binutils-gdb/libctf/ctf-open-bfd.c

346 lines
9.6 KiB
C
Raw Normal View History

/* Opening CTF files with BFD.
Copyright (C) 2019-2020 Free Software Foundation, Inc.
This file is part of libctf.
libctf is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; see the file COPYING. If not see
<http://www.gnu.org/licenses/>. */
#include <ctf-impl.h>
#include <stddef.h>
libctf, bfd: fix ctf_bfdopen_ctfsect opening symbol and string sections The code in ctf_bfdopen_ctfsect (which is the ultimate place where you end up if you use ctf_open to open a CTF file and pull in the ELF string and symbol tables) was written before it was possible to actually test it, since the linker was not written. Now it is, it turns out that the previous code was completely nonfunctional: it assumed that you could load the symbol table via bfd_section_from_elf_index (...,elf_onesymtab()) and the string table via bfd_section_from_elf_index on the sh_link. Unfortunately BFD loads neither of these sections in the conventional fashion it uses for most others: the symbol table is immediately converted into internal form (which is useless for our purposes, since we also have to work in the absence of BFD for readelf, etc) and the string table is loaded specially via bfd_elf_get_str_section which is private to bfd/elf.c. So make this function public, export it in elf-bfd.h, and use it from libctf, which does something similar to what bfd_elf_sym_name and bfd_elf_string_from_elf_section do. Similarly, load the symbol table manually using bfd_elf_get_elf_syms and throw away the internal form it generates for us (we never use it). BFD allocates the strtab for us via bfd_alloc, so we can leave BFD to deallocate it: we allocate the symbol table ourselves before calling bfd_elf_get_elf_syms, so we still have to free it. Also change the rules around what you are allowed to provide: It is useful to provide a string section but no symbol table, because CTF sections can legitimately have no function info or data object sections while relying on the ELF strtab for some of their strings. So allow that combination. v4: adjust to upstream changes. ctf_bfdopen_ctfsect's first parameter is potentially unused again (if BFD is not in use for this link due to not supporting an ELF target). v5: fix tabdamage. bfd/ * elf-bfd.h (bfd_elf_get_str_section): Add. * elf.c (bfd_elf_get_str_section): No longer static. libctf/ * ctf-open-bfd.c: Add <assert.h>. (ctf_bfdopen_ctfsect): Open string and symbol tables using techniques borrowed from bfd_elf_sym_name. (ctf_new_archive_internal): Improve comment. * ctf-archive.c (ctf_arc_close): Do not free the ctfi_strsect. * ctf-open.c (ctf_bufopen): Allow opening with a string section but no symbol section, but not vice versa.
2019-07-11 23:26:54 +08:00
#include <assert.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <errno.h>
#include <string.h>
#include <fcntl.h>
#include <unistd.h>
#include <elf.h>
#include <bfd.h>
2019-06-19 22:56:52 +08:00
#include "swap.h"
#include "ctf-endian.h"
#include "elf-bfd.h"
/* Free the BFD bits of a CTF file on ctf_arc_close(). */
static void
ctf_bfdclose (struct ctf_archive_internal *arci)
{
if (arci->ctfi_abfd != NULL)
if (!bfd_close_all_done (arci->ctfi_abfd))
ctf_dprintf ("Cannot close BFD: %s\n", bfd_errmsg (bfd_get_error()));
}
/* Open a CTF file given the specified BFD. */
ctf_archive_t *
ctf_bfdopen (struct bfd *abfd, int *errp)
{
ctf_archive_t *arc;
asection *ctf_asect;
bfd_byte *contents;
ctf_sect_t ctfsect;
libctf_init_debug();
if ((ctf_asect = bfd_get_section_by_name (abfd, _CTF_SECTION)) == NULL)
{
return (ctf_set_open_errno (errp, ECTF_NOCTFDATA));
}
if (!bfd_malloc_and_get_section (abfd, ctf_asect, &contents))
{
ctf_dprintf ("ctf_bfdopen(): cannot malloc CTF section: %s\n",
bfd_errmsg (bfd_get_error()));
return (ctf_set_open_errno (errp, ECTF_FMT));
}
ctfsect.cts_name = _CTF_SECTION;
ctfsect.cts_entsize = 1;
bfd_section_* macros This large patch removes the unnecessary bfd parameter from various bfd section macros and functions. The bfd is hardly ever used and if needed for the bfd_set_section_* or bfd_rename_section functions can be found via section->owner except for the com, und, abs, and ind std_section special sections. Those sections shouldn't be modified anyway. The patch also removes various bfd_get_section_<field> macros, replacing their use with bfd_section_<field>, and adds bfd_set_section_lma. I've also fixed a minor bug in gas where compressed section renaming was done directly rather than calling bfd_rename_section. This would have broken bfd_get_section_by_name and similar functions, but that hardly mattered at such a late stage in gas processing. bfd/ * bfd-in.h (bfd_get_section_name, bfd_get_section_vma), (bfd_get_section_lma, bfd_get_section_alignment), (bfd_get_section_size, bfd_get_section_flags), (bfd_get_section_userdata): Delete. (bfd_section_name, bfd_section_size, bfd_section_vma), (bfd_section_lma, bfd_section_alignment): Lose bfd parameter. (bfd_section_flags, bfd_section_userdata): New. (bfd_is_com_section): Rename parameter. * section.c (bfd_set_section_userdata, bfd_set_section_vma), (bfd_set_section_alignment, bfd_set_section_flags, bfd_rename_section), (bfd_set_section_size): Delete bfd parameter, rename section parameter. (bfd_set_section_lma): New. * bfd-in2.h: Regenerate. * mach-o.c (bfd_mach_o_init_section_from_mach_o): Delete bfd param, update callers. * aoutx.h, * bfd.c, * coff-alpha.c, * coff-arm.c, * coff-mips.c, * coff64-rs6000.c, * coffcode.h, * coffgen.c, * cofflink.c, * compress.c, * ecoff.c, * elf-eh-frame.c, * elf-hppa.h, * elf-ifunc.c, * elf-m10200.c, * elf-m10300.c, * elf-properties.c, * elf-s390-common.c, * elf-vxworks.c, * elf.c, * elf32-arc.c, * elf32-arm.c, * elf32-avr.c, * elf32-bfin.c, * elf32-cr16.c, * elf32-cr16c.c, * elf32-cris.c, * elf32-crx.c, * elf32-csky.c, * elf32-d10v.c, * elf32-epiphany.c, * elf32-fr30.c, * elf32-frv.c, * elf32-ft32.c, * elf32-h8300.c, * elf32-hppa.c, * elf32-i386.c, * elf32-ip2k.c, * elf32-iq2000.c, * elf32-lm32.c, * elf32-m32c.c, * elf32-m32r.c, * elf32-m68hc1x.c, * elf32-m68k.c, * elf32-mcore.c, * elf32-mep.c, * elf32-metag.c, * elf32-microblaze.c, * elf32-moxie.c, * elf32-msp430.c, * elf32-mt.c, * elf32-nds32.c, * elf32-nios2.c, * elf32-or1k.c, * elf32-ppc.c, * elf32-pru.c, * elf32-rl78.c, * elf32-rx.c, * elf32-s390.c, * elf32-score.c, * elf32-score7.c, * elf32-sh.c, * elf32-spu.c, * elf32-tic6x.c, * elf32-tilepro.c, * elf32-v850.c, * elf32-vax.c, * elf32-visium.c, * elf32-xstormy16.c, * elf32-xtensa.c, * elf64-alpha.c, * elf64-bpf.c, * elf64-hppa.c, * elf64-ia64-vms.c, * elf64-mmix.c, * elf64-ppc.c, * elf64-s390.c, * elf64-sparc.c, * elf64-x86-64.c, * elflink.c, * elfnn-aarch64.c, * elfnn-ia64.c, * elfnn-riscv.c, * elfxx-aarch64.c, * elfxx-mips.c, * elfxx-sparc.c, * elfxx-tilegx.c, * elfxx-x86.c, * i386msdos.c, * linker.c, * mach-o.c, * mmo.c, * opncls.c, * pdp11.c, * pei-x86_64.c, * peicode.h, * reloc.c, * section.c, * syms.c, * vms-alpha.c, * xcofflink.c: Update throughout for bfd section macro and function changes. binutils/ * addr2line.c, * bucomm.c, * coffgrok.c, * dlltool.c, * nm.c, * objcopy.c, * objdump.c, * od-elf32_avr.c, * od-macho.c, * od-xcoff.c, * prdbg.c, * rdcoff.c, * rddbg.c, * rescoff.c, * resres.c, * size.c, * srconv.c, * strings.c, * windmc.c: Update throughout for bfd section macro and function changes. gas/ * as.c, * as.h, * dw2gencfi.c, * dwarf2dbg.c, * ecoff.c, * read.c, * stabs.c, * subsegs.c, * subsegs.h, * write.c, * config/obj-coff-seh.c, * config/obj-coff.c, * config/obj-ecoff.c, * config/obj-elf.c, * config/obj-macho.c, * config/obj-som.c, * config/tc-aarch64.c, * config/tc-alpha.c, * config/tc-arc.c, * config/tc-arm.c, * config/tc-avr.c, * config/tc-bfin.c, * config/tc-bpf.c, * config/tc-d10v.c, * config/tc-d30v.c, * config/tc-epiphany.c, * config/tc-fr30.c, * config/tc-frv.c, * config/tc-h8300.c, * config/tc-hppa.c, * config/tc-i386.c, * config/tc-ia64.c, * config/tc-ip2k.c, * config/tc-iq2000.c, * config/tc-lm32.c, * config/tc-m32c.c, * config/tc-m32r.c, * config/tc-m68hc11.c, * config/tc-mep.c, * config/tc-microblaze.c, * config/tc-mips.c, * config/tc-mmix.c, * config/tc-mn10200.c, * config/tc-mn10300.c, * config/tc-msp430.c, * config/tc-mt.c, * config/tc-nds32.c, * config/tc-or1k.c, * config/tc-ppc.c, * config/tc-pru.c, * config/tc-rl78.c, * config/tc-rx.c, * config/tc-s12z.c, * config/tc-s390.c, * config/tc-score.c, * config/tc-score7.c, * config/tc-sh.c, * config/tc-sparc.c, * config/tc-spu.c, * config/tc-tic4x.c, * config/tc-tic54x.c, * config/tc-tic6x.c, * config/tc-tilegx.c, * config/tc-tilepro.c, * config/tc-v850.c, * config/tc-visium.c, * config/tc-wasm32.c, * config/tc-xc16x.c, * config/tc-xgate.c, * config/tc-xstormy16.c, * config/tc-xtensa.c, * config/tc-z8k.c: Update throughout for bfd section macro and function changes. * write.c (compress_debug): Use bfd_rename_section. gdb/ * aarch64-linux-tdep.c, * arm-tdep.c, * auto-load.c, * coff-pe-read.c, * coffread.c, * corelow.c, * dbxread.c, * dicos-tdep.c, * dwarf2-frame.c, * dwarf2read.c, * elfread.c, * exec.c, * fbsd-tdep.c, * gcore.c, * gdb_bfd.c, * gdb_bfd.h, * hppa-tdep.c, * i386-cygwin-tdep.c, * i386-fbsd-tdep.c, * i386-linux-tdep.c, * jit.c, * linux-tdep.c, * machoread.c, * maint.c, * mdebugread.c, * minidebug.c, * mips-linux-tdep.c, * mips-sde-tdep.c, * mips-tdep.c, * mipsread.c, * nto-tdep.c, * objfiles.c, * objfiles.h, * osabi.c, * ppc-linux-tdep.c, * ppc64-tdep.c, * record-btrace.c, * record-full.c, * remote.c, * rs6000-aix-tdep.c, * rs6000-tdep.c, * s390-linux-tdep.c, * s390-tdep.c, * solib-aix.c, * solib-dsbt.c, * solib-frv.c, * solib-spu.c, * solib-svr4.c, * solib-target.c, * spu-linux-nat.c, * spu-tdep.c, * symfile-mem.c, * symfile.c, * symmisc.c, * symtab.c, * target.c, * windows-nat.c, * xcoffread.c, * cli/cli-dump.c, * compile/compile-object-load.c, * mi/mi-interp.c: Update throughout for bfd section macro and function changes. * gcore (gcore_create_callback): Use bfd_set_section_lma. * spu-tdep.c (spu_overlay_new_objfile): Likewise. gprof/ * corefile.c, * symtab.c: Update throughout for bfd section macro and function changes. ld/ * ldcref.c, * ldctor.c, * ldelf.c, * ldlang.c, * pe-dll.c, * emultempl/aarch64elf.em, * emultempl/aix.em, * emultempl/armcoff.em, * emultempl/armelf.em, * emultempl/cr16elf.em, * emultempl/cskyelf.em, * emultempl/m68hc1xelf.em, * emultempl/m68kelf.em, * emultempl/mipself.em, * emultempl/mmix-elfnmmo.em, * emultempl/mmo.em, * emultempl/msp430.em, * emultempl/nios2elf.em, * emultempl/pe.em, * emultempl/pep.em, * emultempl/ppc64elf.em, * emultempl/xtensaelf.em: Update throughout for bfd section macro and function changes. libctf/ * ctf-open-bfd.c: Update throughout for bfd section macro changes. opcodes/ * arc-ext.c: Update throughout for bfd section macro changes. sim/ * common/sim-load.c, * common/sim-utils.c, * cris/sim-if.c, * erc32/func.c, * lm32/sim-if.c, * m32c/load.c, * m32c/trace.c, * m68hc11/interp.c, * ppc/hw_htab.c, * ppc/hw_init.c, * rl78/load.c, * rl78/trace.c, * rx/gdb-if.c, * rx/load.c, * rx/trace.c: Update throughout for bfd section macro changes.
2019-09-16 18:55:17 +08:00
ctfsect.cts_size = bfd_section_size (ctf_asect);
ctfsect.cts_data = contents;
if ((arc = ctf_bfdopen_ctfsect (abfd, &ctfsect, errp)) != NULL)
{
libctf, binutils: support CTF archives like objdump objdump and readelf have one major CTF-related behavioural difference: objdump can read .ctf sections that contain CTF archives and extract and dump their members, while readelf cannot. Since the linker often emits CTF archives, this means that readelf intermittently and (from the user's perspective) randomly fails to read CTF in files that ld emits, with a confusing error message wrongly claiming that the CTF content is corrupt. This is purely because the archive-opening code in libctf was needlessly tangled up with the BFD code, so readelf couldn't use it. Here, we disentangle it, moving ctf_new_archive_internal from ctf-open-bfd.c into ctf-archive.c and merging it with the helper function in ctf-archive.c it was already using. We add a new public API function ctf_arc_bufopen, that looks very like ctf_bufopen but returns an archive given suitable section data rather than a ctf_file_t: the archive is a ctf_archive_t, so it can be called on raw CTF dictionaries (with no archive present) and will return a single-member synthetic "archive". There is a tiny lifetime tweak here: before now, the archive code could assume that the symbol section in the ctf_archive_internal wrapper structure was always owned by BFD if it was present and should always be freed: now, the caller can pass one in via ctf_arc_bufopen, wihch has the usual lifetime rules for such sections (caller frees): so we add an extra field to track whether this is an internal call from ctf-open-bfd, in which case we still free the symbol section. include/ * ctf-api.h (ctf_arc_bufopen): New. libctf/ * ctf-impl.h (ctf_new_archive_internal): Declare. (ctf_arc_bufopen): Remove. (ctf_archive_internal) <ctfi_free_symsect>: New. * ctf-archive.c (ctf_arc_close): Use it. (ctf_arc_bufopen): Fuse into... (ctf_new_archive_internal): ... this, moved across from... * ctf-open-bfd.c: ... here. (ctf_bfdopen_ctfsect): Use ctf_arc_bufopen. * libctf.ver: Add it. binutils/ * readelf.c (dump_section_as_ctf): Support .ctf archives using ctf_arc_bufopen. Automatically load the .ctf member of such archives as the parent of all other members, unless specifically overridden via --ctf-parent. Split out dumping code into... (dump_ctf_archive_member): ... here, as in objdump, and call it once per archive member. (dump_ctf_indent_lines): Code style fix.
2019-12-13 20:01:12 +08:00
/* This frees the cts_data later. */
arc->ctfi_data = (void *) ctfsect.cts_data;
return arc;
}
free (contents);
return NULL; /* errno is set for us. */
}
/* Open a CTF file given the specified BFD and CTF section (which may contain a
libctf, binutils: support CTF archives like objdump objdump and readelf have one major CTF-related behavioural difference: objdump can read .ctf sections that contain CTF archives and extract and dump their members, while readelf cannot. Since the linker often emits CTF archives, this means that readelf intermittently and (from the user's perspective) randomly fails to read CTF in files that ld emits, with a confusing error message wrongly claiming that the CTF content is corrupt. This is purely because the archive-opening code in libctf was needlessly tangled up with the BFD code, so readelf couldn't use it. Here, we disentangle it, moving ctf_new_archive_internal from ctf-open-bfd.c into ctf-archive.c and merging it with the helper function in ctf-archive.c it was already using. We add a new public API function ctf_arc_bufopen, that looks very like ctf_bufopen but returns an archive given suitable section data rather than a ctf_file_t: the archive is a ctf_archive_t, so it can be called on raw CTF dictionaries (with no archive present) and will return a single-member synthetic "archive". There is a tiny lifetime tweak here: before now, the archive code could assume that the symbol section in the ctf_archive_internal wrapper structure was always owned by BFD if it was present and should always be freed: now, the caller can pass one in via ctf_arc_bufopen, wihch has the usual lifetime rules for such sections (caller frees): so we add an extra field to track whether this is an internal call from ctf-open-bfd, in which case we still free the symbol section. include/ * ctf-api.h (ctf_arc_bufopen): New. libctf/ * ctf-impl.h (ctf_new_archive_internal): Declare. (ctf_arc_bufopen): Remove. (ctf_archive_internal) <ctfi_free_symsect>: New. * ctf-archive.c (ctf_arc_close): Use it. (ctf_arc_bufopen): Fuse into... (ctf_new_archive_internal): ... this, moved across from... * ctf-open-bfd.c: ... here. (ctf_bfdopen_ctfsect): Use ctf_arc_bufopen. * libctf.ver: Add it. binutils/ * readelf.c (dump_section_as_ctf): Support .ctf archives using ctf_arc_bufopen. Automatically load the .ctf member of such archives as the parent of all other members, unless specifically overridden via --ctf-parent. Split out dumping code into... (dump_ctf_archive_member): ... here, as in objdump, and call it once per archive member. (dump_ctf_indent_lines): Code style fix.
2019-12-13 20:01:12 +08:00
CTF archive or a file). */
ctf_archive_t *
ctf_bfdopen_ctfsect (struct bfd *abfd _libctf_unused_,
const ctf_sect_t *ctfsect, int *errp)
{
ctf_archive_t *arci;
ctf_sect_t *symsectp = NULL;
ctf_sect_t *strsectp = NULL;
const char *bfderrstr = NULL;
char *strtab_alloc = NULL;
#ifdef HAVE_BFD_ELF
ctf_sect_t symsect, strsect;
libctf, bfd: fix ctf_bfdopen_ctfsect opening symbol and string sections The code in ctf_bfdopen_ctfsect (which is the ultimate place where you end up if you use ctf_open to open a CTF file and pull in the ELF string and symbol tables) was written before it was possible to actually test it, since the linker was not written. Now it is, it turns out that the previous code was completely nonfunctional: it assumed that you could load the symbol table via bfd_section_from_elf_index (...,elf_onesymtab()) and the string table via bfd_section_from_elf_index on the sh_link. Unfortunately BFD loads neither of these sections in the conventional fashion it uses for most others: the symbol table is immediately converted into internal form (which is useless for our purposes, since we also have to work in the absence of BFD for readelf, etc) and the string table is loaded specially via bfd_elf_get_str_section which is private to bfd/elf.c. So make this function public, export it in elf-bfd.h, and use it from libctf, which does something similar to what bfd_elf_sym_name and bfd_elf_string_from_elf_section do. Similarly, load the symbol table manually using bfd_elf_get_elf_syms and throw away the internal form it generates for us (we never use it). BFD allocates the strtab for us via bfd_alloc, so we can leave BFD to deallocate it: we allocate the symbol table ourselves before calling bfd_elf_get_elf_syms, so we still have to free it. Also change the rules around what you are allowed to provide: It is useful to provide a string section but no symbol table, because CTF sections can legitimately have no function info or data object sections while relying on the ELF strtab for some of their strings. So allow that combination. v4: adjust to upstream changes. ctf_bfdopen_ctfsect's first parameter is potentially unused again (if BFD is not in use for this link due to not supporting an ELF target). v5: fix tabdamage. bfd/ * elf-bfd.h (bfd_elf_get_str_section): Add. * elf.c (bfd_elf_get_str_section): No longer static. libctf/ * ctf-open-bfd.c: Add <assert.h>. (ctf_bfdopen_ctfsect): Open string and symbol tables using techniques borrowed from bfd_elf_sym_name. (ctf_new_archive_internal): Improve comment. * ctf-archive.c (ctf_arc_close): Do not free the ctfi_strsect. * ctf-open.c (ctf_bufopen): Allow opening with a string section but no symbol section, but not vice versa.
2019-07-11 23:26:54 +08:00
Elf_Internal_Shdr *symhdr = &elf_symtab_hdr (abfd);
size_t symcount;
libctf, bfd: fix ctf_bfdopen_ctfsect opening symbol and string sections The code in ctf_bfdopen_ctfsect (which is the ultimate place where you end up if you use ctf_open to open a CTF file and pull in the ELF string and symbol tables) was written before it was possible to actually test it, since the linker was not written. Now it is, it turns out that the previous code was completely nonfunctional: it assumed that you could load the symbol table via bfd_section_from_elf_index (...,elf_onesymtab()) and the string table via bfd_section_from_elf_index on the sh_link. Unfortunately BFD loads neither of these sections in the conventional fashion it uses for most others: the symbol table is immediately converted into internal form (which is useless for our purposes, since we also have to work in the absence of BFD for readelf, etc) and the string table is loaded specially via bfd_elf_get_str_section which is private to bfd/elf.c. So make this function public, export it in elf-bfd.h, and use it from libctf, which does something similar to what bfd_elf_sym_name and bfd_elf_string_from_elf_section do. Similarly, load the symbol table manually using bfd_elf_get_elf_syms and throw away the internal form it generates for us (we never use it). BFD allocates the strtab for us via bfd_alloc, so we can leave BFD to deallocate it: we allocate the symbol table ourselves before calling bfd_elf_get_elf_syms, so we still have to free it. Also change the rules around what you are allowed to provide: It is useful to provide a string section but no symbol table, because CTF sections can legitimately have no function info or data object sections while relying on the ELF strtab for some of their strings. So allow that combination. v4: adjust to upstream changes. ctf_bfdopen_ctfsect's first parameter is potentially unused again (if BFD is not in use for this link due to not supporting an ELF target). v5: fix tabdamage. bfd/ * elf-bfd.h (bfd_elf_get_str_section): Add. * elf.c (bfd_elf_get_str_section): No longer static. libctf/ * ctf-open-bfd.c: Add <assert.h>. (ctf_bfdopen_ctfsect): Open string and symbol tables using techniques borrowed from bfd_elf_sym_name. (ctf_new_archive_internal): Improve comment. * ctf-archive.c (ctf_arc_close): Do not free the ctfi_strsect. * ctf-open.c (ctf_bufopen): Allow opening with a string section but no symbol section, but not vice versa.
2019-07-11 23:26:54 +08:00
Elf_Internal_Sym *isymbuf;
bfd_byte *symtab = NULL;
libctf, bfd: fix ctf_bfdopen_ctfsect opening symbol and string sections The code in ctf_bfdopen_ctfsect (which is the ultimate place where you end up if you use ctf_open to open a CTF file and pull in the ELF string and symbol tables) was written before it was possible to actually test it, since the linker was not written. Now it is, it turns out that the previous code was completely nonfunctional: it assumed that you could load the symbol table via bfd_section_from_elf_index (...,elf_onesymtab()) and the string table via bfd_section_from_elf_index on the sh_link. Unfortunately BFD loads neither of these sections in the conventional fashion it uses for most others: the symbol table is immediately converted into internal form (which is useless for our purposes, since we also have to work in the absence of BFD for readelf, etc) and the string table is loaded specially via bfd_elf_get_str_section which is private to bfd/elf.c. So make this function public, export it in elf-bfd.h, and use it from libctf, which does something similar to what bfd_elf_sym_name and bfd_elf_string_from_elf_section do. Similarly, load the symbol table manually using bfd_elf_get_elf_syms and throw away the internal form it generates for us (we never use it). BFD allocates the strtab for us via bfd_alloc, so we can leave BFD to deallocate it: we allocate the symbol table ourselves before calling bfd_elf_get_elf_syms, so we still have to free it. Also change the rules around what you are allowed to provide: It is useful to provide a string section but no symbol table, because CTF sections can legitimately have no function info or data object sections while relying on the ELF strtab for some of their strings. So allow that combination. v4: adjust to upstream changes. ctf_bfdopen_ctfsect's first parameter is potentially unused again (if BFD is not in use for this link due to not supporting an ELF target). v5: fix tabdamage. bfd/ * elf-bfd.h (bfd_elf_get_str_section): Add. * elf.c (bfd_elf_get_str_section): No longer static. libctf/ * ctf-open-bfd.c: Add <assert.h>. (ctf_bfdopen_ctfsect): Open string and symbol tables using techniques borrowed from bfd_elf_sym_name. (ctf_new_archive_internal): Improve comment. * ctf-archive.c (ctf_arc_close): Do not free the ctfi_strsect. * ctf-open.c (ctf_bufopen): Allow opening with a string section but no symbol section, but not vice versa.
2019-07-11 23:26:54 +08:00
const char *strtab = NULL;
size_t strsize;
/* TODO: handle SYMTAB_SHNDX. */
/* Get the symtab, and the strtab associated with it. */
if (elf_tdata (abfd) && symhdr && symhdr->sh_size && symhdr->sh_entsize)
{
symcount = symhdr->sh_size / symhdr->sh_entsize;
if ((symtab = malloc (symhdr->sh_size)) == NULL)
{
bfderrstr = "Cannot malloc symbol table";
goto err;
}
isymbuf = bfd_elf_get_elf_syms (abfd, symhdr, symcount, 0,
NULL, symtab, NULL);
free (isymbuf);
if (isymbuf == NULL)
{
bfderrstr = "Cannot read symbol table";
goto err_free_sym;
}
if (elf_elfsections (abfd) != NULL
&& symhdr->sh_link < elf_numsections (abfd))
{
Elf_Internal_Shdr *strhdr = elf_elfsections (abfd)[symhdr->sh_link];
strsize = strhdr->sh_size;
if (strhdr->contents == NULL)
{
if ((strtab = bfd_elf_get_str_section (abfd, symhdr->sh_link)) == NULL)
{
bfderrstr = "Cannot read string table";
goto err_free_sym;
}
}
else
strtab = (const char *) strhdr->contents;
}
}
else /* No symtab: just try getting .strtab by name. */
libctf, bfd: fix ctf_bfdopen_ctfsect opening symbol and string sections The code in ctf_bfdopen_ctfsect (which is the ultimate place where you end up if you use ctf_open to open a CTF file and pull in the ELF string and symbol tables) was written before it was possible to actually test it, since the linker was not written. Now it is, it turns out that the previous code was completely nonfunctional: it assumed that you could load the symbol table via bfd_section_from_elf_index (...,elf_onesymtab()) and the string table via bfd_section_from_elf_index on the sh_link. Unfortunately BFD loads neither of these sections in the conventional fashion it uses for most others: the symbol table is immediately converted into internal form (which is useless for our purposes, since we also have to work in the absence of BFD for readelf, etc) and the string table is loaded specially via bfd_elf_get_str_section which is private to bfd/elf.c. So make this function public, export it in elf-bfd.h, and use it from libctf, which does something similar to what bfd_elf_sym_name and bfd_elf_string_from_elf_section do. Similarly, load the symbol table manually using bfd_elf_get_elf_syms and throw away the internal form it generates for us (we never use it). BFD allocates the strtab for us via bfd_alloc, so we can leave BFD to deallocate it: we allocate the symbol table ourselves before calling bfd_elf_get_elf_syms, so we still have to free it. Also change the rules around what you are allowed to provide: It is useful to provide a string section but no symbol table, because CTF sections can legitimately have no function info or data object sections while relying on the ELF strtab for some of their strings. So allow that combination. v4: adjust to upstream changes. ctf_bfdopen_ctfsect's first parameter is potentially unused again (if BFD is not in use for this link due to not supporting an ELF target). v5: fix tabdamage. bfd/ * elf-bfd.h (bfd_elf_get_str_section): Add. * elf.c (bfd_elf_get_str_section): No longer static. libctf/ * ctf-open-bfd.c: Add <assert.h>. (ctf_bfdopen_ctfsect): Open string and symbol tables using techniques borrowed from bfd_elf_sym_name. (ctf_new_archive_internal): Improve comment. * ctf-archive.c (ctf_arc_close): Do not free the ctfi_strsect. * ctf-open.c (ctf_bufopen): Allow opening with a string section but no symbol section, but not vice versa.
2019-07-11 23:26:54 +08:00
{
bfd_byte *str_bcontents;
asection *str_asect;
if ((str_asect = bfd_get_section_by_name (abfd, ".strtab")) != NULL)
{
if (bfd_malloc_and_get_section (abfd, str_asect, &str_bcontents))
{
strtab = (const char *) str_bcontents;
strtab_alloc = (char *) str_bcontents;
strsize = str_asect->size;
}
}
libctf, bfd: fix ctf_bfdopen_ctfsect opening symbol and string sections The code in ctf_bfdopen_ctfsect (which is the ultimate place where you end up if you use ctf_open to open a CTF file and pull in the ELF string and symbol tables) was written before it was possible to actually test it, since the linker was not written. Now it is, it turns out that the previous code was completely nonfunctional: it assumed that you could load the symbol table via bfd_section_from_elf_index (...,elf_onesymtab()) and the string table via bfd_section_from_elf_index on the sh_link. Unfortunately BFD loads neither of these sections in the conventional fashion it uses for most others: the symbol table is immediately converted into internal form (which is useless for our purposes, since we also have to work in the absence of BFD for readelf, etc) and the string table is loaded specially via bfd_elf_get_str_section which is private to bfd/elf.c. So make this function public, export it in elf-bfd.h, and use it from libctf, which does something similar to what bfd_elf_sym_name and bfd_elf_string_from_elf_section do. Similarly, load the symbol table manually using bfd_elf_get_elf_syms and throw away the internal form it generates for us (we never use it). BFD allocates the strtab for us via bfd_alloc, so we can leave BFD to deallocate it: we allocate the symbol table ourselves before calling bfd_elf_get_elf_syms, so we still have to free it. Also change the rules around what you are allowed to provide: It is useful to provide a string section but no symbol table, because CTF sections can legitimately have no function info or data object sections while relying on the ELF strtab for some of their strings. So allow that combination. v4: adjust to upstream changes. ctf_bfdopen_ctfsect's first parameter is potentially unused again (if BFD is not in use for this link due to not supporting an ELF target). v5: fix tabdamage. bfd/ * elf-bfd.h (bfd_elf_get_str_section): Add. * elf.c (bfd_elf_get_str_section): No longer static. libctf/ * ctf-open-bfd.c: Add <assert.h>. (ctf_bfdopen_ctfsect): Open string and symbol tables using techniques borrowed from bfd_elf_sym_name. (ctf_new_archive_internal): Improve comment. * ctf-archive.c (ctf_arc_close): Do not free the ctfi_strsect. * ctf-open.c (ctf_bufopen): Allow opening with a string section but no symbol section, but not vice versa.
2019-07-11 23:26:54 +08:00
}
if (strtab)
{
/* The names here are more or less arbitrary, but there is no point
thrashing around digging the name out of the shstrtab given that we don't
use it for anything but debugging. */
strsect.cts_data = strtab;
strsect.cts_name = ".strtab";
strsect.cts_size = strsize;
libctf, bfd: fix ctf_bfdopen_ctfsect opening symbol and string sections The code in ctf_bfdopen_ctfsect (which is the ultimate place where you end up if you use ctf_open to open a CTF file and pull in the ELF string and symbol tables) was written before it was possible to actually test it, since the linker was not written. Now it is, it turns out that the previous code was completely nonfunctional: it assumed that you could load the symbol table via bfd_section_from_elf_index (...,elf_onesymtab()) and the string table via bfd_section_from_elf_index on the sh_link. Unfortunately BFD loads neither of these sections in the conventional fashion it uses for most others: the symbol table is immediately converted into internal form (which is useless for our purposes, since we also have to work in the absence of BFD for readelf, etc) and the string table is loaded specially via bfd_elf_get_str_section which is private to bfd/elf.c. So make this function public, export it in elf-bfd.h, and use it from libctf, which does something similar to what bfd_elf_sym_name and bfd_elf_string_from_elf_section do. Similarly, load the symbol table manually using bfd_elf_get_elf_syms and throw away the internal form it generates for us (we never use it). BFD allocates the strtab for us via bfd_alloc, so we can leave BFD to deallocate it: we allocate the symbol table ourselves before calling bfd_elf_get_elf_syms, so we still have to free it. Also change the rules around what you are allowed to provide: It is useful to provide a string section but no symbol table, because CTF sections can legitimately have no function info or data object sections while relying on the ELF strtab for some of their strings. So allow that combination. v4: adjust to upstream changes. ctf_bfdopen_ctfsect's first parameter is potentially unused again (if BFD is not in use for this link due to not supporting an ELF target). v5: fix tabdamage. bfd/ * elf-bfd.h (bfd_elf_get_str_section): Add. * elf.c (bfd_elf_get_str_section): No longer static. libctf/ * ctf-open-bfd.c: Add <assert.h>. (ctf_bfdopen_ctfsect): Open string and symbol tables using techniques borrowed from bfd_elf_sym_name. (ctf_new_archive_internal): Improve comment. * ctf-archive.c (ctf_arc_close): Do not free the ctfi_strsect. * ctf-open.c (ctf_bufopen): Allow opening with a string section but no symbol section, but not vice versa.
2019-07-11 23:26:54 +08:00
strsectp = &strsect;
}
libctf, bfd: fix ctf_bfdopen_ctfsect opening symbol and string sections The code in ctf_bfdopen_ctfsect (which is the ultimate place where you end up if you use ctf_open to open a CTF file and pull in the ELF string and symbol tables) was written before it was possible to actually test it, since the linker was not written. Now it is, it turns out that the previous code was completely nonfunctional: it assumed that you could load the symbol table via bfd_section_from_elf_index (...,elf_onesymtab()) and the string table via bfd_section_from_elf_index on the sh_link. Unfortunately BFD loads neither of these sections in the conventional fashion it uses for most others: the symbol table is immediately converted into internal form (which is useless for our purposes, since we also have to work in the absence of BFD for readelf, etc) and the string table is loaded specially via bfd_elf_get_str_section which is private to bfd/elf.c. So make this function public, export it in elf-bfd.h, and use it from libctf, which does something similar to what bfd_elf_sym_name and bfd_elf_string_from_elf_section do. Similarly, load the symbol table manually using bfd_elf_get_elf_syms and throw away the internal form it generates for us (we never use it). BFD allocates the strtab for us via bfd_alloc, so we can leave BFD to deallocate it: we allocate the symbol table ourselves before calling bfd_elf_get_elf_syms, so we still have to free it. Also change the rules around what you are allowed to provide: It is useful to provide a string section but no symbol table, because CTF sections can legitimately have no function info or data object sections while relying on the ELF strtab for some of their strings. So allow that combination. v4: adjust to upstream changes. ctf_bfdopen_ctfsect's first parameter is potentially unused again (if BFD is not in use for this link due to not supporting an ELF target). v5: fix tabdamage. bfd/ * elf-bfd.h (bfd_elf_get_str_section): Add. * elf.c (bfd_elf_get_str_section): No longer static. libctf/ * ctf-open-bfd.c: Add <assert.h>. (ctf_bfdopen_ctfsect): Open string and symbol tables using techniques borrowed from bfd_elf_sym_name. (ctf_new_archive_internal): Improve comment. * ctf-archive.c (ctf_arc_close): Do not free the ctfi_strsect. * ctf-open.c (ctf_bufopen): Allow opening with a string section but no symbol section, but not vice versa.
2019-07-11 23:26:54 +08:00
if (symtab)
{
libctf, bfd: fix ctf_bfdopen_ctfsect opening symbol and string sections The code in ctf_bfdopen_ctfsect (which is the ultimate place where you end up if you use ctf_open to open a CTF file and pull in the ELF string and symbol tables) was written before it was possible to actually test it, since the linker was not written. Now it is, it turns out that the previous code was completely nonfunctional: it assumed that you could load the symbol table via bfd_section_from_elf_index (...,elf_onesymtab()) and the string table via bfd_section_from_elf_index on the sh_link. Unfortunately BFD loads neither of these sections in the conventional fashion it uses for most others: the symbol table is immediately converted into internal form (which is useless for our purposes, since we also have to work in the absence of BFD for readelf, etc) and the string table is loaded specially via bfd_elf_get_str_section which is private to bfd/elf.c. So make this function public, export it in elf-bfd.h, and use it from libctf, which does something similar to what bfd_elf_sym_name and bfd_elf_string_from_elf_section do. Similarly, load the symbol table manually using bfd_elf_get_elf_syms and throw away the internal form it generates for us (we never use it). BFD allocates the strtab for us via bfd_alloc, so we can leave BFD to deallocate it: we allocate the symbol table ourselves before calling bfd_elf_get_elf_syms, so we still have to free it. Also change the rules around what you are allowed to provide: It is useful to provide a string section but no symbol table, because CTF sections can legitimately have no function info or data object sections while relying on the ELF strtab for some of their strings. So allow that combination. v4: adjust to upstream changes. ctf_bfdopen_ctfsect's first parameter is potentially unused again (if BFD is not in use for this link due to not supporting an ELF target). v5: fix tabdamage. bfd/ * elf-bfd.h (bfd_elf_get_str_section): Add. * elf.c (bfd_elf_get_str_section): No longer static. libctf/ * ctf-open-bfd.c: Add <assert.h>. (ctf_bfdopen_ctfsect): Open string and symbol tables using techniques borrowed from bfd_elf_sym_name. (ctf_new_archive_internal): Improve comment. * ctf-archive.c (ctf_arc_close): Do not free the ctfi_strsect. * ctf-open.c (ctf_bufopen): Allow opening with a string section but no symbol section, but not vice versa.
2019-07-11 23:26:54 +08:00
assert (symhdr->sh_entsize == get_elf_backend_data (abfd)->s->sizeof_sym);
symsect.cts_name = ".symtab";
symsect.cts_entsize = symhdr->sh_entsize;
symsect.cts_size = symhdr->sh_size;
symsect.cts_data = symtab;
symsectp = &symsect;
}
#endif
libctf, binutils: support CTF archives like objdump objdump and readelf have one major CTF-related behavioural difference: objdump can read .ctf sections that contain CTF archives and extract and dump their members, while readelf cannot. Since the linker often emits CTF archives, this means that readelf intermittently and (from the user's perspective) randomly fails to read CTF in files that ld emits, with a confusing error message wrongly claiming that the CTF content is corrupt. This is purely because the archive-opening code in libctf was needlessly tangled up with the BFD code, so readelf couldn't use it. Here, we disentangle it, moving ctf_new_archive_internal from ctf-open-bfd.c into ctf-archive.c and merging it with the helper function in ctf-archive.c it was already using. We add a new public API function ctf_arc_bufopen, that looks very like ctf_bufopen but returns an archive given suitable section data rather than a ctf_file_t: the archive is a ctf_archive_t, so it can be called on raw CTF dictionaries (with no archive present) and will return a single-member synthetic "archive". There is a tiny lifetime tweak here: before now, the archive code could assume that the symbol section in the ctf_archive_internal wrapper structure was always owned by BFD if it was present and should always be freed: now, the caller can pass one in via ctf_arc_bufopen, wihch has the usual lifetime rules for such sections (caller frees): so we add an extra field to track whether this is an internal call from ctf-open-bfd, in which case we still free the symbol section. include/ * ctf-api.h (ctf_arc_bufopen): New. libctf/ * ctf-impl.h (ctf_new_archive_internal): Declare. (ctf_arc_bufopen): Remove. (ctf_archive_internal) <ctfi_free_symsect>: New. * ctf-archive.c (ctf_arc_close): Use it. (ctf_arc_bufopen): Fuse into... (ctf_new_archive_internal): ... this, moved across from... * ctf-open-bfd.c: ... here. (ctf_bfdopen_ctfsect): Use ctf_arc_bufopen. * libctf.ver: Add it. binutils/ * readelf.c (dump_section_as_ctf): Support .ctf archives using ctf_arc_bufopen. Automatically load the .ctf member of such archives as the parent of all other members, unless specifically overridden via --ctf-parent. Split out dumping code into... (dump_ctf_archive_member): ... here, as in objdump, and call it once per archive member. (dump_ctf_indent_lines): Code style fix.
2019-12-13 20:01:12 +08:00
arci = ctf_arc_bufopen (ctfsect, symsectp, strsectp, errp);
if (arci)
{
/* Request freeing of the symsect and possibly the strsect. */
libctf, binutils: support CTF archives like objdump objdump and readelf have one major CTF-related behavioural difference: objdump can read .ctf sections that contain CTF archives and extract and dump their members, while readelf cannot. Since the linker often emits CTF archives, this means that readelf intermittently and (from the user's perspective) randomly fails to read CTF in files that ld emits, with a confusing error message wrongly claiming that the CTF content is corrupt. This is purely because the archive-opening code in libctf was needlessly tangled up with the BFD code, so readelf couldn't use it. Here, we disentangle it, moving ctf_new_archive_internal from ctf-open-bfd.c into ctf-archive.c and merging it with the helper function in ctf-archive.c it was already using. We add a new public API function ctf_arc_bufopen, that looks very like ctf_bufopen but returns an archive given suitable section data rather than a ctf_file_t: the archive is a ctf_archive_t, so it can be called on raw CTF dictionaries (with no archive present) and will return a single-member synthetic "archive". There is a tiny lifetime tweak here: before now, the archive code could assume that the symbol section in the ctf_archive_internal wrapper structure was always owned by BFD if it was present and should always be freed: now, the caller can pass one in via ctf_arc_bufopen, wihch has the usual lifetime rules for such sections (caller frees): so we add an extra field to track whether this is an internal call from ctf-open-bfd, in which case we still free the symbol section. include/ * ctf-api.h (ctf_arc_bufopen): New. libctf/ * ctf-impl.h (ctf_new_archive_internal): Declare. (ctf_arc_bufopen): Remove. (ctf_archive_internal) <ctfi_free_symsect>: New. * ctf-archive.c (ctf_arc_close): Use it. (ctf_arc_bufopen): Fuse into... (ctf_new_archive_internal): ... this, moved across from... * ctf-open-bfd.c: ... here. (ctf_bfdopen_ctfsect): Use ctf_arc_bufopen. * libctf.ver: Add it. binutils/ * readelf.c (dump_section_as_ctf): Support .ctf archives using ctf_arc_bufopen. Automatically load the .ctf member of such archives as the parent of all other members, unless specifically overridden via --ctf-parent. Split out dumping code into... (dump_ctf_archive_member): ... here, as in objdump, and call it once per archive member. (dump_ctf_indent_lines): Code style fix.
2019-12-13 20:01:12 +08:00
arci->ctfi_free_symsect = 1;
if (strtab_alloc)
arci->ctfi_free_strsect = 1;
libctf, binutils: support CTF archives like objdump objdump and readelf have one major CTF-related behavioural difference: objdump can read .ctf sections that contain CTF archives and extract and dump their members, while readelf cannot. Since the linker often emits CTF archives, this means that readelf intermittently and (from the user's perspective) randomly fails to read CTF in files that ld emits, with a confusing error message wrongly claiming that the CTF content is corrupt. This is purely because the archive-opening code in libctf was needlessly tangled up with the BFD code, so readelf couldn't use it. Here, we disentangle it, moving ctf_new_archive_internal from ctf-open-bfd.c into ctf-archive.c and merging it with the helper function in ctf-archive.c it was already using. We add a new public API function ctf_arc_bufopen, that looks very like ctf_bufopen but returns an archive given suitable section data rather than a ctf_file_t: the archive is a ctf_archive_t, so it can be called on raw CTF dictionaries (with no archive present) and will return a single-member synthetic "archive". There is a tiny lifetime tweak here: before now, the archive code could assume that the symbol section in the ctf_archive_internal wrapper structure was always owned by BFD if it was present and should always be freed: now, the caller can pass one in via ctf_arc_bufopen, wihch has the usual lifetime rules for such sections (caller frees): so we add an extra field to track whether this is an internal call from ctf-open-bfd, in which case we still free the symbol section. include/ * ctf-api.h (ctf_arc_bufopen): New. libctf/ * ctf-impl.h (ctf_new_archive_internal): Declare. (ctf_arc_bufopen): Remove. (ctf_archive_internal) <ctfi_free_symsect>: New. * ctf-archive.c (ctf_arc_close): Use it. (ctf_arc_bufopen): Fuse into... (ctf_new_archive_internal): ... this, moved across from... * ctf-open-bfd.c: ... here. (ctf_bfdopen_ctfsect): Use ctf_arc_bufopen. * libctf.ver: Add it. binutils/ * readelf.c (dump_section_as_ctf): Support .ctf archives using ctf_arc_bufopen. Automatically load the .ctf member of such archives as the parent of all other members, unless specifically overridden via --ctf-parent. Split out dumping code into... (dump_ctf_archive_member): ... here, as in objdump, and call it once per archive member. (dump_ctf_indent_lines): Code style fix.
2019-12-13 20:01:12 +08:00
return arci;
}
#ifdef HAVE_BFD_ELF
libctf, bfd: fix ctf_bfdopen_ctfsect opening symbol and string sections The code in ctf_bfdopen_ctfsect (which is the ultimate place where you end up if you use ctf_open to open a CTF file and pull in the ELF string and symbol tables) was written before it was possible to actually test it, since the linker was not written. Now it is, it turns out that the previous code was completely nonfunctional: it assumed that you could load the symbol table via bfd_section_from_elf_index (...,elf_onesymtab()) and the string table via bfd_section_from_elf_index on the sh_link. Unfortunately BFD loads neither of these sections in the conventional fashion it uses for most others: the symbol table is immediately converted into internal form (which is useless for our purposes, since we also have to work in the absence of BFD for readelf, etc) and the string table is loaded specially via bfd_elf_get_str_section which is private to bfd/elf.c. So make this function public, export it in elf-bfd.h, and use it from libctf, which does something similar to what bfd_elf_sym_name and bfd_elf_string_from_elf_section do. Similarly, load the symbol table manually using bfd_elf_get_elf_syms and throw away the internal form it generates for us (we never use it). BFD allocates the strtab for us via bfd_alloc, so we can leave BFD to deallocate it: we allocate the symbol table ourselves before calling bfd_elf_get_elf_syms, so we still have to free it. Also change the rules around what you are allowed to provide: It is useful to provide a string section but no symbol table, because CTF sections can legitimately have no function info or data object sections while relying on the ELF strtab for some of their strings. So allow that combination. v4: adjust to upstream changes. ctf_bfdopen_ctfsect's first parameter is potentially unused again (if BFD is not in use for this link due to not supporting an ELF target). v5: fix tabdamage. bfd/ * elf-bfd.h (bfd_elf_get_str_section): Add. * elf.c (bfd_elf_get_str_section): No longer static. libctf/ * ctf-open-bfd.c: Add <assert.h>. (ctf_bfdopen_ctfsect): Open string and symbol tables using techniques borrowed from bfd_elf_sym_name. (ctf_new_archive_internal): Improve comment. * ctf-archive.c (ctf_arc_close): Do not free the ctfi_strsect. * ctf-open.c (ctf_bufopen): Allow opening with a string section but no symbol section, but not vice versa.
2019-07-11 23:26:54 +08:00
err_free_sym:
free (symtab);
free (strtab_alloc);
#endif
err: _libctf_unused_;
if (bfderrstr)
{
ctf_dprintf ("ctf_bfdopen(): %s: %s\n", bfderrstr,
bfd_errmsg (bfd_get_error()));
ctf_set_open_errno (errp, ECTF_FMT);
}
return NULL;
}
/* Open the specified file descriptor and return a pointer to a CTF archive that
contains one or more CTF containers. The file can be an ELF file, a raw CTF
file, or a CTF archive. The caller is responsible for closing the file
descriptor when it is no longer needed. If this is an ELF file, TARGET, if
non-NULL, should be the name of a suitable BFD target. */
ctf_archive_t *
ctf_fdopen (int fd, const char *filename, const char *target, int *errp)
{
ctf_archive_t *arci;
bfd *abfd;
int nfd;
struct stat st;
ssize_t nbytes;
ctf_preamble_t ctfhdr;
uint64_t arc_magic;
memset (&ctfhdr, 0, sizeof (ctfhdr));
libctf_init_debug();
if (fstat (fd, &st) == -1)
return (ctf_set_open_errno (errp, errno));
if ((nbytes = ctf_pread (fd, &ctfhdr, sizeof (ctfhdr), 0)) <= 0)
return (ctf_set_open_errno (errp, nbytes < 0 ? errno : ECTF_FMT));
2019-06-19 22:56:52 +08:00
/* If we have read enough bytes to form a CTF header and the magic string
matches, in either endianness, attempt to interpret the file as raw
CTF. */
2019-06-19 22:56:52 +08:00
if ((size_t) nbytes >= sizeof (ctf_preamble_t)
&& (ctfhdr.ctp_magic == CTF_MAGIC
|| ctfhdr.ctp_magic == bswap_16 (CTF_MAGIC)))
{
ctf_file_t *fp = NULL;
void *data;
if ((data = ctf_mmap (st.st_size, 0, fd)) == NULL)
return (ctf_set_open_errno (errp, errno));
if ((fp = ctf_simple_open (data, (size_t) st.st_size, NULL, 0, 0,
NULL, 0, errp)) == NULL)
2019-06-19 22:56:52 +08:00
{
ctf_munmap (data, (size_t) st.st_size);
return NULL; /* errno is set for us. */
}
fp->ctf_data_mmapped = data;
fp->ctf_data_mmapped_len = (size_t) st.st_size;
return ctf_new_archive_internal (0, 1, NULL, fp, NULL, NULL, errp);
}
if ((nbytes = ctf_pread (fd, &arc_magic, sizeof (arc_magic), 0)) <= 0)
return (ctf_set_open_errno (errp, nbytes < 0 ? errno : ECTF_FMT));
2019-06-19 22:56:52 +08:00
if ((size_t) nbytes >= sizeof (uint64_t) && le64toh (arc_magic) == CTFA_MAGIC)
{
struct ctf_archive *arc;
if ((arc = ctf_arc_open_internal (filename, errp)) == NULL)
return NULL; /* errno is set for us. */
return ctf_new_archive_internal (1, 1, arc, NULL, NULL, NULL, errp);
}
/* Attempt to open the file with BFD. We must dup the fd first, since bfd
takes ownership of the passed fd. */
if ((nfd = dup (fd)) < 0)
return (ctf_set_open_errno (errp, errno));
if ((abfd = bfd_fdopenr (filename, target, nfd)) == NULL)
{
ctf_dprintf ("Cannot open BFD from %s: %s\n",
filename ? filename : "(unknown file)",
bfd_errmsg (bfd_get_error()));
return (ctf_set_open_errno (errp, ECTF_FMT));
}
bfd_set_cacheable (abfd, 1);
if (!bfd_check_format (abfd, bfd_object))
{
ctf_dprintf ("BFD format problem in %s: %s\n",
filename ? filename : "(unknown file)",
bfd_errmsg (bfd_get_error()));
if (bfd_get_error() == bfd_error_file_ambiguously_recognized)
return (ctf_set_open_errno (errp, ECTF_BFD_AMBIGUOUS));
else
return (ctf_set_open_errno (errp, ECTF_FMT));
}
if ((arci = ctf_bfdopen (abfd, errp)) == NULL)
{
if (!bfd_close_all_done (abfd))
ctf_dprintf ("Cannot close BFD: %s\n", bfd_errmsg (bfd_get_error()));
return NULL; /* errno is set for us. */
}
arci->ctfi_bfd_close = ctf_bfdclose;
arci->ctfi_abfd = abfd;
return arci;
}
/* Open the specified file and return a pointer to a CTF container. The file
can be either an ELF file or raw CTF file. This is just a convenient
wrapper around ctf_fdopen() for callers. */
ctf_archive_t *
ctf_open (const char *filename, const char *target, int *errp)
{
ctf_archive_t *arc;
int fd;
if ((fd = open (filename, O_RDONLY)) == -1)
{
if (errp != NULL)
*errp = errno;
return NULL;
}
arc = ctf_fdopen (fd, filename, target, errp);
(void) close (fd);
return arc;
}
/* Public entry point: open a CTF archive, or CTF file. Returns the archive, or
NULL and an error in *err. Despite the fact that this uses CTF archives, it
must be in this file to avoid dragging in BFD into non-BFD-using programs. */
ctf_archive_t *
ctf_arc_open (const char *filename, int *errp)
{
return ctf_open (filename, NULL, errp);
}