section. */
struct block *
2000-07-30 09:48:28 +08:00
block_for_pc (register CORE_ADDR pc)
{
return block_for_pc_sect (pc, find_pc_mapped_section (pc));
}
/* Return the function containing pc value PC in section SECTION.
Returns 0 if function is not known. */
struct symbol *
2000-07-30 09:48:28 +08:00
find_pc_sect_function (CORE_ADDR pc, struct sec *section)
{
register struct block *b = block_for_pc_sect (pc, section);
if (b == 0)
return 0;
return block_function (b);
}
/* Return the function containing pc value PC.
Returns 0 if function is not known. Backward compatibility, no section */
struct symbol *
2000-07-30 09:48:28 +08:00
find_pc_function (CORE_ADDR pc)
{
return find_pc_sect_function (pc, find_pc_mapped_section (pc));
}
/* These variables are used to cache the most recent result
* of find_pc_partial_function. */
1999-07-08 04:19:36 +08:00
static CORE_ADDR cache_pc_function_low = 0;
static CORE_ADDR cache_pc_function_high = 0;
static char *cache_pc_function_name = 0;
static struct sec *cache_pc_function_section = NULL;
/* Clear cache, e.g. when symbol table is discarded. */
void
2000-07-30 09:48:28 +08:00
clear_pc_function_cache (void)
{
cache_pc_function_low = 0;
cache_pc_function_high = 0;
1999-07-08 04:19:36 +08:00
cache_pc_function_name = (char *) 0;
cache_pc_function_section = NULL;
}
/* Finds the "function" (text symbol) that is smaller than PC but
greatest of all of the potential text symbols in SECTION. Sets
*NAME and/or *ADDRESS conditionally if that pointer is non-null.
If ENDADDR is non-null, then set *ENDADDR to be the end of the
function (exclusive), but passing ENDADDR as non-null means that
the function might cause symbols to be read. This function either
succeeds or fails (not halfway succeeds). If it succeeds, it sets
*NAME, *ADDRESS, and *ENDADDR to real information and returns 1.
If it fails, it sets *NAME, *ADDRESS, and *ENDADDR to zero and
returns 0. */
int
2000-07-30 09:48:28 +08:00
find_pc_sect_partial_function (CORE_ADDR pc, asection *section, char **name,
CORE_ADDR *address, CORE_ADDR *endaddr)
{
struct partial_symtab *pst;
1999-07-08 04:19:36 +08:00
struct symbol *f;
struct minimal_symbol *msymbol;
struct partial_symbol *psb;
1999-07-08 04:19:36 +08:00
struct obj_section *osect;
int i;
CORE_ADDR mapped_pc;
mapped_pc = overlay_mapped_address (pc, section);
1999-07-08 04:19:36 +08:00
if (mapped_pc >= cache_pc_function_low &&
mapped_pc < cache_pc_function_high &&
section == cache_pc_function_section)
goto return_cached_value;
/* If sigtramp is in the u area, it counts as a function (especially
important for step_1). */
#if defined SIGTRAMP_START
if (PC_IN_SIGTRAMP (mapped_pc, (char *) NULL))
{
1999-07-08 04:19:36 +08:00
cache_pc_function_low = SIGTRAMP_START (mapped_pc);
cache_pc_function_high = SIGTRAMP_END (mapped_pc);
cache_pc_function_name = "<sigtramp>";
cache_pc_function_section = section;
goto return_cached_value;
}
#endif
msymbol = lookup_minimal_symbol_by_pc_section (mapped_pc, section);
pst = find_pc_sect_psymtab (mapped_pc, section);
if (pst)
{
/* Need to read the symbols to get a good value for the end address. */
if (endaddr != NULL && !pst->readin)
{
/* Need to get the terminal in case symbol-reading produces
output. */
target_terminal_ours_for_output ();
PSYMTAB_TO_SYMTAB (pst);
}
if (pst->readin)
{
/* Checking whether the msymbol has a larger value is for the
"pathological" case mentioned in print_frame_info. */
f = find_pc_sect_function (mapped_pc, section);
if (f != NULL
&& (msymbol == NULL
|| (BLOCK_START (SYMBOL_BLOCK_VALUE (f))
>= SYMBOL_VALUE_ADDRESS (msymbol))))
{
1999-07-08 04:19:36 +08:00
cache_pc_function_low = BLOCK_START (SYMBOL_BLOCK_VALUE (f));
cache_pc_function_high = BLOCK_END (SYMBOL_BLOCK_VALUE (f));
cache_pc_function_name = SYMBOL_NAME (f);
cache_pc_function_section = section;
goto return_cached_value;
}
}
else
{
/* Now that static symbols go in the minimal symbol table, perhaps
we could just ignore the partial symbols. But at least for now
we use the partial or minimal symbol, whichever is larger. */
psb = find_pc_sect_psymbol (pst, mapped_pc, section);
if (psb
&& (msymbol == NULL ||
(SYMBOL_VALUE_ADDRESS (psb)
>= SYMBOL_VALUE_ADDRESS (msymbol))))
{
/* This case isn't being cached currently. */
if (address)
*address = SYMBOL_VALUE_ADDRESS (psb);
if (name)
*name = SYMBOL_NAME (psb);
/* endaddr non-NULL can't happen here. */
return 1;
}
}
}
/* Not in the normal symbol tables, see if the pc is in a known section.
If it's not, then give up. This ensures that anything beyond the end
of the text seg doesn't appear to be part of the last function in the
text segment. */
osect = find_pc_sect_section (mapped_pc, section);
if (!osect)
msymbol = NULL;
/* Must be in the minimal symbol table. */
if (msymbol == NULL)
{
/* No available symbol. */
if (name != NULL)
*name = 0;
if (address != NULL)
*address = 0;
if (endaddr != NULL)
*endaddr = 0;
return 0;
}
1999-07-08 04:19:36 +08:00
cache_pc_function_low = SYMBOL_VALUE_ADDRESS (msymbol);
cache_pc_function_name = SYMBOL_NAME (msymbol);
cache_pc_function_section = section;
/* Use the lesser of the next minimal symbol in the same section, or
the end of the section, as the end of the function. */
1999-07-08 04:19:36 +08:00
/* Step over other symbols at this same address, and symbols in
other sections, to find the next symbol in this section with
a different address. */
1999-07-08 04:19:36 +08:00
for (i = 1; SYMBOL_NAME (msymbol + i) != NULL; i++)
{
1999-07-08 04:19:36 +08:00
if (SYMBOL_VALUE_ADDRESS (msymbol + i) != SYMBOL_VALUE_ADDRESS (msymbol)
&& SYMBOL_BFD_SECTION (msymbol + i) == SYMBOL_BFD_SECTION (msymbol))
break;
}
if (SYMBOL_NAME (msymbol + i) != NULL
&& SYMBOL_VALUE_ADDRESS (msymbol + i) < osect->endaddr)
cache_pc_function_high = SYMBOL_VALUE_ADDRESS (msymbol + i);
else
/* We got the start address from the last msymbol in the objfile.
So the end address is the end of the section. */
cache_pc_function_high = osect->endaddr;
1999-07-08 04:19:36 +08:00
return_cached_value:
if (address)
{
if (pc_in_unmapped_range (pc, section))
1999-07-08 04:19:36 +08:00
*address = overlay_unmapped_address (cache_pc_function_low, section);
else
1999-07-08 04:19:36 +08:00
*address = cache_pc_function_low;
}
1999-07-08 04:19:36 +08:00
if (name)
*name = cache_pc_function_name;
if (endaddr)
{
if (pc_in_unmapped_range (pc, section))
1999-07-08 04:19:36 +08:00
{
/* Because the high address is actually beyond the end of
the function (and therefore possibly beyond the end of
the overlay), we must actually convert (high - 1)
and then add one to that. */
1999-07-08 04:19:36 +08:00
*endaddr = 1 + overlay_unmapped_address (cache_pc_function_high - 1,
section);
1999-07-08 04:19:36 +08:00
}
else
1999-07-08 04:19:36 +08:00
*endaddr = cache_pc_function_high;
}
return 1;
}
/* Backward compatibility, no section argument */
int
2000-07-30 09:48:28 +08:00
find_pc_partial_function (CORE_ADDR pc, char **name, CORE_ADDR *address,
CORE_ADDR *endaddr)
{
1999-07-08 04:19:36 +08:00
asection *section;
section = find_pc_overlay (pc);
return find_pc_sect_partial_function (pc, section, name, address, endaddr);
}
/* Return the innermost stack frame executing inside of BLOCK,
or NULL if there is no such frame. If BLOCK is NULL, just return NULL. */
struct frame_info *
2000-07-30 09:48:28 +08:00
block_innermost_frame (struct block *block)
{
struct frame_info *frame;
register CORE_ADDR start;
register CORE_ADDR end;
if (block == NULL)
return NULL;
start = BLOCK_START (block);
end = BLOCK_END (block);
frame = NULL;
while (1)
{
frame = get_prev_frame (frame);
if (frame == NULL)
return NULL;
if (frame->pc >= start && frame->pc < end)
return frame;
}
}
/* Return the full FRAME which corresponds to the given CORE_ADDR
or NULL if no FRAME on the chain corresponds to CORE_ADDR. */
struct frame_info *
2000-07-30 09:48:28 +08:00
find_frame_addr_in_frame_chain (CORE_ADDR frame_addr)
{
struct frame_info *frame = NULL;
1999-07-08 04:19:36 +08:00
if (frame_addr == (CORE_ADDR) 0)
return NULL;
while (1)
{
frame = get_prev_frame (frame);
if (frame == NULL)
return NULL;
if (FRAME_FP (frame) == frame_addr)
return frame;
}
}
#ifdef SIGCONTEXT_PC_OFFSET
/* Get saved user PC for sigtramp from sigcontext for BSD style sigtramp. */
CORE_ADDR
2000-07-30 09:48:28 +08:00
sigtramp_saved_pc (struct frame_info *frame)
{
CORE_ADDR sigcontext_addr;
char *buf;
int ptrbytes = TARGET_PTR_BIT / TARGET_CHAR_BIT;
int sigcontext_offs = (2 * TARGET_INT_BIT) / TARGET_CHAR_BIT;
buf = alloca (ptrbytes);
/* Get sigcontext address, it is the third parameter on the stack. */
if (frame->next)
sigcontext_addr = read_memory_integer (FRAME_ARGS_ADDRESS (frame->next)
+ FRAME_ARGS_SKIP
+ sigcontext_offs,
ptrbytes);
else
sigcontext_addr = read_memory_integer (read_register (SP_REGNUM)
1999-07-08 04:19:36 +08:00
+ sigcontext_offs,
ptrbytes);
/* Don't cause a memory_error when accessing sigcontext in case the stack
layout has changed or the stack is corrupt. */
target_read_memory (sigcontext_addr + SIGCONTEXT_PC_OFFSET, buf, ptrbytes);
return extract_unsigned_integer (buf, ptrbytes);
}
#endif /* SIGCONTEXT_PC_OFFSET */
1999-04-27 02:34:20 +08:00
/* Are we in a call dummy? The code below which allows DECR_PC_AFTER_BREAK
below is for infrun.c, which may give the macro a pc without that
subtracted out. */
extern CORE_ADDR text_end;
int
2000-07-30 09:48:28 +08:00
pc_in_call_dummy_before_text_end (CORE_ADDR pc, CORE_ADDR sp,
CORE_ADDR frame_address)
1999-04-27 02:34:20 +08:00
{
return ((pc) >= text_end - CALL_DUMMY_LENGTH
&& (pc) <= text_end + DECR_PC_AFTER_BREAK);
}
int
2000-07-30 09:48:28 +08:00
pc_in_call_dummy_after_text_end (CORE_ADDR pc, CORE_ADDR sp,
CORE_ADDR frame_address)
1999-04-27 02:34:20 +08:00
{
return ((pc) >= text_end
&& (pc) <= text_end + CALL_DUMMY_LENGTH + DECR_PC_AFTER_BREAK);
}
/* Is the PC in a call dummy? SP and FRAME_ADDRESS are the bottom and
top of the stack frame which we are checking, where "bottom" and
"top" refer to some section of memory which contains the code for
the call dummy. Calls to this macro assume that the contents of
SP_REGNUM and FP_REGNUM (or the saved values thereof), respectively,
are the things to pass.
This won't work on the 29k, where SP_REGNUM and FP_REGNUM don't
have that meaning, but the 29k doesn't use ON_STACK. This could be
fixed by generalizing this scheme, perhaps by passing in a frame
and adding a few fields, at least on machines which need them for
PC_IN_CALL_DUMMY.
Something simpler, like checking for the stack segment, doesn't work,
since various programs (threads implementations, gcc nested function
stubs, etc) may either allocate stack frames in another segment, or
allocate other kinds of code on the stack. */
int
2000-07-30 09:48:28 +08:00
pc_in_call_dummy_on_stack (CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR frame_address)
1999-04-27 02:34:20 +08:00
{
return (INNER_THAN ((sp), (pc))
&& (frame_address != 0)
&& INNER_THAN ((pc), (frame_address)));
}
int
2000-07-30 09:48:28 +08:00
pc_in_call_dummy_at_entry_point (CORE_ADDR pc, CORE_ADDR sp,
CORE_ADDR frame_address)
1999-04-27 02:34:20 +08:00
{
return ((pc) >= CALL_DUMMY_ADDRESS ()
&& (pc) <= (CALL_DUMMY_ADDRESS () + DECR_PC_AFTER_BREAK));
}
/*
* GENERIC DUMMY FRAMES
*
* The following code serves to maintain the dummy stack frames for
* inferior function calls (ie. when gdb calls into the inferior via
* call_function_by_hand). This code saves the machine state before
* the call in host memory, so we must maintain an independent stack
* and keep it consistant etc. I am attempting to make this code
* generic enough to be used by many targets.
*
* The cheapest and most generic way to do CALL_DUMMY on a new target
* is probably to define CALL_DUMMY to be empty, CALL_DUMMY_LENGTH to
* zero, and CALL_DUMMY_LOCATION to AT_ENTRY. Then you must remember
* to define PUSH_RETURN_ADDRESS, because no call instruction will be
* being executed by the target. Also FRAME_CHAIN_VALID as
1999-12-14 09:06:04 +08:00
* generic_{file,func}_frame_chain_valid and FIX_CALL_DUMMY as
1999-06-08 03:19:32 +08:00
* generic_fix_call_dummy. */
1999-04-27 02:34:20 +08:00
/* Dummy frame. This saves the processor state just prior to setting
up the inferior function call. Older targets save the registers
on the target stack (but that really slows down function calls). */
1999-04-27 02:34:20 +08:00
struct dummy_frame
{
struct dummy_frame *next;
CORE_ADDR pc;
CORE_ADDR fp;
CORE_ADDR sp;
1999-07-06 01:58:44 +08:00
CORE_ADDR top;
struct regcache *regcache;
/* Address range of the call dummy code. Look for PC in the range
[LO..HI) (after allowing for DECR_PC_AFTER_BREAK). */
CORE_ADDR call_lo;
CORE_ADDR call_hi;
1999-04-27 02:34:20 +08:00
};
static struct dummy_frame *dummy_frame_stack = NULL;
/* Function: find_dummy_frame(pc, fp, sp)
Search the stack of dummy frames for one matching the given PC, FP
and SP. Unlike PC_IN_CALL_DUMMY, this function doesn't need to
adjust for DECR_PC_AFTER_BREAK. This is because it is only legal
to call this function after the PC has been adjusted. */
static struct regcache *
2000-07-30 09:48:28 +08:00
generic_find_dummy_frame (CORE_ADDR pc, CORE_ADDR fp)
{
1999-07-08 04:19:36 +08:00
struct dummy_frame *dummyframe;
for (dummyframe = dummy_frame_stack; dummyframe != NULL;
dummyframe = dummyframe->next)
if ((pc >= dummyframe->call_lo && pc < dummyframe->call_hi)
&& (fp == dummyframe->fp
|| fp == dummyframe->sp
|| fp == dummyframe->top))
/* The frame in question lies between the saved fp and sp, inclusive */
return dummyframe->regcache;
return 0;
}
char *
deprecated_generic_find_dummy_frame (CORE_ADDR pc, CORE_ADDR fp)
{
struct regcache *regcache = generic_find_dummy_frame (pc, fp);
if (regcache == NULL)
return NULL;
return deprecated_grub_regcache_for_registers (regcache);
}
/* Function: pc_in_call_dummy (pc, sp, fp)
Return true if the PC falls in a dummy frame created by gdb for an
inferior call. The code below which allows DECR_PC_AFTER_BREAK is
for infrun.c, which may give the function a PC without that
subtracted out. */
int
2000-07-30 09:48:28 +08:00
generic_pc_in_call_dummy (CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR fp)
{
struct dummy_frame *dummyframe;
for (dummyframe = dummy_frame_stack;
dummyframe != NULL;
dummyframe = dummyframe->next)
{
if ((pc >= dummyframe->call_lo)
&& (pc < dummyframe->call_hi + DECR_PC_AFTER_BREAK))
return 1;
}
return 0;
}
/* Function: read_register_dummy
Find a saved register from before GDB calls a function in the inferior */
CORE_ADDR
2000-07-30 09:48:28 +08:00
generic_read_register_dummy (CORE_ADDR pc, CORE_ADDR fp, int regno)
{
struct regcache *dummy_regs = generic_find_dummy_frame (pc, fp);
if (dummy_regs)
return regcache_read_as_address (dummy_regs, regno);
else
return 0;
}
/* Save all the registers on the dummy frame stack. Most ports save the
registers on the target stack. This results in lots of unnecessary memory
references, which are slow when debugging via a serial line. Instead, we
save all the registers internally, and never write them to the stack. The
registers get restored when the called function returns to the entry point,
where a breakpoint is laying in wait. */
void
2000-07-30 09:48:28 +08:00
generic_push_dummy_frame (void)
{
struct dummy_frame *dummy_frame;
CORE_ADDR fp = (get_current_frame ())->frame;
/* check to see if there are stale dummy frames,
perhaps left over from when a longjump took us out of a
function that was called by the debugger */
dummy_frame = dummy_frame_stack;
while (dummy_frame)
if (INNER_THAN (dummy_frame->fp, fp)) /* stale -- destroy! */
{
dummy_frame_stack = dummy_frame->next;
regcache_xfree (dummy_frame->regcache);
2000-12-15 09:01:51 +08:00
xfree (dummy_frame);
dummy_frame = dummy_frame_stack;
}
else
dummy_frame = dummy_frame->next;
dummy_frame = xmalloc (sizeof (struct dummy_frame));
dummy_frame->regcache = regcache_xmalloc (current_gdbarch);
1999-04-27 02:34:20 +08:00
* gdbarch.sh (POINTER_TO_ADDRESS, ADDRESS_TO_POINTER): Two new functions which architectures can redefine, defaulting to generic_pointer_to_address and generic_address_to_pointer. * findvar.c (extract_typed_address, store_typed_address, generic_pointer_to_address, generic_address_to_pointer): New functions. (POINTER_TO_ADDRESS, ADDRESS_TO_POINTER): Provide default definitions. (extract_address, store_address): Doc fixes. * values.c (value_as_pointer): Doc fix. (value_from_pointer): New function. * defs.h (extract_typed_address, store_typed_address): New declarations. * inferior.h (generic_address_to_pointer, generic_pointer_to_address): New declarations. * value.h (value_from_pointer): New declaration. * ax-gdb.c (const_var_ref): Use value_from_pointer, not value_from_longest. * blockframe.c (generic_push_dummy_frame): Use read_pc and read_sp, not read_register. * c-valprint.c (c_val_print): Use extract_typed_address instead of extract_address to extract vtable entries and references. * cp-valprint.c (cp_print_value_fields): Use value_from_pointer instead of value_from_longest to extract the vtable's address. * eval.c (evaluate_subexp_standard): Use value_from_pointer instead of value_from_longest to compute `this', and for doing pointer-to-member dereferencing. * findvar.c (read_register): Use extract_unsigned_integer, not extract_address. (read_var_value): Use store_typed_address instead of store_address for building label values. (locate_var_value): Use value_from_pointer instead of value_from_longest. * hppa-tdep.c (find_stub_with_shl_get): Use value_from_pointer, instead of value_from_longest, to build arguments to __d_shl_get. * printcmd.c (set_next_address): Use value_from_pointer, not value_from_longest. (x_command): Use value_from_pointer, not value_from_longest. * tracepoint.c (set_traceframe_context): Use value_from_pointer, not value_from_longest. * valarith.c (value_add, value_sub): Use value_from_pointer, not value_from_longest. * valops.c (find_function_in_inferior, value_coerce_array, value_coerce_function, value_addr, hand_function_call): Same. * value.h (COERCE_REF): Use unpack_pointer, not unpack_long. * values.c (unpack_long): Use extract_typed_address to produce addresses from pointers and references, not extract_address. (value_from_longest): Use store_typed_address instead of store_address to produce pointer and reference values.
2000-04-15 02:43:41 +08:00
dummy_frame->pc = read_pc ();
dummy_frame->sp = read_sp ();
1999-07-08 04:19:36 +08:00
dummy_frame->top = dummy_frame->sp;
dummy_frame->fp = fp;
regcache_cpy (dummy_frame->regcache, current_regcache);
dummy_frame->next = dummy_frame_stack;
dummy_frame_stack = dummy_frame;
}
1999-07-06 01:58:44 +08:00
void
2000-07-30 09:48:28 +08:00
generic_save_dummy_frame_tos (CORE_ADDR sp)
1999-07-06 01:58:44 +08:00
{
dummy_frame_stack->top = sp;
}
/* Record the upper/lower bounds on the address of the call dummy. */
void
generic_save_call_dummy_addr (CORE_ADDR lo, CORE_ADDR hi)
{
dummy_frame_stack->call_lo = lo;
dummy_frame_stack->call_hi = hi;
}
1999-12-23 05:45:38 +08:00
/* Restore the machine state from either the saved dummy stack or a
real stack frame. */
void
1999-12-23 05:45:38 +08:00
generic_pop_current_frame (void (*popper) (struct frame_info * frame))
{
struct frame_info *frame = get_current_frame ();
1999-12-23 05:45:38 +08:00
1999-07-08 04:19:36 +08:00
if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
generic_pop_dummy_frame ();
else
1999-12-23 05:45:38 +08:00
(*popper) (frame);
}
/* Function: pop_dummy_frame
Restore the machine state from a saved dummy stack frame. */
void
2000-07-30 09:48:28 +08:00
generic_pop_dummy_frame (void)
{
struct dummy_frame *dummy_frame = dummy_frame_stack;
/* FIXME: what if the first frame isn't the right one, eg..
because one call-by-hand function has done a longjmp into another one? */
if (!dummy_frame)
error ("Can't pop dummy frame!");
dummy_frame_stack = dummy_frame->next;
regcache_cpy (current_regcache, dummy_frame->regcache);
flush_cached_frames ();
1999-04-27 02:34:20 +08:00
regcache_xfree (dummy_frame->regcache);
2000-12-15 09:01:51 +08:00
xfree (dummy_frame);
}
/* Function: frame_chain_valid
Returns true for a user frame or a call_function_by_hand dummy frame,
and false for the CRT0 start-up frame. Purpose is to terminate backtrace */
1999-07-08 04:19:36 +08:00
int
2000-07-30 09:48:28 +08:00
generic_file_frame_chain_valid (CORE_ADDR fp, struct frame_info *fi)
{
1999-07-08 04:19:36 +08:00
if (PC_IN_CALL_DUMMY (FRAME_SAVED_PC (fi), fp, fp))
return 1; /* don't prune CALL_DUMMY frames */
else /* fall back to default algorithm (see frame.h) */
return (fp != 0
&& (INNER_THAN (fi->frame, fp) || fi->frame == fp)
1999-07-08 04:19:36 +08:00
&& !inside_entry_file (FRAME_SAVED_PC (fi)));
}
1999-07-08 04:19:36 +08:00
1999-12-14 09:06:04 +08:00
int
2000-07-30 09:48:28 +08:00
generic_func_frame_chain_valid (CORE_ADDR fp, struct frame_info *fi)
1999-12-14 09:06:04 +08:00
{
if (USE_GENERIC_DUMMY_FRAMES
&& PC_IN_CALL_DUMMY ((fi)->pc, 0, 0))
1999-12-14 09:06:04 +08:00
return 1; /* don't prune CALL_DUMMY frames */
else /* fall back to default algorithm (see frame.h) */
return (fp != 0
&& (INNER_THAN (fi->frame, fp) || fi->frame == fp)
&& !inside_main_func ((fi)->pc)
&& !inside_entry_func ((fi)->pc));
}
1999-06-08 03:19:32 +08:00
/* Function: fix_call_dummy
Stub function. Generic dummy frames typically do not need to fix
1999-06-08 03:19:32 +08:00
the frame being created */
void
2000-07-30 09:48:28 +08:00
generic_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs,
struct value **args, struct type *type, int gcc_p)
1999-06-08 03:19:32 +08:00
{
return;
}
/* Given a call-dummy dummy-frame, return the registers. Here the
register value is taken from the local copy of the register buffer. */
static void
generic_call_dummy_register_unwind (struct frame_info *frame, void **cache,
int regnum, int *optimized,
enum lval_type *lvalp, CORE_ADDR *addrp,
int *realnum, void *bufferp)
{
gdb_assert (frame != NULL);
gdb_assert (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame));
/* Describe the register's location. Generic dummy frames always
have the register value in an ``expression''. */
*optimized = 0;
*lvalp = not_lval;
*addrp = 0;
*realnum = -1;
/* If needed, find and return the value of the register. */
if (bufferp != NULL)
{
struct regcache *registers;
#if 1
/* Get the address of the register buffer that contains all the
saved registers for this dummy frame. Cache that address. */
registers = (*cache);
if (registers == NULL)
{
registers = generic_find_dummy_frame (frame->pc, frame->frame);
(*cache) = registers;
}
#else
/* Get the address of the register buffer that contains the
saved registers and then extract the value from that. */
registers = generic_find_dummy_frame (frame->pc, frame->frame);
#endif
gdb_assert (registers != NULL);
/* Return the actual value. */
/* FIXME: cagney/2002-06-26: This should be via the
gdbarch_register_read() method so that it, on the fly,
constructs either a raw or pseudo register from the raw
register cache. */
regcache_read (registers, regnum, bufferp);
}
}
/* Return the register saved in the simplistic ``saved_regs'' cache.
If the value isn't here AND a value is needed, try the next inner
most frame. */
static void
frame_saved_regs_register_unwind (struct frame_info *frame, void **cache,
int regnum, int *optimizedp,
enum lval_type *lvalp, CORE_ADDR *addrp,
int *realnump, void *bufferp)
{
/* There is always a frame at this point. And THIS is the frame
we're interested in. */
gdb_assert (frame != NULL);
gdb_assert (!PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame));
/* Load the saved_regs register cache. */
if (frame->saved_regs == NULL)
FRAME_INIT_SAVED_REGS (frame);
if (frame->saved_regs != NULL
&& frame->saved_regs[regnum] != 0)
{
if (regnum == SP_REGNUM)
{
/* SP register treated specially. */
*optimizedp = 0;
*lvalp = not_lval;
*addrp = 0;
*realnump = -1;
if (bufferp != NULL)
store_address (bufferp, REGISTER_RAW_SIZE (regnum),
frame->saved_regs[regnum]);
}
else
{
/* Any other register is saved in memory, fetch it but cache
a local copy of its value. */
*optimizedp = 0;
*lvalp = lval_memory;
*addrp = frame->saved_regs[regnum];
*realnump = -1;
if (bufferp != NULL)
{
#if 1
/* Save each register value, as it is read in, in a
frame based cache. */
void **regs = (*cache);
if (regs == NULL)
{
int sizeof_cache = ((NUM_REGS + NUM_PSEUDO_REGS)
* sizeof (void *));
regs = frame_obstack_alloc (sizeof_cache);
memset (regs, 0, sizeof_cache);
(*cache) = regs;
}
if (regs[regnum] == NULL)
{
regs[regnum]
= frame_obstack_alloc (REGISTER_RAW_SIZE (regnum));
read_memory (frame->saved_regs[regnum], regs[regnum],
REGISTER_RAW_SIZE (regnum));
}
memcpy (bufferp, regs[regnum], REGISTER_RAW_SIZE (regnum));
#else
/* Read the value in from memory. */
read_memory (frame->saved_regs[regnum], bufferp,
REGISTER_RAW_SIZE (regnum));
#endif
}
}
return;
}
/* No luck, assume this and the next frame have the same register
value. If a value is needed, pass the request on down the chain;
otherwise just return an indication that the value is in the same
register as the next frame. */
if (bufferp == NULL)
{
*optimizedp = 0;
*lvalp = lval_register;
*addrp = 0;
*realnump = regnum;
}
else
{
frame_register_unwind (frame->next, regnum, optimizedp, lvalp, addrp,
realnump, bufferp);
}
}
/* Function: get_saved_register
Find register number REGNUM relative to FRAME and put its (raw,
target format) contents in *RAW_BUFFER.
Set *OPTIMIZED if the variable was optimized out (and thus can't be
fetched). Note that this is never set to anything other than zero
in this implementation.
Set *LVAL to lval_memory, lval_register, or not_lval, depending on
whether the value was fetched from memory, from a register, or in a
strange and non-modifiable way (e.g. a frame pointer which was
calculated rather than fetched). We will use not_lval for values
fetched from generic dummy frames.
Set *ADDRP to the address, either in memory or as a REGISTER_BYTE
offset into the registers array. If the value is stored in a dummy
frame, set *ADDRP to zero.
To use this implementation, define a function called
"get_saved_register" in your target code, which simply passes all
of its arguments to this function.
The argument RAW_BUFFER must point to aligned memory. */
void
2000-07-30 09:48:28 +08:00
generic_get_saved_register (char *raw_buffer, int *optimized, CORE_ADDR *addrp,
struct frame_info *frame, int regnum,
enum lval_type *lval)
{
if (!target_has_registers)
error ("No registers.");
/* Normal systems don't optimize out things with register numbers. */
if (optimized != NULL)
*optimized = 0;
1999-07-08 04:19:36 +08:00
if (addrp) /* default assumption: not found in memory */
*addrp = 0;
/* Note: since the current frame's registers could only have been
saved by frames INTERIOR TO the current frame, we skip examining
the current frame itself: otherwise, we would be getting the
previous frame's registers which were saved by the current frame. */
while (frame && ((frame = frame->next) != NULL))
{
if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
{
1999-07-08 04:19:36 +08:00
if (lval) /* found it in a CALL_DUMMY frame */
*lval = not_lval;
if (raw_buffer)
/* FIXME: cagney/2002-06-26: This should be via the
gdbarch_register_read() method so that it, on the fly,
constructs either a raw or pseudo register from the raw
register cache. */
regcache_read (generic_find_dummy_frame (frame->pc, frame->frame),
regnum, raw_buffer);
1999-07-08 04:19:36 +08:00
return;
}
FRAME_INIT_SAVED_REGS (frame);
if (frame->saved_regs != NULL
&& frame->saved_regs[regnum] != 0)
{
1999-07-08 04:19:36 +08:00
if (lval) /* found it saved on the stack */
*lval = lval_memory;
if (regnum == SP_REGNUM)
{
1999-07-08 04:19:36 +08:00
if (raw_buffer) /* SP register treated specially */
store_address (raw_buffer, REGISTER_RAW_SIZE (regnum),
frame->saved_regs[regnum]);
}
else
{
1999-07-08 04:19:36 +08:00
if (addrp) /* any other register */
*addrp = frame->saved_regs[regnum];
if (raw_buffer)
1999-07-08 04:19:36 +08:00
read_memory (frame->saved_regs[regnum], raw_buffer,
REGISTER_RAW_SIZE (regnum));
}
return;
}
}
/* If we get thru the loop to this point, it means the register was
not saved in any frame. Return the actual live-register value. */
1999-07-08 04:19:36 +08:00
if (lval) /* found it in a live register */
*lval = lval_register;
if (addrp)
*addrp = REGISTER_BYTE (regnum);
if (raw_buffer)
read_register_gen (regnum, raw_buffer);
}
void
1999-08-24 06:40:00 +08:00
_initialize_blockframe (void)
{
obstack_init (&frame_cache_obstack);
}