Target FP: Introduce target-float.{c,h}
This patch introduces the new set of target floating-point handling routines
in target-float.{c,h}. In the end, the intention is that this file will
contain support for all operations in target FP format, fully replacing
both the current doublest.{c,h} and dfp.{c,h}.
To begin with, this patch only adds a target_float_is_zero routine,
which handles the equivalent of decimal_is_zero for both binary and
decimal FP. For the binary case, to avoid conversion to DOUBLEST,
this is implemented using the floatformat_classify routine.
However, it turns out that floatformat_classify actually has a bug
(it was not used to check for zero before), so this is fixed as well.
The new routine is used in both value_logical_not and valpy_nonzero.
There is one extra twist: the code previously used value_as_double
to convert to DOUBLEST and then compare against zero. That routine
performs an extra task: it detects invalid floating-point values
and raises an error. In any place where value_as_double is removed
in favor of some target-float.c routine, we need to replace that check.
To keep this check centralized in one place, I've added a new routine
is_floating_value, which returns a boolean determining whether a
value's type is floating point (binary or decimal), and if so, also
performs the validity check. Since we need to check whether a value
is FP before calling any of the target-float routines anyway, this
seems a good place to add the check without much code size overhead.
In some places where we only want to check for floating-point types
and not perform a validity check (e.g. for the *output* of an operation),
we can use the new is_floating_type routine (in gdbarch) instead.
The validity check itself is done by a new target_float_is_valid
routine in target-float, encapsulating floatformat_is_valid.
ChangeLog:
2017-11-06 Ulrich Weigand <uweigand@de.ibm.com>
* Makefile.c (SFILES): Add target-float.c.
(HFILES_NO_SRCDIR): Add target-float.h.
(COMMON_OBS): Add target-float.o.
* target-float.h: New file.
* target-float.c: New file.
* doublest.c (floatformat_classify): Fix detection of float_zero.
* gdbtypes.c (is_floating_type): New function.
* gdbtypes.h (is_floating_type): Add prototype.
* value.c: Do not include "floatformat.h".
(unpack_double): Use target_float_is_valid.
(is_floating_value): New function.
* value.h (is_floating_value): Add prototype-
* valarith.c: Include "target-float.h".
(value_logical_not): Use target_float_is_zero.
* python/py-value.c: Include "target-float.h".
(valpy_nonzero): Use target_float_is_zero.
2017-11-06 22:55:11 +08:00
|
|
|
/* Floating point routines for GDB, the GNU debugger.
|
|
|
|
|
2018-01-01 12:43:02 +08:00
|
|
|
Copyright (C) 2017-2018 Free Software Foundation, Inc.
|
Target FP: Introduce target-float.{c,h}
This patch introduces the new set of target floating-point handling routines
in target-float.{c,h}. In the end, the intention is that this file will
contain support for all operations in target FP format, fully replacing
both the current doublest.{c,h} and dfp.{c,h}.
To begin with, this patch only adds a target_float_is_zero routine,
which handles the equivalent of decimal_is_zero for both binary and
decimal FP. For the binary case, to avoid conversion to DOUBLEST,
this is implemented using the floatformat_classify routine.
However, it turns out that floatformat_classify actually has a bug
(it was not used to check for zero before), so this is fixed as well.
The new routine is used in both value_logical_not and valpy_nonzero.
There is one extra twist: the code previously used value_as_double
to convert to DOUBLEST and then compare against zero. That routine
performs an extra task: it detects invalid floating-point values
and raises an error. In any place where value_as_double is removed
in favor of some target-float.c routine, we need to replace that check.
To keep this check centralized in one place, I've added a new routine
is_floating_value, which returns a boolean determining whether a
value's type is floating point (binary or decimal), and if so, also
performs the validity check. Since we need to check whether a value
is FP before calling any of the target-float routines anyway, this
seems a good place to add the check without much code size overhead.
In some places where we only want to check for floating-point types
and not perform a validity check (e.g. for the *output* of an operation),
we can use the new is_floating_type routine (in gdbarch) instead.
The validity check itself is done by a new target_float_is_valid
routine in target-float, encapsulating floatformat_is_valid.
ChangeLog:
2017-11-06 Ulrich Weigand <uweigand@de.ibm.com>
* Makefile.c (SFILES): Add target-float.c.
(HFILES_NO_SRCDIR): Add target-float.h.
(COMMON_OBS): Add target-float.o.
* target-float.h: New file.
* target-float.c: New file.
* doublest.c (floatformat_classify): Fix detection of float_zero.
* gdbtypes.c (is_floating_type): New function.
* gdbtypes.h (is_floating_type): Add prototype.
* value.c: Do not include "floatformat.h".
(unpack_double): Use target_float_is_valid.
(is_floating_value): New function.
* value.h (is_floating_value): Add prototype-
* valarith.c: Include "target-float.h".
(value_logical_not): Use target_float_is_zero.
* python/py-value.c: Include "target-float.h".
(valpy_nonzero): Use target_float_is_zero.
2017-11-06 22:55:11 +08:00
|
|
|
|
|
|
|
This file is part of GDB.
|
|
|
|
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
|
|
it under the terms of the GNU General Public License as published by
|
|
|
|
the Free Software Foundation; either version 3 of the License, or
|
|
|
|
(at your option) any later version.
|
|
|
|
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
GNU General Public License for more details.
|
|
|
|
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
|
|
|
|
|
|
|
#include "defs.h"
|
|
|
|
#include "gdbtypes.h"
|
|
|
|
#include "floatformat.h"
|
|
|
|
#include "target-float.h"
|
|
|
|
|
|
|
|
|
Target FP: Refactor use of host floating-point arithmetic
Prepare for using MPFR to implement floating-point arithmetic by
refactoring the way host floating-point arithmetic is currently used.
In particular, fix the following two problems that cause different
(and incorrect) results due to using host arithmetic:
- Current processing always uses host "long double", and then converts
back to the actual target format. This may introduce rounding errors.
- Conversion of FP values to LONGEST simply does a host C++ type cast.
However the result of such a cast is undefined if the source value
is outside the representable range. MPFR always has defined behavior
here (returns the minimum or maximum representable value).
To fix the first issue, I've now created not just one set of routines
using host FP arithmetic (on long double), but instead three different
sets of routines, one each for host float, double, and long double.
Operations can then be performed in the desired type directly, avoiding
the extra rounding step. Using C++ templates, the three sets can all
share the same source code without duplication.
To fix the second issue, I'm simply enforcing the same conversion rule
(which makes sense anyway) when converting out-of-range values from
FP to LONGEST.
To contain the code complexity with the variety of options now possible,
I've created a new class "target_float_ops". There are a total of five
separate implementations of this:
host_float_ops<float> Implemented via host FP in given type
host_float_ops<double>
host_float_ops<long double>
mpfr_float_ops Implemented via MPFR if available
decimal_float_ops Implemented via libdecnumber
Note instead of using the DOUBLEST define, this always just uses the
"long double" data type. But since we now require C++11 anyway, this
type must in any case be avaialble unconditionally.
Most target floating-point operations simply dispatch to a (virtual)
member routine of this class. Which implementation to choose is
determined from the target types involved, and whether they match
some host type or not. E.g. any operation on a single type that
matches a host type is performed in that type. Operations involving
two types that both match host types are performed in the larger one
(according to C/C++ implicit conversion rules). Operations that
involve any type that does not match a host type are performed using
MPFR. (And of course operations involving decimal FP are performed
using libdecnumber.)
This first patch implements the refactoring of target-float.c as
described above, introduing the host_float_ops and decimal_float_ops
classes, and using them. Use of MPFR is introduced in the second patch.
A bit of special-case handling code is moved around to as to avoid
code duplication between host_float_ops and mpfr_float_ops.
Note that due to the changes mentioned above, I've had to update (fix)
the floating-point register values tested in the gdb.arch/vsx-regs.exp
test case. (The new values now work both with host arithmetic and MPFR.)
gdb/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* target-float.c: Do not include <math.h>.
Include <cmath> and <limits>.
(DOUBLEST): Do not define.
(class target_float_ops): New type.
(class host_float_ops): New templated type.
(class decimal_float_ops): New type.
(floatformat_to_doublest): Rename to ...
(host_float_ops<T>::from_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::from_target): New overload using a type argument.
(floatformat_from_doublest): Rename to ...
(host_float_ops<T>::to_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::to_target): New overload using a type argument.
(floatformat_printf_format): New function.
(struct printf_length_modifier): New templated type.
(floatformat_to_string): Rename to ...
(host_float_ops<T>::to_string): ... this. Use type instead of
floatformat argument. Use floatformat_printf_format and
printf_length_modifier. Remove special handling of invalid numbers,
infinities and NaN (moved to target_float_to_string).
(struct scanf_length_modifier): New templated type.
(floatformat_from_string): Rename to ...
(host_float_ops<T>::from_string): ... this. Use type instead of
floatformat argument. Use scanf_length_modifier.
(floatformat_to_longest): Rename to ...
(host_float_ops<T>::to_longest): ... this. Use type instead of
floatformat argument. Handle out-of-range values deterministically.
(floatformat_from_longest): Rename to ...
(host_float_ops<T>::from_longest): ... this. Use type instead of
floatformat argument.
(floatformat_from_ulongest): Rename to ...
(host_float_ops<T>::from_ulongest): ... this. Use type instead of
floatformat argument.
(floatformat_to_host_double): Rename to ...
(host_float_ops<T>::to_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_from_host_double): Rename to ...
(host_float_ops<T>::from_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_convert): Rename to ...
(host_float_ops<T>::convert): ... this. Use type instead of
floatformat arguments. Remove handling of no-op conversions.
(floatformat_binop): Rename to ...
(host_float_ops<T>::binop): ... this. Use type instead of
floatformat arguments.
(floatformat_compare): Rename to ...
(host_float_ops<T>::compare): ... this. Use type instead of
floatformat arguments.
(match_endianness): Use type instead of length/byte_order arguments.
(set_decnumber_context): Likewise.
(decimal_from_number): Likewise. Update calls.
(decimal_to_number): Likewise.
(decimal_is_zero): Likewise. Update calls. Move to earlier in file.
(decimal_float_ops::to_host_double): New dummy function.
(decimal_float_ops::from_host_double): Likewise.
(decimal_to_string): Rename to ...
(decimal_float_ops::to_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_string): Rename to ...
(decimal_float_ops::from_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_longest): Rename to ...
(decimal_float_ops::from_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_ulongest): Rename to ...
(decimal_float_ops::from_ulongest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_to_longest): Rename to ...
(decimal_float_ops::to_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_binop): Rename to ...
(decimal_float_ops::binop): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_compare): Rename to ...
(decimal_float_ops::compare): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_convert): Rename to ...
(decimal_float_ops::convert): ... this. Use type instead of
length/byte_order arguments. Update calls.
(target_float_same_category_p): New function.
(target_float_same_format_p): Likewise.
(target_float_format_length): Likewise.
(enum target_float_ops_kind): New type.
(get_target_float_ops_kind): New function.
(get_target_float_ops): Three new overloaded functions.
(target_float_is_zero): Update call.
(target_float_to_string): Add special handling of invalid numbers,
infinities and NaN (moved from floatformat_to_string). Use
target_float_ops callback.
(target_float_from_string): Use target_float_ops callback.
(target_float_to_longest): Likewise.
(target_float_from_longest): Likewise.
(target_float_from_ulongest): Likewise.
(target_float_to_host_double): Likewise.
(target_float_from_host_double): Likewise.
(target_float_convert): Add special case for no-op conversions.
Use target_float_ops callback.
(target_float_binop): Use target_float_ops callback.
(target_float_compare): Likewise.
gdb/testsuite/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
|
|
|
/* Target floating-point operations.
|
Target FP: Add conversion routines to target-float.{c,h}
This patch adds the following conversion routines:
- target_float_to_longest
- target_float_from_longest
- target_float_from_ulongest
- target_float_convert
which call the equivalent decimal_ routines to handle decimal FP,
and call helper routines that currently still go via DOUBLEST to
handle binary FP.
The target_float_convert routine not only handles BFP<->BFP and
DFP<->DFP conversions, but also BFP<->DFP, which are implemented
by converting to a string and back.
These helpers are used in particular to implement conversion
from and to FP in value_cast, without going through DOUBLEST there.
In order to implement this for the FP<-integer case, the
pack_long / pack_unsigned_long routines are extended to support
floating-point values as output (thereby allowing use of
value_from_[u]longest with a floating-point target type).
This latter change also allows simplification of value_one.
gdb/ChangeLog:
2017-11-06 Ulrich Weigand <uweigand@de.ibm.com>
* target-float.c (floatformat_to_longest): New function.
(floatformat_from_longest, floatformat_from_ulongest): Likewise.
(floatformat_convert): Likewise.
(target_float_to_longest): Likewise.
(target_float_from_longest, target_float_from_ulongest): Likewise.
(target_float_convert): Likewise.
* target-float.h (target_float_to_longest): Add prototype.
(target_float_from_longest, target_float_from_ulongest): Likewise.
(target_float_convert): Likewise.
* value.c (unpack_long): Use target_float_to_longest.
(pack_long): Allow FP types. Use target_float_from_longest.
(pack_unsigned_long): Likewise using target_float_from_ulongest.
* valops.c: Include "target-float.h". Do not include "dfp.h".
(value_cast): Handle conversions to FP using target_float_convert,
value_from_ulongest, and value_from_longest.
(value_one): Use value_from_longest for FP types as well.
2017-11-06 22:57:31 +08:00
|
|
|
|
Target FP: Refactor use of host floating-point arithmetic
Prepare for using MPFR to implement floating-point arithmetic by
refactoring the way host floating-point arithmetic is currently used.
In particular, fix the following two problems that cause different
(and incorrect) results due to using host arithmetic:
- Current processing always uses host "long double", and then converts
back to the actual target format. This may introduce rounding errors.
- Conversion of FP values to LONGEST simply does a host C++ type cast.
However the result of such a cast is undefined if the source value
is outside the representable range. MPFR always has defined behavior
here (returns the minimum or maximum representable value).
To fix the first issue, I've now created not just one set of routines
using host FP arithmetic (on long double), but instead three different
sets of routines, one each for host float, double, and long double.
Operations can then be performed in the desired type directly, avoiding
the extra rounding step. Using C++ templates, the three sets can all
share the same source code without duplication.
To fix the second issue, I'm simply enforcing the same conversion rule
(which makes sense anyway) when converting out-of-range values from
FP to LONGEST.
To contain the code complexity with the variety of options now possible,
I've created a new class "target_float_ops". There are a total of five
separate implementations of this:
host_float_ops<float> Implemented via host FP in given type
host_float_ops<double>
host_float_ops<long double>
mpfr_float_ops Implemented via MPFR if available
decimal_float_ops Implemented via libdecnumber
Note instead of using the DOUBLEST define, this always just uses the
"long double" data type. But since we now require C++11 anyway, this
type must in any case be avaialble unconditionally.
Most target floating-point operations simply dispatch to a (virtual)
member routine of this class. Which implementation to choose is
determined from the target types involved, and whether they match
some host type or not. E.g. any operation on a single type that
matches a host type is performed in that type. Operations involving
two types that both match host types are performed in the larger one
(according to C/C++ implicit conversion rules). Operations that
involve any type that does not match a host type are performed using
MPFR. (And of course operations involving decimal FP are performed
using libdecnumber.)
This first patch implements the refactoring of target-float.c as
described above, introduing the host_float_ops and decimal_float_ops
classes, and using them. Use of MPFR is introduced in the second patch.
A bit of special-case handling code is moved around to as to avoid
code duplication between host_float_ops and mpfr_float_ops.
Note that due to the changes mentioned above, I've had to update (fix)
the floating-point register values tested in the gdb.arch/vsx-regs.exp
test case. (The new values now work both with host arithmetic and MPFR.)
gdb/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* target-float.c: Do not include <math.h>.
Include <cmath> and <limits>.
(DOUBLEST): Do not define.
(class target_float_ops): New type.
(class host_float_ops): New templated type.
(class decimal_float_ops): New type.
(floatformat_to_doublest): Rename to ...
(host_float_ops<T>::from_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::from_target): New overload using a type argument.
(floatformat_from_doublest): Rename to ...
(host_float_ops<T>::to_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::to_target): New overload using a type argument.
(floatformat_printf_format): New function.
(struct printf_length_modifier): New templated type.
(floatformat_to_string): Rename to ...
(host_float_ops<T>::to_string): ... this. Use type instead of
floatformat argument. Use floatformat_printf_format and
printf_length_modifier. Remove special handling of invalid numbers,
infinities and NaN (moved to target_float_to_string).
(struct scanf_length_modifier): New templated type.
(floatformat_from_string): Rename to ...
(host_float_ops<T>::from_string): ... this. Use type instead of
floatformat argument. Use scanf_length_modifier.
(floatformat_to_longest): Rename to ...
(host_float_ops<T>::to_longest): ... this. Use type instead of
floatformat argument. Handle out-of-range values deterministically.
(floatformat_from_longest): Rename to ...
(host_float_ops<T>::from_longest): ... this. Use type instead of
floatformat argument.
(floatformat_from_ulongest): Rename to ...
(host_float_ops<T>::from_ulongest): ... this. Use type instead of
floatformat argument.
(floatformat_to_host_double): Rename to ...
(host_float_ops<T>::to_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_from_host_double): Rename to ...
(host_float_ops<T>::from_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_convert): Rename to ...
(host_float_ops<T>::convert): ... this. Use type instead of
floatformat arguments. Remove handling of no-op conversions.
(floatformat_binop): Rename to ...
(host_float_ops<T>::binop): ... this. Use type instead of
floatformat arguments.
(floatformat_compare): Rename to ...
(host_float_ops<T>::compare): ... this. Use type instead of
floatformat arguments.
(match_endianness): Use type instead of length/byte_order arguments.
(set_decnumber_context): Likewise.
(decimal_from_number): Likewise. Update calls.
(decimal_to_number): Likewise.
(decimal_is_zero): Likewise. Update calls. Move to earlier in file.
(decimal_float_ops::to_host_double): New dummy function.
(decimal_float_ops::from_host_double): Likewise.
(decimal_to_string): Rename to ...
(decimal_float_ops::to_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_string): Rename to ...
(decimal_float_ops::from_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_longest): Rename to ...
(decimal_float_ops::from_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_ulongest): Rename to ...
(decimal_float_ops::from_ulongest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_to_longest): Rename to ...
(decimal_float_ops::to_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_binop): Rename to ...
(decimal_float_ops::binop): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_compare): Rename to ...
(decimal_float_ops::compare): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_convert): Rename to ...
(decimal_float_ops::convert): ... this. Use type instead of
length/byte_order arguments. Update calls.
(target_float_same_category_p): New function.
(target_float_same_format_p): Likewise.
(target_float_format_length): Likewise.
(enum target_float_ops_kind): New type.
(get_target_float_ops_kind): New function.
(get_target_float_ops): Three new overloaded functions.
(target_float_is_zero): Update call.
(target_float_to_string): Add special handling of invalid numbers,
infinities and NaN (moved from floatformat_to_string). Use
target_float_ops callback.
(target_float_from_string): Use target_float_ops callback.
(target_float_to_longest): Likewise.
(target_float_from_longest): Likewise.
(target_float_from_ulongest): Likewise.
(target_float_to_host_double): Likewise.
(target_float_from_host_double): Likewise.
(target_float_convert): Add special case for no-op conversions.
Use target_float_ops callback.
(target_float_binop): Use target_float_ops callback.
(target_float_compare): Likewise.
gdb/testsuite/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
|
|
|
We provide multiple implementations of those operations, which differ
|
|
|
|
by the host-side intermediate format they perform computations in.
|
2017-11-06 22:58:46 +08:00
|
|
|
|
Target FP: Refactor use of host floating-point arithmetic
Prepare for using MPFR to implement floating-point arithmetic by
refactoring the way host floating-point arithmetic is currently used.
In particular, fix the following two problems that cause different
(and incorrect) results due to using host arithmetic:
- Current processing always uses host "long double", and then converts
back to the actual target format. This may introduce rounding errors.
- Conversion of FP values to LONGEST simply does a host C++ type cast.
However the result of such a cast is undefined if the source value
is outside the representable range. MPFR always has defined behavior
here (returns the minimum or maximum representable value).
To fix the first issue, I've now created not just one set of routines
using host FP arithmetic (on long double), but instead three different
sets of routines, one each for host float, double, and long double.
Operations can then be performed in the desired type directly, avoiding
the extra rounding step. Using C++ templates, the three sets can all
share the same source code without duplication.
To fix the second issue, I'm simply enforcing the same conversion rule
(which makes sense anyway) when converting out-of-range values from
FP to LONGEST.
To contain the code complexity with the variety of options now possible,
I've created a new class "target_float_ops". There are a total of five
separate implementations of this:
host_float_ops<float> Implemented via host FP in given type
host_float_ops<double>
host_float_ops<long double>
mpfr_float_ops Implemented via MPFR if available
decimal_float_ops Implemented via libdecnumber
Note instead of using the DOUBLEST define, this always just uses the
"long double" data type. But since we now require C++11 anyway, this
type must in any case be avaialble unconditionally.
Most target floating-point operations simply dispatch to a (virtual)
member routine of this class. Which implementation to choose is
determined from the target types involved, and whether they match
some host type or not. E.g. any operation on a single type that
matches a host type is performed in that type. Operations involving
two types that both match host types are performed in the larger one
(according to C/C++ implicit conversion rules). Operations that
involve any type that does not match a host type are performed using
MPFR. (And of course operations involving decimal FP are performed
using libdecnumber.)
This first patch implements the refactoring of target-float.c as
described above, introduing the host_float_ops and decimal_float_ops
classes, and using them. Use of MPFR is introduced in the second patch.
A bit of special-case handling code is moved around to as to avoid
code duplication between host_float_ops and mpfr_float_ops.
Note that due to the changes mentioned above, I've had to update (fix)
the floating-point register values tested in the gdb.arch/vsx-regs.exp
test case. (The new values now work both with host arithmetic and MPFR.)
gdb/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* target-float.c: Do not include <math.h>.
Include <cmath> and <limits>.
(DOUBLEST): Do not define.
(class target_float_ops): New type.
(class host_float_ops): New templated type.
(class decimal_float_ops): New type.
(floatformat_to_doublest): Rename to ...
(host_float_ops<T>::from_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::from_target): New overload using a type argument.
(floatformat_from_doublest): Rename to ...
(host_float_ops<T>::to_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::to_target): New overload using a type argument.
(floatformat_printf_format): New function.
(struct printf_length_modifier): New templated type.
(floatformat_to_string): Rename to ...
(host_float_ops<T>::to_string): ... this. Use type instead of
floatformat argument. Use floatformat_printf_format and
printf_length_modifier. Remove special handling of invalid numbers,
infinities and NaN (moved to target_float_to_string).
(struct scanf_length_modifier): New templated type.
(floatformat_from_string): Rename to ...
(host_float_ops<T>::from_string): ... this. Use type instead of
floatformat argument. Use scanf_length_modifier.
(floatformat_to_longest): Rename to ...
(host_float_ops<T>::to_longest): ... this. Use type instead of
floatformat argument. Handle out-of-range values deterministically.
(floatformat_from_longest): Rename to ...
(host_float_ops<T>::from_longest): ... this. Use type instead of
floatformat argument.
(floatformat_from_ulongest): Rename to ...
(host_float_ops<T>::from_ulongest): ... this. Use type instead of
floatformat argument.
(floatformat_to_host_double): Rename to ...
(host_float_ops<T>::to_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_from_host_double): Rename to ...
(host_float_ops<T>::from_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_convert): Rename to ...
(host_float_ops<T>::convert): ... this. Use type instead of
floatformat arguments. Remove handling of no-op conversions.
(floatformat_binop): Rename to ...
(host_float_ops<T>::binop): ... this. Use type instead of
floatformat arguments.
(floatformat_compare): Rename to ...
(host_float_ops<T>::compare): ... this. Use type instead of
floatformat arguments.
(match_endianness): Use type instead of length/byte_order arguments.
(set_decnumber_context): Likewise.
(decimal_from_number): Likewise. Update calls.
(decimal_to_number): Likewise.
(decimal_is_zero): Likewise. Update calls. Move to earlier in file.
(decimal_float_ops::to_host_double): New dummy function.
(decimal_float_ops::from_host_double): Likewise.
(decimal_to_string): Rename to ...
(decimal_float_ops::to_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_string): Rename to ...
(decimal_float_ops::from_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_longest): Rename to ...
(decimal_float_ops::from_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_ulongest): Rename to ...
(decimal_float_ops::from_ulongest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_to_longest): Rename to ...
(decimal_float_ops::to_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_binop): Rename to ...
(decimal_float_ops::binop): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_compare): Rename to ...
(decimal_float_ops::compare): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_convert): Rename to ...
(decimal_float_ops::convert): ... this. Use type instead of
length/byte_order arguments. Update calls.
(target_float_same_category_p): New function.
(target_float_same_format_p): Likewise.
(target_float_format_length): Likewise.
(enum target_float_ops_kind): New type.
(get_target_float_ops_kind): New function.
(get_target_float_ops): Three new overloaded functions.
(target_float_is_zero): Update call.
(target_float_to_string): Add special handling of invalid numbers,
infinities and NaN (moved from floatformat_to_string). Use
target_float_ops callback.
(target_float_from_string): Use target_float_ops callback.
(target_float_to_longest): Likewise.
(target_float_from_longest): Likewise.
(target_float_from_ulongest): Likewise.
(target_float_to_host_double): Likewise.
(target_float_from_host_double): Likewise.
(target_float_convert): Add special case for no-op conversions.
Use target_float_ops callback.
(target_float_binop): Use target_float_ops callback.
(target_float_compare): Likewise.
gdb/testsuite/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
|
|
|
Those multiple implementations all derive from the following abstract
|
|
|
|
base class, which specifies the set of operations to be implemented. */
|
|
|
|
|
|
|
|
class target_float_ops
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
virtual std::string to_string (const gdb_byte *addr, const struct type *type,
|
|
|
|
const char *format) const = 0;
|
|
|
|
virtual bool from_string (gdb_byte *addr, const struct type *type,
|
|
|
|
const std::string &string) const = 0;
|
|
|
|
|
|
|
|
virtual LONGEST to_longest (const gdb_byte *addr,
|
|
|
|
const struct type *type) const = 0;
|
|
|
|
virtual void from_longest (gdb_byte *addr, const struct type *type,
|
|
|
|
LONGEST val) const = 0;
|
|
|
|
virtual void from_ulongest (gdb_byte *addr, const struct type *type,
|
|
|
|
ULONGEST val) const = 0;
|
|
|
|
virtual double to_host_double (const gdb_byte *addr,
|
|
|
|
const struct type *type) const = 0;
|
|
|
|
virtual void from_host_double (gdb_byte *addr, const struct type *type,
|
|
|
|
double val) const = 0;
|
|
|
|
virtual void convert (const gdb_byte *from, const struct type *from_type,
|
|
|
|
gdb_byte *to, const struct type *to_type) const = 0;
|
|
|
|
|
|
|
|
virtual void binop (enum exp_opcode opcode,
|
|
|
|
const gdb_byte *x, const struct type *type_x,
|
|
|
|
const gdb_byte *y, const struct type *type_y,
|
|
|
|
gdb_byte *res, const struct type *type_res) const = 0;
|
|
|
|
virtual int compare (const gdb_byte *x, const struct type *type_x,
|
|
|
|
const gdb_byte *y, const struct type *type_y) const = 0;
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
/* Helper routines operating on binary floating-point data. */
|
|
|
|
|
|
|
|
#include <cmath>
|
|
|
|
#include <limits>
|
Target FP: Merge doublest.c and dfp.c into target-float.c
Now that all target FP operations are performed via target-float.c,
this file remains the sole caller of functions in doublest.c and dfp.c.
Therefore, this patch merges the latter files into the former and
makes all their function static there.
gdb/ChangeLog:
2017-11-06 Ulrich Weigand <uweigand@de.ibm.com>
* Makefile.in (SFILES): Remove doublest.c and dfp.c.
(HFILES_NO_SRCDIR): Remove doublest.h and dfp.h.
(COMMON_OBS): Remove doublest.o and dfp.o.
Do not build target-float.c (instead of doublest.c)
with -Wformat-nonliteral.
* doublest.c: Remove file.
* doublest.h: Remove file.
* dfp.c: Remove file.
* dfp.h: Remove file.
* target-float.c: Do not include "doublest.h" and "dfp.h".
(DOUBLEST): Move here from doublest.h.
(enum float_kind): Likewise.
(FLOATFORMAT_CHAR_BIT): Likewise.
(FLOATFORMAT_LARGEST_BYTES): Likewise.
(floatformat_totalsize_bytes): Move here from doublest.c. Make static.
(floatformat_precision): Likewise.
(floatformat_normalize_byteorder, get_field, put_field): Likewise.
(floatformat_is_negative, floatformat_classify, floatformat_mantissa):
Likewise.
(host_float_format, host_double_format, host_long_double_format):
Likewise.
(floatformat_to_string, floatformat_from_string): Likewise.
(floatformat_to_doublest): Likewise. Also, inline the original
convert_floatformat_to_doublest.
(floatformat_from_doublest): Likewise. Also, inline the original
convert_floatformat_from_doublest.
Include "dpd/decimal128.h", "dpd/decimal64.h", and "dpd/decimal32.h".
(MAX_DECIMAL_STRING): Move here from dfp.c.
(match_endianness): Likewise.
(set_decnumber_context, decimal_check_errors): Likewise.
(decimal_from_number, decimal_to_number): Likewise.
(decimal_to_string, decimal_from_string): Likewise. Make static.
(decimal_from_longest, decimal_from_ulongest): Likewise.
(decimal_to_longest): Likewise.
(decimal_binop, decimal_is_zero, decimal_compare): Likewise.
(decimal_convert): Likewise.
2017-11-06 23:04:03 +08:00
|
|
|
|
|
|
|
/* Different kinds of floatformat numbers recognized by
|
|
|
|
floatformat_classify. To avoid portability issues, we use local
|
|
|
|
values instead of the C99 macros (FP_NAN et cetera). */
|
|
|
|
enum float_kind {
|
|
|
|
float_nan,
|
|
|
|
float_infinite,
|
|
|
|
float_zero,
|
|
|
|
float_normal,
|
|
|
|
float_subnormal
|
|
|
|
};
|
|
|
|
|
|
|
|
/* The odds that CHAR_BIT will be anything but 8 are low enough that I'm not
|
|
|
|
going to bother with trying to muck around with whether it is defined in
|
|
|
|
a system header, what we do if not, etc. */
|
|
|
|
#define FLOATFORMAT_CHAR_BIT 8
|
|
|
|
|
|
|
|
/* The number of bytes that the largest floating-point type that we
|
|
|
|
can convert to doublest will need. */
|
|
|
|
#define FLOATFORMAT_LARGEST_BYTES 16
|
|
|
|
|
|
|
|
/* Return the floatformat's total size in host bytes. */
|
|
|
|
static size_t
|
|
|
|
floatformat_totalsize_bytes (const struct floatformat *fmt)
|
|
|
|
{
|
|
|
|
return ((fmt->totalsize + FLOATFORMAT_CHAR_BIT - 1)
|
|
|
|
/ FLOATFORMAT_CHAR_BIT);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Return the precision of the floating point format FMT. */
|
|
|
|
static int
|
|
|
|
floatformat_precision (const struct floatformat *fmt)
|
|
|
|
{
|
|
|
|
/* Assume the precision of and IBM long double is twice the precision
|
|
|
|
of the underlying double. This matches what GCC does. */
|
|
|
|
if (fmt->split_half)
|
|
|
|
return 2 * floatformat_precision (fmt->split_half);
|
|
|
|
|
|
|
|
/* Otherwise, the precision is the size of mantissa in bits,
|
|
|
|
including the implicit bit if present. */
|
|
|
|
int prec = fmt->man_len;
|
|
|
|
if (fmt->intbit == floatformat_intbit_no)
|
|
|
|
prec++;
|
|
|
|
|
|
|
|
return prec;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Normalize the byte order of FROM into TO. If no normalization is
|
|
|
|
needed then FMT->byteorder is returned and TO is not changed;
|
|
|
|
otherwise the format of the normalized form in TO is returned. */
|
|
|
|
static enum floatformat_byteorders
|
|
|
|
floatformat_normalize_byteorder (const struct floatformat *fmt,
|
|
|
|
const void *from, void *to)
|
|
|
|
{
|
|
|
|
const unsigned char *swapin;
|
|
|
|
unsigned char *swapout;
|
|
|
|
int words;
|
|
|
|
|
|
|
|
if (fmt->byteorder == floatformat_little
|
|
|
|
|| fmt->byteorder == floatformat_big)
|
|
|
|
return fmt->byteorder;
|
|
|
|
|
|
|
|
words = fmt->totalsize / FLOATFORMAT_CHAR_BIT;
|
|
|
|
words >>= 2;
|
|
|
|
|
|
|
|
swapout = (unsigned char *)to;
|
|
|
|
swapin = (const unsigned char *)from;
|
|
|
|
|
|
|
|
if (fmt->byteorder == floatformat_vax)
|
|
|
|
{
|
|
|
|
while (words-- > 0)
|
|
|
|
{
|
|
|
|
*swapout++ = swapin[1];
|
|
|
|
*swapout++ = swapin[0];
|
|
|
|
*swapout++ = swapin[3];
|
|
|
|
*swapout++ = swapin[2];
|
|
|
|
swapin += 4;
|
|
|
|
}
|
|
|
|
/* This may look weird, since VAX is little-endian, but it is
|
|
|
|
easier to translate to big-endian than to little-endian. */
|
|
|
|
return floatformat_big;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
gdb_assert (fmt->byteorder == floatformat_littlebyte_bigword);
|
|
|
|
|
|
|
|
while (words-- > 0)
|
|
|
|
{
|
|
|
|
*swapout++ = swapin[3];
|
|
|
|
*swapout++ = swapin[2];
|
|
|
|
*swapout++ = swapin[1];
|
|
|
|
*swapout++ = swapin[0];
|
|
|
|
swapin += 4;
|
|
|
|
}
|
|
|
|
return floatformat_big;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Extract a field which starts at START and is LEN bytes long. DATA and
|
|
|
|
TOTAL_LEN are the thing we are extracting it from, in byteorder ORDER. */
|
|
|
|
static unsigned long
|
|
|
|
get_field (const bfd_byte *data, enum floatformat_byteorders order,
|
|
|
|
unsigned int total_len, unsigned int start, unsigned int len)
|
|
|
|
{
|
|
|
|
unsigned long result;
|
|
|
|
unsigned int cur_byte;
|
|
|
|
int cur_bitshift;
|
|
|
|
|
|
|
|
/* Caller must byte-swap words before calling this routine. */
|
|
|
|
gdb_assert (order == floatformat_little || order == floatformat_big);
|
|
|
|
|
|
|
|
/* Start at the least significant part of the field. */
|
|
|
|
if (order == floatformat_little)
|
|
|
|
{
|
|
|
|
/* We start counting from the other end (i.e, from the high bytes
|
|
|
|
rather than the low bytes). As such, we need to be concerned
|
|
|
|
with what happens if bit 0 doesn't start on a byte boundary.
|
|
|
|
I.e, we need to properly handle the case where total_len is
|
|
|
|
not evenly divisible by 8. So we compute ``excess'' which
|
|
|
|
represents the number of bits from the end of our starting
|
|
|
|
byte needed to get to bit 0. */
|
|
|
|
int excess = FLOATFORMAT_CHAR_BIT - (total_len % FLOATFORMAT_CHAR_BIT);
|
|
|
|
|
|
|
|
cur_byte = (total_len / FLOATFORMAT_CHAR_BIT)
|
|
|
|
- ((start + len + excess) / FLOATFORMAT_CHAR_BIT);
|
|
|
|
cur_bitshift = ((start + len + excess) % FLOATFORMAT_CHAR_BIT)
|
|
|
|
- FLOATFORMAT_CHAR_BIT;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
cur_byte = (start + len) / FLOATFORMAT_CHAR_BIT;
|
|
|
|
cur_bitshift =
|
|
|
|
((start + len) % FLOATFORMAT_CHAR_BIT) - FLOATFORMAT_CHAR_BIT;
|
|
|
|
}
|
|
|
|
if (cur_bitshift > -FLOATFORMAT_CHAR_BIT)
|
|
|
|
result = *(data + cur_byte) >> (-cur_bitshift);
|
|
|
|
else
|
|
|
|
result = 0;
|
|
|
|
cur_bitshift += FLOATFORMAT_CHAR_BIT;
|
|
|
|
if (order == floatformat_little)
|
|
|
|
++cur_byte;
|
|
|
|
else
|
|
|
|
--cur_byte;
|
|
|
|
|
|
|
|
/* Move towards the most significant part of the field. */
|
|
|
|
while (cur_bitshift < len)
|
|
|
|
{
|
|
|
|
result |= (unsigned long)*(data + cur_byte) << cur_bitshift;
|
|
|
|
cur_bitshift += FLOATFORMAT_CHAR_BIT;
|
|
|
|
switch (order)
|
|
|
|
{
|
|
|
|
case floatformat_little:
|
|
|
|
++cur_byte;
|
|
|
|
break;
|
|
|
|
case floatformat_big:
|
|
|
|
--cur_byte;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (len < sizeof(result) * FLOATFORMAT_CHAR_BIT)
|
|
|
|
/* Mask out bits which are not part of the field. */
|
|
|
|
result &= ((1UL << len) - 1);
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Set a field which starts at START and is LEN bytes long. DATA and
|
|
|
|
TOTAL_LEN are the thing we are extracting it from, in byteorder ORDER. */
|
|
|
|
static void
|
|
|
|
put_field (unsigned char *data, enum floatformat_byteorders order,
|
|
|
|
unsigned int total_len, unsigned int start, unsigned int len,
|
|
|
|
unsigned long stuff_to_put)
|
|
|
|
{
|
|
|
|
unsigned int cur_byte;
|
|
|
|
int cur_bitshift;
|
|
|
|
|
|
|
|
/* Caller must byte-swap words before calling this routine. */
|
|
|
|
gdb_assert (order == floatformat_little || order == floatformat_big);
|
|
|
|
|
|
|
|
/* Start at the least significant part of the field. */
|
|
|
|
if (order == floatformat_little)
|
|
|
|
{
|
|
|
|
int excess = FLOATFORMAT_CHAR_BIT - (total_len % FLOATFORMAT_CHAR_BIT);
|
|
|
|
|
|
|
|
cur_byte = (total_len / FLOATFORMAT_CHAR_BIT)
|
|
|
|
- ((start + len + excess) / FLOATFORMAT_CHAR_BIT);
|
|
|
|
cur_bitshift = ((start + len + excess) % FLOATFORMAT_CHAR_BIT)
|
|
|
|
- FLOATFORMAT_CHAR_BIT;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
cur_byte = (start + len) / FLOATFORMAT_CHAR_BIT;
|
|
|
|
cur_bitshift =
|
|
|
|
((start + len) % FLOATFORMAT_CHAR_BIT) - FLOATFORMAT_CHAR_BIT;
|
|
|
|
}
|
|
|
|
if (cur_bitshift > -FLOATFORMAT_CHAR_BIT)
|
|
|
|
{
|
|
|
|
*(data + cur_byte) &=
|
|
|
|
~(((1 << ((start + len) % FLOATFORMAT_CHAR_BIT)) - 1)
|
|
|
|
<< (-cur_bitshift));
|
|
|
|
*(data + cur_byte) |=
|
|
|
|
(stuff_to_put & ((1 << FLOATFORMAT_CHAR_BIT) - 1)) << (-cur_bitshift);
|
|
|
|
}
|
|
|
|
cur_bitshift += FLOATFORMAT_CHAR_BIT;
|
|
|
|
if (order == floatformat_little)
|
|
|
|
++cur_byte;
|
|
|
|
else
|
|
|
|
--cur_byte;
|
|
|
|
|
|
|
|
/* Move towards the most significant part of the field. */
|
|
|
|
while (cur_bitshift < len)
|
|
|
|
{
|
|
|
|
if (len - cur_bitshift < FLOATFORMAT_CHAR_BIT)
|
|
|
|
{
|
|
|
|
/* This is the last byte. */
|
|
|
|
*(data + cur_byte) &=
|
|
|
|
~((1 << (len - cur_bitshift)) - 1);
|
|
|
|
*(data + cur_byte) |= (stuff_to_put >> cur_bitshift);
|
|
|
|
}
|
|
|
|
else
|
|
|
|
*(data + cur_byte) = ((stuff_to_put >> cur_bitshift)
|
|
|
|
& ((1 << FLOATFORMAT_CHAR_BIT) - 1));
|
|
|
|
cur_bitshift += FLOATFORMAT_CHAR_BIT;
|
|
|
|
if (order == floatformat_little)
|
|
|
|
++cur_byte;
|
|
|
|
else
|
|
|
|
--cur_byte;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Check if VAL (which is assumed to be a floating point number whose
|
|
|
|
format is described by FMT) is negative. */
|
|
|
|
static int
|
|
|
|
floatformat_is_negative (const struct floatformat *fmt,
|
|
|
|
const bfd_byte *uval)
|
|
|
|
{
|
|
|
|
enum floatformat_byteorders order;
|
|
|
|
unsigned char newfrom[FLOATFORMAT_LARGEST_BYTES];
|
|
|
|
|
|
|
|
gdb_assert (fmt != NULL);
|
|
|
|
gdb_assert (fmt->totalsize
|
|
|
|
<= FLOATFORMAT_LARGEST_BYTES * FLOATFORMAT_CHAR_BIT);
|
|
|
|
|
|
|
|
/* An IBM long double (a two element array of double) always takes the
|
|
|
|
sign of the first double. */
|
|
|
|
if (fmt->split_half)
|
|
|
|
fmt = fmt->split_half;
|
|
|
|
|
|
|
|
order = floatformat_normalize_byteorder (fmt, uval, newfrom);
|
|
|
|
|
|
|
|
if (order != fmt->byteorder)
|
|
|
|
uval = newfrom;
|
|
|
|
|
|
|
|
return get_field (uval, order, fmt->totalsize, fmt->sign_start, 1);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Check if VAL is "not a number" (NaN) for FMT. */
|
|
|
|
static enum float_kind
|
|
|
|
floatformat_classify (const struct floatformat *fmt,
|
|
|
|
const bfd_byte *uval)
|
|
|
|
{
|
|
|
|
long exponent;
|
|
|
|
unsigned long mant;
|
|
|
|
unsigned int mant_bits, mant_off;
|
|
|
|
int mant_bits_left;
|
|
|
|
enum floatformat_byteorders order;
|
|
|
|
unsigned char newfrom[FLOATFORMAT_LARGEST_BYTES];
|
|
|
|
int mant_zero;
|
|
|
|
|
|
|
|
gdb_assert (fmt != NULL);
|
|
|
|
gdb_assert (fmt->totalsize
|
|
|
|
<= FLOATFORMAT_LARGEST_BYTES * FLOATFORMAT_CHAR_BIT);
|
|
|
|
|
|
|
|
/* An IBM long double (a two element array of double) can be classified
|
|
|
|
by looking at the first double. inf and nan are specified as
|
|
|
|
ignoring the second double. zero and subnormal will always have
|
|
|
|
the second double 0.0 if the long double is correctly rounded. */
|
|
|
|
if (fmt->split_half)
|
|
|
|
fmt = fmt->split_half;
|
|
|
|
|
|
|
|
order = floatformat_normalize_byteorder (fmt, uval, newfrom);
|
|
|
|
|
|
|
|
if (order != fmt->byteorder)
|
|
|
|
uval = newfrom;
|
|
|
|
|
|
|
|
exponent = get_field (uval, order, fmt->totalsize, fmt->exp_start,
|
|
|
|
fmt->exp_len);
|
|
|
|
|
|
|
|
mant_bits_left = fmt->man_len;
|
|
|
|
mant_off = fmt->man_start;
|
|
|
|
|
|
|
|
mant_zero = 1;
|
|
|
|
while (mant_bits_left > 0)
|
|
|
|
{
|
|
|
|
mant_bits = std::min (mant_bits_left, 32);
|
|
|
|
|
|
|
|
mant = get_field (uval, order, fmt->totalsize, mant_off, mant_bits);
|
|
|
|
|
|
|
|
/* If there is an explicit integer bit, mask it off. */
|
|
|
|
if (mant_off == fmt->man_start
|
|
|
|
&& fmt->intbit == floatformat_intbit_yes)
|
|
|
|
mant &= ~(1 << (mant_bits - 1));
|
|
|
|
|
|
|
|
if (mant)
|
|
|
|
{
|
|
|
|
mant_zero = 0;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
mant_off += mant_bits;
|
|
|
|
mant_bits_left -= mant_bits;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* If exp_nan is not set, assume that inf, NaN, and subnormals are not
|
|
|
|
supported. */
|
|
|
|
if (! fmt->exp_nan)
|
|
|
|
{
|
|
|
|
if (mant_zero)
|
|
|
|
return float_zero;
|
|
|
|
else
|
|
|
|
return float_normal;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (exponent == 0)
|
|
|
|
{
|
|
|
|
if (mant_zero)
|
|
|
|
return float_zero;
|
|
|
|
else
|
|
|
|
return float_subnormal;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (exponent == fmt->exp_nan)
|
|
|
|
{
|
|
|
|
if (mant_zero)
|
|
|
|
return float_infinite;
|
|
|
|
else
|
|
|
|
return float_nan;
|
|
|
|
}
|
|
|
|
|
|
|
|
return float_normal;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Convert the mantissa of VAL (which is assumed to be a floating
|
|
|
|
point number whose format is described by FMT) into a hexadecimal
|
|
|
|
and store it in a static string. Return a pointer to that string. */
|
|
|
|
static const char *
|
|
|
|
floatformat_mantissa (const struct floatformat *fmt,
|
|
|
|
const bfd_byte *val)
|
|
|
|
{
|
|
|
|
unsigned char *uval = (unsigned char *) val;
|
|
|
|
unsigned long mant;
|
|
|
|
unsigned int mant_bits, mant_off;
|
|
|
|
int mant_bits_left;
|
|
|
|
static char res[50];
|
|
|
|
char buf[9];
|
|
|
|
int len;
|
|
|
|
enum floatformat_byteorders order;
|
|
|
|
unsigned char newfrom[FLOATFORMAT_LARGEST_BYTES];
|
|
|
|
|
|
|
|
gdb_assert (fmt != NULL);
|
|
|
|
gdb_assert (fmt->totalsize
|
|
|
|
<= FLOATFORMAT_LARGEST_BYTES * FLOATFORMAT_CHAR_BIT);
|
|
|
|
|
|
|
|
/* For IBM long double (a two element array of double), return the
|
|
|
|
mantissa of the first double. The problem with returning the
|
|
|
|
actual mantissa from both doubles is that there can be an
|
|
|
|
arbitrary number of implied 0's or 1's between the mantissas
|
|
|
|
of the first and second double. In any case, this function
|
|
|
|
is only used for dumping out nans, and a nan is specified to
|
|
|
|
ignore the value in the second double. */
|
|
|
|
if (fmt->split_half)
|
|
|
|
fmt = fmt->split_half;
|
|
|
|
|
|
|
|
order = floatformat_normalize_byteorder (fmt, uval, newfrom);
|
|
|
|
|
|
|
|
if (order != fmt->byteorder)
|
|
|
|
uval = newfrom;
|
|
|
|
|
|
|
|
if (! fmt->exp_nan)
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
/* Make sure we have enough room to store the mantissa. */
|
|
|
|
gdb_assert (sizeof res > ((fmt->man_len + 7) / 8) * 2);
|
|
|
|
|
|
|
|
mant_off = fmt->man_start;
|
|
|
|
mant_bits_left = fmt->man_len;
|
|
|
|
mant_bits = (mant_bits_left % 32) > 0 ? mant_bits_left % 32 : 32;
|
|
|
|
|
|
|
|
mant = get_field (uval, order, fmt->totalsize, mant_off, mant_bits);
|
|
|
|
|
|
|
|
len = xsnprintf (res, sizeof res, "%lx", mant);
|
|
|
|
|
|
|
|
mant_off += mant_bits;
|
|
|
|
mant_bits_left -= mant_bits;
|
|
|
|
|
|
|
|
while (mant_bits_left > 0)
|
|
|
|
{
|
|
|
|
mant = get_field (uval, order, fmt->totalsize, mant_off, 32);
|
|
|
|
|
|
|
|
xsnprintf (buf, sizeof buf, "%08lx", mant);
|
|
|
|
gdb_assert (len + strlen (buf) <= sizeof res);
|
|
|
|
strcat (res, buf);
|
|
|
|
|
|
|
|
mant_off += 32;
|
|
|
|
mant_bits_left -= 32;
|
|
|
|
}
|
|
|
|
|
|
|
|
return res;
|
|
|
|
}
|
|
|
|
|
Target FP: Refactor use of host floating-point arithmetic
Prepare for using MPFR to implement floating-point arithmetic by
refactoring the way host floating-point arithmetic is currently used.
In particular, fix the following two problems that cause different
(and incorrect) results due to using host arithmetic:
- Current processing always uses host "long double", and then converts
back to the actual target format. This may introduce rounding errors.
- Conversion of FP values to LONGEST simply does a host C++ type cast.
However the result of such a cast is undefined if the source value
is outside the representable range. MPFR always has defined behavior
here (returns the minimum or maximum representable value).
To fix the first issue, I've now created not just one set of routines
using host FP arithmetic (on long double), but instead three different
sets of routines, one each for host float, double, and long double.
Operations can then be performed in the desired type directly, avoiding
the extra rounding step. Using C++ templates, the three sets can all
share the same source code without duplication.
To fix the second issue, I'm simply enforcing the same conversion rule
(which makes sense anyway) when converting out-of-range values from
FP to LONGEST.
To contain the code complexity with the variety of options now possible,
I've created a new class "target_float_ops". There are a total of five
separate implementations of this:
host_float_ops<float> Implemented via host FP in given type
host_float_ops<double>
host_float_ops<long double>
mpfr_float_ops Implemented via MPFR if available
decimal_float_ops Implemented via libdecnumber
Note instead of using the DOUBLEST define, this always just uses the
"long double" data type. But since we now require C++11 anyway, this
type must in any case be avaialble unconditionally.
Most target floating-point operations simply dispatch to a (virtual)
member routine of this class. Which implementation to choose is
determined from the target types involved, and whether they match
some host type or not. E.g. any operation on a single type that
matches a host type is performed in that type. Operations involving
two types that both match host types are performed in the larger one
(according to C/C++ implicit conversion rules). Operations that
involve any type that does not match a host type are performed using
MPFR. (And of course operations involving decimal FP are performed
using libdecnumber.)
This first patch implements the refactoring of target-float.c as
described above, introduing the host_float_ops and decimal_float_ops
classes, and using them. Use of MPFR is introduced in the second patch.
A bit of special-case handling code is moved around to as to avoid
code duplication between host_float_ops and mpfr_float_ops.
Note that due to the changes mentioned above, I've had to update (fix)
the floating-point register values tested in the gdb.arch/vsx-regs.exp
test case. (The new values now work both with host arithmetic and MPFR.)
gdb/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* target-float.c: Do not include <math.h>.
Include <cmath> and <limits>.
(DOUBLEST): Do not define.
(class target_float_ops): New type.
(class host_float_ops): New templated type.
(class decimal_float_ops): New type.
(floatformat_to_doublest): Rename to ...
(host_float_ops<T>::from_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::from_target): New overload using a type argument.
(floatformat_from_doublest): Rename to ...
(host_float_ops<T>::to_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::to_target): New overload using a type argument.
(floatformat_printf_format): New function.
(struct printf_length_modifier): New templated type.
(floatformat_to_string): Rename to ...
(host_float_ops<T>::to_string): ... this. Use type instead of
floatformat argument. Use floatformat_printf_format and
printf_length_modifier. Remove special handling of invalid numbers,
infinities and NaN (moved to target_float_to_string).
(struct scanf_length_modifier): New templated type.
(floatformat_from_string): Rename to ...
(host_float_ops<T>::from_string): ... this. Use type instead of
floatformat argument. Use scanf_length_modifier.
(floatformat_to_longest): Rename to ...
(host_float_ops<T>::to_longest): ... this. Use type instead of
floatformat argument. Handle out-of-range values deterministically.
(floatformat_from_longest): Rename to ...
(host_float_ops<T>::from_longest): ... this. Use type instead of
floatformat argument.
(floatformat_from_ulongest): Rename to ...
(host_float_ops<T>::from_ulongest): ... this. Use type instead of
floatformat argument.
(floatformat_to_host_double): Rename to ...
(host_float_ops<T>::to_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_from_host_double): Rename to ...
(host_float_ops<T>::from_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_convert): Rename to ...
(host_float_ops<T>::convert): ... this. Use type instead of
floatformat arguments. Remove handling of no-op conversions.
(floatformat_binop): Rename to ...
(host_float_ops<T>::binop): ... this. Use type instead of
floatformat arguments.
(floatformat_compare): Rename to ...
(host_float_ops<T>::compare): ... this. Use type instead of
floatformat arguments.
(match_endianness): Use type instead of length/byte_order arguments.
(set_decnumber_context): Likewise.
(decimal_from_number): Likewise. Update calls.
(decimal_to_number): Likewise.
(decimal_is_zero): Likewise. Update calls. Move to earlier in file.
(decimal_float_ops::to_host_double): New dummy function.
(decimal_float_ops::from_host_double): Likewise.
(decimal_to_string): Rename to ...
(decimal_float_ops::to_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_string): Rename to ...
(decimal_float_ops::from_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_longest): Rename to ...
(decimal_float_ops::from_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_ulongest): Rename to ...
(decimal_float_ops::from_ulongest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_to_longest): Rename to ...
(decimal_float_ops::to_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_binop): Rename to ...
(decimal_float_ops::binop): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_compare): Rename to ...
(decimal_float_ops::compare): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_convert): Rename to ...
(decimal_float_ops::convert): ... this. Use type instead of
length/byte_order arguments. Update calls.
(target_float_same_category_p): New function.
(target_float_same_format_p): Likewise.
(target_float_format_length): Likewise.
(enum target_float_ops_kind): New type.
(get_target_float_ops_kind): New function.
(get_target_float_ops): Three new overloaded functions.
(target_float_is_zero): Update call.
(target_float_to_string): Add special handling of invalid numbers,
infinities and NaN (moved from floatformat_to_string). Use
target_float_ops callback.
(target_float_from_string): Use target_float_ops callback.
(target_float_to_longest): Likewise.
(target_float_from_longest): Likewise.
(target_float_from_ulongest): Likewise.
(target_float_to_host_double): Likewise.
(target_float_from_host_double): Likewise.
(target_float_convert): Add special case for no-op conversions.
Use target_float_ops callback.
(target_float_binop): Use target_float_ops callback.
(target_float_compare): Likewise.
gdb/testsuite/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
|
|
|
/* Convert printf format string FORMAT to the otherwise equivalent string
|
|
|
|
which may be used to print a host floating-point number using the length
|
|
|
|
modifier LENGTH (which may be 0 if none is needed). If FORMAT is null,
|
|
|
|
return a format appropriate to print the full precision of a target
|
|
|
|
floating-point number of format FMT. */
|
|
|
|
static std::string
|
|
|
|
floatformat_printf_format (const struct floatformat *fmt,
|
|
|
|
const char *format, char length)
|
|
|
|
{
|
|
|
|
std::string host_format;
|
|
|
|
char conversion;
|
|
|
|
|
|
|
|
if (format == nullptr)
|
|
|
|
{
|
|
|
|
/* If no format was specified, print the number using a format string
|
|
|
|
where the precision is set to the DECIMAL_DIG value for the given
|
|
|
|
floating-point format. This value is computed as
|
|
|
|
|
|
|
|
ceil(1 + p * log10(b)),
|
|
|
|
|
|
|
|
where p is the precision of the floating-point format in bits, and
|
|
|
|
b is the base (which is always 2 for the formats we support). */
|
|
|
|
const double log10_2 = .30102999566398119521;
|
|
|
|
double d_decimal_dig = 1 + floatformat_precision (fmt) * log10_2;
|
|
|
|
int decimal_dig = d_decimal_dig;
|
|
|
|
if (decimal_dig < d_decimal_dig)
|
|
|
|
decimal_dig++;
|
|
|
|
|
|
|
|
host_format = string_printf ("%%.%d", decimal_dig);
|
|
|
|
conversion = 'g';
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
/* Use the specified format, stripping out the conversion character
|
|
|
|
and length modifier, if present. */
|
|
|
|
size_t len = strlen (format);
|
|
|
|
gdb_assert (len > 1);
|
|
|
|
conversion = format[--len];
|
|
|
|
gdb_assert (conversion == 'e' || conversion == 'f' || conversion == 'g'
|
|
|
|
|| conversion == 'E' || conversion == 'G');
|
|
|
|
if (format[len - 1] == 'L')
|
|
|
|
len--;
|
|
|
|
|
|
|
|
host_format = std::string (format, len);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Add the length modifier and conversion character appropriate for
|
|
|
|
handling the appropriate host floating-point type. */
|
|
|
|
if (length)
|
|
|
|
host_format += length;
|
|
|
|
host_format += conversion;
|
|
|
|
|
|
|
|
return host_format;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Implementation of target_float_ops using the host floating-point type T
|
|
|
|
as intermediate type. */
|
|
|
|
|
|
|
|
template<typename T> class host_float_ops : public target_float_ops
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
std::string to_string (const gdb_byte *addr, const struct type *type,
|
|
|
|
const char *format) const override;
|
|
|
|
bool from_string (gdb_byte *addr, const struct type *type,
|
|
|
|
const std::string &string) const override;
|
|
|
|
|
|
|
|
LONGEST to_longest (const gdb_byte *addr,
|
|
|
|
const struct type *type) const override;
|
|
|
|
void from_longest (gdb_byte *addr, const struct type *type,
|
|
|
|
LONGEST val) const override;
|
|
|
|
void from_ulongest (gdb_byte *addr, const struct type *type,
|
|
|
|
ULONGEST val) const override;
|
|
|
|
double to_host_double (const gdb_byte *addr,
|
|
|
|
const struct type *type) const override;
|
|
|
|
void from_host_double (gdb_byte *addr, const struct type *type,
|
|
|
|
double val) const override;
|
|
|
|
void convert (const gdb_byte *from, const struct type *from_type,
|
|
|
|
gdb_byte *to, const struct type *to_type) const override;
|
|
|
|
|
|
|
|
void binop (enum exp_opcode opcode,
|
|
|
|
const gdb_byte *x, const struct type *type_x,
|
|
|
|
const gdb_byte *y, const struct type *type_y,
|
|
|
|
gdb_byte *res, const struct type *type_res) const override;
|
|
|
|
int compare (const gdb_byte *x, const struct type *type_x,
|
|
|
|
const gdb_byte *y, const struct type *type_y) const override;
|
|
|
|
|
|
|
|
private:
|
|
|
|
void from_target (const struct floatformat *fmt,
|
|
|
|
const gdb_byte *from, T *to) const;
|
|
|
|
void from_target (const struct type *type,
|
|
|
|
const gdb_byte *from, T *to) const;
|
|
|
|
|
|
|
|
void to_target (const struct type *type,
|
|
|
|
const T *from, gdb_byte *to) const;
|
|
|
|
void to_target (const struct floatformat *fmt,
|
|
|
|
const T *from, gdb_byte *to) const;
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
/* Convert TO/FROM target to the host floating-point format T.
|
Target FP: Merge doublest.c and dfp.c into target-float.c
Now that all target FP operations are performed via target-float.c,
this file remains the sole caller of functions in doublest.c and dfp.c.
Therefore, this patch merges the latter files into the former and
makes all their function static there.
gdb/ChangeLog:
2017-11-06 Ulrich Weigand <uweigand@de.ibm.com>
* Makefile.in (SFILES): Remove doublest.c and dfp.c.
(HFILES_NO_SRCDIR): Remove doublest.h and dfp.h.
(COMMON_OBS): Remove doublest.o and dfp.o.
Do not build target-float.c (instead of doublest.c)
with -Wformat-nonliteral.
* doublest.c: Remove file.
* doublest.h: Remove file.
* dfp.c: Remove file.
* dfp.h: Remove file.
* target-float.c: Do not include "doublest.h" and "dfp.h".
(DOUBLEST): Move here from doublest.h.
(enum float_kind): Likewise.
(FLOATFORMAT_CHAR_BIT): Likewise.
(FLOATFORMAT_LARGEST_BYTES): Likewise.
(floatformat_totalsize_bytes): Move here from doublest.c. Make static.
(floatformat_precision): Likewise.
(floatformat_normalize_byteorder, get_field, put_field): Likewise.
(floatformat_is_negative, floatformat_classify, floatformat_mantissa):
Likewise.
(host_float_format, host_double_format, host_long_double_format):
Likewise.
(floatformat_to_string, floatformat_from_string): Likewise.
(floatformat_to_doublest): Likewise. Also, inline the original
convert_floatformat_to_doublest.
(floatformat_from_doublest): Likewise. Also, inline the original
convert_floatformat_from_doublest.
Include "dpd/decimal128.h", "dpd/decimal64.h", and "dpd/decimal32.h".
(MAX_DECIMAL_STRING): Move here from dfp.c.
(match_endianness): Likewise.
(set_decnumber_context, decimal_check_errors): Likewise.
(decimal_from_number, decimal_to_number): Likewise.
(decimal_to_string, decimal_from_string): Likewise. Make static.
(decimal_from_longest, decimal_from_ulongest): Likewise.
(decimal_to_longest): Likewise.
(decimal_binop, decimal_is_zero, decimal_compare): Likewise.
(decimal_convert): Likewise.
2017-11-06 23:04:03 +08:00
|
|
|
|
|
|
|
If the host and target formats agree, we just copy the raw data
|
|
|
|
into the appropriate type of variable and return, letting the host
|
|
|
|
increase precision as necessary. Otherwise, we call the conversion
|
|
|
|
routine and let it do the dirty work. Note that even if the target
|
|
|
|
and host floating-point formats match, the length of the types
|
|
|
|
might still be different, so the conversion routines must make sure
|
|
|
|
to not overrun any buffers. For example, on x86, long double is
|
|
|
|
the 80-bit extended precision type on both 32-bit and 64-bit ABIs,
|
|
|
|
but by default it is stored as 12 bytes on 32-bit, and 16 bytes on
|
|
|
|
64-bit, for alignment reasons. See comment in store_typed_floating
|
|
|
|
for a discussion about zeroing out remaining bytes in the target
|
|
|
|
buffer. */
|
|
|
|
|
|
|
|
static const struct floatformat *host_float_format = GDB_HOST_FLOAT_FORMAT;
|
|
|
|
static const struct floatformat *host_double_format = GDB_HOST_DOUBLE_FORMAT;
|
|
|
|
static const struct floatformat *host_long_double_format
|
|
|
|
= GDB_HOST_LONG_DOUBLE_FORMAT;
|
|
|
|
|
Target FP: Refactor use of host floating-point arithmetic
Prepare for using MPFR to implement floating-point arithmetic by
refactoring the way host floating-point arithmetic is currently used.
In particular, fix the following two problems that cause different
(and incorrect) results due to using host arithmetic:
- Current processing always uses host "long double", and then converts
back to the actual target format. This may introduce rounding errors.
- Conversion of FP values to LONGEST simply does a host C++ type cast.
However the result of such a cast is undefined if the source value
is outside the representable range. MPFR always has defined behavior
here (returns the minimum or maximum representable value).
To fix the first issue, I've now created not just one set of routines
using host FP arithmetic (on long double), but instead three different
sets of routines, one each for host float, double, and long double.
Operations can then be performed in the desired type directly, avoiding
the extra rounding step. Using C++ templates, the three sets can all
share the same source code without duplication.
To fix the second issue, I'm simply enforcing the same conversion rule
(which makes sense anyway) when converting out-of-range values from
FP to LONGEST.
To contain the code complexity with the variety of options now possible,
I've created a new class "target_float_ops". There are a total of five
separate implementations of this:
host_float_ops<float> Implemented via host FP in given type
host_float_ops<double>
host_float_ops<long double>
mpfr_float_ops Implemented via MPFR if available
decimal_float_ops Implemented via libdecnumber
Note instead of using the DOUBLEST define, this always just uses the
"long double" data type. But since we now require C++11 anyway, this
type must in any case be avaialble unconditionally.
Most target floating-point operations simply dispatch to a (virtual)
member routine of this class. Which implementation to choose is
determined from the target types involved, and whether they match
some host type or not. E.g. any operation on a single type that
matches a host type is performed in that type. Operations involving
two types that both match host types are performed in the larger one
(according to C/C++ implicit conversion rules). Operations that
involve any type that does not match a host type are performed using
MPFR. (And of course operations involving decimal FP are performed
using libdecnumber.)
This first patch implements the refactoring of target-float.c as
described above, introduing the host_float_ops and decimal_float_ops
classes, and using them. Use of MPFR is introduced in the second patch.
A bit of special-case handling code is moved around to as to avoid
code duplication between host_float_ops and mpfr_float_ops.
Note that due to the changes mentioned above, I've had to update (fix)
the floating-point register values tested in the gdb.arch/vsx-regs.exp
test case. (The new values now work both with host arithmetic and MPFR.)
gdb/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* target-float.c: Do not include <math.h>.
Include <cmath> and <limits>.
(DOUBLEST): Do not define.
(class target_float_ops): New type.
(class host_float_ops): New templated type.
(class decimal_float_ops): New type.
(floatformat_to_doublest): Rename to ...
(host_float_ops<T>::from_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::from_target): New overload using a type argument.
(floatformat_from_doublest): Rename to ...
(host_float_ops<T>::to_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::to_target): New overload using a type argument.
(floatformat_printf_format): New function.
(struct printf_length_modifier): New templated type.
(floatformat_to_string): Rename to ...
(host_float_ops<T>::to_string): ... this. Use type instead of
floatformat argument. Use floatformat_printf_format and
printf_length_modifier. Remove special handling of invalid numbers,
infinities and NaN (moved to target_float_to_string).
(struct scanf_length_modifier): New templated type.
(floatformat_from_string): Rename to ...
(host_float_ops<T>::from_string): ... this. Use type instead of
floatformat argument. Use scanf_length_modifier.
(floatformat_to_longest): Rename to ...
(host_float_ops<T>::to_longest): ... this. Use type instead of
floatformat argument. Handle out-of-range values deterministically.
(floatformat_from_longest): Rename to ...
(host_float_ops<T>::from_longest): ... this. Use type instead of
floatformat argument.
(floatformat_from_ulongest): Rename to ...
(host_float_ops<T>::from_ulongest): ... this. Use type instead of
floatformat argument.
(floatformat_to_host_double): Rename to ...
(host_float_ops<T>::to_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_from_host_double): Rename to ...
(host_float_ops<T>::from_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_convert): Rename to ...
(host_float_ops<T>::convert): ... this. Use type instead of
floatformat arguments. Remove handling of no-op conversions.
(floatformat_binop): Rename to ...
(host_float_ops<T>::binop): ... this. Use type instead of
floatformat arguments.
(floatformat_compare): Rename to ...
(host_float_ops<T>::compare): ... this. Use type instead of
floatformat arguments.
(match_endianness): Use type instead of length/byte_order arguments.
(set_decnumber_context): Likewise.
(decimal_from_number): Likewise. Update calls.
(decimal_to_number): Likewise.
(decimal_is_zero): Likewise. Update calls. Move to earlier in file.
(decimal_float_ops::to_host_double): New dummy function.
(decimal_float_ops::from_host_double): Likewise.
(decimal_to_string): Rename to ...
(decimal_float_ops::to_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_string): Rename to ...
(decimal_float_ops::from_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_longest): Rename to ...
(decimal_float_ops::from_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_ulongest): Rename to ...
(decimal_float_ops::from_ulongest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_to_longest): Rename to ...
(decimal_float_ops::to_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_binop): Rename to ...
(decimal_float_ops::binop): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_compare): Rename to ...
(decimal_float_ops::compare): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_convert): Rename to ...
(decimal_float_ops::convert): ... this. Use type instead of
length/byte_order arguments. Update calls.
(target_float_same_category_p): New function.
(target_float_same_format_p): Likewise.
(target_float_format_length): Likewise.
(enum target_float_ops_kind): New type.
(get_target_float_ops_kind): New function.
(get_target_float_ops): Three new overloaded functions.
(target_float_is_zero): Update call.
(target_float_to_string): Add special handling of invalid numbers,
infinities and NaN (moved from floatformat_to_string). Use
target_float_ops callback.
(target_float_from_string): Use target_float_ops callback.
(target_float_to_longest): Likewise.
(target_float_from_longest): Likewise.
(target_float_from_ulongest): Likewise.
(target_float_to_host_double): Likewise.
(target_float_from_host_double): Likewise.
(target_float_convert): Add special case for no-op conversions.
Use target_float_ops callback.
(target_float_binop): Use target_float_ops callback.
(target_float_compare): Likewise.
gdb/testsuite/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
|
|
|
/* Convert target floating-point value at FROM in format FMT to host
|
|
|
|
floating-point format of type T. */
|
|
|
|
template<typename T> void
|
|
|
|
host_float_ops<T>::from_target (const struct floatformat *fmt,
|
|
|
|
const gdb_byte *from, T *to) const
|
Target FP: Merge doublest.c and dfp.c into target-float.c
Now that all target FP operations are performed via target-float.c,
this file remains the sole caller of functions in doublest.c and dfp.c.
Therefore, this patch merges the latter files into the former and
makes all their function static there.
gdb/ChangeLog:
2017-11-06 Ulrich Weigand <uweigand@de.ibm.com>
* Makefile.in (SFILES): Remove doublest.c and dfp.c.
(HFILES_NO_SRCDIR): Remove doublest.h and dfp.h.
(COMMON_OBS): Remove doublest.o and dfp.o.
Do not build target-float.c (instead of doublest.c)
with -Wformat-nonliteral.
* doublest.c: Remove file.
* doublest.h: Remove file.
* dfp.c: Remove file.
* dfp.h: Remove file.
* target-float.c: Do not include "doublest.h" and "dfp.h".
(DOUBLEST): Move here from doublest.h.
(enum float_kind): Likewise.
(FLOATFORMAT_CHAR_BIT): Likewise.
(FLOATFORMAT_LARGEST_BYTES): Likewise.
(floatformat_totalsize_bytes): Move here from doublest.c. Make static.
(floatformat_precision): Likewise.
(floatformat_normalize_byteorder, get_field, put_field): Likewise.
(floatformat_is_negative, floatformat_classify, floatformat_mantissa):
Likewise.
(host_float_format, host_double_format, host_long_double_format):
Likewise.
(floatformat_to_string, floatformat_from_string): Likewise.
(floatformat_to_doublest): Likewise. Also, inline the original
convert_floatformat_to_doublest.
(floatformat_from_doublest): Likewise. Also, inline the original
convert_floatformat_from_doublest.
Include "dpd/decimal128.h", "dpd/decimal64.h", and "dpd/decimal32.h".
(MAX_DECIMAL_STRING): Move here from dfp.c.
(match_endianness): Likewise.
(set_decnumber_context, decimal_check_errors): Likewise.
(decimal_from_number, decimal_to_number): Likewise.
(decimal_to_string, decimal_from_string): Likewise. Make static.
(decimal_from_longest, decimal_from_ulongest): Likewise.
(decimal_to_longest): Likewise.
(decimal_binop, decimal_is_zero, decimal_compare): Likewise.
(decimal_convert): Likewise.
2017-11-06 23:04:03 +08:00
|
|
|
{
|
|
|
|
gdb_assert (fmt != NULL);
|
|
|
|
|
|
|
|
if (fmt == host_float_format)
|
|
|
|
{
|
|
|
|
float val = 0;
|
|
|
|
|
|
|
|
memcpy (&val, from, floatformat_totalsize_bytes (fmt));
|
|
|
|
*to = val;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
else if (fmt == host_double_format)
|
|
|
|
{
|
|
|
|
double val = 0;
|
|
|
|
|
|
|
|
memcpy (&val, from, floatformat_totalsize_bytes (fmt));
|
|
|
|
*to = val;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
else if (fmt == host_long_double_format)
|
|
|
|
{
|
|
|
|
long double val = 0;
|
|
|
|
|
|
|
|
memcpy (&val, from, floatformat_totalsize_bytes (fmt));
|
|
|
|
*to = val;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
unsigned char *ufrom = (unsigned char *) from;
|
Target FP: Refactor use of host floating-point arithmetic
Prepare for using MPFR to implement floating-point arithmetic by
refactoring the way host floating-point arithmetic is currently used.
In particular, fix the following two problems that cause different
(and incorrect) results due to using host arithmetic:
- Current processing always uses host "long double", and then converts
back to the actual target format. This may introduce rounding errors.
- Conversion of FP values to LONGEST simply does a host C++ type cast.
However the result of such a cast is undefined if the source value
is outside the representable range. MPFR always has defined behavior
here (returns the minimum or maximum representable value).
To fix the first issue, I've now created not just one set of routines
using host FP arithmetic (on long double), but instead three different
sets of routines, one each for host float, double, and long double.
Operations can then be performed in the desired type directly, avoiding
the extra rounding step. Using C++ templates, the three sets can all
share the same source code without duplication.
To fix the second issue, I'm simply enforcing the same conversion rule
(which makes sense anyway) when converting out-of-range values from
FP to LONGEST.
To contain the code complexity with the variety of options now possible,
I've created a new class "target_float_ops". There are a total of five
separate implementations of this:
host_float_ops<float> Implemented via host FP in given type
host_float_ops<double>
host_float_ops<long double>
mpfr_float_ops Implemented via MPFR if available
decimal_float_ops Implemented via libdecnumber
Note instead of using the DOUBLEST define, this always just uses the
"long double" data type. But since we now require C++11 anyway, this
type must in any case be avaialble unconditionally.
Most target floating-point operations simply dispatch to a (virtual)
member routine of this class. Which implementation to choose is
determined from the target types involved, and whether they match
some host type or not. E.g. any operation on a single type that
matches a host type is performed in that type. Operations involving
two types that both match host types are performed in the larger one
(according to C/C++ implicit conversion rules). Operations that
involve any type that does not match a host type are performed using
MPFR. (And of course operations involving decimal FP are performed
using libdecnumber.)
This first patch implements the refactoring of target-float.c as
described above, introduing the host_float_ops and decimal_float_ops
classes, and using them. Use of MPFR is introduced in the second patch.
A bit of special-case handling code is moved around to as to avoid
code duplication between host_float_ops and mpfr_float_ops.
Note that due to the changes mentioned above, I've had to update (fix)
the floating-point register values tested in the gdb.arch/vsx-regs.exp
test case. (The new values now work both with host arithmetic and MPFR.)
gdb/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* target-float.c: Do not include <math.h>.
Include <cmath> and <limits>.
(DOUBLEST): Do not define.
(class target_float_ops): New type.
(class host_float_ops): New templated type.
(class decimal_float_ops): New type.
(floatformat_to_doublest): Rename to ...
(host_float_ops<T>::from_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::from_target): New overload using a type argument.
(floatformat_from_doublest): Rename to ...
(host_float_ops<T>::to_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::to_target): New overload using a type argument.
(floatformat_printf_format): New function.
(struct printf_length_modifier): New templated type.
(floatformat_to_string): Rename to ...
(host_float_ops<T>::to_string): ... this. Use type instead of
floatformat argument. Use floatformat_printf_format and
printf_length_modifier. Remove special handling of invalid numbers,
infinities and NaN (moved to target_float_to_string).
(struct scanf_length_modifier): New templated type.
(floatformat_from_string): Rename to ...
(host_float_ops<T>::from_string): ... this. Use type instead of
floatformat argument. Use scanf_length_modifier.
(floatformat_to_longest): Rename to ...
(host_float_ops<T>::to_longest): ... this. Use type instead of
floatformat argument. Handle out-of-range values deterministically.
(floatformat_from_longest): Rename to ...
(host_float_ops<T>::from_longest): ... this. Use type instead of
floatformat argument.
(floatformat_from_ulongest): Rename to ...
(host_float_ops<T>::from_ulongest): ... this. Use type instead of
floatformat argument.
(floatformat_to_host_double): Rename to ...
(host_float_ops<T>::to_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_from_host_double): Rename to ...
(host_float_ops<T>::from_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_convert): Rename to ...
(host_float_ops<T>::convert): ... this. Use type instead of
floatformat arguments. Remove handling of no-op conversions.
(floatformat_binop): Rename to ...
(host_float_ops<T>::binop): ... this. Use type instead of
floatformat arguments.
(floatformat_compare): Rename to ...
(host_float_ops<T>::compare): ... this. Use type instead of
floatformat arguments.
(match_endianness): Use type instead of length/byte_order arguments.
(set_decnumber_context): Likewise.
(decimal_from_number): Likewise. Update calls.
(decimal_to_number): Likewise.
(decimal_is_zero): Likewise. Update calls. Move to earlier in file.
(decimal_float_ops::to_host_double): New dummy function.
(decimal_float_ops::from_host_double): Likewise.
(decimal_to_string): Rename to ...
(decimal_float_ops::to_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_string): Rename to ...
(decimal_float_ops::from_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_longest): Rename to ...
(decimal_float_ops::from_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_ulongest): Rename to ...
(decimal_float_ops::from_ulongest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_to_longest): Rename to ...
(decimal_float_ops::to_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_binop): Rename to ...
(decimal_float_ops::binop): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_compare): Rename to ...
(decimal_float_ops::compare): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_convert): Rename to ...
(decimal_float_ops::convert): ... this. Use type instead of
length/byte_order arguments. Update calls.
(target_float_same_category_p): New function.
(target_float_same_format_p): Likewise.
(target_float_format_length): Likewise.
(enum target_float_ops_kind): New type.
(get_target_float_ops_kind): New function.
(get_target_float_ops): Three new overloaded functions.
(target_float_is_zero): Update call.
(target_float_to_string): Add special handling of invalid numbers,
infinities and NaN (moved from floatformat_to_string). Use
target_float_ops callback.
(target_float_from_string): Use target_float_ops callback.
(target_float_to_longest): Likewise.
(target_float_from_longest): Likewise.
(target_float_from_ulongest): Likewise.
(target_float_to_host_double): Likewise.
(target_float_from_host_double): Likewise.
(target_float_convert): Add special case for no-op conversions.
Use target_float_ops callback.
(target_float_binop): Use target_float_ops callback.
(target_float_compare): Likewise.
gdb/testsuite/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
|
|
|
T dto;
|
Target FP: Merge doublest.c and dfp.c into target-float.c
Now that all target FP operations are performed via target-float.c,
this file remains the sole caller of functions in doublest.c and dfp.c.
Therefore, this patch merges the latter files into the former and
makes all their function static there.
gdb/ChangeLog:
2017-11-06 Ulrich Weigand <uweigand@de.ibm.com>
* Makefile.in (SFILES): Remove doublest.c and dfp.c.
(HFILES_NO_SRCDIR): Remove doublest.h and dfp.h.
(COMMON_OBS): Remove doublest.o and dfp.o.
Do not build target-float.c (instead of doublest.c)
with -Wformat-nonliteral.
* doublest.c: Remove file.
* doublest.h: Remove file.
* dfp.c: Remove file.
* dfp.h: Remove file.
* target-float.c: Do not include "doublest.h" and "dfp.h".
(DOUBLEST): Move here from doublest.h.
(enum float_kind): Likewise.
(FLOATFORMAT_CHAR_BIT): Likewise.
(FLOATFORMAT_LARGEST_BYTES): Likewise.
(floatformat_totalsize_bytes): Move here from doublest.c. Make static.
(floatformat_precision): Likewise.
(floatformat_normalize_byteorder, get_field, put_field): Likewise.
(floatformat_is_negative, floatformat_classify, floatformat_mantissa):
Likewise.
(host_float_format, host_double_format, host_long_double_format):
Likewise.
(floatformat_to_string, floatformat_from_string): Likewise.
(floatformat_to_doublest): Likewise. Also, inline the original
convert_floatformat_to_doublest.
(floatformat_from_doublest): Likewise. Also, inline the original
convert_floatformat_from_doublest.
Include "dpd/decimal128.h", "dpd/decimal64.h", and "dpd/decimal32.h".
(MAX_DECIMAL_STRING): Move here from dfp.c.
(match_endianness): Likewise.
(set_decnumber_context, decimal_check_errors): Likewise.
(decimal_from_number, decimal_to_number): Likewise.
(decimal_to_string, decimal_from_string): Likewise. Make static.
(decimal_from_longest, decimal_from_ulongest): Likewise.
(decimal_to_longest): Likewise.
(decimal_binop, decimal_is_zero, decimal_compare): Likewise.
(decimal_convert): Likewise.
2017-11-06 23:04:03 +08:00
|
|
|
long exponent;
|
|
|
|
unsigned long mant;
|
|
|
|
unsigned int mant_bits, mant_off;
|
|
|
|
int mant_bits_left;
|
|
|
|
int special_exponent; /* It's a NaN, denorm or zero. */
|
|
|
|
enum floatformat_byteorders order;
|
|
|
|
unsigned char newfrom[FLOATFORMAT_LARGEST_BYTES];
|
|
|
|
enum float_kind kind;
|
|
|
|
|
|
|
|
gdb_assert (fmt->totalsize
|
|
|
|
<= FLOATFORMAT_LARGEST_BYTES * FLOATFORMAT_CHAR_BIT);
|
|
|
|
|
|
|
|
/* For non-numbers, reuse libiberty's logic to find the correct
|
|
|
|
format. We do not lose any precision in this case by passing
|
|
|
|
through a double. */
|
|
|
|
kind = floatformat_classify (fmt, (const bfd_byte *) from);
|
|
|
|
if (kind == float_infinite || kind == float_nan)
|
|
|
|
{
|
|
|
|
double dto;
|
|
|
|
|
|
|
|
floatformat_to_double (fmt->split_half ? fmt->split_half : fmt,
|
|
|
|
from, &dto);
|
Target FP: Refactor use of host floating-point arithmetic
Prepare for using MPFR to implement floating-point arithmetic by
refactoring the way host floating-point arithmetic is currently used.
In particular, fix the following two problems that cause different
(and incorrect) results due to using host arithmetic:
- Current processing always uses host "long double", and then converts
back to the actual target format. This may introduce rounding errors.
- Conversion of FP values to LONGEST simply does a host C++ type cast.
However the result of such a cast is undefined if the source value
is outside the representable range. MPFR always has defined behavior
here (returns the minimum or maximum representable value).
To fix the first issue, I've now created not just one set of routines
using host FP arithmetic (on long double), but instead three different
sets of routines, one each for host float, double, and long double.
Operations can then be performed in the desired type directly, avoiding
the extra rounding step. Using C++ templates, the three sets can all
share the same source code without duplication.
To fix the second issue, I'm simply enforcing the same conversion rule
(which makes sense anyway) when converting out-of-range values from
FP to LONGEST.
To contain the code complexity with the variety of options now possible,
I've created a new class "target_float_ops". There are a total of five
separate implementations of this:
host_float_ops<float> Implemented via host FP in given type
host_float_ops<double>
host_float_ops<long double>
mpfr_float_ops Implemented via MPFR if available
decimal_float_ops Implemented via libdecnumber
Note instead of using the DOUBLEST define, this always just uses the
"long double" data type. But since we now require C++11 anyway, this
type must in any case be avaialble unconditionally.
Most target floating-point operations simply dispatch to a (virtual)
member routine of this class. Which implementation to choose is
determined from the target types involved, and whether they match
some host type or not. E.g. any operation on a single type that
matches a host type is performed in that type. Operations involving
two types that both match host types are performed in the larger one
(according to C/C++ implicit conversion rules). Operations that
involve any type that does not match a host type are performed using
MPFR. (And of course operations involving decimal FP are performed
using libdecnumber.)
This first patch implements the refactoring of target-float.c as
described above, introduing the host_float_ops and decimal_float_ops
classes, and using them. Use of MPFR is introduced in the second patch.
A bit of special-case handling code is moved around to as to avoid
code duplication between host_float_ops and mpfr_float_ops.
Note that due to the changes mentioned above, I've had to update (fix)
the floating-point register values tested in the gdb.arch/vsx-regs.exp
test case. (The new values now work both with host arithmetic and MPFR.)
gdb/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* target-float.c: Do not include <math.h>.
Include <cmath> and <limits>.
(DOUBLEST): Do not define.
(class target_float_ops): New type.
(class host_float_ops): New templated type.
(class decimal_float_ops): New type.
(floatformat_to_doublest): Rename to ...
(host_float_ops<T>::from_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::from_target): New overload using a type argument.
(floatformat_from_doublest): Rename to ...
(host_float_ops<T>::to_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::to_target): New overload using a type argument.
(floatformat_printf_format): New function.
(struct printf_length_modifier): New templated type.
(floatformat_to_string): Rename to ...
(host_float_ops<T>::to_string): ... this. Use type instead of
floatformat argument. Use floatformat_printf_format and
printf_length_modifier. Remove special handling of invalid numbers,
infinities and NaN (moved to target_float_to_string).
(struct scanf_length_modifier): New templated type.
(floatformat_from_string): Rename to ...
(host_float_ops<T>::from_string): ... this. Use type instead of
floatformat argument. Use scanf_length_modifier.
(floatformat_to_longest): Rename to ...
(host_float_ops<T>::to_longest): ... this. Use type instead of
floatformat argument. Handle out-of-range values deterministically.
(floatformat_from_longest): Rename to ...
(host_float_ops<T>::from_longest): ... this. Use type instead of
floatformat argument.
(floatformat_from_ulongest): Rename to ...
(host_float_ops<T>::from_ulongest): ... this. Use type instead of
floatformat argument.
(floatformat_to_host_double): Rename to ...
(host_float_ops<T>::to_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_from_host_double): Rename to ...
(host_float_ops<T>::from_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_convert): Rename to ...
(host_float_ops<T>::convert): ... this. Use type instead of
floatformat arguments. Remove handling of no-op conversions.
(floatformat_binop): Rename to ...
(host_float_ops<T>::binop): ... this. Use type instead of
floatformat arguments.
(floatformat_compare): Rename to ...
(host_float_ops<T>::compare): ... this. Use type instead of
floatformat arguments.
(match_endianness): Use type instead of length/byte_order arguments.
(set_decnumber_context): Likewise.
(decimal_from_number): Likewise. Update calls.
(decimal_to_number): Likewise.
(decimal_is_zero): Likewise. Update calls. Move to earlier in file.
(decimal_float_ops::to_host_double): New dummy function.
(decimal_float_ops::from_host_double): Likewise.
(decimal_to_string): Rename to ...
(decimal_float_ops::to_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_string): Rename to ...
(decimal_float_ops::from_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_longest): Rename to ...
(decimal_float_ops::from_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_ulongest): Rename to ...
(decimal_float_ops::from_ulongest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_to_longest): Rename to ...
(decimal_float_ops::to_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_binop): Rename to ...
(decimal_float_ops::binop): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_compare): Rename to ...
(decimal_float_ops::compare): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_convert): Rename to ...
(decimal_float_ops::convert): ... this. Use type instead of
length/byte_order arguments. Update calls.
(target_float_same_category_p): New function.
(target_float_same_format_p): Likewise.
(target_float_format_length): Likewise.
(enum target_float_ops_kind): New type.
(get_target_float_ops_kind): New function.
(get_target_float_ops): Three new overloaded functions.
(target_float_is_zero): Update call.
(target_float_to_string): Add special handling of invalid numbers,
infinities and NaN (moved from floatformat_to_string). Use
target_float_ops callback.
(target_float_from_string): Use target_float_ops callback.
(target_float_to_longest): Likewise.
(target_float_from_longest): Likewise.
(target_float_from_ulongest): Likewise.
(target_float_to_host_double): Likewise.
(target_float_from_host_double): Likewise.
(target_float_convert): Add special case for no-op conversions.
Use target_float_ops callback.
(target_float_binop): Use target_float_ops callback.
(target_float_compare): Likewise.
gdb/testsuite/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
|
|
|
*to = (T) dto;
|
Target FP: Merge doublest.c and dfp.c into target-float.c
Now that all target FP operations are performed via target-float.c,
this file remains the sole caller of functions in doublest.c and dfp.c.
Therefore, this patch merges the latter files into the former and
makes all their function static there.
gdb/ChangeLog:
2017-11-06 Ulrich Weigand <uweigand@de.ibm.com>
* Makefile.in (SFILES): Remove doublest.c and dfp.c.
(HFILES_NO_SRCDIR): Remove doublest.h and dfp.h.
(COMMON_OBS): Remove doublest.o and dfp.o.
Do not build target-float.c (instead of doublest.c)
with -Wformat-nonliteral.
* doublest.c: Remove file.
* doublest.h: Remove file.
* dfp.c: Remove file.
* dfp.h: Remove file.
* target-float.c: Do not include "doublest.h" and "dfp.h".
(DOUBLEST): Move here from doublest.h.
(enum float_kind): Likewise.
(FLOATFORMAT_CHAR_BIT): Likewise.
(FLOATFORMAT_LARGEST_BYTES): Likewise.
(floatformat_totalsize_bytes): Move here from doublest.c. Make static.
(floatformat_precision): Likewise.
(floatformat_normalize_byteorder, get_field, put_field): Likewise.
(floatformat_is_negative, floatformat_classify, floatformat_mantissa):
Likewise.
(host_float_format, host_double_format, host_long_double_format):
Likewise.
(floatformat_to_string, floatformat_from_string): Likewise.
(floatformat_to_doublest): Likewise. Also, inline the original
convert_floatformat_to_doublest.
(floatformat_from_doublest): Likewise. Also, inline the original
convert_floatformat_from_doublest.
Include "dpd/decimal128.h", "dpd/decimal64.h", and "dpd/decimal32.h".
(MAX_DECIMAL_STRING): Move here from dfp.c.
(match_endianness): Likewise.
(set_decnumber_context, decimal_check_errors): Likewise.
(decimal_from_number, decimal_to_number): Likewise.
(decimal_to_string, decimal_from_string): Likewise. Make static.
(decimal_from_longest, decimal_from_ulongest): Likewise.
(decimal_to_longest): Likewise.
(decimal_binop, decimal_is_zero, decimal_compare): Likewise.
(decimal_convert): Likewise.
2017-11-06 23:04:03 +08:00
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
order = floatformat_normalize_byteorder (fmt, ufrom, newfrom);
|
|
|
|
|
|
|
|
if (order != fmt->byteorder)
|
|
|
|
ufrom = newfrom;
|
|
|
|
|
|
|
|
if (fmt->split_half)
|
|
|
|
{
|
Target FP: Refactor use of host floating-point arithmetic
Prepare for using MPFR to implement floating-point arithmetic by
refactoring the way host floating-point arithmetic is currently used.
In particular, fix the following two problems that cause different
(and incorrect) results due to using host arithmetic:
- Current processing always uses host "long double", and then converts
back to the actual target format. This may introduce rounding errors.
- Conversion of FP values to LONGEST simply does a host C++ type cast.
However the result of such a cast is undefined if the source value
is outside the representable range. MPFR always has defined behavior
here (returns the minimum or maximum representable value).
To fix the first issue, I've now created not just one set of routines
using host FP arithmetic (on long double), but instead three different
sets of routines, one each for host float, double, and long double.
Operations can then be performed in the desired type directly, avoiding
the extra rounding step. Using C++ templates, the three sets can all
share the same source code without duplication.
To fix the second issue, I'm simply enforcing the same conversion rule
(which makes sense anyway) when converting out-of-range values from
FP to LONGEST.
To contain the code complexity with the variety of options now possible,
I've created a new class "target_float_ops". There are a total of five
separate implementations of this:
host_float_ops<float> Implemented via host FP in given type
host_float_ops<double>
host_float_ops<long double>
mpfr_float_ops Implemented via MPFR if available
decimal_float_ops Implemented via libdecnumber
Note instead of using the DOUBLEST define, this always just uses the
"long double" data type. But since we now require C++11 anyway, this
type must in any case be avaialble unconditionally.
Most target floating-point operations simply dispatch to a (virtual)
member routine of this class. Which implementation to choose is
determined from the target types involved, and whether they match
some host type or not. E.g. any operation on a single type that
matches a host type is performed in that type. Operations involving
two types that both match host types are performed in the larger one
(according to C/C++ implicit conversion rules). Operations that
involve any type that does not match a host type are performed using
MPFR. (And of course operations involving decimal FP are performed
using libdecnumber.)
This first patch implements the refactoring of target-float.c as
described above, introduing the host_float_ops and decimal_float_ops
classes, and using them. Use of MPFR is introduced in the second patch.
A bit of special-case handling code is moved around to as to avoid
code duplication between host_float_ops and mpfr_float_ops.
Note that due to the changes mentioned above, I've had to update (fix)
the floating-point register values tested in the gdb.arch/vsx-regs.exp
test case. (The new values now work both with host arithmetic and MPFR.)
gdb/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* target-float.c: Do not include <math.h>.
Include <cmath> and <limits>.
(DOUBLEST): Do not define.
(class target_float_ops): New type.
(class host_float_ops): New templated type.
(class decimal_float_ops): New type.
(floatformat_to_doublest): Rename to ...
(host_float_ops<T>::from_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::from_target): New overload using a type argument.
(floatformat_from_doublest): Rename to ...
(host_float_ops<T>::to_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::to_target): New overload using a type argument.
(floatformat_printf_format): New function.
(struct printf_length_modifier): New templated type.
(floatformat_to_string): Rename to ...
(host_float_ops<T>::to_string): ... this. Use type instead of
floatformat argument. Use floatformat_printf_format and
printf_length_modifier. Remove special handling of invalid numbers,
infinities and NaN (moved to target_float_to_string).
(struct scanf_length_modifier): New templated type.
(floatformat_from_string): Rename to ...
(host_float_ops<T>::from_string): ... this. Use type instead of
floatformat argument. Use scanf_length_modifier.
(floatformat_to_longest): Rename to ...
(host_float_ops<T>::to_longest): ... this. Use type instead of
floatformat argument. Handle out-of-range values deterministically.
(floatformat_from_longest): Rename to ...
(host_float_ops<T>::from_longest): ... this. Use type instead of
floatformat argument.
(floatformat_from_ulongest): Rename to ...
(host_float_ops<T>::from_ulongest): ... this. Use type instead of
floatformat argument.
(floatformat_to_host_double): Rename to ...
(host_float_ops<T>::to_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_from_host_double): Rename to ...
(host_float_ops<T>::from_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_convert): Rename to ...
(host_float_ops<T>::convert): ... this. Use type instead of
floatformat arguments. Remove handling of no-op conversions.
(floatformat_binop): Rename to ...
(host_float_ops<T>::binop): ... this. Use type instead of
floatformat arguments.
(floatformat_compare): Rename to ...
(host_float_ops<T>::compare): ... this. Use type instead of
floatformat arguments.
(match_endianness): Use type instead of length/byte_order arguments.
(set_decnumber_context): Likewise.
(decimal_from_number): Likewise. Update calls.
(decimal_to_number): Likewise.
(decimal_is_zero): Likewise. Update calls. Move to earlier in file.
(decimal_float_ops::to_host_double): New dummy function.
(decimal_float_ops::from_host_double): Likewise.
(decimal_to_string): Rename to ...
(decimal_float_ops::to_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_string): Rename to ...
(decimal_float_ops::from_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_longest): Rename to ...
(decimal_float_ops::from_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_ulongest): Rename to ...
(decimal_float_ops::from_ulongest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_to_longest): Rename to ...
(decimal_float_ops::to_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_binop): Rename to ...
(decimal_float_ops::binop): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_compare): Rename to ...
(decimal_float_ops::compare): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_convert): Rename to ...
(decimal_float_ops::convert): ... this. Use type instead of
length/byte_order arguments. Update calls.
(target_float_same_category_p): New function.
(target_float_same_format_p): Likewise.
(target_float_format_length): Likewise.
(enum target_float_ops_kind): New type.
(get_target_float_ops_kind): New function.
(get_target_float_ops): Three new overloaded functions.
(target_float_is_zero): Update call.
(target_float_to_string): Add special handling of invalid numbers,
infinities and NaN (moved from floatformat_to_string). Use
target_float_ops callback.
(target_float_from_string): Use target_float_ops callback.
(target_float_to_longest): Likewise.
(target_float_from_longest): Likewise.
(target_float_from_ulongest): Likewise.
(target_float_to_host_double): Likewise.
(target_float_from_host_double): Likewise.
(target_float_convert): Add special case for no-op conversions.
Use target_float_ops callback.
(target_float_binop): Use target_float_ops callback.
(target_float_compare): Likewise.
gdb/testsuite/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
|
|
|
T dtop, dbot;
|
Target FP: Merge doublest.c and dfp.c into target-float.c
Now that all target FP operations are performed via target-float.c,
this file remains the sole caller of functions in doublest.c and dfp.c.
Therefore, this patch merges the latter files into the former and
makes all their function static there.
gdb/ChangeLog:
2017-11-06 Ulrich Weigand <uweigand@de.ibm.com>
* Makefile.in (SFILES): Remove doublest.c and dfp.c.
(HFILES_NO_SRCDIR): Remove doublest.h and dfp.h.
(COMMON_OBS): Remove doublest.o and dfp.o.
Do not build target-float.c (instead of doublest.c)
with -Wformat-nonliteral.
* doublest.c: Remove file.
* doublest.h: Remove file.
* dfp.c: Remove file.
* dfp.h: Remove file.
* target-float.c: Do not include "doublest.h" and "dfp.h".
(DOUBLEST): Move here from doublest.h.
(enum float_kind): Likewise.
(FLOATFORMAT_CHAR_BIT): Likewise.
(FLOATFORMAT_LARGEST_BYTES): Likewise.
(floatformat_totalsize_bytes): Move here from doublest.c. Make static.
(floatformat_precision): Likewise.
(floatformat_normalize_byteorder, get_field, put_field): Likewise.
(floatformat_is_negative, floatformat_classify, floatformat_mantissa):
Likewise.
(host_float_format, host_double_format, host_long_double_format):
Likewise.
(floatformat_to_string, floatformat_from_string): Likewise.
(floatformat_to_doublest): Likewise. Also, inline the original
convert_floatformat_to_doublest.
(floatformat_from_doublest): Likewise. Also, inline the original
convert_floatformat_from_doublest.
Include "dpd/decimal128.h", "dpd/decimal64.h", and "dpd/decimal32.h".
(MAX_DECIMAL_STRING): Move here from dfp.c.
(match_endianness): Likewise.
(set_decnumber_context, decimal_check_errors): Likewise.
(decimal_from_number, decimal_to_number): Likewise.
(decimal_to_string, decimal_from_string): Likewise. Make static.
(decimal_from_longest, decimal_from_ulongest): Likewise.
(decimal_to_longest): Likewise.
(decimal_binop, decimal_is_zero, decimal_compare): Likewise.
(decimal_convert): Likewise.
2017-11-06 23:04:03 +08:00
|
|
|
|
Target FP: Refactor use of host floating-point arithmetic
Prepare for using MPFR to implement floating-point arithmetic by
refactoring the way host floating-point arithmetic is currently used.
In particular, fix the following two problems that cause different
(and incorrect) results due to using host arithmetic:
- Current processing always uses host "long double", and then converts
back to the actual target format. This may introduce rounding errors.
- Conversion of FP values to LONGEST simply does a host C++ type cast.
However the result of such a cast is undefined if the source value
is outside the representable range. MPFR always has defined behavior
here (returns the minimum or maximum representable value).
To fix the first issue, I've now created not just one set of routines
using host FP arithmetic (on long double), but instead three different
sets of routines, one each for host float, double, and long double.
Operations can then be performed in the desired type directly, avoiding
the extra rounding step. Using C++ templates, the three sets can all
share the same source code without duplication.
To fix the second issue, I'm simply enforcing the same conversion rule
(which makes sense anyway) when converting out-of-range values from
FP to LONGEST.
To contain the code complexity with the variety of options now possible,
I've created a new class "target_float_ops". There are a total of five
separate implementations of this:
host_float_ops<float> Implemented via host FP in given type
host_float_ops<double>
host_float_ops<long double>
mpfr_float_ops Implemented via MPFR if available
decimal_float_ops Implemented via libdecnumber
Note instead of using the DOUBLEST define, this always just uses the
"long double" data type. But since we now require C++11 anyway, this
type must in any case be avaialble unconditionally.
Most target floating-point operations simply dispatch to a (virtual)
member routine of this class. Which implementation to choose is
determined from the target types involved, and whether they match
some host type or not. E.g. any operation on a single type that
matches a host type is performed in that type. Operations involving
two types that both match host types are performed in the larger one
(according to C/C++ implicit conversion rules). Operations that
involve any type that does not match a host type are performed using
MPFR. (And of course operations involving decimal FP are performed
using libdecnumber.)
This first patch implements the refactoring of target-float.c as
described above, introduing the host_float_ops and decimal_float_ops
classes, and using them. Use of MPFR is introduced in the second patch.
A bit of special-case handling code is moved around to as to avoid
code duplication between host_float_ops and mpfr_float_ops.
Note that due to the changes mentioned above, I've had to update (fix)
the floating-point register values tested in the gdb.arch/vsx-regs.exp
test case. (The new values now work both with host arithmetic and MPFR.)
gdb/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* target-float.c: Do not include <math.h>.
Include <cmath> and <limits>.
(DOUBLEST): Do not define.
(class target_float_ops): New type.
(class host_float_ops): New templated type.
(class decimal_float_ops): New type.
(floatformat_to_doublest): Rename to ...
(host_float_ops<T>::from_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::from_target): New overload using a type argument.
(floatformat_from_doublest): Rename to ...
(host_float_ops<T>::to_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::to_target): New overload using a type argument.
(floatformat_printf_format): New function.
(struct printf_length_modifier): New templated type.
(floatformat_to_string): Rename to ...
(host_float_ops<T>::to_string): ... this. Use type instead of
floatformat argument. Use floatformat_printf_format and
printf_length_modifier. Remove special handling of invalid numbers,
infinities and NaN (moved to target_float_to_string).
(struct scanf_length_modifier): New templated type.
(floatformat_from_string): Rename to ...
(host_float_ops<T>::from_string): ... this. Use type instead of
floatformat argument. Use scanf_length_modifier.
(floatformat_to_longest): Rename to ...
(host_float_ops<T>::to_longest): ... this. Use type instead of
floatformat argument. Handle out-of-range values deterministically.
(floatformat_from_longest): Rename to ...
(host_float_ops<T>::from_longest): ... this. Use type instead of
floatformat argument.
(floatformat_from_ulongest): Rename to ...
(host_float_ops<T>::from_ulongest): ... this. Use type instead of
floatformat argument.
(floatformat_to_host_double): Rename to ...
(host_float_ops<T>::to_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_from_host_double): Rename to ...
(host_float_ops<T>::from_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_convert): Rename to ...
(host_float_ops<T>::convert): ... this. Use type instead of
floatformat arguments. Remove handling of no-op conversions.
(floatformat_binop): Rename to ...
(host_float_ops<T>::binop): ... this. Use type instead of
floatformat arguments.
(floatformat_compare): Rename to ...
(host_float_ops<T>::compare): ... this. Use type instead of
floatformat arguments.
(match_endianness): Use type instead of length/byte_order arguments.
(set_decnumber_context): Likewise.
(decimal_from_number): Likewise. Update calls.
(decimal_to_number): Likewise.
(decimal_is_zero): Likewise. Update calls. Move to earlier in file.
(decimal_float_ops::to_host_double): New dummy function.
(decimal_float_ops::from_host_double): Likewise.
(decimal_to_string): Rename to ...
(decimal_float_ops::to_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_string): Rename to ...
(decimal_float_ops::from_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_longest): Rename to ...
(decimal_float_ops::from_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_ulongest): Rename to ...
(decimal_float_ops::from_ulongest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_to_longest): Rename to ...
(decimal_float_ops::to_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_binop): Rename to ...
(decimal_float_ops::binop): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_compare): Rename to ...
(decimal_float_ops::compare): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_convert): Rename to ...
(decimal_float_ops::convert): ... this. Use type instead of
length/byte_order arguments. Update calls.
(target_float_same_category_p): New function.
(target_float_same_format_p): Likewise.
(target_float_format_length): Likewise.
(enum target_float_ops_kind): New type.
(get_target_float_ops_kind): New function.
(get_target_float_ops): Three new overloaded functions.
(target_float_is_zero): Update call.
(target_float_to_string): Add special handling of invalid numbers,
infinities and NaN (moved from floatformat_to_string). Use
target_float_ops callback.
(target_float_from_string): Use target_float_ops callback.
(target_float_to_longest): Likewise.
(target_float_from_longest): Likewise.
(target_float_from_ulongest): Likewise.
(target_float_to_host_double): Likewise.
(target_float_from_host_double): Likewise.
(target_float_convert): Add special case for no-op conversions.
Use target_float_ops callback.
(target_float_binop): Use target_float_ops callback.
(target_float_compare): Likewise.
gdb/testsuite/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
|
|
|
from_target (fmt->split_half, ufrom, &dtop);
|
Target FP: Merge doublest.c and dfp.c into target-float.c
Now that all target FP operations are performed via target-float.c,
this file remains the sole caller of functions in doublest.c and dfp.c.
Therefore, this patch merges the latter files into the former and
makes all their function static there.
gdb/ChangeLog:
2017-11-06 Ulrich Weigand <uweigand@de.ibm.com>
* Makefile.in (SFILES): Remove doublest.c and dfp.c.
(HFILES_NO_SRCDIR): Remove doublest.h and dfp.h.
(COMMON_OBS): Remove doublest.o and dfp.o.
Do not build target-float.c (instead of doublest.c)
with -Wformat-nonliteral.
* doublest.c: Remove file.
* doublest.h: Remove file.
* dfp.c: Remove file.
* dfp.h: Remove file.
* target-float.c: Do not include "doublest.h" and "dfp.h".
(DOUBLEST): Move here from doublest.h.
(enum float_kind): Likewise.
(FLOATFORMAT_CHAR_BIT): Likewise.
(FLOATFORMAT_LARGEST_BYTES): Likewise.
(floatformat_totalsize_bytes): Move here from doublest.c. Make static.
(floatformat_precision): Likewise.
(floatformat_normalize_byteorder, get_field, put_field): Likewise.
(floatformat_is_negative, floatformat_classify, floatformat_mantissa):
Likewise.
(host_float_format, host_double_format, host_long_double_format):
Likewise.
(floatformat_to_string, floatformat_from_string): Likewise.
(floatformat_to_doublest): Likewise. Also, inline the original
convert_floatformat_to_doublest.
(floatformat_from_doublest): Likewise. Also, inline the original
convert_floatformat_from_doublest.
Include "dpd/decimal128.h", "dpd/decimal64.h", and "dpd/decimal32.h".
(MAX_DECIMAL_STRING): Move here from dfp.c.
(match_endianness): Likewise.
(set_decnumber_context, decimal_check_errors): Likewise.
(decimal_from_number, decimal_to_number): Likewise.
(decimal_to_string, decimal_from_string): Likewise. Make static.
(decimal_from_longest, decimal_from_ulongest): Likewise.
(decimal_to_longest): Likewise.
(decimal_binop, decimal_is_zero, decimal_compare): Likewise.
(decimal_convert): Likewise.
2017-11-06 23:04:03 +08:00
|
|
|
/* Preserve the sign of 0, which is the sign of the top
|
|
|
|
half. */
|
|
|
|
if (dtop == 0.0)
|
|
|
|
{
|
|
|
|
*to = dtop;
|
|
|
|
return;
|
|
|
|
}
|
Target FP: Refactor use of host floating-point arithmetic
Prepare for using MPFR to implement floating-point arithmetic by
refactoring the way host floating-point arithmetic is currently used.
In particular, fix the following two problems that cause different
(and incorrect) results due to using host arithmetic:
- Current processing always uses host "long double", and then converts
back to the actual target format. This may introduce rounding errors.
- Conversion of FP values to LONGEST simply does a host C++ type cast.
However the result of such a cast is undefined if the source value
is outside the representable range. MPFR always has defined behavior
here (returns the minimum or maximum representable value).
To fix the first issue, I've now created not just one set of routines
using host FP arithmetic (on long double), but instead three different
sets of routines, one each for host float, double, and long double.
Operations can then be performed in the desired type directly, avoiding
the extra rounding step. Using C++ templates, the three sets can all
share the same source code without duplication.
To fix the second issue, I'm simply enforcing the same conversion rule
(which makes sense anyway) when converting out-of-range values from
FP to LONGEST.
To contain the code complexity with the variety of options now possible,
I've created a new class "target_float_ops". There are a total of five
separate implementations of this:
host_float_ops<float> Implemented via host FP in given type
host_float_ops<double>
host_float_ops<long double>
mpfr_float_ops Implemented via MPFR if available
decimal_float_ops Implemented via libdecnumber
Note instead of using the DOUBLEST define, this always just uses the
"long double" data type. But since we now require C++11 anyway, this
type must in any case be avaialble unconditionally.
Most target floating-point operations simply dispatch to a (virtual)
member routine of this class. Which implementation to choose is
determined from the target types involved, and whether they match
some host type or not. E.g. any operation on a single type that
matches a host type is performed in that type. Operations involving
two types that both match host types are performed in the larger one
(according to C/C++ implicit conversion rules). Operations that
involve any type that does not match a host type are performed using
MPFR. (And of course operations involving decimal FP are performed
using libdecnumber.)
This first patch implements the refactoring of target-float.c as
described above, introduing the host_float_ops and decimal_float_ops
classes, and using them. Use of MPFR is introduced in the second patch.
A bit of special-case handling code is moved around to as to avoid
code duplication between host_float_ops and mpfr_float_ops.
Note that due to the changes mentioned above, I've had to update (fix)
the floating-point register values tested in the gdb.arch/vsx-regs.exp
test case. (The new values now work both with host arithmetic and MPFR.)
gdb/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* target-float.c: Do not include <math.h>.
Include <cmath> and <limits>.
(DOUBLEST): Do not define.
(class target_float_ops): New type.
(class host_float_ops): New templated type.
(class decimal_float_ops): New type.
(floatformat_to_doublest): Rename to ...
(host_float_ops<T>::from_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::from_target): New overload using a type argument.
(floatformat_from_doublest): Rename to ...
(host_float_ops<T>::to_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::to_target): New overload using a type argument.
(floatformat_printf_format): New function.
(struct printf_length_modifier): New templated type.
(floatformat_to_string): Rename to ...
(host_float_ops<T>::to_string): ... this. Use type instead of
floatformat argument. Use floatformat_printf_format and
printf_length_modifier. Remove special handling of invalid numbers,
infinities and NaN (moved to target_float_to_string).
(struct scanf_length_modifier): New templated type.
(floatformat_from_string): Rename to ...
(host_float_ops<T>::from_string): ... this. Use type instead of
floatformat argument. Use scanf_length_modifier.
(floatformat_to_longest): Rename to ...
(host_float_ops<T>::to_longest): ... this. Use type instead of
floatformat argument. Handle out-of-range values deterministically.
(floatformat_from_longest): Rename to ...
(host_float_ops<T>::from_longest): ... this. Use type instead of
floatformat argument.
(floatformat_from_ulongest): Rename to ...
(host_float_ops<T>::from_ulongest): ... this. Use type instead of
floatformat argument.
(floatformat_to_host_double): Rename to ...
(host_float_ops<T>::to_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_from_host_double): Rename to ...
(host_float_ops<T>::from_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_convert): Rename to ...
(host_float_ops<T>::convert): ... this. Use type instead of
floatformat arguments. Remove handling of no-op conversions.
(floatformat_binop): Rename to ...
(host_float_ops<T>::binop): ... this. Use type instead of
floatformat arguments.
(floatformat_compare): Rename to ...
(host_float_ops<T>::compare): ... this. Use type instead of
floatformat arguments.
(match_endianness): Use type instead of length/byte_order arguments.
(set_decnumber_context): Likewise.
(decimal_from_number): Likewise. Update calls.
(decimal_to_number): Likewise.
(decimal_is_zero): Likewise. Update calls. Move to earlier in file.
(decimal_float_ops::to_host_double): New dummy function.
(decimal_float_ops::from_host_double): Likewise.
(decimal_to_string): Rename to ...
(decimal_float_ops::to_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_string): Rename to ...
(decimal_float_ops::from_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_longest): Rename to ...
(decimal_float_ops::from_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_ulongest): Rename to ...
(decimal_float_ops::from_ulongest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_to_longest): Rename to ...
(decimal_float_ops::to_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_binop): Rename to ...
(decimal_float_ops::binop): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_compare): Rename to ...
(decimal_float_ops::compare): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_convert): Rename to ...
(decimal_float_ops::convert): ... this. Use type instead of
length/byte_order arguments. Update calls.
(target_float_same_category_p): New function.
(target_float_same_format_p): Likewise.
(target_float_format_length): Likewise.
(enum target_float_ops_kind): New type.
(get_target_float_ops_kind): New function.
(get_target_float_ops): Three new overloaded functions.
(target_float_is_zero): Update call.
(target_float_to_string): Add special handling of invalid numbers,
infinities and NaN (moved from floatformat_to_string). Use
target_float_ops callback.
(target_float_from_string): Use target_float_ops callback.
(target_float_to_longest): Likewise.
(target_float_from_longest): Likewise.
(target_float_from_ulongest): Likewise.
(target_float_to_host_double): Likewise.
(target_float_from_host_double): Likewise.
(target_float_convert): Add special case for no-op conversions.
Use target_float_ops callback.
(target_float_binop): Use target_float_ops callback.
(target_float_compare): Likewise.
gdb/testsuite/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
|
|
|
from_target (fmt->split_half,
|
|
|
|
ufrom + fmt->totalsize / FLOATFORMAT_CHAR_BIT / 2, &dbot);
|
Target FP: Merge doublest.c and dfp.c into target-float.c
Now that all target FP operations are performed via target-float.c,
this file remains the sole caller of functions in doublest.c and dfp.c.
Therefore, this patch merges the latter files into the former and
makes all their function static there.
gdb/ChangeLog:
2017-11-06 Ulrich Weigand <uweigand@de.ibm.com>
* Makefile.in (SFILES): Remove doublest.c and dfp.c.
(HFILES_NO_SRCDIR): Remove doublest.h and dfp.h.
(COMMON_OBS): Remove doublest.o and dfp.o.
Do not build target-float.c (instead of doublest.c)
with -Wformat-nonliteral.
* doublest.c: Remove file.
* doublest.h: Remove file.
* dfp.c: Remove file.
* dfp.h: Remove file.
* target-float.c: Do not include "doublest.h" and "dfp.h".
(DOUBLEST): Move here from doublest.h.
(enum float_kind): Likewise.
(FLOATFORMAT_CHAR_BIT): Likewise.
(FLOATFORMAT_LARGEST_BYTES): Likewise.
(floatformat_totalsize_bytes): Move here from doublest.c. Make static.
(floatformat_precision): Likewise.
(floatformat_normalize_byteorder, get_field, put_field): Likewise.
(floatformat_is_negative, floatformat_classify, floatformat_mantissa):
Likewise.
(host_float_format, host_double_format, host_long_double_format):
Likewise.
(floatformat_to_string, floatformat_from_string): Likewise.
(floatformat_to_doublest): Likewise. Also, inline the original
convert_floatformat_to_doublest.
(floatformat_from_doublest): Likewise. Also, inline the original
convert_floatformat_from_doublest.
Include "dpd/decimal128.h", "dpd/decimal64.h", and "dpd/decimal32.h".
(MAX_DECIMAL_STRING): Move here from dfp.c.
(match_endianness): Likewise.
(set_decnumber_context, decimal_check_errors): Likewise.
(decimal_from_number, decimal_to_number): Likewise.
(decimal_to_string, decimal_from_string): Likewise. Make static.
(decimal_from_longest, decimal_from_ulongest): Likewise.
(decimal_to_longest): Likewise.
(decimal_binop, decimal_is_zero, decimal_compare): Likewise.
(decimal_convert): Likewise.
2017-11-06 23:04:03 +08:00
|
|
|
*to = dtop + dbot;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
exponent = get_field (ufrom, order, fmt->totalsize, fmt->exp_start,
|
|
|
|
fmt->exp_len);
|
|
|
|
/* Note that if exponent indicates a NaN, we can't really do anything useful
|
|
|
|
(not knowing if the host has NaN's, or how to build one). So it will
|
|
|
|
end up as an infinity or something close; that is OK. */
|
|
|
|
|
|
|
|
mant_bits_left = fmt->man_len;
|
|
|
|
mant_off = fmt->man_start;
|
|
|
|
dto = 0.0;
|
|
|
|
|
|
|
|
special_exponent = exponent == 0 || exponent == fmt->exp_nan;
|
|
|
|
|
|
|
|
/* Don't bias NaNs. Use minimum exponent for denorms. For
|
|
|
|
simplicity, we don't check for zero as the exponent doesn't matter.
|
|
|
|
Note the cast to int; exp_bias is unsigned, so it's important to
|
|
|
|
make sure the operation is done in signed arithmetic. */
|
|
|
|
if (!special_exponent)
|
|
|
|
exponent -= fmt->exp_bias;
|
|
|
|
else if (exponent == 0)
|
|
|
|
exponent = 1 - fmt->exp_bias;
|
|
|
|
|
|
|
|
/* Build the result algebraically. Might go infinite, underflow, etc;
|
|
|
|
who cares. */
|
|
|
|
|
|
|
|
/* If this format uses a hidden bit, explicitly add it in now. Otherwise,
|
|
|
|
increment the exponent by one to account for the integer bit. */
|
|
|
|
|
|
|
|
if (!special_exponent)
|
|
|
|
{
|
|
|
|
if (fmt->intbit == floatformat_intbit_no)
|
|
|
|
dto = ldexp (1.0, exponent);
|
|
|
|
else
|
|
|
|
exponent++;
|
|
|
|
}
|
|
|
|
|
|
|
|
while (mant_bits_left > 0)
|
|
|
|
{
|
|
|
|
mant_bits = std::min (mant_bits_left, 32);
|
|
|
|
|
|
|
|
mant = get_field (ufrom, order, fmt->totalsize, mant_off, mant_bits);
|
|
|
|
|
Target FP: Refactor use of host floating-point arithmetic
Prepare for using MPFR to implement floating-point arithmetic by
refactoring the way host floating-point arithmetic is currently used.
In particular, fix the following two problems that cause different
(and incorrect) results due to using host arithmetic:
- Current processing always uses host "long double", and then converts
back to the actual target format. This may introduce rounding errors.
- Conversion of FP values to LONGEST simply does a host C++ type cast.
However the result of such a cast is undefined if the source value
is outside the representable range. MPFR always has defined behavior
here (returns the minimum or maximum representable value).
To fix the first issue, I've now created not just one set of routines
using host FP arithmetic (on long double), but instead three different
sets of routines, one each for host float, double, and long double.
Operations can then be performed in the desired type directly, avoiding
the extra rounding step. Using C++ templates, the three sets can all
share the same source code without duplication.
To fix the second issue, I'm simply enforcing the same conversion rule
(which makes sense anyway) when converting out-of-range values from
FP to LONGEST.
To contain the code complexity with the variety of options now possible,
I've created a new class "target_float_ops". There are a total of five
separate implementations of this:
host_float_ops<float> Implemented via host FP in given type
host_float_ops<double>
host_float_ops<long double>
mpfr_float_ops Implemented via MPFR if available
decimal_float_ops Implemented via libdecnumber
Note instead of using the DOUBLEST define, this always just uses the
"long double" data type. But since we now require C++11 anyway, this
type must in any case be avaialble unconditionally.
Most target floating-point operations simply dispatch to a (virtual)
member routine of this class. Which implementation to choose is
determined from the target types involved, and whether they match
some host type or not. E.g. any operation on a single type that
matches a host type is performed in that type. Operations involving
two types that both match host types are performed in the larger one
(according to C/C++ implicit conversion rules). Operations that
involve any type that does not match a host type are performed using
MPFR. (And of course operations involving decimal FP are performed
using libdecnumber.)
This first patch implements the refactoring of target-float.c as
described above, introduing the host_float_ops and decimal_float_ops
classes, and using them. Use of MPFR is introduced in the second patch.
A bit of special-case handling code is moved around to as to avoid
code duplication between host_float_ops and mpfr_float_ops.
Note that due to the changes mentioned above, I've had to update (fix)
the floating-point register values tested in the gdb.arch/vsx-regs.exp
test case. (The new values now work both with host arithmetic and MPFR.)
gdb/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* target-float.c: Do not include <math.h>.
Include <cmath> and <limits>.
(DOUBLEST): Do not define.
(class target_float_ops): New type.
(class host_float_ops): New templated type.
(class decimal_float_ops): New type.
(floatformat_to_doublest): Rename to ...
(host_float_ops<T>::from_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::from_target): New overload using a type argument.
(floatformat_from_doublest): Rename to ...
(host_float_ops<T>::to_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::to_target): New overload using a type argument.
(floatformat_printf_format): New function.
(struct printf_length_modifier): New templated type.
(floatformat_to_string): Rename to ...
(host_float_ops<T>::to_string): ... this. Use type instead of
floatformat argument. Use floatformat_printf_format and
printf_length_modifier. Remove special handling of invalid numbers,
infinities and NaN (moved to target_float_to_string).
(struct scanf_length_modifier): New templated type.
(floatformat_from_string): Rename to ...
(host_float_ops<T>::from_string): ... this. Use type instead of
floatformat argument. Use scanf_length_modifier.
(floatformat_to_longest): Rename to ...
(host_float_ops<T>::to_longest): ... this. Use type instead of
floatformat argument. Handle out-of-range values deterministically.
(floatformat_from_longest): Rename to ...
(host_float_ops<T>::from_longest): ... this. Use type instead of
floatformat argument.
(floatformat_from_ulongest): Rename to ...
(host_float_ops<T>::from_ulongest): ... this. Use type instead of
floatformat argument.
(floatformat_to_host_double): Rename to ...
(host_float_ops<T>::to_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_from_host_double): Rename to ...
(host_float_ops<T>::from_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_convert): Rename to ...
(host_float_ops<T>::convert): ... this. Use type instead of
floatformat arguments. Remove handling of no-op conversions.
(floatformat_binop): Rename to ...
(host_float_ops<T>::binop): ... this. Use type instead of
floatformat arguments.
(floatformat_compare): Rename to ...
(host_float_ops<T>::compare): ... this. Use type instead of
floatformat arguments.
(match_endianness): Use type instead of length/byte_order arguments.
(set_decnumber_context): Likewise.
(decimal_from_number): Likewise. Update calls.
(decimal_to_number): Likewise.
(decimal_is_zero): Likewise. Update calls. Move to earlier in file.
(decimal_float_ops::to_host_double): New dummy function.
(decimal_float_ops::from_host_double): Likewise.
(decimal_to_string): Rename to ...
(decimal_float_ops::to_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_string): Rename to ...
(decimal_float_ops::from_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_longest): Rename to ...
(decimal_float_ops::from_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_ulongest): Rename to ...
(decimal_float_ops::from_ulongest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_to_longest): Rename to ...
(decimal_float_ops::to_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_binop): Rename to ...
(decimal_float_ops::binop): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_compare): Rename to ...
(decimal_float_ops::compare): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_convert): Rename to ...
(decimal_float_ops::convert): ... this. Use type instead of
length/byte_order arguments. Update calls.
(target_float_same_category_p): New function.
(target_float_same_format_p): Likewise.
(target_float_format_length): Likewise.
(enum target_float_ops_kind): New type.
(get_target_float_ops_kind): New function.
(get_target_float_ops): Three new overloaded functions.
(target_float_is_zero): Update call.
(target_float_to_string): Add special handling of invalid numbers,
infinities and NaN (moved from floatformat_to_string). Use
target_float_ops callback.
(target_float_from_string): Use target_float_ops callback.
(target_float_to_longest): Likewise.
(target_float_from_longest): Likewise.
(target_float_from_ulongest): Likewise.
(target_float_to_host_double): Likewise.
(target_float_from_host_double): Likewise.
(target_float_convert): Add special case for no-op conversions.
Use target_float_ops callback.
(target_float_binop): Use target_float_ops callback.
(target_float_compare): Likewise.
gdb/testsuite/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
|
|
|
dto += ldexp ((T) mant, exponent - mant_bits);
|
Target FP: Merge doublest.c and dfp.c into target-float.c
Now that all target FP operations are performed via target-float.c,
this file remains the sole caller of functions in doublest.c and dfp.c.
Therefore, this patch merges the latter files into the former and
makes all their function static there.
gdb/ChangeLog:
2017-11-06 Ulrich Weigand <uweigand@de.ibm.com>
* Makefile.in (SFILES): Remove doublest.c and dfp.c.
(HFILES_NO_SRCDIR): Remove doublest.h and dfp.h.
(COMMON_OBS): Remove doublest.o and dfp.o.
Do not build target-float.c (instead of doublest.c)
with -Wformat-nonliteral.
* doublest.c: Remove file.
* doublest.h: Remove file.
* dfp.c: Remove file.
* dfp.h: Remove file.
* target-float.c: Do not include "doublest.h" and "dfp.h".
(DOUBLEST): Move here from doublest.h.
(enum float_kind): Likewise.
(FLOATFORMAT_CHAR_BIT): Likewise.
(FLOATFORMAT_LARGEST_BYTES): Likewise.
(floatformat_totalsize_bytes): Move here from doublest.c. Make static.
(floatformat_precision): Likewise.
(floatformat_normalize_byteorder, get_field, put_field): Likewise.
(floatformat_is_negative, floatformat_classify, floatformat_mantissa):
Likewise.
(host_float_format, host_double_format, host_long_double_format):
Likewise.
(floatformat_to_string, floatformat_from_string): Likewise.
(floatformat_to_doublest): Likewise. Also, inline the original
convert_floatformat_to_doublest.
(floatformat_from_doublest): Likewise. Also, inline the original
convert_floatformat_from_doublest.
Include "dpd/decimal128.h", "dpd/decimal64.h", and "dpd/decimal32.h".
(MAX_DECIMAL_STRING): Move here from dfp.c.
(match_endianness): Likewise.
(set_decnumber_context, decimal_check_errors): Likewise.
(decimal_from_number, decimal_to_number): Likewise.
(decimal_to_string, decimal_from_string): Likewise. Make static.
(decimal_from_longest, decimal_from_ulongest): Likewise.
(decimal_to_longest): Likewise.
(decimal_binop, decimal_is_zero, decimal_compare): Likewise.
(decimal_convert): Likewise.
2017-11-06 23:04:03 +08:00
|
|
|
exponent -= mant_bits;
|
|
|
|
mant_off += mant_bits;
|
|
|
|
mant_bits_left -= mant_bits;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Negate it if negative. */
|
|
|
|
if (get_field (ufrom, order, fmt->totalsize, fmt->sign_start, 1))
|
|
|
|
dto = -dto;
|
|
|
|
*to = dto;
|
|
|
|
}
|
|
|
|
|
Target FP: Refactor use of host floating-point arithmetic
Prepare for using MPFR to implement floating-point arithmetic by
refactoring the way host floating-point arithmetic is currently used.
In particular, fix the following two problems that cause different
(and incorrect) results due to using host arithmetic:
- Current processing always uses host "long double", and then converts
back to the actual target format. This may introduce rounding errors.
- Conversion of FP values to LONGEST simply does a host C++ type cast.
However the result of such a cast is undefined if the source value
is outside the representable range. MPFR always has defined behavior
here (returns the minimum or maximum representable value).
To fix the first issue, I've now created not just one set of routines
using host FP arithmetic (on long double), but instead three different
sets of routines, one each for host float, double, and long double.
Operations can then be performed in the desired type directly, avoiding
the extra rounding step. Using C++ templates, the three sets can all
share the same source code without duplication.
To fix the second issue, I'm simply enforcing the same conversion rule
(which makes sense anyway) when converting out-of-range values from
FP to LONGEST.
To contain the code complexity with the variety of options now possible,
I've created a new class "target_float_ops". There are a total of five
separate implementations of this:
host_float_ops<float> Implemented via host FP in given type
host_float_ops<double>
host_float_ops<long double>
mpfr_float_ops Implemented via MPFR if available
decimal_float_ops Implemented via libdecnumber
Note instead of using the DOUBLEST define, this always just uses the
"long double" data type. But since we now require C++11 anyway, this
type must in any case be avaialble unconditionally.
Most target floating-point operations simply dispatch to a (virtual)
member routine of this class. Which implementation to choose is
determined from the target types involved, and whether they match
some host type or not. E.g. any operation on a single type that
matches a host type is performed in that type. Operations involving
two types that both match host types are performed in the larger one
(according to C/C++ implicit conversion rules). Operations that
involve any type that does not match a host type are performed using
MPFR. (And of course operations involving decimal FP are performed
using libdecnumber.)
This first patch implements the refactoring of target-float.c as
described above, introduing the host_float_ops and decimal_float_ops
classes, and using them. Use of MPFR is introduced in the second patch.
A bit of special-case handling code is moved around to as to avoid
code duplication between host_float_ops and mpfr_float_ops.
Note that due to the changes mentioned above, I've had to update (fix)
the floating-point register values tested in the gdb.arch/vsx-regs.exp
test case. (The new values now work both with host arithmetic and MPFR.)
gdb/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* target-float.c: Do not include <math.h>.
Include <cmath> and <limits>.
(DOUBLEST): Do not define.
(class target_float_ops): New type.
(class host_float_ops): New templated type.
(class decimal_float_ops): New type.
(floatformat_to_doublest): Rename to ...
(host_float_ops<T>::from_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::from_target): New overload using a type argument.
(floatformat_from_doublest): Rename to ...
(host_float_ops<T>::to_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::to_target): New overload using a type argument.
(floatformat_printf_format): New function.
(struct printf_length_modifier): New templated type.
(floatformat_to_string): Rename to ...
(host_float_ops<T>::to_string): ... this. Use type instead of
floatformat argument. Use floatformat_printf_format and
printf_length_modifier. Remove special handling of invalid numbers,
infinities and NaN (moved to target_float_to_string).
(struct scanf_length_modifier): New templated type.
(floatformat_from_string): Rename to ...
(host_float_ops<T>::from_string): ... this. Use type instead of
floatformat argument. Use scanf_length_modifier.
(floatformat_to_longest): Rename to ...
(host_float_ops<T>::to_longest): ... this. Use type instead of
floatformat argument. Handle out-of-range values deterministically.
(floatformat_from_longest): Rename to ...
(host_float_ops<T>::from_longest): ... this. Use type instead of
floatformat argument.
(floatformat_from_ulongest): Rename to ...
(host_float_ops<T>::from_ulongest): ... this. Use type instead of
floatformat argument.
(floatformat_to_host_double): Rename to ...
(host_float_ops<T>::to_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_from_host_double): Rename to ...
(host_float_ops<T>::from_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_convert): Rename to ...
(host_float_ops<T>::convert): ... this. Use type instead of
floatformat arguments. Remove handling of no-op conversions.
(floatformat_binop): Rename to ...
(host_float_ops<T>::binop): ... this. Use type instead of
floatformat arguments.
(floatformat_compare): Rename to ...
(host_float_ops<T>::compare): ... this. Use type instead of
floatformat arguments.
(match_endianness): Use type instead of length/byte_order arguments.
(set_decnumber_context): Likewise.
(decimal_from_number): Likewise. Update calls.
(decimal_to_number): Likewise.
(decimal_is_zero): Likewise. Update calls. Move to earlier in file.
(decimal_float_ops::to_host_double): New dummy function.
(decimal_float_ops::from_host_double): Likewise.
(decimal_to_string): Rename to ...
(decimal_float_ops::to_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_string): Rename to ...
(decimal_float_ops::from_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_longest): Rename to ...
(decimal_float_ops::from_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_ulongest): Rename to ...
(decimal_float_ops::from_ulongest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_to_longest): Rename to ...
(decimal_float_ops::to_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_binop): Rename to ...
(decimal_float_ops::binop): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_compare): Rename to ...
(decimal_float_ops::compare): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_convert): Rename to ...
(decimal_float_ops::convert): ... this. Use type instead of
length/byte_order arguments. Update calls.
(target_float_same_category_p): New function.
(target_float_same_format_p): Likewise.
(target_float_format_length): Likewise.
(enum target_float_ops_kind): New type.
(get_target_float_ops_kind): New function.
(get_target_float_ops): Three new overloaded functions.
(target_float_is_zero): Update call.
(target_float_to_string): Add special handling of invalid numbers,
infinities and NaN (moved from floatformat_to_string). Use
target_float_ops callback.
(target_float_from_string): Use target_float_ops callback.
(target_float_to_longest): Likewise.
(target_float_from_longest): Likewise.
(target_float_from_ulongest): Likewise.
(target_float_to_host_double): Likewise.
(target_float_from_host_double): Likewise.
(target_float_convert): Add special case for no-op conversions.
Use target_float_ops callback.
(target_float_binop): Use target_float_ops callback.
(target_float_compare): Likewise.
gdb/testsuite/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
|
|
|
template<typename T> void
|
|
|
|
host_float_ops<T>::from_target (const struct type *type,
|
|
|
|
const gdb_byte *from, T *to) const
|
|
|
|
{
|
|
|
|
from_target (floatformat_from_type (type), from, to);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Convert host floating-point value of type T to target floating-point
|
|
|
|
value in format FMT and store at TO. */
|
|
|
|
template<typename T> void
|
|
|
|
host_float_ops<T>::to_target (const struct floatformat *fmt,
|
|
|
|
const T *from, gdb_byte *to) const
|
Target FP: Merge doublest.c and dfp.c into target-float.c
Now that all target FP operations are performed via target-float.c,
this file remains the sole caller of functions in doublest.c and dfp.c.
Therefore, this patch merges the latter files into the former and
makes all their function static there.
gdb/ChangeLog:
2017-11-06 Ulrich Weigand <uweigand@de.ibm.com>
* Makefile.in (SFILES): Remove doublest.c and dfp.c.
(HFILES_NO_SRCDIR): Remove doublest.h and dfp.h.
(COMMON_OBS): Remove doublest.o and dfp.o.
Do not build target-float.c (instead of doublest.c)
with -Wformat-nonliteral.
* doublest.c: Remove file.
* doublest.h: Remove file.
* dfp.c: Remove file.
* dfp.h: Remove file.
* target-float.c: Do not include "doublest.h" and "dfp.h".
(DOUBLEST): Move here from doublest.h.
(enum float_kind): Likewise.
(FLOATFORMAT_CHAR_BIT): Likewise.
(FLOATFORMAT_LARGEST_BYTES): Likewise.
(floatformat_totalsize_bytes): Move here from doublest.c. Make static.
(floatformat_precision): Likewise.
(floatformat_normalize_byteorder, get_field, put_field): Likewise.
(floatformat_is_negative, floatformat_classify, floatformat_mantissa):
Likewise.
(host_float_format, host_double_format, host_long_double_format):
Likewise.
(floatformat_to_string, floatformat_from_string): Likewise.
(floatformat_to_doublest): Likewise. Also, inline the original
convert_floatformat_to_doublest.
(floatformat_from_doublest): Likewise. Also, inline the original
convert_floatformat_from_doublest.
Include "dpd/decimal128.h", "dpd/decimal64.h", and "dpd/decimal32.h".
(MAX_DECIMAL_STRING): Move here from dfp.c.
(match_endianness): Likewise.
(set_decnumber_context, decimal_check_errors): Likewise.
(decimal_from_number, decimal_to_number): Likewise.
(decimal_to_string, decimal_from_string): Likewise. Make static.
(decimal_from_longest, decimal_from_ulongest): Likewise.
(decimal_to_longest): Likewise.
(decimal_binop, decimal_is_zero, decimal_compare): Likewise.
(decimal_convert): Likewise.
2017-11-06 23:04:03 +08:00
|
|
|
{
|
|
|
|
gdb_assert (fmt != NULL);
|
|
|
|
|
|
|
|
if (fmt == host_float_format)
|
|
|
|
{
|
|
|
|
float val = *from;
|
|
|
|
|
|
|
|
memcpy (to, &val, floatformat_totalsize_bytes (fmt));
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
else if (fmt == host_double_format)
|
|
|
|
{
|
|
|
|
double val = *from;
|
|
|
|
|
|
|
|
memcpy (to, &val, floatformat_totalsize_bytes (fmt));
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
else if (fmt == host_long_double_format)
|
|
|
|
{
|
|
|
|
long double val = *from;
|
|
|
|
|
|
|
|
memcpy (to, &val, floatformat_totalsize_bytes (fmt));
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
Target FP: Refactor use of host floating-point arithmetic
Prepare for using MPFR to implement floating-point arithmetic by
refactoring the way host floating-point arithmetic is currently used.
In particular, fix the following two problems that cause different
(and incorrect) results due to using host arithmetic:
- Current processing always uses host "long double", and then converts
back to the actual target format. This may introduce rounding errors.
- Conversion of FP values to LONGEST simply does a host C++ type cast.
However the result of such a cast is undefined if the source value
is outside the representable range. MPFR always has defined behavior
here (returns the minimum or maximum representable value).
To fix the first issue, I've now created not just one set of routines
using host FP arithmetic (on long double), but instead three different
sets of routines, one each for host float, double, and long double.
Operations can then be performed in the desired type directly, avoiding
the extra rounding step. Using C++ templates, the three sets can all
share the same source code without duplication.
To fix the second issue, I'm simply enforcing the same conversion rule
(which makes sense anyway) when converting out-of-range values from
FP to LONGEST.
To contain the code complexity with the variety of options now possible,
I've created a new class "target_float_ops". There are a total of five
separate implementations of this:
host_float_ops<float> Implemented via host FP in given type
host_float_ops<double>
host_float_ops<long double>
mpfr_float_ops Implemented via MPFR if available
decimal_float_ops Implemented via libdecnumber
Note instead of using the DOUBLEST define, this always just uses the
"long double" data type. But since we now require C++11 anyway, this
type must in any case be avaialble unconditionally.
Most target floating-point operations simply dispatch to a (virtual)
member routine of this class. Which implementation to choose is
determined from the target types involved, and whether they match
some host type or not. E.g. any operation on a single type that
matches a host type is performed in that type. Operations involving
two types that both match host types are performed in the larger one
(according to C/C++ implicit conversion rules). Operations that
involve any type that does not match a host type are performed using
MPFR. (And of course operations involving decimal FP are performed
using libdecnumber.)
This first patch implements the refactoring of target-float.c as
described above, introduing the host_float_ops and decimal_float_ops
classes, and using them. Use of MPFR is introduced in the second patch.
A bit of special-case handling code is moved around to as to avoid
code duplication between host_float_ops and mpfr_float_ops.
Note that due to the changes mentioned above, I've had to update (fix)
the floating-point register values tested in the gdb.arch/vsx-regs.exp
test case. (The new values now work both with host arithmetic and MPFR.)
gdb/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* target-float.c: Do not include <math.h>.
Include <cmath> and <limits>.
(DOUBLEST): Do not define.
(class target_float_ops): New type.
(class host_float_ops): New templated type.
(class decimal_float_ops): New type.
(floatformat_to_doublest): Rename to ...
(host_float_ops<T>::from_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::from_target): New overload using a type argument.
(floatformat_from_doublest): Rename to ...
(host_float_ops<T>::to_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::to_target): New overload using a type argument.
(floatformat_printf_format): New function.
(struct printf_length_modifier): New templated type.
(floatformat_to_string): Rename to ...
(host_float_ops<T>::to_string): ... this. Use type instead of
floatformat argument. Use floatformat_printf_format and
printf_length_modifier. Remove special handling of invalid numbers,
infinities and NaN (moved to target_float_to_string).
(struct scanf_length_modifier): New templated type.
(floatformat_from_string): Rename to ...
(host_float_ops<T>::from_string): ... this. Use type instead of
floatformat argument. Use scanf_length_modifier.
(floatformat_to_longest): Rename to ...
(host_float_ops<T>::to_longest): ... this. Use type instead of
floatformat argument. Handle out-of-range values deterministically.
(floatformat_from_longest): Rename to ...
(host_float_ops<T>::from_longest): ... this. Use type instead of
floatformat argument.
(floatformat_from_ulongest): Rename to ...
(host_float_ops<T>::from_ulongest): ... this. Use type instead of
floatformat argument.
(floatformat_to_host_double): Rename to ...
(host_float_ops<T>::to_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_from_host_double): Rename to ...
(host_float_ops<T>::from_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_convert): Rename to ...
(host_float_ops<T>::convert): ... this. Use type instead of
floatformat arguments. Remove handling of no-op conversions.
(floatformat_binop): Rename to ...
(host_float_ops<T>::binop): ... this. Use type instead of
floatformat arguments.
(floatformat_compare): Rename to ...
(host_float_ops<T>::compare): ... this. Use type instead of
floatformat arguments.
(match_endianness): Use type instead of length/byte_order arguments.
(set_decnumber_context): Likewise.
(decimal_from_number): Likewise. Update calls.
(decimal_to_number): Likewise.
(decimal_is_zero): Likewise. Update calls. Move to earlier in file.
(decimal_float_ops::to_host_double): New dummy function.
(decimal_float_ops::from_host_double): Likewise.
(decimal_to_string): Rename to ...
(decimal_float_ops::to_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_string): Rename to ...
(decimal_float_ops::from_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_longest): Rename to ...
(decimal_float_ops::from_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_ulongest): Rename to ...
(decimal_float_ops::from_ulongest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_to_longest): Rename to ...
(decimal_float_ops::to_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_binop): Rename to ...
(decimal_float_ops::binop): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_compare): Rename to ...
(decimal_float_ops::compare): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_convert): Rename to ...
(decimal_float_ops::convert): ... this. Use type instead of
length/byte_order arguments. Update calls.
(target_float_same_category_p): New function.
(target_float_same_format_p): Likewise.
(target_float_format_length): Likewise.
(enum target_float_ops_kind): New type.
(get_target_float_ops_kind): New function.
(get_target_float_ops): Three new overloaded functions.
(target_float_is_zero): Update call.
(target_float_to_string): Add special handling of invalid numbers,
infinities and NaN (moved from floatformat_to_string). Use
target_float_ops callback.
(target_float_from_string): Use target_float_ops callback.
(target_float_to_longest): Likewise.
(target_float_from_longest): Likewise.
(target_float_from_ulongest): Likewise.
(target_float_to_host_double): Likewise.
(target_float_from_host_double): Likewise.
(target_float_convert): Add special case for no-op conversions.
Use target_float_ops callback.
(target_float_binop): Use target_float_ops callback.
(target_float_compare): Likewise.
gdb/testsuite/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
|
|
|
T dfrom;
|
Target FP: Merge doublest.c and dfp.c into target-float.c
Now that all target FP operations are performed via target-float.c,
this file remains the sole caller of functions in doublest.c and dfp.c.
Therefore, this patch merges the latter files into the former and
makes all their function static there.
gdb/ChangeLog:
2017-11-06 Ulrich Weigand <uweigand@de.ibm.com>
* Makefile.in (SFILES): Remove doublest.c and dfp.c.
(HFILES_NO_SRCDIR): Remove doublest.h and dfp.h.
(COMMON_OBS): Remove doublest.o and dfp.o.
Do not build target-float.c (instead of doublest.c)
with -Wformat-nonliteral.
* doublest.c: Remove file.
* doublest.h: Remove file.
* dfp.c: Remove file.
* dfp.h: Remove file.
* target-float.c: Do not include "doublest.h" and "dfp.h".
(DOUBLEST): Move here from doublest.h.
(enum float_kind): Likewise.
(FLOATFORMAT_CHAR_BIT): Likewise.
(FLOATFORMAT_LARGEST_BYTES): Likewise.
(floatformat_totalsize_bytes): Move here from doublest.c. Make static.
(floatformat_precision): Likewise.
(floatformat_normalize_byteorder, get_field, put_field): Likewise.
(floatformat_is_negative, floatformat_classify, floatformat_mantissa):
Likewise.
(host_float_format, host_double_format, host_long_double_format):
Likewise.
(floatformat_to_string, floatformat_from_string): Likewise.
(floatformat_to_doublest): Likewise. Also, inline the original
convert_floatformat_to_doublest.
(floatformat_from_doublest): Likewise. Also, inline the original
convert_floatformat_from_doublest.
Include "dpd/decimal128.h", "dpd/decimal64.h", and "dpd/decimal32.h".
(MAX_DECIMAL_STRING): Move here from dfp.c.
(match_endianness): Likewise.
(set_decnumber_context, decimal_check_errors): Likewise.
(decimal_from_number, decimal_to_number): Likewise.
(decimal_to_string, decimal_from_string): Likewise. Make static.
(decimal_from_longest, decimal_from_ulongest): Likewise.
(decimal_to_longest): Likewise.
(decimal_binop, decimal_is_zero, decimal_compare): Likewise.
(decimal_convert): Likewise.
2017-11-06 23:04:03 +08:00
|
|
|
int exponent;
|
Target FP: Refactor use of host floating-point arithmetic
Prepare for using MPFR to implement floating-point arithmetic by
refactoring the way host floating-point arithmetic is currently used.
In particular, fix the following two problems that cause different
(and incorrect) results due to using host arithmetic:
- Current processing always uses host "long double", and then converts
back to the actual target format. This may introduce rounding errors.
- Conversion of FP values to LONGEST simply does a host C++ type cast.
However the result of such a cast is undefined if the source value
is outside the representable range. MPFR always has defined behavior
here (returns the minimum or maximum representable value).
To fix the first issue, I've now created not just one set of routines
using host FP arithmetic (on long double), but instead three different
sets of routines, one each for host float, double, and long double.
Operations can then be performed in the desired type directly, avoiding
the extra rounding step. Using C++ templates, the three sets can all
share the same source code without duplication.
To fix the second issue, I'm simply enforcing the same conversion rule
(which makes sense anyway) when converting out-of-range values from
FP to LONGEST.
To contain the code complexity with the variety of options now possible,
I've created a new class "target_float_ops". There are a total of five
separate implementations of this:
host_float_ops<float> Implemented via host FP in given type
host_float_ops<double>
host_float_ops<long double>
mpfr_float_ops Implemented via MPFR if available
decimal_float_ops Implemented via libdecnumber
Note instead of using the DOUBLEST define, this always just uses the
"long double" data type. But since we now require C++11 anyway, this
type must in any case be avaialble unconditionally.
Most target floating-point operations simply dispatch to a (virtual)
member routine of this class. Which implementation to choose is
determined from the target types involved, and whether they match
some host type or not. E.g. any operation on a single type that
matches a host type is performed in that type. Operations involving
two types that both match host types are performed in the larger one
(according to C/C++ implicit conversion rules). Operations that
involve any type that does not match a host type are performed using
MPFR. (And of course operations involving decimal FP are performed
using libdecnumber.)
This first patch implements the refactoring of target-float.c as
described above, introduing the host_float_ops and decimal_float_ops
classes, and using them. Use of MPFR is introduced in the second patch.
A bit of special-case handling code is moved around to as to avoid
code duplication between host_float_ops and mpfr_float_ops.
Note that due to the changes mentioned above, I've had to update (fix)
the floating-point register values tested in the gdb.arch/vsx-regs.exp
test case. (The new values now work both with host arithmetic and MPFR.)
gdb/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* target-float.c: Do not include <math.h>.
Include <cmath> and <limits>.
(DOUBLEST): Do not define.
(class target_float_ops): New type.
(class host_float_ops): New templated type.
(class decimal_float_ops): New type.
(floatformat_to_doublest): Rename to ...
(host_float_ops<T>::from_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::from_target): New overload using a type argument.
(floatformat_from_doublest): Rename to ...
(host_float_ops<T>::to_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::to_target): New overload using a type argument.
(floatformat_printf_format): New function.
(struct printf_length_modifier): New templated type.
(floatformat_to_string): Rename to ...
(host_float_ops<T>::to_string): ... this. Use type instead of
floatformat argument. Use floatformat_printf_format and
printf_length_modifier. Remove special handling of invalid numbers,
infinities and NaN (moved to target_float_to_string).
(struct scanf_length_modifier): New templated type.
(floatformat_from_string): Rename to ...
(host_float_ops<T>::from_string): ... this. Use type instead of
floatformat argument. Use scanf_length_modifier.
(floatformat_to_longest): Rename to ...
(host_float_ops<T>::to_longest): ... this. Use type instead of
floatformat argument. Handle out-of-range values deterministically.
(floatformat_from_longest): Rename to ...
(host_float_ops<T>::from_longest): ... this. Use type instead of
floatformat argument.
(floatformat_from_ulongest): Rename to ...
(host_float_ops<T>::from_ulongest): ... this. Use type instead of
floatformat argument.
(floatformat_to_host_double): Rename to ...
(host_float_ops<T>::to_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_from_host_double): Rename to ...
(host_float_ops<T>::from_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_convert): Rename to ...
(host_float_ops<T>::convert): ... this. Use type instead of
floatformat arguments. Remove handling of no-op conversions.
(floatformat_binop): Rename to ...
(host_float_ops<T>::binop): ... this. Use type instead of
floatformat arguments.
(floatformat_compare): Rename to ...
(host_float_ops<T>::compare): ... this. Use type instead of
floatformat arguments.
(match_endianness): Use type instead of length/byte_order arguments.
(set_decnumber_context): Likewise.
(decimal_from_number): Likewise. Update calls.
(decimal_to_number): Likewise.
(decimal_is_zero): Likewise. Update calls. Move to earlier in file.
(decimal_float_ops::to_host_double): New dummy function.
(decimal_float_ops::from_host_double): Likewise.
(decimal_to_string): Rename to ...
(decimal_float_ops::to_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_string): Rename to ...
(decimal_float_ops::from_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_longest): Rename to ...
(decimal_float_ops::from_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_ulongest): Rename to ...
(decimal_float_ops::from_ulongest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_to_longest): Rename to ...
(decimal_float_ops::to_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_binop): Rename to ...
(decimal_float_ops::binop): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_compare): Rename to ...
(decimal_float_ops::compare): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_convert): Rename to ...
(decimal_float_ops::convert): ... this. Use type instead of
length/byte_order arguments. Update calls.
(target_float_same_category_p): New function.
(target_float_same_format_p): Likewise.
(target_float_format_length): Likewise.
(enum target_float_ops_kind): New type.
(get_target_float_ops_kind): New function.
(get_target_float_ops): Three new overloaded functions.
(target_float_is_zero): Update call.
(target_float_to_string): Add special handling of invalid numbers,
infinities and NaN (moved from floatformat_to_string). Use
target_float_ops callback.
(target_float_from_string): Use target_float_ops callback.
(target_float_to_longest): Likewise.
(target_float_from_longest): Likewise.
(target_float_from_ulongest): Likewise.
(target_float_to_host_double): Likewise.
(target_float_from_host_double): Likewise.
(target_float_convert): Add special case for no-op conversions.
Use target_float_ops callback.
(target_float_binop): Use target_float_ops callback.
(target_float_compare): Likewise.
gdb/testsuite/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
|
|
|
T mant;
|
Target FP: Merge doublest.c and dfp.c into target-float.c
Now that all target FP operations are performed via target-float.c,
this file remains the sole caller of functions in doublest.c and dfp.c.
Therefore, this patch merges the latter files into the former and
makes all their function static there.
gdb/ChangeLog:
2017-11-06 Ulrich Weigand <uweigand@de.ibm.com>
* Makefile.in (SFILES): Remove doublest.c and dfp.c.
(HFILES_NO_SRCDIR): Remove doublest.h and dfp.h.
(COMMON_OBS): Remove doublest.o and dfp.o.
Do not build target-float.c (instead of doublest.c)
with -Wformat-nonliteral.
* doublest.c: Remove file.
* doublest.h: Remove file.
* dfp.c: Remove file.
* dfp.h: Remove file.
* target-float.c: Do not include "doublest.h" and "dfp.h".
(DOUBLEST): Move here from doublest.h.
(enum float_kind): Likewise.
(FLOATFORMAT_CHAR_BIT): Likewise.
(FLOATFORMAT_LARGEST_BYTES): Likewise.
(floatformat_totalsize_bytes): Move here from doublest.c. Make static.
(floatformat_precision): Likewise.
(floatformat_normalize_byteorder, get_field, put_field): Likewise.
(floatformat_is_negative, floatformat_classify, floatformat_mantissa):
Likewise.
(host_float_format, host_double_format, host_long_double_format):
Likewise.
(floatformat_to_string, floatformat_from_string): Likewise.
(floatformat_to_doublest): Likewise. Also, inline the original
convert_floatformat_to_doublest.
(floatformat_from_doublest): Likewise. Also, inline the original
convert_floatformat_from_doublest.
Include "dpd/decimal128.h", "dpd/decimal64.h", and "dpd/decimal32.h".
(MAX_DECIMAL_STRING): Move here from dfp.c.
(match_endianness): Likewise.
(set_decnumber_context, decimal_check_errors): Likewise.
(decimal_from_number, decimal_to_number): Likewise.
(decimal_to_string, decimal_from_string): Likewise. Make static.
(decimal_from_longest, decimal_from_ulongest): Likewise.
(decimal_to_longest): Likewise.
(decimal_binop, decimal_is_zero, decimal_compare): Likewise.
(decimal_convert): Likewise.
2017-11-06 23:04:03 +08:00
|
|
|
unsigned int mant_bits, mant_off;
|
|
|
|
int mant_bits_left;
|
|
|
|
unsigned char *uto = (unsigned char *) to;
|
|
|
|
enum floatformat_byteorders order = fmt->byteorder;
|
|
|
|
unsigned char newto[FLOATFORMAT_LARGEST_BYTES];
|
|
|
|
|
|
|
|
if (order != floatformat_little)
|
|
|
|
order = floatformat_big;
|
|
|
|
|
|
|
|
if (order != fmt->byteorder)
|
|
|
|
uto = newto;
|
|
|
|
|
|
|
|
memcpy (&dfrom, from, sizeof (dfrom));
|
|
|
|
memset (uto, 0, floatformat_totalsize_bytes (fmt));
|
|
|
|
|
|
|
|
if (fmt->split_half)
|
|
|
|
{
|
|
|
|
/* Use static volatile to ensure that any excess precision is
|
|
|
|
removed via storing in memory, and so the top half really is
|
|
|
|
the result of converting to double. */
|
|
|
|
static volatile double dtop, dbot;
|
Target FP: Refactor use of host floating-point arithmetic
Prepare for using MPFR to implement floating-point arithmetic by
refactoring the way host floating-point arithmetic is currently used.
In particular, fix the following two problems that cause different
(and incorrect) results due to using host arithmetic:
- Current processing always uses host "long double", and then converts
back to the actual target format. This may introduce rounding errors.
- Conversion of FP values to LONGEST simply does a host C++ type cast.
However the result of such a cast is undefined if the source value
is outside the representable range. MPFR always has defined behavior
here (returns the minimum or maximum representable value).
To fix the first issue, I've now created not just one set of routines
using host FP arithmetic (on long double), but instead three different
sets of routines, one each for host float, double, and long double.
Operations can then be performed in the desired type directly, avoiding
the extra rounding step. Using C++ templates, the three sets can all
share the same source code without duplication.
To fix the second issue, I'm simply enforcing the same conversion rule
(which makes sense anyway) when converting out-of-range values from
FP to LONGEST.
To contain the code complexity with the variety of options now possible,
I've created a new class "target_float_ops". There are a total of five
separate implementations of this:
host_float_ops<float> Implemented via host FP in given type
host_float_ops<double>
host_float_ops<long double>
mpfr_float_ops Implemented via MPFR if available
decimal_float_ops Implemented via libdecnumber
Note instead of using the DOUBLEST define, this always just uses the
"long double" data type. But since we now require C++11 anyway, this
type must in any case be avaialble unconditionally.
Most target floating-point operations simply dispatch to a (virtual)
member routine of this class. Which implementation to choose is
determined from the target types involved, and whether they match
some host type or not. E.g. any operation on a single type that
matches a host type is performed in that type. Operations involving
two types that both match host types are performed in the larger one
(according to C/C++ implicit conversion rules). Operations that
involve any type that does not match a host type are performed using
MPFR. (And of course operations involving decimal FP are performed
using libdecnumber.)
This first patch implements the refactoring of target-float.c as
described above, introduing the host_float_ops and decimal_float_ops
classes, and using them. Use of MPFR is introduced in the second patch.
A bit of special-case handling code is moved around to as to avoid
code duplication between host_float_ops and mpfr_float_ops.
Note that due to the changes mentioned above, I've had to update (fix)
the floating-point register values tested in the gdb.arch/vsx-regs.exp
test case. (The new values now work both with host arithmetic and MPFR.)
gdb/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* target-float.c: Do not include <math.h>.
Include <cmath> and <limits>.
(DOUBLEST): Do not define.
(class target_float_ops): New type.
(class host_float_ops): New templated type.
(class decimal_float_ops): New type.
(floatformat_to_doublest): Rename to ...
(host_float_ops<T>::from_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::from_target): New overload using a type argument.
(floatformat_from_doublest): Rename to ...
(host_float_ops<T>::to_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::to_target): New overload using a type argument.
(floatformat_printf_format): New function.
(struct printf_length_modifier): New templated type.
(floatformat_to_string): Rename to ...
(host_float_ops<T>::to_string): ... this. Use type instead of
floatformat argument. Use floatformat_printf_format and
printf_length_modifier. Remove special handling of invalid numbers,
infinities and NaN (moved to target_float_to_string).
(struct scanf_length_modifier): New templated type.
(floatformat_from_string): Rename to ...
(host_float_ops<T>::from_string): ... this. Use type instead of
floatformat argument. Use scanf_length_modifier.
(floatformat_to_longest): Rename to ...
(host_float_ops<T>::to_longest): ... this. Use type instead of
floatformat argument. Handle out-of-range values deterministically.
(floatformat_from_longest): Rename to ...
(host_float_ops<T>::from_longest): ... this. Use type instead of
floatformat argument.
(floatformat_from_ulongest): Rename to ...
(host_float_ops<T>::from_ulongest): ... this. Use type instead of
floatformat argument.
(floatformat_to_host_double): Rename to ...
(host_float_ops<T>::to_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_from_host_double): Rename to ...
(host_float_ops<T>::from_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_convert): Rename to ...
(host_float_ops<T>::convert): ... this. Use type instead of
floatformat arguments. Remove handling of no-op conversions.
(floatformat_binop): Rename to ...
(host_float_ops<T>::binop): ... this. Use type instead of
floatformat arguments.
(floatformat_compare): Rename to ...
(host_float_ops<T>::compare): ... this. Use type instead of
floatformat arguments.
(match_endianness): Use type instead of length/byte_order arguments.
(set_decnumber_context): Likewise.
(decimal_from_number): Likewise. Update calls.
(decimal_to_number): Likewise.
(decimal_is_zero): Likewise. Update calls. Move to earlier in file.
(decimal_float_ops::to_host_double): New dummy function.
(decimal_float_ops::from_host_double): Likewise.
(decimal_to_string): Rename to ...
(decimal_float_ops::to_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_string): Rename to ...
(decimal_float_ops::from_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_longest): Rename to ...
(decimal_float_ops::from_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_ulongest): Rename to ...
(decimal_float_ops::from_ulongest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_to_longest): Rename to ...
(decimal_float_ops::to_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_binop): Rename to ...
(decimal_float_ops::binop): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_compare): Rename to ...
(decimal_float_ops::compare): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_convert): Rename to ...
(decimal_float_ops::convert): ... this. Use type instead of
length/byte_order arguments. Update calls.
(target_float_same_category_p): New function.
(target_float_same_format_p): Likewise.
(target_float_format_length): Likewise.
(enum target_float_ops_kind): New type.
(get_target_float_ops_kind): New function.
(get_target_float_ops): Three new overloaded functions.
(target_float_is_zero): Update call.
(target_float_to_string): Add special handling of invalid numbers,
infinities and NaN (moved from floatformat_to_string). Use
target_float_ops callback.
(target_float_from_string): Use target_float_ops callback.
(target_float_to_longest): Likewise.
(target_float_from_longest): Likewise.
(target_float_from_ulongest): Likewise.
(target_float_to_host_double): Likewise.
(target_float_from_host_double): Likewise.
(target_float_convert): Add special case for no-op conversions.
Use target_float_ops callback.
(target_float_binop): Use target_float_ops callback.
(target_float_compare): Likewise.
gdb/testsuite/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
|
|
|
T dtopnv, dbotnv;
|
Target FP: Merge doublest.c and dfp.c into target-float.c
Now that all target FP operations are performed via target-float.c,
this file remains the sole caller of functions in doublest.c and dfp.c.
Therefore, this patch merges the latter files into the former and
makes all their function static there.
gdb/ChangeLog:
2017-11-06 Ulrich Weigand <uweigand@de.ibm.com>
* Makefile.in (SFILES): Remove doublest.c and dfp.c.
(HFILES_NO_SRCDIR): Remove doublest.h and dfp.h.
(COMMON_OBS): Remove doublest.o and dfp.o.
Do not build target-float.c (instead of doublest.c)
with -Wformat-nonliteral.
* doublest.c: Remove file.
* doublest.h: Remove file.
* dfp.c: Remove file.
* dfp.h: Remove file.
* target-float.c: Do not include "doublest.h" and "dfp.h".
(DOUBLEST): Move here from doublest.h.
(enum float_kind): Likewise.
(FLOATFORMAT_CHAR_BIT): Likewise.
(FLOATFORMAT_LARGEST_BYTES): Likewise.
(floatformat_totalsize_bytes): Move here from doublest.c. Make static.
(floatformat_precision): Likewise.
(floatformat_normalize_byteorder, get_field, put_field): Likewise.
(floatformat_is_negative, floatformat_classify, floatformat_mantissa):
Likewise.
(host_float_format, host_double_format, host_long_double_format):
Likewise.
(floatformat_to_string, floatformat_from_string): Likewise.
(floatformat_to_doublest): Likewise. Also, inline the original
convert_floatformat_to_doublest.
(floatformat_from_doublest): Likewise. Also, inline the original
convert_floatformat_from_doublest.
Include "dpd/decimal128.h", "dpd/decimal64.h", and "dpd/decimal32.h".
(MAX_DECIMAL_STRING): Move here from dfp.c.
(match_endianness): Likewise.
(set_decnumber_context, decimal_check_errors): Likewise.
(decimal_from_number, decimal_to_number): Likewise.
(decimal_to_string, decimal_from_string): Likewise. Make static.
(decimal_from_longest, decimal_from_ulongest): Likewise.
(decimal_to_longest): Likewise.
(decimal_binop, decimal_is_zero, decimal_compare): Likewise.
(decimal_convert): Likewise.
2017-11-06 23:04:03 +08:00
|
|
|
|
|
|
|
dtop = (double) dfrom;
|
|
|
|
/* If the rounded top half is Inf, the bottom must be 0 not NaN
|
|
|
|
or Inf. */
|
|
|
|
if (dtop + dtop == dtop && dtop != 0.0)
|
|
|
|
dbot = 0.0;
|
|
|
|
else
|
Target FP: Refactor use of host floating-point arithmetic
Prepare for using MPFR to implement floating-point arithmetic by
refactoring the way host floating-point arithmetic is currently used.
In particular, fix the following two problems that cause different
(and incorrect) results due to using host arithmetic:
- Current processing always uses host "long double", and then converts
back to the actual target format. This may introduce rounding errors.
- Conversion of FP values to LONGEST simply does a host C++ type cast.
However the result of such a cast is undefined if the source value
is outside the representable range. MPFR always has defined behavior
here (returns the minimum or maximum representable value).
To fix the first issue, I've now created not just one set of routines
using host FP arithmetic (on long double), but instead three different
sets of routines, one each for host float, double, and long double.
Operations can then be performed in the desired type directly, avoiding
the extra rounding step. Using C++ templates, the three sets can all
share the same source code without duplication.
To fix the second issue, I'm simply enforcing the same conversion rule
(which makes sense anyway) when converting out-of-range values from
FP to LONGEST.
To contain the code complexity with the variety of options now possible,
I've created a new class "target_float_ops". There are a total of five
separate implementations of this:
host_float_ops<float> Implemented via host FP in given type
host_float_ops<double>
host_float_ops<long double>
mpfr_float_ops Implemented via MPFR if available
decimal_float_ops Implemented via libdecnumber
Note instead of using the DOUBLEST define, this always just uses the
"long double" data type. But since we now require C++11 anyway, this
type must in any case be avaialble unconditionally.
Most target floating-point operations simply dispatch to a (virtual)
member routine of this class. Which implementation to choose is
determined from the target types involved, and whether they match
some host type or not. E.g. any operation on a single type that
matches a host type is performed in that type. Operations involving
two types that both match host types are performed in the larger one
(according to C/C++ implicit conversion rules). Operations that
involve any type that does not match a host type are performed using
MPFR. (And of course operations involving decimal FP are performed
using libdecnumber.)
This first patch implements the refactoring of target-float.c as
described above, introduing the host_float_ops and decimal_float_ops
classes, and using them. Use of MPFR is introduced in the second patch.
A bit of special-case handling code is moved around to as to avoid
code duplication between host_float_ops and mpfr_float_ops.
Note that due to the changes mentioned above, I've had to update (fix)
the floating-point register values tested in the gdb.arch/vsx-regs.exp
test case. (The new values now work both with host arithmetic and MPFR.)
gdb/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* target-float.c: Do not include <math.h>.
Include <cmath> and <limits>.
(DOUBLEST): Do not define.
(class target_float_ops): New type.
(class host_float_ops): New templated type.
(class decimal_float_ops): New type.
(floatformat_to_doublest): Rename to ...
(host_float_ops<T>::from_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::from_target): New overload using a type argument.
(floatformat_from_doublest): Rename to ...
(host_float_ops<T>::to_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::to_target): New overload using a type argument.
(floatformat_printf_format): New function.
(struct printf_length_modifier): New templated type.
(floatformat_to_string): Rename to ...
(host_float_ops<T>::to_string): ... this. Use type instead of
floatformat argument. Use floatformat_printf_format and
printf_length_modifier. Remove special handling of invalid numbers,
infinities and NaN (moved to target_float_to_string).
(struct scanf_length_modifier): New templated type.
(floatformat_from_string): Rename to ...
(host_float_ops<T>::from_string): ... this. Use type instead of
floatformat argument. Use scanf_length_modifier.
(floatformat_to_longest): Rename to ...
(host_float_ops<T>::to_longest): ... this. Use type instead of
floatformat argument. Handle out-of-range values deterministically.
(floatformat_from_longest): Rename to ...
(host_float_ops<T>::from_longest): ... this. Use type instead of
floatformat argument.
(floatformat_from_ulongest): Rename to ...
(host_float_ops<T>::from_ulongest): ... this. Use type instead of
floatformat argument.
(floatformat_to_host_double): Rename to ...
(host_float_ops<T>::to_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_from_host_double): Rename to ...
(host_float_ops<T>::from_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_convert): Rename to ...
(host_float_ops<T>::convert): ... this. Use type instead of
floatformat arguments. Remove handling of no-op conversions.
(floatformat_binop): Rename to ...
(host_float_ops<T>::binop): ... this. Use type instead of
floatformat arguments.
(floatformat_compare): Rename to ...
(host_float_ops<T>::compare): ... this. Use type instead of
floatformat arguments.
(match_endianness): Use type instead of length/byte_order arguments.
(set_decnumber_context): Likewise.
(decimal_from_number): Likewise. Update calls.
(decimal_to_number): Likewise.
(decimal_is_zero): Likewise. Update calls. Move to earlier in file.
(decimal_float_ops::to_host_double): New dummy function.
(decimal_float_ops::from_host_double): Likewise.
(decimal_to_string): Rename to ...
(decimal_float_ops::to_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_string): Rename to ...
(decimal_float_ops::from_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_longest): Rename to ...
(decimal_float_ops::from_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_ulongest): Rename to ...
(decimal_float_ops::from_ulongest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_to_longest): Rename to ...
(decimal_float_ops::to_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_binop): Rename to ...
(decimal_float_ops::binop): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_compare): Rename to ...
(decimal_float_ops::compare): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_convert): Rename to ...
(decimal_float_ops::convert): ... this. Use type instead of
length/byte_order arguments. Update calls.
(target_float_same_category_p): New function.
(target_float_same_format_p): Likewise.
(target_float_format_length): Likewise.
(enum target_float_ops_kind): New type.
(get_target_float_ops_kind): New function.
(get_target_float_ops): Three new overloaded functions.
(target_float_is_zero): Update call.
(target_float_to_string): Add special handling of invalid numbers,
infinities and NaN (moved from floatformat_to_string). Use
target_float_ops callback.
(target_float_from_string): Use target_float_ops callback.
(target_float_to_longest): Likewise.
(target_float_from_longest): Likewise.
(target_float_from_ulongest): Likewise.
(target_float_to_host_double): Likewise.
(target_float_from_host_double): Likewise.
(target_float_convert): Add special case for no-op conversions.
Use target_float_ops callback.
(target_float_binop): Use target_float_ops callback.
(target_float_compare): Likewise.
gdb/testsuite/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
|
|
|
dbot = (double) (dfrom - (T) dtop);
|
Target FP: Merge doublest.c and dfp.c into target-float.c
Now that all target FP operations are performed via target-float.c,
this file remains the sole caller of functions in doublest.c and dfp.c.
Therefore, this patch merges the latter files into the former and
makes all their function static there.
gdb/ChangeLog:
2017-11-06 Ulrich Weigand <uweigand@de.ibm.com>
* Makefile.in (SFILES): Remove doublest.c and dfp.c.
(HFILES_NO_SRCDIR): Remove doublest.h and dfp.h.
(COMMON_OBS): Remove doublest.o and dfp.o.
Do not build target-float.c (instead of doublest.c)
with -Wformat-nonliteral.
* doublest.c: Remove file.
* doublest.h: Remove file.
* dfp.c: Remove file.
* dfp.h: Remove file.
* target-float.c: Do not include "doublest.h" and "dfp.h".
(DOUBLEST): Move here from doublest.h.
(enum float_kind): Likewise.
(FLOATFORMAT_CHAR_BIT): Likewise.
(FLOATFORMAT_LARGEST_BYTES): Likewise.
(floatformat_totalsize_bytes): Move here from doublest.c. Make static.
(floatformat_precision): Likewise.
(floatformat_normalize_byteorder, get_field, put_field): Likewise.
(floatformat_is_negative, floatformat_classify, floatformat_mantissa):
Likewise.
(host_float_format, host_double_format, host_long_double_format):
Likewise.
(floatformat_to_string, floatformat_from_string): Likewise.
(floatformat_to_doublest): Likewise. Also, inline the original
convert_floatformat_to_doublest.
(floatformat_from_doublest): Likewise. Also, inline the original
convert_floatformat_from_doublest.
Include "dpd/decimal128.h", "dpd/decimal64.h", and "dpd/decimal32.h".
(MAX_DECIMAL_STRING): Move here from dfp.c.
(match_endianness): Likewise.
(set_decnumber_context, decimal_check_errors): Likewise.
(decimal_from_number, decimal_to_number): Likewise.
(decimal_to_string, decimal_from_string): Likewise. Make static.
(decimal_from_longest, decimal_from_ulongest): Likewise.
(decimal_to_longest): Likewise.
(decimal_binop, decimal_is_zero, decimal_compare): Likewise.
(decimal_convert): Likewise.
2017-11-06 23:04:03 +08:00
|
|
|
dtopnv = dtop;
|
|
|
|
dbotnv = dbot;
|
Target FP: Refactor use of host floating-point arithmetic
Prepare for using MPFR to implement floating-point arithmetic by
refactoring the way host floating-point arithmetic is currently used.
In particular, fix the following two problems that cause different
(and incorrect) results due to using host arithmetic:
- Current processing always uses host "long double", and then converts
back to the actual target format. This may introduce rounding errors.
- Conversion of FP values to LONGEST simply does a host C++ type cast.
However the result of such a cast is undefined if the source value
is outside the representable range. MPFR always has defined behavior
here (returns the minimum or maximum representable value).
To fix the first issue, I've now created not just one set of routines
using host FP arithmetic (on long double), but instead three different
sets of routines, one each for host float, double, and long double.
Operations can then be performed in the desired type directly, avoiding
the extra rounding step. Using C++ templates, the three sets can all
share the same source code without duplication.
To fix the second issue, I'm simply enforcing the same conversion rule
(which makes sense anyway) when converting out-of-range values from
FP to LONGEST.
To contain the code complexity with the variety of options now possible,
I've created a new class "target_float_ops". There are a total of five
separate implementations of this:
host_float_ops<float> Implemented via host FP in given type
host_float_ops<double>
host_float_ops<long double>
mpfr_float_ops Implemented via MPFR if available
decimal_float_ops Implemented via libdecnumber
Note instead of using the DOUBLEST define, this always just uses the
"long double" data type. But since we now require C++11 anyway, this
type must in any case be avaialble unconditionally.
Most target floating-point operations simply dispatch to a (virtual)
member routine of this class. Which implementation to choose is
determined from the target types involved, and whether they match
some host type or not. E.g. any operation on a single type that
matches a host type is performed in that type. Operations involving
two types that both match host types are performed in the larger one
(according to C/C++ implicit conversion rules). Operations that
involve any type that does not match a host type are performed using
MPFR. (And of course operations involving decimal FP are performed
using libdecnumber.)
This first patch implements the refactoring of target-float.c as
described above, introduing the host_float_ops and decimal_float_ops
classes, and using them. Use of MPFR is introduced in the second patch.
A bit of special-case handling code is moved around to as to avoid
code duplication between host_float_ops and mpfr_float_ops.
Note that due to the changes mentioned above, I've had to update (fix)
the floating-point register values tested in the gdb.arch/vsx-regs.exp
test case. (The new values now work both with host arithmetic and MPFR.)
gdb/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* target-float.c: Do not include <math.h>.
Include <cmath> and <limits>.
(DOUBLEST): Do not define.
(class target_float_ops): New type.
(class host_float_ops): New templated type.
(class decimal_float_ops): New type.
(floatformat_to_doublest): Rename to ...
(host_float_ops<T>::from_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::from_target): New overload using a type argument.
(floatformat_from_doublest): Rename to ...
(host_float_ops<T>::to_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::to_target): New overload using a type argument.
(floatformat_printf_format): New function.
(struct printf_length_modifier): New templated type.
(floatformat_to_string): Rename to ...
(host_float_ops<T>::to_string): ... this. Use type instead of
floatformat argument. Use floatformat_printf_format and
printf_length_modifier. Remove special handling of invalid numbers,
infinities and NaN (moved to target_float_to_string).
(struct scanf_length_modifier): New templated type.
(floatformat_from_string): Rename to ...
(host_float_ops<T>::from_string): ... this. Use type instead of
floatformat argument. Use scanf_length_modifier.
(floatformat_to_longest): Rename to ...
(host_float_ops<T>::to_longest): ... this. Use type instead of
floatformat argument. Handle out-of-range values deterministically.
(floatformat_from_longest): Rename to ...
(host_float_ops<T>::from_longest): ... this. Use type instead of
floatformat argument.
(floatformat_from_ulongest): Rename to ...
(host_float_ops<T>::from_ulongest): ... this. Use type instead of
floatformat argument.
(floatformat_to_host_double): Rename to ...
(host_float_ops<T>::to_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_from_host_double): Rename to ...
(host_float_ops<T>::from_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_convert): Rename to ...
(host_float_ops<T>::convert): ... this. Use type instead of
floatformat arguments. Remove handling of no-op conversions.
(floatformat_binop): Rename to ...
(host_float_ops<T>::binop): ... this. Use type instead of
floatformat arguments.
(floatformat_compare): Rename to ...
(host_float_ops<T>::compare): ... this. Use type instead of
floatformat arguments.
(match_endianness): Use type instead of length/byte_order arguments.
(set_decnumber_context): Likewise.
(decimal_from_number): Likewise. Update calls.
(decimal_to_number): Likewise.
(decimal_is_zero): Likewise. Update calls. Move to earlier in file.
(decimal_float_ops::to_host_double): New dummy function.
(decimal_float_ops::from_host_double): Likewise.
(decimal_to_string): Rename to ...
(decimal_float_ops::to_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_string): Rename to ...
(decimal_float_ops::from_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_longest): Rename to ...
(decimal_float_ops::from_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_ulongest): Rename to ...
(decimal_float_ops::from_ulongest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_to_longest): Rename to ...
(decimal_float_ops::to_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_binop): Rename to ...
(decimal_float_ops::binop): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_compare): Rename to ...
(decimal_float_ops::compare): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_convert): Rename to ...
(decimal_float_ops::convert): ... this. Use type instead of
length/byte_order arguments. Update calls.
(target_float_same_category_p): New function.
(target_float_same_format_p): Likewise.
(target_float_format_length): Likewise.
(enum target_float_ops_kind): New type.
(get_target_float_ops_kind): New function.
(get_target_float_ops): Three new overloaded functions.
(target_float_is_zero): Update call.
(target_float_to_string): Add special handling of invalid numbers,
infinities and NaN (moved from floatformat_to_string). Use
target_float_ops callback.
(target_float_from_string): Use target_float_ops callback.
(target_float_to_longest): Likewise.
(target_float_from_longest): Likewise.
(target_float_from_ulongest): Likewise.
(target_float_to_host_double): Likewise.
(target_float_from_host_double): Likewise.
(target_float_convert): Add special case for no-op conversions.
Use target_float_ops callback.
(target_float_binop): Use target_float_ops callback.
(target_float_compare): Likewise.
gdb/testsuite/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
|
|
|
to_target (fmt->split_half, &dtopnv, uto);
|
|
|
|
to_target (fmt->split_half, &dbotnv,
|
|
|
|
uto + fmt->totalsize / FLOATFORMAT_CHAR_BIT / 2);
|
Target FP: Merge doublest.c and dfp.c into target-float.c
Now that all target FP operations are performed via target-float.c,
this file remains the sole caller of functions in doublest.c and dfp.c.
Therefore, this patch merges the latter files into the former and
makes all their function static there.
gdb/ChangeLog:
2017-11-06 Ulrich Weigand <uweigand@de.ibm.com>
* Makefile.in (SFILES): Remove doublest.c and dfp.c.
(HFILES_NO_SRCDIR): Remove doublest.h and dfp.h.
(COMMON_OBS): Remove doublest.o and dfp.o.
Do not build target-float.c (instead of doublest.c)
with -Wformat-nonliteral.
* doublest.c: Remove file.
* doublest.h: Remove file.
* dfp.c: Remove file.
* dfp.h: Remove file.
* target-float.c: Do not include "doublest.h" and "dfp.h".
(DOUBLEST): Move here from doublest.h.
(enum float_kind): Likewise.
(FLOATFORMAT_CHAR_BIT): Likewise.
(FLOATFORMAT_LARGEST_BYTES): Likewise.
(floatformat_totalsize_bytes): Move here from doublest.c. Make static.
(floatformat_precision): Likewise.
(floatformat_normalize_byteorder, get_field, put_field): Likewise.
(floatformat_is_negative, floatformat_classify, floatformat_mantissa):
Likewise.
(host_float_format, host_double_format, host_long_double_format):
Likewise.
(floatformat_to_string, floatformat_from_string): Likewise.
(floatformat_to_doublest): Likewise. Also, inline the original
convert_floatformat_to_doublest.
(floatformat_from_doublest): Likewise. Also, inline the original
convert_floatformat_from_doublest.
Include "dpd/decimal128.h", "dpd/decimal64.h", and "dpd/decimal32.h".
(MAX_DECIMAL_STRING): Move here from dfp.c.
(match_endianness): Likewise.
(set_decnumber_context, decimal_check_errors): Likewise.
(decimal_from_number, decimal_to_number): Likewise.
(decimal_to_string, decimal_from_string): Likewise. Make static.
(decimal_from_longest, decimal_from_ulongest): Likewise.
(decimal_to_longest): Likewise.
(decimal_binop, decimal_is_zero, decimal_compare): Likewise.
(decimal_convert): Likewise.
2017-11-06 23:04:03 +08:00
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (dfrom == 0)
|
|
|
|
goto finalize_byteorder; /* Result is zero */
|
|
|
|
if (dfrom != dfrom) /* Result is NaN */
|
|
|
|
{
|
|
|
|
/* From is NaN */
|
|
|
|
put_field (uto, order, fmt->totalsize, fmt->exp_start,
|
|
|
|
fmt->exp_len, fmt->exp_nan);
|
|
|
|
/* Be sure it's not infinity, but NaN value is irrel. */
|
|
|
|
put_field (uto, order, fmt->totalsize, fmt->man_start,
|
|
|
|
fmt->man_len, 1);
|
|
|
|
goto finalize_byteorder;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* If negative, set the sign bit. */
|
|
|
|
if (dfrom < 0)
|
|
|
|
{
|
|
|
|
put_field (uto, order, fmt->totalsize, fmt->sign_start, 1, 1);
|
|
|
|
dfrom = -dfrom;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (dfrom + dfrom == dfrom && dfrom != 0.0) /* Result is Infinity. */
|
|
|
|
{
|
|
|
|
/* Infinity exponent is same as NaN's. */
|
|
|
|
put_field (uto, order, fmt->totalsize, fmt->exp_start,
|
|
|
|
fmt->exp_len, fmt->exp_nan);
|
|
|
|
/* Infinity mantissa is all zeroes. */
|
|
|
|
put_field (uto, order, fmt->totalsize, fmt->man_start,
|
|
|
|
fmt->man_len, 0);
|
|
|
|
goto finalize_byteorder;
|
|
|
|
}
|
|
|
|
|
|
|
|
mant = frexp (dfrom, &exponent);
|
|
|
|
|
|
|
|
if (exponent + fmt->exp_bias <= 0)
|
|
|
|
{
|
|
|
|
/* The value is too small to be expressed in the destination
|
|
|
|
type (not enough bits in the exponent. Treat as 0. */
|
|
|
|
put_field (uto, order, fmt->totalsize, fmt->exp_start,
|
|
|
|
fmt->exp_len, 0);
|
|
|
|
put_field (uto, order, fmt->totalsize, fmt->man_start,
|
|
|
|
fmt->man_len, 0);
|
|
|
|
goto finalize_byteorder;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (exponent + fmt->exp_bias >= (1 << fmt->exp_len))
|
|
|
|
{
|
|
|
|
/* The value is too large to fit into the destination.
|
|
|
|
Treat as infinity. */
|
|
|
|
put_field (uto, order, fmt->totalsize, fmt->exp_start,
|
|
|
|
fmt->exp_len, fmt->exp_nan);
|
|
|
|
put_field (uto, order, fmt->totalsize, fmt->man_start,
|
|
|
|
fmt->man_len, 0);
|
|
|
|
goto finalize_byteorder;
|
|
|
|
}
|
|
|
|
|
|
|
|
put_field (uto, order, fmt->totalsize, fmt->exp_start, fmt->exp_len,
|
|
|
|
exponent + fmt->exp_bias - 1);
|
|
|
|
|
|
|
|
mant_bits_left = fmt->man_len;
|
|
|
|
mant_off = fmt->man_start;
|
|
|
|
while (mant_bits_left > 0)
|
|
|
|
{
|
|
|
|
unsigned long mant_long;
|
|
|
|
|
|
|
|
mant_bits = mant_bits_left < 32 ? mant_bits_left : 32;
|
|
|
|
|
|
|
|
mant *= 4294967296.0;
|
|
|
|
mant_long = ((unsigned long) mant) & 0xffffffffL;
|
|
|
|
mant -= mant_long;
|
|
|
|
|
|
|
|
/* If the integer bit is implicit, then we need to discard it.
|
|
|
|
If we are discarding a zero, we should be (but are not) creating
|
|
|
|
a denormalized number which means adjusting the exponent
|
|
|
|
(I think). */
|
|
|
|
if (mant_bits_left == fmt->man_len
|
|
|
|
&& fmt->intbit == floatformat_intbit_no)
|
|
|
|
{
|
|
|
|
mant_long <<= 1;
|
|
|
|
mant_long &= 0xffffffffL;
|
|
|
|
/* If we are processing the top 32 mantissa bits of a doublest
|
|
|
|
so as to convert to a float value with implied integer bit,
|
|
|
|
we will only be putting 31 of those 32 bits into the
|
|
|
|
final value due to the discarding of the top bit. In the
|
|
|
|
case of a small float value where the number of mantissa
|
|
|
|
bits is less than 32, discarding the top bit does not alter
|
|
|
|
the number of bits we will be adding to the result. */
|
|
|
|
if (mant_bits == 32)
|
|
|
|
mant_bits -= 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (mant_bits < 32)
|
|
|
|
{
|
|
|
|
/* The bits we want are in the most significant MANT_BITS bits of
|
|
|
|
mant_long. Move them to the least significant. */
|
|
|
|
mant_long >>= 32 - mant_bits;
|
|
|
|
}
|
|
|
|
|
|
|
|
put_field (uto, order, fmt->totalsize,
|
|
|
|
mant_off, mant_bits, mant_long);
|
|
|
|
mant_off += mant_bits;
|
|
|
|
mant_bits_left -= mant_bits;
|
|
|
|
}
|
|
|
|
|
|
|
|
finalize_byteorder:
|
|
|
|
/* Do we need to byte-swap the words in the result? */
|
|
|
|
if (order != fmt->byteorder)
|
|
|
|
floatformat_normalize_byteorder (fmt, newto, to);
|
|
|
|
}
|
|
|
|
|
Target FP: Refactor use of host floating-point arithmetic
Prepare for using MPFR to implement floating-point arithmetic by
refactoring the way host floating-point arithmetic is currently used.
In particular, fix the following two problems that cause different
(and incorrect) results due to using host arithmetic:
- Current processing always uses host "long double", and then converts
back to the actual target format. This may introduce rounding errors.
- Conversion of FP values to LONGEST simply does a host C++ type cast.
However the result of such a cast is undefined if the source value
is outside the representable range. MPFR always has defined behavior
here (returns the minimum or maximum representable value).
To fix the first issue, I've now created not just one set of routines
using host FP arithmetic (on long double), but instead three different
sets of routines, one each for host float, double, and long double.
Operations can then be performed in the desired type directly, avoiding
the extra rounding step. Using C++ templates, the three sets can all
share the same source code without duplication.
To fix the second issue, I'm simply enforcing the same conversion rule
(which makes sense anyway) when converting out-of-range values from
FP to LONGEST.
To contain the code complexity with the variety of options now possible,
I've created a new class "target_float_ops". There are a total of five
separate implementations of this:
host_float_ops<float> Implemented via host FP in given type
host_float_ops<double>
host_float_ops<long double>
mpfr_float_ops Implemented via MPFR if available
decimal_float_ops Implemented via libdecnumber
Note instead of using the DOUBLEST define, this always just uses the
"long double" data type. But since we now require C++11 anyway, this
type must in any case be avaialble unconditionally.
Most target floating-point operations simply dispatch to a (virtual)
member routine of this class. Which implementation to choose is
determined from the target types involved, and whether they match
some host type or not. E.g. any operation on a single type that
matches a host type is performed in that type. Operations involving
two types that both match host types are performed in the larger one
(according to C/C++ implicit conversion rules). Operations that
involve any type that does not match a host type are performed using
MPFR. (And of course operations involving decimal FP are performed
using libdecnumber.)
This first patch implements the refactoring of target-float.c as
described above, introduing the host_float_ops and decimal_float_ops
classes, and using them. Use of MPFR is introduced in the second patch.
A bit of special-case handling code is moved around to as to avoid
code duplication between host_float_ops and mpfr_float_ops.
Note that due to the changes mentioned above, I've had to update (fix)
the floating-point register values tested in the gdb.arch/vsx-regs.exp
test case. (The new values now work both with host arithmetic and MPFR.)
gdb/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* target-float.c: Do not include <math.h>.
Include <cmath> and <limits>.
(DOUBLEST): Do not define.
(class target_float_ops): New type.
(class host_float_ops): New templated type.
(class decimal_float_ops): New type.
(floatformat_to_doublest): Rename to ...
(host_float_ops<T>::from_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::from_target): New overload using a type argument.
(floatformat_from_doublest): Rename to ...
(host_float_ops<T>::to_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::to_target): New overload using a type argument.
(floatformat_printf_format): New function.
(struct printf_length_modifier): New templated type.
(floatformat_to_string): Rename to ...
(host_float_ops<T>::to_string): ... this. Use type instead of
floatformat argument. Use floatformat_printf_format and
printf_length_modifier. Remove special handling of invalid numbers,
infinities and NaN (moved to target_float_to_string).
(struct scanf_length_modifier): New templated type.
(floatformat_from_string): Rename to ...
(host_float_ops<T>::from_string): ... this. Use type instead of
floatformat argument. Use scanf_length_modifier.
(floatformat_to_longest): Rename to ...
(host_float_ops<T>::to_longest): ... this. Use type instead of
floatformat argument. Handle out-of-range values deterministically.
(floatformat_from_longest): Rename to ...
(host_float_ops<T>::from_longest): ... this. Use type instead of
floatformat argument.
(floatformat_from_ulongest): Rename to ...
(host_float_ops<T>::from_ulongest): ... this. Use type instead of
floatformat argument.
(floatformat_to_host_double): Rename to ...
(host_float_ops<T>::to_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_from_host_double): Rename to ...
(host_float_ops<T>::from_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_convert): Rename to ...
(host_float_ops<T>::convert): ... this. Use type instead of
floatformat arguments. Remove handling of no-op conversions.
(floatformat_binop): Rename to ...
(host_float_ops<T>::binop): ... this. Use type instead of
floatformat arguments.
(floatformat_compare): Rename to ...
(host_float_ops<T>::compare): ... this. Use type instead of
floatformat arguments.
(match_endianness): Use type instead of length/byte_order arguments.
(set_decnumber_context): Likewise.
(decimal_from_number): Likewise. Update calls.
(decimal_to_number): Likewise.
(decimal_is_zero): Likewise. Update calls. Move to earlier in file.
(decimal_float_ops::to_host_double): New dummy function.
(decimal_float_ops::from_host_double): Likewise.
(decimal_to_string): Rename to ...
(decimal_float_ops::to_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_string): Rename to ...
(decimal_float_ops::from_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_longest): Rename to ...
(decimal_float_ops::from_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_ulongest): Rename to ...
(decimal_float_ops::from_ulongest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_to_longest): Rename to ...
(decimal_float_ops::to_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_binop): Rename to ...
(decimal_float_ops::binop): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_compare): Rename to ...
(decimal_float_ops::compare): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_convert): Rename to ...
(decimal_float_ops::convert): ... this. Use type instead of
length/byte_order arguments. Update calls.
(target_float_same_category_p): New function.
(target_float_same_format_p): Likewise.
(target_float_format_length): Likewise.
(enum target_float_ops_kind): New type.
(get_target_float_ops_kind): New function.
(get_target_float_ops): Three new overloaded functions.
(target_float_is_zero): Update call.
(target_float_to_string): Add special handling of invalid numbers,
infinities and NaN (moved from floatformat_to_string). Use
target_float_ops callback.
(target_float_from_string): Use target_float_ops callback.
(target_float_to_longest): Likewise.
(target_float_from_longest): Likewise.
(target_float_from_ulongest): Likewise.
(target_float_to_host_double): Likewise.
(target_float_from_host_double): Likewise.
(target_float_convert): Add special case for no-op conversions.
Use target_float_ops callback.
(target_float_binop): Use target_float_ops callback.
(target_float_compare): Likewise.
gdb/testsuite/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
|
|
|
template<typename T> void
|
|
|
|
host_float_ops<T>::to_target (const struct type *type,
|
|
|
|
const T *from, gdb_byte *to) const
|
Target FP: Merge doublest.c and dfp.c into target-float.c
Now that all target FP operations are performed via target-float.c,
this file remains the sole caller of functions in doublest.c and dfp.c.
Therefore, this patch merges the latter files into the former and
makes all their function static there.
gdb/ChangeLog:
2017-11-06 Ulrich Weigand <uweigand@de.ibm.com>
* Makefile.in (SFILES): Remove doublest.c and dfp.c.
(HFILES_NO_SRCDIR): Remove doublest.h and dfp.h.
(COMMON_OBS): Remove doublest.o and dfp.o.
Do not build target-float.c (instead of doublest.c)
with -Wformat-nonliteral.
* doublest.c: Remove file.
* doublest.h: Remove file.
* dfp.c: Remove file.
* dfp.h: Remove file.
* target-float.c: Do not include "doublest.h" and "dfp.h".
(DOUBLEST): Move here from doublest.h.
(enum float_kind): Likewise.
(FLOATFORMAT_CHAR_BIT): Likewise.
(FLOATFORMAT_LARGEST_BYTES): Likewise.
(floatformat_totalsize_bytes): Move here from doublest.c. Make static.
(floatformat_precision): Likewise.
(floatformat_normalize_byteorder, get_field, put_field): Likewise.
(floatformat_is_negative, floatformat_classify, floatformat_mantissa):
Likewise.
(host_float_format, host_double_format, host_long_double_format):
Likewise.
(floatformat_to_string, floatformat_from_string): Likewise.
(floatformat_to_doublest): Likewise. Also, inline the original
convert_floatformat_to_doublest.
(floatformat_from_doublest): Likewise. Also, inline the original
convert_floatformat_from_doublest.
Include "dpd/decimal128.h", "dpd/decimal64.h", and "dpd/decimal32.h".
(MAX_DECIMAL_STRING): Move here from dfp.c.
(match_endianness): Likewise.
(set_decnumber_context, decimal_check_errors): Likewise.
(decimal_from_number, decimal_to_number): Likewise.
(decimal_to_string, decimal_from_string): Likewise. Make static.
(decimal_from_longest, decimal_from_ulongest): Likewise.
(decimal_to_longest): Likewise.
(decimal_binop, decimal_is_zero, decimal_compare): Likewise.
(decimal_convert): Likewise.
2017-11-06 23:04:03 +08:00
|
|
|
{
|
Target FP: Refactor use of host floating-point arithmetic
Prepare for using MPFR to implement floating-point arithmetic by
refactoring the way host floating-point arithmetic is currently used.
In particular, fix the following two problems that cause different
(and incorrect) results due to using host arithmetic:
- Current processing always uses host "long double", and then converts
back to the actual target format. This may introduce rounding errors.
- Conversion of FP values to LONGEST simply does a host C++ type cast.
However the result of such a cast is undefined if the source value
is outside the representable range. MPFR always has defined behavior
here (returns the minimum or maximum representable value).
To fix the first issue, I've now created not just one set of routines
using host FP arithmetic (on long double), but instead three different
sets of routines, one each for host float, double, and long double.
Operations can then be performed in the desired type directly, avoiding
the extra rounding step. Using C++ templates, the three sets can all
share the same source code without duplication.
To fix the second issue, I'm simply enforcing the same conversion rule
(which makes sense anyway) when converting out-of-range values from
FP to LONGEST.
To contain the code complexity with the variety of options now possible,
I've created a new class "target_float_ops". There are a total of five
separate implementations of this:
host_float_ops<float> Implemented via host FP in given type
host_float_ops<double>
host_float_ops<long double>
mpfr_float_ops Implemented via MPFR if available
decimal_float_ops Implemented via libdecnumber
Note instead of using the DOUBLEST define, this always just uses the
"long double" data type. But since we now require C++11 anyway, this
type must in any case be avaialble unconditionally.
Most target floating-point operations simply dispatch to a (virtual)
member routine of this class. Which implementation to choose is
determined from the target types involved, and whether they match
some host type or not. E.g. any operation on a single type that
matches a host type is performed in that type. Operations involving
two types that both match host types are performed in the larger one
(according to C/C++ implicit conversion rules). Operations that
involve any type that does not match a host type are performed using
MPFR. (And of course operations involving decimal FP are performed
using libdecnumber.)
This first patch implements the refactoring of target-float.c as
described above, introduing the host_float_ops and decimal_float_ops
classes, and using them. Use of MPFR is introduced in the second patch.
A bit of special-case handling code is moved around to as to avoid
code duplication between host_float_ops and mpfr_float_ops.
Note that due to the changes mentioned above, I've had to update (fix)
the floating-point register values tested in the gdb.arch/vsx-regs.exp
test case. (The new values now work both with host arithmetic and MPFR.)
gdb/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* target-float.c: Do not include <math.h>.
Include <cmath> and <limits>.
(DOUBLEST): Do not define.
(class target_float_ops): New type.
(class host_float_ops): New templated type.
(class decimal_float_ops): New type.
(floatformat_to_doublest): Rename to ...
(host_float_ops<T>::from_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::from_target): New overload using a type argument.
(floatformat_from_doublest): Rename to ...
(host_float_ops<T>::to_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::to_target): New overload using a type argument.
(floatformat_printf_format): New function.
(struct printf_length_modifier): New templated type.
(floatformat_to_string): Rename to ...
(host_float_ops<T>::to_string): ... this. Use type instead of
floatformat argument. Use floatformat_printf_format and
printf_length_modifier. Remove special handling of invalid numbers,
infinities and NaN (moved to target_float_to_string).
(struct scanf_length_modifier): New templated type.
(floatformat_from_string): Rename to ...
(host_float_ops<T>::from_string): ... this. Use type instead of
floatformat argument. Use scanf_length_modifier.
(floatformat_to_longest): Rename to ...
(host_float_ops<T>::to_longest): ... this. Use type instead of
floatformat argument. Handle out-of-range values deterministically.
(floatformat_from_longest): Rename to ...
(host_float_ops<T>::from_longest): ... this. Use type instead of
floatformat argument.
(floatformat_from_ulongest): Rename to ...
(host_float_ops<T>::from_ulongest): ... this. Use type instead of
floatformat argument.
(floatformat_to_host_double): Rename to ...
(host_float_ops<T>::to_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_from_host_double): Rename to ...
(host_float_ops<T>::from_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_convert): Rename to ...
(host_float_ops<T>::convert): ... this. Use type instead of
floatformat arguments. Remove handling of no-op conversions.
(floatformat_binop): Rename to ...
(host_float_ops<T>::binop): ... this. Use type instead of
floatformat arguments.
(floatformat_compare): Rename to ...
(host_float_ops<T>::compare): ... this. Use type instead of
floatformat arguments.
(match_endianness): Use type instead of length/byte_order arguments.
(set_decnumber_context): Likewise.
(decimal_from_number): Likewise. Update calls.
(decimal_to_number): Likewise.
(decimal_is_zero): Likewise. Update calls. Move to earlier in file.
(decimal_float_ops::to_host_double): New dummy function.
(decimal_float_ops::from_host_double): Likewise.
(decimal_to_string): Rename to ...
(decimal_float_ops::to_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_string): Rename to ...
(decimal_float_ops::from_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_longest): Rename to ...
(decimal_float_ops::from_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_ulongest): Rename to ...
(decimal_float_ops::from_ulongest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_to_longest): Rename to ...
(decimal_float_ops::to_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_binop): Rename to ...
(decimal_float_ops::binop): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_compare): Rename to ...
(decimal_float_ops::compare): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_convert): Rename to ...
(decimal_float_ops::convert): ... this. Use type instead of
length/byte_order arguments. Update calls.
(target_float_same_category_p): New function.
(target_float_same_format_p): Likewise.
(target_float_format_length): Likewise.
(enum target_float_ops_kind): New type.
(get_target_float_ops_kind): New function.
(get_target_float_ops): Three new overloaded functions.
(target_float_is_zero): Update call.
(target_float_to_string): Add special handling of invalid numbers,
infinities and NaN (moved from floatformat_to_string). Use
target_float_ops callback.
(target_float_from_string): Use target_float_ops callback.
(target_float_to_longest): Likewise.
(target_float_from_longest): Likewise.
(target_float_from_ulongest): Likewise.
(target_float_to_host_double): Likewise.
(target_float_from_host_double): Likewise.
(target_float_convert): Add special case for no-op conversions.
Use target_float_ops callback.
(target_float_binop): Use target_float_ops callback.
(target_float_compare): Likewise.
gdb/testsuite/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
|
|
|
/* Ensure possible padding bytes in the target buffer are zeroed out. */
|
|
|
|
memset (to, 0, TYPE_LENGTH (type));
|
Target FP: Merge doublest.c and dfp.c into target-float.c
Now that all target FP operations are performed via target-float.c,
this file remains the sole caller of functions in doublest.c and dfp.c.
Therefore, this patch merges the latter files into the former and
makes all their function static there.
gdb/ChangeLog:
2017-11-06 Ulrich Weigand <uweigand@de.ibm.com>
* Makefile.in (SFILES): Remove doublest.c and dfp.c.
(HFILES_NO_SRCDIR): Remove doublest.h and dfp.h.
(COMMON_OBS): Remove doublest.o and dfp.o.
Do not build target-float.c (instead of doublest.c)
with -Wformat-nonliteral.
* doublest.c: Remove file.
* doublest.h: Remove file.
* dfp.c: Remove file.
* dfp.h: Remove file.
* target-float.c: Do not include "doublest.h" and "dfp.h".
(DOUBLEST): Move here from doublest.h.
(enum float_kind): Likewise.
(FLOATFORMAT_CHAR_BIT): Likewise.
(FLOATFORMAT_LARGEST_BYTES): Likewise.
(floatformat_totalsize_bytes): Move here from doublest.c. Make static.
(floatformat_precision): Likewise.
(floatformat_normalize_byteorder, get_field, put_field): Likewise.
(floatformat_is_negative, floatformat_classify, floatformat_mantissa):
Likewise.
(host_float_format, host_double_format, host_long_double_format):
Likewise.
(floatformat_to_string, floatformat_from_string): Likewise.
(floatformat_to_doublest): Likewise. Also, inline the original
convert_floatformat_to_doublest.
(floatformat_from_doublest): Likewise. Also, inline the original
convert_floatformat_from_doublest.
Include "dpd/decimal128.h", "dpd/decimal64.h", and "dpd/decimal32.h".
(MAX_DECIMAL_STRING): Move here from dfp.c.
(match_endianness): Likewise.
(set_decnumber_context, decimal_check_errors): Likewise.
(decimal_from_number, decimal_to_number): Likewise.
(decimal_to_string, decimal_from_string): Likewise. Make static.
(decimal_from_longest, decimal_from_ulongest): Likewise.
(decimal_to_longest): Likewise.
(decimal_binop, decimal_is_zero, decimal_compare): Likewise.
(decimal_convert): Likewise.
2017-11-06 23:04:03 +08:00
|
|
|
|
Target FP: Refactor use of host floating-point arithmetic
Prepare for using MPFR to implement floating-point arithmetic by
refactoring the way host floating-point arithmetic is currently used.
In particular, fix the following two problems that cause different
(and incorrect) results due to using host arithmetic:
- Current processing always uses host "long double", and then converts
back to the actual target format. This may introduce rounding errors.
- Conversion of FP values to LONGEST simply does a host C++ type cast.
However the result of such a cast is undefined if the source value
is outside the representable range. MPFR always has defined behavior
here (returns the minimum or maximum representable value).
To fix the first issue, I've now created not just one set of routines
using host FP arithmetic (on long double), but instead three different
sets of routines, one each for host float, double, and long double.
Operations can then be performed in the desired type directly, avoiding
the extra rounding step. Using C++ templates, the three sets can all
share the same source code without duplication.
To fix the second issue, I'm simply enforcing the same conversion rule
(which makes sense anyway) when converting out-of-range values from
FP to LONGEST.
To contain the code complexity with the variety of options now possible,
I've created a new class "target_float_ops". There are a total of five
separate implementations of this:
host_float_ops<float> Implemented via host FP in given type
host_float_ops<double>
host_float_ops<long double>
mpfr_float_ops Implemented via MPFR if available
decimal_float_ops Implemented via libdecnumber
Note instead of using the DOUBLEST define, this always just uses the
"long double" data type. But since we now require C++11 anyway, this
type must in any case be avaialble unconditionally.
Most target floating-point operations simply dispatch to a (virtual)
member routine of this class. Which implementation to choose is
determined from the target types involved, and whether they match
some host type or not. E.g. any operation on a single type that
matches a host type is performed in that type. Operations involving
two types that both match host types are performed in the larger one
(according to C/C++ implicit conversion rules). Operations that
involve any type that does not match a host type are performed using
MPFR. (And of course operations involving decimal FP are performed
using libdecnumber.)
This first patch implements the refactoring of target-float.c as
described above, introduing the host_float_ops and decimal_float_ops
classes, and using them. Use of MPFR is introduced in the second patch.
A bit of special-case handling code is moved around to as to avoid
code duplication between host_float_ops and mpfr_float_ops.
Note that due to the changes mentioned above, I've had to update (fix)
the floating-point register values tested in the gdb.arch/vsx-regs.exp
test case. (The new values now work both with host arithmetic and MPFR.)
gdb/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* target-float.c: Do not include <math.h>.
Include <cmath> and <limits>.
(DOUBLEST): Do not define.
(class target_float_ops): New type.
(class host_float_ops): New templated type.
(class decimal_float_ops): New type.
(floatformat_to_doublest): Rename to ...
(host_float_ops<T>::from_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::from_target): New overload using a type argument.
(floatformat_from_doublest): Rename to ...
(host_float_ops<T>::to_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::to_target): New overload using a type argument.
(floatformat_printf_format): New function.
(struct printf_length_modifier): New templated type.
(floatformat_to_string): Rename to ...
(host_float_ops<T>::to_string): ... this. Use type instead of
floatformat argument. Use floatformat_printf_format and
printf_length_modifier. Remove special handling of invalid numbers,
infinities and NaN (moved to target_float_to_string).
(struct scanf_length_modifier): New templated type.
(floatformat_from_string): Rename to ...
(host_float_ops<T>::from_string): ... this. Use type instead of
floatformat argument. Use scanf_length_modifier.
(floatformat_to_longest): Rename to ...
(host_float_ops<T>::to_longest): ... this. Use type instead of
floatformat argument. Handle out-of-range values deterministically.
(floatformat_from_longest): Rename to ...
(host_float_ops<T>::from_longest): ... this. Use type instead of
floatformat argument.
(floatformat_from_ulongest): Rename to ...
(host_float_ops<T>::from_ulongest): ... this. Use type instead of
floatformat argument.
(floatformat_to_host_double): Rename to ...
(host_float_ops<T>::to_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_from_host_double): Rename to ...
(host_float_ops<T>::from_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_convert): Rename to ...
(host_float_ops<T>::convert): ... this. Use type instead of
floatformat arguments. Remove handling of no-op conversions.
(floatformat_binop): Rename to ...
(host_float_ops<T>::binop): ... this. Use type instead of
floatformat arguments.
(floatformat_compare): Rename to ...
(host_float_ops<T>::compare): ... this. Use type instead of
floatformat arguments.
(match_endianness): Use type instead of length/byte_order arguments.
(set_decnumber_context): Likewise.
(decimal_from_number): Likewise. Update calls.
(decimal_to_number): Likewise.
(decimal_is_zero): Likewise. Update calls. Move to earlier in file.
(decimal_float_ops::to_host_double): New dummy function.
(decimal_float_ops::from_host_double): Likewise.
(decimal_to_string): Rename to ...
(decimal_float_ops::to_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_string): Rename to ...
(decimal_float_ops::from_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_longest): Rename to ...
(decimal_float_ops::from_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_ulongest): Rename to ...
(decimal_float_ops::from_ulongest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_to_longest): Rename to ...
(decimal_float_ops::to_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_binop): Rename to ...
(decimal_float_ops::binop): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_compare): Rename to ...
(decimal_float_ops::compare): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_convert): Rename to ...
(decimal_float_ops::convert): ... this. Use type instead of
length/byte_order arguments. Update calls.
(target_float_same_category_p): New function.
(target_float_same_format_p): Likewise.
(target_float_format_length): Likewise.
(enum target_float_ops_kind): New type.
(get_target_float_ops_kind): New function.
(get_target_float_ops): Three new overloaded functions.
(target_float_is_zero): Update call.
(target_float_to_string): Add special handling of invalid numbers,
infinities and NaN (moved from floatformat_to_string). Use
target_float_ops callback.
(target_float_from_string): Use target_float_ops callback.
(target_float_to_longest): Likewise.
(target_float_from_longest): Likewise.
(target_float_from_ulongest): Likewise.
(target_float_to_host_double): Likewise.
(target_float_from_host_double): Likewise.
(target_float_convert): Add special case for no-op conversions.
Use target_float_ops callback.
(target_float_binop): Use target_float_ops callback.
(target_float_compare): Likewise.
gdb/testsuite/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
|
|
|
to_target (floatformat_from_type (type), from, to);
|
|
|
|
}
|
Target FP: Merge doublest.c and dfp.c into target-float.c
Now that all target FP operations are performed via target-float.c,
this file remains the sole caller of functions in doublest.c and dfp.c.
Therefore, this patch merges the latter files into the former and
makes all their function static there.
gdb/ChangeLog:
2017-11-06 Ulrich Weigand <uweigand@de.ibm.com>
* Makefile.in (SFILES): Remove doublest.c and dfp.c.
(HFILES_NO_SRCDIR): Remove doublest.h and dfp.h.
(COMMON_OBS): Remove doublest.o and dfp.o.
Do not build target-float.c (instead of doublest.c)
with -Wformat-nonliteral.
* doublest.c: Remove file.
* doublest.h: Remove file.
* dfp.c: Remove file.
* dfp.h: Remove file.
* target-float.c: Do not include "doublest.h" and "dfp.h".
(DOUBLEST): Move here from doublest.h.
(enum float_kind): Likewise.
(FLOATFORMAT_CHAR_BIT): Likewise.
(FLOATFORMAT_LARGEST_BYTES): Likewise.
(floatformat_totalsize_bytes): Move here from doublest.c. Make static.
(floatformat_precision): Likewise.
(floatformat_normalize_byteorder, get_field, put_field): Likewise.
(floatformat_is_negative, floatformat_classify, floatformat_mantissa):
Likewise.
(host_float_format, host_double_format, host_long_double_format):
Likewise.
(floatformat_to_string, floatformat_from_string): Likewise.
(floatformat_to_doublest): Likewise. Also, inline the original
convert_floatformat_to_doublest.
(floatformat_from_doublest): Likewise. Also, inline the original
convert_floatformat_from_doublest.
Include "dpd/decimal128.h", "dpd/decimal64.h", and "dpd/decimal32.h".
(MAX_DECIMAL_STRING): Move here from dfp.c.
(match_endianness): Likewise.
(set_decnumber_context, decimal_check_errors): Likewise.
(decimal_from_number, decimal_to_number): Likewise.
(decimal_to_string, decimal_from_string): Likewise. Make static.
(decimal_from_longest, decimal_from_ulongest): Likewise.
(decimal_to_longest): Likewise.
(decimal_binop, decimal_is_zero, decimal_compare): Likewise.
(decimal_convert): Likewise.
2017-11-06 23:04:03 +08:00
|
|
|
|
Target FP: Refactor use of host floating-point arithmetic
Prepare for using MPFR to implement floating-point arithmetic by
refactoring the way host floating-point arithmetic is currently used.
In particular, fix the following two problems that cause different
(and incorrect) results due to using host arithmetic:
- Current processing always uses host "long double", and then converts
back to the actual target format. This may introduce rounding errors.
- Conversion of FP values to LONGEST simply does a host C++ type cast.
However the result of such a cast is undefined if the source value
is outside the representable range. MPFR always has defined behavior
here (returns the minimum or maximum representable value).
To fix the first issue, I've now created not just one set of routines
using host FP arithmetic (on long double), but instead three different
sets of routines, one each for host float, double, and long double.
Operations can then be performed in the desired type directly, avoiding
the extra rounding step. Using C++ templates, the three sets can all
share the same source code without duplication.
To fix the second issue, I'm simply enforcing the same conversion rule
(which makes sense anyway) when converting out-of-range values from
FP to LONGEST.
To contain the code complexity with the variety of options now possible,
I've created a new class "target_float_ops". There are a total of five
separate implementations of this:
host_float_ops<float> Implemented via host FP in given type
host_float_ops<double>
host_float_ops<long double>
mpfr_float_ops Implemented via MPFR if available
decimal_float_ops Implemented via libdecnumber
Note instead of using the DOUBLEST define, this always just uses the
"long double" data type. But since we now require C++11 anyway, this
type must in any case be avaialble unconditionally.
Most target floating-point operations simply dispatch to a (virtual)
member routine of this class. Which implementation to choose is
determined from the target types involved, and whether they match
some host type or not. E.g. any operation on a single type that
matches a host type is performed in that type. Operations involving
two types that both match host types are performed in the larger one
(according to C/C++ implicit conversion rules). Operations that
involve any type that does not match a host type are performed using
MPFR. (And of course operations involving decimal FP are performed
using libdecnumber.)
This first patch implements the refactoring of target-float.c as
described above, introduing the host_float_ops and decimal_float_ops
classes, and using them. Use of MPFR is introduced in the second patch.
A bit of special-case handling code is moved around to as to avoid
code duplication between host_float_ops and mpfr_float_ops.
Note that due to the changes mentioned above, I've had to update (fix)
the floating-point register values tested in the gdb.arch/vsx-regs.exp
test case. (The new values now work both with host arithmetic and MPFR.)
gdb/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* target-float.c: Do not include <math.h>.
Include <cmath> and <limits>.
(DOUBLEST): Do not define.
(class target_float_ops): New type.
(class host_float_ops): New templated type.
(class decimal_float_ops): New type.
(floatformat_to_doublest): Rename to ...
(host_float_ops<T>::from_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::from_target): New overload using a type argument.
(floatformat_from_doublest): Rename to ...
(host_float_ops<T>::to_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::to_target): New overload using a type argument.
(floatformat_printf_format): New function.
(struct printf_length_modifier): New templated type.
(floatformat_to_string): Rename to ...
(host_float_ops<T>::to_string): ... this. Use type instead of
floatformat argument. Use floatformat_printf_format and
printf_length_modifier. Remove special handling of invalid numbers,
infinities and NaN (moved to target_float_to_string).
(struct scanf_length_modifier): New templated type.
(floatformat_from_string): Rename to ...
(host_float_ops<T>::from_string): ... this. Use type instead of
floatformat argument. Use scanf_length_modifier.
(floatformat_to_longest): Rename to ...
(host_float_ops<T>::to_longest): ... this. Use type instead of
floatformat argument. Handle out-of-range values deterministically.
(floatformat_from_longest): Rename to ...
(host_float_ops<T>::from_longest): ... this. Use type instead of
floatformat argument.
(floatformat_from_ulongest): Rename to ...
(host_float_ops<T>::from_ulongest): ... this. Use type instead of
floatformat argument.
(floatformat_to_host_double): Rename to ...
(host_float_ops<T>::to_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_from_host_double): Rename to ...
(host_float_ops<T>::from_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_convert): Rename to ...
(host_float_ops<T>::convert): ... this. Use type instead of
floatformat arguments. Remove handling of no-op conversions.
(floatformat_binop): Rename to ...
(host_float_ops<T>::binop): ... this. Use type instead of
floatformat arguments.
(floatformat_compare): Rename to ...
(host_float_ops<T>::compare): ... this. Use type instead of
floatformat arguments.
(match_endianness): Use type instead of length/byte_order arguments.
(set_decnumber_context): Likewise.
(decimal_from_number): Likewise. Update calls.
(decimal_to_number): Likewise.
(decimal_is_zero): Likewise. Update calls. Move to earlier in file.
(decimal_float_ops::to_host_double): New dummy function.
(decimal_float_ops::from_host_double): Likewise.
(decimal_to_string): Rename to ...
(decimal_float_ops::to_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_string): Rename to ...
(decimal_float_ops::from_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_longest): Rename to ...
(decimal_float_ops::from_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_ulongest): Rename to ...
(decimal_float_ops::from_ulongest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_to_longest): Rename to ...
(decimal_float_ops::to_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_binop): Rename to ...
(decimal_float_ops::binop): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_compare): Rename to ...
(decimal_float_ops::compare): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_convert): Rename to ...
(decimal_float_ops::convert): ... this. Use type instead of
length/byte_order arguments. Update calls.
(target_float_same_category_p): New function.
(target_float_same_format_p): Likewise.
(target_float_format_length): Likewise.
(enum target_float_ops_kind): New type.
(get_target_float_ops_kind): New function.
(get_target_float_ops): Three new overloaded functions.
(target_float_is_zero): Update call.
(target_float_to_string): Add special handling of invalid numbers,
infinities and NaN (moved from floatformat_to_string). Use
target_float_ops callback.
(target_float_from_string): Use target_float_ops callback.
(target_float_to_longest): Likewise.
(target_float_from_longest): Likewise.
(target_float_from_ulongest): Likewise.
(target_float_to_host_double): Likewise.
(target_float_from_host_double): Likewise.
(target_float_convert): Add special case for no-op conversions.
Use target_float_ops callback.
(target_float_binop): Use target_float_ops callback.
(target_float_compare): Likewise.
gdb/testsuite/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
|
|
|
/* Convert the byte-stream ADDR, interpreted as floating-point type TYPE,
|
|
|
|
to a string, optionally using the print format FORMAT. */
|
|
|
|
template<typename T> struct printf_length_modifier
|
|
|
|
{
|
|
|
|
static constexpr char value = 0;
|
|
|
|
};
|
|
|
|
template<> struct printf_length_modifier<long double>
|
|
|
|
{
|
|
|
|
static constexpr char value = 'L';
|
|
|
|
};
|
|
|
|
template<typename T> std::string
|
|
|
|
host_float_ops<T>::to_string (const gdb_byte *addr, const struct type *type,
|
|
|
|
const char *format) const
|
|
|
|
{
|
Target FP: Merge doublest.c and dfp.c into target-float.c
Now that all target FP operations are performed via target-float.c,
this file remains the sole caller of functions in doublest.c and dfp.c.
Therefore, this patch merges the latter files into the former and
makes all their function static there.
gdb/ChangeLog:
2017-11-06 Ulrich Weigand <uweigand@de.ibm.com>
* Makefile.in (SFILES): Remove doublest.c and dfp.c.
(HFILES_NO_SRCDIR): Remove doublest.h and dfp.h.
(COMMON_OBS): Remove doublest.o and dfp.o.
Do not build target-float.c (instead of doublest.c)
with -Wformat-nonliteral.
* doublest.c: Remove file.
* doublest.h: Remove file.
* dfp.c: Remove file.
* dfp.h: Remove file.
* target-float.c: Do not include "doublest.h" and "dfp.h".
(DOUBLEST): Move here from doublest.h.
(enum float_kind): Likewise.
(FLOATFORMAT_CHAR_BIT): Likewise.
(FLOATFORMAT_LARGEST_BYTES): Likewise.
(floatformat_totalsize_bytes): Move here from doublest.c. Make static.
(floatformat_precision): Likewise.
(floatformat_normalize_byteorder, get_field, put_field): Likewise.
(floatformat_is_negative, floatformat_classify, floatformat_mantissa):
Likewise.
(host_float_format, host_double_format, host_long_double_format):
Likewise.
(floatformat_to_string, floatformat_from_string): Likewise.
(floatformat_to_doublest): Likewise. Also, inline the original
convert_floatformat_to_doublest.
(floatformat_from_doublest): Likewise. Also, inline the original
convert_floatformat_from_doublest.
Include "dpd/decimal128.h", "dpd/decimal64.h", and "dpd/decimal32.h".
(MAX_DECIMAL_STRING): Move here from dfp.c.
(match_endianness): Likewise.
(set_decnumber_context, decimal_check_errors): Likewise.
(decimal_from_number, decimal_to_number): Likewise.
(decimal_to_string, decimal_from_string): Likewise. Make static.
(decimal_from_longest, decimal_from_ulongest): Likewise.
(decimal_to_longest): Likewise.
(decimal_binop, decimal_is_zero, decimal_compare): Likewise.
(decimal_convert): Likewise.
2017-11-06 23:04:03 +08:00
|
|
|
/* Determine the format string to use on the host side. */
|
Target FP: Refactor use of host floating-point arithmetic
Prepare for using MPFR to implement floating-point arithmetic by
refactoring the way host floating-point arithmetic is currently used.
In particular, fix the following two problems that cause different
(and incorrect) results due to using host arithmetic:
- Current processing always uses host "long double", and then converts
back to the actual target format. This may introduce rounding errors.
- Conversion of FP values to LONGEST simply does a host C++ type cast.
However the result of such a cast is undefined if the source value
is outside the representable range. MPFR always has defined behavior
here (returns the minimum or maximum representable value).
To fix the first issue, I've now created not just one set of routines
using host FP arithmetic (on long double), but instead three different
sets of routines, one each for host float, double, and long double.
Operations can then be performed in the desired type directly, avoiding
the extra rounding step. Using C++ templates, the three sets can all
share the same source code without duplication.
To fix the second issue, I'm simply enforcing the same conversion rule
(which makes sense anyway) when converting out-of-range values from
FP to LONGEST.
To contain the code complexity with the variety of options now possible,
I've created a new class "target_float_ops". There are a total of five
separate implementations of this:
host_float_ops<float> Implemented via host FP in given type
host_float_ops<double>
host_float_ops<long double>
mpfr_float_ops Implemented via MPFR if available
decimal_float_ops Implemented via libdecnumber
Note instead of using the DOUBLEST define, this always just uses the
"long double" data type. But since we now require C++11 anyway, this
type must in any case be avaialble unconditionally.
Most target floating-point operations simply dispatch to a (virtual)
member routine of this class. Which implementation to choose is
determined from the target types involved, and whether they match
some host type or not. E.g. any operation on a single type that
matches a host type is performed in that type. Operations involving
two types that both match host types are performed in the larger one
(according to C/C++ implicit conversion rules). Operations that
involve any type that does not match a host type are performed using
MPFR. (And of course operations involving decimal FP are performed
using libdecnumber.)
This first patch implements the refactoring of target-float.c as
described above, introduing the host_float_ops and decimal_float_ops
classes, and using them. Use of MPFR is introduced in the second patch.
A bit of special-case handling code is moved around to as to avoid
code duplication between host_float_ops and mpfr_float_ops.
Note that due to the changes mentioned above, I've had to update (fix)
the floating-point register values tested in the gdb.arch/vsx-regs.exp
test case. (The new values now work both with host arithmetic and MPFR.)
gdb/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* target-float.c: Do not include <math.h>.
Include <cmath> and <limits>.
(DOUBLEST): Do not define.
(class target_float_ops): New type.
(class host_float_ops): New templated type.
(class decimal_float_ops): New type.
(floatformat_to_doublest): Rename to ...
(host_float_ops<T>::from_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::from_target): New overload using a type argument.
(floatformat_from_doublest): Rename to ...
(host_float_ops<T>::to_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::to_target): New overload using a type argument.
(floatformat_printf_format): New function.
(struct printf_length_modifier): New templated type.
(floatformat_to_string): Rename to ...
(host_float_ops<T>::to_string): ... this. Use type instead of
floatformat argument. Use floatformat_printf_format and
printf_length_modifier. Remove special handling of invalid numbers,
infinities and NaN (moved to target_float_to_string).
(struct scanf_length_modifier): New templated type.
(floatformat_from_string): Rename to ...
(host_float_ops<T>::from_string): ... this. Use type instead of
floatformat argument. Use scanf_length_modifier.
(floatformat_to_longest): Rename to ...
(host_float_ops<T>::to_longest): ... this. Use type instead of
floatformat argument. Handle out-of-range values deterministically.
(floatformat_from_longest): Rename to ...
(host_float_ops<T>::from_longest): ... this. Use type instead of
floatformat argument.
(floatformat_from_ulongest): Rename to ...
(host_float_ops<T>::from_ulongest): ... this. Use type instead of
floatformat argument.
(floatformat_to_host_double): Rename to ...
(host_float_ops<T>::to_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_from_host_double): Rename to ...
(host_float_ops<T>::from_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_convert): Rename to ...
(host_float_ops<T>::convert): ... this. Use type instead of
floatformat arguments. Remove handling of no-op conversions.
(floatformat_binop): Rename to ...
(host_float_ops<T>::binop): ... this. Use type instead of
floatformat arguments.
(floatformat_compare): Rename to ...
(host_float_ops<T>::compare): ... this. Use type instead of
floatformat arguments.
(match_endianness): Use type instead of length/byte_order arguments.
(set_decnumber_context): Likewise.
(decimal_from_number): Likewise. Update calls.
(decimal_to_number): Likewise.
(decimal_is_zero): Likewise. Update calls. Move to earlier in file.
(decimal_float_ops::to_host_double): New dummy function.
(decimal_float_ops::from_host_double): Likewise.
(decimal_to_string): Rename to ...
(decimal_float_ops::to_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_string): Rename to ...
(decimal_float_ops::from_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_longest): Rename to ...
(decimal_float_ops::from_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_ulongest): Rename to ...
(decimal_float_ops::from_ulongest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_to_longest): Rename to ...
(decimal_float_ops::to_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_binop): Rename to ...
(decimal_float_ops::binop): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_compare): Rename to ...
(decimal_float_ops::compare): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_convert): Rename to ...
(decimal_float_ops::convert): ... this. Use type instead of
length/byte_order arguments. Update calls.
(target_float_same_category_p): New function.
(target_float_same_format_p): Likewise.
(target_float_format_length): Likewise.
(enum target_float_ops_kind): New type.
(get_target_float_ops_kind): New function.
(get_target_float_ops): Three new overloaded functions.
(target_float_is_zero): Update call.
(target_float_to_string): Add special handling of invalid numbers,
infinities and NaN (moved from floatformat_to_string). Use
target_float_ops callback.
(target_float_from_string): Use target_float_ops callback.
(target_float_to_longest): Likewise.
(target_float_from_longest): Likewise.
(target_float_from_ulongest): Likewise.
(target_float_to_host_double): Likewise.
(target_float_from_host_double): Likewise.
(target_float_convert): Add special case for no-op conversions.
Use target_float_ops callback.
(target_float_binop): Use target_float_ops callback.
(target_float_compare): Likewise.
gdb/testsuite/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
|
|
|
constexpr char length = printf_length_modifier<T>::value;
|
|
|
|
const struct floatformat *fmt = floatformat_from_type (type);
|
|
|
|
std::string host_format = floatformat_printf_format (fmt, format, length);
|
Target FP: Merge doublest.c and dfp.c into target-float.c
Now that all target FP operations are performed via target-float.c,
this file remains the sole caller of functions in doublest.c and dfp.c.
Therefore, this patch merges the latter files into the former and
makes all their function static there.
gdb/ChangeLog:
2017-11-06 Ulrich Weigand <uweigand@de.ibm.com>
* Makefile.in (SFILES): Remove doublest.c and dfp.c.
(HFILES_NO_SRCDIR): Remove doublest.h and dfp.h.
(COMMON_OBS): Remove doublest.o and dfp.o.
Do not build target-float.c (instead of doublest.c)
with -Wformat-nonliteral.
* doublest.c: Remove file.
* doublest.h: Remove file.
* dfp.c: Remove file.
* dfp.h: Remove file.
* target-float.c: Do not include "doublest.h" and "dfp.h".
(DOUBLEST): Move here from doublest.h.
(enum float_kind): Likewise.
(FLOATFORMAT_CHAR_BIT): Likewise.
(FLOATFORMAT_LARGEST_BYTES): Likewise.
(floatformat_totalsize_bytes): Move here from doublest.c. Make static.
(floatformat_precision): Likewise.
(floatformat_normalize_byteorder, get_field, put_field): Likewise.
(floatformat_is_negative, floatformat_classify, floatformat_mantissa):
Likewise.
(host_float_format, host_double_format, host_long_double_format):
Likewise.
(floatformat_to_string, floatformat_from_string): Likewise.
(floatformat_to_doublest): Likewise. Also, inline the original
convert_floatformat_to_doublest.
(floatformat_from_doublest): Likewise. Also, inline the original
convert_floatformat_from_doublest.
Include "dpd/decimal128.h", "dpd/decimal64.h", and "dpd/decimal32.h".
(MAX_DECIMAL_STRING): Move here from dfp.c.
(match_endianness): Likewise.
(set_decnumber_context, decimal_check_errors): Likewise.
(decimal_from_number, decimal_to_number): Likewise.
(decimal_to_string, decimal_from_string): Likewise. Make static.
(decimal_from_longest, decimal_from_ulongest): Likewise.
(decimal_to_longest): Likewise.
(decimal_binop, decimal_is_zero, decimal_compare): Likewise.
(decimal_convert): Likewise.
2017-11-06 23:04:03 +08:00
|
|
|
|
Target FP: Refactor use of host floating-point arithmetic
Prepare for using MPFR to implement floating-point arithmetic by
refactoring the way host floating-point arithmetic is currently used.
In particular, fix the following two problems that cause different
(and incorrect) results due to using host arithmetic:
- Current processing always uses host "long double", and then converts
back to the actual target format. This may introduce rounding errors.
- Conversion of FP values to LONGEST simply does a host C++ type cast.
However the result of such a cast is undefined if the source value
is outside the representable range. MPFR always has defined behavior
here (returns the minimum or maximum representable value).
To fix the first issue, I've now created not just one set of routines
using host FP arithmetic (on long double), but instead three different
sets of routines, one each for host float, double, and long double.
Operations can then be performed in the desired type directly, avoiding
the extra rounding step. Using C++ templates, the three sets can all
share the same source code without duplication.
To fix the second issue, I'm simply enforcing the same conversion rule
(which makes sense anyway) when converting out-of-range values from
FP to LONGEST.
To contain the code complexity with the variety of options now possible,
I've created a new class "target_float_ops". There are a total of five
separate implementations of this:
host_float_ops<float> Implemented via host FP in given type
host_float_ops<double>
host_float_ops<long double>
mpfr_float_ops Implemented via MPFR if available
decimal_float_ops Implemented via libdecnumber
Note instead of using the DOUBLEST define, this always just uses the
"long double" data type. But since we now require C++11 anyway, this
type must in any case be avaialble unconditionally.
Most target floating-point operations simply dispatch to a (virtual)
member routine of this class. Which implementation to choose is
determined from the target types involved, and whether they match
some host type or not. E.g. any operation on a single type that
matches a host type is performed in that type. Operations involving
two types that both match host types are performed in the larger one
(according to C/C++ implicit conversion rules). Operations that
involve any type that does not match a host type are performed using
MPFR. (And of course operations involving decimal FP are performed
using libdecnumber.)
This first patch implements the refactoring of target-float.c as
described above, introduing the host_float_ops and decimal_float_ops
classes, and using them. Use of MPFR is introduced in the second patch.
A bit of special-case handling code is moved around to as to avoid
code duplication between host_float_ops and mpfr_float_ops.
Note that due to the changes mentioned above, I've had to update (fix)
the floating-point register values tested in the gdb.arch/vsx-regs.exp
test case. (The new values now work both with host arithmetic and MPFR.)
gdb/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* target-float.c: Do not include <math.h>.
Include <cmath> and <limits>.
(DOUBLEST): Do not define.
(class target_float_ops): New type.
(class host_float_ops): New templated type.
(class decimal_float_ops): New type.
(floatformat_to_doublest): Rename to ...
(host_float_ops<T>::from_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::from_target): New overload using a type argument.
(floatformat_from_doublest): Rename to ...
(host_float_ops<T>::to_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::to_target): New overload using a type argument.
(floatformat_printf_format): New function.
(struct printf_length_modifier): New templated type.
(floatformat_to_string): Rename to ...
(host_float_ops<T>::to_string): ... this. Use type instead of
floatformat argument. Use floatformat_printf_format and
printf_length_modifier. Remove special handling of invalid numbers,
infinities and NaN (moved to target_float_to_string).
(struct scanf_length_modifier): New templated type.
(floatformat_from_string): Rename to ...
(host_float_ops<T>::from_string): ... this. Use type instead of
floatformat argument. Use scanf_length_modifier.
(floatformat_to_longest): Rename to ...
(host_float_ops<T>::to_longest): ... this. Use type instead of
floatformat argument. Handle out-of-range values deterministically.
(floatformat_from_longest): Rename to ...
(host_float_ops<T>::from_longest): ... this. Use type instead of
floatformat argument.
(floatformat_from_ulongest): Rename to ...
(host_float_ops<T>::from_ulongest): ... this. Use type instead of
floatformat argument.
(floatformat_to_host_double): Rename to ...
(host_float_ops<T>::to_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_from_host_double): Rename to ...
(host_float_ops<T>::from_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_convert): Rename to ...
(host_float_ops<T>::convert): ... this. Use type instead of
floatformat arguments. Remove handling of no-op conversions.
(floatformat_binop): Rename to ...
(host_float_ops<T>::binop): ... this. Use type instead of
floatformat arguments.
(floatformat_compare): Rename to ...
(host_float_ops<T>::compare): ... this. Use type instead of
floatformat arguments.
(match_endianness): Use type instead of length/byte_order arguments.
(set_decnumber_context): Likewise.
(decimal_from_number): Likewise. Update calls.
(decimal_to_number): Likewise.
(decimal_is_zero): Likewise. Update calls. Move to earlier in file.
(decimal_float_ops::to_host_double): New dummy function.
(decimal_float_ops::from_host_double): Likewise.
(decimal_to_string): Rename to ...
(decimal_float_ops::to_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_string): Rename to ...
(decimal_float_ops::from_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_longest): Rename to ...
(decimal_float_ops::from_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_ulongest): Rename to ...
(decimal_float_ops::from_ulongest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_to_longest): Rename to ...
(decimal_float_ops::to_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_binop): Rename to ...
(decimal_float_ops::binop): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_compare): Rename to ...
(decimal_float_ops::compare): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_convert): Rename to ...
(decimal_float_ops::convert): ... this. Use type instead of
length/byte_order arguments. Update calls.
(target_float_same_category_p): New function.
(target_float_same_format_p): Likewise.
(target_float_format_length): Likewise.
(enum target_float_ops_kind): New type.
(get_target_float_ops_kind): New function.
(get_target_float_ops): Three new overloaded functions.
(target_float_is_zero): Update call.
(target_float_to_string): Add special handling of invalid numbers,
infinities and NaN (moved from floatformat_to_string). Use
target_float_ops callback.
(target_float_from_string): Use target_float_ops callback.
(target_float_to_longest): Likewise.
(target_float_from_longest): Likewise.
(target_float_from_ulongest): Likewise.
(target_float_to_host_double): Likewise.
(target_float_from_host_double): Likewise.
(target_float_convert): Add special case for no-op conversions.
Use target_float_ops callback.
(target_float_binop): Use target_float_ops callback.
(target_float_compare): Likewise.
gdb/testsuite/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
|
|
|
T host_float;
|
|
|
|
from_target (type, addr, &host_float);
|
|
|
|
return string_printf (host_format.c_str (), host_float);
|
Target FP: Merge doublest.c and dfp.c into target-float.c
Now that all target FP operations are performed via target-float.c,
this file remains the sole caller of functions in doublest.c and dfp.c.
Therefore, this patch merges the latter files into the former and
makes all their function static there.
gdb/ChangeLog:
2017-11-06 Ulrich Weigand <uweigand@de.ibm.com>
* Makefile.in (SFILES): Remove doublest.c and dfp.c.
(HFILES_NO_SRCDIR): Remove doublest.h and dfp.h.
(COMMON_OBS): Remove doublest.o and dfp.o.
Do not build target-float.c (instead of doublest.c)
with -Wformat-nonliteral.
* doublest.c: Remove file.
* doublest.h: Remove file.
* dfp.c: Remove file.
* dfp.h: Remove file.
* target-float.c: Do not include "doublest.h" and "dfp.h".
(DOUBLEST): Move here from doublest.h.
(enum float_kind): Likewise.
(FLOATFORMAT_CHAR_BIT): Likewise.
(FLOATFORMAT_LARGEST_BYTES): Likewise.
(floatformat_totalsize_bytes): Move here from doublest.c. Make static.
(floatformat_precision): Likewise.
(floatformat_normalize_byteorder, get_field, put_field): Likewise.
(floatformat_is_negative, floatformat_classify, floatformat_mantissa):
Likewise.
(host_float_format, host_double_format, host_long_double_format):
Likewise.
(floatformat_to_string, floatformat_from_string): Likewise.
(floatformat_to_doublest): Likewise. Also, inline the original
convert_floatformat_to_doublest.
(floatformat_from_doublest): Likewise. Also, inline the original
convert_floatformat_from_doublest.
Include "dpd/decimal128.h", "dpd/decimal64.h", and "dpd/decimal32.h".
(MAX_DECIMAL_STRING): Move here from dfp.c.
(match_endianness): Likewise.
(set_decnumber_context, decimal_check_errors): Likewise.
(decimal_from_number, decimal_to_number): Likewise.
(decimal_to_string, decimal_from_string): Likewise. Make static.
(decimal_from_longest, decimal_from_ulongest): Likewise.
(decimal_to_longest): Likewise.
(decimal_binop, decimal_is_zero, decimal_compare): Likewise.
(decimal_convert): Likewise.
2017-11-06 23:04:03 +08:00
|
|
|
}
|
|
|
|
|
Target FP: Refactor use of host floating-point arithmetic
Prepare for using MPFR to implement floating-point arithmetic by
refactoring the way host floating-point arithmetic is currently used.
In particular, fix the following two problems that cause different
(and incorrect) results due to using host arithmetic:
- Current processing always uses host "long double", and then converts
back to the actual target format. This may introduce rounding errors.
- Conversion of FP values to LONGEST simply does a host C++ type cast.
However the result of such a cast is undefined if the source value
is outside the representable range. MPFR always has defined behavior
here (returns the minimum or maximum representable value).
To fix the first issue, I've now created not just one set of routines
using host FP arithmetic (on long double), but instead three different
sets of routines, one each for host float, double, and long double.
Operations can then be performed in the desired type directly, avoiding
the extra rounding step. Using C++ templates, the three sets can all
share the same source code without duplication.
To fix the second issue, I'm simply enforcing the same conversion rule
(which makes sense anyway) when converting out-of-range values from
FP to LONGEST.
To contain the code complexity with the variety of options now possible,
I've created a new class "target_float_ops". There are a total of five
separate implementations of this:
host_float_ops<float> Implemented via host FP in given type
host_float_ops<double>
host_float_ops<long double>
mpfr_float_ops Implemented via MPFR if available
decimal_float_ops Implemented via libdecnumber
Note instead of using the DOUBLEST define, this always just uses the
"long double" data type. But since we now require C++11 anyway, this
type must in any case be avaialble unconditionally.
Most target floating-point operations simply dispatch to a (virtual)
member routine of this class. Which implementation to choose is
determined from the target types involved, and whether they match
some host type or not. E.g. any operation on a single type that
matches a host type is performed in that type. Operations involving
two types that both match host types are performed in the larger one
(according to C/C++ implicit conversion rules). Operations that
involve any type that does not match a host type are performed using
MPFR. (And of course operations involving decimal FP are performed
using libdecnumber.)
This first patch implements the refactoring of target-float.c as
described above, introduing the host_float_ops and decimal_float_ops
classes, and using them. Use of MPFR is introduced in the second patch.
A bit of special-case handling code is moved around to as to avoid
code duplication between host_float_ops and mpfr_float_ops.
Note that due to the changes mentioned above, I've had to update (fix)
the floating-point register values tested in the gdb.arch/vsx-regs.exp
test case. (The new values now work both with host arithmetic and MPFR.)
gdb/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* target-float.c: Do not include <math.h>.
Include <cmath> and <limits>.
(DOUBLEST): Do not define.
(class target_float_ops): New type.
(class host_float_ops): New templated type.
(class decimal_float_ops): New type.
(floatformat_to_doublest): Rename to ...
(host_float_ops<T>::from_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::from_target): New overload using a type argument.
(floatformat_from_doublest): Rename to ...
(host_float_ops<T>::to_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::to_target): New overload using a type argument.
(floatformat_printf_format): New function.
(struct printf_length_modifier): New templated type.
(floatformat_to_string): Rename to ...
(host_float_ops<T>::to_string): ... this. Use type instead of
floatformat argument. Use floatformat_printf_format and
printf_length_modifier. Remove special handling of invalid numbers,
infinities and NaN (moved to target_float_to_string).
(struct scanf_length_modifier): New templated type.
(floatformat_from_string): Rename to ...
(host_float_ops<T>::from_string): ... this. Use type instead of
floatformat argument. Use scanf_length_modifier.
(floatformat_to_longest): Rename to ...
(host_float_ops<T>::to_longest): ... this. Use type instead of
floatformat argument. Handle out-of-range values deterministically.
(floatformat_from_longest): Rename to ...
(host_float_ops<T>::from_longest): ... this. Use type instead of
floatformat argument.
(floatformat_from_ulongest): Rename to ...
(host_float_ops<T>::from_ulongest): ... this. Use type instead of
floatformat argument.
(floatformat_to_host_double): Rename to ...
(host_float_ops<T>::to_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_from_host_double): Rename to ...
(host_float_ops<T>::from_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_convert): Rename to ...
(host_float_ops<T>::convert): ... this. Use type instead of
floatformat arguments. Remove handling of no-op conversions.
(floatformat_binop): Rename to ...
(host_float_ops<T>::binop): ... this. Use type instead of
floatformat arguments.
(floatformat_compare): Rename to ...
(host_float_ops<T>::compare): ... this. Use type instead of
floatformat arguments.
(match_endianness): Use type instead of length/byte_order arguments.
(set_decnumber_context): Likewise.
(decimal_from_number): Likewise. Update calls.
(decimal_to_number): Likewise.
(decimal_is_zero): Likewise. Update calls. Move to earlier in file.
(decimal_float_ops::to_host_double): New dummy function.
(decimal_float_ops::from_host_double): Likewise.
(decimal_to_string): Rename to ...
(decimal_float_ops::to_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_string): Rename to ...
(decimal_float_ops::from_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_longest): Rename to ...
(decimal_float_ops::from_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_ulongest): Rename to ...
(decimal_float_ops::from_ulongest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_to_longest): Rename to ...
(decimal_float_ops::to_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_binop): Rename to ...
(decimal_float_ops::binop): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_compare): Rename to ...
(decimal_float_ops::compare): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_convert): Rename to ...
(decimal_float_ops::convert): ... this. Use type instead of
length/byte_order arguments. Update calls.
(target_float_same_category_p): New function.
(target_float_same_format_p): Likewise.
(target_float_format_length): Likewise.
(enum target_float_ops_kind): New type.
(get_target_float_ops_kind): New function.
(get_target_float_ops): Three new overloaded functions.
(target_float_is_zero): Update call.
(target_float_to_string): Add special handling of invalid numbers,
infinities and NaN (moved from floatformat_to_string). Use
target_float_ops callback.
(target_float_from_string): Use target_float_ops callback.
(target_float_to_longest): Likewise.
(target_float_from_longest): Likewise.
(target_float_from_ulongest): Likewise.
(target_float_to_host_double): Likewise.
(target_float_from_host_double): Likewise.
(target_float_convert): Add special case for no-op conversions.
Use target_float_ops callback.
(target_float_binop): Use target_float_ops callback.
(target_float_compare): Likewise.
gdb/testsuite/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
|
|
|
/* Parse string IN into a target floating-number of type TYPE and
|
Target FP: Merge doublest.c and dfp.c into target-float.c
Now that all target FP operations are performed via target-float.c,
this file remains the sole caller of functions in doublest.c and dfp.c.
Therefore, this patch merges the latter files into the former and
makes all their function static there.
gdb/ChangeLog:
2017-11-06 Ulrich Weigand <uweigand@de.ibm.com>
* Makefile.in (SFILES): Remove doublest.c and dfp.c.
(HFILES_NO_SRCDIR): Remove doublest.h and dfp.h.
(COMMON_OBS): Remove doublest.o and dfp.o.
Do not build target-float.c (instead of doublest.c)
with -Wformat-nonliteral.
* doublest.c: Remove file.
* doublest.h: Remove file.
* dfp.c: Remove file.
* dfp.h: Remove file.
* target-float.c: Do not include "doublest.h" and "dfp.h".
(DOUBLEST): Move here from doublest.h.
(enum float_kind): Likewise.
(FLOATFORMAT_CHAR_BIT): Likewise.
(FLOATFORMAT_LARGEST_BYTES): Likewise.
(floatformat_totalsize_bytes): Move here from doublest.c. Make static.
(floatformat_precision): Likewise.
(floatformat_normalize_byteorder, get_field, put_field): Likewise.
(floatformat_is_negative, floatformat_classify, floatformat_mantissa):
Likewise.
(host_float_format, host_double_format, host_long_double_format):
Likewise.
(floatformat_to_string, floatformat_from_string): Likewise.
(floatformat_to_doublest): Likewise. Also, inline the original
convert_floatformat_to_doublest.
(floatformat_from_doublest): Likewise. Also, inline the original
convert_floatformat_from_doublest.
Include "dpd/decimal128.h", "dpd/decimal64.h", and "dpd/decimal32.h".
(MAX_DECIMAL_STRING): Move here from dfp.c.
(match_endianness): Likewise.
(set_decnumber_context, decimal_check_errors): Likewise.
(decimal_from_number, decimal_to_number): Likewise.
(decimal_to_string, decimal_from_string): Likewise. Make static.
(decimal_from_longest, decimal_from_ulongest): Likewise.
(decimal_to_longest): Likewise.
(decimal_binop, decimal_is_zero, decimal_compare): Likewise.
(decimal_convert): Likewise.
2017-11-06 23:04:03 +08:00
|
|
|
store it as byte-stream ADDR. Return whether parsing succeeded. */
|
Target FP: Refactor use of host floating-point arithmetic
Prepare for using MPFR to implement floating-point arithmetic by
refactoring the way host floating-point arithmetic is currently used.
In particular, fix the following two problems that cause different
(and incorrect) results due to using host arithmetic:
- Current processing always uses host "long double", and then converts
back to the actual target format. This may introduce rounding errors.
- Conversion of FP values to LONGEST simply does a host C++ type cast.
However the result of such a cast is undefined if the source value
is outside the representable range. MPFR always has defined behavior
here (returns the minimum or maximum representable value).
To fix the first issue, I've now created not just one set of routines
using host FP arithmetic (on long double), but instead three different
sets of routines, one each for host float, double, and long double.
Operations can then be performed in the desired type directly, avoiding
the extra rounding step. Using C++ templates, the three sets can all
share the same source code without duplication.
To fix the second issue, I'm simply enforcing the same conversion rule
(which makes sense anyway) when converting out-of-range values from
FP to LONGEST.
To contain the code complexity with the variety of options now possible,
I've created a new class "target_float_ops". There are a total of five
separate implementations of this:
host_float_ops<float> Implemented via host FP in given type
host_float_ops<double>
host_float_ops<long double>
mpfr_float_ops Implemented via MPFR if available
decimal_float_ops Implemented via libdecnumber
Note instead of using the DOUBLEST define, this always just uses the
"long double" data type. But since we now require C++11 anyway, this
type must in any case be avaialble unconditionally.
Most target floating-point operations simply dispatch to a (virtual)
member routine of this class. Which implementation to choose is
determined from the target types involved, and whether they match
some host type or not. E.g. any operation on a single type that
matches a host type is performed in that type. Operations involving
two types that both match host types are performed in the larger one
(according to C/C++ implicit conversion rules). Operations that
involve any type that does not match a host type are performed using
MPFR. (And of course operations involving decimal FP are performed
using libdecnumber.)
This first patch implements the refactoring of target-float.c as
described above, introduing the host_float_ops and decimal_float_ops
classes, and using them. Use of MPFR is introduced in the second patch.
A bit of special-case handling code is moved around to as to avoid
code duplication between host_float_ops and mpfr_float_ops.
Note that due to the changes mentioned above, I've had to update (fix)
the floating-point register values tested in the gdb.arch/vsx-regs.exp
test case. (The new values now work both with host arithmetic and MPFR.)
gdb/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* target-float.c: Do not include <math.h>.
Include <cmath> and <limits>.
(DOUBLEST): Do not define.
(class target_float_ops): New type.
(class host_float_ops): New templated type.
(class decimal_float_ops): New type.
(floatformat_to_doublest): Rename to ...
(host_float_ops<T>::from_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::from_target): New overload using a type argument.
(floatformat_from_doublest): Rename to ...
(host_float_ops<T>::to_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::to_target): New overload using a type argument.
(floatformat_printf_format): New function.
(struct printf_length_modifier): New templated type.
(floatformat_to_string): Rename to ...
(host_float_ops<T>::to_string): ... this. Use type instead of
floatformat argument. Use floatformat_printf_format and
printf_length_modifier. Remove special handling of invalid numbers,
infinities and NaN (moved to target_float_to_string).
(struct scanf_length_modifier): New templated type.
(floatformat_from_string): Rename to ...
(host_float_ops<T>::from_string): ... this. Use type instead of
floatformat argument. Use scanf_length_modifier.
(floatformat_to_longest): Rename to ...
(host_float_ops<T>::to_longest): ... this. Use type instead of
floatformat argument. Handle out-of-range values deterministically.
(floatformat_from_longest): Rename to ...
(host_float_ops<T>::from_longest): ... this. Use type instead of
floatformat argument.
(floatformat_from_ulongest): Rename to ...
(host_float_ops<T>::from_ulongest): ... this. Use type instead of
floatformat argument.
(floatformat_to_host_double): Rename to ...
(host_float_ops<T>::to_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_from_host_double): Rename to ...
(host_float_ops<T>::from_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_convert): Rename to ...
(host_float_ops<T>::convert): ... this. Use type instead of
floatformat arguments. Remove handling of no-op conversions.
(floatformat_binop): Rename to ...
(host_float_ops<T>::binop): ... this. Use type instead of
floatformat arguments.
(floatformat_compare): Rename to ...
(host_float_ops<T>::compare): ... this. Use type instead of
floatformat arguments.
(match_endianness): Use type instead of length/byte_order arguments.
(set_decnumber_context): Likewise.
(decimal_from_number): Likewise. Update calls.
(decimal_to_number): Likewise.
(decimal_is_zero): Likewise. Update calls. Move to earlier in file.
(decimal_float_ops::to_host_double): New dummy function.
(decimal_float_ops::from_host_double): Likewise.
(decimal_to_string): Rename to ...
(decimal_float_ops::to_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_string): Rename to ...
(decimal_float_ops::from_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_longest): Rename to ...
(decimal_float_ops::from_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_ulongest): Rename to ...
(decimal_float_ops::from_ulongest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_to_longest): Rename to ...
(decimal_float_ops::to_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_binop): Rename to ...
(decimal_float_ops::binop): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_compare): Rename to ...
(decimal_float_ops::compare): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_convert): Rename to ...
(decimal_float_ops::convert): ... this. Use type instead of
length/byte_order arguments. Update calls.
(target_float_same_category_p): New function.
(target_float_same_format_p): Likewise.
(target_float_format_length): Likewise.
(enum target_float_ops_kind): New type.
(get_target_float_ops_kind): New function.
(get_target_float_ops): Three new overloaded functions.
(target_float_is_zero): Update call.
(target_float_to_string): Add special handling of invalid numbers,
infinities and NaN (moved from floatformat_to_string). Use
target_float_ops callback.
(target_float_from_string): Use target_float_ops callback.
(target_float_to_longest): Likewise.
(target_float_from_longest): Likewise.
(target_float_from_ulongest): Likewise.
(target_float_to_host_double): Likewise.
(target_float_from_host_double): Likewise.
(target_float_convert): Add special case for no-op conversions.
Use target_float_ops callback.
(target_float_binop): Use target_float_ops callback.
(target_float_compare): Likewise.
gdb/testsuite/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
|
|
|
template<typename T> struct scanf_length_modifier
|
|
|
|
{
|
|
|
|
static constexpr char value = 0;
|
|
|
|
};
|
|
|
|
template<> struct scanf_length_modifier<double>
|
|
|
|
{
|
|
|
|
static constexpr char value = 'l';
|
|
|
|
};
|
|
|
|
template<> struct scanf_length_modifier<long double>
|
|
|
|
{
|
|
|
|
static constexpr char value = 'L';
|
|
|
|
};
|
|
|
|
template<typename T> bool
|
|
|
|
host_float_ops<T>::from_string (gdb_byte *addr, const struct type *type,
|
|
|
|
const std::string &in) const
|
Target FP: Merge doublest.c and dfp.c into target-float.c
Now that all target FP operations are performed via target-float.c,
this file remains the sole caller of functions in doublest.c and dfp.c.
Therefore, this patch merges the latter files into the former and
makes all their function static there.
gdb/ChangeLog:
2017-11-06 Ulrich Weigand <uweigand@de.ibm.com>
* Makefile.in (SFILES): Remove doublest.c and dfp.c.
(HFILES_NO_SRCDIR): Remove doublest.h and dfp.h.
(COMMON_OBS): Remove doublest.o and dfp.o.
Do not build target-float.c (instead of doublest.c)
with -Wformat-nonliteral.
* doublest.c: Remove file.
* doublest.h: Remove file.
* dfp.c: Remove file.
* dfp.h: Remove file.
* target-float.c: Do not include "doublest.h" and "dfp.h".
(DOUBLEST): Move here from doublest.h.
(enum float_kind): Likewise.
(FLOATFORMAT_CHAR_BIT): Likewise.
(FLOATFORMAT_LARGEST_BYTES): Likewise.
(floatformat_totalsize_bytes): Move here from doublest.c. Make static.
(floatformat_precision): Likewise.
(floatformat_normalize_byteorder, get_field, put_field): Likewise.
(floatformat_is_negative, floatformat_classify, floatformat_mantissa):
Likewise.
(host_float_format, host_double_format, host_long_double_format):
Likewise.
(floatformat_to_string, floatformat_from_string): Likewise.
(floatformat_to_doublest): Likewise. Also, inline the original
convert_floatformat_to_doublest.
(floatformat_from_doublest): Likewise. Also, inline the original
convert_floatformat_from_doublest.
Include "dpd/decimal128.h", "dpd/decimal64.h", and "dpd/decimal32.h".
(MAX_DECIMAL_STRING): Move here from dfp.c.
(match_endianness): Likewise.
(set_decnumber_context, decimal_check_errors): Likewise.
(decimal_from_number, decimal_to_number): Likewise.
(decimal_to_string, decimal_from_string): Likewise. Make static.
(decimal_from_longest, decimal_from_ulongest): Likewise.
(decimal_to_longest): Likewise.
(decimal_binop, decimal_is_zero, decimal_compare): Likewise.
(decimal_convert): Likewise.
2017-11-06 23:04:03 +08:00
|
|
|
{
|
Target FP: Refactor use of host floating-point arithmetic
Prepare for using MPFR to implement floating-point arithmetic by
refactoring the way host floating-point arithmetic is currently used.
In particular, fix the following two problems that cause different
(and incorrect) results due to using host arithmetic:
- Current processing always uses host "long double", and then converts
back to the actual target format. This may introduce rounding errors.
- Conversion of FP values to LONGEST simply does a host C++ type cast.
However the result of such a cast is undefined if the source value
is outside the representable range. MPFR always has defined behavior
here (returns the minimum or maximum representable value).
To fix the first issue, I've now created not just one set of routines
using host FP arithmetic (on long double), but instead three different
sets of routines, one each for host float, double, and long double.
Operations can then be performed in the desired type directly, avoiding
the extra rounding step. Using C++ templates, the three sets can all
share the same source code without duplication.
To fix the second issue, I'm simply enforcing the same conversion rule
(which makes sense anyway) when converting out-of-range values from
FP to LONGEST.
To contain the code complexity with the variety of options now possible,
I've created a new class "target_float_ops". There are a total of five
separate implementations of this:
host_float_ops<float> Implemented via host FP in given type
host_float_ops<double>
host_float_ops<long double>
mpfr_float_ops Implemented via MPFR if available
decimal_float_ops Implemented via libdecnumber
Note instead of using the DOUBLEST define, this always just uses the
"long double" data type. But since we now require C++11 anyway, this
type must in any case be avaialble unconditionally.
Most target floating-point operations simply dispatch to a (virtual)
member routine of this class. Which implementation to choose is
determined from the target types involved, and whether they match
some host type or not. E.g. any operation on a single type that
matches a host type is performed in that type. Operations involving
two types that both match host types are performed in the larger one
(according to C/C++ implicit conversion rules). Operations that
involve any type that does not match a host type are performed using
MPFR. (And of course operations involving decimal FP are performed
using libdecnumber.)
This first patch implements the refactoring of target-float.c as
described above, introduing the host_float_ops and decimal_float_ops
classes, and using them. Use of MPFR is introduced in the second patch.
A bit of special-case handling code is moved around to as to avoid
code duplication between host_float_ops and mpfr_float_ops.
Note that due to the changes mentioned above, I've had to update (fix)
the floating-point register values tested in the gdb.arch/vsx-regs.exp
test case. (The new values now work both with host arithmetic and MPFR.)
gdb/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* target-float.c: Do not include <math.h>.
Include <cmath> and <limits>.
(DOUBLEST): Do not define.
(class target_float_ops): New type.
(class host_float_ops): New templated type.
(class decimal_float_ops): New type.
(floatformat_to_doublest): Rename to ...
(host_float_ops<T>::from_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::from_target): New overload using a type argument.
(floatformat_from_doublest): Rename to ...
(host_float_ops<T>::to_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::to_target): New overload using a type argument.
(floatformat_printf_format): New function.
(struct printf_length_modifier): New templated type.
(floatformat_to_string): Rename to ...
(host_float_ops<T>::to_string): ... this. Use type instead of
floatformat argument. Use floatformat_printf_format and
printf_length_modifier. Remove special handling of invalid numbers,
infinities and NaN (moved to target_float_to_string).
(struct scanf_length_modifier): New templated type.
(floatformat_from_string): Rename to ...
(host_float_ops<T>::from_string): ... this. Use type instead of
floatformat argument. Use scanf_length_modifier.
(floatformat_to_longest): Rename to ...
(host_float_ops<T>::to_longest): ... this. Use type instead of
floatformat argument. Handle out-of-range values deterministically.
(floatformat_from_longest): Rename to ...
(host_float_ops<T>::from_longest): ... this. Use type instead of
floatformat argument.
(floatformat_from_ulongest): Rename to ...
(host_float_ops<T>::from_ulongest): ... this. Use type instead of
floatformat argument.
(floatformat_to_host_double): Rename to ...
(host_float_ops<T>::to_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_from_host_double): Rename to ...
(host_float_ops<T>::from_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_convert): Rename to ...
(host_float_ops<T>::convert): ... this. Use type instead of
floatformat arguments. Remove handling of no-op conversions.
(floatformat_binop): Rename to ...
(host_float_ops<T>::binop): ... this. Use type instead of
floatformat arguments.
(floatformat_compare): Rename to ...
(host_float_ops<T>::compare): ... this. Use type instead of
floatformat arguments.
(match_endianness): Use type instead of length/byte_order arguments.
(set_decnumber_context): Likewise.
(decimal_from_number): Likewise. Update calls.
(decimal_to_number): Likewise.
(decimal_is_zero): Likewise. Update calls. Move to earlier in file.
(decimal_float_ops::to_host_double): New dummy function.
(decimal_float_ops::from_host_double): Likewise.
(decimal_to_string): Rename to ...
(decimal_float_ops::to_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_string): Rename to ...
(decimal_float_ops::from_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_longest): Rename to ...
(decimal_float_ops::from_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_ulongest): Rename to ...
(decimal_float_ops::from_ulongest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_to_longest): Rename to ...
(decimal_float_ops::to_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_binop): Rename to ...
(decimal_float_ops::binop): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_compare): Rename to ...
(decimal_float_ops::compare): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_convert): Rename to ...
(decimal_float_ops::convert): ... this. Use type instead of
length/byte_order arguments. Update calls.
(target_float_same_category_p): New function.
(target_float_same_format_p): Likewise.
(target_float_format_length): Likewise.
(enum target_float_ops_kind): New type.
(get_target_float_ops_kind): New function.
(get_target_float_ops): Three new overloaded functions.
(target_float_is_zero): Update call.
(target_float_to_string): Add special handling of invalid numbers,
infinities and NaN (moved from floatformat_to_string). Use
target_float_ops callback.
(target_float_from_string): Use target_float_ops callback.
(target_float_to_longest): Likewise.
(target_float_from_longest): Likewise.
(target_float_from_ulongest): Likewise.
(target_float_to_host_double): Likewise.
(target_float_from_host_double): Likewise.
(target_float_convert): Add special case for no-op conversions.
Use target_float_ops callback.
(target_float_binop): Use target_float_ops callback.
(target_float_compare): Likewise.
gdb/testsuite/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
|
|
|
T host_float;
|
Target FP: Merge doublest.c and dfp.c into target-float.c
Now that all target FP operations are performed via target-float.c,
this file remains the sole caller of functions in doublest.c and dfp.c.
Therefore, this patch merges the latter files into the former and
makes all their function static there.
gdb/ChangeLog:
2017-11-06 Ulrich Weigand <uweigand@de.ibm.com>
* Makefile.in (SFILES): Remove doublest.c and dfp.c.
(HFILES_NO_SRCDIR): Remove doublest.h and dfp.h.
(COMMON_OBS): Remove doublest.o and dfp.o.
Do not build target-float.c (instead of doublest.c)
with -Wformat-nonliteral.
* doublest.c: Remove file.
* doublest.h: Remove file.
* dfp.c: Remove file.
* dfp.h: Remove file.
* target-float.c: Do not include "doublest.h" and "dfp.h".
(DOUBLEST): Move here from doublest.h.
(enum float_kind): Likewise.
(FLOATFORMAT_CHAR_BIT): Likewise.
(FLOATFORMAT_LARGEST_BYTES): Likewise.
(floatformat_totalsize_bytes): Move here from doublest.c. Make static.
(floatformat_precision): Likewise.
(floatformat_normalize_byteorder, get_field, put_field): Likewise.
(floatformat_is_negative, floatformat_classify, floatformat_mantissa):
Likewise.
(host_float_format, host_double_format, host_long_double_format):
Likewise.
(floatformat_to_string, floatformat_from_string): Likewise.
(floatformat_to_doublest): Likewise. Also, inline the original
convert_floatformat_to_doublest.
(floatformat_from_doublest): Likewise. Also, inline the original
convert_floatformat_from_doublest.
Include "dpd/decimal128.h", "dpd/decimal64.h", and "dpd/decimal32.h".
(MAX_DECIMAL_STRING): Move here from dfp.c.
(match_endianness): Likewise.
(set_decnumber_context, decimal_check_errors): Likewise.
(decimal_from_number, decimal_to_number): Likewise.
(decimal_to_string, decimal_from_string): Likewise. Make static.
(decimal_from_longest, decimal_from_ulongest): Likewise.
(decimal_to_longest): Likewise.
(decimal_binop, decimal_is_zero, decimal_compare): Likewise.
(decimal_convert): Likewise.
2017-11-06 23:04:03 +08:00
|
|
|
int n, num;
|
Target FP: Refactor use of host floating-point arithmetic
Prepare for using MPFR to implement floating-point arithmetic by
refactoring the way host floating-point arithmetic is currently used.
In particular, fix the following two problems that cause different
(and incorrect) results due to using host arithmetic:
- Current processing always uses host "long double", and then converts
back to the actual target format. This may introduce rounding errors.
- Conversion of FP values to LONGEST simply does a host C++ type cast.
However the result of such a cast is undefined if the source value
is outside the representable range. MPFR always has defined behavior
here (returns the minimum or maximum representable value).
To fix the first issue, I've now created not just one set of routines
using host FP arithmetic (on long double), but instead three different
sets of routines, one each for host float, double, and long double.
Operations can then be performed in the desired type directly, avoiding
the extra rounding step. Using C++ templates, the three sets can all
share the same source code without duplication.
To fix the second issue, I'm simply enforcing the same conversion rule
(which makes sense anyway) when converting out-of-range values from
FP to LONGEST.
To contain the code complexity with the variety of options now possible,
I've created a new class "target_float_ops". There are a total of five
separate implementations of this:
host_float_ops<float> Implemented via host FP in given type
host_float_ops<double>
host_float_ops<long double>
mpfr_float_ops Implemented via MPFR if available
decimal_float_ops Implemented via libdecnumber
Note instead of using the DOUBLEST define, this always just uses the
"long double" data type. But since we now require C++11 anyway, this
type must in any case be avaialble unconditionally.
Most target floating-point operations simply dispatch to a (virtual)
member routine of this class. Which implementation to choose is
determined from the target types involved, and whether they match
some host type or not. E.g. any operation on a single type that
matches a host type is performed in that type. Operations involving
two types that both match host types are performed in the larger one
(according to C/C++ implicit conversion rules). Operations that
involve any type that does not match a host type are performed using
MPFR. (And of course operations involving decimal FP are performed
using libdecnumber.)
This first patch implements the refactoring of target-float.c as
described above, introduing the host_float_ops and decimal_float_ops
classes, and using them. Use of MPFR is introduced in the second patch.
A bit of special-case handling code is moved around to as to avoid
code duplication between host_float_ops and mpfr_float_ops.
Note that due to the changes mentioned above, I've had to update (fix)
the floating-point register values tested in the gdb.arch/vsx-regs.exp
test case. (The new values now work both with host arithmetic and MPFR.)
gdb/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* target-float.c: Do not include <math.h>.
Include <cmath> and <limits>.
(DOUBLEST): Do not define.
(class target_float_ops): New type.
(class host_float_ops): New templated type.
(class decimal_float_ops): New type.
(floatformat_to_doublest): Rename to ...
(host_float_ops<T>::from_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::from_target): New overload using a type argument.
(floatformat_from_doublest): Rename to ...
(host_float_ops<T>::to_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::to_target): New overload using a type argument.
(floatformat_printf_format): New function.
(struct printf_length_modifier): New templated type.
(floatformat_to_string): Rename to ...
(host_float_ops<T>::to_string): ... this. Use type instead of
floatformat argument. Use floatformat_printf_format and
printf_length_modifier. Remove special handling of invalid numbers,
infinities and NaN (moved to target_float_to_string).
(struct scanf_length_modifier): New templated type.
(floatformat_from_string): Rename to ...
(host_float_ops<T>::from_string): ... this. Use type instead of
floatformat argument. Use scanf_length_modifier.
(floatformat_to_longest): Rename to ...
(host_float_ops<T>::to_longest): ... this. Use type instead of
floatformat argument. Handle out-of-range values deterministically.
(floatformat_from_longest): Rename to ...
(host_float_ops<T>::from_longest): ... this. Use type instead of
floatformat argument.
(floatformat_from_ulongest): Rename to ...
(host_float_ops<T>::from_ulongest): ... this. Use type instead of
floatformat argument.
(floatformat_to_host_double): Rename to ...
(host_float_ops<T>::to_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_from_host_double): Rename to ...
(host_float_ops<T>::from_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_convert): Rename to ...
(host_float_ops<T>::convert): ... this. Use type instead of
floatformat arguments. Remove handling of no-op conversions.
(floatformat_binop): Rename to ...
(host_float_ops<T>::binop): ... this. Use type instead of
floatformat arguments.
(floatformat_compare): Rename to ...
(host_float_ops<T>::compare): ... this. Use type instead of
floatformat arguments.
(match_endianness): Use type instead of length/byte_order arguments.
(set_decnumber_context): Likewise.
(decimal_from_number): Likewise. Update calls.
(decimal_to_number): Likewise.
(decimal_is_zero): Likewise. Update calls. Move to earlier in file.
(decimal_float_ops::to_host_double): New dummy function.
(decimal_float_ops::from_host_double): Likewise.
(decimal_to_string): Rename to ...
(decimal_float_ops::to_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_string): Rename to ...
(decimal_float_ops::from_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_longest): Rename to ...
(decimal_float_ops::from_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_ulongest): Rename to ...
(decimal_float_ops::from_ulongest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_to_longest): Rename to ...
(decimal_float_ops::to_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_binop): Rename to ...
(decimal_float_ops::binop): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_compare): Rename to ...
(decimal_float_ops::compare): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_convert): Rename to ...
(decimal_float_ops::convert): ... this. Use type instead of
length/byte_order arguments. Update calls.
(target_float_same_category_p): New function.
(target_float_same_format_p): Likewise.
(target_float_format_length): Likewise.
(enum target_float_ops_kind): New type.
(get_target_float_ops_kind): New function.
(get_target_float_ops): Three new overloaded functions.
(target_float_is_zero): Update call.
(target_float_to_string): Add special handling of invalid numbers,
infinities and NaN (moved from floatformat_to_string). Use
target_float_ops callback.
(target_float_from_string): Use target_float_ops callback.
(target_float_to_longest): Likewise.
(target_float_from_longest): Likewise.
(target_float_from_ulongest): Likewise.
(target_float_to_host_double): Likewise.
(target_float_from_host_double): Likewise.
(target_float_convert): Add special case for no-op conversions.
Use target_float_ops callback.
(target_float_binop): Use target_float_ops callback.
(target_float_compare): Likewise.
gdb/testsuite/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
|
|
|
|
|
|
|
std::string scan_format = "%";
|
|
|
|
if (scanf_length_modifier<T>::value)
|
|
|
|
scan_format += scanf_length_modifier<T>::value;
|
|
|
|
scan_format += "g%n";
|
|
|
|
|
|
|
|
num = sscanf (in.c_str (), scan_format.c_str(), &host_float, &n);
|
Target FP: Merge doublest.c and dfp.c into target-float.c
Now that all target FP operations are performed via target-float.c,
this file remains the sole caller of functions in doublest.c and dfp.c.
Therefore, this patch merges the latter files into the former and
makes all their function static there.
gdb/ChangeLog:
2017-11-06 Ulrich Weigand <uweigand@de.ibm.com>
* Makefile.in (SFILES): Remove doublest.c and dfp.c.
(HFILES_NO_SRCDIR): Remove doublest.h and dfp.h.
(COMMON_OBS): Remove doublest.o and dfp.o.
Do not build target-float.c (instead of doublest.c)
with -Wformat-nonliteral.
* doublest.c: Remove file.
* doublest.h: Remove file.
* dfp.c: Remove file.
* dfp.h: Remove file.
* target-float.c: Do not include "doublest.h" and "dfp.h".
(DOUBLEST): Move here from doublest.h.
(enum float_kind): Likewise.
(FLOATFORMAT_CHAR_BIT): Likewise.
(FLOATFORMAT_LARGEST_BYTES): Likewise.
(floatformat_totalsize_bytes): Move here from doublest.c. Make static.
(floatformat_precision): Likewise.
(floatformat_normalize_byteorder, get_field, put_field): Likewise.
(floatformat_is_negative, floatformat_classify, floatformat_mantissa):
Likewise.
(host_float_format, host_double_format, host_long_double_format):
Likewise.
(floatformat_to_string, floatformat_from_string): Likewise.
(floatformat_to_doublest): Likewise. Also, inline the original
convert_floatformat_to_doublest.
(floatformat_from_doublest): Likewise. Also, inline the original
convert_floatformat_from_doublest.
Include "dpd/decimal128.h", "dpd/decimal64.h", and "dpd/decimal32.h".
(MAX_DECIMAL_STRING): Move here from dfp.c.
(match_endianness): Likewise.
(set_decnumber_context, decimal_check_errors): Likewise.
(decimal_from_number, decimal_to_number): Likewise.
(decimal_to_string, decimal_from_string): Likewise. Make static.
(decimal_from_longest, decimal_from_ulongest): Likewise.
(decimal_to_longest): Likewise.
(decimal_binop, decimal_is_zero, decimal_compare): Likewise.
(decimal_convert): Likewise.
2017-11-06 23:04:03 +08:00
|
|
|
|
|
|
|
/* The sscanf man page suggests not making any assumptions on the effect
|
|
|
|
of %n on the result, so we don't.
|
|
|
|
That is why we simply test num == 0. */
|
|
|
|
if (num == 0)
|
|
|
|
return false;
|
|
|
|
|
|
|
|
/* We only accept the whole string. */
|
|
|
|
if (in[n])
|
|
|
|
return false;
|
|
|
|
|
Target FP: Refactor use of host floating-point arithmetic
Prepare for using MPFR to implement floating-point arithmetic by
refactoring the way host floating-point arithmetic is currently used.
In particular, fix the following two problems that cause different
(and incorrect) results due to using host arithmetic:
- Current processing always uses host "long double", and then converts
back to the actual target format. This may introduce rounding errors.
- Conversion of FP values to LONGEST simply does a host C++ type cast.
However the result of such a cast is undefined if the source value
is outside the representable range. MPFR always has defined behavior
here (returns the minimum or maximum representable value).
To fix the first issue, I've now created not just one set of routines
using host FP arithmetic (on long double), but instead three different
sets of routines, one each for host float, double, and long double.
Operations can then be performed in the desired type directly, avoiding
the extra rounding step. Using C++ templates, the three sets can all
share the same source code without duplication.
To fix the second issue, I'm simply enforcing the same conversion rule
(which makes sense anyway) when converting out-of-range values from
FP to LONGEST.
To contain the code complexity with the variety of options now possible,
I've created a new class "target_float_ops". There are a total of five
separate implementations of this:
host_float_ops<float> Implemented via host FP in given type
host_float_ops<double>
host_float_ops<long double>
mpfr_float_ops Implemented via MPFR if available
decimal_float_ops Implemented via libdecnumber
Note instead of using the DOUBLEST define, this always just uses the
"long double" data type. But since we now require C++11 anyway, this
type must in any case be avaialble unconditionally.
Most target floating-point operations simply dispatch to a (virtual)
member routine of this class. Which implementation to choose is
determined from the target types involved, and whether they match
some host type or not. E.g. any operation on a single type that
matches a host type is performed in that type. Operations involving
two types that both match host types are performed in the larger one
(according to C/C++ implicit conversion rules). Operations that
involve any type that does not match a host type are performed using
MPFR. (And of course operations involving decimal FP are performed
using libdecnumber.)
This first patch implements the refactoring of target-float.c as
described above, introduing the host_float_ops and decimal_float_ops
classes, and using them. Use of MPFR is introduced in the second patch.
A bit of special-case handling code is moved around to as to avoid
code duplication between host_float_ops and mpfr_float_ops.
Note that due to the changes mentioned above, I've had to update (fix)
the floating-point register values tested in the gdb.arch/vsx-regs.exp
test case. (The new values now work both with host arithmetic and MPFR.)
gdb/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* target-float.c: Do not include <math.h>.
Include <cmath> and <limits>.
(DOUBLEST): Do not define.
(class target_float_ops): New type.
(class host_float_ops): New templated type.
(class decimal_float_ops): New type.
(floatformat_to_doublest): Rename to ...
(host_float_ops<T>::from_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::from_target): New overload using a type argument.
(floatformat_from_doublest): Rename to ...
(host_float_ops<T>::to_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::to_target): New overload using a type argument.
(floatformat_printf_format): New function.
(struct printf_length_modifier): New templated type.
(floatformat_to_string): Rename to ...
(host_float_ops<T>::to_string): ... this. Use type instead of
floatformat argument. Use floatformat_printf_format and
printf_length_modifier. Remove special handling of invalid numbers,
infinities and NaN (moved to target_float_to_string).
(struct scanf_length_modifier): New templated type.
(floatformat_from_string): Rename to ...
(host_float_ops<T>::from_string): ... this. Use type instead of
floatformat argument. Use scanf_length_modifier.
(floatformat_to_longest): Rename to ...
(host_float_ops<T>::to_longest): ... this. Use type instead of
floatformat argument. Handle out-of-range values deterministically.
(floatformat_from_longest): Rename to ...
(host_float_ops<T>::from_longest): ... this. Use type instead of
floatformat argument.
(floatformat_from_ulongest): Rename to ...
(host_float_ops<T>::from_ulongest): ... this. Use type instead of
floatformat argument.
(floatformat_to_host_double): Rename to ...
(host_float_ops<T>::to_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_from_host_double): Rename to ...
(host_float_ops<T>::from_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_convert): Rename to ...
(host_float_ops<T>::convert): ... this. Use type instead of
floatformat arguments. Remove handling of no-op conversions.
(floatformat_binop): Rename to ...
(host_float_ops<T>::binop): ... this. Use type instead of
floatformat arguments.
(floatformat_compare): Rename to ...
(host_float_ops<T>::compare): ... this. Use type instead of
floatformat arguments.
(match_endianness): Use type instead of length/byte_order arguments.
(set_decnumber_context): Likewise.
(decimal_from_number): Likewise. Update calls.
(decimal_to_number): Likewise.
(decimal_is_zero): Likewise. Update calls. Move to earlier in file.
(decimal_float_ops::to_host_double): New dummy function.
(decimal_float_ops::from_host_double): Likewise.
(decimal_to_string): Rename to ...
(decimal_float_ops::to_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_string): Rename to ...
(decimal_float_ops::from_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_longest): Rename to ...
(decimal_float_ops::from_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_ulongest): Rename to ...
(decimal_float_ops::from_ulongest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_to_longest): Rename to ...
(decimal_float_ops::to_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_binop): Rename to ...
(decimal_float_ops::binop): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_compare): Rename to ...
(decimal_float_ops::compare): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_convert): Rename to ...
(decimal_float_ops::convert): ... this. Use type instead of
length/byte_order arguments. Update calls.
(target_float_same_category_p): New function.
(target_float_same_format_p): Likewise.
(target_float_format_length): Likewise.
(enum target_float_ops_kind): New type.
(get_target_float_ops_kind): New function.
(get_target_float_ops): Three new overloaded functions.
(target_float_is_zero): Update call.
(target_float_to_string): Add special handling of invalid numbers,
infinities and NaN (moved from floatformat_to_string). Use
target_float_ops callback.
(target_float_from_string): Use target_float_ops callback.
(target_float_to_longest): Likewise.
(target_float_from_longest): Likewise.
(target_float_from_ulongest): Likewise.
(target_float_to_host_double): Likewise.
(target_float_from_host_double): Likewise.
(target_float_convert): Add special case for no-op conversions.
Use target_float_ops callback.
(target_float_binop): Use target_float_ops callback.
(target_float_compare): Likewise.
gdb/testsuite/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
|
|
|
to_target (type, &host_float, addr);
|
Target FP: Merge doublest.c and dfp.c into target-float.c
Now that all target FP operations are performed via target-float.c,
this file remains the sole caller of functions in doublest.c and dfp.c.
Therefore, this patch merges the latter files into the former and
makes all their function static there.
gdb/ChangeLog:
2017-11-06 Ulrich Weigand <uweigand@de.ibm.com>
* Makefile.in (SFILES): Remove doublest.c and dfp.c.
(HFILES_NO_SRCDIR): Remove doublest.h and dfp.h.
(COMMON_OBS): Remove doublest.o and dfp.o.
Do not build target-float.c (instead of doublest.c)
with -Wformat-nonliteral.
* doublest.c: Remove file.
* doublest.h: Remove file.
* dfp.c: Remove file.
* dfp.h: Remove file.
* target-float.c: Do not include "doublest.h" and "dfp.h".
(DOUBLEST): Move here from doublest.h.
(enum float_kind): Likewise.
(FLOATFORMAT_CHAR_BIT): Likewise.
(FLOATFORMAT_LARGEST_BYTES): Likewise.
(floatformat_totalsize_bytes): Move here from doublest.c. Make static.
(floatformat_precision): Likewise.
(floatformat_normalize_byteorder, get_field, put_field): Likewise.
(floatformat_is_negative, floatformat_classify, floatformat_mantissa):
Likewise.
(host_float_format, host_double_format, host_long_double_format):
Likewise.
(floatformat_to_string, floatformat_from_string): Likewise.
(floatformat_to_doublest): Likewise. Also, inline the original
convert_floatformat_to_doublest.
(floatformat_from_doublest): Likewise. Also, inline the original
convert_floatformat_from_doublest.
Include "dpd/decimal128.h", "dpd/decimal64.h", and "dpd/decimal32.h".
(MAX_DECIMAL_STRING): Move here from dfp.c.
(match_endianness): Likewise.
(set_decnumber_context, decimal_check_errors): Likewise.
(decimal_from_number, decimal_to_number): Likewise.
(decimal_to_string, decimal_from_string): Likewise. Make static.
(decimal_from_longest, decimal_from_ulongest): Likewise.
(decimal_to_longest): Likewise.
(decimal_binop, decimal_is_zero, decimal_compare): Likewise.
(decimal_convert): Likewise.
2017-11-06 23:04:03 +08:00
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
Target FP: Refactor use of host floating-point arithmetic
Prepare for using MPFR to implement floating-point arithmetic by
refactoring the way host floating-point arithmetic is currently used.
In particular, fix the following two problems that cause different
(and incorrect) results due to using host arithmetic:
- Current processing always uses host "long double", and then converts
back to the actual target format. This may introduce rounding errors.
- Conversion of FP values to LONGEST simply does a host C++ type cast.
However the result of such a cast is undefined if the source value
is outside the representable range. MPFR always has defined behavior
here (returns the minimum or maximum representable value).
To fix the first issue, I've now created not just one set of routines
using host FP arithmetic (on long double), but instead three different
sets of routines, one each for host float, double, and long double.
Operations can then be performed in the desired type directly, avoiding
the extra rounding step. Using C++ templates, the three sets can all
share the same source code without duplication.
To fix the second issue, I'm simply enforcing the same conversion rule
(which makes sense anyway) when converting out-of-range values from
FP to LONGEST.
To contain the code complexity with the variety of options now possible,
I've created a new class "target_float_ops". There are a total of five
separate implementations of this:
host_float_ops<float> Implemented via host FP in given type
host_float_ops<double>
host_float_ops<long double>
mpfr_float_ops Implemented via MPFR if available
decimal_float_ops Implemented via libdecnumber
Note instead of using the DOUBLEST define, this always just uses the
"long double" data type. But since we now require C++11 anyway, this
type must in any case be avaialble unconditionally.
Most target floating-point operations simply dispatch to a (virtual)
member routine of this class. Which implementation to choose is
determined from the target types involved, and whether they match
some host type or not. E.g. any operation on a single type that
matches a host type is performed in that type. Operations involving
two types that both match host types are performed in the larger one
(according to C/C++ implicit conversion rules). Operations that
involve any type that does not match a host type are performed using
MPFR. (And of course operations involving decimal FP are performed
using libdecnumber.)
This first patch implements the refactoring of target-float.c as
described above, introduing the host_float_ops and decimal_float_ops
classes, and using them. Use of MPFR is introduced in the second patch.
A bit of special-case handling code is moved around to as to avoid
code duplication between host_float_ops and mpfr_float_ops.
Note that due to the changes mentioned above, I've had to update (fix)
the floating-point register values tested in the gdb.arch/vsx-regs.exp
test case. (The new values now work both with host arithmetic and MPFR.)
gdb/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* target-float.c: Do not include <math.h>.
Include <cmath> and <limits>.
(DOUBLEST): Do not define.
(class target_float_ops): New type.
(class host_float_ops): New templated type.
(class decimal_float_ops): New type.
(floatformat_to_doublest): Rename to ...
(host_float_ops<T>::from_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::from_target): New overload using a type argument.
(floatformat_from_doublest): Rename to ...
(host_float_ops<T>::to_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::to_target): New overload using a type argument.
(floatformat_printf_format): New function.
(struct printf_length_modifier): New templated type.
(floatformat_to_string): Rename to ...
(host_float_ops<T>::to_string): ... this. Use type instead of
floatformat argument. Use floatformat_printf_format and
printf_length_modifier. Remove special handling of invalid numbers,
infinities and NaN (moved to target_float_to_string).
(struct scanf_length_modifier): New templated type.
(floatformat_from_string): Rename to ...
(host_float_ops<T>::from_string): ... this. Use type instead of
floatformat argument. Use scanf_length_modifier.
(floatformat_to_longest): Rename to ...
(host_float_ops<T>::to_longest): ... this. Use type instead of
floatformat argument. Handle out-of-range values deterministically.
(floatformat_from_longest): Rename to ...
(host_float_ops<T>::from_longest): ... this. Use type instead of
floatformat argument.
(floatformat_from_ulongest): Rename to ...
(host_float_ops<T>::from_ulongest): ... this. Use type instead of
floatformat argument.
(floatformat_to_host_double): Rename to ...
(host_float_ops<T>::to_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_from_host_double): Rename to ...
(host_float_ops<T>::from_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_convert): Rename to ...
(host_float_ops<T>::convert): ... this. Use type instead of
floatformat arguments. Remove handling of no-op conversions.
(floatformat_binop): Rename to ...
(host_float_ops<T>::binop): ... this. Use type instead of
floatformat arguments.
(floatformat_compare): Rename to ...
(host_float_ops<T>::compare): ... this. Use type instead of
floatformat arguments.
(match_endianness): Use type instead of length/byte_order arguments.
(set_decnumber_context): Likewise.
(decimal_from_number): Likewise. Update calls.
(decimal_to_number): Likewise.
(decimal_is_zero): Likewise. Update calls. Move to earlier in file.
(decimal_float_ops::to_host_double): New dummy function.
(decimal_float_ops::from_host_double): Likewise.
(decimal_to_string): Rename to ...
(decimal_float_ops::to_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_string): Rename to ...
(decimal_float_ops::from_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_longest): Rename to ...
(decimal_float_ops::from_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_ulongest): Rename to ...
(decimal_float_ops::from_ulongest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_to_longest): Rename to ...
(decimal_float_ops::to_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_binop): Rename to ...
(decimal_float_ops::binop): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_compare): Rename to ...
(decimal_float_ops::compare): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_convert): Rename to ...
(decimal_float_ops::convert): ... this. Use type instead of
length/byte_order arguments. Update calls.
(target_float_same_category_p): New function.
(target_float_same_format_p): Likewise.
(target_float_format_length): Likewise.
(enum target_float_ops_kind): New type.
(get_target_float_ops_kind): New function.
(get_target_float_ops): Three new overloaded functions.
(target_float_is_zero): Update call.
(target_float_to_string): Add special handling of invalid numbers,
infinities and NaN (moved from floatformat_to_string). Use
target_float_ops callback.
(target_float_from_string): Use target_float_ops callback.
(target_float_to_longest): Likewise.
(target_float_from_longest): Likewise.
(target_float_from_ulongest): Likewise.
(target_float_to_host_double): Likewise.
(target_float_from_host_double): Likewise.
(target_float_convert): Add special case for no-op conversions.
Use target_float_ops callback.
(target_float_binop): Use target_float_ops callback.
(target_float_compare): Likewise.
gdb/testsuite/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
|
|
|
/* Convert the byte-stream ADDR, interpreted as floating-point type TYPE,
|
Target FP: Add conversion routines to target-float.{c,h}
This patch adds the following conversion routines:
- target_float_to_longest
- target_float_from_longest
- target_float_from_ulongest
- target_float_convert
which call the equivalent decimal_ routines to handle decimal FP,
and call helper routines that currently still go via DOUBLEST to
handle binary FP.
The target_float_convert routine not only handles BFP<->BFP and
DFP<->DFP conversions, but also BFP<->DFP, which are implemented
by converting to a string and back.
These helpers are used in particular to implement conversion
from and to FP in value_cast, without going through DOUBLEST there.
In order to implement this for the FP<-integer case, the
pack_long / pack_unsigned_long routines are extended to support
floating-point values as output (thereby allowing use of
value_from_[u]longest with a floating-point target type).
This latter change also allows simplification of value_one.
gdb/ChangeLog:
2017-11-06 Ulrich Weigand <uweigand@de.ibm.com>
* target-float.c (floatformat_to_longest): New function.
(floatformat_from_longest, floatformat_from_ulongest): Likewise.
(floatformat_convert): Likewise.
(target_float_to_longest): Likewise.
(target_float_from_longest, target_float_from_ulongest): Likewise.
(target_float_convert): Likewise.
* target-float.h (target_float_to_longest): Add prototype.
(target_float_from_longest, target_float_from_ulongest): Likewise.
(target_float_convert): Likewise.
* value.c (unpack_long): Use target_float_to_longest.
(pack_long): Allow FP types. Use target_float_from_longest.
(pack_unsigned_long): Likewise using target_float_from_ulongest.
* valops.c: Include "target-float.h". Do not include "dfp.h".
(value_cast): Handle conversions to FP using target_float_convert,
value_from_ulongest, and value_from_longest.
(value_one): Use value_from_longest for FP types as well.
2017-11-06 22:57:31 +08:00
|
|
|
to an integer value (rounding towards zero). */
|
Target FP: Refactor use of host floating-point arithmetic
Prepare for using MPFR to implement floating-point arithmetic by
refactoring the way host floating-point arithmetic is currently used.
In particular, fix the following two problems that cause different
(and incorrect) results due to using host arithmetic:
- Current processing always uses host "long double", and then converts
back to the actual target format. This may introduce rounding errors.
- Conversion of FP values to LONGEST simply does a host C++ type cast.
However the result of such a cast is undefined if the source value
is outside the representable range. MPFR always has defined behavior
here (returns the minimum or maximum representable value).
To fix the first issue, I've now created not just one set of routines
using host FP arithmetic (on long double), but instead three different
sets of routines, one each for host float, double, and long double.
Operations can then be performed in the desired type directly, avoiding
the extra rounding step. Using C++ templates, the three sets can all
share the same source code without duplication.
To fix the second issue, I'm simply enforcing the same conversion rule
(which makes sense anyway) when converting out-of-range values from
FP to LONGEST.
To contain the code complexity with the variety of options now possible,
I've created a new class "target_float_ops". There are a total of five
separate implementations of this:
host_float_ops<float> Implemented via host FP in given type
host_float_ops<double>
host_float_ops<long double>
mpfr_float_ops Implemented via MPFR if available
decimal_float_ops Implemented via libdecnumber
Note instead of using the DOUBLEST define, this always just uses the
"long double" data type. But since we now require C++11 anyway, this
type must in any case be avaialble unconditionally.
Most target floating-point operations simply dispatch to a (virtual)
member routine of this class. Which implementation to choose is
determined from the target types involved, and whether they match
some host type or not. E.g. any operation on a single type that
matches a host type is performed in that type. Operations involving
two types that both match host types are performed in the larger one
(according to C/C++ implicit conversion rules). Operations that
involve any type that does not match a host type are performed using
MPFR. (And of course operations involving decimal FP are performed
using libdecnumber.)
This first patch implements the refactoring of target-float.c as
described above, introduing the host_float_ops and decimal_float_ops
classes, and using them. Use of MPFR is introduced in the second patch.
A bit of special-case handling code is moved around to as to avoid
code duplication between host_float_ops and mpfr_float_ops.
Note that due to the changes mentioned above, I've had to update (fix)
the floating-point register values tested in the gdb.arch/vsx-regs.exp
test case. (The new values now work both with host arithmetic and MPFR.)
gdb/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* target-float.c: Do not include <math.h>.
Include <cmath> and <limits>.
(DOUBLEST): Do not define.
(class target_float_ops): New type.
(class host_float_ops): New templated type.
(class decimal_float_ops): New type.
(floatformat_to_doublest): Rename to ...
(host_float_ops<T>::from_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::from_target): New overload using a type argument.
(floatformat_from_doublest): Rename to ...
(host_float_ops<T>::to_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::to_target): New overload using a type argument.
(floatformat_printf_format): New function.
(struct printf_length_modifier): New templated type.
(floatformat_to_string): Rename to ...
(host_float_ops<T>::to_string): ... this. Use type instead of
floatformat argument. Use floatformat_printf_format and
printf_length_modifier. Remove special handling of invalid numbers,
infinities and NaN (moved to target_float_to_string).
(struct scanf_length_modifier): New templated type.
(floatformat_from_string): Rename to ...
(host_float_ops<T>::from_string): ... this. Use type instead of
floatformat argument. Use scanf_length_modifier.
(floatformat_to_longest): Rename to ...
(host_float_ops<T>::to_longest): ... this. Use type instead of
floatformat argument. Handle out-of-range values deterministically.
(floatformat_from_longest): Rename to ...
(host_float_ops<T>::from_longest): ... this. Use type instead of
floatformat argument.
(floatformat_from_ulongest): Rename to ...
(host_float_ops<T>::from_ulongest): ... this. Use type instead of
floatformat argument.
(floatformat_to_host_double): Rename to ...
(host_float_ops<T>::to_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_from_host_double): Rename to ...
(host_float_ops<T>::from_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_convert): Rename to ...
(host_float_ops<T>::convert): ... this. Use type instead of
floatformat arguments. Remove handling of no-op conversions.
(floatformat_binop): Rename to ...
(host_float_ops<T>::binop): ... this. Use type instead of
floatformat arguments.
(floatformat_compare): Rename to ...
(host_float_ops<T>::compare): ... this. Use type instead of
floatformat arguments.
(match_endianness): Use type instead of length/byte_order arguments.
(set_decnumber_context): Likewise.
(decimal_from_number): Likewise. Update calls.
(decimal_to_number): Likewise.
(decimal_is_zero): Likewise. Update calls. Move to earlier in file.
(decimal_float_ops::to_host_double): New dummy function.
(decimal_float_ops::from_host_double): Likewise.
(decimal_to_string): Rename to ...
(decimal_float_ops::to_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_string): Rename to ...
(decimal_float_ops::from_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_longest): Rename to ...
(decimal_float_ops::from_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_ulongest): Rename to ...
(decimal_float_ops::from_ulongest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_to_longest): Rename to ...
(decimal_float_ops::to_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_binop): Rename to ...
(decimal_float_ops::binop): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_compare): Rename to ...
(decimal_float_ops::compare): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_convert): Rename to ...
(decimal_float_ops::convert): ... this. Use type instead of
length/byte_order arguments. Update calls.
(target_float_same_category_p): New function.
(target_float_same_format_p): Likewise.
(target_float_format_length): Likewise.
(enum target_float_ops_kind): New type.
(get_target_float_ops_kind): New function.
(get_target_float_ops): Three new overloaded functions.
(target_float_is_zero): Update call.
(target_float_to_string): Add special handling of invalid numbers,
infinities and NaN (moved from floatformat_to_string). Use
target_float_ops callback.
(target_float_from_string): Use target_float_ops callback.
(target_float_to_longest): Likewise.
(target_float_from_longest): Likewise.
(target_float_from_ulongest): Likewise.
(target_float_to_host_double): Likewise.
(target_float_from_host_double): Likewise.
(target_float_convert): Add special case for no-op conversions.
Use target_float_ops callback.
(target_float_binop): Use target_float_ops callback.
(target_float_compare): Likewise.
gdb/testsuite/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
|
|
|
template<typename T> LONGEST
|
|
|
|
host_float_ops<T>::to_longest (const gdb_byte *addr,
|
|
|
|
const struct type *type) const
|
Target FP: Add conversion routines to target-float.{c,h}
This patch adds the following conversion routines:
- target_float_to_longest
- target_float_from_longest
- target_float_from_ulongest
- target_float_convert
which call the equivalent decimal_ routines to handle decimal FP,
and call helper routines that currently still go via DOUBLEST to
handle binary FP.
The target_float_convert routine not only handles BFP<->BFP and
DFP<->DFP conversions, but also BFP<->DFP, which are implemented
by converting to a string and back.
These helpers are used in particular to implement conversion
from and to FP in value_cast, without going through DOUBLEST there.
In order to implement this for the FP<-integer case, the
pack_long / pack_unsigned_long routines are extended to support
floating-point values as output (thereby allowing use of
value_from_[u]longest with a floating-point target type).
This latter change also allows simplification of value_one.
gdb/ChangeLog:
2017-11-06 Ulrich Weigand <uweigand@de.ibm.com>
* target-float.c (floatformat_to_longest): New function.
(floatformat_from_longest, floatformat_from_ulongest): Likewise.
(floatformat_convert): Likewise.
(target_float_to_longest): Likewise.
(target_float_from_longest, target_float_from_ulongest): Likewise.
(target_float_convert): Likewise.
* target-float.h (target_float_to_longest): Add prototype.
(target_float_from_longest, target_float_from_ulongest): Likewise.
(target_float_convert): Likewise.
* value.c (unpack_long): Use target_float_to_longest.
(pack_long): Allow FP types. Use target_float_from_longest.
(pack_unsigned_long): Likewise using target_float_from_ulongest.
* valops.c: Include "target-float.h". Do not include "dfp.h".
(value_cast): Handle conversions to FP using target_float_convert,
value_from_ulongest, and value_from_longest.
(value_one): Use value_from_longest for FP types as well.
2017-11-06 22:57:31 +08:00
|
|
|
{
|
Target FP: Refactor use of host floating-point arithmetic
Prepare for using MPFR to implement floating-point arithmetic by
refactoring the way host floating-point arithmetic is currently used.
In particular, fix the following two problems that cause different
(and incorrect) results due to using host arithmetic:
- Current processing always uses host "long double", and then converts
back to the actual target format. This may introduce rounding errors.
- Conversion of FP values to LONGEST simply does a host C++ type cast.
However the result of such a cast is undefined if the source value
is outside the representable range. MPFR always has defined behavior
here (returns the minimum or maximum representable value).
To fix the first issue, I've now created not just one set of routines
using host FP arithmetic (on long double), but instead three different
sets of routines, one each for host float, double, and long double.
Operations can then be performed in the desired type directly, avoiding
the extra rounding step. Using C++ templates, the three sets can all
share the same source code without duplication.
To fix the second issue, I'm simply enforcing the same conversion rule
(which makes sense anyway) when converting out-of-range values from
FP to LONGEST.
To contain the code complexity with the variety of options now possible,
I've created a new class "target_float_ops". There are a total of five
separate implementations of this:
host_float_ops<float> Implemented via host FP in given type
host_float_ops<double>
host_float_ops<long double>
mpfr_float_ops Implemented via MPFR if available
decimal_float_ops Implemented via libdecnumber
Note instead of using the DOUBLEST define, this always just uses the
"long double" data type. But since we now require C++11 anyway, this
type must in any case be avaialble unconditionally.
Most target floating-point operations simply dispatch to a (virtual)
member routine of this class. Which implementation to choose is
determined from the target types involved, and whether they match
some host type or not. E.g. any operation on a single type that
matches a host type is performed in that type. Operations involving
two types that both match host types are performed in the larger one
(according to C/C++ implicit conversion rules). Operations that
involve any type that does not match a host type are performed using
MPFR. (And of course operations involving decimal FP are performed
using libdecnumber.)
This first patch implements the refactoring of target-float.c as
described above, introduing the host_float_ops and decimal_float_ops
classes, and using them. Use of MPFR is introduced in the second patch.
A bit of special-case handling code is moved around to as to avoid
code duplication between host_float_ops and mpfr_float_ops.
Note that due to the changes mentioned above, I've had to update (fix)
the floating-point register values tested in the gdb.arch/vsx-regs.exp
test case. (The new values now work both with host arithmetic and MPFR.)
gdb/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* target-float.c: Do not include <math.h>.
Include <cmath> and <limits>.
(DOUBLEST): Do not define.
(class target_float_ops): New type.
(class host_float_ops): New templated type.
(class decimal_float_ops): New type.
(floatformat_to_doublest): Rename to ...
(host_float_ops<T>::from_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::from_target): New overload using a type argument.
(floatformat_from_doublest): Rename to ...
(host_float_ops<T>::to_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::to_target): New overload using a type argument.
(floatformat_printf_format): New function.
(struct printf_length_modifier): New templated type.
(floatformat_to_string): Rename to ...
(host_float_ops<T>::to_string): ... this. Use type instead of
floatformat argument. Use floatformat_printf_format and
printf_length_modifier. Remove special handling of invalid numbers,
infinities and NaN (moved to target_float_to_string).
(struct scanf_length_modifier): New templated type.
(floatformat_from_string): Rename to ...
(host_float_ops<T>::from_string): ... this. Use type instead of
floatformat argument. Use scanf_length_modifier.
(floatformat_to_longest): Rename to ...
(host_float_ops<T>::to_longest): ... this. Use type instead of
floatformat argument. Handle out-of-range values deterministically.
(floatformat_from_longest): Rename to ...
(host_float_ops<T>::from_longest): ... this. Use type instead of
floatformat argument.
(floatformat_from_ulongest): Rename to ...
(host_float_ops<T>::from_ulongest): ... this. Use type instead of
floatformat argument.
(floatformat_to_host_double): Rename to ...
(host_float_ops<T>::to_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_from_host_double): Rename to ...
(host_float_ops<T>::from_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_convert): Rename to ...
(host_float_ops<T>::convert): ... this. Use type instead of
floatformat arguments. Remove handling of no-op conversions.
(floatformat_binop): Rename to ...
(host_float_ops<T>::binop): ... this. Use type instead of
floatformat arguments.
(floatformat_compare): Rename to ...
(host_float_ops<T>::compare): ... this. Use type instead of
floatformat arguments.
(match_endianness): Use type instead of length/byte_order arguments.
(set_decnumber_context): Likewise.
(decimal_from_number): Likewise. Update calls.
(decimal_to_number): Likewise.
(decimal_is_zero): Likewise. Update calls. Move to earlier in file.
(decimal_float_ops::to_host_double): New dummy function.
(decimal_float_ops::from_host_double): Likewise.
(decimal_to_string): Rename to ...
(decimal_float_ops::to_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_string): Rename to ...
(decimal_float_ops::from_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_longest): Rename to ...
(decimal_float_ops::from_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_ulongest): Rename to ...
(decimal_float_ops::from_ulongest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_to_longest): Rename to ...
(decimal_float_ops::to_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_binop): Rename to ...
(decimal_float_ops::binop): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_compare): Rename to ...
(decimal_float_ops::compare): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_convert): Rename to ...
(decimal_float_ops::convert): ... this. Use type instead of
length/byte_order arguments. Update calls.
(target_float_same_category_p): New function.
(target_float_same_format_p): Likewise.
(target_float_format_length): Likewise.
(enum target_float_ops_kind): New type.
(get_target_float_ops_kind): New function.
(get_target_float_ops): Three new overloaded functions.
(target_float_is_zero): Update call.
(target_float_to_string): Add special handling of invalid numbers,
infinities and NaN (moved from floatformat_to_string). Use
target_float_ops callback.
(target_float_from_string): Use target_float_ops callback.
(target_float_to_longest): Likewise.
(target_float_from_longest): Likewise.
(target_float_from_ulongest): Likewise.
(target_float_to_host_double): Likewise.
(target_float_from_host_double): Likewise.
(target_float_convert): Add special case for no-op conversions.
Use target_float_ops callback.
(target_float_binop): Use target_float_ops callback.
(target_float_compare): Likewise.
gdb/testsuite/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
|
|
|
T host_float;
|
|
|
|
from_target (type, addr, &host_float);
|
|
|
|
/* Converting an out-of-range value is undefined behavior in C, but we
|
|
|
|
prefer to return a defined value here. */
|
|
|
|
if (host_float > std::numeric_limits<LONGEST>::max())
|
|
|
|
return std::numeric_limits<LONGEST>::max();
|
|
|
|
if (host_float < std::numeric_limits<LONGEST>::min())
|
|
|
|
return std::numeric_limits<LONGEST>::min();
|
|
|
|
return (LONGEST) host_float;
|
Target FP: Add conversion routines to target-float.{c,h}
This patch adds the following conversion routines:
- target_float_to_longest
- target_float_from_longest
- target_float_from_ulongest
- target_float_convert
which call the equivalent decimal_ routines to handle decimal FP,
and call helper routines that currently still go via DOUBLEST to
handle binary FP.
The target_float_convert routine not only handles BFP<->BFP and
DFP<->DFP conversions, but also BFP<->DFP, which are implemented
by converting to a string and back.
These helpers are used in particular to implement conversion
from and to FP in value_cast, without going through DOUBLEST there.
In order to implement this for the FP<-integer case, the
pack_long / pack_unsigned_long routines are extended to support
floating-point values as output (thereby allowing use of
value_from_[u]longest with a floating-point target type).
This latter change also allows simplification of value_one.
gdb/ChangeLog:
2017-11-06 Ulrich Weigand <uweigand@de.ibm.com>
* target-float.c (floatformat_to_longest): New function.
(floatformat_from_longest, floatformat_from_ulongest): Likewise.
(floatformat_convert): Likewise.
(target_float_to_longest): Likewise.
(target_float_from_longest, target_float_from_ulongest): Likewise.
(target_float_convert): Likewise.
* target-float.h (target_float_to_longest): Add prototype.
(target_float_from_longest, target_float_from_ulongest): Likewise.
(target_float_convert): Likewise.
* value.c (unpack_long): Use target_float_to_longest.
(pack_long): Allow FP types. Use target_float_from_longest.
(pack_unsigned_long): Likewise using target_float_from_ulongest.
* valops.c: Include "target-float.h". Do not include "dfp.h".
(value_cast): Handle conversions to FP using target_float_convert,
value_from_ulongest, and value_from_longest.
(value_one): Use value_from_longest for FP types as well.
2017-11-06 22:57:31 +08:00
|
|
|
}
|
|
|
|
|
Target FP: Refactor use of host floating-point arithmetic
Prepare for using MPFR to implement floating-point arithmetic by
refactoring the way host floating-point arithmetic is currently used.
In particular, fix the following two problems that cause different
(and incorrect) results due to using host arithmetic:
- Current processing always uses host "long double", and then converts
back to the actual target format. This may introduce rounding errors.
- Conversion of FP values to LONGEST simply does a host C++ type cast.
However the result of such a cast is undefined if the source value
is outside the representable range. MPFR always has defined behavior
here (returns the minimum or maximum representable value).
To fix the first issue, I've now created not just one set of routines
using host FP arithmetic (on long double), but instead three different
sets of routines, one each for host float, double, and long double.
Operations can then be performed in the desired type directly, avoiding
the extra rounding step. Using C++ templates, the three sets can all
share the same source code without duplication.
To fix the second issue, I'm simply enforcing the same conversion rule
(which makes sense anyway) when converting out-of-range values from
FP to LONGEST.
To contain the code complexity with the variety of options now possible,
I've created a new class "target_float_ops". There are a total of five
separate implementations of this:
host_float_ops<float> Implemented via host FP in given type
host_float_ops<double>
host_float_ops<long double>
mpfr_float_ops Implemented via MPFR if available
decimal_float_ops Implemented via libdecnumber
Note instead of using the DOUBLEST define, this always just uses the
"long double" data type. But since we now require C++11 anyway, this
type must in any case be avaialble unconditionally.
Most target floating-point operations simply dispatch to a (virtual)
member routine of this class. Which implementation to choose is
determined from the target types involved, and whether they match
some host type or not. E.g. any operation on a single type that
matches a host type is performed in that type. Operations involving
two types that both match host types are performed in the larger one
(according to C/C++ implicit conversion rules). Operations that
involve any type that does not match a host type are performed using
MPFR. (And of course operations involving decimal FP are performed
using libdecnumber.)
This first patch implements the refactoring of target-float.c as
described above, introduing the host_float_ops and decimal_float_ops
classes, and using them. Use of MPFR is introduced in the second patch.
A bit of special-case handling code is moved around to as to avoid
code duplication between host_float_ops and mpfr_float_ops.
Note that due to the changes mentioned above, I've had to update (fix)
the floating-point register values tested in the gdb.arch/vsx-regs.exp
test case. (The new values now work both with host arithmetic and MPFR.)
gdb/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* target-float.c: Do not include <math.h>.
Include <cmath> and <limits>.
(DOUBLEST): Do not define.
(class target_float_ops): New type.
(class host_float_ops): New templated type.
(class decimal_float_ops): New type.
(floatformat_to_doublest): Rename to ...
(host_float_ops<T>::from_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::from_target): New overload using a type argument.
(floatformat_from_doublest): Rename to ...
(host_float_ops<T>::to_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::to_target): New overload using a type argument.
(floatformat_printf_format): New function.
(struct printf_length_modifier): New templated type.
(floatformat_to_string): Rename to ...
(host_float_ops<T>::to_string): ... this. Use type instead of
floatformat argument. Use floatformat_printf_format and
printf_length_modifier. Remove special handling of invalid numbers,
infinities and NaN (moved to target_float_to_string).
(struct scanf_length_modifier): New templated type.
(floatformat_from_string): Rename to ...
(host_float_ops<T>::from_string): ... this. Use type instead of
floatformat argument. Use scanf_length_modifier.
(floatformat_to_longest): Rename to ...
(host_float_ops<T>::to_longest): ... this. Use type instead of
floatformat argument. Handle out-of-range values deterministically.
(floatformat_from_longest): Rename to ...
(host_float_ops<T>::from_longest): ... this. Use type instead of
floatformat argument.
(floatformat_from_ulongest): Rename to ...
(host_float_ops<T>::from_ulongest): ... this. Use type instead of
floatformat argument.
(floatformat_to_host_double): Rename to ...
(host_float_ops<T>::to_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_from_host_double): Rename to ...
(host_float_ops<T>::from_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_convert): Rename to ...
(host_float_ops<T>::convert): ... this. Use type instead of
floatformat arguments. Remove handling of no-op conversions.
(floatformat_binop): Rename to ...
(host_float_ops<T>::binop): ... this. Use type instead of
floatformat arguments.
(floatformat_compare): Rename to ...
(host_float_ops<T>::compare): ... this. Use type instead of
floatformat arguments.
(match_endianness): Use type instead of length/byte_order arguments.
(set_decnumber_context): Likewise.
(decimal_from_number): Likewise. Update calls.
(decimal_to_number): Likewise.
(decimal_is_zero): Likewise. Update calls. Move to earlier in file.
(decimal_float_ops::to_host_double): New dummy function.
(decimal_float_ops::from_host_double): Likewise.
(decimal_to_string): Rename to ...
(decimal_float_ops::to_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_string): Rename to ...
(decimal_float_ops::from_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_longest): Rename to ...
(decimal_float_ops::from_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_ulongest): Rename to ...
(decimal_float_ops::from_ulongest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_to_longest): Rename to ...
(decimal_float_ops::to_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_binop): Rename to ...
(decimal_float_ops::binop): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_compare): Rename to ...
(decimal_float_ops::compare): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_convert): Rename to ...
(decimal_float_ops::convert): ... this. Use type instead of
length/byte_order arguments. Update calls.
(target_float_same_category_p): New function.
(target_float_same_format_p): Likewise.
(target_float_format_length): Likewise.
(enum target_float_ops_kind): New type.
(get_target_float_ops_kind): New function.
(get_target_float_ops): Three new overloaded functions.
(target_float_is_zero): Update call.
(target_float_to_string): Add special handling of invalid numbers,
infinities and NaN (moved from floatformat_to_string). Use
target_float_ops callback.
(target_float_from_string): Use target_float_ops callback.
(target_float_to_longest): Likewise.
(target_float_from_longest): Likewise.
(target_float_from_ulongest): Likewise.
(target_float_to_host_double): Likewise.
(target_float_from_host_double): Likewise.
(target_float_convert): Add special case for no-op conversions.
Use target_float_ops callback.
(target_float_binop): Use target_float_ops callback.
(target_float_compare): Likewise.
gdb/testsuite/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
|
|
|
/* Convert signed integer VAL to a target floating-number of type TYPE
|
Target FP: Add conversion routines to target-float.{c,h}
This patch adds the following conversion routines:
- target_float_to_longest
- target_float_from_longest
- target_float_from_ulongest
- target_float_convert
which call the equivalent decimal_ routines to handle decimal FP,
and call helper routines that currently still go via DOUBLEST to
handle binary FP.
The target_float_convert routine not only handles BFP<->BFP and
DFP<->DFP conversions, but also BFP<->DFP, which are implemented
by converting to a string and back.
These helpers are used in particular to implement conversion
from and to FP in value_cast, without going through DOUBLEST there.
In order to implement this for the FP<-integer case, the
pack_long / pack_unsigned_long routines are extended to support
floating-point values as output (thereby allowing use of
value_from_[u]longest with a floating-point target type).
This latter change also allows simplification of value_one.
gdb/ChangeLog:
2017-11-06 Ulrich Weigand <uweigand@de.ibm.com>
* target-float.c (floatformat_to_longest): New function.
(floatformat_from_longest, floatformat_from_ulongest): Likewise.
(floatformat_convert): Likewise.
(target_float_to_longest): Likewise.
(target_float_from_longest, target_float_from_ulongest): Likewise.
(target_float_convert): Likewise.
* target-float.h (target_float_to_longest): Add prototype.
(target_float_from_longest, target_float_from_ulongest): Likewise.
(target_float_convert): Likewise.
* value.c (unpack_long): Use target_float_to_longest.
(pack_long): Allow FP types. Use target_float_from_longest.
(pack_unsigned_long): Likewise using target_float_from_ulongest.
* valops.c: Include "target-float.h". Do not include "dfp.h".
(value_cast): Handle conversions to FP using target_float_convert,
value_from_ulongest, and value_from_longest.
(value_one): Use value_from_longest for FP types as well.
2017-11-06 22:57:31 +08:00
|
|
|
and store it as byte-stream ADDR. */
|
Target FP: Refactor use of host floating-point arithmetic
Prepare for using MPFR to implement floating-point arithmetic by
refactoring the way host floating-point arithmetic is currently used.
In particular, fix the following two problems that cause different
(and incorrect) results due to using host arithmetic:
- Current processing always uses host "long double", and then converts
back to the actual target format. This may introduce rounding errors.
- Conversion of FP values to LONGEST simply does a host C++ type cast.
However the result of such a cast is undefined if the source value
is outside the representable range. MPFR always has defined behavior
here (returns the minimum or maximum representable value).
To fix the first issue, I've now created not just one set of routines
using host FP arithmetic (on long double), but instead three different
sets of routines, one each for host float, double, and long double.
Operations can then be performed in the desired type directly, avoiding
the extra rounding step. Using C++ templates, the three sets can all
share the same source code without duplication.
To fix the second issue, I'm simply enforcing the same conversion rule
(which makes sense anyway) when converting out-of-range values from
FP to LONGEST.
To contain the code complexity with the variety of options now possible,
I've created a new class "target_float_ops". There are a total of five
separate implementations of this:
host_float_ops<float> Implemented via host FP in given type
host_float_ops<double>
host_float_ops<long double>
mpfr_float_ops Implemented via MPFR if available
decimal_float_ops Implemented via libdecnumber
Note instead of using the DOUBLEST define, this always just uses the
"long double" data type. But since we now require C++11 anyway, this
type must in any case be avaialble unconditionally.
Most target floating-point operations simply dispatch to a (virtual)
member routine of this class. Which implementation to choose is
determined from the target types involved, and whether they match
some host type or not. E.g. any operation on a single type that
matches a host type is performed in that type. Operations involving
two types that both match host types are performed in the larger one
(according to C/C++ implicit conversion rules). Operations that
involve any type that does not match a host type are performed using
MPFR. (And of course operations involving decimal FP are performed
using libdecnumber.)
This first patch implements the refactoring of target-float.c as
described above, introduing the host_float_ops and decimal_float_ops
classes, and using them. Use of MPFR is introduced in the second patch.
A bit of special-case handling code is moved around to as to avoid
code duplication between host_float_ops and mpfr_float_ops.
Note that due to the changes mentioned above, I've had to update (fix)
the floating-point register values tested in the gdb.arch/vsx-regs.exp
test case. (The new values now work both with host arithmetic and MPFR.)
gdb/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* target-float.c: Do not include <math.h>.
Include <cmath> and <limits>.
(DOUBLEST): Do not define.
(class target_float_ops): New type.
(class host_float_ops): New templated type.
(class decimal_float_ops): New type.
(floatformat_to_doublest): Rename to ...
(host_float_ops<T>::from_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::from_target): New overload using a type argument.
(floatformat_from_doublest): Rename to ...
(host_float_ops<T>::to_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::to_target): New overload using a type argument.
(floatformat_printf_format): New function.
(struct printf_length_modifier): New templated type.
(floatformat_to_string): Rename to ...
(host_float_ops<T>::to_string): ... this. Use type instead of
floatformat argument. Use floatformat_printf_format and
printf_length_modifier. Remove special handling of invalid numbers,
infinities and NaN (moved to target_float_to_string).
(struct scanf_length_modifier): New templated type.
(floatformat_from_string): Rename to ...
(host_float_ops<T>::from_string): ... this. Use type instead of
floatformat argument. Use scanf_length_modifier.
(floatformat_to_longest): Rename to ...
(host_float_ops<T>::to_longest): ... this. Use type instead of
floatformat argument. Handle out-of-range values deterministically.
(floatformat_from_longest): Rename to ...
(host_float_ops<T>::from_longest): ... this. Use type instead of
floatformat argument.
(floatformat_from_ulongest): Rename to ...
(host_float_ops<T>::from_ulongest): ... this. Use type instead of
floatformat argument.
(floatformat_to_host_double): Rename to ...
(host_float_ops<T>::to_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_from_host_double): Rename to ...
(host_float_ops<T>::from_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_convert): Rename to ...
(host_float_ops<T>::convert): ... this. Use type instead of
floatformat arguments. Remove handling of no-op conversions.
(floatformat_binop): Rename to ...
(host_float_ops<T>::binop): ... this. Use type instead of
floatformat arguments.
(floatformat_compare): Rename to ...
(host_float_ops<T>::compare): ... this. Use type instead of
floatformat arguments.
(match_endianness): Use type instead of length/byte_order arguments.
(set_decnumber_context): Likewise.
(decimal_from_number): Likewise. Update calls.
(decimal_to_number): Likewise.
(decimal_is_zero): Likewise. Update calls. Move to earlier in file.
(decimal_float_ops::to_host_double): New dummy function.
(decimal_float_ops::from_host_double): Likewise.
(decimal_to_string): Rename to ...
(decimal_float_ops::to_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_string): Rename to ...
(decimal_float_ops::from_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_longest): Rename to ...
(decimal_float_ops::from_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_ulongest): Rename to ...
(decimal_float_ops::from_ulongest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_to_longest): Rename to ...
(decimal_float_ops::to_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_binop): Rename to ...
(decimal_float_ops::binop): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_compare): Rename to ...
(decimal_float_ops::compare): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_convert): Rename to ...
(decimal_float_ops::convert): ... this. Use type instead of
length/byte_order arguments. Update calls.
(target_float_same_category_p): New function.
(target_float_same_format_p): Likewise.
(target_float_format_length): Likewise.
(enum target_float_ops_kind): New type.
(get_target_float_ops_kind): New function.
(get_target_float_ops): Three new overloaded functions.
(target_float_is_zero): Update call.
(target_float_to_string): Add special handling of invalid numbers,
infinities and NaN (moved from floatformat_to_string). Use
target_float_ops callback.
(target_float_from_string): Use target_float_ops callback.
(target_float_to_longest): Likewise.
(target_float_from_longest): Likewise.
(target_float_from_ulongest): Likewise.
(target_float_to_host_double): Likewise.
(target_float_from_host_double): Likewise.
(target_float_convert): Add special case for no-op conversions.
Use target_float_ops callback.
(target_float_binop): Use target_float_ops callback.
(target_float_compare): Likewise.
gdb/testsuite/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
|
|
|
template<typename T> void
|
|
|
|
host_float_ops<T>::from_longest (gdb_byte *addr, const struct type *type,
|
|
|
|
LONGEST val) const
|
Target FP: Add conversion routines to target-float.{c,h}
This patch adds the following conversion routines:
- target_float_to_longest
- target_float_from_longest
- target_float_from_ulongest
- target_float_convert
which call the equivalent decimal_ routines to handle decimal FP,
and call helper routines that currently still go via DOUBLEST to
handle binary FP.
The target_float_convert routine not only handles BFP<->BFP and
DFP<->DFP conversions, but also BFP<->DFP, which are implemented
by converting to a string and back.
These helpers are used in particular to implement conversion
from and to FP in value_cast, without going through DOUBLEST there.
In order to implement this for the FP<-integer case, the
pack_long / pack_unsigned_long routines are extended to support
floating-point values as output (thereby allowing use of
value_from_[u]longest with a floating-point target type).
This latter change also allows simplification of value_one.
gdb/ChangeLog:
2017-11-06 Ulrich Weigand <uweigand@de.ibm.com>
* target-float.c (floatformat_to_longest): New function.
(floatformat_from_longest, floatformat_from_ulongest): Likewise.
(floatformat_convert): Likewise.
(target_float_to_longest): Likewise.
(target_float_from_longest, target_float_from_ulongest): Likewise.
(target_float_convert): Likewise.
* target-float.h (target_float_to_longest): Add prototype.
(target_float_from_longest, target_float_from_ulongest): Likewise.
(target_float_convert): Likewise.
* value.c (unpack_long): Use target_float_to_longest.
(pack_long): Allow FP types. Use target_float_from_longest.
(pack_unsigned_long): Likewise using target_float_from_ulongest.
* valops.c: Include "target-float.h". Do not include "dfp.h".
(value_cast): Handle conversions to FP using target_float_convert,
value_from_ulongest, and value_from_longest.
(value_one): Use value_from_longest for FP types as well.
2017-11-06 22:57:31 +08:00
|
|
|
{
|
Target FP: Refactor use of host floating-point arithmetic
Prepare for using MPFR to implement floating-point arithmetic by
refactoring the way host floating-point arithmetic is currently used.
In particular, fix the following two problems that cause different
(and incorrect) results due to using host arithmetic:
- Current processing always uses host "long double", and then converts
back to the actual target format. This may introduce rounding errors.
- Conversion of FP values to LONGEST simply does a host C++ type cast.
However the result of such a cast is undefined if the source value
is outside the representable range. MPFR always has defined behavior
here (returns the minimum or maximum representable value).
To fix the first issue, I've now created not just one set of routines
using host FP arithmetic (on long double), but instead three different
sets of routines, one each for host float, double, and long double.
Operations can then be performed in the desired type directly, avoiding
the extra rounding step. Using C++ templates, the three sets can all
share the same source code without duplication.
To fix the second issue, I'm simply enforcing the same conversion rule
(which makes sense anyway) when converting out-of-range values from
FP to LONGEST.
To contain the code complexity with the variety of options now possible,
I've created a new class "target_float_ops". There are a total of five
separate implementations of this:
host_float_ops<float> Implemented via host FP in given type
host_float_ops<double>
host_float_ops<long double>
mpfr_float_ops Implemented via MPFR if available
decimal_float_ops Implemented via libdecnumber
Note instead of using the DOUBLEST define, this always just uses the
"long double" data type. But since we now require C++11 anyway, this
type must in any case be avaialble unconditionally.
Most target floating-point operations simply dispatch to a (virtual)
member routine of this class. Which implementation to choose is
determined from the target types involved, and whether they match
some host type or not. E.g. any operation on a single type that
matches a host type is performed in that type. Operations involving
two types that both match host types are performed in the larger one
(according to C/C++ implicit conversion rules). Operations that
involve any type that does not match a host type are performed using
MPFR. (And of course operations involving decimal FP are performed
using libdecnumber.)
This first patch implements the refactoring of target-float.c as
described above, introduing the host_float_ops and decimal_float_ops
classes, and using them. Use of MPFR is introduced in the second patch.
A bit of special-case handling code is moved around to as to avoid
code duplication between host_float_ops and mpfr_float_ops.
Note that due to the changes mentioned above, I've had to update (fix)
the floating-point register values tested in the gdb.arch/vsx-regs.exp
test case. (The new values now work both with host arithmetic and MPFR.)
gdb/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* target-float.c: Do not include <math.h>.
Include <cmath> and <limits>.
(DOUBLEST): Do not define.
(class target_float_ops): New type.
(class host_float_ops): New templated type.
(class decimal_float_ops): New type.
(floatformat_to_doublest): Rename to ...
(host_float_ops<T>::from_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::from_target): New overload using a type argument.
(floatformat_from_doublest): Rename to ...
(host_float_ops<T>::to_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::to_target): New overload using a type argument.
(floatformat_printf_format): New function.
(struct printf_length_modifier): New templated type.
(floatformat_to_string): Rename to ...
(host_float_ops<T>::to_string): ... this. Use type instead of
floatformat argument. Use floatformat_printf_format and
printf_length_modifier. Remove special handling of invalid numbers,
infinities and NaN (moved to target_float_to_string).
(struct scanf_length_modifier): New templated type.
(floatformat_from_string): Rename to ...
(host_float_ops<T>::from_string): ... this. Use type instead of
floatformat argument. Use scanf_length_modifier.
(floatformat_to_longest): Rename to ...
(host_float_ops<T>::to_longest): ... this. Use type instead of
floatformat argument. Handle out-of-range values deterministically.
(floatformat_from_longest): Rename to ...
(host_float_ops<T>::from_longest): ... this. Use type instead of
floatformat argument.
(floatformat_from_ulongest): Rename to ...
(host_float_ops<T>::from_ulongest): ... this. Use type instead of
floatformat argument.
(floatformat_to_host_double): Rename to ...
(host_float_ops<T>::to_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_from_host_double): Rename to ...
(host_float_ops<T>::from_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_convert): Rename to ...
(host_float_ops<T>::convert): ... this. Use type instead of
floatformat arguments. Remove handling of no-op conversions.
(floatformat_binop): Rename to ...
(host_float_ops<T>::binop): ... this. Use type instead of
floatformat arguments.
(floatformat_compare): Rename to ...
(host_float_ops<T>::compare): ... this. Use type instead of
floatformat arguments.
(match_endianness): Use type instead of length/byte_order arguments.
(set_decnumber_context): Likewise.
(decimal_from_number): Likewise. Update calls.
(decimal_to_number): Likewise.
(decimal_is_zero): Likewise. Update calls. Move to earlier in file.
(decimal_float_ops::to_host_double): New dummy function.
(decimal_float_ops::from_host_double): Likewise.
(decimal_to_string): Rename to ...
(decimal_float_ops::to_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_string): Rename to ...
(decimal_float_ops::from_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_longest): Rename to ...
(decimal_float_ops::from_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_ulongest): Rename to ...
(decimal_float_ops::from_ulongest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_to_longest): Rename to ...
(decimal_float_ops::to_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_binop): Rename to ...
(decimal_float_ops::binop): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_compare): Rename to ...
(decimal_float_ops::compare): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_convert): Rename to ...
(decimal_float_ops::convert): ... this. Use type instead of
length/byte_order arguments. Update calls.
(target_float_same_category_p): New function.
(target_float_same_format_p): Likewise.
(target_float_format_length): Likewise.
(enum target_float_ops_kind): New type.
(get_target_float_ops_kind): New function.
(get_target_float_ops): Three new overloaded functions.
(target_float_is_zero): Update call.
(target_float_to_string): Add special handling of invalid numbers,
infinities and NaN (moved from floatformat_to_string). Use
target_float_ops callback.
(target_float_from_string): Use target_float_ops callback.
(target_float_to_longest): Likewise.
(target_float_from_longest): Likewise.
(target_float_from_ulongest): Likewise.
(target_float_to_host_double): Likewise.
(target_float_from_host_double): Likewise.
(target_float_convert): Add special case for no-op conversions.
Use target_float_ops callback.
(target_float_binop): Use target_float_ops callback.
(target_float_compare): Likewise.
gdb/testsuite/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
|
|
|
T host_float = (T) val;
|
|
|
|
to_target (type, &host_float, addr);
|
Target FP: Add conversion routines to target-float.{c,h}
This patch adds the following conversion routines:
- target_float_to_longest
- target_float_from_longest
- target_float_from_ulongest
- target_float_convert
which call the equivalent decimal_ routines to handle decimal FP,
and call helper routines that currently still go via DOUBLEST to
handle binary FP.
The target_float_convert routine not only handles BFP<->BFP and
DFP<->DFP conversions, but also BFP<->DFP, which are implemented
by converting to a string and back.
These helpers are used in particular to implement conversion
from and to FP in value_cast, without going through DOUBLEST there.
In order to implement this for the FP<-integer case, the
pack_long / pack_unsigned_long routines are extended to support
floating-point values as output (thereby allowing use of
value_from_[u]longest with a floating-point target type).
This latter change also allows simplification of value_one.
gdb/ChangeLog:
2017-11-06 Ulrich Weigand <uweigand@de.ibm.com>
* target-float.c (floatformat_to_longest): New function.
(floatformat_from_longest, floatformat_from_ulongest): Likewise.
(floatformat_convert): Likewise.
(target_float_to_longest): Likewise.
(target_float_from_longest, target_float_from_ulongest): Likewise.
(target_float_convert): Likewise.
* target-float.h (target_float_to_longest): Add prototype.
(target_float_from_longest, target_float_from_ulongest): Likewise.
(target_float_convert): Likewise.
* value.c (unpack_long): Use target_float_to_longest.
(pack_long): Allow FP types. Use target_float_from_longest.
(pack_unsigned_long): Likewise using target_float_from_ulongest.
* valops.c: Include "target-float.h". Do not include "dfp.h".
(value_cast): Handle conversions to FP using target_float_convert,
value_from_ulongest, and value_from_longest.
(value_one): Use value_from_longest for FP types as well.
2017-11-06 22:57:31 +08:00
|
|
|
}
|
|
|
|
|
Target FP: Refactor use of host floating-point arithmetic
Prepare for using MPFR to implement floating-point arithmetic by
refactoring the way host floating-point arithmetic is currently used.
In particular, fix the following two problems that cause different
(and incorrect) results due to using host arithmetic:
- Current processing always uses host "long double", and then converts
back to the actual target format. This may introduce rounding errors.
- Conversion of FP values to LONGEST simply does a host C++ type cast.
However the result of such a cast is undefined if the source value
is outside the representable range. MPFR always has defined behavior
here (returns the minimum or maximum representable value).
To fix the first issue, I've now created not just one set of routines
using host FP arithmetic (on long double), but instead three different
sets of routines, one each for host float, double, and long double.
Operations can then be performed in the desired type directly, avoiding
the extra rounding step. Using C++ templates, the three sets can all
share the same source code without duplication.
To fix the second issue, I'm simply enforcing the same conversion rule
(which makes sense anyway) when converting out-of-range values from
FP to LONGEST.
To contain the code complexity with the variety of options now possible,
I've created a new class "target_float_ops". There are a total of five
separate implementations of this:
host_float_ops<float> Implemented via host FP in given type
host_float_ops<double>
host_float_ops<long double>
mpfr_float_ops Implemented via MPFR if available
decimal_float_ops Implemented via libdecnumber
Note instead of using the DOUBLEST define, this always just uses the
"long double" data type. But since we now require C++11 anyway, this
type must in any case be avaialble unconditionally.
Most target floating-point operations simply dispatch to a (virtual)
member routine of this class. Which implementation to choose is
determined from the target types involved, and whether they match
some host type or not. E.g. any operation on a single type that
matches a host type is performed in that type. Operations involving
two types that both match host types are performed in the larger one
(according to C/C++ implicit conversion rules). Operations that
involve any type that does not match a host type are performed using
MPFR. (And of course operations involving decimal FP are performed
using libdecnumber.)
This first patch implements the refactoring of target-float.c as
described above, introduing the host_float_ops and decimal_float_ops
classes, and using them. Use of MPFR is introduced in the second patch.
A bit of special-case handling code is moved around to as to avoid
code duplication between host_float_ops and mpfr_float_ops.
Note that due to the changes mentioned above, I've had to update (fix)
the floating-point register values tested in the gdb.arch/vsx-regs.exp
test case. (The new values now work both with host arithmetic and MPFR.)
gdb/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* target-float.c: Do not include <math.h>.
Include <cmath> and <limits>.
(DOUBLEST): Do not define.
(class target_float_ops): New type.
(class host_float_ops): New templated type.
(class decimal_float_ops): New type.
(floatformat_to_doublest): Rename to ...
(host_float_ops<T>::from_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::from_target): New overload using a type argument.
(floatformat_from_doublest): Rename to ...
(host_float_ops<T>::to_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::to_target): New overload using a type argument.
(floatformat_printf_format): New function.
(struct printf_length_modifier): New templated type.
(floatformat_to_string): Rename to ...
(host_float_ops<T>::to_string): ... this. Use type instead of
floatformat argument. Use floatformat_printf_format and
printf_length_modifier. Remove special handling of invalid numbers,
infinities and NaN (moved to target_float_to_string).
(struct scanf_length_modifier): New templated type.
(floatformat_from_string): Rename to ...
(host_float_ops<T>::from_string): ... this. Use type instead of
floatformat argument. Use scanf_length_modifier.
(floatformat_to_longest): Rename to ...
(host_float_ops<T>::to_longest): ... this. Use type instead of
floatformat argument. Handle out-of-range values deterministically.
(floatformat_from_longest): Rename to ...
(host_float_ops<T>::from_longest): ... this. Use type instead of
floatformat argument.
(floatformat_from_ulongest): Rename to ...
(host_float_ops<T>::from_ulongest): ... this. Use type instead of
floatformat argument.
(floatformat_to_host_double): Rename to ...
(host_float_ops<T>::to_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_from_host_double): Rename to ...
(host_float_ops<T>::from_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_convert): Rename to ...
(host_float_ops<T>::convert): ... this. Use type instead of
floatformat arguments. Remove handling of no-op conversions.
(floatformat_binop): Rename to ...
(host_float_ops<T>::binop): ... this. Use type instead of
floatformat arguments.
(floatformat_compare): Rename to ...
(host_float_ops<T>::compare): ... this. Use type instead of
floatformat arguments.
(match_endianness): Use type instead of length/byte_order arguments.
(set_decnumber_context): Likewise.
(decimal_from_number): Likewise. Update calls.
(decimal_to_number): Likewise.
(decimal_is_zero): Likewise. Update calls. Move to earlier in file.
(decimal_float_ops::to_host_double): New dummy function.
(decimal_float_ops::from_host_double): Likewise.
(decimal_to_string): Rename to ...
(decimal_float_ops::to_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_string): Rename to ...
(decimal_float_ops::from_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_longest): Rename to ...
(decimal_float_ops::from_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_ulongest): Rename to ...
(decimal_float_ops::from_ulongest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_to_longest): Rename to ...
(decimal_float_ops::to_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_binop): Rename to ...
(decimal_float_ops::binop): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_compare): Rename to ...
(decimal_float_ops::compare): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_convert): Rename to ...
(decimal_float_ops::convert): ... this. Use type instead of
length/byte_order arguments. Update calls.
(target_float_same_category_p): New function.
(target_float_same_format_p): Likewise.
(target_float_format_length): Likewise.
(enum target_float_ops_kind): New type.
(get_target_float_ops_kind): New function.
(get_target_float_ops): Three new overloaded functions.
(target_float_is_zero): Update call.
(target_float_to_string): Add special handling of invalid numbers,
infinities and NaN (moved from floatformat_to_string). Use
target_float_ops callback.
(target_float_from_string): Use target_float_ops callback.
(target_float_to_longest): Likewise.
(target_float_from_longest): Likewise.
(target_float_from_ulongest): Likewise.
(target_float_to_host_double): Likewise.
(target_float_from_host_double): Likewise.
(target_float_convert): Add special case for no-op conversions.
Use target_float_ops callback.
(target_float_binop): Use target_float_ops callback.
(target_float_compare): Likewise.
gdb/testsuite/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
|
|
|
/* Convert unsigned integer VAL to a target floating-number of type TYPE
|
Target FP: Add conversion routines to target-float.{c,h}
This patch adds the following conversion routines:
- target_float_to_longest
- target_float_from_longest
- target_float_from_ulongest
- target_float_convert
which call the equivalent decimal_ routines to handle decimal FP,
and call helper routines that currently still go via DOUBLEST to
handle binary FP.
The target_float_convert routine not only handles BFP<->BFP and
DFP<->DFP conversions, but also BFP<->DFP, which are implemented
by converting to a string and back.
These helpers are used in particular to implement conversion
from and to FP in value_cast, without going through DOUBLEST there.
In order to implement this for the FP<-integer case, the
pack_long / pack_unsigned_long routines are extended to support
floating-point values as output (thereby allowing use of
value_from_[u]longest with a floating-point target type).
This latter change also allows simplification of value_one.
gdb/ChangeLog:
2017-11-06 Ulrich Weigand <uweigand@de.ibm.com>
* target-float.c (floatformat_to_longest): New function.
(floatformat_from_longest, floatformat_from_ulongest): Likewise.
(floatformat_convert): Likewise.
(target_float_to_longest): Likewise.
(target_float_from_longest, target_float_from_ulongest): Likewise.
(target_float_convert): Likewise.
* target-float.h (target_float_to_longest): Add prototype.
(target_float_from_longest, target_float_from_ulongest): Likewise.
(target_float_convert): Likewise.
* value.c (unpack_long): Use target_float_to_longest.
(pack_long): Allow FP types. Use target_float_from_longest.
(pack_unsigned_long): Likewise using target_float_from_ulongest.
* valops.c: Include "target-float.h". Do not include "dfp.h".
(value_cast): Handle conversions to FP using target_float_convert,
value_from_ulongest, and value_from_longest.
(value_one): Use value_from_longest for FP types as well.
2017-11-06 22:57:31 +08:00
|
|
|
and store it as byte-stream ADDR. */
|
Target FP: Refactor use of host floating-point arithmetic
Prepare for using MPFR to implement floating-point arithmetic by
refactoring the way host floating-point arithmetic is currently used.
In particular, fix the following two problems that cause different
(and incorrect) results due to using host arithmetic:
- Current processing always uses host "long double", and then converts
back to the actual target format. This may introduce rounding errors.
- Conversion of FP values to LONGEST simply does a host C++ type cast.
However the result of such a cast is undefined if the source value
is outside the representable range. MPFR always has defined behavior
here (returns the minimum or maximum representable value).
To fix the first issue, I've now created not just one set of routines
using host FP arithmetic (on long double), but instead three different
sets of routines, one each for host float, double, and long double.
Operations can then be performed in the desired type directly, avoiding
the extra rounding step. Using C++ templates, the three sets can all
share the same source code without duplication.
To fix the second issue, I'm simply enforcing the same conversion rule
(which makes sense anyway) when converting out-of-range values from
FP to LONGEST.
To contain the code complexity with the variety of options now possible,
I've created a new class "target_float_ops". There are a total of five
separate implementations of this:
host_float_ops<float> Implemented via host FP in given type
host_float_ops<double>
host_float_ops<long double>
mpfr_float_ops Implemented via MPFR if available
decimal_float_ops Implemented via libdecnumber
Note instead of using the DOUBLEST define, this always just uses the
"long double" data type. But since we now require C++11 anyway, this
type must in any case be avaialble unconditionally.
Most target floating-point operations simply dispatch to a (virtual)
member routine of this class. Which implementation to choose is
determined from the target types involved, and whether they match
some host type or not. E.g. any operation on a single type that
matches a host type is performed in that type. Operations involving
two types that both match host types are performed in the larger one
(according to C/C++ implicit conversion rules). Operations that
involve any type that does not match a host type are performed using
MPFR. (And of course operations involving decimal FP are performed
using libdecnumber.)
This first patch implements the refactoring of target-float.c as
described above, introduing the host_float_ops and decimal_float_ops
classes, and using them. Use of MPFR is introduced in the second patch.
A bit of special-case handling code is moved around to as to avoid
code duplication between host_float_ops and mpfr_float_ops.
Note that due to the changes mentioned above, I've had to update (fix)
the floating-point register values tested in the gdb.arch/vsx-regs.exp
test case. (The new values now work both with host arithmetic and MPFR.)
gdb/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* target-float.c: Do not include <math.h>.
Include <cmath> and <limits>.
(DOUBLEST): Do not define.
(class target_float_ops): New type.
(class host_float_ops): New templated type.
(class decimal_float_ops): New type.
(floatformat_to_doublest): Rename to ...
(host_float_ops<T>::from_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::from_target): New overload using a type argument.
(floatformat_from_doublest): Rename to ...
(host_float_ops<T>::to_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::to_target): New overload using a type argument.
(floatformat_printf_format): New function.
(struct printf_length_modifier): New templated type.
(floatformat_to_string): Rename to ...
(host_float_ops<T>::to_string): ... this. Use type instead of
floatformat argument. Use floatformat_printf_format and
printf_length_modifier. Remove special handling of invalid numbers,
infinities and NaN (moved to target_float_to_string).
(struct scanf_length_modifier): New templated type.
(floatformat_from_string): Rename to ...
(host_float_ops<T>::from_string): ... this. Use type instead of
floatformat argument. Use scanf_length_modifier.
(floatformat_to_longest): Rename to ...
(host_float_ops<T>::to_longest): ... this. Use type instead of
floatformat argument. Handle out-of-range values deterministically.
(floatformat_from_longest): Rename to ...
(host_float_ops<T>::from_longest): ... this. Use type instead of
floatformat argument.
(floatformat_from_ulongest): Rename to ...
(host_float_ops<T>::from_ulongest): ... this. Use type instead of
floatformat argument.
(floatformat_to_host_double): Rename to ...
(host_float_ops<T>::to_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_from_host_double): Rename to ...
(host_float_ops<T>::from_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_convert): Rename to ...
(host_float_ops<T>::convert): ... this. Use type instead of
floatformat arguments. Remove handling of no-op conversions.
(floatformat_binop): Rename to ...
(host_float_ops<T>::binop): ... this. Use type instead of
floatformat arguments.
(floatformat_compare): Rename to ...
(host_float_ops<T>::compare): ... this. Use type instead of
floatformat arguments.
(match_endianness): Use type instead of length/byte_order arguments.
(set_decnumber_context): Likewise.
(decimal_from_number): Likewise. Update calls.
(decimal_to_number): Likewise.
(decimal_is_zero): Likewise. Update calls. Move to earlier in file.
(decimal_float_ops::to_host_double): New dummy function.
(decimal_float_ops::from_host_double): Likewise.
(decimal_to_string): Rename to ...
(decimal_float_ops::to_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_string): Rename to ...
(decimal_float_ops::from_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_longest): Rename to ...
(decimal_float_ops::from_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_ulongest): Rename to ...
(decimal_float_ops::from_ulongest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_to_longest): Rename to ...
(decimal_float_ops::to_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_binop): Rename to ...
(decimal_float_ops::binop): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_compare): Rename to ...
(decimal_float_ops::compare): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_convert): Rename to ...
(decimal_float_ops::convert): ... this. Use type instead of
length/byte_order arguments. Update calls.
(target_float_same_category_p): New function.
(target_float_same_format_p): Likewise.
(target_float_format_length): Likewise.
(enum target_float_ops_kind): New type.
(get_target_float_ops_kind): New function.
(get_target_float_ops): Three new overloaded functions.
(target_float_is_zero): Update call.
(target_float_to_string): Add special handling of invalid numbers,
infinities and NaN (moved from floatformat_to_string). Use
target_float_ops callback.
(target_float_from_string): Use target_float_ops callback.
(target_float_to_longest): Likewise.
(target_float_from_longest): Likewise.
(target_float_from_ulongest): Likewise.
(target_float_to_host_double): Likewise.
(target_float_from_host_double): Likewise.
(target_float_convert): Add special case for no-op conversions.
Use target_float_ops callback.
(target_float_binop): Use target_float_ops callback.
(target_float_compare): Likewise.
gdb/testsuite/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
|
|
|
template<typename T> void
|
|
|
|
host_float_ops<T>::from_ulongest (gdb_byte *addr, const struct type *type,
|
|
|
|
ULONGEST val) const
|
Target FP: Add conversion routines to target-float.{c,h}
This patch adds the following conversion routines:
- target_float_to_longest
- target_float_from_longest
- target_float_from_ulongest
- target_float_convert
which call the equivalent decimal_ routines to handle decimal FP,
and call helper routines that currently still go via DOUBLEST to
handle binary FP.
The target_float_convert routine not only handles BFP<->BFP and
DFP<->DFP conversions, but also BFP<->DFP, which are implemented
by converting to a string and back.
These helpers are used in particular to implement conversion
from and to FP in value_cast, without going through DOUBLEST there.
In order to implement this for the FP<-integer case, the
pack_long / pack_unsigned_long routines are extended to support
floating-point values as output (thereby allowing use of
value_from_[u]longest with a floating-point target type).
This latter change also allows simplification of value_one.
gdb/ChangeLog:
2017-11-06 Ulrich Weigand <uweigand@de.ibm.com>
* target-float.c (floatformat_to_longest): New function.
(floatformat_from_longest, floatformat_from_ulongest): Likewise.
(floatformat_convert): Likewise.
(target_float_to_longest): Likewise.
(target_float_from_longest, target_float_from_ulongest): Likewise.
(target_float_convert): Likewise.
* target-float.h (target_float_to_longest): Add prototype.
(target_float_from_longest, target_float_from_ulongest): Likewise.
(target_float_convert): Likewise.
* value.c (unpack_long): Use target_float_to_longest.
(pack_long): Allow FP types. Use target_float_from_longest.
(pack_unsigned_long): Likewise using target_float_from_ulongest.
* valops.c: Include "target-float.h". Do not include "dfp.h".
(value_cast): Handle conversions to FP using target_float_convert,
value_from_ulongest, and value_from_longest.
(value_one): Use value_from_longest for FP types as well.
2017-11-06 22:57:31 +08:00
|
|
|
{
|
Target FP: Refactor use of host floating-point arithmetic
Prepare for using MPFR to implement floating-point arithmetic by
refactoring the way host floating-point arithmetic is currently used.
In particular, fix the following two problems that cause different
(and incorrect) results due to using host arithmetic:
- Current processing always uses host "long double", and then converts
back to the actual target format. This may introduce rounding errors.
- Conversion of FP values to LONGEST simply does a host C++ type cast.
However the result of such a cast is undefined if the source value
is outside the representable range. MPFR always has defined behavior
here (returns the minimum or maximum representable value).
To fix the first issue, I've now created not just one set of routines
using host FP arithmetic (on long double), but instead three different
sets of routines, one each for host float, double, and long double.
Operations can then be performed in the desired type directly, avoiding
the extra rounding step. Using C++ templates, the three sets can all
share the same source code without duplication.
To fix the second issue, I'm simply enforcing the same conversion rule
(which makes sense anyway) when converting out-of-range values from
FP to LONGEST.
To contain the code complexity with the variety of options now possible,
I've created a new class "target_float_ops". There are a total of five
separate implementations of this:
host_float_ops<float> Implemented via host FP in given type
host_float_ops<double>
host_float_ops<long double>
mpfr_float_ops Implemented via MPFR if available
decimal_float_ops Implemented via libdecnumber
Note instead of using the DOUBLEST define, this always just uses the
"long double" data type. But since we now require C++11 anyway, this
type must in any case be avaialble unconditionally.
Most target floating-point operations simply dispatch to a (virtual)
member routine of this class. Which implementation to choose is
determined from the target types involved, and whether they match
some host type or not. E.g. any operation on a single type that
matches a host type is performed in that type. Operations involving
two types that both match host types are performed in the larger one
(according to C/C++ implicit conversion rules). Operations that
involve any type that does not match a host type are performed using
MPFR. (And of course operations involving decimal FP are performed
using libdecnumber.)
This first patch implements the refactoring of target-float.c as
described above, introduing the host_float_ops and decimal_float_ops
classes, and using them. Use of MPFR is introduced in the second patch.
A bit of special-case handling code is moved around to as to avoid
code duplication between host_float_ops and mpfr_float_ops.
Note that due to the changes mentioned above, I've had to update (fix)
the floating-point register values tested in the gdb.arch/vsx-regs.exp
test case. (The new values now work both with host arithmetic and MPFR.)
gdb/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* target-float.c: Do not include <math.h>.
Include <cmath> and <limits>.
(DOUBLEST): Do not define.
(class target_float_ops): New type.
(class host_float_ops): New templated type.
(class decimal_float_ops): New type.
(floatformat_to_doublest): Rename to ...
(host_float_ops<T>::from_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::from_target): New overload using a type argument.
(floatformat_from_doublest): Rename to ...
(host_float_ops<T>::to_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::to_target): New overload using a type argument.
(floatformat_printf_format): New function.
(struct printf_length_modifier): New templated type.
(floatformat_to_string): Rename to ...
(host_float_ops<T>::to_string): ... this. Use type instead of
floatformat argument. Use floatformat_printf_format and
printf_length_modifier. Remove special handling of invalid numbers,
infinities and NaN (moved to target_float_to_string).
(struct scanf_length_modifier): New templated type.
(floatformat_from_string): Rename to ...
(host_float_ops<T>::from_string): ... this. Use type instead of
floatformat argument. Use scanf_length_modifier.
(floatformat_to_longest): Rename to ...
(host_float_ops<T>::to_longest): ... this. Use type instead of
floatformat argument. Handle out-of-range values deterministically.
(floatformat_from_longest): Rename to ...
(host_float_ops<T>::from_longest): ... this. Use type instead of
floatformat argument.
(floatformat_from_ulongest): Rename to ...
(host_float_ops<T>::from_ulongest): ... this. Use type instead of
floatformat argument.
(floatformat_to_host_double): Rename to ...
(host_float_ops<T>::to_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_from_host_double): Rename to ...
(host_float_ops<T>::from_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_convert): Rename to ...
(host_float_ops<T>::convert): ... this. Use type instead of
floatformat arguments. Remove handling of no-op conversions.
(floatformat_binop): Rename to ...
(host_float_ops<T>::binop): ... this. Use type instead of
floatformat arguments.
(floatformat_compare): Rename to ...
(host_float_ops<T>::compare): ... this. Use type instead of
floatformat arguments.
(match_endianness): Use type instead of length/byte_order arguments.
(set_decnumber_context): Likewise.
(decimal_from_number): Likewise. Update calls.
(decimal_to_number): Likewise.
(decimal_is_zero): Likewise. Update calls. Move to earlier in file.
(decimal_float_ops::to_host_double): New dummy function.
(decimal_float_ops::from_host_double): Likewise.
(decimal_to_string): Rename to ...
(decimal_float_ops::to_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_string): Rename to ...
(decimal_float_ops::from_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_longest): Rename to ...
(decimal_float_ops::from_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_ulongest): Rename to ...
(decimal_float_ops::from_ulongest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_to_longest): Rename to ...
(decimal_float_ops::to_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_binop): Rename to ...
(decimal_float_ops::binop): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_compare): Rename to ...
(decimal_float_ops::compare): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_convert): Rename to ...
(decimal_float_ops::convert): ... this. Use type instead of
length/byte_order arguments. Update calls.
(target_float_same_category_p): New function.
(target_float_same_format_p): Likewise.
(target_float_format_length): Likewise.
(enum target_float_ops_kind): New type.
(get_target_float_ops_kind): New function.
(get_target_float_ops): Three new overloaded functions.
(target_float_is_zero): Update call.
(target_float_to_string): Add special handling of invalid numbers,
infinities and NaN (moved from floatformat_to_string). Use
target_float_ops callback.
(target_float_from_string): Use target_float_ops callback.
(target_float_to_longest): Likewise.
(target_float_from_longest): Likewise.
(target_float_from_ulongest): Likewise.
(target_float_to_host_double): Likewise.
(target_float_from_host_double): Likewise.
(target_float_convert): Add special case for no-op conversions.
Use target_float_ops callback.
(target_float_binop): Use target_float_ops callback.
(target_float_compare): Likewise.
gdb/testsuite/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
|
|
|
T host_float = (T) val;
|
|
|
|
to_target (type, &host_float, addr);
|
Target FP: Add conversion routines to target-float.{c,h}
This patch adds the following conversion routines:
- target_float_to_longest
- target_float_from_longest
- target_float_from_ulongest
- target_float_convert
which call the equivalent decimal_ routines to handle decimal FP,
and call helper routines that currently still go via DOUBLEST to
handle binary FP.
The target_float_convert routine not only handles BFP<->BFP and
DFP<->DFP conversions, but also BFP<->DFP, which are implemented
by converting to a string and back.
These helpers are used in particular to implement conversion
from and to FP in value_cast, without going through DOUBLEST there.
In order to implement this for the FP<-integer case, the
pack_long / pack_unsigned_long routines are extended to support
floating-point values as output (thereby allowing use of
value_from_[u]longest with a floating-point target type).
This latter change also allows simplification of value_one.
gdb/ChangeLog:
2017-11-06 Ulrich Weigand <uweigand@de.ibm.com>
* target-float.c (floatformat_to_longest): New function.
(floatformat_from_longest, floatformat_from_ulongest): Likewise.
(floatformat_convert): Likewise.
(target_float_to_longest): Likewise.
(target_float_from_longest, target_float_from_ulongest): Likewise.
(target_float_convert): Likewise.
* target-float.h (target_float_to_longest): Add prototype.
(target_float_from_longest, target_float_from_ulongest): Likewise.
(target_float_convert): Likewise.
* value.c (unpack_long): Use target_float_to_longest.
(pack_long): Allow FP types. Use target_float_from_longest.
(pack_unsigned_long): Likewise using target_float_from_ulongest.
* valops.c: Include "target-float.h". Do not include "dfp.h".
(value_cast): Handle conversions to FP using target_float_convert,
value_from_ulongest, and value_from_longest.
(value_one): Use value_from_longest for FP types as well.
2017-11-06 22:57:31 +08:00
|
|
|
}
|
|
|
|
|
Target FP: Refactor use of host floating-point arithmetic
Prepare for using MPFR to implement floating-point arithmetic by
refactoring the way host floating-point arithmetic is currently used.
In particular, fix the following two problems that cause different
(and incorrect) results due to using host arithmetic:
- Current processing always uses host "long double", and then converts
back to the actual target format. This may introduce rounding errors.
- Conversion of FP values to LONGEST simply does a host C++ type cast.
However the result of such a cast is undefined if the source value
is outside the representable range. MPFR always has defined behavior
here (returns the minimum or maximum representable value).
To fix the first issue, I've now created not just one set of routines
using host FP arithmetic (on long double), but instead three different
sets of routines, one each for host float, double, and long double.
Operations can then be performed in the desired type directly, avoiding
the extra rounding step. Using C++ templates, the three sets can all
share the same source code without duplication.
To fix the second issue, I'm simply enforcing the same conversion rule
(which makes sense anyway) when converting out-of-range values from
FP to LONGEST.
To contain the code complexity with the variety of options now possible,
I've created a new class "target_float_ops". There are a total of five
separate implementations of this:
host_float_ops<float> Implemented via host FP in given type
host_float_ops<double>
host_float_ops<long double>
mpfr_float_ops Implemented via MPFR if available
decimal_float_ops Implemented via libdecnumber
Note instead of using the DOUBLEST define, this always just uses the
"long double" data type. But since we now require C++11 anyway, this
type must in any case be avaialble unconditionally.
Most target floating-point operations simply dispatch to a (virtual)
member routine of this class. Which implementation to choose is
determined from the target types involved, and whether they match
some host type or not. E.g. any operation on a single type that
matches a host type is performed in that type. Operations involving
two types that both match host types are performed in the larger one
(according to C/C++ implicit conversion rules). Operations that
involve any type that does not match a host type are performed using
MPFR. (And of course operations involving decimal FP are performed
using libdecnumber.)
This first patch implements the refactoring of target-float.c as
described above, introduing the host_float_ops and decimal_float_ops
classes, and using them. Use of MPFR is introduced in the second patch.
A bit of special-case handling code is moved around to as to avoid
code duplication between host_float_ops and mpfr_float_ops.
Note that due to the changes mentioned above, I've had to update (fix)
the floating-point register values tested in the gdb.arch/vsx-regs.exp
test case. (The new values now work both with host arithmetic and MPFR.)
gdb/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* target-float.c: Do not include <math.h>.
Include <cmath> and <limits>.
(DOUBLEST): Do not define.
(class target_float_ops): New type.
(class host_float_ops): New templated type.
(class decimal_float_ops): New type.
(floatformat_to_doublest): Rename to ...
(host_float_ops<T>::from_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::from_target): New overload using a type argument.
(floatformat_from_doublest): Rename to ...
(host_float_ops<T>::to_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::to_target): New overload using a type argument.
(floatformat_printf_format): New function.
(struct printf_length_modifier): New templated type.
(floatformat_to_string): Rename to ...
(host_float_ops<T>::to_string): ... this. Use type instead of
floatformat argument. Use floatformat_printf_format and
printf_length_modifier. Remove special handling of invalid numbers,
infinities and NaN (moved to target_float_to_string).
(struct scanf_length_modifier): New templated type.
(floatformat_from_string): Rename to ...
(host_float_ops<T>::from_string): ... this. Use type instead of
floatformat argument. Use scanf_length_modifier.
(floatformat_to_longest): Rename to ...
(host_float_ops<T>::to_longest): ... this. Use type instead of
floatformat argument. Handle out-of-range values deterministically.
(floatformat_from_longest): Rename to ...
(host_float_ops<T>::from_longest): ... this. Use type instead of
floatformat argument.
(floatformat_from_ulongest): Rename to ...
(host_float_ops<T>::from_ulongest): ... this. Use type instead of
floatformat argument.
(floatformat_to_host_double): Rename to ...
(host_float_ops<T>::to_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_from_host_double): Rename to ...
(host_float_ops<T>::from_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_convert): Rename to ...
(host_float_ops<T>::convert): ... this. Use type instead of
floatformat arguments. Remove handling of no-op conversions.
(floatformat_binop): Rename to ...
(host_float_ops<T>::binop): ... this. Use type instead of
floatformat arguments.
(floatformat_compare): Rename to ...
(host_float_ops<T>::compare): ... this. Use type instead of
floatformat arguments.
(match_endianness): Use type instead of length/byte_order arguments.
(set_decnumber_context): Likewise.
(decimal_from_number): Likewise. Update calls.
(decimal_to_number): Likewise.
(decimal_is_zero): Likewise. Update calls. Move to earlier in file.
(decimal_float_ops::to_host_double): New dummy function.
(decimal_float_ops::from_host_double): Likewise.
(decimal_to_string): Rename to ...
(decimal_float_ops::to_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_string): Rename to ...
(decimal_float_ops::from_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_longest): Rename to ...
(decimal_float_ops::from_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_ulongest): Rename to ...
(decimal_float_ops::from_ulongest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_to_longest): Rename to ...
(decimal_float_ops::to_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_binop): Rename to ...
(decimal_float_ops::binop): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_compare): Rename to ...
(decimal_float_ops::compare): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_convert): Rename to ...
(decimal_float_ops::convert): ... this. Use type instead of
length/byte_order arguments. Update calls.
(target_float_same_category_p): New function.
(target_float_same_format_p): Likewise.
(target_float_format_length): Likewise.
(enum target_float_ops_kind): New type.
(get_target_float_ops_kind): New function.
(get_target_float_ops): Three new overloaded functions.
(target_float_is_zero): Update call.
(target_float_to_string): Add special handling of invalid numbers,
infinities and NaN (moved from floatformat_to_string). Use
target_float_ops callback.
(target_float_from_string): Use target_float_ops callback.
(target_float_to_longest): Likewise.
(target_float_from_longest): Likewise.
(target_float_from_ulongest): Likewise.
(target_float_to_host_double): Likewise.
(target_float_from_host_double): Likewise.
(target_float_convert): Add special case for no-op conversions.
Use target_float_ops callback.
(target_float_binop): Use target_float_ops callback.
(target_float_compare): Likewise.
gdb/testsuite/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
|
|
|
/* Convert the byte-stream ADDR, interpreted as floating-point type TYPE,
|
2017-11-06 23:00:47 +08:00
|
|
|
to a floating-point value in the host "double" format. */
|
Target FP: Refactor use of host floating-point arithmetic
Prepare for using MPFR to implement floating-point arithmetic by
refactoring the way host floating-point arithmetic is currently used.
In particular, fix the following two problems that cause different
(and incorrect) results due to using host arithmetic:
- Current processing always uses host "long double", and then converts
back to the actual target format. This may introduce rounding errors.
- Conversion of FP values to LONGEST simply does a host C++ type cast.
However the result of such a cast is undefined if the source value
is outside the representable range. MPFR always has defined behavior
here (returns the minimum or maximum representable value).
To fix the first issue, I've now created not just one set of routines
using host FP arithmetic (on long double), but instead three different
sets of routines, one each for host float, double, and long double.
Operations can then be performed in the desired type directly, avoiding
the extra rounding step. Using C++ templates, the three sets can all
share the same source code without duplication.
To fix the second issue, I'm simply enforcing the same conversion rule
(which makes sense anyway) when converting out-of-range values from
FP to LONGEST.
To contain the code complexity with the variety of options now possible,
I've created a new class "target_float_ops". There are a total of five
separate implementations of this:
host_float_ops<float> Implemented via host FP in given type
host_float_ops<double>
host_float_ops<long double>
mpfr_float_ops Implemented via MPFR if available
decimal_float_ops Implemented via libdecnumber
Note instead of using the DOUBLEST define, this always just uses the
"long double" data type. But since we now require C++11 anyway, this
type must in any case be avaialble unconditionally.
Most target floating-point operations simply dispatch to a (virtual)
member routine of this class. Which implementation to choose is
determined from the target types involved, and whether they match
some host type or not. E.g. any operation on a single type that
matches a host type is performed in that type. Operations involving
two types that both match host types are performed in the larger one
(according to C/C++ implicit conversion rules). Operations that
involve any type that does not match a host type are performed using
MPFR. (And of course operations involving decimal FP are performed
using libdecnumber.)
This first patch implements the refactoring of target-float.c as
described above, introduing the host_float_ops and decimal_float_ops
classes, and using them. Use of MPFR is introduced in the second patch.
A bit of special-case handling code is moved around to as to avoid
code duplication between host_float_ops and mpfr_float_ops.
Note that due to the changes mentioned above, I've had to update (fix)
the floating-point register values tested in the gdb.arch/vsx-regs.exp
test case. (The new values now work both with host arithmetic and MPFR.)
gdb/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* target-float.c: Do not include <math.h>.
Include <cmath> and <limits>.
(DOUBLEST): Do not define.
(class target_float_ops): New type.
(class host_float_ops): New templated type.
(class decimal_float_ops): New type.
(floatformat_to_doublest): Rename to ...
(host_float_ops<T>::from_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::from_target): New overload using a type argument.
(floatformat_from_doublest): Rename to ...
(host_float_ops<T>::to_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::to_target): New overload using a type argument.
(floatformat_printf_format): New function.
(struct printf_length_modifier): New templated type.
(floatformat_to_string): Rename to ...
(host_float_ops<T>::to_string): ... this. Use type instead of
floatformat argument. Use floatformat_printf_format and
printf_length_modifier. Remove special handling of invalid numbers,
infinities and NaN (moved to target_float_to_string).
(struct scanf_length_modifier): New templated type.
(floatformat_from_string): Rename to ...
(host_float_ops<T>::from_string): ... this. Use type instead of
floatformat argument. Use scanf_length_modifier.
(floatformat_to_longest): Rename to ...
(host_float_ops<T>::to_longest): ... this. Use type instead of
floatformat argument. Handle out-of-range values deterministically.
(floatformat_from_longest): Rename to ...
(host_float_ops<T>::from_longest): ... this. Use type instead of
floatformat argument.
(floatformat_from_ulongest): Rename to ...
(host_float_ops<T>::from_ulongest): ... this. Use type instead of
floatformat argument.
(floatformat_to_host_double): Rename to ...
(host_float_ops<T>::to_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_from_host_double): Rename to ...
(host_float_ops<T>::from_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_convert): Rename to ...
(host_float_ops<T>::convert): ... this. Use type instead of
floatformat arguments. Remove handling of no-op conversions.
(floatformat_binop): Rename to ...
(host_float_ops<T>::binop): ... this. Use type instead of
floatformat arguments.
(floatformat_compare): Rename to ...
(host_float_ops<T>::compare): ... this. Use type instead of
floatformat arguments.
(match_endianness): Use type instead of length/byte_order arguments.
(set_decnumber_context): Likewise.
(decimal_from_number): Likewise. Update calls.
(decimal_to_number): Likewise.
(decimal_is_zero): Likewise. Update calls. Move to earlier in file.
(decimal_float_ops::to_host_double): New dummy function.
(decimal_float_ops::from_host_double): Likewise.
(decimal_to_string): Rename to ...
(decimal_float_ops::to_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_string): Rename to ...
(decimal_float_ops::from_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_longest): Rename to ...
(decimal_float_ops::from_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_ulongest): Rename to ...
(decimal_float_ops::from_ulongest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_to_longest): Rename to ...
(decimal_float_ops::to_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_binop): Rename to ...
(decimal_float_ops::binop): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_compare): Rename to ...
(decimal_float_ops::compare): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_convert): Rename to ...
(decimal_float_ops::convert): ... this. Use type instead of
length/byte_order arguments. Update calls.
(target_float_same_category_p): New function.
(target_float_same_format_p): Likewise.
(target_float_format_length): Likewise.
(enum target_float_ops_kind): New type.
(get_target_float_ops_kind): New function.
(get_target_float_ops): Three new overloaded functions.
(target_float_is_zero): Update call.
(target_float_to_string): Add special handling of invalid numbers,
infinities and NaN (moved from floatformat_to_string). Use
target_float_ops callback.
(target_float_from_string): Use target_float_ops callback.
(target_float_to_longest): Likewise.
(target_float_from_longest): Likewise.
(target_float_from_ulongest): Likewise.
(target_float_to_host_double): Likewise.
(target_float_from_host_double): Likewise.
(target_float_convert): Add special case for no-op conversions.
Use target_float_ops callback.
(target_float_binop): Use target_float_ops callback.
(target_float_compare): Likewise.
gdb/testsuite/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
|
|
|
template<typename T> double
|
|
|
|
host_float_ops<T>::to_host_double (const gdb_byte *addr,
|
|
|
|
const struct type *type) const
|
2017-11-06 23:00:47 +08:00
|
|
|
{
|
Target FP: Refactor use of host floating-point arithmetic
Prepare for using MPFR to implement floating-point arithmetic by
refactoring the way host floating-point arithmetic is currently used.
In particular, fix the following two problems that cause different
(and incorrect) results due to using host arithmetic:
- Current processing always uses host "long double", and then converts
back to the actual target format. This may introduce rounding errors.
- Conversion of FP values to LONGEST simply does a host C++ type cast.
However the result of such a cast is undefined if the source value
is outside the representable range. MPFR always has defined behavior
here (returns the minimum or maximum representable value).
To fix the first issue, I've now created not just one set of routines
using host FP arithmetic (on long double), but instead three different
sets of routines, one each for host float, double, and long double.
Operations can then be performed in the desired type directly, avoiding
the extra rounding step. Using C++ templates, the three sets can all
share the same source code without duplication.
To fix the second issue, I'm simply enforcing the same conversion rule
(which makes sense anyway) when converting out-of-range values from
FP to LONGEST.
To contain the code complexity with the variety of options now possible,
I've created a new class "target_float_ops". There are a total of five
separate implementations of this:
host_float_ops<float> Implemented via host FP in given type
host_float_ops<double>
host_float_ops<long double>
mpfr_float_ops Implemented via MPFR if available
decimal_float_ops Implemented via libdecnumber
Note instead of using the DOUBLEST define, this always just uses the
"long double" data type. But since we now require C++11 anyway, this
type must in any case be avaialble unconditionally.
Most target floating-point operations simply dispatch to a (virtual)
member routine of this class. Which implementation to choose is
determined from the target types involved, and whether they match
some host type or not. E.g. any operation on a single type that
matches a host type is performed in that type. Operations involving
two types that both match host types are performed in the larger one
(according to C/C++ implicit conversion rules). Operations that
involve any type that does not match a host type are performed using
MPFR. (And of course operations involving decimal FP are performed
using libdecnumber.)
This first patch implements the refactoring of target-float.c as
described above, introduing the host_float_ops and decimal_float_ops
classes, and using them. Use of MPFR is introduced in the second patch.
A bit of special-case handling code is moved around to as to avoid
code duplication between host_float_ops and mpfr_float_ops.
Note that due to the changes mentioned above, I've had to update (fix)
the floating-point register values tested in the gdb.arch/vsx-regs.exp
test case. (The new values now work both with host arithmetic and MPFR.)
gdb/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* target-float.c: Do not include <math.h>.
Include <cmath> and <limits>.
(DOUBLEST): Do not define.
(class target_float_ops): New type.
(class host_float_ops): New templated type.
(class decimal_float_ops): New type.
(floatformat_to_doublest): Rename to ...
(host_float_ops<T>::from_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::from_target): New overload using a type argument.
(floatformat_from_doublest): Rename to ...
(host_float_ops<T>::to_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::to_target): New overload using a type argument.
(floatformat_printf_format): New function.
(struct printf_length_modifier): New templated type.
(floatformat_to_string): Rename to ...
(host_float_ops<T>::to_string): ... this. Use type instead of
floatformat argument. Use floatformat_printf_format and
printf_length_modifier. Remove special handling of invalid numbers,
infinities and NaN (moved to target_float_to_string).
(struct scanf_length_modifier): New templated type.
(floatformat_from_string): Rename to ...
(host_float_ops<T>::from_string): ... this. Use type instead of
floatformat argument. Use scanf_length_modifier.
(floatformat_to_longest): Rename to ...
(host_float_ops<T>::to_longest): ... this. Use type instead of
floatformat argument. Handle out-of-range values deterministically.
(floatformat_from_longest): Rename to ...
(host_float_ops<T>::from_longest): ... this. Use type instead of
floatformat argument.
(floatformat_from_ulongest): Rename to ...
(host_float_ops<T>::from_ulongest): ... this. Use type instead of
floatformat argument.
(floatformat_to_host_double): Rename to ...
(host_float_ops<T>::to_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_from_host_double): Rename to ...
(host_float_ops<T>::from_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_convert): Rename to ...
(host_float_ops<T>::convert): ... this. Use type instead of
floatformat arguments. Remove handling of no-op conversions.
(floatformat_binop): Rename to ...
(host_float_ops<T>::binop): ... this. Use type instead of
floatformat arguments.
(floatformat_compare): Rename to ...
(host_float_ops<T>::compare): ... this. Use type instead of
floatformat arguments.
(match_endianness): Use type instead of length/byte_order arguments.
(set_decnumber_context): Likewise.
(decimal_from_number): Likewise. Update calls.
(decimal_to_number): Likewise.
(decimal_is_zero): Likewise. Update calls. Move to earlier in file.
(decimal_float_ops::to_host_double): New dummy function.
(decimal_float_ops::from_host_double): Likewise.
(decimal_to_string): Rename to ...
(decimal_float_ops::to_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_string): Rename to ...
(decimal_float_ops::from_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_longest): Rename to ...
(decimal_float_ops::from_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_ulongest): Rename to ...
(decimal_float_ops::from_ulongest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_to_longest): Rename to ...
(decimal_float_ops::to_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_binop): Rename to ...
(decimal_float_ops::binop): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_compare): Rename to ...
(decimal_float_ops::compare): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_convert): Rename to ...
(decimal_float_ops::convert): ... this. Use type instead of
length/byte_order arguments. Update calls.
(target_float_same_category_p): New function.
(target_float_same_format_p): Likewise.
(target_float_format_length): Likewise.
(enum target_float_ops_kind): New type.
(get_target_float_ops_kind): New function.
(get_target_float_ops): Three new overloaded functions.
(target_float_is_zero): Update call.
(target_float_to_string): Add special handling of invalid numbers,
infinities and NaN (moved from floatformat_to_string). Use
target_float_ops callback.
(target_float_from_string): Use target_float_ops callback.
(target_float_to_longest): Likewise.
(target_float_from_longest): Likewise.
(target_float_from_ulongest): Likewise.
(target_float_to_host_double): Likewise.
(target_float_from_host_double): Likewise.
(target_float_convert): Add special case for no-op conversions.
Use target_float_ops callback.
(target_float_binop): Use target_float_ops callback.
(target_float_compare): Likewise.
gdb/testsuite/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
|
|
|
T host_float;
|
|
|
|
from_target (type, addr, &host_float);
|
|
|
|
return (double) host_float;
|
2017-11-06 23:00:47 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
/* Convert floating-point value VAL in the host "double" format to a target
|
Target FP: Refactor use of host floating-point arithmetic
Prepare for using MPFR to implement floating-point arithmetic by
refactoring the way host floating-point arithmetic is currently used.
In particular, fix the following two problems that cause different
(and incorrect) results due to using host arithmetic:
- Current processing always uses host "long double", and then converts
back to the actual target format. This may introduce rounding errors.
- Conversion of FP values to LONGEST simply does a host C++ type cast.
However the result of such a cast is undefined if the source value
is outside the representable range. MPFR always has defined behavior
here (returns the minimum or maximum representable value).
To fix the first issue, I've now created not just one set of routines
using host FP arithmetic (on long double), but instead three different
sets of routines, one each for host float, double, and long double.
Operations can then be performed in the desired type directly, avoiding
the extra rounding step. Using C++ templates, the three sets can all
share the same source code without duplication.
To fix the second issue, I'm simply enforcing the same conversion rule
(which makes sense anyway) when converting out-of-range values from
FP to LONGEST.
To contain the code complexity with the variety of options now possible,
I've created a new class "target_float_ops". There are a total of five
separate implementations of this:
host_float_ops<float> Implemented via host FP in given type
host_float_ops<double>
host_float_ops<long double>
mpfr_float_ops Implemented via MPFR if available
decimal_float_ops Implemented via libdecnumber
Note instead of using the DOUBLEST define, this always just uses the
"long double" data type. But since we now require C++11 anyway, this
type must in any case be avaialble unconditionally.
Most target floating-point operations simply dispatch to a (virtual)
member routine of this class. Which implementation to choose is
determined from the target types involved, and whether they match
some host type or not. E.g. any operation on a single type that
matches a host type is performed in that type. Operations involving
two types that both match host types are performed in the larger one
(according to C/C++ implicit conversion rules). Operations that
involve any type that does not match a host type are performed using
MPFR. (And of course operations involving decimal FP are performed
using libdecnumber.)
This first patch implements the refactoring of target-float.c as
described above, introduing the host_float_ops and decimal_float_ops
classes, and using them. Use of MPFR is introduced in the second patch.
A bit of special-case handling code is moved around to as to avoid
code duplication between host_float_ops and mpfr_float_ops.
Note that due to the changes mentioned above, I've had to update (fix)
the floating-point register values tested in the gdb.arch/vsx-regs.exp
test case. (The new values now work both with host arithmetic and MPFR.)
gdb/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* target-float.c: Do not include <math.h>.
Include <cmath> and <limits>.
(DOUBLEST): Do not define.
(class target_float_ops): New type.
(class host_float_ops): New templated type.
(class decimal_float_ops): New type.
(floatformat_to_doublest): Rename to ...
(host_float_ops<T>::from_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::from_target): New overload using a type argument.
(floatformat_from_doublest): Rename to ...
(host_float_ops<T>::to_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::to_target): New overload using a type argument.
(floatformat_printf_format): New function.
(struct printf_length_modifier): New templated type.
(floatformat_to_string): Rename to ...
(host_float_ops<T>::to_string): ... this. Use type instead of
floatformat argument. Use floatformat_printf_format and
printf_length_modifier. Remove special handling of invalid numbers,
infinities and NaN (moved to target_float_to_string).
(struct scanf_length_modifier): New templated type.
(floatformat_from_string): Rename to ...
(host_float_ops<T>::from_string): ... this. Use type instead of
floatformat argument. Use scanf_length_modifier.
(floatformat_to_longest): Rename to ...
(host_float_ops<T>::to_longest): ... this. Use type instead of
floatformat argument. Handle out-of-range values deterministically.
(floatformat_from_longest): Rename to ...
(host_float_ops<T>::from_longest): ... this. Use type instead of
floatformat argument.
(floatformat_from_ulongest): Rename to ...
(host_float_ops<T>::from_ulongest): ... this. Use type instead of
floatformat argument.
(floatformat_to_host_double): Rename to ...
(host_float_ops<T>::to_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_from_host_double): Rename to ...
(host_float_ops<T>::from_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_convert): Rename to ...
(host_float_ops<T>::convert): ... this. Use type instead of
floatformat arguments. Remove handling of no-op conversions.
(floatformat_binop): Rename to ...
(host_float_ops<T>::binop): ... this. Use type instead of
floatformat arguments.
(floatformat_compare): Rename to ...
(host_float_ops<T>::compare): ... this. Use type instead of
floatformat arguments.
(match_endianness): Use type instead of length/byte_order arguments.
(set_decnumber_context): Likewise.
(decimal_from_number): Likewise. Update calls.
(decimal_to_number): Likewise.
(decimal_is_zero): Likewise. Update calls. Move to earlier in file.
(decimal_float_ops::to_host_double): New dummy function.
(decimal_float_ops::from_host_double): Likewise.
(decimal_to_string): Rename to ...
(decimal_float_ops::to_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_string): Rename to ...
(decimal_float_ops::from_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_longest): Rename to ...
(decimal_float_ops::from_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_ulongest): Rename to ...
(decimal_float_ops::from_ulongest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_to_longest): Rename to ...
(decimal_float_ops::to_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_binop): Rename to ...
(decimal_float_ops::binop): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_compare): Rename to ...
(decimal_float_ops::compare): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_convert): Rename to ...
(decimal_float_ops::convert): ... this. Use type instead of
length/byte_order arguments. Update calls.
(target_float_same_category_p): New function.
(target_float_same_format_p): Likewise.
(target_float_format_length): Likewise.
(enum target_float_ops_kind): New type.
(get_target_float_ops_kind): New function.
(get_target_float_ops): Three new overloaded functions.
(target_float_is_zero): Update call.
(target_float_to_string): Add special handling of invalid numbers,
infinities and NaN (moved from floatformat_to_string). Use
target_float_ops callback.
(target_float_from_string): Use target_float_ops callback.
(target_float_to_longest): Likewise.
(target_float_from_longest): Likewise.
(target_float_from_ulongest): Likewise.
(target_float_to_host_double): Likewise.
(target_float_from_host_double): Likewise.
(target_float_convert): Add special case for no-op conversions.
Use target_float_ops callback.
(target_float_binop): Use target_float_ops callback.
(target_float_compare): Likewise.
gdb/testsuite/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
|
|
|
floating-number of type TYPE and store it as byte-stream ADDR. */
|
|
|
|
template<typename T> void
|
|
|
|
host_float_ops<T>::from_host_double (gdb_byte *addr, const struct type *type,
|
|
|
|
double val) const
|
2017-11-06 23:00:47 +08:00
|
|
|
{
|
Target FP: Refactor use of host floating-point arithmetic
Prepare for using MPFR to implement floating-point arithmetic by
refactoring the way host floating-point arithmetic is currently used.
In particular, fix the following two problems that cause different
(and incorrect) results due to using host arithmetic:
- Current processing always uses host "long double", and then converts
back to the actual target format. This may introduce rounding errors.
- Conversion of FP values to LONGEST simply does a host C++ type cast.
However the result of such a cast is undefined if the source value
is outside the representable range. MPFR always has defined behavior
here (returns the minimum or maximum representable value).
To fix the first issue, I've now created not just one set of routines
using host FP arithmetic (on long double), but instead three different
sets of routines, one each for host float, double, and long double.
Operations can then be performed in the desired type directly, avoiding
the extra rounding step. Using C++ templates, the three sets can all
share the same source code without duplication.
To fix the second issue, I'm simply enforcing the same conversion rule
(which makes sense anyway) when converting out-of-range values from
FP to LONGEST.
To contain the code complexity with the variety of options now possible,
I've created a new class "target_float_ops". There are a total of five
separate implementations of this:
host_float_ops<float> Implemented via host FP in given type
host_float_ops<double>
host_float_ops<long double>
mpfr_float_ops Implemented via MPFR if available
decimal_float_ops Implemented via libdecnumber
Note instead of using the DOUBLEST define, this always just uses the
"long double" data type. But since we now require C++11 anyway, this
type must in any case be avaialble unconditionally.
Most target floating-point operations simply dispatch to a (virtual)
member routine of this class. Which implementation to choose is
determined from the target types involved, and whether they match
some host type or not. E.g. any operation on a single type that
matches a host type is performed in that type. Operations involving
two types that both match host types are performed in the larger one
(according to C/C++ implicit conversion rules). Operations that
involve any type that does not match a host type are performed using
MPFR. (And of course operations involving decimal FP are performed
using libdecnumber.)
This first patch implements the refactoring of target-float.c as
described above, introduing the host_float_ops and decimal_float_ops
classes, and using them. Use of MPFR is introduced in the second patch.
A bit of special-case handling code is moved around to as to avoid
code duplication between host_float_ops and mpfr_float_ops.
Note that due to the changes mentioned above, I've had to update (fix)
the floating-point register values tested in the gdb.arch/vsx-regs.exp
test case. (The new values now work both with host arithmetic and MPFR.)
gdb/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* target-float.c: Do not include <math.h>.
Include <cmath> and <limits>.
(DOUBLEST): Do not define.
(class target_float_ops): New type.
(class host_float_ops): New templated type.
(class decimal_float_ops): New type.
(floatformat_to_doublest): Rename to ...
(host_float_ops<T>::from_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::from_target): New overload using a type argument.
(floatformat_from_doublest): Rename to ...
(host_float_ops<T>::to_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::to_target): New overload using a type argument.
(floatformat_printf_format): New function.
(struct printf_length_modifier): New templated type.
(floatformat_to_string): Rename to ...
(host_float_ops<T>::to_string): ... this. Use type instead of
floatformat argument. Use floatformat_printf_format and
printf_length_modifier. Remove special handling of invalid numbers,
infinities and NaN (moved to target_float_to_string).
(struct scanf_length_modifier): New templated type.
(floatformat_from_string): Rename to ...
(host_float_ops<T>::from_string): ... this. Use type instead of
floatformat argument. Use scanf_length_modifier.
(floatformat_to_longest): Rename to ...
(host_float_ops<T>::to_longest): ... this. Use type instead of
floatformat argument. Handle out-of-range values deterministically.
(floatformat_from_longest): Rename to ...
(host_float_ops<T>::from_longest): ... this. Use type instead of
floatformat argument.
(floatformat_from_ulongest): Rename to ...
(host_float_ops<T>::from_ulongest): ... this. Use type instead of
floatformat argument.
(floatformat_to_host_double): Rename to ...
(host_float_ops<T>::to_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_from_host_double): Rename to ...
(host_float_ops<T>::from_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_convert): Rename to ...
(host_float_ops<T>::convert): ... this. Use type instead of
floatformat arguments. Remove handling of no-op conversions.
(floatformat_binop): Rename to ...
(host_float_ops<T>::binop): ... this. Use type instead of
floatformat arguments.
(floatformat_compare): Rename to ...
(host_float_ops<T>::compare): ... this. Use type instead of
floatformat arguments.
(match_endianness): Use type instead of length/byte_order arguments.
(set_decnumber_context): Likewise.
(decimal_from_number): Likewise. Update calls.
(decimal_to_number): Likewise.
(decimal_is_zero): Likewise. Update calls. Move to earlier in file.
(decimal_float_ops::to_host_double): New dummy function.
(decimal_float_ops::from_host_double): Likewise.
(decimal_to_string): Rename to ...
(decimal_float_ops::to_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_string): Rename to ...
(decimal_float_ops::from_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_longest): Rename to ...
(decimal_float_ops::from_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_ulongest): Rename to ...
(decimal_float_ops::from_ulongest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_to_longest): Rename to ...
(decimal_float_ops::to_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_binop): Rename to ...
(decimal_float_ops::binop): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_compare): Rename to ...
(decimal_float_ops::compare): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_convert): Rename to ...
(decimal_float_ops::convert): ... this. Use type instead of
length/byte_order arguments. Update calls.
(target_float_same_category_p): New function.
(target_float_same_format_p): Likewise.
(target_float_format_length): Likewise.
(enum target_float_ops_kind): New type.
(get_target_float_ops_kind): New function.
(get_target_float_ops): Three new overloaded functions.
(target_float_is_zero): Update call.
(target_float_to_string): Add special handling of invalid numbers,
infinities and NaN (moved from floatformat_to_string). Use
target_float_ops callback.
(target_float_from_string): Use target_float_ops callback.
(target_float_to_longest): Likewise.
(target_float_from_longest): Likewise.
(target_float_from_ulongest): Likewise.
(target_float_to_host_double): Likewise.
(target_float_from_host_double): Likewise.
(target_float_convert): Add special case for no-op conversions.
Use target_float_ops callback.
(target_float_binop): Use target_float_ops callback.
(target_float_compare): Likewise.
gdb/testsuite/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
|
|
|
T host_float = (T) val;
|
|
|
|
to_target (type, &host_float, addr);
|
2017-11-06 23:00:47 +08:00
|
|
|
}
|
|
|
|
|
Target FP: Refactor use of host floating-point arithmetic
Prepare for using MPFR to implement floating-point arithmetic by
refactoring the way host floating-point arithmetic is currently used.
In particular, fix the following two problems that cause different
(and incorrect) results due to using host arithmetic:
- Current processing always uses host "long double", and then converts
back to the actual target format. This may introduce rounding errors.
- Conversion of FP values to LONGEST simply does a host C++ type cast.
However the result of such a cast is undefined if the source value
is outside the representable range. MPFR always has defined behavior
here (returns the minimum or maximum representable value).
To fix the first issue, I've now created not just one set of routines
using host FP arithmetic (on long double), but instead three different
sets of routines, one each for host float, double, and long double.
Operations can then be performed in the desired type directly, avoiding
the extra rounding step. Using C++ templates, the three sets can all
share the same source code without duplication.
To fix the second issue, I'm simply enforcing the same conversion rule
(which makes sense anyway) when converting out-of-range values from
FP to LONGEST.
To contain the code complexity with the variety of options now possible,
I've created a new class "target_float_ops". There are a total of five
separate implementations of this:
host_float_ops<float> Implemented via host FP in given type
host_float_ops<double>
host_float_ops<long double>
mpfr_float_ops Implemented via MPFR if available
decimal_float_ops Implemented via libdecnumber
Note instead of using the DOUBLEST define, this always just uses the
"long double" data type. But since we now require C++11 anyway, this
type must in any case be avaialble unconditionally.
Most target floating-point operations simply dispatch to a (virtual)
member routine of this class. Which implementation to choose is
determined from the target types involved, and whether they match
some host type or not. E.g. any operation on a single type that
matches a host type is performed in that type. Operations involving
two types that both match host types are performed in the larger one
(according to C/C++ implicit conversion rules). Operations that
involve any type that does not match a host type are performed using
MPFR. (And of course operations involving decimal FP are performed
using libdecnumber.)
This first patch implements the refactoring of target-float.c as
described above, introduing the host_float_ops and decimal_float_ops
classes, and using them. Use of MPFR is introduced in the second patch.
A bit of special-case handling code is moved around to as to avoid
code duplication between host_float_ops and mpfr_float_ops.
Note that due to the changes mentioned above, I've had to update (fix)
the floating-point register values tested in the gdb.arch/vsx-regs.exp
test case. (The new values now work both with host arithmetic and MPFR.)
gdb/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* target-float.c: Do not include <math.h>.
Include <cmath> and <limits>.
(DOUBLEST): Do not define.
(class target_float_ops): New type.
(class host_float_ops): New templated type.
(class decimal_float_ops): New type.
(floatformat_to_doublest): Rename to ...
(host_float_ops<T>::from_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::from_target): New overload using a type argument.
(floatformat_from_doublest): Rename to ...
(host_float_ops<T>::to_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::to_target): New overload using a type argument.
(floatformat_printf_format): New function.
(struct printf_length_modifier): New templated type.
(floatformat_to_string): Rename to ...
(host_float_ops<T>::to_string): ... this. Use type instead of
floatformat argument. Use floatformat_printf_format and
printf_length_modifier. Remove special handling of invalid numbers,
infinities and NaN (moved to target_float_to_string).
(struct scanf_length_modifier): New templated type.
(floatformat_from_string): Rename to ...
(host_float_ops<T>::from_string): ... this. Use type instead of
floatformat argument. Use scanf_length_modifier.
(floatformat_to_longest): Rename to ...
(host_float_ops<T>::to_longest): ... this. Use type instead of
floatformat argument. Handle out-of-range values deterministically.
(floatformat_from_longest): Rename to ...
(host_float_ops<T>::from_longest): ... this. Use type instead of
floatformat argument.
(floatformat_from_ulongest): Rename to ...
(host_float_ops<T>::from_ulongest): ... this. Use type instead of
floatformat argument.
(floatformat_to_host_double): Rename to ...
(host_float_ops<T>::to_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_from_host_double): Rename to ...
(host_float_ops<T>::from_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_convert): Rename to ...
(host_float_ops<T>::convert): ... this. Use type instead of
floatformat arguments. Remove handling of no-op conversions.
(floatformat_binop): Rename to ...
(host_float_ops<T>::binop): ... this. Use type instead of
floatformat arguments.
(floatformat_compare): Rename to ...
(host_float_ops<T>::compare): ... this. Use type instead of
floatformat arguments.
(match_endianness): Use type instead of length/byte_order arguments.
(set_decnumber_context): Likewise.
(decimal_from_number): Likewise. Update calls.
(decimal_to_number): Likewise.
(decimal_is_zero): Likewise. Update calls. Move to earlier in file.
(decimal_float_ops::to_host_double): New dummy function.
(decimal_float_ops::from_host_double): Likewise.
(decimal_to_string): Rename to ...
(decimal_float_ops::to_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_string): Rename to ...
(decimal_float_ops::from_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_longest): Rename to ...
(decimal_float_ops::from_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_ulongest): Rename to ...
(decimal_float_ops::from_ulongest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_to_longest): Rename to ...
(decimal_float_ops::to_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_binop): Rename to ...
(decimal_float_ops::binop): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_compare): Rename to ...
(decimal_float_ops::compare): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_convert): Rename to ...
(decimal_float_ops::convert): ... this. Use type instead of
length/byte_order arguments. Update calls.
(target_float_same_category_p): New function.
(target_float_same_format_p): Likewise.
(target_float_format_length): Likewise.
(enum target_float_ops_kind): New type.
(get_target_float_ops_kind): New function.
(get_target_float_ops): Three new overloaded functions.
(target_float_is_zero): Update call.
(target_float_to_string): Add special handling of invalid numbers,
infinities and NaN (moved from floatformat_to_string). Use
target_float_ops callback.
(target_float_from_string): Use target_float_ops callback.
(target_float_to_longest): Likewise.
(target_float_from_longest): Likewise.
(target_float_from_ulongest): Likewise.
(target_float_to_host_double): Likewise.
(target_float_from_host_double): Likewise.
(target_float_convert): Add special case for no-op conversions.
Use target_float_ops callback.
(target_float_binop): Use target_float_ops callback.
(target_float_compare): Likewise.
gdb/testsuite/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
|
|
|
/* Convert a floating-point number of type FROM_TYPE from the target
|
|
|
|
byte-stream FROM to a floating-point number of type TO_TYPE, and
|
Target FP: Add conversion routines to target-float.{c,h}
This patch adds the following conversion routines:
- target_float_to_longest
- target_float_from_longest
- target_float_from_ulongest
- target_float_convert
which call the equivalent decimal_ routines to handle decimal FP,
and call helper routines that currently still go via DOUBLEST to
handle binary FP.
The target_float_convert routine not only handles BFP<->BFP and
DFP<->DFP conversions, but also BFP<->DFP, which are implemented
by converting to a string and back.
These helpers are used in particular to implement conversion
from and to FP in value_cast, without going through DOUBLEST there.
In order to implement this for the FP<-integer case, the
pack_long / pack_unsigned_long routines are extended to support
floating-point values as output (thereby allowing use of
value_from_[u]longest with a floating-point target type).
This latter change also allows simplification of value_one.
gdb/ChangeLog:
2017-11-06 Ulrich Weigand <uweigand@de.ibm.com>
* target-float.c (floatformat_to_longest): New function.
(floatformat_from_longest, floatformat_from_ulongest): Likewise.
(floatformat_convert): Likewise.
(target_float_to_longest): Likewise.
(target_float_from_longest, target_float_from_ulongest): Likewise.
(target_float_convert): Likewise.
* target-float.h (target_float_to_longest): Add prototype.
(target_float_from_longest, target_float_from_ulongest): Likewise.
(target_float_convert): Likewise.
* value.c (unpack_long): Use target_float_to_longest.
(pack_long): Allow FP types. Use target_float_from_longest.
(pack_unsigned_long): Likewise using target_float_from_ulongest.
* valops.c: Include "target-float.h". Do not include "dfp.h".
(value_cast): Handle conversions to FP using target_float_convert,
value_from_ulongest, and value_from_longest.
(value_one): Use value_from_longest for FP types as well.
2017-11-06 22:57:31 +08:00
|
|
|
store it to the target byte-stream TO. */
|
Target FP: Refactor use of host floating-point arithmetic
Prepare for using MPFR to implement floating-point arithmetic by
refactoring the way host floating-point arithmetic is currently used.
In particular, fix the following two problems that cause different
(and incorrect) results due to using host arithmetic:
- Current processing always uses host "long double", and then converts
back to the actual target format. This may introduce rounding errors.
- Conversion of FP values to LONGEST simply does a host C++ type cast.
However the result of such a cast is undefined if the source value
is outside the representable range. MPFR always has defined behavior
here (returns the minimum or maximum representable value).
To fix the first issue, I've now created not just one set of routines
using host FP arithmetic (on long double), but instead three different
sets of routines, one each for host float, double, and long double.
Operations can then be performed in the desired type directly, avoiding
the extra rounding step. Using C++ templates, the three sets can all
share the same source code without duplication.
To fix the second issue, I'm simply enforcing the same conversion rule
(which makes sense anyway) when converting out-of-range values from
FP to LONGEST.
To contain the code complexity with the variety of options now possible,
I've created a new class "target_float_ops". There are a total of five
separate implementations of this:
host_float_ops<float> Implemented via host FP in given type
host_float_ops<double>
host_float_ops<long double>
mpfr_float_ops Implemented via MPFR if available
decimal_float_ops Implemented via libdecnumber
Note instead of using the DOUBLEST define, this always just uses the
"long double" data type. But since we now require C++11 anyway, this
type must in any case be avaialble unconditionally.
Most target floating-point operations simply dispatch to a (virtual)
member routine of this class. Which implementation to choose is
determined from the target types involved, and whether they match
some host type or not. E.g. any operation on a single type that
matches a host type is performed in that type. Operations involving
two types that both match host types are performed in the larger one
(according to C/C++ implicit conversion rules). Operations that
involve any type that does not match a host type are performed using
MPFR. (And of course operations involving decimal FP are performed
using libdecnumber.)
This first patch implements the refactoring of target-float.c as
described above, introduing the host_float_ops and decimal_float_ops
classes, and using them. Use of MPFR is introduced in the second patch.
A bit of special-case handling code is moved around to as to avoid
code duplication between host_float_ops and mpfr_float_ops.
Note that due to the changes mentioned above, I've had to update (fix)
the floating-point register values tested in the gdb.arch/vsx-regs.exp
test case. (The new values now work both with host arithmetic and MPFR.)
gdb/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* target-float.c: Do not include <math.h>.
Include <cmath> and <limits>.
(DOUBLEST): Do not define.
(class target_float_ops): New type.
(class host_float_ops): New templated type.
(class decimal_float_ops): New type.
(floatformat_to_doublest): Rename to ...
(host_float_ops<T>::from_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::from_target): New overload using a type argument.
(floatformat_from_doublest): Rename to ...
(host_float_ops<T>::to_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::to_target): New overload using a type argument.
(floatformat_printf_format): New function.
(struct printf_length_modifier): New templated type.
(floatformat_to_string): Rename to ...
(host_float_ops<T>::to_string): ... this. Use type instead of
floatformat argument. Use floatformat_printf_format and
printf_length_modifier. Remove special handling of invalid numbers,
infinities and NaN (moved to target_float_to_string).
(struct scanf_length_modifier): New templated type.
(floatformat_from_string): Rename to ...
(host_float_ops<T>::from_string): ... this. Use type instead of
floatformat argument. Use scanf_length_modifier.
(floatformat_to_longest): Rename to ...
(host_float_ops<T>::to_longest): ... this. Use type instead of
floatformat argument. Handle out-of-range values deterministically.
(floatformat_from_longest): Rename to ...
(host_float_ops<T>::from_longest): ... this. Use type instead of
floatformat argument.
(floatformat_from_ulongest): Rename to ...
(host_float_ops<T>::from_ulongest): ... this. Use type instead of
floatformat argument.
(floatformat_to_host_double): Rename to ...
(host_float_ops<T>::to_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_from_host_double): Rename to ...
(host_float_ops<T>::from_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_convert): Rename to ...
(host_float_ops<T>::convert): ... this. Use type instead of
floatformat arguments. Remove handling of no-op conversions.
(floatformat_binop): Rename to ...
(host_float_ops<T>::binop): ... this. Use type instead of
floatformat arguments.
(floatformat_compare): Rename to ...
(host_float_ops<T>::compare): ... this. Use type instead of
floatformat arguments.
(match_endianness): Use type instead of length/byte_order arguments.
(set_decnumber_context): Likewise.
(decimal_from_number): Likewise. Update calls.
(decimal_to_number): Likewise.
(decimal_is_zero): Likewise. Update calls. Move to earlier in file.
(decimal_float_ops::to_host_double): New dummy function.
(decimal_float_ops::from_host_double): Likewise.
(decimal_to_string): Rename to ...
(decimal_float_ops::to_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_string): Rename to ...
(decimal_float_ops::from_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_longest): Rename to ...
(decimal_float_ops::from_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_ulongest): Rename to ...
(decimal_float_ops::from_ulongest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_to_longest): Rename to ...
(decimal_float_ops::to_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_binop): Rename to ...
(decimal_float_ops::binop): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_compare): Rename to ...
(decimal_float_ops::compare): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_convert): Rename to ...
(decimal_float_ops::convert): ... this. Use type instead of
length/byte_order arguments. Update calls.
(target_float_same_category_p): New function.
(target_float_same_format_p): Likewise.
(target_float_format_length): Likewise.
(enum target_float_ops_kind): New type.
(get_target_float_ops_kind): New function.
(get_target_float_ops): Three new overloaded functions.
(target_float_is_zero): Update call.
(target_float_to_string): Add special handling of invalid numbers,
infinities and NaN (moved from floatformat_to_string). Use
target_float_ops callback.
(target_float_from_string): Use target_float_ops callback.
(target_float_to_longest): Likewise.
(target_float_from_longest): Likewise.
(target_float_from_ulongest): Likewise.
(target_float_to_host_double): Likewise.
(target_float_from_host_double): Likewise.
(target_float_convert): Add special case for no-op conversions.
Use target_float_ops callback.
(target_float_binop): Use target_float_ops callback.
(target_float_compare): Likewise.
gdb/testsuite/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
|
|
|
template<typename T> void
|
|
|
|
host_float_ops<T>::convert (const gdb_byte *from,
|
|
|
|
const struct type *from_type,
|
|
|
|
gdb_byte *to,
|
|
|
|
const struct type *to_type) const
|
Target FP: Add conversion routines to target-float.{c,h}
This patch adds the following conversion routines:
- target_float_to_longest
- target_float_from_longest
- target_float_from_ulongest
- target_float_convert
which call the equivalent decimal_ routines to handle decimal FP,
and call helper routines that currently still go via DOUBLEST to
handle binary FP.
The target_float_convert routine not only handles BFP<->BFP and
DFP<->DFP conversions, but also BFP<->DFP, which are implemented
by converting to a string and back.
These helpers are used in particular to implement conversion
from and to FP in value_cast, without going through DOUBLEST there.
In order to implement this for the FP<-integer case, the
pack_long / pack_unsigned_long routines are extended to support
floating-point values as output (thereby allowing use of
value_from_[u]longest with a floating-point target type).
This latter change also allows simplification of value_one.
gdb/ChangeLog:
2017-11-06 Ulrich Weigand <uweigand@de.ibm.com>
* target-float.c (floatformat_to_longest): New function.
(floatformat_from_longest, floatformat_from_ulongest): Likewise.
(floatformat_convert): Likewise.
(target_float_to_longest): Likewise.
(target_float_from_longest, target_float_from_ulongest): Likewise.
(target_float_convert): Likewise.
* target-float.h (target_float_to_longest): Add prototype.
(target_float_from_longest, target_float_from_ulongest): Likewise.
(target_float_convert): Likewise.
* value.c (unpack_long): Use target_float_to_longest.
(pack_long): Allow FP types. Use target_float_from_longest.
(pack_unsigned_long): Likewise using target_float_from_ulongest.
* valops.c: Include "target-float.h". Do not include "dfp.h".
(value_cast): Handle conversions to FP using target_float_convert,
value_from_ulongest, and value_from_longest.
(value_one): Use value_from_longest for FP types as well.
2017-11-06 22:57:31 +08:00
|
|
|
{
|
Target FP: Refactor use of host floating-point arithmetic
Prepare for using MPFR to implement floating-point arithmetic by
refactoring the way host floating-point arithmetic is currently used.
In particular, fix the following two problems that cause different
(and incorrect) results due to using host arithmetic:
- Current processing always uses host "long double", and then converts
back to the actual target format. This may introduce rounding errors.
- Conversion of FP values to LONGEST simply does a host C++ type cast.
However the result of such a cast is undefined if the source value
is outside the representable range. MPFR always has defined behavior
here (returns the minimum or maximum representable value).
To fix the first issue, I've now created not just one set of routines
using host FP arithmetic (on long double), but instead three different
sets of routines, one each for host float, double, and long double.
Operations can then be performed in the desired type directly, avoiding
the extra rounding step. Using C++ templates, the three sets can all
share the same source code without duplication.
To fix the second issue, I'm simply enforcing the same conversion rule
(which makes sense anyway) when converting out-of-range values from
FP to LONGEST.
To contain the code complexity with the variety of options now possible,
I've created a new class "target_float_ops". There are a total of five
separate implementations of this:
host_float_ops<float> Implemented via host FP in given type
host_float_ops<double>
host_float_ops<long double>
mpfr_float_ops Implemented via MPFR if available
decimal_float_ops Implemented via libdecnumber
Note instead of using the DOUBLEST define, this always just uses the
"long double" data type. But since we now require C++11 anyway, this
type must in any case be avaialble unconditionally.
Most target floating-point operations simply dispatch to a (virtual)
member routine of this class. Which implementation to choose is
determined from the target types involved, and whether they match
some host type or not. E.g. any operation on a single type that
matches a host type is performed in that type. Operations involving
two types that both match host types are performed in the larger one
(according to C/C++ implicit conversion rules). Operations that
involve any type that does not match a host type are performed using
MPFR. (And of course operations involving decimal FP are performed
using libdecnumber.)
This first patch implements the refactoring of target-float.c as
described above, introduing the host_float_ops and decimal_float_ops
classes, and using them. Use of MPFR is introduced in the second patch.
A bit of special-case handling code is moved around to as to avoid
code duplication between host_float_ops and mpfr_float_ops.
Note that due to the changes mentioned above, I've had to update (fix)
the floating-point register values tested in the gdb.arch/vsx-regs.exp
test case. (The new values now work both with host arithmetic and MPFR.)
gdb/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* target-float.c: Do not include <math.h>.
Include <cmath> and <limits>.
(DOUBLEST): Do not define.
(class target_float_ops): New type.
(class host_float_ops): New templated type.
(class decimal_float_ops): New type.
(floatformat_to_doublest): Rename to ...
(host_float_ops<T>::from_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::from_target): New overload using a type argument.
(floatformat_from_doublest): Rename to ...
(host_float_ops<T>::to_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::to_target): New overload using a type argument.
(floatformat_printf_format): New function.
(struct printf_length_modifier): New templated type.
(floatformat_to_string): Rename to ...
(host_float_ops<T>::to_string): ... this. Use type instead of
floatformat argument. Use floatformat_printf_format and
printf_length_modifier. Remove special handling of invalid numbers,
infinities and NaN (moved to target_float_to_string).
(struct scanf_length_modifier): New templated type.
(floatformat_from_string): Rename to ...
(host_float_ops<T>::from_string): ... this. Use type instead of
floatformat argument. Use scanf_length_modifier.
(floatformat_to_longest): Rename to ...
(host_float_ops<T>::to_longest): ... this. Use type instead of
floatformat argument. Handle out-of-range values deterministically.
(floatformat_from_longest): Rename to ...
(host_float_ops<T>::from_longest): ... this. Use type instead of
floatformat argument.
(floatformat_from_ulongest): Rename to ...
(host_float_ops<T>::from_ulongest): ... this. Use type instead of
floatformat argument.
(floatformat_to_host_double): Rename to ...
(host_float_ops<T>::to_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_from_host_double): Rename to ...
(host_float_ops<T>::from_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_convert): Rename to ...
(host_float_ops<T>::convert): ... this. Use type instead of
floatformat arguments. Remove handling of no-op conversions.
(floatformat_binop): Rename to ...
(host_float_ops<T>::binop): ... this. Use type instead of
floatformat arguments.
(floatformat_compare): Rename to ...
(host_float_ops<T>::compare): ... this. Use type instead of
floatformat arguments.
(match_endianness): Use type instead of length/byte_order arguments.
(set_decnumber_context): Likewise.
(decimal_from_number): Likewise. Update calls.
(decimal_to_number): Likewise.
(decimal_is_zero): Likewise. Update calls. Move to earlier in file.
(decimal_float_ops::to_host_double): New dummy function.
(decimal_float_ops::from_host_double): Likewise.
(decimal_to_string): Rename to ...
(decimal_float_ops::to_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_string): Rename to ...
(decimal_float_ops::from_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_longest): Rename to ...
(decimal_float_ops::from_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_ulongest): Rename to ...
(decimal_float_ops::from_ulongest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_to_longest): Rename to ...
(decimal_float_ops::to_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_binop): Rename to ...
(decimal_float_ops::binop): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_compare): Rename to ...
(decimal_float_ops::compare): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_convert): Rename to ...
(decimal_float_ops::convert): ... this. Use type instead of
length/byte_order arguments. Update calls.
(target_float_same_category_p): New function.
(target_float_same_format_p): Likewise.
(target_float_format_length): Likewise.
(enum target_float_ops_kind): New type.
(get_target_float_ops_kind): New function.
(get_target_float_ops): Three new overloaded functions.
(target_float_is_zero): Update call.
(target_float_to_string): Add special handling of invalid numbers,
infinities and NaN (moved from floatformat_to_string). Use
target_float_ops callback.
(target_float_from_string): Use target_float_ops callback.
(target_float_to_longest): Likewise.
(target_float_from_longest): Likewise.
(target_float_from_ulongest): Likewise.
(target_float_to_host_double): Likewise.
(target_float_from_host_double): Likewise.
(target_float_convert): Add special case for no-op conversions.
Use target_float_ops callback.
(target_float_binop): Use target_float_ops callback.
(target_float_compare): Likewise.
gdb/testsuite/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
|
|
|
T host_float;
|
|
|
|
from_target (from_type, from, &host_float);
|
|
|
|
to_target (to_type, &host_float, to);
|
Target FP: Add conversion routines to target-float.{c,h}
This patch adds the following conversion routines:
- target_float_to_longest
- target_float_from_longest
- target_float_from_ulongest
- target_float_convert
which call the equivalent decimal_ routines to handle decimal FP,
and call helper routines that currently still go via DOUBLEST to
handle binary FP.
The target_float_convert routine not only handles BFP<->BFP and
DFP<->DFP conversions, but also BFP<->DFP, which are implemented
by converting to a string and back.
These helpers are used in particular to implement conversion
from and to FP in value_cast, without going through DOUBLEST there.
In order to implement this for the FP<-integer case, the
pack_long / pack_unsigned_long routines are extended to support
floating-point values as output (thereby allowing use of
value_from_[u]longest with a floating-point target type).
This latter change also allows simplification of value_one.
gdb/ChangeLog:
2017-11-06 Ulrich Weigand <uweigand@de.ibm.com>
* target-float.c (floatformat_to_longest): New function.
(floatformat_from_longest, floatformat_from_ulongest): Likewise.
(floatformat_convert): Likewise.
(target_float_to_longest): Likewise.
(target_float_from_longest, target_float_from_ulongest): Likewise.
(target_float_convert): Likewise.
* target-float.h (target_float_to_longest): Add prototype.
(target_float_from_longest, target_float_from_ulongest): Likewise.
(target_float_convert): Likewise.
* value.c (unpack_long): Use target_float_to_longest.
(pack_long): Allow FP types. Use target_float_from_longest.
(pack_unsigned_long): Likewise using target_float_from_ulongest.
* valops.c: Include "target-float.h". Do not include "dfp.h".
(value_cast): Handle conversions to FP using target_float_convert,
value_from_ulongest, and value_from_longest.
(value_one): Use value_from_longest for FP types as well.
2017-11-06 22:57:31 +08:00
|
|
|
}
|
|
|
|
|
2017-11-06 22:58:46 +08:00
|
|
|
/* Perform the binary operation indicated by OPCODE, using as operands the
|
|
|
|
target byte streams X and Y, interpreted as floating-point numbers of
|
Target FP: Refactor use of host floating-point arithmetic
Prepare for using MPFR to implement floating-point arithmetic by
refactoring the way host floating-point arithmetic is currently used.
In particular, fix the following two problems that cause different
(and incorrect) results due to using host arithmetic:
- Current processing always uses host "long double", and then converts
back to the actual target format. This may introduce rounding errors.
- Conversion of FP values to LONGEST simply does a host C++ type cast.
However the result of such a cast is undefined if the source value
is outside the representable range. MPFR always has defined behavior
here (returns the minimum or maximum representable value).
To fix the first issue, I've now created not just one set of routines
using host FP arithmetic (on long double), but instead three different
sets of routines, one each for host float, double, and long double.
Operations can then be performed in the desired type directly, avoiding
the extra rounding step. Using C++ templates, the three sets can all
share the same source code without duplication.
To fix the second issue, I'm simply enforcing the same conversion rule
(which makes sense anyway) when converting out-of-range values from
FP to LONGEST.
To contain the code complexity with the variety of options now possible,
I've created a new class "target_float_ops". There are a total of five
separate implementations of this:
host_float_ops<float> Implemented via host FP in given type
host_float_ops<double>
host_float_ops<long double>
mpfr_float_ops Implemented via MPFR if available
decimal_float_ops Implemented via libdecnumber
Note instead of using the DOUBLEST define, this always just uses the
"long double" data type. But since we now require C++11 anyway, this
type must in any case be avaialble unconditionally.
Most target floating-point operations simply dispatch to a (virtual)
member routine of this class. Which implementation to choose is
determined from the target types involved, and whether they match
some host type or not. E.g. any operation on a single type that
matches a host type is performed in that type. Operations involving
two types that both match host types are performed in the larger one
(according to C/C++ implicit conversion rules). Operations that
involve any type that does not match a host type are performed using
MPFR. (And of course operations involving decimal FP are performed
using libdecnumber.)
This first patch implements the refactoring of target-float.c as
described above, introduing the host_float_ops and decimal_float_ops
classes, and using them. Use of MPFR is introduced in the second patch.
A bit of special-case handling code is moved around to as to avoid
code duplication between host_float_ops and mpfr_float_ops.
Note that due to the changes mentioned above, I've had to update (fix)
the floating-point register values tested in the gdb.arch/vsx-regs.exp
test case. (The new values now work both with host arithmetic and MPFR.)
gdb/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* target-float.c: Do not include <math.h>.
Include <cmath> and <limits>.
(DOUBLEST): Do not define.
(class target_float_ops): New type.
(class host_float_ops): New templated type.
(class decimal_float_ops): New type.
(floatformat_to_doublest): Rename to ...
(host_float_ops<T>::from_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::from_target): New overload using a type argument.
(floatformat_from_doublest): Rename to ...
(host_float_ops<T>::to_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::to_target): New overload using a type argument.
(floatformat_printf_format): New function.
(struct printf_length_modifier): New templated type.
(floatformat_to_string): Rename to ...
(host_float_ops<T>::to_string): ... this. Use type instead of
floatformat argument. Use floatformat_printf_format and
printf_length_modifier. Remove special handling of invalid numbers,
infinities and NaN (moved to target_float_to_string).
(struct scanf_length_modifier): New templated type.
(floatformat_from_string): Rename to ...
(host_float_ops<T>::from_string): ... this. Use type instead of
floatformat argument. Use scanf_length_modifier.
(floatformat_to_longest): Rename to ...
(host_float_ops<T>::to_longest): ... this. Use type instead of
floatformat argument. Handle out-of-range values deterministically.
(floatformat_from_longest): Rename to ...
(host_float_ops<T>::from_longest): ... this. Use type instead of
floatformat argument.
(floatformat_from_ulongest): Rename to ...
(host_float_ops<T>::from_ulongest): ... this. Use type instead of
floatformat argument.
(floatformat_to_host_double): Rename to ...
(host_float_ops<T>::to_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_from_host_double): Rename to ...
(host_float_ops<T>::from_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_convert): Rename to ...
(host_float_ops<T>::convert): ... this. Use type instead of
floatformat arguments. Remove handling of no-op conversions.
(floatformat_binop): Rename to ...
(host_float_ops<T>::binop): ... this. Use type instead of
floatformat arguments.
(floatformat_compare): Rename to ...
(host_float_ops<T>::compare): ... this. Use type instead of
floatformat arguments.
(match_endianness): Use type instead of length/byte_order arguments.
(set_decnumber_context): Likewise.
(decimal_from_number): Likewise. Update calls.
(decimal_to_number): Likewise.
(decimal_is_zero): Likewise. Update calls. Move to earlier in file.
(decimal_float_ops::to_host_double): New dummy function.
(decimal_float_ops::from_host_double): Likewise.
(decimal_to_string): Rename to ...
(decimal_float_ops::to_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_string): Rename to ...
(decimal_float_ops::from_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_longest): Rename to ...
(decimal_float_ops::from_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_ulongest): Rename to ...
(decimal_float_ops::from_ulongest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_to_longest): Rename to ...
(decimal_float_ops::to_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_binop): Rename to ...
(decimal_float_ops::binop): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_compare): Rename to ...
(decimal_float_ops::compare): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_convert): Rename to ...
(decimal_float_ops::convert): ... this. Use type instead of
length/byte_order arguments. Update calls.
(target_float_same_category_p): New function.
(target_float_same_format_p): Likewise.
(target_float_format_length): Likewise.
(enum target_float_ops_kind): New type.
(get_target_float_ops_kind): New function.
(get_target_float_ops): Three new overloaded functions.
(target_float_is_zero): Update call.
(target_float_to_string): Add special handling of invalid numbers,
infinities and NaN (moved from floatformat_to_string). Use
target_float_ops callback.
(target_float_from_string): Use target_float_ops callback.
(target_float_to_longest): Likewise.
(target_float_from_longest): Likewise.
(target_float_from_ulongest): Likewise.
(target_float_to_host_double): Likewise.
(target_float_from_host_double): Likewise.
(target_float_convert): Add special case for no-op conversions.
Use target_float_ops callback.
(target_float_binop): Use target_float_ops callback.
(target_float_compare): Likewise.
gdb/testsuite/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
|
|
|
types TYPE_X and TYPE_Y, respectively. Convert the result to format
|
|
|
|
TYPE_RES and store it into the byte-stream RES. */
|
|
|
|
template<typename T> void
|
|
|
|
host_float_ops<T>::binop (enum exp_opcode op,
|
|
|
|
const gdb_byte *x, const struct type *type_x,
|
|
|
|
const gdb_byte *y, const struct type *type_y,
|
|
|
|
gdb_byte *res, const struct type *type_res) const
|
2017-11-06 22:58:46 +08:00
|
|
|
{
|
Target FP: Refactor use of host floating-point arithmetic
Prepare for using MPFR to implement floating-point arithmetic by
refactoring the way host floating-point arithmetic is currently used.
In particular, fix the following two problems that cause different
(and incorrect) results due to using host arithmetic:
- Current processing always uses host "long double", and then converts
back to the actual target format. This may introduce rounding errors.
- Conversion of FP values to LONGEST simply does a host C++ type cast.
However the result of such a cast is undefined if the source value
is outside the representable range. MPFR always has defined behavior
here (returns the minimum or maximum representable value).
To fix the first issue, I've now created not just one set of routines
using host FP arithmetic (on long double), but instead three different
sets of routines, one each for host float, double, and long double.
Operations can then be performed in the desired type directly, avoiding
the extra rounding step. Using C++ templates, the three sets can all
share the same source code without duplication.
To fix the second issue, I'm simply enforcing the same conversion rule
(which makes sense anyway) when converting out-of-range values from
FP to LONGEST.
To contain the code complexity with the variety of options now possible,
I've created a new class "target_float_ops". There are a total of five
separate implementations of this:
host_float_ops<float> Implemented via host FP in given type
host_float_ops<double>
host_float_ops<long double>
mpfr_float_ops Implemented via MPFR if available
decimal_float_ops Implemented via libdecnumber
Note instead of using the DOUBLEST define, this always just uses the
"long double" data type. But since we now require C++11 anyway, this
type must in any case be avaialble unconditionally.
Most target floating-point operations simply dispatch to a (virtual)
member routine of this class. Which implementation to choose is
determined from the target types involved, and whether they match
some host type or not. E.g. any operation on a single type that
matches a host type is performed in that type. Operations involving
two types that both match host types are performed in the larger one
(according to C/C++ implicit conversion rules). Operations that
involve any type that does not match a host type are performed using
MPFR. (And of course operations involving decimal FP are performed
using libdecnumber.)
This first patch implements the refactoring of target-float.c as
described above, introduing the host_float_ops and decimal_float_ops
classes, and using them. Use of MPFR is introduced in the second patch.
A bit of special-case handling code is moved around to as to avoid
code duplication between host_float_ops and mpfr_float_ops.
Note that due to the changes mentioned above, I've had to update (fix)
the floating-point register values tested in the gdb.arch/vsx-regs.exp
test case. (The new values now work both with host arithmetic and MPFR.)
gdb/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* target-float.c: Do not include <math.h>.
Include <cmath> and <limits>.
(DOUBLEST): Do not define.
(class target_float_ops): New type.
(class host_float_ops): New templated type.
(class decimal_float_ops): New type.
(floatformat_to_doublest): Rename to ...
(host_float_ops<T>::from_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::from_target): New overload using a type argument.
(floatformat_from_doublest): Rename to ...
(host_float_ops<T>::to_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::to_target): New overload using a type argument.
(floatformat_printf_format): New function.
(struct printf_length_modifier): New templated type.
(floatformat_to_string): Rename to ...
(host_float_ops<T>::to_string): ... this. Use type instead of
floatformat argument. Use floatformat_printf_format and
printf_length_modifier. Remove special handling of invalid numbers,
infinities and NaN (moved to target_float_to_string).
(struct scanf_length_modifier): New templated type.
(floatformat_from_string): Rename to ...
(host_float_ops<T>::from_string): ... this. Use type instead of
floatformat argument. Use scanf_length_modifier.
(floatformat_to_longest): Rename to ...
(host_float_ops<T>::to_longest): ... this. Use type instead of
floatformat argument. Handle out-of-range values deterministically.
(floatformat_from_longest): Rename to ...
(host_float_ops<T>::from_longest): ... this. Use type instead of
floatformat argument.
(floatformat_from_ulongest): Rename to ...
(host_float_ops<T>::from_ulongest): ... this. Use type instead of
floatformat argument.
(floatformat_to_host_double): Rename to ...
(host_float_ops<T>::to_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_from_host_double): Rename to ...
(host_float_ops<T>::from_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_convert): Rename to ...
(host_float_ops<T>::convert): ... this. Use type instead of
floatformat arguments. Remove handling of no-op conversions.
(floatformat_binop): Rename to ...
(host_float_ops<T>::binop): ... this. Use type instead of
floatformat arguments.
(floatformat_compare): Rename to ...
(host_float_ops<T>::compare): ... this. Use type instead of
floatformat arguments.
(match_endianness): Use type instead of length/byte_order arguments.
(set_decnumber_context): Likewise.
(decimal_from_number): Likewise. Update calls.
(decimal_to_number): Likewise.
(decimal_is_zero): Likewise. Update calls. Move to earlier in file.
(decimal_float_ops::to_host_double): New dummy function.
(decimal_float_ops::from_host_double): Likewise.
(decimal_to_string): Rename to ...
(decimal_float_ops::to_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_string): Rename to ...
(decimal_float_ops::from_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_longest): Rename to ...
(decimal_float_ops::from_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_ulongest): Rename to ...
(decimal_float_ops::from_ulongest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_to_longest): Rename to ...
(decimal_float_ops::to_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_binop): Rename to ...
(decimal_float_ops::binop): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_compare): Rename to ...
(decimal_float_ops::compare): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_convert): Rename to ...
(decimal_float_ops::convert): ... this. Use type instead of
length/byte_order arguments. Update calls.
(target_float_same_category_p): New function.
(target_float_same_format_p): Likewise.
(target_float_format_length): Likewise.
(enum target_float_ops_kind): New type.
(get_target_float_ops_kind): New function.
(get_target_float_ops): Three new overloaded functions.
(target_float_is_zero): Update call.
(target_float_to_string): Add special handling of invalid numbers,
infinities and NaN (moved from floatformat_to_string). Use
target_float_ops callback.
(target_float_from_string): Use target_float_ops callback.
(target_float_to_longest): Likewise.
(target_float_from_longest): Likewise.
(target_float_from_ulongest): Likewise.
(target_float_to_host_double): Likewise.
(target_float_from_host_double): Likewise.
(target_float_convert): Add special case for no-op conversions.
Use target_float_ops callback.
(target_float_binop): Use target_float_ops callback.
(target_float_compare): Likewise.
gdb/testsuite/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
|
|
|
T v1, v2, v = 0;
|
2017-11-06 22:58:46 +08:00
|
|
|
|
Target FP: Refactor use of host floating-point arithmetic
Prepare for using MPFR to implement floating-point arithmetic by
refactoring the way host floating-point arithmetic is currently used.
In particular, fix the following two problems that cause different
(and incorrect) results due to using host arithmetic:
- Current processing always uses host "long double", and then converts
back to the actual target format. This may introduce rounding errors.
- Conversion of FP values to LONGEST simply does a host C++ type cast.
However the result of such a cast is undefined if the source value
is outside the representable range. MPFR always has defined behavior
here (returns the minimum or maximum representable value).
To fix the first issue, I've now created not just one set of routines
using host FP arithmetic (on long double), but instead three different
sets of routines, one each for host float, double, and long double.
Operations can then be performed in the desired type directly, avoiding
the extra rounding step. Using C++ templates, the three sets can all
share the same source code without duplication.
To fix the second issue, I'm simply enforcing the same conversion rule
(which makes sense anyway) when converting out-of-range values from
FP to LONGEST.
To contain the code complexity with the variety of options now possible,
I've created a new class "target_float_ops". There are a total of five
separate implementations of this:
host_float_ops<float> Implemented via host FP in given type
host_float_ops<double>
host_float_ops<long double>
mpfr_float_ops Implemented via MPFR if available
decimal_float_ops Implemented via libdecnumber
Note instead of using the DOUBLEST define, this always just uses the
"long double" data type. But since we now require C++11 anyway, this
type must in any case be avaialble unconditionally.
Most target floating-point operations simply dispatch to a (virtual)
member routine of this class. Which implementation to choose is
determined from the target types involved, and whether they match
some host type or not. E.g. any operation on a single type that
matches a host type is performed in that type. Operations involving
two types that both match host types are performed in the larger one
(according to C/C++ implicit conversion rules). Operations that
involve any type that does not match a host type are performed using
MPFR. (And of course operations involving decimal FP are performed
using libdecnumber.)
This first patch implements the refactoring of target-float.c as
described above, introduing the host_float_ops and decimal_float_ops
classes, and using them. Use of MPFR is introduced in the second patch.
A bit of special-case handling code is moved around to as to avoid
code duplication between host_float_ops and mpfr_float_ops.
Note that due to the changes mentioned above, I've had to update (fix)
the floating-point register values tested in the gdb.arch/vsx-regs.exp
test case. (The new values now work both with host arithmetic and MPFR.)
gdb/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* target-float.c: Do not include <math.h>.
Include <cmath> and <limits>.
(DOUBLEST): Do not define.
(class target_float_ops): New type.
(class host_float_ops): New templated type.
(class decimal_float_ops): New type.
(floatformat_to_doublest): Rename to ...
(host_float_ops<T>::from_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::from_target): New overload using a type argument.
(floatformat_from_doublest): Rename to ...
(host_float_ops<T>::to_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::to_target): New overload using a type argument.
(floatformat_printf_format): New function.
(struct printf_length_modifier): New templated type.
(floatformat_to_string): Rename to ...
(host_float_ops<T>::to_string): ... this. Use type instead of
floatformat argument. Use floatformat_printf_format and
printf_length_modifier. Remove special handling of invalid numbers,
infinities and NaN (moved to target_float_to_string).
(struct scanf_length_modifier): New templated type.
(floatformat_from_string): Rename to ...
(host_float_ops<T>::from_string): ... this. Use type instead of
floatformat argument. Use scanf_length_modifier.
(floatformat_to_longest): Rename to ...
(host_float_ops<T>::to_longest): ... this. Use type instead of
floatformat argument. Handle out-of-range values deterministically.
(floatformat_from_longest): Rename to ...
(host_float_ops<T>::from_longest): ... this. Use type instead of
floatformat argument.
(floatformat_from_ulongest): Rename to ...
(host_float_ops<T>::from_ulongest): ... this. Use type instead of
floatformat argument.
(floatformat_to_host_double): Rename to ...
(host_float_ops<T>::to_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_from_host_double): Rename to ...
(host_float_ops<T>::from_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_convert): Rename to ...
(host_float_ops<T>::convert): ... this. Use type instead of
floatformat arguments. Remove handling of no-op conversions.
(floatformat_binop): Rename to ...
(host_float_ops<T>::binop): ... this. Use type instead of
floatformat arguments.
(floatformat_compare): Rename to ...
(host_float_ops<T>::compare): ... this. Use type instead of
floatformat arguments.
(match_endianness): Use type instead of length/byte_order arguments.
(set_decnumber_context): Likewise.
(decimal_from_number): Likewise. Update calls.
(decimal_to_number): Likewise.
(decimal_is_zero): Likewise. Update calls. Move to earlier in file.
(decimal_float_ops::to_host_double): New dummy function.
(decimal_float_ops::from_host_double): Likewise.
(decimal_to_string): Rename to ...
(decimal_float_ops::to_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_string): Rename to ...
(decimal_float_ops::from_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_longest): Rename to ...
(decimal_float_ops::from_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_ulongest): Rename to ...
(decimal_float_ops::from_ulongest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_to_longest): Rename to ...
(decimal_float_ops::to_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_binop): Rename to ...
(decimal_float_ops::binop): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_compare): Rename to ...
(decimal_float_ops::compare): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_convert): Rename to ...
(decimal_float_ops::convert): ... this. Use type instead of
length/byte_order arguments. Update calls.
(target_float_same_category_p): New function.
(target_float_same_format_p): Likewise.
(target_float_format_length): Likewise.
(enum target_float_ops_kind): New type.
(get_target_float_ops_kind): New function.
(get_target_float_ops): Three new overloaded functions.
(target_float_is_zero): Update call.
(target_float_to_string): Add special handling of invalid numbers,
infinities and NaN (moved from floatformat_to_string). Use
target_float_ops callback.
(target_float_from_string): Use target_float_ops callback.
(target_float_to_longest): Likewise.
(target_float_from_longest): Likewise.
(target_float_from_ulongest): Likewise.
(target_float_to_host_double): Likewise.
(target_float_from_host_double): Likewise.
(target_float_convert): Add special case for no-op conversions.
Use target_float_ops callback.
(target_float_binop): Use target_float_ops callback.
(target_float_compare): Likewise.
gdb/testsuite/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
|
|
|
from_target (type_x, x, &v1);
|
|
|
|
from_target (type_y, y, &v2);
|
2017-11-06 22:58:46 +08:00
|
|
|
|
|
|
|
switch (op)
|
|
|
|
{
|
|
|
|
case BINOP_ADD:
|
|
|
|
v = v1 + v2;
|
|
|
|
break;
|
|
|
|
|
|
|
|
case BINOP_SUB:
|
|
|
|
v = v1 - v2;
|
|
|
|
break;
|
|
|
|
|
|
|
|
case BINOP_MUL:
|
|
|
|
v = v1 * v2;
|
|
|
|
break;
|
|
|
|
|
|
|
|
case BINOP_DIV:
|
|
|
|
v = v1 / v2;
|
|
|
|
break;
|
|
|
|
|
|
|
|
case BINOP_EXP:
|
|
|
|
errno = 0;
|
|
|
|
v = pow (v1, v2);
|
|
|
|
if (errno)
|
|
|
|
error (_("Cannot perform exponentiation: %s"),
|
|
|
|
safe_strerror (errno));
|
|
|
|
break;
|
|
|
|
|
|
|
|
case BINOP_MIN:
|
|
|
|
v = v1 < v2 ? v1 : v2;
|
|
|
|
break;
|
|
|
|
|
|
|
|
case BINOP_MAX:
|
|
|
|
v = v1 > v2 ? v1 : v2;
|
|
|
|
break;
|
|
|
|
|
|
|
|
default:
|
|
|
|
error (_("Integer-only operation on floating point number."));
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
Target FP: Refactor use of host floating-point arithmetic
Prepare for using MPFR to implement floating-point arithmetic by
refactoring the way host floating-point arithmetic is currently used.
In particular, fix the following two problems that cause different
(and incorrect) results due to using host arithmetic:
- Current processing always uses host "long double", and then converts
back to the actual target format. This may introduce rounding errors.
- Conversion of FP values to LONGEST simply does a host C++ type cast.
However the result of such a cast is undefined if the source value
is outside the representable range. MPFR always has defined behavior
here (returns the minimum or maximum representable value).
To fix the first issue, I've now created not just one set of routines
using host FP arithmetic (on long double), but instead three different
sets of routines, one each for host float, double, and long double.
Operations can then be performed in the desired type directly, avoiding
the extra rounding step. Using C++ templates, the three sets can all
share the same source code without duplication.
To fix the second issue, I'm simply enforcing the same conversion rule
(which makes sense anyway) when converting out-of-range values from
FP to LONGEST.
To contain the code complexity with the variety of options now possible,
I've created a new class "target_float_ops". There are a total of five
separate implementations of this:
host_float_ops<float> Implemented via host FP in given type
host_float_ops<double>
host_float_ops<long double>
mpfr_float_ops Implemented via MPFR if available
decimal_float_ops Implemented via libdecnumber
Note instead of using the DOUBLEST define, this always just uses the
"long double" data type. But since we now require C++11 anyway, this
type must in any case be avaialble unconditionally.
Most target floating-point operations simply dispatch to a (virtual)
member routine of this class. Which implementation to choose is
determined from the target types involved, and whether they match
some host type or not. E.g. any operation on a single type that
matches a host type is performed in that type. Operations involving
two types that both match host types are performed in the larger one
(according to C/C++ implicit conversion rules). Operations that
involve any type that does not match a host type are performed using
MPFR. (And of course operations involving decimal FP are performed
using libdecnumber.)
This first patch implements the refactoring of target-float.c as
described above, introduing the host_float_ops and decimal_float_ops
classes, and using them. Use of MPFR is introduced in the second patch.
A bit of special-case handling code is moved around to as to avoid
code duplication between host_float_ops and mpfr_float_ops.
Note that due to the changes mentioned above, I've had to update (fix)
the floating-point register values tested in the gdb.arch/vsx-regs.exp
test case. (The new values now work both with host arithmetic and MPFR.)
gdb/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* target-float.c: Do not include <math.h>.
Include <cmath> and <limits>.
(DOUBLEST): Do not define.
(class target_float_ops): New type.
(class host_float_ops): New templated type.
(class decimal_float_ops): New type.
(floatformat_to_doublest): Rename to ...
(host_float_ops<T>::from_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::from_target): New overload using a type argument.
(floatformat_from_doublest): Rename to ...
(host_float_ops<T>::to_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::to_target): New overload using a type argument.
(floatformat_printf_format): New function.
(struct printf_length_modifier): New templated type.
(floatformat_to_string): Rename to ...
(host_float_ops<T>::to_string): ... this. Use type instead of
floatformat argument. Use floatformat_printf_format and
printf_length_modifier. Remove special handling of invalid numbers,
infinities and NaN (moved to target_float_to_string).
(struct scanf_length_modifier): New templated type.
(floatformat_from_string): Rename to ...
(host_float_ops<T>::from_string): ... this. Use type instead of
floatformat argument. Use scanf_length_modifier.
(floatformat_to_longest): Rename to ...
(host_float_ops<T>::to_longest): ... this. Use type instead of
floatformat argument. Handle out-of-range values deterministically.
(floatformat_from_longest): Rename to ...
(host_float_ops<T>::from_longest): ... this. Use type instead of
floatformat argument.
(floatformat_from_ulongest): Rename to ...
(host_float_ops<T>::from_ulongest): ... this. Use type instead of
floatformat argument.
(floatformat_to_host_double): Rename to ...
(host_float_ops<T>::to_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_from_host_double): Rename to ...
(host_float_ops<T>::from_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_convert): Rename to ...
(host_float_ops<T>::convert): ... this. Use type instead of
floatformat arguments. Remove handling of no-op conversions.
(floatformat_binop): Rename to ...
(host_float_ops<T>::binop): ... this. Use type instead of
floatformat arguments.
(floatformat_compare): Rename to ...
(host_float_ops<T>::compare): ... this. Use type instead of
floatformat arguments.
(match_endianness): Use type instead of length/byte_order arguments.
(set_decnumber_context): Likewise.
(decimal_from_number): Likewise. Update calls.
(decimal_to_number): Likewise.
(decimal_is_zero): Likewise. Update calls. Move to earlier in file.
(decimal_float_ops::to_host_double): New dummy function.
(decimal_float_ops::from_host_double): Likewise.
(decimal_to_string): Rename to ...
(decimal_float_ops::to_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_string): Rename to ...
(decimal_float_ops::from_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_longest): Rename to ...
(decimal_float_ops::from_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_ulongest): Rename to ...
(decimal_float_ops::from_ulongest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_to_longest): Rename to ...
(decimal_float_ops::to_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_binop): Rename to ...
(decimal_float_ops::binop): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_compare): Rename to ...
(decimal_float_ops::compare): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_convert): Rename to ...
(decimal_float_ops::convert): ... this. Use type instead of
length/byte_order arguments. Update calls.
(target_float_same_category_p): New function.
(target_float_same_format_p): Likewise.
(target_float_format_length): Likewise.
(enum target_float_ops_kind): New type.
(get_target_float_ops_kind): New function.
(get_target_float_ops): Three new overloaded functions.
(target_float_is_zero): Update call.
(target_float_to_string): Add special handling of invalid numbers,
infinities and NaN (moved from floatformat_to_string). Use
target_float_ops callback.
(target_float_from_string): Use target_float_ops callback.
(target_float_to_longest): Likewise.
(target_float_from_longest): Likewise.
(target_float_from_ulongest): Likewise.
(target_float_to_host_double): Likewise.
(target_float_from_host_double): Likewise.
(target_float_convert): Add special case for no-op conversions.
Use target_float_ops callback.
(target_float_binop): Use target_float_ops callback.
(target_float_compare): Likewise.
gdb/testsuite/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
|
|
|
to_target (type_res, &v, res);
|
2017-11-06 22:58:46 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
/* Compare the two target byte streams X and Y, interpreted as floating-point
|
Target FP: Refactor use of host floating-point arithmetic
Prepare for using MPFR to implement floating-point arithmetic by
refactoring the way host floating-point arithmetic is currently used.
In particular, fix the following two problems that cause different
(and incorrect) results due to using host arithmetic:
- Current processing always uses host "long double", and then converts
back to the actual target format. This may introduce rounding errors.
- Conversion of FP values to LONGEST simply does a host C++ type cast.
However the result of such a cast is undefined if the source value
is outside the representable range. MPFR always has defined behavior
here (returns the minimum or maximum representable value).
To fix the first issue, I've now created not just one set of routines
using host FP arithmetic (on long double), but instead three different
sets of routines, one each for host float, double, and long double.
Operations can then be performed in the desired type directly, avoiding
the extra rounding step. Using C++ templates, the three sets can all
share the same source code without duplication.
To fix the second issue, I'm simply enforcing the same conversion rule
(which makes sense anyway) when converting out-of-range values from
FP to LONGEST.
To contain the code complexity with the variety of options now possible,
I've created a new class "target_float_ops". There are a total of five
separate implementations of this:
host_float_ops<float> Implemented via host FP in given type
host_float_ops<double>
host_float_ops<long double>
mpfr_float_ops Implemented via MPFR if available
decimal_float_ops Implemented via libdecnumber
Note instead of using the DOUBLEST define, this always just uses the
"long double" data type. But since we now require C++11 anyway, this
type must in any case be avaialble unconditionally.
Most target floating-point operations simply dispatch to a (virtual)
member routine of this class. Which implementation to choose is
determined from the target types involved, and whether they match
some host type or not. E.g. any operation on a single type that
matches a host type is performed in that type. Operations involving
two types that both match host types are performed in the larger one
(according to C/C++ implicit conversion rules). Operations that
involve any type that does not match a host type are performed using
MPFR. (And of course operations involving decimal FP are performed
using libdecnumber.)
This first patch implements the refactoring of target-float.c as
described above, introduing the host_float_ops and decimal_float_ops
classes, and using them. Use of MPFR is introduced in the second patch.
A bit of special-case handling code is moved around to as to avoid
code duplication between host_float_ops and mpfr_float_ops.
Note that due to the changes mentioned above, I've had to update (fix)
the floating-point register values tested in the gdb.arch/vsx-regs.exp
test case. (The new values now work both with host arithmetic and MPFR.)
gdb/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* target-float.c: Do not include <math.h>.
Include <cmath> and <limits>.
(DOUBLEST): Do not define.
(class target_float_ops): New type.
(class host_float_ops): New templated type.
(class decimal_float_ops): New type.
(floatformat_to_doublest): Rename to ...
(host_float_ops<T>::from_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::from_target): New overload using a type argument.
(floatformat_from_doublest): Rename to ...
(host_float_ops<T>::to_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::to_target): New overload using a type argument.
(floatformat_printf_format): New function.
(struct printf_length_modifier): New templated type.
(floatformat_to_string): Rename to ...
(host_float_ops<T>::to_string): ... this. Use type instead of
floatformat argument. Use floatformat_printf_format and
printf_length_modifier. Remove special handling of invalid numbers,
infinities and NaN (moved to target_float_to_string).
(struct scanf_length_modifier): New templated type.
(floatformat_from_string): Rename to ...
(host_float_ops<T>::from_string): ... this. Use type instead of
floatformat argument. Use scanf_length_modifier.
(floatformat_to_longest): Rename to ...
(host_float_ops<T>::to_longest): ... this. Use type instead of
floatformat argument. Handle out-of-range values deterministically.
(floatformat_from_longest): Rename to ...
(host_float_ops<T>::from_longest): ... this. Use type instead of
floatformat argument.
(floatformat_from_ulongest): Rename to ...
(host_float_ops<T>::from_ulongest): ... this. Use type instead of
floatformat argument.
(floatformat_to_host_double): Rename to ...
(host_float_ops<T>::to_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_from_host_double): Rename to ...
(host_float_ops<T>::from_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_convert): Rename to ...
(host_float_ops<T>::convert): ... this. Use type instead of
floatformat arguments. Remove handling of no-op conversions.
(floatformat_binop): Rename to ...
(host_float_ops<T>::binop): ... this. Use type instead of
floatformat arguments.
(floatformat_compare): Rename to ...
(host_float_ops<T>::compare): ... this. Use type instead of
floatformat arguments.
(match_endianness): Use type instead of length/byte_order arguments.
(set_decnumber_context): Likewise.
(decimal_from_number): Likewise. Update calls.
(decimal_to_number): Likewise.
(decimal_is_zero): Likewise. Update calls. Move to earlier in file.
(decimal_float_ops::to_host_double): New dummy function.
(decimal_float_ops::from_host_double): Likewise.
(decimal_to_string): Rename to ...
(decimal_float_ops::to_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_string): Rename to ...
(decimal_float_ops::from_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_longest): Rename to ...
(decimal_float_ops::from_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_ulongest): Rename to ...
(decimal_float_ops::from_ulongest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_to_longest): Rename to ...
(decimal_float_ops::to_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_binop): Rename to ...
(decimal_float_ops::binop): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_compare): Rename to ...
(decimal_float_ops::compare): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_convert): Rename to ...
(decimal_float_ops::convert): ... this. Use type instead of
length/byte_order arguments. Update calls.
(target_float_same_category_p): New function.
(target_float_same_format_p): Likewise.
(target_float_format_length): Likewise.
(enum target_float_ops_kind): New type.
(get_target_float_ops_kind): New function.
(get_target_float_ops): Three new overloaded functions.
(target_float_is_zero): Update call.
(target_float_to_string): Add special handling of invalid numbers,
infinities and NaN (moved from floatformat_to_string). Use
target_float_ops callback.
(target_float_from_string): Use target_float_ops callback.
(target_float_to_longest): Likewise.
(target_float_from_longest): Likewise.
(target_float_from_ulongest): Likewise.
(target_float_to_host_double): Likewise.
(target_float_from_host_double): Likewise.
(target_float_convert): Add special case for no-op conversions.
Use target_float_ops callback.
(target_float_binop): Use target_float_ops callback.
(target_float_compare): Likewise.
gdb/testsuite/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
|
|
|
numbers of types TYPE_X and TYPE_Y, respectively. Return zero if X and Y
|
2017-11-06 22:58:46 +08:00
|
|
|
are equal, -1 if X is less than Y, and 1 otherwise. */
|
Target FP: Refactor use of host floating-point arithmetic
Prepare for using MPFR to implement floating-point arithmetic by
refactoring the way host floating-point arithmetic is currently used.
In particular, fix the following two problems that cause different
(and incorrect) results due to using host arithmetic:
- Current processing always uses host "long double", and then converts
back to the actual target format. This may introduce rounding errors.
- Conversion of FP values to LONGEST simply does a host C++ type cast.
However the result of such a cast is undefined if the source value
is outside the representable range. MPFR always has defined behavior
here (returns the minimum or maximum representable value).
To fix the first issue, I've now created not just one set of routines
using host FP arithmetic (on long double), but instead three different
sets of routines, one each for host float, double, and long double.
Operations can then be performed in the desired type directly, avoiding
the extra rounding step. Using C++ templates, the three sets can all
share the same source code without duplication.
To fix the second issue, I'm simply enforcing the same conversion rule
(which makes sense anyway) when converting out-of-range values from
FP to LONGEST.
To contain the code complexity with the variety of options now possible,
I've created a new class "target_float_ops". There are a total of five
separate implementations of this:
host_float_ops<float> Implemented via host FP in given type
host_float_ops<double>
host_float_ops<long double>
mpfr_float_ops Implemented via MPFR if available
decimal_float_ops Implemented via libdecnumber
Note instead of using the DOUBLEST define, this always just uses the
"long double" data type. But since we now require C++11 anyway, this
type must in any case be avaialble unconditionally.
Most target floating-point operations simply dispatch to a (virtual)
member routine of this class. Which implementation to choose is
determined from the target types involved, and whether they match
some host type or not. E.g. any operation on a single type that
matches a host type is performed in that type. Operations involving
two types that both match host types are performed in the larger one
(according to C/C++ implicit conversion rules). Operations that
involve any type that does not match a host type are performed using
MPFR. (And of course operations involving decimal FP are performed
using libdecnumber.)
This first patch implements the refactoring of target-float.c as
described above, introduing the host_float_ops and decimal_float_ops
classes, and using them. Use of MPFR is introduced in the second patch.
A bit of special-case handling code is moved around to as to avoid
code duplication between host_float_ops and mpfr_float_ops.
Note that due to the changes mentioned above, I've had to update (fix)
the floating-point register values tested in the gdb.arch/vsx-regs.exp
test case. (The new values now work both with host arithmetic and MPFR.)
gdb/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* target-float.c: Do not include <math.h>.
Include <cmath> and <limits>.
(DOUBLEST): Do not define.
(class target_float_ops): New type.
(class host_float_ops): New templated type.
(class decimal_float_ops): New type.
(floatformat_to_doublest): Rename to ...
(host_float_ops<T>::from_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::from_target): New overload using a type argument.
(floatformat_from_doublest): Rename to ...
(host_float_ops<T>::to_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::to_target): New overload using a type argument.
(floatformat_printf_format): New function.
(struct printf_length_modifier): New templated type.
(floatformat_to_string): Rename to ...
(host_float_ops<T>::to_string): ... this. Use type instead of
floatformat argument. Use floatformat_printf_format and
printf_length_modifier. Remove special handling of invalid numbers,
infinities and NaN (moved to target_float_to_string).
(struct scanf_length_modifier): New templated type.
(floatformat_from_string): Rename to ...
(host_float_ops<T>::from_string): ... this. Use type instead of
floatformat argument. Use scanf_length_modifier.
(floatformat_to_longest): Rename to ...
(host_float_ops<T>::to_longest): ... this. Use type instead of
floatformat argument. Handle out-of-range values deterministically.
(floatformat_from_longest): Rename to ...
(host_float_ops<T>::from_longest): ... this. Use type instead of
floatformat argument.
(floatformat_from_ulongest): Rename to ...
(host_float_ops<T>::from_ulongest): ... this. Use type instead of
floatformat argument.
(floatformat_to_host_double): Rename to ...
(host_float_ops<T>::to_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_from_host_double): Rename to ...
(host_float_ops<T>::from_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_convert): Rename to ...
(host_float_ops<T>::convert): ... this. Use type instead of
floatformat arguments. Remove handling of no-op conversions.
(floatformat_binop): Rename to ...
(host_float_ops<T>::binop): ... this. Use type instead of
floatformat arguments.
(floatformat_compare): Rename to ...
(host_float_ops<T>::compare): ... this. Use type instead of
floatformat arguments.
(match_endianness): Use type instead of length/byte_order arguments.
(set_decnumber_context): Likewise.
(decimal_from_number): Likewise. Update calls.
(decimal_to_number): Likewise.
(decimal_is_zero): Likewise. Update calls. Move to earlier in file.
(decimal_float_ops::to_host_double): New dummy function.
(decimal_float_ops::from_host_double): Likewise.
(decimal_to_string): Rename to ...
(decimal_float_ops::to_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_string): Rename to ...
(decimal_float_ops::from_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_longest): Rename to ...
(decimal_float_ops::from_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_ulongest): Rename to ...
(decimal_float_ops::from_ulongest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_to_longest): Rename to ...
(decimal_float_ops::to_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_binop): Rename to ...
(decimal_float_ops::binop): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_compare): Rename to ...
(decimal_float_ops::compare): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_convert): Rename to ...
(decimal_float_ops::convert): ... this. Use type instead of
length/byte_order arguments. Update calls.
(target_float_same_category_p): New function.
(target_float_same_format_p): Likewise.
(target_float_format_length): Likewise.
(enum target_float_ops_kind): New type.
(get_target_float_ops_kind): New function.
(get_target_float_ops): Three new overloaded functions.
(target_float_is_zero): Update call.
(target_float_to_string): Add special handling of invalid numbers,
infinities and NaN (moved from floatformat_to_string). Use
target_float_ops callback.
(target_float_from_string): Use target_float_ops callback.
(target_float_to_longest): Likewise.
(target_float_from_longest): Likewise.
(target_float_from_ulongest): Likewise.
(target_float_to_host_double): Likewise.
(target_float_from_host_double): Likewise.
(target_float_convert): Add special case for no-op conversions.
Use target_float_ops callback.
(target_float_binop): Use target_float_ops callback.
(target_float_compare): Likewise.
gdb/testsuite/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
|
|
|
template<typename T> int
|
|
|
|
host_float_ops<T>::compare (const gdb_byte *x, const struct type *type_x,
|
|
|
|
const gdb_byte *y, const struct type *type_y) const
|
2017-11-06 22:58:46 +08:00
|
|
|
{
|
Target FP: Refactor use of host floating-point arithmetic
Prepare for using MPFR to implement floating-point arithmetic by
refactoring the way host floating-point arithmetic is currently used.
In particular, fix the following two problems that cause different
(and incorrect) results due to using host arithmetic:
- Current processing always uses host "long double", and then converts
back to the actual target format. This may introduce rounding errors.
- Conversion of FP values to LONGEST simply does a host C++ type cast.
However the result of such a cast is undefined if the source value
is outside the representable range. MPFR always has defined behavior
here (returns the minimum or maximum representable value).
To fix the first issue, I've now created not just one set of routines
using host FP arithmetic (on long double), but instead three different
sets of routines, one each for host float, double, and long double.
Operations can then be performed in the desired type directly, avoiding
the extra rounding step. Using C++ templates, the three sets can all
share the same source code without duplication.
To fix the second issue, I'm simply enforcing the same conversion rule
(which makes sense anyway) when converting out-of-range values from
FP to LONGEST.
To contain the code complexity with the variety of options now possible,
I've created a new class "target_float_ops". There are a total of five
separate implementations of this:
host_float_ops<float> Implemented via host FP in given type
host_float_ops<double>
host_float_ops<long double>
mpfr_float_ops Implemented via MPFR if available
decimal_float_ops Implemented via libdecnumber
Note instead of using the DOUBLEST define, this always just uses the
"long double" data type. But since we now require C++11 anyway, this
type must in any case be avaialble unconditionally.
Most target floating-point operations simply dispatch to a (virtual)
member routine of this class. Which implementation to choose is
determined from the target types involved, and whether they match
some host type or not. E.g. any operation on a single type that
matches a host type is performed in that type. Operations involving
two types that both match host types are performed in the larger one
(according to C/C++ implicit conversion rules). Operations that
involve any type that does not match a host type are performed using
MPFR. (And of course operations involving decimal FP are performed
using libdecnumber.)
This first patch implements the refactoring of target-float.c as
described above, introduing the host_float_ops and decimal_float_ops
classes, and using them. Use of MPFR is introduced in the second patch.
A bit of special-case handling code is moved around to as to avoid
code duplication between host_float_ops and mpfr_float_ops.
Note that due to the changes mentioned above, I've had to update (fix)
the floating-point register values tested in the gdb.arch/vsx-regs.exp
test case. (The new values now work both with host arithmetic and MPFR.)
gdb/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* target-float.c: Do not include <math.h>.
Include <cmath> and <limits>.
(DOUBLEST): Do not define.
(class target_float_ops): New type.
(class host_float_ops): New templated type.
(class decimal_float_ops): New type.
(floatformat_to_doublest): Rename to ...
(host_float_ops<T>::from_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::from_target): New overload using a type argument.
(floatformat_from_doublest): Rename to ...
(host_float_ops<T>::to_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::to_target): New overload using a type argument.
(floatformat_printf_format): New function.
(struct printf_length_modifier): New templated type.
(floatformat_to_string): Rename to ...
(host_float_ops<T>::to_string): ... this. Use type instead of
floatformat argument. Use floatformat_printf_format and
printf_length_modifier. Remove special handling of invalid numbers,
infinities and NaN (moved to target_float_to_string).
(struct scanf_length_modifier): New templated type.
(floatformat_from_string): Rename to ...
(host_float_ops<T>::from_string): ... this. Use type instead of
floatformat argument. Use scanf_length_modifier.
(floatformat_to_longest): Rename to ...
(host_float_ops<T>::to_longest): ... this. Use type instead of
floatformat argument. Handle out-of-range values deterministically.
(floatformat_from_longest): Rename to ...
(host_float_ops<T>::from_longest): ... this. Use type instead of
floatformat argument.
(floatformat_from_ulongest): Rename to ...
(host_float_ops<T>::from_ulongest): ... this. Use type instead of
floatformat argument.
(floatformat_to_host_double): Rename to ...
(host_float_ops<T>::to_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_from_host_double): Rename to ...
(host_float_ops<T>::from_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_convert): Rename to ...
(host_float_ops<T>::convert): ... this. Use type instead of
floatformat arguments. Remove handling of no-op conversions.
(floatformat_binop): Rename to ...
(host_float_ops<T>::binop): ... this. Use type instead of
floatformat arguments.
(floatformat_compare): Rename to ...
(host_float_ops<T>::compare): ... this. Use type instead of
floatformat arguments.
(match_endianness): Use type instead of length/byte_order arguments.
(set_decnumber_context): Likewise.
(decimal_from_number): Likewise. Update calls.
(decimal_to_number): Likewise.
(decimal_is_zero): Likewise. Update calls. Move to earlier in file.
(decimal_float_ops::to_host_double): New dummy function.
(decimal_float_ops::from_host_double): Likewise.
(decimal_to_string): Rename to ...
(decimal_float_ops::to_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_string): Rename to ...
(decimal_float_ops::from_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_longest): Rename to ...
(decimal_float_ops::from_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_ulongest): Rename to ...
(decimal_float_ops::from_ulongest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_to_longest): Rename to ...
(decimal_float_ops::to_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_binop): Rename to ...
(decimal_float_ops::binop): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_compare): Rename to ...
(decimal_float_ops::compare): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_convert): Rename to ...
(decimal_float_ops::convert): ... this. Use type instead of
length/byte_order arguments. Update calls.
(target_float_same_category_p): New function.
(target_float_same_format_p): Likewise.
(target_float_format_length): Likewise.
(enum target_float_ops_kind): New type.
(get_target_float_ops_kind): New function.
(get_target_float_ops): Three new overloaded functions.
(target_float_is_zero): Update call.
(target_float_to_string): Add special handling of invalid numbers,
infinities and NaN (moved from floatformat_to_string). Use
target_float_ops callback.
(target_float_from_string): Use target_float_ops callback.
(target_float_to_longest): Likewise.
(target_float_from_longest): Likewise.
(target_float_from_ulongest): Likewise.
(target_float_to_host_double): Likewise.
(target_float_from_host_double): Likewise.
(target_float_convert): Add special case for no-op conversions.
Use target_float_ops callback.
(target_float_binop): Use target_float_ops callback.
(target_float_compare): Likewise.
gdb/testsuite/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
|
|
|
T v1, v2;
|
2017-11-06 22:58:46 +08:00
|
|
|
|
Target FP: Refactor use of host floating-point arithmetic
Prepare for using MPFR to implement floating-point arithmetic by
refactoring the way host floating-point arithmetic is currently used.
In particular, fix the following two problems that cause different
(and incorrect) results due to using host arithmetic:
- Current processing always uses host "long double", and then converts
back to the actual target format. This may introduce rounding errors.
- Conversion of FP values to LONGEST simply does a host C++ type cast.
However the result of such a cast is undefined if the source value
is outside the representable range. MPFR always has defined behavior
here (returns the minimum or maximum representable value).
To fix the first issue, I've now created not just one set of routines
using host FP arithmetic (on long double), but instead three different
sets of routines, one each for host float, double, and long double.
Operations can then be performed in the desired type directly, avoiding
the extra rounding step. Using C++ templates, the three sets can all
share the same source code without duplication.
To fix the second issue, I'm simply enforcing the same conversion rule
(which makes sense anyway) when converting out-of-range values from
FP to LONGEST.
To contain the code complexity with the variety of options now possible,
I've created a new class "target_float_ops". There are a total of five
separate implementations of this:
host_float_ops<float> Implemented via host FP in given type
host_float_ops<double>
host_float_ops<long double>
mpfr_float_ops Implemented via MPFR if available
decimal_float_ops Implemented via libdecnumber
Note instead of using the DOUBLEST define, this always just uses the
"long double" data type. But since we now require C++11 anyway, this
type must in any case be avaialble unconditionally.
Most target floating-point operations simply dispatch to a (virtual)
member routine of this class. Which implementation to choose is
determined from the target types involved, and whether they match
some host type or not. E.g. any operation on a single type that
matches a host type is performed in that type. Operations involving
two types that both match host types are performed in the larger one
(according to C/C++ implicit conversion rules). Operations that
involve any type that does not match a host type are performed using
MPFR. (And of course operations involving decimal FP are performed
using libdecnumber.)
This first patch implements the refactoring of target-float.c as
described above, introduing the host_float_ops and decimal_float_ops
classes, and using them. Use of MPFR is introduced in the second patch.
A bit of special-case handling code is moved around to as to avoid
code duplication between host_float_ops and mpfr_float_ops.
Note that due to the changes mentioned above, I've had to update (fix)
the floating-point register values tested in the gdb.arch/vsx-regs.exp
test case. (The new values now work both with host arithmetic and MPFR.)
gdb/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* target-float.c: Do not include <math.h>.
Include <cmath> and <limits>.
(DOUBLEST): Do not define.
(class target_float_ops): New type.
(class host_float_ops): New templated type.
(class decimal_float_ops): New type.
(floatformat_to_doublest): Rename to ...
(host_float_ops<T>::from_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::from_target): New overload using a type argument.
(floatformat_from_doublest): Rename to ...
(host_float_ops<T>::to_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::to_target): New overload using a type argument.
(floatformat_printf_format): New function.
(struct printf_length_modifier): New templated type.
(floatformat_to_string): Rename to ...
(host_float_ops<T>::to_string): ... this. Use type instead of
floatformat argument. Use floatformat_printf_format and
printf_length_modifier. Remove special handling of invalid numbers,
infinities and NaN (moved to target_float_to_string).
(struct scanf_length_modifier): New templated type.
(floatformat_from_string): Rename to ...
(host_float_ops<T>::from_string): ... this. Use type instead of
floatformat argument. Use scanf_length_modifier.
(floatformat_to_longest): Rename to ...
(host_float_ops<T>::to_longest): ... this. Use type instead of
floatformat argument. Handle out-of-range values deterministically.
(floatformat_from_longest): Rename to ...
(host_float_ops<T>::from_longest): ... this. Use type instead of
floatformat argument.
(floatformat_from_ulongest): Rename to ...
(host_float_ops<T>::from_ulongest): ... this. Use type instead of
floatformat argument.
(floatformat_to_host_double): Rename to ...
(host_float_ops<T>::to_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_from_host_double): Rename to ...
(host_float_ops<T>::from_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_convert): Rename to ...
(host_float_ops<T>::convert): ... this. Use type instead of
floatformat arguments. Remove handling of no-op conversions.
(floatformat_binop): Rename to ...
(host_float_ops<T>::binop): ... this. Use type instead of
floatformat arguments.
(floatformat_compare): Rename to ...
(host_float_ops<T>::compare): ... this. Use type instead of
floatformat arguments.
(match_endianness): Use type instead of length/byte_order arguments.
(set_decnumber_context): Likewise.
(decimal_from_number): Likewise. Update calls.
(decimal_to_number): Likewise.
(decimal_is_zero): Likewise. Update calls. Move to earlier in file.
(decimal_float_ops::to_host_double): New dummy function.
(decimal_float_ops::from_host_double): Likewise.
(decimal_to_string): Rename to ...
(decimal_float_ops::to_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_string): Rename to ...
(decimal_float_ops::from_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_longest): Rename to ...
(decimal_float_ops::from_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_ulongest): Rename to ...
(decimal_float_ops::from_ulongest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_to_longest): Rename to ...
(decimal_float_ops::to_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_binop): Rename to ...
(decimal_float_ops::binop): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_compare): Rename to ...
(decimal_float_ops::compare): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_convert): Rename to ...
(decimal_float_ops::convert): ... this. Use type instead of
length/byte_order arguments. Update calls.
(target_float_same_category_p): New function.
(target_float_same_format_p): Likewise.
(target_float_format_length): Likewise.
(enum target_float_ops_kind): New type.
(get_target_float_ops_kind): New function.
(get_target_float_ops): Three new overloaded functions.
(target_float_is_zero): Update call.
(target_float_to_string): Add special handling of invalid numbers,
infinities and NaN (moved from floatformat_to_string). Use
target_float_ops callback.
(target_float_from_string): Use target_float_ops callback.
(target_float_to_longest): Likewise.
(target_float_from_longest): Likewise.
(target_float_from_ulongest): Likewise.
(target_float_to_host_double): Likewise.
(target_float_from_host_double): Likewise.
(target_float_convert): Add special case for no-op conversions.
Use target_float_ops callback.
(target_float_binop): Use target_float_ops callback.
(target_float_compare): Likewise.
gdb/testsuite/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
|
|
|
from_target (type_x, x, &v1);
|
|
|
|
from_target (type_y, y, &v2);
|
2017-11-06 22:58:46 +08:00
|
|
|
|
|
|
|
if (v1 == v2)
|
|
|
|
return 0;
|
|
|
|
if (v1 < v2)
|
|
|
|
return -1;
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
Target FP: Add conversion routines to target-float.{c,h}
This patch adds the following conversion routines:
- target_float_to_longest
- target_float_from_longest
- target_float_from_ulongest
- target_float_convert
which call the equivalent decimal_ routines to handle decimal FP,
and call helper routines that currently still go via DOUBLEST to
handle binary FP.
The target_float_convert routine not only handles BFP<->BFP and
DFP<->DFP conversions, but also BFP<->DFP, which are implemented
by converting to a string and back.
These helpers are used in particular to implement conversion
from and to FP in value_cast, without going through DOUBLEST there.
In order to implement this for the FP<-integer case, the
pack_long / pack_unsigned_long routines are extended to support
floating-point values as output (thereby allowing use of
value_from_[u]longest with a floating-point target type).
This latter change also allows simplification of value_one.
gdb/ChangeLog:
2017-11-06 Ulrich Weigand <uweigand@de.ibm.com>
* target-float.c (floatformat_to_longest): New function.
(floatformat_from_longest, floatformat_from_ulongest): Likewise.
(floatformat_convert): Likewise.
(target_float_to_longest): Likewise.
(target_float_from_longest, target_float_from_ulongest): Likewise.
(target_float_convert): Likewise.
* target-float.h (target_float_to_longest): Add prototype.
(target_float_from_longest, target_float_from_ulongest): Likewise.
(target_float_convert): Likewise.
* value.c (unpack_long): Use target_float_to_longest.
(pack_long): Allow FP types. Use target_float_from_longest.
(pack_unsigned_long): Likewise using target_float_from_ulongest.
* valops.c: Include "target-float.h". Do not include "dfp.h".
(value_cast): Handle conversions to FP using target_float_convert,
value_from_ulongest, and value_from_longest.
(value_one): Use value_from_longest for FP types as well.
2017-11-06 22:57:31 +08:00
|
|
|
|
2017-11-22 20:53:43 +08:00
|
|
|
/* Implementation of target_float_ops using the MPFR library
|
|
|
|
mpfr_t as intermediate type. */
|
|
|
|
|
|
|
|
#ifdef HAVE_LIBMPFR
|
|
|
|
|
2017-11-30 08:28:01 +08:00
|
|
|
#define MPFR_USE_INTMAX_T
|
|
|
|
|
2017-11-22 20:53:43 +08:00
|
|
|
#include <mpfr.h>
|
|
|
|
|
|
|
|
class mpfr_float_ops : public target_float_ops
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
std::string to_string (const gdb_byte *addr, const struct type *type,
|
|
|
|
const char *format) const override;
|
|
|
|
bool from_string (gdb_byte *addr, const struct type *type,
|
|
|
|
const std::string &string) const override;
|
|
|
|
|
|
|
|
LONGEST to_longest (const gdb_byte *addr,
|
|
|
|
const struct type *type) const override;
|
|
|
|
void from_longest (gdb_byte *addr, const struct type *type,
|
|
|
|
LONGEST val) const override;
|
|
|
|
void from_ulongest (gdb_byte *addr, const struct type *type,
|
|
|
|
ULONGEST val) const override;
|
|
|
|
double to_host_double (const gdb_byte *addr,
|
|
|
|
const struct type *type) const override;
|
|
|
|
void from_host_double (gdb_byte *addr, const struct type *type,
|
|
|
|
double val) const override;
|
|
|
|
void convert (const gdb_byte *from, const struct type *from_type,
|
|
|
|
gdb_byte *to, const struct type *to_type) const override;
|
|
|
|
|
|
|
|
void binop (enum exp_opcode opcode,
|
|
|
|
const gdb_byte *x, const struct type *type_x,
|
|
|
|
const gdb_byte *y, const struct type *type_y,
|
|
|
|
gdb_byte *res, const struct type *type_res) const override;
|
|
|
|
int compare (const gdb_byte *x, const struct type *type_x,
|
|
|
|
const gdb_byte *y, const struct type *type_y) const override;
|
|
|
|
|
|
|
|
private:
|
|
|
|
/* Local wrapper class to handle mpfr_t initalization and cleanup. */
|
|
|
|
class gdb_mpfr
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
mpfr_t val;
|
|
|
|
|
|
|
|
gdb_mpfr (const struct type *type)
|
|
|
|
{
|
|
|
|
const struct floatformat *fmt = floatformat_from_type (type);
|
|
|
|
mpfr_init2 (val, floatformat_precision (fmt));
|
|
|
|
}
|
|
|
|
|
|
|
|
gdb_mpfr (const gdb_mpfr &source)
|
|
|
|
{
|
|
|
|
mpfr_init2 (val, mpfr_get_prec (source.val));
|
|
|
|
}
|
|
|
|
|
|
|
|
~gdb_mpfr ()
|
|
|
|
{
|
|
|
|
mpfr_clear (val);
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
void from_target (const struct floatformat *fmt,
|
|
|
|
const gdb_byte *from, gdb_mpfr &to) const;
|
|
|
|
void from_target (const struct type *type,
|
|
|
|
const gdb_byte *from, gdb_mpfr &to) const;
|
|
|
|
|
|
|
|
void to_target (const struct type *type,
|
|
|
|
const gdb_mpfr &from, gdb_byte *to) const;
|
|
|
|
void to_target (const struct floatformat *fmt,
|
|
|
|
const gdb_mpfr &from, gdb_byte *to) const;
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
/* Convert TO/FROM target floating-point format to mpfr_t. */
|
|
|
|
|
|
|
|
void
|
|
|
|
mpfr_float_ops::from_target (const struct floatformat *fmt,
|
|
|
|
const gdb_byte *orig_from, gdb_mpfr &to) const
|
|
|
|
{
|
|
|
|
const gdb_byte *from = orig_from;
|
|
|
|
mpfr_exp_t exponent;
|
|
|
|
unsigned long mant;
|
|
|
|
unsigned int mant_bits, mant_off;
|
|
|
|
int mant_bits_left;
|
|
|
|
int special_exponent; /* It's a NaN, denorm or zero. */
|
|
|
|
enum floatformat_byteorders order;
|
|
|
|
unsigned char newfrom[FLOATFORMAT_LARGEST_BYTES];
|
|
|
|
enum float_kind kind;
|
|
|
|
|
|
|
|
gdb_assert (fmt->totalsize
|
|
|
|
<= FLOATFORMAT_LARGEST_BYTES * FLOATFORMAT_CHAR_BIT);
|
|
|
|
|
|
|
|
/* Handle non-numbers. */
|
|
|
|
kind = floatformat_classify (fmt, from);
|
|
|
|
if (kind == float_infinite)
|
|
|
|
{
|
|
|
|
mpfr_set_inf (to.val, floatformat_is_negative (fmt, from) ? -1 : 1);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
if (kind == float_nan)
|
|
|
|
{
|
|
|
|
mpfr_set_nan (to.val);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
order = floatformat_normalize_byteorder (fmt, from, newfrom);
|
|
|
|
|
|
|
|
if (order != fmt->byteorder)
|
|
|
|
from = newfrom;
|
|
|
|
|
|
|
|
if (fmt->split_half)
|
|
|
|
{
|
|
|
|
gdb_mpfr top (to), bot (to);
|
|
|
|
|
|
|
|
from_target (fmt->split_half, from, top);
|
|
|
|
/* Preserve the sign of 0, which is the sign of the top half. */
|
|
|
|
if (mpfr_zero_p (top.val))
|
|
|
|
{
|
|
|
|
mpfr_set (to.val, top.val, MPFR_RNDN);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
from_target (fmt->split_half,
|
|
|
|
from + fmt->totalsize / FLOATFORMAT_CHAR_BIT / 2, bot);
|
|
|
|
mpfr_add (to.val, top.val, bot.val, MPFR_RNDN);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
exponent = get_field (from, order, fmt->totalsize, fmt->exp_start,
|
|
|
|
fmt->exp_len);
|
|
|
|
/* Note that if exponent indicates a NaN, we can't really do anything useful
|
|
|
|
(not knowing if the host has NaN's, or how to build one). So it will
|
|
|
|
end up as an infinity or something close; that is OK. */
|
|
|
|
|
|
|
|
mant_bits_left = fmt->man_len;
|
|
|
|
mant_off = fmt->man_start;
|
|
|
|
mpfr_set_zero (to.val, 0);
|
|
|
|
|
|
|
|
special_exponent = exponent == 0 || exponent == fmt->exp_nan;
|
|
|
|
|
|
|
|
/* Don't bias NaNs. Use minimum exponent for denorms. For
|
|
|
|
simplicity, we don't check for zero as the exponent doesn't matter.
|
|
|
|
Note the cast to int; exp_bias is unsigned, so it's important to
|
|
|
|
make sure the operation is done in signed arithmetic. */
|
|
|
|
if (!special_exponent)
|
|
|
|
exponent -= fmt->exp_bias;
|
|
|
|
else if (exponent == 0)
|
|
|
|
exponent = 1 - fmt->exp_bias;
|
|
|
|
|
|
|
|
/* Build the result algebraically. Might go infinite, underflow, etc;
|
|
|
|
who cares. */
|
|
|
|
|
|
|
|
/* If this format uses a hidden bit, explicitly add it in now. Otherwise,
|
|
|
|
increment the exponent by one to account for the integer bit. */
|
|
|
|
|
|
|
|
if (!special_exponent)
|
|
|
|
{
|
|
|
|
if (fmt->intbit == floatformat_intbit_no)
|
|
|
|
mpfr_set_ui_2exp (to.val, 1, exponent, MPFR_RNDN);
|
|
|
|
else
|
|
|
|
exponent++;
|
|
|
|
}
|
|
|
|
|
|
|
|
gdb_mpfr tmp (to);
|
|
|
|
|
|
|
|
while (mant_bits_left > 0)
|
|
|
|
{
|
|
|
|
mant_bits = std::min (mant_bits_left, 32);
|
|
|
|
|
|
|
|
mant = get_field (from, order, fmt->totalsize, mant_off, mant_bits);
|
|
|
|
|
2017-12-11 22:26:26 +08:00
|
|
|
mpfr_set_ui (tmp.val, mant, MPFR_RNDN);
|
2017-11-22 20:53:43 +08:00
|
|
|
mpfr_mul_2si (tmp.val, tmp.val, exponent - mant_bits, MPFR_RNDN);
|
|
|
|
mpfr_add (to.val, to.val, tmp.val, MPFR_RNDN);
|
|
|
|
exponent -= mant_bits;
|
|
|
|
mant_off += mant_bits;
|
|
|
|
mant_bits_left -= mant_bits;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Negate it if negative. */
|
|
|
|
if (get_field (from, order, fmt->totalsize, fmt->sign_start, 1))
|
|
|
|
mpfr_neg (to.val, to.val, MPFR_RNDN);
|
|
|
|
}
|
|
|
|
|
|
|
|
void
|
|
|
|
mpfr_float_ops::from_target (const struct type *type,
|
|
|
|
const gdb_byte *from, gdb_mpfr &to) const
|
|
|
|
{
|
|
|
|
from_target (floatformat_from_type (type), from, to);
|
|
|
|
}
|
|
|
|
|
|
|
|
void
|
|
|
|
mpfr_float_ops::to_target (const struct floatformat *fmt,
|
|
|
|
const gdb_mpfr &from, gdb_byte *orig_to) const
|
|
|
|
{
|
|
|
|
unsigned char *to = orig_to;
|
|
|
|
mpfr_exp_t exponent;
|
|
|
|
unsigned int mant_bits, mant_off;
|
|
|
|
int mant_bits_left;
|
|
|
|
enum floatformat_byteorders order = fmt->byteorder;
|
|
|
|
unsigned char newto[FLOATFORMAT_LARGEST_BYTES];
|
|
|
|
|
|
|
|
if (order != floatformat_little)
|
|
|
|
order = floatformat_big;
|
|
|
|
|
|
|
|
if (order != fmt->byteorder)
|
|
|
|
to = newto;
|
|
|
|
|
|
|
|
memset (to, 0, floatformat_totalsize_bytes (fmt));
|
|
|
|
|
|
|
|
if (fmt->split_half)
|
|
|
|
{
|
|
|
|
gdb_mpfr top (from), bot (from);
|
|
|
|
|
|
|
|
mpfr_set (top.val, from.val, MPFR_RNDN);
|
|
|
|
/* If the rounded top half is Inf, the bottom must be 0 not NaN
|
|
|
|
or Inf. */
|
|
|
|
if (mpfr_inf_p (top.val))
|
|
|
|
mpfr_set_zero (bot.val, 0);
|
|
|
|
else
|
|
|
|
mpfr_sub (bot.val, from.val, top.val, MPFR_RNDN);
|
|
|
|
|
|
|
|
to_target (fmt->split_half, top, to);
|
|
|
|
to_target (fmt->split_half, bot,
|
|
|
|
to + fmt->totalsize / FLOATFORMAT_CHAR_BIT / 2);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
gdb_mpfr tmp (from);
|
|
|
|
|
|
|
|
if (mpfr_zero_p (from.val))
|
|
|
|
goto finalize_byteorder; /* Result is zero */
|
|
|
|
|
|
|
|
mpfr_set (tmp.val, from.val, MPFR_RNDN);
|
|
|
|
|
|
|
|
if (mpfr_nan_p (tmp.val)) /* Result is NaN */
|
|
|
|
{
|
|
|
|
/* From is NaN */
|
|
|
|
put_field (to, order, fmt->totalsize, fmt->exp_start,
|
|
|
|
fmt->exp_len, fmt->exp_nan);
|
|
|
|
/* Be sure it's not infinity, but NaN value is irrel. */
|
|
|
|
put_field (to, order, fmt->totalsize, fmt->man_start,
|
|
|
|
fmt->man_len, 1);
|
|
|
|
goto finalize_byteorder;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* If negative, set the sign bit. */
|
|
|
|
if (mpfr_sgn (tmp.val) < 0)
|
|
|
|
{
|
|
|
|
put_field (to, order, fmt->totalsize, fmt->sign_start, 1, 1);
|
|
|
|
mpfr_neg (tmp.val, tmp.val, MPFR_RNDN);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (mpfr_inf_p (tmp.val)) /* Result is Infinity. */
|
|
|
|
{
|
|
|
|
/* Infinity exponent is same as NaN's. */
|
|
|
|
put_field (to, order, fmt->totalsize, fmt->exp_start,
|
|
|
|
fmt->exp_len, fmt->exp_nan);
|
|
|
|
/* Infinity mantissa is all zeroes. */
|
|
|
|
put_field (to, order, fmt->totalsize, fmt->man_start,
|
|
|
|
fmt->man_len, 0);
|
|
|
|
goto finalize_byteorder;
|
|
|
|
}
|
|
|
|
|
|
|
|
mpfr_frexp (&exponent, tmp.val, tmp.val, MPFR_RNDN);
|
|
|
|
|
|
|
|
if (exponent + fmt->exp_bias <= 0)
|
|
|
|
{
|
|
|
|
/* The value is too small to be expressed in the destination
|
|
|
|
type (not enough bits in the exponent. Treat as 0. */
|
|
|
|
put_field (to, order, fmt->totalsize, fmt->exp_start,
|
|
|
|
fmt->exp_len, 0);
|
|
|
|
put_field (to, order, fmt->totalsize, fmt->man_start,
|
|
|
|
fmt->man_len, 0);
|
|
|
|
goto finalize_byteorder;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (exponent + fmt->exp_bias >= (1 << fmt->exp_len))
|
|
|
|
{
|
|
|
|
/* The value is too large to fit into the destination.
|
|
|
|
Treat as infinity. */
|
|
|
|
put_field (to, order, fmt->totalsize, fmt->exp_start,
|
|
|
|
fmt->exp_len, fmt->exp_nan);
|
|
|
|
put_field (to, order, fmt->totalsize, fmt->man_start,
|
|
|
|
fmt->man_len, 0);
|
|
|
|
goto finalize_byteorder;
|
|
|
|
}
|
|
|
|
|
|
|
|
put_field (to, order, fmt->totalsize, fmt->exp_start, fmt->exp_len,
|
|
|
|
exponent + fmt->exp_bias - 1);
|
|
|
|
|
|
|
|
mant_bits_left = fmt->man_len;
|
|
|
|
mant_off = fmt->man_start;
|
|
|
|
while (mant_bits_left > 0)
|
|
|
|
{
|
|
|
|
unsigned long mant_long;
|
|
|
|
|
|
|
|
mant_bits = mant_bits_left < 32 ? mant_bits_left : 32;
|
|
|
|
|
|
|
|
mpfr_mul_2ui (tmp.val, tmp.val, 32, MPFR_RNDN);
|
|
|
|
mant_long = mpfr_get_ui (tmp.val, MPFR_RNDZ) & 0xffffffffL;
|
|
|
|
mpfr_sub_ui (tmp.val, tmp.val, mant_long, MPFR_RNDZ);
|
|
|
|
|
|
|
|
/* If the integer bit is implicit, then we need to discard it.
|
|
|
|
If we are discarding a zero, we should be (but are not) creating
|
|
|
|
a denormalized number which means adjusting the exponent
|
|
|
|
(I think). */
|
|
|
|
if (mant_bits_left == fmt->man_len
|
|
|
|
&& fmt->intbit == floatformat_intbit_no)
|
|
|
|
{
|
|
|
|
mant_long <<= 1;
|
|
|
|
mant_long &= 0xffffffffL;
|
|
|
|
/* If we are processing the top 32 mantissa bits of a doublest
|
|
|
|
so as to convert to a float value with implied integer bit,
|
|
|
|
we will only be putting 31 of those 32 bits into the
|
|
|
|
final value due to the discarding of the top bit. In the
|
|
|
|
case of a small float value where the number of mantissa
|
|
|
|
bits is less than 32, discarding the top bit does not alter
|
|
|
|
the number of bits we will be adding to the result. */
|
|
|
|
if (mant_bits == 32)
|
|
|
|
mant_bits -= 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (mant_bits < 32)
|
|
|
|
{
|
|
|
|
/* The bits we want are in the most significant MANT_BITS bits of
|
|
|
|
mant_long. Move them to the least significant. */
|
|
|
|
mant_long >>= 32 - mant_bits;
|
|
|
|
}
|
|
|
|
|
|
|
|
put_field (to, order, fmt->totalsize,
|
|
|
|
mant_off, mant_bits, mant_long);
|
|
|
|
mant_off += mant_bits;
|
|
|
|
mant_bits_left -= mant_bits;
|
|
|
|
}
|
|
|
|
|
|
|
|
finalize_byteorder:
|
|
|
|
/* Do we need to byte-swap the words in the result? */
|
|
|
|
if (order != fmt->byteorder)
|
|
|
|
floatformat_normalize_byteorder (fmt, newto, orig_to);
|
|
|
|
}
|
|
|
|
|
|
|
|
void
|
|
|
|
mpfr_float_ops::to_target (const struct type *type,
|
|
|
|
const gdb_mpfr &from, gdb_byte *to) const
|
|
|
|
{
|
|
|
|
/* Ensure possible padding bytes in the target buffer are zeroed out. */
|
|
|
|
memset (to, 0, TYPE_LENGTH (type));
|
|
|
|
|
|
|
|
to_target (floatformat_from_type (type), from, to);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Convert the byte-stream ADDR, interpreted as floating-point type TYPE,
|
|
|
|
to a string, optionally using the print format FORMAT. */
|
|
|
|
std::string
|
|
|
|
mpfr_float_ops::to_string (const gdb_byte *addr,
|
|
|
|
const struct type *type,
|
|
|
|
const char *format) const
|
|
|
|
{
|
|
|
|
const struct floatformat *fmt = floatformat_from_type (type);
|
|
|
|
|
|
|
|
/* Unless we need to adhere to a specific format, provide special
|
|
|
|
output for certain cases. */
|
|
|
|
if (format == nullptr)
|
|
|
|
{
|
|
|
|
/* Detect invalid representations. */
|
|
|
|
if (!floatformat_is_valid (fmt, addr))
|
|
|
|
return "<invalid float value>";
|
|
|
|
|
|
|
|
/* Handle NaN and Inf. */
|
|
|
|
enum float_kind kind = floatformat_classify (fmt, addr);
|
|
|
|
if (kind == float_nan)
|
|
|
|
{
|
|
|
|
const char *sign = floatformat_is_negative (fmt, addr)? "-" : "";
|
|
|
|
const char *mantissa = floatformat_mantissa (fmt, addr);
|
|
|
|
return string_printf ("%snan(0x%s)", sign, mantissa);
|
|
|
|
}
|
|
|
|
else if (kind == float_infinite)
|
|
|
|
{
|
|
|
|
const char *sign = floatformat_is_negative (fmt, addr)? "-" : "";
|
|
|
|
return string_printf ("%sinf", sign);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Determine the format string to use on the host side. */
|
|
|
|
std::string host_format = floatformat_printf_format (fmt, format, 'R');
|
|
|
|
|
|
|
|
gdb_mpfr tmp (type);
|
|
|
|
from_target (type, addr, tmp);
|
|
|
|
|
|
|
|
int size = mpfr_snprintf (NULL, 0, host_format.c_str (), tmp.val);
|
|
|
|
std::string str (size, '\0');
|
|
|
|
mpfr_sprintf (&str[0], host_format.c_str (), tmp.val);
|
|
|
|
|
|
|
|
return str;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Parse string STRING into a target floating-number of type TYPE and
|
|
|
|
store it as byte-stream ADDR. Return whether parsing succeeded. */
|
|
|
|
bool
|
|
|
|
mpfr_float_ops::from_string (gdb_byte *addr,
|
|
|
|
const struct type *type,
|
|
|
|
const std::string &in) const
|
|
|
|
{
|
|
|
|
gdb_mpfr tmp (type);
|
|
|
|
|
|
|
|
char *endptr;
|
|
|
|
mpfr_strtofr (tmp.val, in.c_str (), &endptr, 0, MPFR_RNDN);
|
|
|
|
|
|
|
|
/* We only accept the whole string. */
|
|
|
|
if (*endptr)
|
|
|
|
return false;
|
|
|
|
|
|
|
|
to_target (type, tmp, addr);
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Convert the byte-stream ADDR, interpreted as floating-point type TYPE,
|
|
|
|
to an integer value (rounding towards zero). */
|
|
|
|
LONGEST
|
|
|
|
mpfr_float_ops::to_longest (const gdb_byte *addr,
|
|
|
|
const struct type *type) const
|
|
|
|
{
|
|
|
|
gdb_mpfr tmp (type);
|
|
|
|
from_target (type, addr, tmp);
|
|
|
|
return mpfr_get_sj (tmp.val, MPFR_RNDZ);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Convert signed integer VAL to a target floating-number of type TYPE
|
|
|
|
and store it as byte-stream ADDR. */
|
|
|
|
void
|
|
|
|
mpfr_float_ops::from_longest (gdb_byte *addr,
|
|
|
|
const struct type *type,
|
|
|
|
LONGEST val) const
|
|
|
|
{
|
|
|
|
gdb_mpfr tmp (type);
|
|
|
|
mpfr_set_sj (tmp.val, val, MPFR_RNDN);
|
|
|
|
to_target (type, tmp, addr);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Convert unsigned integer VAL to a target floating-number of type TYPE
|
|
|
|
and store it as byte-stream ADDR. */
|
|
|
|
void
|
|
|
|
mpfr_float_ops::from_ulongest (gdb_byte *addr,
|
|
|
|
const struct type *type,
|
|
|
|
ULONGEST val) const
|
|
|
|
{
|
|
|
|
gdb_mpfr tmp (type);
|
|
|
|
mpfr_set_uj (tmp.val, val, MPFR_RNDN);
|
|
|
|
to_target (type, tmp, addr);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Convert the byte-stream ADDR, interpreted as floating-point type TYPE,
|
|
|
|
to a floating-point value in the host "double" format. */
|
|
|
|
double
|
|
|
|
mpfr_float_ops::to_host_double (const gdb_byte *addr,
|
|
|
|
const struct type *type) const
|
|
|
|
{
|
|
|
|
gdb_mpfr tmp (type);
|
|
|
|
from_target (type, addr, tmp);
|
|
|
|
return mpfr_get_d (tmp.val, MPFR_RNDN);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Convert floating-point value VAL in the host "double" format to a target
|
|
|
|
floating-number of type TYPE and store it as byte-stream ADDR. */
|
|
|
|
void
|
|
|
|
mpfr_float_ops::from_host_double (gdb_byte *addr,
|
|
|
|
const struct type *type,
|
|
|
|
double val) const
|
|
|
|
{
|
|
|
|
gdb_mpfr tmp (type);
|
|
|
|
mpfr_set_d (tmp.val, val, MPFR_RNDN);
|
|
|
|
to_target (type, tmp, addr);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Convert a floating-point number of type FROM_TYPE from the target
|
|
|
|
byte-stream FROM to a floating-point number of type TO_TYPE, and
|
|
|
|
store it to the target byte-stream TO. */
|
|
|
|
void
|
|
|
|
mpfr_float_ops::convert (const gdb_byte *from,
|
|
|
|
const struct type *from_type,
|
|
|
|
gdb_byte *to,
|
|
|
|
const struct type *to_type) const
|
|
|
|
{
|
|
|
|
gdb_mpfr from_tmp (from_type), to_tmp (to_type);
|
|
|
|
from_target (from_type, from, from_tmp);
|
|
|
|
mpfr_set (to_tmp.val, from_tmp.val, MPFR_RNDN);
|
|
|
|
to_target (to_type, to_tmp, to);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Perform the binary operation indicated by OPCODE, using as operands the
|
|
|
|
target byte streams X and Y, interpreted as floating-point numbers of
|
|
|
|
types TYPE_X and TYPE_Y, respectively. Convert the result to type
|
|
|
|
TYPE_RES and store it into the byte-stream RES. */
|
|
|
|
void
|
|
|
|
mpfr_float_ops::binop (enum exp_opcode op,
|
|
|
|
const gdb_byte *x, const struct type *type_x,
|
|
|
|
const gdb_byte *y, const struct type *type_y,
|
|
|
|
gdb_byte *res, const struct type *type_res) const
|
|
|
|
{
|
|
|
|
gdb_mpfr x_tmp (type_x), y_tmp (type_y), tmp (type_res);
|
|
|
|
|
|
|
|
from_target (type_x, x, x_tmp);
|
|
|
|
from_target (type_y, y, y_tmp);
|
|
|
|
|
|
|
|
switch (op)
|
|
|
|
{
|
|
|
|
case BINOP_ADD:
|
|
|
|
mpfr_add (tmp.val, x_tmp.val, y_tmp.val, MPFR_RNDN);
|
|
|
|
break;
|
|
|
|
|
|
|
|
case BINOP_SUB:
|
|
|
|
mpfr_sub (tmp.val, x_tmp.val, y_tmp.val, MPFR_RNDN);
|
|
|
|
break;
|
|
|
|
|
|
|
|
case BINOP_MUL:
|
|
|
|
mpfr_mul (tmp.val, x_tmp.val, y_tmp.val, MPFR_RNDN);
|
|
|
|
break;
|
|
|
|
|
|
|
|
case BINOP_DIV:
|
|
|
|
mpfr_div (tmp.val, x_tmp.val, y_tmp.val, MPFR_RNDN);
|
|
|
|
break;
|
|
|
|
|
|
|
|
case BINOP_EXP:
|
|
|
|
mpfr_pow (tmp.val, x_tmp.val, y_tmp.val, MPFR_RNDN);
|
|
|
|
break;
|
|
|
|
|
|
|
|
case BINOP_MIN:
|
|
|
|
mpfr_min (tmp.val, x_tmp.val, y_tmp.val, MPFR_RNDN);
|
|
|
|
break;
|
|
|
|
|
|
|
|
case BINOP_MAX:
|
|
|
|
mpfr_max (tmp.val, x_tmp.val, y_tmp.val, MPFR_RNDN);
|
|
|
|
break;
|
|
|
|
|
|
|
|
default:
|
|
|
|
error (_("Integer-only operation on floating point number."));
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
to_target (type_res, tmp, res);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Compare the two target byte streams X and Y, interpreted as floating-point
|
|
|
|
numbers of types TYPE_X and TYPE_Y, respectively. Return zero if X and Y
|
|
|
|
are equal, -1 if X is less than Y, and 1 otherwise. */
|
|
|
|
int
|
|
|
|
mpfr_float_ops::compare (const gdb_byte *x, const struct type *type_x,
|
|
|
|
const gdb_byte *y, const struct type *type_y) const
|
|
|
|
{
|
|
|
|
gdb_mpfr x_tmp (type_x), y_tmp (type_y);
|
|
|
|
|
|
|
|
from_target (type_x, x, x_tmp);
|
|
|
|
from_target (type_y, y, y_tmp);
|
|
|
|
|
|
|
|
if (mpfr_equal_p (x_tmp.val, y_tmp.val))
|
|
|
|
return 0;
|
|
|
|
else if (mpfr_less_p (x_tmp.val, y_tmp.val))
|
|
|
|
return -1;
|
|
|
|
else
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
Target FP: Merge doublest.c and dfp.c into target-float.c
Now that all target FP operations are performed via target-float.c,
this file remains the sole caller of functions in doublest.c and dfp.c.
Therefore, this patch merges the latter files into the former and
makes all their function static there.
gdb/ChangeLog:
2017-11-06 Ulrich Weigand <uweigand@de.ibm.com>
* Makefile.in (SFILES): Remove doublest.c and dfp.c.
(HFILES_NO_SRCDIR): Remove doublest.h and dfp.h.
(COMMON_OBS): Remove doublest.o and dfp.o.
Do not build target-float.c (instead of doublest.c)
with -Wformat-nonliteral.
* doublest.c: Remove file.
* doublest.h: Remove file.
* dfp.c: Remove file.
* dfp.h: Remove file.
* target-float.c: Do not include "doublest.h" and "dfp.h".
(DOUBLEST): Move here from doublest.h.
(enum float_kind): Likewise.
(FLOATFORMAT_CHAR_BIT): Likewise.
(FLOATFORMAT_LARGEST_BYTES): Likewise.
(floatformat_totalsize_bytes): Move here from doublest.c. Make static.
(floatformat_precision): Likewise.
(floatformat_normalize_byteorder, get_field, put_field): Likewise.
(floatformat_is_negative, floatformat_classify, floatformat_mantissa):
Likewise.
(host_float_format, host_double_format, host_long_double_format):
Likewise.
(floatformat_to_string, floatformat_from_string): Likewise.
(floatformat_to_doublest): Likewise. Also, inline the original
convert_floatformat_to_doublest.
(floatformat_from_doublest): Likewise. Also, inline the original
convert_floatformat_from_doublest.
Include "dpd/decimal128.h", "dpd/decimal64.h", and "dpd/decimal32.h".
(MAX_DECIMAL_STRING): Move here from dfp.c.
(match_endianness): Likewise.
(set_decnumber_context, decimal_check_errors): Likewise.
(decimal_from_number, decimal_to_number): Likewise.
(decimal_to_string, decimal_from_string): Likewise. Make static.
(decimal_from_longest, decimal_from_ulongest): Likewise.
(decimal_to_longest): Likewise.
(decimal_binop, decimal_is_zero, decimal_compare): Likewise.
(decimal_convert): Likewise.
2017-11-06 23:04:03 +08:00
|
|
|
/* Helper routines operating on decimal floating-point data. */
|
|
|
|
|
|
|
|
/* Decimal floating point is one of the extension to IEEE 754, which is
|
|
|
|
described in http://grouper.ieee.org/groups/754/revision.html and
|
|
|
|
http://www2.hursley.ibm.com/decimal/. It completes binary floating
|
|
|
|
point by representing floating point more exactly. */
|
|
|
|
|
|
|
|
/* The order of the following headers is important for making sure
|
|
|
|
decNumber structure is large enough to hold decimal128 digits. */
|
|
|
|
|
|
|
|
#include "dpd/decimal128.h"
|
|
|
|
#include "dpd/decimal64.h"
|
|
|
|
#include "dpd/decimal32.h"
|
|
|
|
|
|
|
|
/* When using decimal128, this is the maximum string length + 1
|
|
|
|
(value comes from libdecnumber's DECIMAL128_String constant). */
|
|
|
|
#define MAX_DECIMAL_STRING 43
|
|
|
|
|
|
|
|
/* In GDB, we are using an array of gdb_byte to represent decimal values.
|
|
|
|
They are stored in host byte order. This routine does the conversion if
|
|
|
|
the target byte order is different. */
|
|
|
|
static void
|
Target FP: Refactor use of host floating-point arithmetic
Prepare for using MPFR to implement floating-point arithmetic by
refactoring the way host floating-point arithmetic is currently used.
In particular, fix the following two problems that cause different
(and incorrect) results due to using host arithmetic:
- Current processing always uses host "long double", and then converts
back to the actual target format. This may introduce rounding errors.
- Conversion of FP values to LONGEST simply does a host C++ type cast.
However the result of such a cast is undefined if the source value
is outside the representable range. MPFR always has defined behavior
here (returns the minimum or maximum representable value).
To fix the first issue, I've now created not just one set of routines
using host FP arithmetic (on long double), but instead three different
sets of routines, one each for host float, double, and long double.
Operations can then be performed in the desired type directly, avoiding
the extra rounding step. Using C++ templates, the three sets can all
share the same source code without duplication.
To fix the second issue, I'm simply enforcing the same conversion rule
(which makes sense anyway) when converting out-of-range values from
FP to LONGEST.
To contain the code complexity with the variety of options now possible,
I've created a new class "target_float_ops". There are a total of five
separate implementations of this:
host_float_ops<float> Implemented via host FP in given type
host_float_ops<double>
host_float_ops<long double>
mpfr_float_ops Implemented via MPFR if available
decimal_float_ops Implemented via libdecnumber
Note instead of using the DOUBLEST define, this always just uses the
"long double" data type. But since we now require C++11 anyway, this
type must in any case be avaialble unconditionally.
Most target floating-point operations simply dispatch to a (virtual)
member routine of this class. Which implementation to choose is
determined from the target types involved, and whether they match
some host type or not. E.g. any operation on a single type that
matches a host type is performed in that type. Operations involving
two types that both match host types are performed in the larger one
(according to C/C++ implicit conversion rules). Operations that
involve any type that does not match a host type are performed using
MPFR. (And of course operations involving decimal FP are performed
using libdecnumber.)
This first patch implements the refactoring of target-float.c as
described above, introduing the host_float_ops and decimal_float_ops
classes, and using them. Use of MPFR is introduced in the second patch.
A bit of special-case handling code is moved around to as to avoid
code duplication between host_float_ops and mpfr_float_ops.
Note that due to the changes mentioned above, I've had to update (fix)
the floating-point register values tested in the gdb.arch/vsx-regs.exp
test case. (The new values now work both with host arithmetic and MPFR.)
gdb/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* target-float.c: Do not include <math.h>.
Include <cmath> and <limits>.
(DOUBLEST): Do not define.
(class target_float_ops): New type.
(class host_float_ops): New templated type.
(class decimal_float_ops): New type.
(floatformat_to_doublest): Rename to ...
(host_float_ops<T>::from_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::from_target): New overload using a type argument.
(floatformat_from_doublest): Rename to ...
(host_float_ops<T>::to_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::to_target): New overload using a type argument.
(floatformat_printf_format): New function.
(struct printf_length_modifier): New templated type.
(floatformat_to_string): Rename to ...
(host_float_ops<T>::to_string): ... this. Use type instead of
floatformat argument. Use floatformat_printf_format and
printf_length_modifier. Remove special handling of invalid numbers,
infinities and NaN (moved to target_float_to_string).
(struct scanf_length_modifier): New templated type.
(floatformat_from_string): Rename to ...
(host_float_ops<T>::from_string): ... this. Use type instead of
floatformat argument. Use scanf_length_modifier.
(floatformat_to_longest): Rename to ...
(host_float_ops<T>::to_longest): ... this. Use type instead of
floatformat argument. Handle out-of-range values deterministically.
(floatformat_from_longest): Rename to ...
(host_float_ops<T>::from_longest): ... this. Use type instead of
floatformat argument.
(floatformat_from_ulongest): Rename to ...
(host_float_ops<T>::from_ulongest): ... this. Use type instead of
floatformat argument.
(floatformat_to_host_double): Rename to ...
(host_float_ops<T>::to_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_from_host_double): Rename to ...
(host_float_ops<T>::from_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_convert): Rename to ...
(host_float_ops<T>::convert): ... this. Use type instead of
floatformat arguments. Remove handling of no-op conversions.
(floatformat_binop): Rename to ...
(host_float_ops<T>::binop): ... this. Use type instead of
floatformat arguments.
(floatformat_compare): Rename to ...
(host_float_ops<T>::compare): ... this. Use type instead of
floatformat arguments.
(match_endianness): Use type instead of length/byte_order arguments.
(set_decnumber_context): Likewise.
(decimal_from_number): Likewise. Update calls.
(decimal_to_number): Likewise.
(decimal_is_zero): Likewise. Update calls. Move to earlier in file.
(decimal_float_ops::to_host_double): New dummy function.
(decimal_float_ops::from_host_double): Likewise.
(decimal_to_string): Rename to ...
(decimal_float_ops::to_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_string): Rename to ...
(decimal_float_ops::from_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_longest): Rename to ...
(decimal_float_ops::from_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_ulongest): Rename to ...
(decimal_float_ops::from_ulongest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_to_longest): Rename to ...
(decimal_float_ops::to_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_binop): Rename to ...
(decimal_float_ops::binop): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_compare): Rename to ...
(decimal_float_ops::compare): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_convert): Rename to ...
(decimal_float_ops::convert): ... this. Use type instead of
length/byte_order arguments. Update calls.
(target_float_same_category_p): New function.
(target_float_same_format_p): Likewise.
(target_float_format_length): Likewise.
(enum target_float_ops_kind): New type.
(get_target_float_ops_kind): New function.
(get_target_float_ops): Three new overloaded functions.
(target_float_is_zero): Update call.
(target_float_to_string): Add special handling of invalid numbers,
infinities and NaN (moved from floatformat_to_string). Use
target_float_ops callback.
(target_float_from_string): Use target_float_ops callback.
(target_float_to_longest): Likewise.
(target_float_from_longest): Likewise.
(target_float_from_ulongest): Likewise.
(target_float_to_host_double): Likewise.
(target_float_from_host_double): Likewise.
(target_float_convert): Add special case for no-op conversions.
Use target_float_ops callback.
(target_float_binop): Use target_float_ops callback.
(target_float_compare): Likewise.
gdb/testsuite/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
|
|
|
match_endianness (const gdb_byte *from, const struct type *type, gdb_byte *to)
|
Target FP: Merge doublest.c and dfp.c into target-float.c
Now that all target FP operations are performed via target-float.c,
this file remains the sole caller of functions in doublest.c and dfp.c.
Therefore, this patch merges the latter files into the former and
makes all their function static there.
gdb/ChangeLog:
2017-11-06 Ulrich Weigand <uweigand@de.ibm.com>
* Makefile.in (SFILES): Remove doublest.c and dfp.c.
(HFILES_NO_SRCDIR): Remove doublest.h and dfp.h.
(COMMON_OBS): Remove doublest.o and dfp.o.
Do not build target-float.c (instead of doublest.c)
with -Wformat-nonliteral.
* doublest.c: Remove file.
* doublest.h: Remove file.
* dfp.c: Remove file.
* dfp.h: Remove file.
* target-float.c: Do not include "doublest.h" and "dfp.h".
(DOUBLEST): Move here from doublest.h.
(enum float_kind): Likewise.
(FLOATFORMAT_CHAR_BIT): Likewise.
(FLOATFORMAT_LARGEST_BYTES): Likewise.
(floatformat_totalsize_bytes): Move here from doublest.c. Make static.
(floatformat_precision): Likewise.
(floatformat_normalize_byteorder, get_field, put_field): Likewise.
(floatformat_is_negative, floatformat_classify, floatformat_mantissa):
Likewise.
(host_float_format, host_double_format, host_long_double_format):
Likewise.
(floatformat_to_string, floatformat_from_string): Likewise.
(floatformat_to_doublest): Likewise. Also, inline the original
convert_floatformat_to_doublest.
(floatformat_from_doublest): Likewise. Also, inline the original
convert_floatformat_from_doublest.
Include "dpd/decimal128.h", "dpd/decimal64.h", and "dpd/decimal32.h".
(MAX_DECIMAL_STRING): Move here from dfp.c.
(match_endianness): Likewise.
(set_decnumber_context, decimal_check_errors): Likewise.
(decimal_from_number, decimal_to_number): Likewise.
(decimal_to_string, decimal_from_string): Likewise. Make static.
(decimal_from_longest, decimal_from_ulongest): Likewise.
(decimal_to_longest): Likewise.
(decimal_binop, decimal_is_zero, decimal_compare): Likewise.
(decimal_convert): Likewise.
2017-11-06 23:04:03 +08:00
|
|
|
{
|
Target FP: Refactor use of host floating-point arithmetic
Prepare for using MPFR to implement floating-point arithmetic by
refactoring the way host floating-point arithmetic is currently used.
In particular, fix the following two problems that cause different
(and incorrect) results due to using host arithmetic:
- Current processing always uses host "long double", and then converts
back to the actual target format. This may introduce rounding errors.
- Conversion of FP values to LONGEST simply does a host C++ type cast.
However the result of such a cast is undefined if the source value
is outside the representable range. MPFR always has defined behavior
here (returns the minimum or maximum representable value).
To fix the first issue, I've now created not just one set of routines
using host FP arithmetic (on long double), but instead three different
sets of routines, one each for host float, double, and long double.
Operations can then be performed in the desired type directly, avoiding
the extra rounding step. Using C++ templates, the three sets can all
share the same source code without duplication.
To fix the second issue, I'm simply enforcing the same conversion rule
(which makes sense anyway) when converting out-of-range values from
FP to LONGEST.
To contain the code complexity with the variety of options now possible,
I've created a new class "target_float_ops". There are a total of five
separate implementations of this:
host_float_ops<float> Implemented via host FP in given type
host_float_ops<double>
host_float_ops<long double>
mpfr_float_ops Implemented via MPFR if available
decimal_float_ops Implemented via libdecnumber
Note instead of using the DOUBLEST define, this always just uses the
"long double" data type. But since we now require C++11 anyway, this
type must in any case be avaialble unconditionally.
Most target floating-point operations simply dispatch to a (virtual)
member routine of this class. Which implementation to choose is
determined from the target types involved, and whether they match
some host type or not. E.g. any operation on a single type that
matches a host type is performed in that type. Operations involving
two types that both match host types are performed in the larger one
(according to C/C++ implicit conversion rules). Operations that
involve any type that does not match a host type are performed using
MPFR. (And of course operations involving decimal FP are performed
using libdecnumber.)
This first patch implements the refactoring of target-float.c as
described above, introduing the host_float_ops and decimal_float_ops
classes, and using them. Use of MPFR is introduced in the second patch.
A bit of special-case handling code is moved around to as to avoid
code duplication between host_float_ops and mpfr_float_ops.
Note that due to the changes mentioned above, I've had to update (fix)
the floating-point register values tested in the gdb.arch/vsx-regs.exp
test case. (The new values now work both with host arithmetic and MPFR.)
gdb/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* target-float.c: Do not include <math.h>.
Include <cmath> and <limits>.
(DOUBLEST): Do not define.
(class target_float_ops): New type.
(class host_float_ops): New templated type.
(class decimal_float_ops): New type.
(floatformat_to_doublest): Rename to ...
(host_float_ops<T>::from_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::from_target): New overload using a type argument.
(floatformat_from_doublest): Rename to ...
(host_float_ops<T>::to_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::to_target): New overload using a type argument.
(floatformat_printf_format): New function.
(struct printf_length_modifier): New templated type.
(floatformat_to_string): Rename to ...
(host_float_ops<T>::to_string): ... this. Use type instead of
floatformat argument. Use floatformat_printf_format and
printf_length_modifier. Remove special handling of invalid numbers,
infinities and NaN (moved to target_float_to_string).
(struct scanf_length_modifier): New templated type.
(floatformat_from_string): Rename to ...
(host_float_ops<T>::from_string): ... this. Use type instead of
floatformat argument. Use scanf_length_modifier.
(floatformat_to_longest): Rename to ...
(host_float_ops<T>::to_longest): ... this. Use type instead of
floatformat argument. Handle out-of-range values deterministically.
(floatformat_from_longest): Rename to ...
(host_float_ops<T>::from_longest): ... this. Use type instead of
floatformat argument.
(floatformat_from_ulongest): Rename to ...
(host_float_ops<T>::from_ulongest): ... this. Use type instead of
floatformat argument.
(floatformat_to_host_double): Rename to ...
(host_float_ops<T>::to_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_from_host_double): Rename to ...
(host_float_ops<T>::from_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_convert): Rename to ...
(host_float_ops<T>::convert): ... this. Use type instead of
floatformat arguments. Remove handling of no-op conversions.
(floatformat_binop): Rename to ...
(host_float_ops<T>::binop): ... this. Use type instead of
floatformat arguments.
(floatformat_compare): Rename to ...
(host_float_ops<T>::compare): ... this. Use type instead of
floatformat arguments.
(match_endianness): Use type instead of length/byte_order arguments.
(set_decnumber_context): Likewise.
(decimal_from_number): Likewise. Update calls.
(decimal_to_number): Likewise.
(decimal_is_zero): Likewise. Update calls. Move to earlier in file.
(decimal_float_ops::to_host_double): New dummy function.
(decimal_float_ops::from_host_double): Likewise.
(decimal_to_string): Rename to ...
(decimal_float_ops::to_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_string): Rename to ...
(decimal_float_ops::from_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_longest): Rename to ...
(decimal_float_ops::from_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_ulongest): Rename to ...
(decimal_float_ops::from_ulongest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_to_longest): Rename to ...
(decimal_float_ops::to_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_binop): Rename to ...
(decimal_float_ops::binop): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_compare): Rename to ...
(decimal_float_ops::compare): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_convert): Rename to ...
(decimal_float_ops::convert): ... this. Use type instead of
length/byte_order arguments. Update calls.
(target_float_same_category_p): New function.
(target_float_same_format_p): Likewise.
(target_float_format_length): Likewise.
(enum target_float_ops_kind): New type.
(get_target_float_ops_kind): New function.
(get_target_float_ops): Three new overloaded functions.
(target_float_is_zero): Update call.
(target_float_to_string): Add special handling of invalid numbers,
infinities and NaN (moved from floatformat_to_string). Use
target_float_ops callback.
(target_float_from_string): Use target_float_ops callback.
(target_float_to_longest): Likewise.
(target_float_from_longest): Likewise.
(target_float_from_ulongest): Likewise.
(target_float_to_host_double): Likewise.
(target_float_from_host_double): Likewise.
(target_float_convert): Add special case for no-op conversions.
Use target_float_ops callback.
(target_float_binop): Use target_float_ops callback.
(target_float_compare): Likewise.
gdb/testsuite/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
|
|
|
gdb_assert (TYPE_CODE (type) == TYPE_CODE_DECFLOAT);
|
|
|
|
|
|
|
|
int len = TYPE_LENGTH (type);
|
Target FP: Merge doublest.c and dfp.c into target-float.c
Now that all target FP operations are performed via target-float.c,
this file remains the sole caller of functions in doublest.c and dfp.c.
Therefore, this patch merges the latter files into the former and
makes all their function static there.
gdb/ChangeLog:
2017-11-06 Ulrich Weigand <uweigand@de.ibm.com>
* Makefile.in (SFILES): Remove doublest.c and dfp.c.
(HFILES_NO_SRCDIR): Remove doublest.h and dfp.h.
(COMMON_OBS): Remove doublest.o and dfp.o.
Do not build target-float.c (instead of doublest.c)
with -Wformat-nonliteral.
* doublest.c: Remove file.
* doublest.h: Remove file.
* dfp.c: Remove file.
* dfp.h: Remove file.
* target-float.c: Do not include "doublest.h" and "dfp.h".
(DOUBLEST): Move here from doublest.h.
(enum float_kind): Likewise.
(FLOATFORMAT_CHAR_BIT): Likewise.
(FLOATFORMAT_LARGEST_BYTES): Likewise.
(floatformat_totalsize_bytes): Move here from doublest.c. Make static.
(floatformat_precision): Likewise.
(floatformat_normalize_byteorder, get_field, put_field): Likewise.
(floatformat_is_negative, floatformat_classify, floatformat_mantissa):
Likewise.
(host_float_format, host_double_format, host_long_double_format):
Likewise.
(floatformat_to_string, floatformat_from_string): Likewise.
(floatformat_to_doublest): Likewise. Also, inline the original
convert_floatformat_to_doublest.
(floatformat_from_doublest): Likewise. Also, inline the original
convert_floatformat_from_doublest.
Include "dpd/decimal128.h", "dpd/decimal64.h", and "dpd/decimal32.h".
(MAX_DECIMAL_STRING): Move here from dfp.c.
(match_endianness): Likewise.
(set_decnumber_context, decimal_check_errors): Likewise.
(decimal_from_number, decimal_to_number): Likewise.
(decimal_to_string, decimal_from_string): Likewise. Make static.
(decimal_from_longest, decimal_from_ulongest): Likewise.
(decimal_to_longest): Likewise.
(decimal_binop, decimal_is_zero, decimal_compare): Likewise.
(decimal_convert): Likewise.
2017-11-06 23:04:03 +08:00
|
|
|
int i;
|
|
|
|
|
|
|
|
#if WORDS_BIGENDIAN
|
|
|
|
#define OPPOSITE_BYTE_ORDER BFD_ENDIAN_LITTLE
|
|
|
|
#else
|
|
|
|
#define OPPOSITE_BYTE_ORDER BFD_ENDIAN_BIG
|
|
|
|
#endif
|
|
|
|
|
Target FP: Refactor use of host floating-point arithmetic
Prepare for using MPFR to implement floating-point arithmetic by
refactoring the way host floating-point arithmetic is currently used.
In particular, fix the following two problems that cause different
(and incorrect) results due to using host arithmetic:
- Current processing always uses host "long double", and then converts
back to the actual target format. This may introduce rounding errors.
- Conversion of FP values to LONGEST simply does a host C++ type cast.
However the result of such a cast is undefined if the source value
is outside the representable range. MPFR always has defined behavior
here (returns the minimum or maximum representable value).
To fix the first issue, I've now created not just one set of routines
using host FP arithmetic (on long double), but instead three different
sets of routines, one each for host float, double, and long double.
Operations can then be performed in the desired type directly, avoiding
the extra rounding step. Using C++ templates, the three sets can all
share the same source code without duplication.
To fix the second issue, I'm simply enforcing the same conversion rule
(which makes sense anyway) when converting out-of-range values from
FP to LONGEST.
To contain the code complexity with the variety of options now possible,
I've created a new class "target_float_ops". There are a total of five
separate implementations of this:
host_float_ops<float> Implemented via host FP in given type
host_float_ops<double>
host_float_ops<long double>
mpfr_float_ops Implemented via MPFR if available
decimal_float_ops Implemented via libdecnumber
Note instead of using the DOUBLEST define, this always just uses the
"long double" data type. But since we now require C++11 anyway, this
type must in any case be avaialble unconditionally.
Most target floating-point operations simply dispatch to a (virtual)
member routine of this class. Which implementation to choose is
determined from the target types involved, and whether they match
some host type or not. E.g. any operation on a single type that
matches a host type is performed in that type. Operations involving
two types that both match host types are performed in the larger one
(according to C/C++ implicit conversion rules). Operations that
involve any type that does not match a host type are performed using
MPFR. (And of course operations involving decimal FP are performed
using libdecnumber.)
This first patch implements the refactoring of target-float.c as
described above, introduing the host_float_ops and decimal_float_ops
classes, and using them. Use of MPFR is introduced in the second patch.
A bit of special-case handling code is moved around to as to avoid
code duplication between host_float_ops and mpfr_float_ops.
Note that due to the changes mentioned above, I've had to update (fix)
the floating-point register values tested in the gdb.arch/vsx-regs.exp
test case. (The new values now work both with host arithmetic and MPFR.)
gdb/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* target-float.c: Do not include <math.h>.
Include <cmath> and <limits>.
(DOUBLEST): Do not define.
(class target_float_ops): New type.
(class host_float_ops): New templated type.
(class decimal_float_ops): New type.
(floatformat_to_doublest): Rename to ...
(host_float_ops<T>::from_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::from_target): New overload using a type argument.
(floatformat_from_doublest): Rename to ...
(host_float_ops<T>::to_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::to_target): New overload using a type argument.
(floatformat_printf_format): New function.
(struct printf_length_modifier): New templated type.
(floatformat_to_string): Rename to ...
(host_float_ops<T>::to_string): ... this. Use type instead of
floatformat argument. Use floatformat_printf_format and
printf_length_modifier. Remove special handling of invalid numbers,
infinities and NaN (moved to target_float_to_string).
(struct scanf_length_modifier): New templated type.
(floatformat_from_string): Rename to ...
(host_float_ops<T>::from_string): ... this. Use type instead of
floatformat argument. Use scanf_length_modifier.
(floatformat_to_longest): Rename to ...
(host_float_ops<T>::to_longest): ... this. Use type instead of
floatformat argument. Handle out-of-range values deterministically.
(floatformat_from_longest): Rename to ...
(host_float_ops<T>::from_longest): ... this. Use type instead of
floatformat argument.
(floatformat_from_ulongest): Rename to ...
(host_float_ops<T>::from_ulongest): ... this. Use type instead of
floatformat argument.
(floatformat_to_host_double): Rename to ...
(host_float_ops<T>::to_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_from_host_double): Rename to ...
(host_float_ops<T>::from_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_convert): Rename to ...
(host_float_ops<T>::convert): ... this. Use type instead of
floatformat arguments. Remove handling of no-op conversions.
(floatformat_binop): Rename to ...
(host_float_ops<T>::binop): ... this. Use type instead of
floatformat arguments.
(floatformat_compare): Rename to ...
(host_float_ops<T>::compare): ... this. Use type instead of
floatformat arguments.
(match_endianness): Use type instead of length/byte_order arguments.
(set_decnumber_context): Likewise.
(decimal_from_number): Likewise. Update calls.
(decimal_to_number): Likewise.
(decimal_is_zero): Likewise. Update calls. Move to earlier in file.
(decimal_float_ops::to_host_double): New dummy function.
(decimal_float_ops::from_host_double): Likewise.
(decimal_to_string): Rename to ...
(decimal_float_ops::to_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_string): Rename to ...
(decimal_float_ops::from_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_longest): Rename to ...
(decimal_float_ops::from_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_ulongest): Rename to ...
(decimal_float_ops::from_ulongest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_to_longest): Rename to ...
(decimal_float_ops::to_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_binop): Rename to ...
(decimal_float_ops::binop): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_compare): Rename to ...
(decimal_float_ops::compare): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_convert): Rename to ...
(decimal_float_ops::convert): ... this. Use type instead of
length/byte_order arguments. Update calls.
(target_float_same_category_p): New function.
(target_float_same_format_p): Likewise.
(target_float_format_length): Likewise.
(enum target_float_ops_kind): New type.
(get_target_float_ops_kind): New function.
(get_target_float_ops): Three new overloaded functions.
(target_float_is_zero): Update call.
(target_float_to_string): Add special handling of invalid numbers,
infinities and NaN (moved from floatformat_to_string). Use
target_float_ops callback.
(target_float_from_string): Use target_float_ops callback.
(target_float_to_longest): Likewise.
(target_float_from_longest): Likewise.
(target_float_from_ulongest): Likewise.
(target_float_to_host_double): Likewise.
(target_float_from_host_double): Likewise.
(target_float_convert): Add special case for no-op conversions.
Use target_float_ops callback.
(target_float_binop): Use target_float_ops callback.
(target_float_compare): Likewise.
gdb/testsuite/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
|
|
|
if (gdbarch_byte_order (get_type_arch (type)) == OPPOSITE_BYTE_ORDER)
|
Target FP: Merge doublest.c and dfp.c into target-float.c
Now that all target FP operations are performed via target-float.c,
this file remains the sole caller of functions in doublest.c and dfp.c.
Therefore, this patch merges the latter files into the former and
makes all their function static there.
gdb/ChangeLog:
2017-11-06 Ulrich Weigand <uweigand@de.ibm.com>
* Makefile.in (SFILES): Remove doublest.c and dfp.c.
(HFILES_NO_SRCDIR): Remove doublest.h and dfp.h.
(COMMON_OBS): Remove doublest.o and dfp.o.
Do not build target-float.c (instead of doublest.c)
with -Wformat-nonliteral.
* doublest.c: Remove file.
* doublest.h: Remove file.
* dfp.c: Remove file.
* dfp.h: Remove file.
* target-float.c: Do not include "doublest.h" and "dfp.h".
(DOUBLEST): Move here from doublest.h.
(enum float_kind): Likewise.
(FLOATFORMAT_CHAR_BIT): Likewise.
(FLOATFORMAT_LARGEST_BYTES): Likewise.
(floatformat_totalsize_bytes): Move here from doublest.c. Make static.
(floatformat_precision): Likewise.
(floatformat_normalize_byteorder, get_field, put_field): Likewise.
(floatformat_is_negative, floatformat_classify, floatformat_mantissa):
Likewise.
(host_float_format, host_double_format, host_long_double_format):
Likewise.
(floatformat_to_string, floatformat_from_string): Likewise.
(floatformat_to_doublest): Likewise. Also, inline the original
convert_floatformat_to_doublest.
(floatformat_from_doublest): Likewise. Also, inline the original
convert_floatformat_from_doublest.
Include "dpd/decimal128.h", "dpd/decimal64.h", and "dpd/decimal32.h".
(MAX_DECIMAL_STRING): Move here from dfp.c.
(match_endianness): Likewise.
(set_decnumber_context, decimal_check_errors): Likewise.
(decimal_from_number, decimal_to_number): Likewise.
(decimal_to_string, decimal_from_string): Likewise. Make static.
(decimal_from_longest, decimal_from_ulongest): Likewise.
(decimal_to_longest): Likewise.
(decimal_binop, decimal_is_zero, decimal_compare): Likewise.
(decimal_convert): Likewise.
2017-11-06 23:04:03 +08:00
|
|
|
for (i = 0; i < len; i++)
|
|
|
|
to[i] = from[len - i - 1];
|
|
|
|
else
|
|
|
|
for (i = 0; i < len; i++)
|
|
|
|
to[i] = from[i];
|
|
|
|
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Helper function to get the appropriate libdecnumber context for each size
|
|
|
|
of decimal float. */
|
|
|
|
static void
|
Target FP: Refactor use of host floating-point arithmetic
Prepare for using MPFR to implement floating-point arithmetic by
refactoring the way host floating-point arithmetic is currently used.
In particular, fix the following two problems that cause different
(and incorrect) results due to using host arithmetic:
- Current processing always uses host "long double", and then converts
back to the actual target format. This may introduce rounding errors.
- Conversion of FP values to LONGEST simply does a host C++ type cast.
However the result of such a cast is undefined if the source value
is outside the representable range. MPFR always has defined behavior
here (returns the minimum or maximum representable value).
To fix the first issue, I've now created not just one set of routines
using host FP arithmetic (on long double), but instead three different
sets of routines, one each for host float, double, and long double.
Operations can then be performed in the desired type directly, avoiding
the extra rounding step. Using C++ templates, the three sets can all
share the same source code without duplication.
To fix the second issue, I'm simply enforcing the same conversion rule
(which makes sense anyway) when converting out-of-range values from
FP to LONGEST.
To contain the code complexity with the variety of options now possible,
I've created a new class "target_float_ops". There are a total of five
separate implementations of this:
host_float_ops<float> Implemented via host FP in given type
host_float_ops<double>
host_float_ops<long double>
mpfr_float_ops Implemented via MPFR if available
decimal_float_ops Implemented via libdecnumber
Note instead of using the DOUBLEST define, this always just uses the
"long double" data type. But since we now require C++11 anyway, this
type must in any case be avaialble unconditionally.
Most target floating-point operations simply dispatch to a (virtual)
member routine of this class. Which implementation to choose is
determined from the target types involved, and whether they match
some host type or not. E.g. any operation on a single type that
matches a host type is performed in that type. Operations involving
two types that both match host types are performed in the larger one
(according to C/C++ implicit conversion rules). Operations that
involve any type that does not match a host type are performed using
MPFR. (And of course operations involving decimal FP are performed
using libdecnumber.)
This first patch implements the refactoring of target-float.c as
described above, introduing the host_float_ops and decimal_float_ops
classes, and using them. Use of MPFR is introduced in the second patch.
A bit of special-case handling code is moved around to as to avoid
code duplication between host_float_ops and mpfr_float_ops.
Note that due to the changes mentioned above, I've had to update (fix)
the floating-point register values tested in the gdb.arch/vsx-regs.exp
test case. (The new values now work both with host arithmetic and MPFR.)
gdb/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* target-float.c: Do not include <math.h>.
Include <cmath> and <limits>.
(DOUBLEST): Do not define.
(class target_float_ops): New type.
(class host_float_ops): New templated type.
(class decimal_float_ops): New type.
(floatformat_to_doublest): Rename to ...
(host_float_ops<T>::from_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::from_target): New overload using a type argument.
(floatformat_from_doublest): Rename to ...
(host_float_ops<T>::to_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::to_target): New overload using a type argument.
(floatformat_printf_format): New function.
(struct printf_length_modifier): New templated type.
(floatformat_to_string): Rename to ...
(host_float_ops<T>::to_string): ... this. Use type instead of
floatformat argument. Use floatformat_printf_format and
printf_length_modifier. Remove special handling of invalid numbers,
infinities and NaN (moved to target_float_to_string).
(struct scanf_length_modifier): New templated type.
(floatformat_from_string): Rename to ...
(host_float_ops<T>::from_string): ... this. Use type instead of
floatformat argument. Use scanf_length_modifier.
(floatformat_to_longest): Rename to ...
(host_float_ops<T>::to_longest): ... this. Use type instead of
floatformat argument. Handle out-of-range values deterministically.
(floatformat_from_longest): Rename to ...
(host_float_ops<T>::from_longest): ... this. Use type instead of
floatformat argument.
(floatformat_from_ulongest): Rename to ...
(host_float_ops<T>::from_ulongest): ... this. Use type instead of
floatformat argument.
(floatformat_to_host_double): Rename to ...
(host_float_ops<T>::to_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_from_host_double): Rename to ...
(host_float_ops<T>::from_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_convert): Rename to ...
(host_float_ops<T>::convert): ... this. Use type instead of
floatformat arguments. Remove handling of no-op conversions.
(floatformat_binop): Rename to ...
(host_float_ops<T>::binop): ... this. Use type instead of
floatformat arguments.
(floatformat_compare): Rename to ...
(host_float_ops<T>::compare): ... this. Use type instead of
floatformat arguments.
(match_endianness): Use type instead of length/byte_order arguments.
(set_decnumber_context): Likewise.
(decimal_from_number): Likewise. Update calls.
(decimal_to_number): Likewise.
(decimal_is_zero): Likewise. Update calls. Move to earlier in file.
(decimal_float_ops::to_host_double): New dummy function.
(decimal_float_ops::from_host_double): Likewise.
(decimal_to_string): Rename to ...
(decimal_float_ops::to_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_string): Rename to ...
(decimal_float_ops::from_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_longest): Rename to ...
(decimal_float_ops::from_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_ulongest): Rename to ...
(decimal_float_ops::from_ulongest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_to_longest): Rename to ...
(decimal_float_ops::to_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_binop): Rename to ...
(decimal_float_ops::binop): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_compare): Rename to ...
(decimal_float_ops::compare): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_convert): Rename to ...
(decimal_float_ops::convert): ... this. Use type instead of
length/byte_order arguments. Update calls.
(target_float_same_category_p): New function.
(target_float_same_format_p): Likewise.
(target_float_format_length): Likewise.
(enum target_float_ops_kind): New type.
(get_target_float_ops_kind): New function.
(get_target_float_ops): Three new overloaded functions.
(target_float_is_zero): Update call.
(target_float_to_string): Add special handling of invalid numbers,
infinities and NaN (moved from floatformat_to_string). Use
target_float_ops callback.
(target_float_from_string): Use target_float_ops callback.
(target_float_to_longest): Likewise.
(target_float_from_longest): Likewise.
(target_float_from_ulongest): Likewise.
(target_float_to_host_double): Likewise.
(target_float_from_host_double): Likewise.
(target_float_convert): Add special case for no-op conversions.
Use target_float_ops callback.
(target_float_binop): Use target_float_ops callback.
(target_float_compare): Likewise.
gdb/testsuite/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
|
|
|
set_decnumber_context (decContext *ctx, const struct type *type)
|
Target FP: Merge doublest.c and dfp.c into target-float.c
Now that all target FP operations are performed via target-float.c,
this file remains the sole caller of functions in doublest.c and dfp.c.
Therefore, this patch merges the latter files into the former and
makes all their function static there.
gdb/ChangeLog:
2017-11-06 Ulrich Weigand <uweigand@de.ibm.com>
* Makefile.in (SFILES): Remove doublest.c and dfp.c.
(HFILES_NO_SRCDIR): Remove doublest.h and dfp.h.
(COMMON_OBS): Remove doublest.o and dfp.o.
Do not build target-float.c (instead of doublest.c)
with -Wformat-nonliteral.
* doublest.c: Remove file.
* doublest.h: Remove file.
* dfp.c: Remove file.
* dfp.h: Remove file.
* target-float.c: Do not include "doublest.h" and "dfp.h".
(DOUBLEST): Move here from doublest.h.
(enum float_kind): Likewise.
(FLOATFORMAT_CHAR_BIT): Likewise.
(FLOATFORMAT_LARGEST_BYTES): Likewise.
(floatformat_totalsize_bytes): Move here from doublest.c. Make static.
(floatformat_precision): Likewise.
(floatformat_normalize_byteorder, get_field, put_field): Likewise.
(floatformat_is_negative, floatformat_classify, floatformat_mantissa):
Likewise.
(host_float_format, host_double_format, host_long_double_format):
Likewise.
(floatformat_to_string, floatformat_from_string): Likewise.
(floatformat_to_doublest): Likewise. Also, inline the original
convert_floatformat_to_doublest.
(floatformat_from_doublest): Likewise. Also, inline the original
convert_floatformat_from_doublest.
Include "dpd/decimal128.h", "dpd/decimal64.h", and "dpd/decimal32.h".
(MAX_DECIMAL_STRING): Move here from dfp.c.
(match_endianness): Likewise.
(set_decnumber_context, decimal_check_errors): Likewise.
(decimal_from_number, decimal_to_number): Likewise.
(decimal_to_string, decimal_from_string): Likewise. Make static.
(decimal_from_longest, decimal_from_ulongest): Likewise.
(decimal_to_longest): Likewise.
(decimal_binop, decimal_is_zero, decimal_compare): Likewise.
(decimal_convert): Likewise.
2017-11-06 23:04:03 +08:00
|
|
|
{
|
Target FP: Refactor use of host floating-point arithmetic
Prepare for using MPFR to implement floating-point arithmetic by
refactoring the way host floating-point arithmetic is currently used.
In particular, fix the following two problems that cause different
(and incorrect) results due to using host arithmetic:
- Current processing always uses host "long double", and then converts
back to the actual target format. This may introduce rounding errors.
- Conversion of FP values to LONGEST simply does a host C++ type cast.
However the result of such a cast is undefined if the source value
is outside the representable range. MPFR always has defined behavior
here (returns the minimum or maximum representable value).
To fix the first issue, I've now created not just one set of routines
using host FP arithmetic (on long double), but instead three different
sets of routines, one each for host float, double, and long double.
Operations can then be performed in the desired type directly, avoiding
the extra rounding step. Using C++ templates, the three sets can all
share the same source code without duplication.
To fix the second issue, I'm simply enforcing the same conversion rule
(which makes sense anyway) when converting out-of-range values from
FP to LONGEST.
To contain the code complexity with the variety of options now possible,
I've created a new class "target_float_ops". There are a total of five
separate implementations of this:
host_float_ops<float> Implemented via host FP in given type
host_float_ops<double>
host_float_ops<long double>
mpfr_float_ops Implemented via MPFR if available
decimal_float_ops Implemented via libdecnumber
Note instead of using the DOUBLEST define, this always just uses the
"long double" data type. But since we now require C++11 anyway, this
type must in any case be avaialble unconditionally.
Most target floating-point operations simply dispatch to a (virtual)
member routine of this class. Which implementation to choose is
determined from the target types involved, and whether they match
some host type or not. E.g. any operation on a single type that
matches a host type is performed in that type. Operations involving
two types that both match host types are performed in the larger one
(according to C/C++ implicit conversion rules). Operations that
involve any type that does not match a host type are performed using
MPFR. (And of course operations involving decimal FP are performed
using libdecnumber.)
This first patch implements the refactoring of target-float.c as
described above, introduing the host_float_ops and decimal_float_ops
classes, and using them. Use of MPFR is introduced in the second patch.
A bit of special-case handling code is moved around to as to avoid
code duplication between host_float_ops and mpfr_float_ops.
Note that due to the changes mentioned above, I've had to update (fix)
the floating-point register values tested in the gdb.arch/vsx-regs.exp
test case. (The new values now work both with host arithmetic and MPFR.)
gdb/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* target-float.c: Do not include <math.h>.
Include <cmath> and <limits>.
(DOUBLEST): Do not define.
(class target_float_ops): New type.
(class host_float_ops): New templated type.
(class decimal_float_ops): New type.
(floatformat_to_doublest): Rename to ...
(host_float_ops<T>::from_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::from_target): New overload using a type argument.
(floatformat_from_doublest): Rename to ...
(host_float_ops<T>::to_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::to_target): New overload using a type argument.
(floatformat_printf_format): New function.
(struct printf_length_modifier): New templated type.
(floatformat_to_string): Rename to ...
(host_float_ops<T>::to_string): ... this. Use type instead of
floatformat argument. Use floatformat_printf_format and
printf_length_modifier. Remove special handling of invalid numbers,
infinities and NaN (moved to target_float_to_string).
(struct scanf_length_modifier): New templated type.
(floatformat_from_string): Rename to ...
(host_float_ops<T>::from_string): ... this. Use type instead of
floatformat argument. Use scanf_length_modifier.
(floatformat_to_longest): Rename to ...
(host_float_ops<T>::to_longest): ... this. Use type instead of
floatformat argument. Handle out-of-range values deterministically.
(floatformat_from_longest): Rename to ...
(host_float_ops<T>::from_longest): ... this. Use type instead of
floatformat argument.
(floatformat_from_ulongest): Rename to ...
(host_float_ops<T>::from_ulongest): ... this. Use type instead of
floatformat argument.
(floatformat_to_host_double): Rename to ...
(host_float_ops<T>::to_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_from_host_double): Rename to ...
(host_float_ops<T>::from_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_convert): Rename to ...
(host_float_ops<T>::convert): ... this. Use type instead of
floatformat arguments. Remove handling of no-op conversions.
(floatformat_binop): Rename to ...
(host_float_ops<T>::binop): ... this. Use type instead of
floatformat arguments.
(floatformat_compare): Rename to ...
(host_float_ops<T>::compare): ... this. Use type instead of
floatformat arguments.
(match_endianness): Use type instead of length/byte_order arguments.
(set_decnumber_context): Likewise.
(decimal_from_number): Likewise. Update calls.
(decimal_to_number): Likewise.
(decimal_is_zero): Likewise. Update calls. Move to earlier in file.
(decimal_float_ops::to_host_double): New dummy function.
(decimal_float_ops::from_host_double): Likewise.
(decimal_to_string): Rename to ...
(decimal_float_ops::to_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_string): Rename to ...
(decimal_float_ops::from_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_longest): Rename to ...
(decimal_float_ops::from_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_ulongest): Rename to ...
(decimal_float_ops::from_ulongest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_to_longest): Rename to ...
(decimal_float_ops::to_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_binop): Rename to ...
(decimal_float_ops::binop): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_compare): Rename to ...
(decimal_float_ops::compare): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_convert): Rename to ...
(decimal_float_ops::convert): ... this. Use type instead of
length/byte_order arguments. Update calls.
(target_float_same_category_p): New function.
(target_float_same_format_p): Likewise.
(target_float_format_length): Likewise.
(enum target_float_ops_kind): New type.
(get_target_float_ops_kind): New function.
(get_target_float_ops): Three new overloaded functions.
(target_float_is_zero): Update call.
(target_float_to_string): Add special handling of invalid numbers,
infinities and NaN (moved from floatformat_to_string). Use
target_float_ops callback.
(target_float_from_string): Use target_float_ops callback.
(target_float_to_longest): Likewise.
(target_float_from_longest): Likewise.
(target_float_from_ulongest): Likewise.
(target_float_to_host_double): Likewise.
(target_float_from_host_double): Likewise.
(target_float_convert): Add special case for no-op conversions.
Use target_float_ops callback.
(target_float_binop): Use target_float_ops callback.
(target_float_compare): Likewise.
gdb/testsuite/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
|
|
|
gdb_assert (TYPE_CODE (type) == TYPE_CODE_DECFLOAT);
|
|
|
|
|
|
|
|
switch (TYPE_LENGTH (type))
|
Target FP: Merge doublest.c and dfp.c into target-float.c
Now that all target FP operations are performed via target-float.c,
this file remains the sole caller of functions in doublest.c and dfp.c.
Therefore, this patch merges the latter files into the former and
makes all their function static there.
gdb/ChangeLog:
2017-11-06 Ulrich Weigand <uweigand@de.ibm.com>
* Makefile.in (SFILES): Remove doublest.c and dfp.c.
(HFILES_NO_SRCDIR): Remove doublest.h and dfp.h.
(COMMON_OBS): Remove doublest.o and dfp.o.
Do not build target-float.c (instead of doublest.c)
with -Wformat-nonliteral.
* doublest.c: Remove file.
* doublest.h: Remove file.
* dfp.c: Remove file.
* dfp.h: Remove file.
* target-float.c: Do not include "doublest.h" and "dfp.h".
(DOUBLEST): Move here from doublest.h.
(enum float_kind): Likewise.
(FLOATFORMAT_CHAR_BIT): Likewise.
(FLOATFORMAT_LARGEST_BYTES): Likewise.
(floatformat_totalsize_bytes): Move here from doublest.c. Make static.
(floatformat_precision): Likewise.
(floatformat_normalize_byteorder, get_field, put_field): Likewise.
(floatformat_is_negative, floatformat_classify, floatformat_mantissa):
Likewise.
(host_float_format, host_double_format, host_long_double_format):
Likewise.
(floatformat_to_string, floatformat_from_string): Likewise.
(floatformat_to_doublest): Likewise. Also, inline the original
convert_floatformat_to_doublest.
(floatformat_from_doublest): Likewise. Also, inline the original
convert_floatformat_from_doublest.
Include "dpd/decimal128.h", "dpd/decimal64.h", and "dpd/decimal32.h".
(MAX_DECIMAL_STRING): Move here from dfp.c.
(match_endianness): Likewise.
(set_decnumber_context, decimal_check_errors): Likewise.
(decimal_from_number, decimal_to_number): Likewise.
(decimal_to_string, decimal_from_string): Likewise. Make static.
(decimal_from_longest, decimal_from_ulongest): Likewise.
(decimal_to_longest): Likewise.
(decimal_binop, decimal_is_zero, decimal_compare): Likewise.
(decimal_convert): Likewise.
2017-11-06 23:04:03 +08:00
|
|
|
{
|
|
|
|
case 4:
|
|
|
|
decContextDefault (ctx, DEC_INIT_DECIMAL32);
|
|
|
|
break;
|
|
|
|
case 8:
|
|
|
|
decContextDefault (ctx, DEC_INIT_DECIMAL64);
|
|
|
|
break;
|
|
|
|
case 16:
|
|
|
|
decContextDefault (ctx, DEC_INIT_DECIMAL128);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
ctx->traps = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Check for errors signaled in the decimal context structure. */
|
|
|
|
static void
|
|
|
|
decimal_check_errors (decContext *ctx)
|
|
|
|
{
|
|
|
|
/* An error here could be a division by zero, an overflow, an underflow or
|
|
|
|
an invalid operation (from the DEC_Errors constant in decContext.h).
|
|
|
|
Since GDB doesn't complain about division by zero, overflow or underflow
|
|
|
|
errors for binary floating, we won't complain about them for decimal
|
|
|
|
floating either. */
|
|
|
|
if (ctx->status & DEC_IEEE_854_Invalid_operation)
|
|
|
|
{
|
|
|
|
/* Leave only the error bits in the status flags. */
|
|
|
|
ctx->status &= DEC_IEEE_854_Invalid_operation;
|
|
|
|
error (_("Cannot perform operation: %s"),
|
|
|
|
decContextStatusToString (ctx));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Helper function to convert from libdecnumber's appropriate representation
|
|
|
|
for computation to each size of decimal float. */
|
|
|
|
static void
|
2017-11-17 01:49:11 +08:00
|
|
|
decimal_from_number (const decNumber *from,
|
Target FP: Refactor use of host floating-point arithmetic
Prepare for using MPFR to implement floating-point arithmetic by
refactoring the way host floating-point arithmetic is currently used.
In particular, fix the following two problems that cause different
(and incorrect) results due to using host arithmetic:
- Current processing always uses host "long double", and then converts
back to the actual target format. This may introduce rounding errors.
- Conversion of FP values to LONGEST simply does a host C++ type cast.
However the result of such a cast is undefined if the source value
is outside the representable range. MPFR always has defined behavior
here (returns the minimum or maximum representable value).
To fix the first issue, I've now created not just one set of routines
using host FP arithmetic (on long double), but instead three different
sets of routines, one each for host float, double, and long double.
Operations can then be performed in the desired type directly, avoiding
the extra rounding step. Using C++ templates, the three sets can all
share the same source code without duplication.
To fix the second issue, I'm simply enforcing the same conversion rule
(which makes sense anyway) when converting out-of-range values from
FP to LONGEST.
To contain the code complexity with the variety of options now possible,
I've created a new class "target_float_ops". There are a total of five
separate implementations of this:
host_float_ops<float> Implemented via host FP in given type
host_float_ops<double>
host_float_ops<long double>
mpfr_float_ops Implemented via MPFR if available
decimal_float_ops Implemented via libdecnumber
Note instead of using the DOUBLEST define, this always just uses the
"long double" data type. But since we now require C++11 anyway, this
type must in any case be avaialble unconditionally.
Most target floating-point operations simply dispatch to a (virtual)
member routine of this class. Which implementation to choose is
determined from the target types involved, and whether they match
some host type or not. E.g. any operation on a single type that
matches a host type is performed in that type. Operations involving
two types that both match host types are performed in the larger one
(according to C/C++ implicit conversion rules). Operations that
involve any type that does not match a host type are performed using
MPFR. (And of course operations involving decimal FP are performed
using libdecnumber.)
This first patch implements the refactoring of target-float.c as
described above, introduing the host_float_ops and decimal_float_ops
classes, and using them. Use of MPFR is introduced in the second patch.
A bit of special-case handling code is moved around to as to avoid
code duplication between host_float_ops and mpfr_float_ops.
Note that due to the changes mentioned above, I've had to update (fix)
the floating-point register values tested in the gdb.arch/vsx-regs.exp
test case. (The new values now work both with host arithmetic and MPFR.)
gdb/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* target-float.c: Do not include <math.h>.
Include <cmath> and <limits>.
(DOUBLEST): Do not define.
(class target_float_ops): New type.
(class host_float_ops): New templated type.
(class decimal_float_ops): New type.
(floatformat_to_doublest): Rename to ...
(host_float_ops<T>::from_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::from_target): New overload using a type argument.
(floatformat_from_doublest): Rename to ...
(host_float_ops<T>::to_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::to_target): New overload using a type argument.
(floatformat_printf_format): New function.
(struct printf_length_modifier): New templated type.
(floatformat_to_string): Rename to ...
(host_float_ops<T>::to_string): ... this. Use type instead of
floatformat argument. Use floatformat_printf_format and
printf_length_modifier. Remove special handling of invalid numbers,
infinities and NaN (moved to target_float_to_string).
(struct scanf_length_modifier): New templated type.
(floatformat_from_string): Rename to ...
(host_float_ops<T>::from_string): ... this. Use type instead of
floatformat argument. Use scanf_length_modifier.
(floatformat_to_longest): Rename to ...
(host_float_ops<T>::to_longest): ... this. Use type instead of
floatformat argument. Handle out-of-range values deterministically.
(floatformat_from_longest): Rename to ...
(host_float_ops<T>::from_longest): ... this. Use type instead of
floatformat argument.
(floatformat_from_ulongest): Rename to ...
(host_float_ops<T>::from_ulongest): ... this. Use type instead of
floatformat argument.
(floatformat_to_host_double): Rename to ...
(host_float_ops<T>::to_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_from_host_double): Rename to ...
(host_float_ops<T>::from_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_convert): Rename to ...
(host_float_ops<T>::convert): ... this. Use type instead of
floatformat arguments. Remove handling of no-op conversions.
(floatformat_binop): Rename to ...
(host_float_ops<T>::binop): ... this. Use type instead of
floatformat arguments.
(floatformat_compare): Rename to ...
(host_float_ops<T>::compare): ... this. Use type instead of
floatformat arguments.
(match_endianness): Use type instead of length/byte_order arguments.
(set_decnumber_context): Likewise.
(decimal_from_number): Likewise. Update calls.
(decimal_to_number): Likewise.
(decimal_is_zero): Likewise. Update calls. Move to earlier in file.
(decimal_float_ops::to_host_double): New dummy function.
(decimal_float_ops::from_host_double): Likewise.
(decimal_to_string): Rename to ...
(decimal_float_ops::to_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_string): Rename to ...
(decimal_float_ops::from_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_longest): Rename to ...
(decimal_float_ops::from_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_ulongest): Rename to ...
(decimal_float_ops::from_ulongest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_to_longest): Rename to ...
(decimal_float_ops::to_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_binop): Rename to ...
(decimal_float_ops::binop): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_compare): Rename to ...
(decimal_float_ops::compare): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_convert): Rename to ...
(decimal_float_ops::convert): ... this. Use type instead of
length/byte_order arguments. Update calls.
(target_float_same_category_p): New function.
(target_float_same_format_p): Likewise.
(target_float_format_length): Likewise.
(enum target_float_ops_kind): New type.
(get_target_float_ops_kind): New function.
(get_target_float_ops): Three new overloaded functions.
(target_float_is_zero): Update call.
(target_float_to_string): Add special handling of invalid numbers,
infinities and NaN (moved from floatformat_to_string). Use
target_float_ops callback.
(target_float_from_string): Use target_float_ops callback.
(target_float_to_longest): Likewise.
(target_float_from_longest): Likewise.
(target_float_from_ulongest): Likewise.
(target_float_to_host_double): Likewise.
(target_float_from_host_double): Likewise.
(target_float_convert): Add special case for no-op conversions.
Use target_float_ops callback.
(target_float_binop): Use target_float_ops callback.
(target_float_compare): Likewise.
gdb/testsuite/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
|
|
|
gdb_byte *to, const struct type *type)
|
Target FP: Merge doublest.c and dfp.c into target-float.c
Now that all target FP operations are performed via target-float.c,
this file remains the sole caller of functions in doublest.c and dfp.c.
Therefore, this patch merges the latter files into the former and
makes all their function static there.
gdb/ChangeLog:
2017-11-06 Ulrich Weigand <uweigand@de.ibm.com>
* Makefile.in (SFILES): Remove doublest.c and dfp.c.
(HFILES_NO_SRCDIR): Remove doublest.h and dfp.h.
(COMMON_OBS): Remove doublest.o and dfp.o.
Do not build target-float.c (instead of doublest.c)
with -Wformat-nonliteral.
* doublest.c: Remove file.
* doublest.h: Remove file.
* dfp.c: Remove file.
* dfp.h: Remove file.
* target-float.c: Do not include "doublest.h" and "dfp.h".
(DOUBLEST): Move here from doublest.h.
(enum float_kind): Likewise.
(FLOATFORMAT_CHAR_BIT): Likewise.
(FLOATFORMAT_LARGEST_BYTES): Likewise.
(floatformat_totalsize_bytes): Move here from doublest.c. Make static.
(floatformat_precision): Likewise.
(floatformat_normalize_byteorder, get_field, put_field): Likewise.
(floatformat_is_negative, floatformat_classify, floatformat_mantissa):
Likewise.
(host_float_format, host_double_format, host_long_double_format):
Likewise.
(floatformat_to_string, floatformat_from_string): Likewise.
(floatformat_to_doublest): Likewise. Also, inline the original
convert_floatformat_to_doublest.
(floatformat_from_doublest): Likewise. Also, inline the original
convert_floatformat_from_doublest.
Include "dpd/decimal128.h", "dpd/decimal64.h", and "dpd/decimal32.h".
(MAX_DECIMAL_STRING): Move here from dfp.c.
(match_endianness): Likewise.
(set_decnumber_context, decimal_check_errors): Likewise.
(decimal_from_number, decimal_to_number): Likewise.
(decimal_to_string, decimal_from_string): Likewise. Make static.
(decimal_from_longest, decimal_from_ulongest): Likewise.
(decimal_to_longest): Likewise.
(decimal_binop, decimal_is_zero, decimal_compare): Likewise.
(decimal_convert): Likewise.
2017-11-06 23:04:03 +08:00
|
|
|
{
|
2017-11-17 01:49:11 +08:00
|
|
|
gdb_byte dec[16];
|
|
|
|
|
Target FP: Merge doublest.c and dfp.c into target-float.c
Now that all target FP operations are performed via target-float.c,
this file remains the sole caller of functions in doublest.c and dfp.c.
Therefore, this patch merges the latter files into the former and
makes all their function static there.
gdb/ChangeLog:
2017-11-06 Ulrich Weigand <uweigand@de.ibm.com>
* Makefile.in (SFILES): Remove doublest.c and dfp.c.
(HFILES_NO_SRCDIR): Remove doublest.h and dfp.h.
(COMMON_OBS): Remove doublest.o and dfp.o.
Do not build target-float.c (instead of doublest.c)
with -Wformat-nonliteral.
* doublest.c: Remove file.
* doublest.h: Remove file.
* dfp.c: Remove file.
* dfp.h: Remove file.
* target-float.c: Do not include "doublest.h" and "dfp.h".
(DOUBLEST): Move here from doublest.h.
(enum float_kind): Likewise.
(FLOATFORMAT_CHAR_BIT): Likewise.
(FLOATFORMAT_LARGEST_BYTES): Likewise.
(floatformat_totalsize_bytes): Move here from doublest.c. Make static.
(floatformat_precision): Likewise.
(floatformat_normalize_byteorder, get_field, put_field): Likewise.
(floatformat_is_negative, floatformat_classify, floatformat_mantissa):
Likewise.
(host_float_format, host_double_format, host_long_double_format):
Likewise.
(floatformat_to_string, floatformat_from_string): Likewise.
(floatformat_to_doublest): Likewise. Also, inline the original
convert_floatformat_to_doublest.
(floatformat_from_doublest): Likewise. Also, inline the original
convert_floatformat_from_doublest.
Include "dpd/decimal128.h", "dpd/decimal64.h", and "dpd/decimal32.h".
(MAX_DECIMAL_STRING): Move here from dfp.c.
(match_endianness): Likewise.
(set_decnumber_context, decimal_check_errors): Likewise.
(decimal_from_number, decimal_to_number): Likewise.
(decimal_to_string, decimal_from_string): Likewise. Make static.
(decimal_from_longest, decimal_from_ulongest): Likewise.
(decimal_to_longest): Likewise.
(decimal_binop, decimal_is_zero, decimal_compare): Likewise.
(decimal_convert): Likewise.
2017-11-06 23:04:03 +08:00
|
|
|
decContext set;
|
|
|
|
|
Target FP: Refactor use of host floating-point arithmetic
Prepare for using MPFR to implement floating-point arithmetic by
refactoring the way host floating-point arithmetic is currently used.
In particular, fix the following two problems that cause different
(and incorrect) results due to using host arithmetic:
- Current processing always uses host "long double", and then converts
back to the actual target format. This may introduce rounding errors.
- Conversion of FP values to LONGEST simply does a host C++ type cast.
However the result of such a cast is undefined if the source value
is outside the representable range. MPFR always has defined behavior
here (returns the minimum or maximum representable value).
To fix the first issue, I've now created not just one set of routines
using host FP arithmetic (on long double), but instead three different
sets of routines, one each for host float, double, and long double.
Operations can then be performed in the desired type directly, avoiding
the extra rounding step. Using C++ templates, the three sets can all
share the same source code without duplication.
To fix the second issue, I'm simply enforcing the same conversion rule
(which makes sense anyway) when converting out-of-range values from
FP to LONGEST.
To contain the code complexity with the variety of options now possible,
I've created a new class "target_float_ops". There are a total of five
separate implementations of this:
host_float_ops<float> Implemented via host FP in given type
host_float_ops<double>
host_float_ops<long double>
mpfr_float_ops Implemented via MPFR if available
decimal_float_ops Implemented via libdecnumber
Note instead of using the DOUBLEST define, this always just uses the
"long double" data type. But since we now require C++11 anyway, this
type must in any case be avaialble unconditionally.
Most target floating-point operations simply dispatch to a (virtual)
member routine of this class. Which implementation to choose is
determined from the target types involved, and whether they match
some host type or not. E.g. any operation on a single type that
matches a host type is performed in that type. Operations involving
two types that both match host types are performed in the larger one
(according to C/C++ implicit conversion rules). Operations that
involve any type that does not match a host type are performed using
MPFR. (And of course operations involving decimal FP are performed
using libdecnumber.)
This first patch implements the refactoring of target-float.c as
described above, introduing the host_float_ops and decimal_float_ops
classes, and using them. Use of MPFR is introduced in the second patch.
A bit of special-case handling code is moved around to as to avoid
code duplication between host_float_ops and mpfr_float_ops.
Note that due to the changes mentioned above, I've had to update (fix)
the floating-point register values tested in the gdb.arch/vsx-regs.exp
test case. (The new values now work both with host arithmetic and MPFR.)
gdb/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* target-float.c: Do not include <math.h>.
Include <cmath> and <limits>.
(DOUBLEST): Do not define.
(class target_float_ops): New type.
(class host_float_ops): New templated type.
(class decimal_float_ops): New type.
(floatformat_to_doublest): Rename to ...
(host_float_ops<T>::from_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::from_target): New overload using a type argument.
(floatformat_from_doublest): Rename to ...
(host_float_ops<T>::to_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::to_target): New overload using a type argument.
(floatformat_printf_format): New function.
(struct printf_length_modifier): New templated type.
(floatformat_to_string): Rename to ...
(host_float_ops<T>::to_string): ... this. Use type instead of
floatformat argument. Use floatformat_printf_format and
printf_length_modifier. Remove special handling of invalid numbers,
infinities and NaN (moved to target_float_to_string).
(struct scanf_length_modifier): New templated type.
(floatformat_from_string): Rename to ...
(host_float_ops<T>::from_string): ... this. Use type instead of
floatformat argument. Use scanf_length_modifier.
(floatformat_to_longest): Rename to ...
(host_float_ops<T>::to_longest): ... this. Use type instead of
floatformat argument. Handle out-of-range values deterministically.
(floatformat_from_longest): Rename to ...
(host_float_ops<T>::from_longest): ... this. Use type instead of
floatformat argument.
(floatformat_from_ulongest): Rename to ...
(host_float_ops<T>::from_ulongest): ... this. Use type instead of
floatformat argument.
(floatformat_to_host_double): Rename to ...
(host_float_ops<T>::to_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_from_host_double): Rename to ...
(host_float_ops<T>::from_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_convert): Rename to ...
(host_float_ops<T>::convert): ... this. Use type instead of
floatformat arguments. Remove handling of no-op conversions.
(floatformat_binop): Rename to ...
(host_float_ops<T>::binop): ... this. Use type instead of
floatformat arguments.
(floatformat_compare): Rename to ...
(host_float_ops<T>::compare): ... this. Use type instead of
floatformat arguments.
(match_endianness): Use type instead of length/byte_order arguments.
(set_decnumber_context): Likewise.
(decimal_from_number): Likewise. Update calls.
(decimal_to_number): Likewise.
(decimal_is_zero): Likewise. Update calls. Move to earlier in file.
(decimal_float_ops::to_host_double): New dummy function.
(decimal_float_ops::from_host_double): Likewise.
(decimal_to_string): Rename to ...
(decimal_float_ops::to_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_string): Rename to ...
(decimal_float_ops::from_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_longest): Rename to ...
(decimal_float_ops::from_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_ulongest): Rename to ...
(decimal_float_ops::from_ulongest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_to_longest): Rename to ...
(decimal_float_ops::to_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_binop): Rename to ...
(decimal_float_ops::binop): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_compare): Rename to ...
(decimal_float_ops::compare): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_convert): Rename to ...
(decimal_float_ops::convert): ... this. Use type instead of
length/byte_order arguments. Update calls.
(target_float_same_category_p): New function.
(target_float_same_format_p): Likewise.
(target_float_format_length): Likewise.
(enum target_float_ops_kind): New type.
(get_target_float_ops_kind): New function.
(get_target_float_ops): Three new overloaded functions.
(target_float_is_zero): Update call.
(target_float_to_string): Add special handling of invalid numbers,
infinities and NaN (moved from floatformat_to_string). Use
target_float_ops callback.
(target_float_from_string): Use target_float_ops callback.
(target_float_to_longest): Likewise.
(target_float_from_longest): Likewise.
(target_float_from_ulongest): Likewise.
(target_float_to_host_double): Likewise.
(target_float_from_host_double): Likewise.
(target_float_convert): Add special case for no-op conversions.
Use target_float_ops callback.
(target_float_binop): Use target_float_ops callback.
(target_float_compare): Likewise.
gdb/testsuite/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
|
|
|
set_decnumber_context (&set, type);
|
Target FP: Merge doublest.c and dfp.c into target-float.c
Now that all target FP operations are performed via target-float.c,
this file remains the sole caller of functions in doublest.c and dfp.c.
Therefore, this patch merges the latter files into the former and
makes all their function static there.
gdb/ChangeLog:
2017-11-06 Ulrich Weigand <uweigand@de.ibm.com>
* Makefile.in (SFILES): Remove doublest.c and dfp.c.
(HFILES_NO_SRCDIR): Remove doublest.h and dfp.h.
(COMMON_OBS): Remove doublest.o and dfp.o.
Do not build target-float.c (instead of doublest.c)
with -Wformat-nonliteral.
* doublest.c: Remove file.
* doublest.h: Remove file.
* dfp.c: Remove file.
* dfp.h: Remove file.
* target-float.c: Do not include "doublest.h" and "dfp.h".
(DOUBLEST): Move here from doublest.h.
(enum float_kind): Likewise.
(FLOATFORMAT_CHAR_BIT): Likewise.
(FLOATFORMAT_LARGEST_BYTES): Likewise.
(floatformat_totalsize_bytes): Move here from doublest.c. Make static.
(floatformat_precision): Likewise.
(floatformat_normalize_byteorder, get_field, put_field): Likewise.
(floatformat_is_negative, floatformat_classify, floatformat_mantissa):
Likewise.
(host_float_format, host_double_format, host_long_double_format):
Likewise.
(floatformat_to_string, floatformat_from_string): Likewise.
(floatformat_to_doublest): Likewise. Also, inline the original
convert_floatformat_to_doublest.
(floatformat_from_doublest): Likewise. Also, inline the original
convert_floatformat_from_doublest.
Include "dpd/decimal128.h", "dpd/decimal64.h", and "dpd/decimal32.h".
(MAX_DECIMAL_STRING): Move here from dfp.c.
(match_endianness): Likewise.
(set_decnumber_context, decimal_check_errors): Likewise.
(decimal_from_number, decimal_to_number): Likewise.
(decimal_to_string, decimal_from_string): Likewise. Make static.
(decimal_from_longest, decimal_from_ulongest): Likewise.
(decimal_to_longest): Likewise.
(decimal_binop, decimal_is_zero, decimal_compare): Likewise.
(decimal_convert): Likewise.
2017-11-06 23:04:03 +08:00
|
|
|
|
Target FP: Refactor use of host floating-point arithmetic
Prepare for using MPFR to implement floating-point arithmetic by
refactoring the way host floating-point arithmetic is currently used.
In particular, fix the following two problems that cause different
(and incorrect) results due to using host arithmetic:
- Current processing always uses host "long double", and then converts
back to the actual target format. This may introduce rounding errors.
- Conversion of FP values to LONGEST simply does a host C++ type cast.
However the result of such a cast is undefined if the source value
is outside the representable range. MPFR always has defined behavior
here (returns the minimum or maximum representable value).
To fix the first issue, I've now created not just one set of routines
using host FP arithmetic (on long double), but instead three different
sets of routines, one each for host float, double, and long double.
Operations can then be performed in the desired type directly, avoiding
the extra rounding step. Using C++ templates, the three sets can all
share the same source code without duplication.
To fix the second issue, I'm simply enforcing the same conversion rule
(which makes sense anyway) when converting out-of-range values from
FP to LONGEST.
To contain the code complexity with the variety of options now possible,
I've created a new class "target_float_ops". There are a total of five
separate implementations of this:
host_float_ops<float> Implemented via host FP in given type
host_float_ops<double>
host_float_ops<long double>
mpfr_float_ops Implemented via MPFR if available
decimal_float_ops Implemented via libdecnumber
Note instead of using the DOUBLEST define, this always just uses the
"long double" data type. But since we now require C++11 anyway, this
type must in any case be avaialble unconditionally.
Most target floating-point operations simply dispatch to a (virtual)
member routine of this class. Which implementation to choose is
determined from the target types involved, and whether they match
some host type or not. E.g. any operation on a single type that
matches a host type is performed in that type. Operations involving
two types that both match host types are performed in the larger one
(according to C/C++ implicit conversion rules). Operations that
involve any type that does not match a host type are performed using
MPFR. (And of course operations involving decimal FP are performed
using libdecnumber.)
This first patch implements the refactoring of target-float.c as
described above, introduing the host_float_ops and decimal_float_ops
classes, and using them. Use of MPFR is introduced in the second patch.
A bit of special-case handling code is moved around to as to avoid
code duplication between host_float_ops and mpfr_float_ops.
Note that due to the changes mentioned above, I've had to update (fix)
the floating-point register values tested in the gdb.arch/vsx-regs.exp
test case. (The new values now work both with host arithmetic and MPFR.)
gdb/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* target-float.c: Do not include <math.h>.
Include <cmath> and <limits>.
(DOUBLEST): Do not define.
(class target_float_ops): New type.
(class host_float_ops): New templated type.
(class decimal_float_ops): New type.
(floatformat_to_doublest): Rename to ...
(host_float_ops<T>::from_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::from_target): New overload using a type argument.
(floatformat_from_doublest): Rename to ...
(host_float_ops<T>::to_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::to_target): New overload using a type argument.
(floatformat_printf_format): New function.
(struct printf_length_modifier): New templated type.
(floatformat_to_string): Rename to ...
(host_float_ops<T>::to_string): ... this. Use type instead of
floatformat argument. Use floatformat_printf_format and
printf_length_modifier. Remove special handling of invalid numbers,
infinities and NaN (moved to target_float_to_string).
(struct scanf_length_modifier): New templated type.
(floatformat_from_string): Rename to ...
(host_float_ops<T>::from_string): ... this. Use type instead of
floatformat argument. Use scanf_length_modifier.
(floatformat_to_longest): Rename to ...
(host_float_ops<T>::to_longest): ... this. Use type instead of
floatformat argument. Handle out-of-range values deterministically.
(floatformat_from_longest): Rename to ...
(host_float_ops<T>::from_longest): ... this. Use type instead of
floatformat argument.
(floatformat_from_ulongest): Rename to ...
(host_float_ops<T>::from_ulongest): ... this. Use type instead of
floatformat argument.
(floatformat_to_host_double): Rename to ...
(host_float_ops<T>::to_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_from_host_double): Rename to ...
(host_float_ops<T>::from_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_convert): Rename to ...
(host_float_ops<T>::convert): ... this. Use type instead of
floatformat arguments. Remove handling of no-op conversions.
(floatformat_binop): Rename to ...
(host_float_ops<T>::binop): ... this. Use type instead of
floatformat arguments.
(floatformat_compare): Rename to ...
(host_float_ops<T>::compare): ... this. Use type instead of
floatformat arguments.
(match_endianness): Use type instead of length/byte_order arguments.
(set_decnumber_context): Likewise.
(decimal_from_number): Likewise. Update calls.
(decimal_to_number): Likewise.
(decimal_is_zero): Likewise. Update calls. Move to earlier in file.
(decimal_float_ops::to_host_double): New dummy function.
(decimal_float_ops::from_host_double): Likewise.
(decimal_to_string): Rename to ...
(decimal_float_ops::to_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_string): Rename to ...
(decimal_float_ops::from_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_longest): Rename to ...
(decimal_float_ops::from_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_ulongest): Rename to ...
(decimal_float_ops::from_ulongest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_to_longest): Rename to ...
(decimal_float_ops::to_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_binop): Rename to ...
(decimal_float_ops::binop): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_compare): Rename to ...
(decimal_float_ops::compare): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_convert): Rename to ...
(decimal_float_ops::convert): ... this. Use type instead of
length/byte_order arguments. Update calls.
(target_float_same_category_p): New function.
(target_float_same_format_p): Likewise.
(target_float_format_length): Likewise.
(enum target_float_ops_kind): New type.
(get_target_float_ops_kind): New function.
(get_target_float_ops): Three new overloaded functions.
(target_float_is_zero): Update call.
(target_float_to_string): Add special handling of invalid numbers,
infinities and NaN (moved from floatformat_to_string). Use
target_float_ops callback.
(target_float_from_string): Use target_float_ops callback.
(target_float_to_longest): Likewise.
(target_float_from_longest): Likewise.
(target_float_from_ulongest): Likewise.
(target_float_to_host_double): Likewise.
(target_float_from_host_double): Likewise.
(target_float_convert): Add special case for no-op conversions.
Use target_float_ops callback.
(target_float_binop): Use target_float_ops callback.
(target_float_compare): Likewise.
gdb/testsuite/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
|
|
|
switch (TYPE_LENGTH (type))
|
Target FP: Merge doublest.c and dfp.c into target-float.c
Now that all target FP operations are performed via target-float.c,
this file remains the sole caller of functions in doublest.c and dfp.c.
Therefore, this patch merges the latter files into the former and
makes all their function static there.
gdb/ChangeLog:
2017-11-06 Ulrich Weigand <uweigand@de.ibm.com>
* Makefile.in (SFILES): Remove doublest.c and dfp.c.
(HFILES_NO_SRCDIR): Remove doublest.h and dfp.h.
(COMMON_OBS): Remove doublest.o and dfp.o.
Do not build target-float.c (instead of doublest.c)
with -Wformat-nonliteral.
* doublest.c: Remove file.
* doublest.h: Remove file.
* dfp.c: Remove file.
* dfp.h: Remove file.
* target-float.c: Do not include "doublest.h" and "dfp.h".
(DOUBLEST): Move here from doublest.h.
(enum float_kind): Likewise.
(FLOATFORMAT_CHAR_BIT): Likewise.
(FLOATFORMAT_LARGEST_BYTES): Likewise.
(floatformat_totalsize_bytes): Move here from doublest.c. Make static.
(floatformat_precision): Likewise.
(floatformat_normalize_byteorder, get_field, put_field): Likewise.
(floatformat_is_negative, floatformat_classify, floatformat_mantissa):
Likewise.
(host_float_format, host_double_format, host_long_double_format):
Likewise.
(floatformat_to_string, floatformat_from_string): Likewise.
(floatformat_to_doublest): Likewise. Also, inline the original
convert_floatformat_to_doublest.
(floatformat_from_doublest): Likewise. Also, inline the original
convert_floatformat_from_doublest.
Include "dpd/decimal128.h", "dpd/decimal64.h", and "dpd/decimal32.h".
(MAX_DECIMAL_STRING): Move here from dfp.c.
(match_endianness): Likewise.
(set_decnumber_context, decimal_check_errors): Likewise.
(decimal_from_number, decimal_to_number): Likewise.
(decimal_to_string, decimal_from_string): Likewise. Make static.
(decimal_from_longest, decimal_from_ulongest): Likewise.
(decimal_to_longest): Likewise.
(decimal_binop, decimal_is_zero, decimal_compare): Likewise.
(decimal_convert): Likewise.
2017-11-06 23:04:03 +08:00
|
|
|
{
|
|
|
|
case 4:
|
2017-11-17 01:49:11 +08:00
|
|
|
decimal32FromNumber ((decimal32 *) dec, from, &set);
|
Target FP: Merge doublest.c and dfp.c into target-float.c
Now that all target FP operations are performed via target-float.c,
this file remains the sole caller of functions in doublest.c and dfp.c.
Therefore, this patch merges the latter files into the former and
makes all their function static there.
gdb/ChangeLog:
2017-11-06 Ulrich Weigand <uweigand@de.ibm.com>
* Makefile.in (SFILES): Remove doublest.c and dfp.c.
(HFILES_NO_SRCDIR): Remove doublest.h and dfp.h.
(COMMON_OBS): Remove doublest.o and dfp.o.
Do not build target-float.c (instead of doublest.c)
with -Wformat-nonliteral.
* doublest.c: Remove file.
* doublest.h: Remove file.
* dfp.c: Remove file.
* dfp.h: Remove file.
* target-float.c: Do not include "doublest.h" and "dfp.h".
(DOUBLEST): Move here from doublest.h.
(enum float_kind): Likewise.
(FLOATFORMAT_CHAR_BIT): Likewise.
(FLOATFORMAT_LARGEST_BYTES): Likewise.
(floatformat_totalsize_bytes): Move here from doublest.c. Make static.
(floatformat_precision): Likewise.
(floatformat_normalize_byteorder, get_field, put_field): Likewise.
(floatformat_is_negative, floatformat_classify, floatformat_mantissa):
Likewise.
(host_float_format, host_double_format, host_long_double_format):
Likewise.
(floatformat_to_string, floatformat_from_string): Likewise.
(floatformat_to_doublest): Likewise. Also, inline the original
convert_floatformat_to_doublest.
(floatformat_from_doublest): Likewise. Also, inline the original
convert_floatformat_from_doublest.
Include "dpd/decimal128.h", "dpd/decimal64.h", and "dpd/decimal32.h".
(MAX_DECIMAL_STRING): Move here from dfp.c.
(match_endianness): Likewise.
(set_decnumber_context, decimal_check_errors): Likewise.
(decimal_from_number, decimal_to_number): Likewise.
(decimal_to_string, decimal_from_string): Likewise. Make static.
(decimal_from_longest, decimal_from_ulongest): Likewise.
(decimal_to_longest): Likewise.
(decimal_binop, decimal_is_zero, decimal_compare): Likewise.
(decimal_convert): Likewise.
2017-11-06 23:04:03 +08:00
|
|
|
break;
|
|
|
|
case 8:
|
2017-11-17 01:49:11 +08:00
|
|
|
decimal64FromNumber ((decimal64 *) dec, from, &set);
|
Target FP: Merge doublest.c and dfp.c into target-float.c
Now that all target FP operations are performed via target-float.c,
this file remains the sole caller of functions in doublest.c and dfp.c.
Therefore, this patch merges the latter files into the former and
makes all their function static there.
gdb/ChangeLog:
2017-11-06 Ulrich Weigand <uweigand@de.ibm.com>
* Makefile.in (SFILES): Remove doublest.c and dfp.c.
(HFILES_NO_SRCDIR): Remove doublest.h and dfp.h.
(COMMON_OBS): Remove doublest.o and dfp.o.
Do not build target-float.c (instead of doublest.c)
with -Wformat-nonliteral.
* doublest.c: Remove file.
* doublest.h: Remove file.
* dfp.c: Remove file.
* dfp.h: Remove file.
* target-float.c: Do not include "doublest.h" and "dfp.h".
(DOUBLEST): Move here from doublest.h.
(enum float_kind): Likewise.
(FLOATFORMAT_CHAR_BIT): Likewise.
(FLOATFORMAT_LARGEST_BYTES): Likewise.
(floatformat_totalsize_bytes): Move here from doublest.c. Make static.
(floatformat_precision): Likewise.
(floatformat_normalize_byteorder, get_field, put_field): Likewise.
(floatformat_is_negative, floatformat_classify, floatformat_mantissa):
Likewise.
(host_float_format, host_double_format, host_long_double_format):
Likewise.
(floatformat_to_string, floatformat_from_string): Likewise.
(floatformat_to_doublest): Likewise. Also, inline the original
convert_floatformat_to_doublest.
(floatformat_from_doublest): Likewise. Also, inline the original
convert_floatformat_from_doublest.
Include "dpd/decimal128.h", "dpd/decimal64.h", and "dpd/decimal32.h".
(MAX_DECIMAL_STRING): Move here from dfp.c.
(match_endianness): Likewise.
(set_decnumber_context, decimal_check_errors): Likewise.
(decimal_from_number, decimal_to_number): Likewise.
(decimal_to_string, decimal_from_string): Likewise. Make static.
(decimal_from_longest, decimal_from_ulongest): Likewise.
(decimal_to_longest): Likewise.
(decimal_binop, decimal_is_zero, decimal_compare): Likewise.
(decimal_convert): Likewise.
2017-11-06 23:04:03 +08:00
|
|
|
break;
|
|
|
|
case 16:
|
2017-11-17 01:49:11 +08:00
|
|
|
decimal128FromNumber ((decimal128 *) dec, from, &set);
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
error (_("Unknown decimal floating point type."));
|
Target FP: Merge doublest.c and dfp.c into target-float.c
Now that all target FP operations are performed via target-float.c,
this file remains the sole caller of functions in doublest.c and dfp.c.
Therefore, this patch merges the latter files into the former and
makes all their function static there.
gdb/ChangeLog:
2017-11-06 Ulrich Weigand <uweigand@de.ibm.com>
* Makefile.in (SFILES): Remove doublest.c and dfp.c.
(HFILES_NO_SRCDIR): Remove doublest.h and dfp.h.
(COMMON_OBS): Remove doublest.o and dfp.o.
Do not build target-float.c (instead of doublest.c)
with -Wformat-nonliteral.
* doublest.c: Remove file.
* doublest.h: Remove file.
* dfp.c: Remove file.
* dfp.h: Remove file.
* target-float.c: Do not include "doublest.h" and "dfp.h".
(DOUBLEST): Move here from doublest.h.
(enum float_kind): Likewise.
(FLOATFORMAT_CHAR_BIT): Likewise.
(FLOATFORMAT_LARGEST_BYTES): Likewise.
(floatformat_totalsize_bytes): Move here from doublest.c. Make static.
(floatformat_precision): Likewise.
(floatformat_normalize_byteorder, get_field, put_field): Likewise.
(floatformat_is_negative, floatformat_classify, floatformat_mantissa):
Likewise.
(host_float_format, host_double_format, host_long_double_format):
Likewise.
(floatformat_to_string, floatformat_from_string): Likewise.
(floatformat_to_doublest): Likewise. Also, inline the original
convert_floatformat_to_doublest.
(floatformat_from_doublest): Likewise. Also, inline the original
convert_floatformat_from_doublest.
Include "dpd/decimal128.h", "dpd/decimal64.h", and "dpd/decimal32.h".
(MAX_DECIMAL_STRING): Move here from dfp.c.
(match_endianness): Likewise.
(set_decnumber_context, decimal_check_errors): Likewise.
(decimal_from_number, decimal_to_number): Likewise.
(decimal_to_string, decimal_from_string): Likewise. Make static.
(decimal_from_longest, decimal_from_ulongest): Likewise.
(decimal_to_longest): Likewise.
(decimal_binop, decimal_is_zero, decimal_compare): Likewise.
(decimal_convert): Likewise.
2017-11-06 23:04:03 +08:00
|
|
|
break;
|
|
|
|
}
|
2017-11-17 01:49:11 +08:00
|
|
|
|
Target FP: Refactor use of host floating-point arithmetic
Prepare for using MPFR to implement floating-point arithmetic by
refactoring the way host floating-point arithmetic is currently used.
In particular, fix the following two problems that cause different
(and incorrect) results due to using host arithmetic:
- Current processing always uses host "long double", and then converts
back to the actual target format. This may introduce rounding errors.
- Conversion of FP values to LONGEST simply does a host C++ type cast.
However the result of such a cast is undefined if the source value
is outside the representable range. MPFR always has defined behavior
here (returns the minimum or maximum representable value).
To fix the first issue, I've now created not just one set of routines
using host FP arithmetic (on long double), but instead three different
sets of routines, one each for host float, double, and long double.
Operations can then be performed in the desired type directly, avoiding
the extra rounding step. Using C++ templates, the three sets can all
share the same source code without duplication.
To fix the second issue, I'm simply enforcing the same conversion rule
(which makes sense anyway) when converting out-of-range values from
FP to LONGEST.
To contain the code complexity with the variety of options now possible,
I've created a new class "target_float_ops". There are a total of five
separate implementations of this:
host_float_ops<float> Implemented via host FP in given type
host_float_ops<double>
host_float_ops<long double>
mpfr_float_ops Implemented via MPFR if available
decimal_float_ops Implemented via libdecnumber
Note instead of using the DOUBLEST define, this always just uses the
"long double" data type. But since we now require C++11 anyway, this
type must in any case be avaialble unconditionally.
Most target floating-point operations simply dispatch to a (virtual)
member routine of this class. Which implementation to choose is
determined from the target types involved, and whether they match
some host type or not. E.g. any operation on a single type that
matches a host type is performed in that type. Operations involving
two types that both match host types are performed in the larger one
(according to C/C++ implicit conversion rules). Operations that
involve any type that does not match a host type are performed using
MPFR. (And of course operations involving decimal FP are performed
using libdecnumber.)
This first patch implements the refactoring of target-float.c as
described above, introduing the host_float_ops and decimal_float_ops
classes, and using them. Use of MPFR is introduced in the second patch.
A bit of special-case handling code is moved around to as to avoid
code duplication between host_float_ops and mpfr_float_ops.
Note that due to the changes mentioned above, I've had to update (fix)
the floating-point register values tested in the gdb.arch/vsx-regs.exp
test case. (The new values now work both with host arithmetic and MPFR.)
gdb/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* target-float.c: Do not include <math.h>.
Include <cmath> and <limits>.
(DOUBLEST): Do not define.
(class target_float_ops): New type.
(class host_float_ops): New templated type.
(class decimal_float_ops): New type.
(floatformat_to_doublest): Rename to ...
(host_float_ops<T>::from_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::from_target): New overload using a type argument.
(floatformat_from_doublest): Rename to ...
(host_float_ops<T>::to_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::to_target): New overload using a type argument.
(floatformat_printf_format): New function.
(struct printf_length_modifier): New templated type.
(floatformat_to_string): Rename to ...
(host_float_ops<T>::to_string): ... this. Use type instead of
floatformat argument. Use floatformat_printf_format and
printf_length_modifier. Remove special handling of invalid numbers,
infinities and NaN (moved to target_float_to_string).
(struct scanf_length_modifier): New templated type.
(floatformat_from_string): Rename to ...
(host_float_ops<T>::from_string): ... this. Use type instead of
floatformat argument. Use scanf_length_modifier.
(floatformat_to_longest): Rename to ...
(host_float_ops<T>::to_longest): ... this. Use type instead of
floatformat argument. Handle out-of-range values deterministically.
(floatformat_from_longest): Rename to ...
(host_float_ops<T>::from_longest): ... this. Use type instead of
floatformat argument.
(floatformat_from_ulongest): Rename to ...
(host_float_ops<T>::from_ulongest): ... this. Use type instead of
floatformat argument.
(floatformat_to_host_double): Rename to ...
(host_float_ops<T>::to_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_from_host_double): Rename to ...
(host_float_ops<T>::from_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_convert): Rename to ...
(host_float_ops<T>::convert): ... this. Use type instead of
floatformat arguments. Remove handling of no-op conversions.
(floatformat_binop): Rename to ...
(host_float_ops<T>::binop): ... this. Use type instead of
floatformat arguments.
(floatformat_compare): Rename to ...
(host_float_ops<T>::compare): ... this. Use type instead of
floatformat arguments.
(match_endianness): Use type instead of length/byte_order arguments.
(set_decnumber_context): Likewise.
(decimal_from_number): Likewise. Update calls.
(decimal_to_number): Likewise.
(decimal_is_zero): Likewise. Update calls. Move to earlier in file.
(decimal_float_ops::to_host_double): New dummy function.
(decimal_float_ops::from_host_double): Likewise.
(decimal_to_string): Rename to ...
(decimal_float_ops::to_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_string): Rename to ...
(decimal_float_ops::from_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_longest): Rename to ...
(decimal_float_ops::from_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_ulongest): Rename to ...
(decimal_float_ops::from_ulongest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_to_longest): Rename to ...
(decimal_float_ops::to_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_binop): Rename to ...
(decimal_float_ops::binop): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_compare): Rename to ...
(decimal_float_ops::compare): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_convert): Rename to ...
(decimal_float_ops::convert): ... this. Use type instead of
length/byte_order arguments. Update calls.
(target_float_same_category_p): New function.
(target_float_same_format_p): Likewise.
(target_float_format_length): Likewise.
(enum target_float_ops_kind): New type.
(get_target_float_ops_kind): New function.
(get_target_float_ops): Three new overloaded functions.
(target_float_is_zero): Update call.
(target_float_to_string): Add special handling of invalid numbers,
infinities and NaN (moved from floatformat_to_string). Use
target_float_ops callback.
(target_float_from_string): Use target_float_ops callback.
(target_float_to_longest): Likewise.
(target_float_from_longest): Likewise.
(target_float_from_ulongest): Likewise.
(target_float_to_host_double): Likewise.
(target_float_from_host_double): Likewise.
(target_float_convert): Add special case for no-op conversions.
Use target_float_ops callback.
(target_float_binop): Use target_float_ops callback.
(target_float_compare): Likewise.
gdb/testsuite/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
|
|
|
match_endianness (dec, type, to);
|
Target FP: Merge doublest.c and dfp.c into target-float.c
Now that all target FP operations are performed via target-float.c,
this file remains the sole caller of functions in doublest.c and dfp.c.
Therefore, this patch merges the latter files into the former and
makes all their function static there.
gdb/ChangeLog:
2017-11-06 Ulrich Weigand <uweigand@de.ibm.com>
* Makefile.in (SFILES): Remove doublest.c and dfp.c.
(HFILES_NO_SRCDIR): Remove doublest.h and dfp.h.
(COMMON_OBS): Remove doublest.o and dfp.o.
Do not build target-float.c (instead of doublest.c)
with -Wformat-nonliteral.
* doublest.c: Remove file.
* doublest.h: Remove file.
* dfp.c: Remove file.
* dfp.h: Remove file.
* target-float.c: Do not include "doublest.h" and "dfp.h".
(DOUBLEST): Move here from doublest.h.
(enum float_kind): Likewise.
(FLOATFORMAT_CHAR_BIT): Likewise.
(FLOATFORMAT_LARGEST_BYTES): Likewise.
(floatformat_totalsize_bytes): Move here from doublest.c. Make static.
(floatformat_precision): Likewise.
(floatformat_normalize_byteorder, get_field, put_field): Likewise.
(floatformat_is_negative, floatformat_classify, floatformat_mantissa):
Likewise.
(host_float_format, host_double_format, host_long_double_format):
Likewise.
(floatformat_to_string, floatformat_from_string): Likewise.
(floatformat_to_doublest): Likewise. Also, inline the original
convert_floatformat_to_doublest.
(floatformat_from_doublest): Likewise. Also, inline the original
convert_floatformat_from_doublest.
Include "dpd/decimal128.h", "dpd/decimal64.h", and "dpd/decimal32.h".
(MAX_DECIMAL_STRING): Move here from dfp.c.
(match_endianness): Likewise.
(set_decnumber_context, decimal_check_errors): Likewise.
(decimal_from_number, decimal_to_number): Likewise.
(decimal_to_string, decimal_from_string): Likewise. Make static.
(decimal_from_longest, decimal_from_ulongest): Likewise.
(decimal_to_longest): Likewise.
(decimal_binop, decimal_is_zero, decimal_compare): Likewise.
(decimal_convert): Likewise.
2017-11-06 23:04:03 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
/* Helper function to convert each size of decimal float to libdecnumber's
|
|
|
|
appropriate representation for computation. */
|
|
|
|
static void
|
Target FP: Refactor use of host floating-point arithmetic
Prepare for using MPFR to implement floating-point arithmetic by
refactoring the way host floating-point arithmetic is currently used.
In particular, fix the following two problems that cause different
(and incorrect) results due to using host arithmetic:
- Current processing always uses host "long double", and then converts
back to the actual target format. This may introduce rounding errors.
- Conversion of FP values to LONGEST simply does a host C++ type cast.
However the result of such a cast is undefined if the source value
is outside the representable range. MPFR always has defined behavior
here (returns the minimum or maximum representable value).
To fix the first issue, I've now created not just one set of routines
using host FP arithmetic (on long double), but instead three different
sets of routines, one each for host float, double, and long double.
Operations can then be performed in the desired type directly, avoiding
the extra rounding step. Using C++ templates, the three sets can all
share the same source code without duplication.
To fix the second issue, I'm simply enforcing the same conversion rule
(which makes sense anyway) when converting out-of-range values from
FP to LONGEST.
To contain the code complexity with the variety of options now possible,
I've created a new class "target_float_ops". There are a total of five
separate implementations of this:
host_float_ops<float> Implemented via host FP in given type
host_float_ops<double>
host_float_ops<long double>
mpfr_float_ops Implemented via MPFR if available
decimal_float_ops Implemented via libdecnumber
Note instead of using the DOUBLEST define, this always just uses the
"long double" data type. But since we now require C++11 anyway, this
type must in any case be avaialble unconditionally.
Most target floating-point operations simply dispatch to a (virtual)
member routine of this class. Which implementation to choose is
determined from the target types involved, and whether they match
some host type or not. E.g. any operation on a single type that
matches a host type is performed in that type. Operations involving
two types that both match host types are performed in the larger one
(according to C/C++ implicit conversion rules). Operations that
involve any type that does not match a host type are performed using
MPFR. (And of course operations involving decimal FP are performed
using libdecnumber.)
This first patch implements the refactoring of target-float.c as
described above, introduing the host_float_ops and decimal_float_ops
classes, and using them. Use of MPFR is introduced in the second patch.
A bit of special-case handling code is moved around to as to avoid
code duplication between host_float_ops and mpfr_float_ops.
Note that due to the changes mentioned above, I've had to update (fix)
the floating-point register values tested in the gdb.arch/vsx-regs.exp
test case. (The new values now work both with host arithmetic and MPFR.)
gdb/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* target-float.c: Do not include <math.h>.
Include <cmath> and <limits>.
(DOUBLEST): Do not define.
(class target_float_ops): New type.
(class host_float_ops): New templated type.
(class decimal_float_ops): New type.
(floatformat_to_doublest): Rename to ...
(host_float_ops<T>::from_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::from_target): New overload using a type argument.
(floatformat_from_doublest): Rename to ...
(host_float_ops<T>::to_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::to_target): New overload using a type argument.
(floatformat_printf_format): New function.
(struct printf_length_modifier): New templated type.
(floatformat_to_string): Rename to ...
(host_float_ops<T>::to_string): ... this. Use type instead of
floatformat argument. Use floatformat_printf_format and
printf_length_modifier. Remove special handling of invalid numbers,
infinities and NaN (moved to target_float_to_string).
(struct scanf_length_modifier): New templated type.
(floatformat_from_string): Rename to ...
(host_float_ops<T>::from_string): ... this. Use type instead of
floatformat argument. Use scanf_length_modifier.
(floatformat_to_longest): Rename to ...
(host_float_ops<T>::to_longest): ... this. Use type instead of
floatformat argument. Handle out-of-range values deterministically.
(floatformat_from_longest): Rename to ...
(host_float_ops<T>::from_longest): ... this. Use type instead of
floatformat argument.
(floatformat_from_ulongest): Rename to ...
(host_float_ops<T>::from_ulongest): ... this. Use type instead of
floatformat argument.
(floatformat_to_host_double): Rename to ...
(host_float_ops<T>::to_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_from_host_double): Rename to ...
(host_float_ops<T>::from_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_convert): Rename to ...
(host_float_ops<T>::convert): ... this. Use type instead of
floatformat arguments. Remove handling of no-op conversions.
(floatformat_binop): Rename to ...
(host_float_ops<T>::binop): ... this. Use type instead of
floatformat arguments.
(floatformat_compare): Rename to ...
(host_float_ops<T>::compare): ... this. Use type instead of
floatformat arguments.
(match_endianness): Use type instead of length/byte_order arguments.
(set_decnumber_context): Likewise.
(decimal_from_number): Likewise. Update calls.
(decimal_to_number): Likewise.
(decimal_is_zero): Likewise. Update calls. Move to earlier in file.
(decimal_float_ops::to_host_double): New dummy function.
(decimal_float_ops::from_host_double): Likewise.
(decimal_to_string): Rename to ...
(decimal_float_ops::to_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_string): Rename to ...
(decimal_float_ops::from_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_longest): Rename to ...
(decimal_float_ops::from_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_ulongest): Rename to ...
(decimal_float_ops::from_ulongest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_to_longest): Rename to ...
(decimal_float_ops::to_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_binop): Rename to ...
(decimal_float_ops::binop): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_compare): Rename to ...
(decimal_float_ops::compare): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_convert): Rename to ...
(decimal_float_ops::convert): ... this. Use type instead of
length/byte_order arguments. Update calls.
(target_float_same_category_p): New function.
(target_float_same_format_p): Likewise.
(target_float_format_length): Likewise.
(enum target_float_ops_kind): New type.
(get_target_float_ops_kind): New function.
(get_target_float_ops): Three new overloaded functions.
(target_float_is_zero): Update call.
(target_float_to_string): Add special handling of invalid numbers,
infinities and NaN (moved from floatformat_to_string). Use
target_float_ops callback.
(target_float_from_string): Use target_float_ops callback.
(target_float_to_longest): Likewise.
(target_float_from_longest): Likewise.
(target_float_from_ulongest): Likewise.
(target_float_to_host_double): Likewise.
(target_float_from_host_double): Likewise.
(target_float_convert): Add special case for no-op conversions.
Use target_float_ops callback.
(target_float_binop): Use target_float_ops callback.
(target_float_compare): Likewise.
gdb/testsuite/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
|
|
|
decimal_to_number (const gdb_byte *addr, const struct type *type,
|
2017-11-17 01:49:11 +08:00
|
|
|
decNumber *to)
|
Target FP: Merge doublest.c and dfp.c into target-float.c
Now that all target FP operations are performed via target-float.c,
this file remains the sole caller of functions in doublest.c and dfp.c.
Therefore, this patch merges the latter files into the former and
makes all their function static there.
gdb/ChangeLog:
2017-11-06 Ulrich Weigand <uweigand@de.ibm.com>
* Makefile.in (SFILES): Remove doublest.c and dfp.c.
(HFILES_NO_SRCDIR): Remove doublest.h and dfp.h.
(COMMON_OBS): Remove doublest.o and dfp.o.
Do not build target-float.c (instead of doublest.c)
with -Wformat-nonliteral.
* doublest.c: Remove file.
* doublest.h: Remove file.
* dfp.c: Remove file.
* dfp.h: Remove file.
* target-float.c: Do not include "doublest.h" and "dfp.h".
(DOUBLEST): Move here from doublest.h.
(enum float_kind): Likewise.
(FLOATFORMAT_CHAR_BIT): Likewise.
(FLOATFORMAT_LARGEST_BYTES): Likewise.
(floatformat_totalsize_bytes): Move here from doublest.c. Make static.
(floatformat_precision): Likewise.
(floatformat_normalize_byteorder, get_field, put_field): Likewise.
(floatformat_is_negative, floatformat_classify, floatformat_mantissa):
Likewise.
(host_float_format, host_double_format, host_long_double_format):
Likewise.
(floatformat_to_string, floatformat_from_string): Likewise.
(floatformat_to_doublest): Likewise. Also, inline the original
convert_floatformat_to_doublest.
(floatformat_from_doublest): Likewise. Also, inline the original
convert_floatformat_from_doublest.
Include "dpd/decimal128.h", "dpd/decimal64.h", and "dpd/decimal32.h".
(MAX_DECIMAL_STRING): Move here from dfp.c.
(match_endianness): Likewise.
(set_decnumber_context, decimal_check_errors): Likewise.
(decimal_from_number, decimal_to_number): Likewise.
(decimal_to_string, decimal_from_string): Likewise. Make static.
(decimal_from_longest, decimal_from_ulongest): Likewise.
(decimal_to_longest): Likewise.
(decimal_binop, decimal_is_zero, decimal_compare): Likewise.
(decimal_convert): Likewise.
2017-11-06 23:04:03 +08:00
|
|
|
{
|
2017-11-17 01:49:11 +08:00
|
|
|
gdb_byte dec[16];
|
Target FP: Refactor use of host floating-point arithmetic
Prepare for using MPFR to implement floating-point arithmetic by
refactoring the way host floating-point arithmetic is currently used.
In particular, fix the following two problems that cause different
(and incorrect) results due to using host arithmetic:
- Current processing always uses host "long double", and then converts
back to the actual target format. This may introduce rounding errors.
- Conversion of FP values to LONGEST simply does a host C++ type cast.
However the result of such a cast is undefined if the source value
is outside the representable range. MPFR always has defined behavior
here (returns the minimum or maximum representable value).
To fix the first issue, I've now created not just one set of routines
using host FP arithmetic (on long double), but instead three different
sets of routines, one each for host float, double, and long double.
Operations can then be performed in the desired type directly, avoiding
the extra rounding step. Using C++ templates, the three sets can all
share the same source code without duplication.
To fix the second issue, I'm simply enforcing the same conversion rule
(which makes sense anyway) when converting out-of-range values from
FP to LONGEST.
To contain the code complexity with the variety of options now possible,
I've created a new class "target_float_ops". There are a total of five
separate implementations of this:
host_float_ops<float> Implemented via host FP in given type
host_float_ops<double>
host_float_ops<long double>
mpfr_float_ops Implemented via MPFR if available
decimal_float_ops Implemented via libdecnumber
Note instead of using the DOUBLEST define, this always just uses the
"long double" data type. But since we now require C++11 anyway, this
type must in any case be avaialble unconditionally.
Most target floating-point operations simply dispatch to a (virtual)
member routine of this class. Which implementation to choose is
determined from the target types involved, and whether they match
some host type or not. E.g. any operation on a single type that
matches a host type is performed in that type. Operations involving
two types that both match host types are performed in the larger one
(according to C/C++ implicit conversion rules). Operations that
involve any type that does not match a host type are performed using
MPFR. (And of course operations involving decimal FP are performed
using libdecnumber.)
This first patch implements the refactoring of target-float.c as
described above, introduing the host_float_ops and decimal_float_ops
classes, and using them. Use of MPFR is introduced in the second patch.
A bit of special-case handling code is moved around to as to avoid
code duplication between host_float_ops and mpfr_float_ops.
Note that due to the changes mentioned above, I've had to update (fix)
the floating-point register values tested in the gdb.arch/vsx-regs.exp
test case. (The new values now work both with host arithmetic and MPFR.)
gdb/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* target-float.c: Do not include <math.h>.
Include <cmath> and <limits>.
(DOUBLEST): Do not define.
(class target_float_ops): New type.
(class host_float_ops): New templated type.
(class decimal_float_ops): New type.
(floatformat_to_doublest): Rename to ...
(host_float_ops<T>::from_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::from_target): New overload using a type argument.
(floatformat_from_doublest): Rename to ...
(host_float_ops<T>::to_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::to_target): New overload using a type argument.
(floatformat_printf_format): New function.
(struct printf_length_modifier): New templated type.
(floatformat_to_string): Rename to ...
(host_float_ops<T>::to_string): ... this. Use type instead of
floatformat argument. Use floatformat_printf_format and
printf_length_modifier. Remove special handling of invalid numbers,
infinities and NaN (moved to target_float_to_string).
(struct scanf_length_modifier): New templated type.
(floatformat_from_string): Rename to ...
(host_float_ops<T>::from_string): ... this. Use type instead of
floatformat argument. Use scanf_length_modifier.
(floatformat_to_longest): Rename to ...
(host_float_ops<T>::to_longest): ... this. Use type instead of
floatformat argument. Handle out-of-range values deterministically.
(floatformat_from_longest): Rename to ...
(host_float_ops<T>::from_longest): ... this. Use type instead of
floatformat argument.
(floatformat_from_ulongest): Rename to ...
(host_float_ops<T>::from_ulongest): ... this. Use type instead of
floatformat argument.
(floatformat_to_host_double): Rename to ...
(host_float_ops<T>::to_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_from_host_double): Rename to ...
(host_float_ops<T>::from_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_convert): Rename to ...
(host_float_ops<T>::convert): ... this. Use type instead of
floatformat arguments. Remove handling of no-op conversions.
(floatformat_binop): Rename to ...
(host_float_ops<T>::binop): ... this. Use type instead of
floatformat arguments.
(floatformat_compare): Rename to ...
(host_float_ops<T>::compare): ... this. Use type instead of
floatformat arguments.
(match_endianness): Use type instead of length/byte_order arguments.
(set_decnumber_context): Likewise.
(decimal_from_number): Likewise. Update calls.
(decimal_to_number): Likewise.
(decimal_is_zero): Likewise. Update calls. Move to earlier in file.
(decimal_float_ops::to_host_double): New dummy function.
(decimal_float_ops::from_host_double): Likewise.
(decimal_to_string): Rename to ...
(decimal_float_ops::to_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_string): Rename to ...
(decimal_float_ops::from_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_longest): Rename to ...
(decimal_float_ops::from_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_ulongest): Rename to ...
(decimal_float_ops::from_ulongest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_to_longest): Rename to ...
(decimal_float_ops::to_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_binop): Rename to ...
(decimal_float_ops::binop): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_compare): Rename to ...
(decimal_float_ops::compare): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_convert): Rename to ...
(decimal_float_ops::convert): ... this. Use type instead of
length/byte_order arguments. Update calls.
(target_float_same_category_p): New function.
(target_float_same_format_p): Likewise.
(target_float_format_length): Likewise.
(enum target_float_ops_kind): New type.
(get_target_float_ops_kind): New function.
(get_target_float_ops): Three new overloaded functions.
(target_float_is_zero): Update call.
(target_float_to_string): Add special handling of invalid numbers,
infinities and NaN (moved from floatformat_to_string). Use
target_float_ops callback.
(target_float_from_string): Use target_float_ops callback.
(target_float_to_longest): Likewise.
(target_float_from_longest): Likewise.
(target_float_from_ulongest): Likewise.
(target_float_to_host_double): Likewise.
(target_float_from_host_double): Likewise.
(target_float_convert): Add special case for no-op conversions.
Use target_float_ops callback.
(target_float_binop): Use target_float_ops callback.
(target_float_compare): Likewise.
gdb/testsuite/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
|
|
|
match_endianness (addr, type, dec);
|
2017-11-17 01:49:11 +08:00
|
|
|
|
Target FP: Refactor use of host floating-point arithmetic
Prepare for using MPFR to implement floating-point arithmetic by
refactoring the way host floating-point arithmetic is currently used.
In particular, fix the following two problems that cause different
(and incorrect) results due to using host arithmetic:
- Current processing always uses host "long double", and then converts
back to the actual target format. This may introduce rounding errors.
- Conversion of FP values to LONGEST simply does a host C++ type cast.
However the result of such a cast is undefined if the source value
is outside the representable range. MPFR always has defined behavior
here (returns the minimum or maximum representable value).
To fix the first issue, I've now created not just one set of routines
using host FP arithmetic (on long double), but instead three different
sets of routines, one each for host float, double, and long double.
Operations can then be performed in the desired type directly, avoiding
the extra rounding step. Using C++ templates, the three sets can all
share the same source code without duplication.
To fix the second issue, I'm simply enforcing the same conversion rule
(which makes sense anyway) when converting out-of-range values from
FP to LONGEST.
To contain the code complexity with the variety of options now possible,
I've created a new class "target_float_ops". There are a total of five
separate implementations of this:
host_float_ops<float> Implemented via host FP in given type
host_float_ops<double>
host_float_ops<long double>
mpfr_float_ops Implemented via MPFR if available
decimal_float_ops Implemented via libdecnumber
Note instead of using the DOUBLEST define, this always just uses the
"long double" data type. But since we now require C++11 anyway, this
type must in any case be avaialble unconditionally.
Most target floating-point operations simply dispatch to a (virtual)
member routine of this class. Which implementation to choose is
determined from the target types involved, and whether they match
some host type or not. E.g. any operation on a single type that
matches a host type is performed in that type. Operations involving
two types that both match host types are performed in the larger one
(according to C/C++ implicit conversion rules). Operations that
involve any type that does not match a host type are performed using
MPFR. (And of course operations involving decimal FP are performed
using libdecnumber.)
This first patch implements the refactoring of target-float.c as
described above, introduing the host_float_ops and decimal_float_ops
classes, and using them. Use of MPFR is introduced in the second patch.
A bit of special-case handling code is moved around to as to avoid
code duplication between host_float_ops and mpfr_float_ops.
Note that due to the changes mentioned above, I've had to update (fix)
the floating-point register values tested in the gdb.arch/vsx-regs.exp
test case. (The new values now work both with host arithmetic and MPFR.)
gdb/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* target-float.c: Do not include <math.h>.
Include <cmath> and <limits>.
(DOUBLEST): Do not define.
(class target_float_ops): New type.
(class host_float_ops): New templated type.
(class decimal_float_ops): New type.
(floatformat_to_doublest): Rename to ...
(host_float_ops<T>::from_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::from_target): New overload using a type argument.
(floatformat_from_doublest): Rename to ...
(host_float_ops<T>::to_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::to_target): New overload using a type argument.
(floatformat_printf_format): New function.
(struct printf_length_modifier): New templated type.
(floatformat_to_string): Rename to ...
(host_float_ops<T>::to_string): ... this. Use type instead of
floatformat argument. Use floatformat_printf_format and
printf_length_modifier. Remove special handling of invalid numbers,
infinities and NaN (moved to target_float_to_string).
(struct scanf_length_modifier): New templated type.
(floatformat_from_string): Rename to ...
(host_float_ops<T>::from_string): ... this. Use type instead of
floatformat argument. Use scanf_length_modifier.
(floatformat_to_longest): Rename to ...
(host_float_ops<T>::to_longest): ... this. Use type instead of
floatformat argument. Handle out-of-range values deterministically.
(floatformat_from_longest): Rename to ...
(host_float_ops<T>::from_longest): ... this. Use type instead of
floatformat argument.
(floatformat_from_ulongest): Rename to ...
(host_float_ops<T>::from_ulongest): ... this. Use type instead of
floatformat argument.
(floatformat_to_host_double): Rename to ...
(host_float_ops<T>::to_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_from_host_double): Rename to ...
(host_float_ops<T>::from_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_convert): Rename to ...
(host_float_ops<T>::convert): ... this. Use type instead of
floatformat arguments. Remove handling of no-op conversions.
(floatformat_binop): Rename to ...
(host_float_ops<T>::binop): ... this. Use type instead of
floatformat arguments.
(floatformat_compare): Rename to ...
(host_float_ops<T>::compare): ... this. Use type instead of
floatformat arguments.
(match_endianness): Use type instead of length/byte_order arguments.
(set_decnumber_context): Likewise.
(decimal_from_number): Likewise. Update calls.
(decimal_to_number): Likewise.
(decimal_is_zero): Likewise. Update calls. Move to earlier in file.
(decimal_float_ops::to_host_double): New dummy function.
(decimal_float_ops::from_host_double): Likewise.
(decimal_to_string): Rename to ...
(decimal_float_ops::to_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_string): Rename to ...
(decimal_float_ops::from_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_longest): Rename to ...
(decimal_float_ops::from_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_ulongest): Rename to ...
(decimal_float_ops::from_ulongest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_to_longest): Rename to ...
(decimal_float_ops::to_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_binop): Rename to ...
(decimal_float_ops::binop): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_compare): Rename to ...
(decimal_float_ops::compare): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_convert): Rename to ...
(decimal_float_ops::convert): ... this. Use type instead of
length/byte_order arguments. Update calls.
(target_float_same_category_p): New function.
(target_float_same_format_p): Likewise.
(target_float_format_length): Likewise.
(enum target_float_ops_kind): New type.
(get_target_float_ops_kind): New function.
(get_target_float_ops): Three new overloaded functions.
(target_float_is_zero): Update call.
(target_float_to_string): Add special handling of invalid numbers,
infinities and NaN (moved from floatformat_to_string). Use
target_float_ops callback.
(target_float_from_string): Use target_float_ops callback.
(target_float_to_longest): Likewise.
(target_float_from_longest): Likewise.
(target_float_from_ulongest): Likewise.
(target_float_to_host_double): Likewise.
(target_float_from_host_double): Likewise.
(target_float_convert): Add special case for no-op conversions.
Use target_float_ops callback.
(target_float_binop): Use target_float_ops callback.
(target_float_compare): Likewise.
gdb/testsuite/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
|
|
|
switch (TYPE_LENGTH (type))
|
Target FP: Merge doublest.c and dfp.c into target-float.c
Now that all target FP operations are performed via target-float.c,
this file remains the sole caller of functions in doublest.c and dfp.c.
Therefore, this patch merges the latter files into the former and
makes all their function static there.
gdb/ChangeLog:
2017-11-06 Ulrich Weigand <uweigand@de.ibm.com>
* Makefile.in (SFILES): Remove doublest.c and dfp.c.
(HFILES_NO_SRCDIR): Remove doublest.h and dfp.h.
(COMMON_OBS): Remove doublest.o and dfp.o.
Do not build target-float.c (instead of doublest.c)
with -Wformat-nonliteral.
* doublest.c: Remove file.
* doublest.h: Remove file.
* dfp.c: Remove file.
* dfp.h: Remove file.
* target-float.c: Do not include "doublest.h" and "dfp.h".
(DOUBLEST): Move here from doublest.h.
(enum float_kind): Likewise.
(FLOATFORMAT_CHAR_BIT): Likewise.
(FLOATFORMAT_LARGEST_BYTES): Likewise.
(floatformat_totalsize_bytes): Move here from doublest.c. Make static.
(floatformat_precision): Likewise.
(floatformat_normalize_byteorder, get_field, put_field): Likewise.
(floatformat_is_negative, floatformat_classify, floatformat_mantissa):
Likewise.
(host_float_format, host_double_format, host_long_double_format):
Likewise.
(floatformat_to_string, floatformat_from_string): Likewise.
(floatformat_to_doublest): Likewise. Also, inline the original
convert_floatformat_to_doublest.
(floatformat_from_doublest): Likewise. Also, inline the original
convert_floatformat_from_doublest.
Include "dpd/decimal128.h", "dpd/decimal64.h", and "dpd/decimal32.h".
(MAX_DECIMAL_STRING): Move here from dfp.c.
(match_endianness): Likewise.
(set_decnumber_context, decimal_check_errors): Likewise.
(decimal_from_number, decimal_to_number): Likewise.
(decimal_to_string, decimal_from_string): Likewise. Make static.
(decimal_from_longest, decimal_from_ulongest): Likewise.
(decimal_to_longest): Likewise.
(decimal_binop, decimal_is_zero, decimal_compare): Likewise.
(decimal_convert): Likewise.
2017-11-06 23:04:03 +08:00
|
|
|
{
|
|
|
|
case 4:
|
2017-11-17 01:49:11 +08:00
|
|
|
decimal32ToNumber ((decimal32 *) dec, to);
|
Target FP: Merge doublest.c and dfp.c into target-float.c
Now that all target FP operations are performed via target-float.c,
this file remains the sole caller of functions in doublest.c and dfp.c.
Therefore, this patch merges the latter files into the former and
makes all their function static there.
gdb/ChangeLog:
2017-11-06 Ulrich Weigand <uweigand@de.ibm.com>
* Makefile.in (SFILES): Remove doublest.c and dfp.c.
(HFILES_NO_SRCDIR): Remove doublest.h and dfp.h.
(COMMON_OBS): Remove doublest.o and dfp.o.
Do not build target-float.c (instead of doublest.c)
with -Wformat-nonliteral.
* doublest.c: Remove file.
* doublest.h: Remove file.
* dfp.c: Remove file.
* dfp.h: Remove file.
* target-float.c: Do not include "doublest.h" and "dfp.h".
(DOUBLEST): Move here from doublest.h.
(enum float_kind): Likewise.
(FLOATFORMAT_CHAR_BIT): Likewise.
(FLOATFORMAT_LARGEST_BYTES): Likewise.
(floatformat_totalsize_bytes): Move here from doublest.c. Make static.
(floatformat_precision): Likewise.
(floatformat_normalize_byteorder, get_field, put_field): Likewise.
(floatformat_is_negative, floatformat_classify, floatformat_mantissa):
Likewise.
(host_float_format, host_double_format, host_long_double_format):
Likewise.
(floatformat_to_string, floatformat_from_string): Likewise.
(floatformat_to_doublest): Likewise. Also, inline the original
convert_floatformat_to_doublest.
(floatformat_from_doublest): Likewise. Also, inline the original
convert_floatformat_from_doublest.
Include "dpd/decimal128.h", "dpd/decimal64.h", and "dpd/decimal32.h".
(MAX_DECIMAL_STRING): Move here from dfp.c.
(match_endianness): Likewise.
(set_decnumber_context, decimal_check_errors): Likewise.
(decimal_from_number, decimal_to_number): Likewise.
(decimal_to_string, decimal_from_string): Likewise. Make static.
(decimal_from_longest, decimal_from_ulongest): Likewise.
(decimal_to_longest): Likewise.
(decimal_binop, decimal_is_zero, decimal_compare): Likewise.
(decimal_convert): Likewise.
2017-11-06 23:04:03 +08:00
|
|
|
break;
|
|
|
|
case 8:
|
2017-11-17 01:49:11 +08:00
|
|
|
decimal64ToNumber ((decimal64 *) dec, to);
|
Target FP: Merge doublest.c and dfp.c into target-float.c
Now that all target FP operations are performed via target-float.c,
this file remains the sole caller of functions in doublest.c and dfp.c.
Therefore, this patch merges the latter files into the former and
makes all their function static there.
gdb/ChangeLog:
2017-11-06 Ulrich Weigand <uweigand@de.ibm.com>
* Makefile.in (SFILES): Remove doublest.c and dfp.c.
(HFILES_NO_SRCDIR): Remove doublest.h and dfp.h.
(COMMON_OBS): Remove doublest.o and dfp.o.
Do not build target-float.c (instead of doublest.c)
with -Wformat-nonliteral.
* doublest.c: Remove file.
* doublest.h: Remove file.
* dfp.c: Remove file.
* dfp.h: Remove file.
* target-float.c: Do not include "doublest.h" and "dfp.h".
(DOUBLEST): Move here from doublest.h.
(enum float_kind): Likewise.
(FLOATFORMAT_CHAR_BIT): Likewise.
(FLOATFORMAT_LARGEST_BYTES): Likewise.
(floatformat_totalsize_bytes): Move here from doublest.c. Make static.
(floatformat_precision): Likewise.
(floatformat_normalize_byteorder, get_field, put_field): Likewise.
(floatformat_is_negative, floatformat_classify, floatformat_mantissa):
Likewise.
(host_float_format, host_double_format, host_long_double_format):
Likewise.
(floatformat_to_string, floatformat_from_string): Likewise.
(floatformat_to_doublest): Likewise. Also, inline the original
convert_floatformat_to_doublest.
(floatformat_from_doublest): Likewise. Also, inline the original
convert_floatformat_from_doublest.
Include "dpd/decimal128.h", "dpd/decimal64.h", and "dpd/decimal32.h".
(MAX_DECIMAL_STRING): Move here from dfp.c.
(match_endianness): Likewise.
(set_decnumber_context, decimal_check_errors): Likewise.
(decimal_from_number, decimal_to_number): Likewise.
(decimal_to_string, decimal_from_string): Likewise. Make static.
(decimal_from_longest, decimal_from_ulongest): Likewise.
(decimal_to_longest): Likewise.
(decimal_binop, decimal_is_zero, decimal_compare): Likewise.
(decimal_convert): Likewise.
2017-11-06 23:04:03 +08:00
|
|
|
break;
|
|
|
|
case 16:
|
2017-11-17 01:49:11 +08:00
|
|
|
decimal128ToNumber ((decimal128 *) dec, to);
|
Target FP: Merge doublest.c and dfp.c into target-float.c
Now that all target FP operations are performed via target-float.c,
this file remains the sole caller of functions in doublest.c and dfp.c.
Therefore, this patch merges the latter files into the former and
makes all their function static there.
gdb/ChangeLog:
2017-11-06 Ulrich Weigand <uweigand@de.ibm.com>
* Makefile.in (SFILES): Remove doublest.c and dfp.c.
(HFILES_NO_SRCDIR): Remove doublest.h and dfp.h.
(COMMON_OBS): Remove doublest.o and dfp.o.
Do not build target-float.c (instead of doublest.c)
with -Wformat-nonliteral.
* doublest.c: Remove file.
* doublest.h: Remove file.
* dfp.c: Remove file.
* dfp.h: Remove file.
* target-float.c: Do not include "doublest.h" and "dfp.h".
(DOUBLEST): Move here from doublest.h.
(enum float_kind): Likewise.
(FLOATFORMAT_CHAR_BIT): Likewise.
(FLOATFORMAT_LARGEST_BYTES): Likewise.
(floatformat_totalsize_bytes): Move here from doublest.c. Make static.
(floatformat_precision): Likewise.
(floatformat_normalize_byteorder, get_field, put_field): Likewise.
(floatformat_is_negative, floatformat_classify, floatformat_mantissa):
Likewise.
(host_float_format, host_double_format, host_long_double_format):
Likewise.
(floatformat_to_string, floatformat_from_string): Likewise.
(floatformat_to_doublest): Likewise. Also, inline the original
convert_floatformat_to_doublest.
(floatformat_from_doublest): Likewise. Also, inline the original
convert_floatformat_from_doublest.
Include "dpd/decimal128.h", "dpd/decimal64.h", and "dpd/decimal32.h".
(MAX_DECIMAL_STRING): Move here from dfp.c.
(match_endianness): Likewise.
(set_decnumber_context, decimal_check_errors): Likewise.
(decimal_from_number, decimal_to_number): Likewise.
(decimal_to_string, decimal_from_string): Likewise. Make static.
(decimal_from_longest, decimal_from_ulongest): Likewise.
(decimal_to_longest): Likewise.
(decimal_binop, decimal_is_zero, decimal_compare): Likewise.
(decimal_convert): Likewise.
2017-11-06 23:04:03 +08:00
|
|
|
break;
|
|
|
|
default:
|
|
|
|
error (_("Unknown decimal floating point type."));
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
Target FP: Refactor use of host floating-point arithmetic
Prepare for using MPFR to implement floating-point arithmetic by
refactoring the way host floating-point arithmetic is currently used.
In particular, fix the following two problems that cause different
(and incorrect) results due to using host arithmetic:
- Current processing always uses host "long double", and then converts
back to the actual target format. This may introduce rounding errors.
- Conversion of FP values to LONGEST simply does a host C++ type cast.
However the result of such a cast is undefined if the source value
is outside the representable range. MPFR always has defined behavior
here (returns the minimum or maximum representable value).
To fix the first issue, I've now created not just one set of routines
using host FP arithmetic (on long double), but instead three different
sets of routines, one each for host float, double, and long double.
Operations can then be performed in the desired type directly, avoiding
the extra rounding step. Using C++ templates, the three sets can all
share the same source code without duplication.
To fix the second issue, I'm simply enforcing the same conversion rule
(which makes sense anyway) when converting out-of-range values from
FP to LONGEST.
To contain the code complexity with the variety of options now possible,
I've created a new class "target_float_ops". There are a total of five
separate implementations of this:
host_float_ops<float> Implemented via host FP in given type
host_float_ops<double>
host_float_ops<long double>
mpfr_float_ops Implemented via MPFR if available
decimal_float_ops Implemented via libdecnumber
Note instead of using the DOUBLEST define, this always just uses the
"long double" data type. But since we now require C++11 anyway, this
type must in any case be avaialble unconditionally.
Most target floating-point operations simply dispatch to a (virtual)
member routine of this class. Which implementation to choose is
determined from the target types involved, and whether they match
some host type or not. E.g. any operation on a single type that
matches a host type is performed in that type. Operations involving
two types that both match host types are performed in the larger one
(according to C/C++ implicit conversion rules). Operations that
involve any type that does not match a host type are performed using
MPFR. (And of course operations involving decimal FP are performed
using libdecnumber.)
This first patch implements the refactoring of target-float.c as
described above, introduing the host_float_ops and decimal_float_ops
classes, and using them. Use of MPFR is introduced in the second patch.
A bit of special-case handling code is moved around to as to avoid
code duplication between host_float_ops and mpfr_float_ops.
Note that due to the changes mentioned above, I've had to update (fix)
the floating-point register values tested in the gdb.arch/vsx-regs.exp
test case. (The new values now work both with host arithmetic and MPFR.)
gdb/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* target-float.c: Do not include <math.h>.
Include <cmath> and <limits>.
(DOUBLEST): Do not define.
(class target_float_ops): New type.
(class host_float_ops): New templated type.
(class decimal_float_ops): New type.
(floatformat_to_doublest): Rename to ...
(host_float_ops<T>::from_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::from_target): New overload using a type argument.
(floatformat_from_doublest): Rename to ...
(host_float_ops<T>::to_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::to_target): New overload using a type argument.
(floatformat_printf_format): New function.
(struct printf_length_modifier): New templated type.
(floatformat_to_string): Rename to ...
(host_float_ops<T>::to_string): ... this. Use type instead of
floatformat argument. Use floatformat_printf_format and
printf_length_modifier. Remove special handling of invalid numbers,
infinities and NaN (moved to target_float_to_string).
(struct scanf_length_modifier): New templated type.
(floatformat_from_string): Rename to ...
(host_float_ops<T>::from_string): ... this. Use type instead of
floatformat argument. Use scanf_length_modifier.
(floatformat_to_longest): Rename to ...
(host_float_ops<T>::to_longest): ... this. Use type instead of
floatformat argument. Handle out-of-range values deterministically.
(floatformat_from_longest): Rename to ...
(host_float_ops<T>::from_longest): ... this. Use type instead of
floatformat argument.
(floatformat_from_ulongest): Rename to ...
(host_float_ops<T>::from_ulongest): ... this. Use type instead of
floatformat argument.
(floatformat_to_host_double): Rename to ...
(host_float_ops<T>::to_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_from_host_double): Rename to ...
(host_float_ops<T>::from_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_convert): Rename to ...
(host_float_ops<T>::convert): ... this. Use type instead of
floatformat arguments. Remove handling of no-op conversions.
(floatformat_binop): Rename to ...
(host_float_ops<T>::binop): ... this. Use type instead of
floatformat arguments.
(floatformat_compare): Rename to ...
(host_float_ops<T>::compare): ... this. Use type instead of
floatformat arguments.
(match_endianness): Use type instead of length/byte_order arguments.
(set_decnumber_context): Likewise.
(decimal_from_number): Likewise. Update calls.
(decimal_to_number): Likewise.
(decimal_is_zero): Likewise. Update calls. Move to earlier in file.
(decimal_float_ops::to_host_double): New dummy function.
(decimal_float_ops::from_host_double): Likewise.
(decimal_to_string): Rename to ...
(decimal_float_ops::to_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_string): Rename to ...
(decimal_float_ops::from_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_longest): Rename to ...
(decimal_float_ops::from_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_ulongest): Rename to ...
(decimal_float_ops::from_ulongest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_to_longest): Rename to ...
(decimal_float_ops::to_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_binop): Rename to ...
(decimal_float_ops::binop): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_compare): Rename to ...
(decimal_float_ops::compare): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_convert): Rename to ...
(decimal_float_ops::convert): ... this. Use type instead of
length/byte_order arguments. Update calls.
(target_float_same_category_p): New function.
(target_float_same_format_p): Likewise.
(target_float_format_length): Likewise.
(enum target_float_ops_kind): New type.
(get_target_float_ops_kind): New function.
(get_target_float_ops): Three new overloaded functions.
(target_float_is_zero): Update call.
(target_float_to_string): Add special handling of invalid numbers,
infinities and NaN (moved from floatformat_to_string). Use
target_float_ops callback.
(target_float_from_string): Use target_float_ops callback.
(target_float_to_longest): Likewise.
(target_float_from_longest): Likewise.
(target_float_from_ulongest): Likewise.
(target_float_to_host_double): Likewise.
(target_float_from_host_double): Likewise.
(target_float_convert): Add special case for no-op conversions.
Use target_float_ops callback.
(target_float_binop): Use target_float_ops callback.
(target_float_compare): Likewise.
gdb/testsuite/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
|
|
|
/* Returns true if ADDR (which is of type TYPE) is the number zero. */
|
|
|
|
static bool
|
|
|
|
decimal_is_zero (const gdb_byte *addr, const struct type *type)
|
|
|
|
{
|
|
|
|
decNumber number;
|
|
|
|
|
|
|
|
decimal_to_number (addr, type, &number);
|
|
|
|
|
|
|
|
return decNumberIsZero (&number);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/* Implementation of target_float_ops using the libdecnumber decNumber type
|
|
|
|
as intermediate format. */
|
|
|
|
|
|
|
|
class decimal_float_ops : public target_float_ops
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
std::string to_string (const gdb_byte *addr, const struct type *type,
|
|
|
|
const char *format) const override;
|
|
|
|
bool from_string (gdb_byte *addr, const struct type *type,
|
|
|
|
const std::string &string) const override;
|
|
|
|
|
|
|
|
LONGEST to_longest (const gdb_byte *addr,
|
|
|
|
const struct type *type) const override;
|
|
|
|
void from_longest (gdb_byte *addr, const struct type *type,
|
|
|
|
LONGEST val) const override;
|
|
|
|
void from_ulongest (gdb_byte *addr, const struct type *type,
|
|
|
|
ULONGEST val) const override;
|
|
|
|
double to_host_double (const gdb_byte *addr,
|
|
|
|
const struct type *type) const override
|
|
|
|
{
|
|
|
|
/* We don't support conversions between target decimal floating-point
|
|
|
|
types and the host double type. */
|
|
|
|
gdb_assert_not_reached ("invalid operation on decimal float");
|
|
|
|
}
|
|
|
|
void from_host_double (gdb_byte *addr, const struct type *type,
|
|
|
|
double val) const override
|
|
|
|
{
|
|
|
|
/* We don't support conversions between target decimal floating-point
|
|
|
|
types and the host double type. */
|
|
|
|
gdb_assert_not_reached ("invalid operation on decimal float");
|
|
|
|
}
|
|
|
|
void convert (const gdb_byte *from, const struct type *from_type,
|
|
|
|
gdb_byte *to, const struct type *to_type) const override;
|
|
|
|
|
|
|
|
void binop (enum exp_opcode opcode,
|
|
|
|
const gdb_byte *x, const struct type *type_x,
|
|
|
|
const gdb_byte *y, const struct type *type_y,
|
|
|
|
gdb_byte *res, const struct type *type_res) const override;
|
|
|
|
int compare (const gdb_byte *x, const struct type *type_x,
|
|
|
|
const gdb_byte *y, const struct type *type_y) const override;
|
|
|
|
};
|
|
|
|
|
Target FP: Merge doublest.c and dfp.c into target-float.c
Now that all target FP operations are performed via target-float.c,
this file remains the sole caller of functions in doublest.c and dfp.c.
Therefore, this patch merges the latter files into the former and
makes all their function static there.
gdb/ChangeLog:
2017-11-06 Ulrich Weigand <uweigand@de.ibm.com>
* Makefile.in (SFILES): Remove doublest.c and dfp.c.
(HFILES_NO_SRCDIR): Remove doublest.h and dfp.h.
(COMMON_OBS): Remove doublest.o and dfp.o.
Do not build target-float.c (instead of doublest.c)
with -Wformat-nonliteral.
* doublest.c: Remove file.
* doublest.h: Remove file.
* dfp.c: Remove file.
* dfp.h: Remove file.
* target-float.c: Do not include "doublest.h" and "dfp.h".
(DOUBLEST): Move here from doublest.h.
(enum float_kind): Likewise.
(FLOATFORMAT_CHAR_BIT): Likewise.
(FLOATFORMAT_LARGEST_BYTES): Likewise.
(floatformat_totalsize_bytes): Move here from doublest.c. Make static.
(floatformat_precision): Likewise.
(floatformat_normalize_byteorder, get_field, put_field): Likewise.
(floatformat_is_negative, floatformat_classify, floatformat_mantissa):
Likewise.
(host_float_format, host_double_format, host_long_double_format):
Likewise.
(floatformat_to_string, floatformat_from_string): Likewise.
(floatformat_to_doublest): Likewise. Also, inline the original
convert_floatformat_to_doublest.
(floatformat_from_doublest): Likewise. Also, inline the original
convert_floatformat_from_doublest.
Include "dpd/decimal128.h", "dpd/decimal64.h", and "dpd/decimal32.h".
(MAX_DECIMAL_STRING): Move here from dfp.c.
(match_endianness): Likewise.
(set_decnumber_context, decimal_check_errors): Likewise.
(decimal_from_number, decimal_to_number): Likewise.
(decimal_to_string, decimal_from_string): Likewise. Make static.
(decimal_from_longest, decimal_from_ulongest): Likewise.
(decimal_to_longest): Likewise.
(decimal_binop, decimal_is_zero, decimal_compare): Likewise.
(decimal_convert): Likewise.
2017-11-06 23:04:03 +08:00
|
|
|
/* Convert decimal type to its string representation. LEN is the length
|
|
|
|
of the decimal type, 4 bytes for decimal32, 8 bytes for decimal64 and
|
|
|
|
16 bytes for decimal128. */
|
Target FP: Refactor use of host floating-point arithmetic
Prepare for using MPFR to implement floating-point arithmetic by
refactoring the way host floating-point arithmetic is currently used.
In particular, fix the following two problems that cause different
(and incorrect) results due to using host arithmetic:
- Current processing always uses host "long double", and then converts
back to the actual target format. This may introduce rounding errors.
- Conversion of FP values to LONGEST simply does a host C++ type cast.
However the result of such a cast is undefined if the source value
is outside the representable range. MPFR always has defined behavior
here (returns the minimum or maximum representable value).
To fix the first issue, I've now created not just one set of routines
using host FP arithmetic (on long double), but instead three different
sets of routines, one each for host float, double, and long double.
Operations can then be performed in the desired type directly, avoiding
the extra rounding step. Using C++ templates, the three sets can all
share the same source code without duplication.
To fix the second issue, I'm simply enforcing the same conversion rule
(which makes sense anyway) when converting out-of-range values from
FP to LONGEST.
To contain the code complexity with the variety of options now possible,
I've created a new class "target_float_ops". There are a total of five
separate implementations of this:
host_float_ops<float> Implemented via host FP in given type
host_float_ops<double>
host_float_ops<long double>
mpfr_float_ops Implemented via MPFR if available
decimal_float_ops Implemented via libdecnumber
Note instead of using the DOUBLEST define, this always just uses the
"long double" data type. But since we now require C++11 anyway, this
type must in any case be avaialble unconditionally.
Most target floating-point operations simply dispatch to a (virtual)
member routine of this class. Which implementation to choose is
determined from the target types involved, and whether they match
some host type or not. E.g. any operation on a single type that
matches a host type is performed in that type. Operations involving
two types that both match host types are performed in the larger one
(according to C/C++ implicit conversion rules). Operations that
involve any type that does not match a host type are performed using
MPFR. (And of course operations involving decimal FP are performed
using libdecnumber.)
This first patch implements the refactoring of target-float.c as
described above, introduing the host_float_ops and decimal_float_ops
classes, and using them. Use of MPFR is introduced in the second patch.
A bit of special-case handling code is moved around to as to avoid
code duplication between host_float_ops and mpfr_float_ops.
Note that due to the changes mentioned above, I've had to update (fix)
the floating-point register values tested in the gdb.arch/vsx-regs.exp
test case. (The new values now work both with host arithmetic and MPFR.)
gdb/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* target-float.c: Do not include <math.h>.
Include <cmath> and <limits>.
(DOUBLEST): Do not define.
(class target_float_ops): New type.
(class host_float_ops): New templated type.
(class decimal_float_ops): New type.
(floatformat_to_doublest): Rename to ...
(host_float_ops<T>::from_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::from_target): New overload using a type argument.
(floatformat_from_doublest): Rename to ...
(host_float_ops<T>::to_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::to_target): New overload using a type argument.
(floatformat_printf_format): New function.
(struct printf_length_modifier): New templated type.
(floatformat_to_string): Rename to ...
(host_float_ops<T>::to_string): ... this. Use type instead of
floatformat argument. Use floatformat_printf_format and
printf_length_modifier. Remove special handling of invalid numbers,
infinities and NaN (moved to target_float_to_string).
(struct scanf_length_modifier): New templated type.
(floatformat_from_string): Rename to ...
(host_float_ops<T>::from_string): ... this. Use type instead of
floatformat argument. Use scanf_length_modifier.
(floatformat_to_longest): Rename to ...
(host_float_ops<T>::to_longest): ... this. Use type instead of
floatformat argument. Handle out-of-range values deterministically.
(floatformat_from_longest): Rename to ...
(host_float_ops<T>::from_longest): ... this. Use type instead of
floatformat argument.
(floatformat_from_ulongest): Rename to ...
(host_float_ops<T>::from_ulongest): ... this. Use type instead of
floatformat argument.
(floatformat_to_host_double): Rename to ...
(host_float_ops<T>::to_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_from_host_double): Rename to ...
(host_float_ops<T>::from_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_convert): Rename to ...
(host_float_ops<T>::convert): ... this. Use type instead of
floatformat arguments. Remove handling of no-op conversions.
(floatformat_binop): Rename to ...
(host_float_ops<T>::binop): ... this. Use type instead of
floatformat arguments.
(floatformat_compare): Rename to ...
(host_float_ops<T>::compare): ... this. Use type instead of
floatformat arguments.
(match_endianness): Use type instead of length/byte_order arguments.
(set_decnumber_context): Likewise.
(decimal_from_number): Likewise. Update calls.
(decimal_to_number): Likewise.
(decimal_is_zero): Likewise. Update calls. Move to earlier in file.
(decimal_float_ops::to_host_double): New dummy function.
(decimal_float_ops::from_host_double): Likewise.
(decimal_to_string): Rename to ...
(decimal_float_ops::to_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_string): Rename to ...
(decimal_float_ops::from_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_longest): Rename to ...
(decimal_float_ops::from_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_ulongest): Rename to ...
(decimal_float_ops::from_ulongest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_to_longest): Rename to ...
(decimal_float_ops::to_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_binop): Rename to ...
(decimal_float_ops::binop): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_compare): Rename to ...
(decimal_float_ops::compare): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_convert): Rename to ...
(decimal_float_ops::convert): ... this. Use type instead of
length/byte_order arguments. Update calls.
(target_float_same_category_p): New function.
(target_float_same_format_p): Likewise.
(target_float_format_length): Likewise.
(enum target_float_ops_kind): New type.
(get_target_float_ops_kind): New function.
(get_target_float_ops): Three new overloaded functions.
(target_float_is_zero): Update call.
(target_float_to_string): Add special handling of invalid numbers,
infinities and NaN (moved from floatformat_to_string). Use
target_float_ops callback.
(target_float_from_string): Use target_float_ops callback.
(target_float_to_longest): Likewise.
(target_float_from_longest): Likewise.
(target_float_from_ulongest): Likewise.
(target_float_to_host_double): Likewise.
(target_float_from_host_double): Likewise.
(target_float_convert): Add special case for no-op conversions.
Use target_float_ops callback.
(target_float_binop): Use target_float_ops callback.
(target_float_compare): Likewise.
gdb/testsuite/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
|
|
|
std::string
|
|
|
|
decimal_float_ops::to_string (const gdb_byte *addr, const struct type *type,
|
|
|
|
const char *format = nullptr) const
|
Target FP: Merge doublest.c and dfp.c into target-float.c
Now that all target FP operations are performed via target-float.c,
this file remains the sole caller of functions in doublest.c and dfp.c.
Therefore, this patch merges the latter files into the former and
makes all their function static there.
gdb/ChangeLog:
2017-11-06 Ulrich Weigand <uweigand@de.ibm.com>
* Makefile.in (SFILES): Remove doublest.c and dfp.c.
(HFILES_NO_SRCDIR): Remove doublest.h and dfp.h.
(COMMON_OBS): Remove doublest.o and dfp.o.
Do not build target-float.c (instead of doublest.c)
with -Wformat-nonliteral.
* doublest.c: Remove file.
* doublest.h: Remove file.
* dfp.c: Remove file.
* dfp.h: Remove file.
* target-float.c: Do not include "doublest.h" and "dfp.h".
(DOUBLEST): Move here from doublest.h.
(enum float_kind): Likewise.
(FLOATFORMAT_CHAR_BIT): Likewise.
(FLOATFORMAT_LARGEST_BYTES): Likewise.
(floatformat_totalsize_bytes): Move here from doublest.c. Make static.
(floatformat_precision): Likewise.
(floatformat_normalize_byteorder, get_field, put_field): Likewise.
(floatformat_is_negative, floatformat_classify, floatformat_mantissa):
Likewise.
(host_float_format, host_double_format, host_long_double_format):
Likewise.
(floatformat_to_string, floatformat_from_string): Likewise.
(floatformat_to_doublest): Likewise. Also, inline the original
convert_floatformat_to_doublest.
(floatformat_from_doublest): Likewise. Also, inline the original
convert_floatformat_from_doublest.
Include "dpd/decimal128.h", "dpd/decimal64.h", and "dpd/decimal32.h".
(MAX_DECIMAL_STRING): Move here from dfp.c.
(match_endianness): Likewise.
(set_decnumber_context, decimal_check_errors): Likewise.
(decimal_from_number, decimal_to_number): Likewise.
(decimal_to_string, decimal_from_string): Likewise. Make static.
(decimal_from_longest, decimal_from_ulongest): Likewise.
(decimal_to_longest): Likewise.
(decimal_binop, decimal_is_zero, decimal_compare): Likewise.
(decimal_convert): Likewise.
2017-11-06 23:04:03 +08:00
|
|
|
{
|
|
|
|
gdb_byte dec[16];
|
|
|
|
|
Target FP: Refactor use of host floating-point arithmetic
Prepare for using MPFR to implement floating-point arithmetic by
refactoring the way host floating-point arithmetic is currently used.
In particular, fix the following two problems that cause different
(and incorrect) results due to using host arithmetic:
- Current processing always uses host "long double", and then converts
back to the actual target format. This may introduce rounding errors.
- Conversion of FP values to LONGEST simply does a host C++ type cast.
However the result of such a cast is undefined if the source value
is outside the representable range. MPFR always has defined behavior
here (returns the minimum or maximum representable value).
To fix the first issue, I've now created not just one set of routines
using host FP arithmetic (on long double), but instead three different
sets of routines, one each for host float, double, and long double.
Operations can then be performed in the desired type directly, avoiding
the extra rounding step. Using C++ templates, the three sets can all
share the same source code without duplication.
To fix the second issue, I'm simply enforcing the same conversion rule
(which makes sense anyway) when converting out-of-range values from
FP to LONGEST.
To contain the code complexity with the variety of options now possible,
I've created a new class "target_float_ops". There are a total of five
separate implementations of this:
host_float_ops<float> Implemented via host FP in given type
host_float_ops<double>
host_float_ops<long double>
mpfr_float_ops Implemented via MPFR if available
decimal_float_ops Implemented via libdecnumber
Note instead of using the DOUBLEST define, this always just uses the
"long double" data type. But since we now require C++11 anyway, this
type must in any case be avaialble unconditionally.
Most target floating-point operations simply dispatch to a (virtual)
member routine of this class. Which implementation to choose is
determined from the target types involved, and whether they match
some host type or not. E.g. any operation on a single type that
matches a host type is performed in that type. Operations involving
two types that both match host types are performed in the larger one
(according to C/C++ implicit conversion rules). Operations that
involve any type that does not match a host type are performed using
MPFR. (And of course operations involving decimal FP are performed
using libdecnumber.)
This first patch implements the refactoring of target-float.c as
described above, introduing the host_float_ops and decimal_float_ops
classes, and using them. Use of MPFR is introduced in the second patch.
A bit of special-case handling code is moved around to as to avoid
code duplication between host_float_ops and mpfr_float_ops.
Note that due to the changes mentioned above, I've had to update (fix)
the floating-point register values tested in the gdb.arch/vsx-regs.exp
test case. (The new values now work both with host arithmetic and MPFR.)
gdb/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* target-float.c: Do not include <math.h>.
Include <cmath> and <limits>.
(DOUBLEST): Do not define.
(class target_float_ops): New type.
(class host_float_ops): New templated type.
(class decimal_float_ops): New type.
(floatformat_to_doublest): Rename to ...
(host_float_ops<T>::from_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::from_target): New overload using a type argument.
(floatformat_from_doublest): Rename to ...
(host_float_ops<T>::to_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::to_target): New overload using a type argument.
(floatformat_printf_format): New function.
(struct printf_length_modifier): New templated type.
(floatformat_to_string): Rename to ...
(host_float_ops<T>::to_string): ... this. Use type instead of
floatformat argument. Use floatformat_printf_format and
printf_length_modifier. Remove special handling of invalid numbers,
infinities and NaN (moved to target_float_to_string).
(struct scanf_length_modifier): New templated type.
(floatformat_from_string): Rename to ...
(host_float_ops<T>::from_string): ... this. Use type instead of
floatformat argument. Use scanf_length_modifier.
(floatformat_to_longest): Rename to ...
(host_float_ops<T>::to_longest): ... this. Use type instead of
floatformat argument. Handle out-of-range values deterministically.
(floatformat_from_longest): Rename to ...
(host_float_ops<T>::from_longest): ... this. Use type instead of
floatformat argument.
(floatformat_from_ulongest): Rename to ...
(host_float_ops<T>::from_ulongest): ... this. Use type instead of
floatformat argument.
(floatformat_to_host_double): Rename to ...
(host_float_ops<T>::to_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_from_host_double): Rename to ...
(host_float_ops<T>::from_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_convert): Rename to ...
(host_float_ops<T>::convert): ... this. Use type instead of
floatformat arguments. Remove handling of no-op conversions.
(floatformat_binop): Rename to ...
(host_float_ops<T>::binop): ... this. Use type instead of
floatformat arguments.
(floatformat_compare): Rename to ...
(host_float_ops<T>::compare): ... this. Use type instead of
floatformat arguments.
(match_endianness): Use type instead of length/byte_order arguments.
(set_decnumber_context): Likewise.
(decimal_from_number): Likewise. Update calls.
(decimal_to_number): Likewise.
(decimal_is_zero): Likewise. Update calls. Move to earlier in file.
(decimal_float_ops::to_host_double): New dummy function.
(decimal_float_ops::from_host_double): Likewise.
(decimal_to_string): Rename to ...
(decimal_float_ops::to_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_string): Rename to ...
(decimal_float_ops::from_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_longest): Rename to ...
(decimal_float_ops::from_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_ulongest): Rename to ...
(decimal_float_ops::from_ulongest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_to_longest): Rename to ...
(decimal_float_ops::to_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_binop): Rename to ...
(decimal_float_ops::binop): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_compare): Rename to ...
(decimal_float_ops::compare): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_convert): Rename to ...
(decimal_float_ops::convert): ... this. Use type instead of
length/byte_order arguments. Update calls.
(target_float_same_category_p): New function.
(target_float_same_format_p): Likewise.
(target_float_format_length): Likewise.
(enum target_float_ops_kind): New type.
(get_target_float_ops_kind): New function.
(get_target_float_ops): Three new overloaded functions.
(target_float_is_zero): Update call.
(target_float_to_string): Add special handling of invalid numbers,
infinities and NaN (moved from floatformat_to_string). Use
target_float_ops callback.
(target_float_from_string): Use target_float_ops callback.
(target_float_to_longest): Likewise.
(target_float_from_longest): Likewise.
(target_float_from_ulongest): Likewise.
(target_float_to_host_double): Likewise.
(target_float_from_host_double): Likewise.
(target_float_convert): Add special case for no-op conversions.
Use target_float_ops callback.
(target_float_binop): Use target_float_ops callback.
(target_float_compare): Likewise.
gdb/testsuite/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
|
|
|
match_endianness (addr, type, dec);
|
Target FP: Merge doublest.c and dfp.c into target-float.c
Now that all target FP operations are performed via target-float.c,
this file remains the sole caller of functions in doublest.c and dfp.c.
Therefore, this patch merges the latter files into the former and
makes all their function static there.
gdb/ChangeLog:
2017-11-06 Ulrich Weigand <uweigand@de.ibm.com>
* Makefile.in (SFILES): Remove doublest.c and dfp.c.
(HFILES_NO_SRCDIR): Remove doublest.h and dfp.h.
(COMMON_OBS): Remove doublest.o and dfp.o.
Do not build target-float.c (instead of doublest.c)
with -Wformat-nonliteral.
* doublest.c: Remove file.
* doublest.h: Remove file.
* dfp.c: Remove file.
* dfp.h: Remove file.
* target-float.c: Do not include "doublest.h" and "dfp.h".
(DOUBLEST): Move here from doublest.h.
(enum float_kind): Likewise.
(FLOATFORMAT_CHAR_BIT): Likewise.
(FLOATFORMAT_LARGEST_BYTES): Likewise.
(floatformat_totalsize_bytes): Move here from doublest.c. Make static.
(floatformat_precision): Likewise.
(floatformat_normalize_byteorder, get_field, put_field): Likewise.
(floatformat_is_negative, floatformat_classify, floatformat_mantissa):
Likewise.
(host_float_format, host_double_format, host_long_double_format):
Likewise.
(floatformat_to_string, floatformat_from_string): Likewise.
(floatformat_to_doublest): Likewise. Also, inline the original
convert_floatformat_to_doublest.
(floatformat_from_doublest): Likewise. Also, inline the original
convert_floatformat_from_doublest.
Include "dpd/decimal128.h", "dpd/decimal64.h", and "dpd/decimal32.h".
(MAX_DECIMAL_STRING): Move here from dfp.c.
(match_endianness): Likewise.
(set_decnumber_context, decimal_check_errors): Likewise.
(decimal_from_number, decimal_to_number): Likewise.
(decimal_to_string, decimal_from_string): Likewise. Make static.
(decimal_from_longest, decimal_from_ulongest): Likewise.
(decimal_to_longest): Likewise.
(decimal_binop, decimal_is_zero, decimal_compare): Likewise.
(decimal_convert): Likewise.
2017-11-06 23:04:03 +08:00
|
|
|
|
|
|
|
if (format != nullptr)
|
|
|
|
{
|
|
|
|
/* We don't handle format strings (yet). If the host printf supports
|
|
|
|
decimal floating point types, just use this. Otherwise, fall back
|
|
|
|
to printing the number while ignoring the format string. */
|
|
|
|
#if defined (PRINTF_HAS_DECFLOAT)
|
|
|
|
/* FIXME: This makes unwarranted assumptions about the host ABI! */
|
|
|
|
return string_printf (format, dec);
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
std::string result;
|
|
|
|
result.resize (MAX_DECIMAL_STRING);
|
|
|
|
|
Target FP: Refactor use of host floating-point arithmetic
Prepare for using MPFR to implement floating-point arithmetic by
refactoring the way host floating-point arithmetic is currently used.
In particular, fix the following two problems that cause different
(and incorrect) results due to using host arithmetic:
- Current processing always uses host "long double", and then converts
back to the actual target format. This may introduce rounding errors.
- Conversion of FP values to LONGEST simply does a host C++ type cast.
However the result of such a cast is undefined if the source value
is outside the representable range. MPFR always has defined behavior
here (returns the minimum or maximum representable value).
To fix the first issue, I've now created not just one set of routines
using host FP arithmetic (on long double), but instead three different
sets of routines, one each for host float, double, and long double.
Operations can then be performed in the desired type directly, avoiding
the extra rounding step. Using C++ templates, the three sets can all
share the same source code without duplication.
To fix the second issue, I'm simply enforcing the same conversion rule
(which makes sense anyway) when converting out-of-range values from
FP to LONGEST.
To contain the code complexity with the variety of options now possible,
I've created a new class "target_float_ops". There are a total of five
separate implementations of this:
host_float_ops<float> Implemented via host FP in given type
host_float_ops<double>
host_float_ops<long double>
mpfr_float_ops Implemented via MPFR if available
decimal_float_ops Implemented via libdecnumber
Note instead of using the DOUBLEST define, this always just uses the
"long double" data type. But since we now require C++11 anyway, this
type must in any case be avaialble unconditionally.
Most target floating-point operations simply dispatch to a (virtual)
member routine of this class. Which implementation to choose is
determined from the target types involved, and whether they match
some host type or not. E.g. any operation on a single type that
matches a host type is performed in that type. Operations involving
two types that both match host types are performed in the larger one
(according to C/C++ implicit conversion rules). Operations that
involve any type that does not match a host type are performed using
MPFR. (And of course operations involving decimal FP are performed
using libdecnumber.)
This first patch implements the refactoring of target-float.c as
described above, introduing the host_float_ops and decimal_float_ops
classes, and using them. Use of MPFR is introduced in the second patch.
A bit of special-case handling code is moved around to as to avoid
code duplication between host_float_ops and mpfr_float_ops.
Note that due to the changes mentioned above, I've had to update (fix)
the floating-point register values tested in the gdb.arch/vsx-regs.exp
test case. (The new values now work both with host arithmetic and MPFR.)
gdb/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* target-float.c: Do not include <math.h>.
Include <cmath> and <limits>.
(DOUBLEST): Do not define.
(class target_float_ops): New type.
(class host_float_ops): New templated type.
(class decimal_float_ops): New type.
(floatformat_to_doublest): Rename to ...
(host_float_ops<T>::from_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::from_target): New overload using a type argument.
(floatformat_from_doublest): Rename to ...
(host_float_ops<T>::to_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::to_target): New overload using a type argument.
(floatformat_printf_format): New function.
(struct printf_length_modifier): New templated type.
(floatformat_to_string): Rename to ...
(host_float_ops<T>::to_string): ... this. Use type instead of
floatformat argument. Use floatformat_printf_format and
printf_length_modifier. Remove special handling of invalid numbers,
infinities and NaN (moved to target_float_to_string).
(struct scanf_length_modifier): New templated type.
(floatformat_from_string): Rename to ...
(host_float_ops<T>::from_string): ... this. Use type instead of
floatformat argument. Use scanf_length_modifier.
(floatformat_to_longest): Rename to ...
(host_float_ops<T>::to_longest): ... this. Use type instead of
floatformat argument. Handle out-of-range values deterministically.
(floatformat_from_longest): Rename to ...
(host_float_ops<T>::from_longest): ... this. Use type instead of
floatformat argument.
(floatformat_from_ulongest): Rename to ...
(host_float_ops<T>::from_ulongest): ... this. Use type instead of
floatformat argument.
(floatformat_to_host_double): Rename to ...
(host_float_ops<T>::to_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_from_host_double): Rename to ...
(host_float_ops<T>::from_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_convert): Rename to ...
(host_float_ops<T>::convert): ... this. Use type instead of
floatformat arguments. Remove handling of no-op conversions.
(floatformat_binop): Rename to ...
(host_float_ops<T>::binop): ... this. Use type instead of
floatformat arguments.
(floatformat_compare): Rename to ...
(host_float_ops<T>::compare): ... this. Use type instead of
floatformat arguments.
(match_endianness): Use type instead of length/byte_order arguments.
(set_decnumber_context): Likewise.
(decimal_from_number): Likewise. Update calls.
(decimal_to_number): Likewise.
(decimal_is_zero): Likewise. Update calls. Move to earlier in file.
(decimal_float_ops::to_host_double): New dummy function.
(decimal_float_ops::from_host_double): Likewise.
(decimal_to_string): Rename to ...
(decimal_float_ops::to_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_string): Rename to ...
(decimal_float_ops::from_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_longest): Rename to ...
(decimal_float_ops::from_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_ulongest): Rename to ...
(decimal_float_ops::from_ulongest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_to_longest): Rename to ...
(decimal_float_ops::to_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_binop): Rename to ...
(decimal_float_ops::binop): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_compare): Rename to ...
(decimal_float_ops::compare): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_convert): Rename to ...
(decimal_float_ops::convert): ... this. Use type instead of
length/byte_order arguments. Update calls.
(target_float_same_category_p): New function.
(target_float_same_format_p): Likewise.
(target_float_format_length): Likewise.
(enum target_float_ops_kind): New type.
(get_target_float_ops_kind): New function.
(get_target_float_ops): Three new overloaded functions.
(target_float_is_zero): Update call.
(target_float_to_string): Add special handling of invalid numbers,
infinities and NaN (moved from floatformat_to_string). Use
target_float_ops callback.
(target_float_from_string): Use target_float_ops callback.
(target_float_to_longest): Likewise.
(target_float_from_longest): Likewise.
(target_float_from_ulongest): Likewise.
(target_float_to_host_double): Likewise.
(target_float_from_host_double): Likewise.
(target_float_convert): Add special case for no-op conversions.
Use target_float_ops callback.
(target_float_binop): Use target_float_ops callback.
(target_float_compare): Likewise.
gdb/testsuite/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
|
|
|
switch (TYPE_LENGTH (type))
|
Target FP: Merge doublest.c and dfp.c into target-float.c
Now that all target FP operations are performed via target-float.c,
this file remains the sole caller of functions in doublest.c and dfp.c.
Therefore, this patch merges the latter files into the former and
makes all their function static there.
gdb/ChangeLog:
2017-11-06 Ulrich Weigand <uweigand@de.ibm.com>
* Makefile.in (SFILES): Remove doublest.c and dfp.c.
(HFILES_NO_SRCDIR): Remove doublest.h and dfp.h.
(COMMON_OBS): Remove doublest.o and dfp.o.
Do not build target-float.c (instead of doublest.c)
with -Wformat-nonliteral.
* doublest.c: Remove file.
* doublest.h: Remove file.
* dfp.c: Remove file.
* dfp.h: Remove file.
* target-float.c: Do not include "doublest.h" and "dfp.h".
(DOUBLEST): Move here from doublest.h.
(enum float_kind): Likewise.
(FLOATFORMAT_CHAR_BIT): Likewise.
(FLOATFORMAT_LARGEST_BYTES): Likewise.
(floatformat_totalsize_bytes): Move here from doublest.c. Make static.
(floatformat_precision): Likewise.
(floatformat_normalize_byteorder, get_field, put_field): Likewise.
(floatformat_is_negative, floatformat_classify, floatformat_mantissa):
Likewise.
(host_float_format, host_double_format, host_long_double_format):
Likewise.
(floatformat_to_string, floatformat_from_string): Likewise.
(floatformat_to_doublest): Likewise. Also, inline the original
convert_floatformat_to_doublest.
(floatformat_from_doublest): Likewise. Also, inline the original
convert_floatformat_from_doublest.
Include "dpd/decimal128.h", "dpd/decimal64.h", and "dpd/decimal32.h".
(MAX_DECIMAL_STRING): Move here from dfp.c.
(match_endianness): Likewise.
(set_decnumber_context, decimal_check_errors): Likewise.
(decimal_from_number, decimal_to_number): Likewise.
(decimal_to_string, decimal_from_string): Likewise. Make static.
(decimal_from_longest, decimal_from_ulongest): Likewise.
(decimal_to_longest): Likewise.
(decimal_binop, decimal_is_zero, decimal_compare): Likewise.
(decimal_convert): Likewise.
2017-11-06 23:04:03 +08:00
|
|
|
{
|
|
|
|
case 4:
|
|
|
|
decimal32ToString ((decimal32 *) dec, &result[0]);
|
|
|
|
break;
|
|
|
|
case 8:
|
|
|
|
decimal64ToString ((decimal64 *) dec, &result[0]);
|
|
|
|
break;
|
|
|
|
case 16:
|
|
|
|
decimal128ToString ((decimal128 *) dec, &result[0]);
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
error (_("Unknown decimal floating point type."));
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Convert the string form of a decimal value to its decimal representation.
|
|
|
|
LEN is the length of the decimal type, 4 bytes for decimal32, 8 bytes for
|
|
|
|
decimal64 and 16 bytes for decimal128. */
|
Target FP: Refactor use of host floating-point arithmetic
Prepare for using MPFR to implement floating-point arithmetic by
refactoring the way host floating-point arithmetic is currently used.
In particular, fix the following two problems that cause different
(and incorrect) results due to using host arithmetic:
- Current processing always uses host "long double", and then converts
back to the actual target format. This may introduce rounding errors.
- Conversion of FP values to LONGEST simply does a host C++ type cast.
However the result of such a cast is undefined if the source value
is outside the representable range. MPFR always has defined behavior
here (returns the minimum or maximum representable value).
To fix the first issue, I've now created not just one set of routines
using host FP arithmetic (on long double), but instead three different
sets of routines, one each for host float, double, and long double.
Operations can then be performed in the desired type directly, avoiding
the extra rounding step. Using C++ templates, the three sets can all
share the same source code without duplication.
To fix the second issue, I'm simply enforcing the same conversion rule
(which makes sense anyway) when converting out-of-range values from
FP to LONGEST.
To contain the code complexity with the variety of options now possible,
I've created a new class "target_float_ops". There are a total of five
separate implementations of this:
host_float_ops<float> Implemented via host FP in given type
host_float_ops<double>
host_float_ops<long double>
mpfr_float_ops Implemented via MPFR if available
decimal_float_ops Implemented via libdecnumber
Note instead of using the DOUBLEST define, this always just uses the
"long double" data type. But since we now require C++11 anyway, this
type must in any case be avaialble unconditionally.
Most target floating-point operations simply dispatch to a (virtual)
member routine of this class. Which implementation to choose is
determined from the target types involved, and whether they match
some host type or not. E.g. any operation on a single type that
matches a host type is performed in that type. Operations involving
two types that both match host types are performed in the larger one
(according to C/C++ implicit conversion rules). Operations that
involve any type that does not match a host type are performed using
MPFR. (And of course operations involving decimal FP are performed
using libdecnumber.)
This first patch implements the refactoring of target-float.c as
described above, introduing the host_float_ops and decimal_float_ops
classes, and using them. Use of MPFR is introduced in the second patch.
A bit of special-case handling code is moved around to as to avoid
code duplication between host_float_ops and mpfr_float_ops.
Note that due to the changes mentioned above, I've had to update (fix)
the floating-point register values tested in the gdb.arch/vsx-regs.exp
test case. (The new values now work both with host arithmetic and MPFR.)
gdb/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* target-float.c: Do not include <math.h>.
Include <cmath> and <limits>.
(DOUBLEST): Do not define.
(class target_float_ops): New type.
(class host_float_ops): New templated type.
(class decimal_float_ops): New type.
(floatformat_to_doublest): Rename to ...
(host_float_ops<T>::from_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::from_target): New overload using a type argument.
(floatformat_from_doublest): Rename to ...
(host_float_ops<T>::to_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::to_target): New overload using a type argument.
(floatformat_printf_format): New function.
(struct printf_length_modifier): New templated type.
(floatformat_to_string): Rename to ...
(host_float_ops<T>::to_string): ... this. Use type instead of
floatformat argument. Use floatformat_printf_format and
printf_length_modifier. Remove special handling of invalid numbers,
infinities and NaN (moved to target_float_to_string).
(struct scanf_length_modifier): New templated type.
(floatformat_from_string): Rename to ...
(host_float_ops<T>::from_string): ... this. Use type instead of
floatformat argument. Use scanf_length_modifier.
(floatformat_to_longest): Rename to ...
(host_float_ops<T>::to_longest): ... this. Use type instead of
floatformat argument. Handle out-of-range values deterministically.
(floatformat_from_longest): Rename to ...
(host_float_ops<T>::from_longest): ... this. Use type instead of
floatformat argument.
(floatformat_from_ulongest): Rename to ...
(host_float_ops<T>::from_ulongest): ... this. Use type instead of
floatformat argument.
(floatformat_to_host_double): Rename to ...
(host_float_ops<T>::to_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_from_host_double): Rename to ...
(host_float_ops<T>::from_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_convert): Rename to ...
(host_float_ops<T>::convert): ... this. Use type instead of
floatformat arguments. Remove handling of no-op conversions.
(floatformat_binop): Rename to ...
(host_float_ops<T>::binop): ... this. Use type instead of
floatformat arguments.
(floatformat_compare): Rename to ...
(host_float_ops<T>::compare): ... this. Use type instead of
floatformat arguments.
(match_endianness): Use type instead of length/byte_order arguments.
(set_decnumber_context): Likewise.
(decimal_from_number): Likewise. Update calls.
(decimal_to_number): Likewise.
(decimal_is_zero): Likewise. Update calls. Move to earlier in file.
(decimal_float_ops::to_host_double): New dummy function.
(decimal_float_ops::from_host_double): Likewise.
(decimal_to_string): Rename to ...
(decimal_float_ops::to_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_string): Rename to ...
(decimal_float_ops::from_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_longest): Rename to ...
(decimal_float_ops::from_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_ulongest): Rename to ...
(decimal_float_ops::from_ulongest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_to_longest): Rename to ...
(decimal_float_ops::to_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_binop): Rename to ...
(decimal_float_ops::binop): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_compare): Rename to ...
(decimal_float_ops::compare): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_convert): Rename to ...
(decimal_float_ops::convert): ... this. Use type instead of
length/byte_order arguments. Update calls.
(target_float_same_category_p): New function.
(target_float_same_format_p): Likewise.
(target_float_format_length): Likewise.
(enum target_float_ops_kind): New type.
(get_target_float_ops_kind): New function.
(get_target_float_ops): Three new overloaded functions.
(target_float_is_zero): Update call.
(target_float_to_string): Add special handling of invalid numbers,
infinities and NaN (moved from floatformat_to_string). Use
target_float_ops callback.
(target_float_from_string): Use target_float_ops callback.
(target_float_to_longest): Likewise.
(target_float_from_longest): Likewise.
(target_float_from_ulongest): Likewise.
(target_float_to_host_double): Likewise.
(target_float_from_host_double): Likewise.
(target_float_convert): Add special case for no-op conversions.
Use target_float_ops callback.
(target_float_binop): Use target_float_ops callback.
(target_float_compare): Likewise.
gdb/testsuite/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
|
|
|
bool
|
|
|
|
decimal_float_ops::from_string (gdb_byte *addr, const struct type *type,
|
|
|
|
const std::string &string) const
|
Target FP: Merge doublest.c and dfp.c into target-float.c
Now that all target FP operations are performed via target-float.c,
this file remains the sole caller of functions in doublest.c and dfp.c.
Therefore, this patch merges the latter files into the former and
makes all their function static there.
gdb/ChangeLog:
2017-11-06 Ulrich Weigand <uweigand@de.ibm.com>
* Makefile.in (SFILES): Remove doublest.c and dfp.c.
(HFILES_NO_SRCDIR): Remove doublest.h and dfp.h.
(COMMON_OBS): Remove doublest.o and dfp.o.
Do not build target-float.c (instead of doublest.c)
with -Wformat-nonliteral.
* doublest.c: Remove file.
* doublest.h: Remove file.
* dfp.c: Remove file.
* dfp.h: Remove file.
* target-float.c: Do not include "doublest.h" and "dfp.h".
(DOUBLEST): Move here from doublest.h.
(enum float_kind): Likewise.
(FLOATFORMAT_CHAR_BIT): Likewise.
(FLOATFORMAT_LARGEST_BYTES): Likewise.
(floatformat_totalsize_bytes): Move here from doublest.c. Make static.
(floatformat_precision): Likewise.
(floatformat_normalize_byteorder, get_field, put_field): Likewise.
(floatformat_is_negative, floatformat_classify, floatformat_mantissa):
Likewise.
(host_float_format, host_double_format, host_long_double_format):
Likewise.
(floatformat_to_string, floatformat_from_string): Likewise.
(floatformat_to_doublest): Likewise. Also, inline the original
convert_floatformat_to_doublest.
(floatformat_from_doublest): Likewise. Also, inline the original
convert_floatformat_from_doublest.
Include "dpd/decimal128.h", "dpd/decimal64.h", and "dpd/decimal32.h".
(MAX_DECIMAL_STRING): Move here from dfp.c.
(match_endianness): Likewise.
(set_decnumber_context, decimal_check_errors): Likewise.
(decimal_from_number, decimal_to_number): Likewise.
(decimal_to_string, decimal_from_string): Likewise. Make static.
(decimal_from_longest, decimal_from_ulongest): Likewise.
(decimal_to_longest): Likewise.
(decimal_binop, decimal_is_zero, decimal_compare): Likewise.
(decimal_convert): Likewise.
2017-11-06 23:04:03 +08:00
|
|
|
{
|
|
|
|
decContext set;
|
|
|
|
gdb_byte dec[16];
|
|
|
|
|
Target FP: Refactor use of host floating-point arithmetic
Prepare for using MPFR to implement floating-point arithmetic by
refactoring the way host floating-point arithmetic is currently used.
In particular, fix the following two problems that cause different
(and incorrect) results due to using host arithmetic:
- Current processing always uses host "long double", and then converts
back to the actual target format. This may introduce rounding errors.
- Conversion of FP values to LONGEST simply does a host C++ type cast.
However the result of such a cast is undefined if the source value
is outside the representable range. MPFR always has defined behavior
here (returns the minimum or maximum representable value).
To fix the first issue, I've now created not just one set of routines
using host FP arithmetic (on long double), but instead three different
sets of routines, one each for host float, double, and long double.
Operations can then be performed in the desired type directly, avoiding
the extra rounding step. Using C++ templates, the three sets can all
share the same source code without duplication.
To fix the second issue, I'm simply enforcing the same conversion rule
(which makes sense anyway) when converting out-of-range values from
FP to LONGEST.
To contain the code complexity with the variety of options now possible,
I've created a new class "target_float_ops". There are a total of five
separate implementations of this:
host_float_ops<float> Implemented via host FP in given type
host_float_ops<double>
host_float_ops<long double>
mpfr_float_ops Implemented via MPFR if available
decimal_float_ops Implemented via libdecnumber
Note instead of using the DOUBLEST define, this always just uses the
"long double" data type. But since we now require C++11 anyway, this
type must in any case be avaialble unconditionally.
Most target floating-point operations simply dispatch to a (virtual)
member routine of this class. Which implementation to choose is
determined from the target types involved, and whether they match
some host type or not. E.g. any operation on a single type that
matches a host type is performed in that type. Operations involving
two types that both match host types are performed in the larger one
(according to C/C++ implicit conversion rules). Operations that
involve any type that does not match a host type are performed using
MPFR. (And of course operations involving decimal FP are performed
using libdecnumber.)
This first patch implements the refactoring of target-float.c as
described above, introduing the host_float_ops and decimal_float_ops
classes, and using them. Use of MPFR is introduced in the second patch.
A bit of special-case handling code is moved around to as to avoid
code duplication between host_float_ops and mpfr_float_ops.
Note that due to the changes mentioned above, I've had to update (fix)
the floating-point register values tested in the gdb.arch/vsx-regs.exp
test case. (The new values now work both with host arithmetic and MPFR.)
gdb/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* target-float.c: Do not include <math.h>.
Include <cmath> and <limits>.
(DOUBLEST): Do not define.
(class target_float_ops): New type.
(class host_float_ops): New templated type.
(class decimal_float_ops): New type.
(floatformat_to_doublest): Rename to ...
(host_float_ops<T>::from_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::from_target): New overload using a type argument.
(floatformat_from_doublest): Rename to ...
(host_float_ops<T>::to_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::to_target): New overload using a type argument.
(floatformat_printf_format): New function.
(struct printf_length_modifier): New templated type.
(floatformat_to_string): Rename to ...
(host_float_ops<T>::to_string): ... this. Use type instead of
floatformat argument. Use floatformat_printf_format and
printf_length_modifier. Remove special handling of invalid numbers,
infinities and NaN (moved to target_float_to_string).
(struct scanf_length_modifier): New templated type.
(floatformat_from_string): Rename to ...
(host_float_ops<T>::from_string): ... this. Use type instead of
floatformat argument. Use scanf_length_modifier.
(floatformat_to_longest): Rename to ...
(host_float_ops<T>::to_longest): ... this. Use type instead of
floatformat argument. Handle out-of-range values deterministically.
(floatformat_from_longest): Rename to ...
(host_float_ops<T>::from_longest): ... this. Use type instead of
floatformat argument.
(floatformat_from_ulongest): Rename to ...
(host_float_ops<T>::from_ulongest): ... this. Use type instead of
floatformat argument.
(floatformat_to_host_double): Rename to ...
(host_float_ops<T>::to_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_from_host_double): Rename to ...
(host_float_ops<T>::from_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_convert): Rename to ...
(host_float_ops<T>::convert): ... this. Use type instead of
floatformat arguments. Remove handling of no-op conversions.
(floatformat_binop): Rename to ...
(host_float_ops<T>::binop): ... this. Use type instead of
floatformat arguments.
(floatformat_compare): Rename to ...
(host_float_ops<T>::compare): ... this. Use type instead of
floatformat arguments.
(match_endianness): Use type instead of length/byte_order arguments.
(set_decnumber_context): Likewise.
(decimal_from_number): Likewise. Update calls.
(decimal_to_number): Likewise.
(decimal_is_zero): Likewise. Update calls. Move to earlier in file.
(decimal_float_ops::to_host_double): New dummy function.
(decimal_float_ops::from_host_double): Likewise.
(decimal_to_string): Rename to ...
(decimal_float_ops::to_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_string): Rename to ...
(decimal_float_ops::from_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_longest): Rename to ...
(decimal_float_ops::from_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_ulongest): Rename to ...
(decimal_float_ops::from_ulongest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_to_longest): Rename to ...
(decimal_float_ops::to_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_binop): Rename to ...
(decimal_float_ops::binop): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_compare): Rename to ...
(decimal_float_ops::compare): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_convert): Rename to ...
(decimal_float_ops::convert): ... this. Use type instead of
length/byte_order arguments. Update calls.
(target_float_same_category_p): New function.
(target_float_same_format_p): Likewise.
(target_float_format_length): Likewise.
(enum target_float_ops_kind): New type.
(get_target_float_ops_kind): New function.
(get_target_float_ops): Three new overloaded functions.
(target_float_is_zero): Update call.
(target_float_to_string): Add special handling of invalid numbers,
infinities and NaN (moved from floatformat_to_string). Use
target_float_ops callback.
(target_float_from_string): Use target_float_ops callback.
(target_float_to_longest): Likewise.
(target_float_from_longest): Likewise.
(target_float_from_ulongest): Likewise.
(target_float_to_host_double): Likewise.
(target_float_from_host_double): Likewise.
(target_float_convert): Add special case for no-op conversions.
Use target_float_ops callback.
(target_float_binop): Use target_float_ops callback.
(target_float_compare): Likewise.
gdb/testsuite/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
|
|
|
set_decnumber_context (&set, type);
|
Target FP: Merge doublest.c and dfp.c into target-float.c
Now that all target FP operations are performed via target-float.c,
this file remains the sole caller of functions in doublest.c and dfp.c.
Therefore, this patch merges the latter files into the former and
makes all their function static there.
gdb/ChangeLog:
2017-11-06 Ulrich Weigand <uweigand@de.ibm.com>
* Makefile.in (SFILES): Remove doublest.c and dfp.c.
(HFILES_NO_SRCDIR): Remove doublest.h and dfp.h.
(COMMON_OBS): Remove doublest.o and dfp.o.
Do not build target-float.c (instead of doublest.c)
with -Wformat-nonliteral.
* doublest.c: Remove file.
* doublest.h: Remove file.
* dfp.c: Remove file.
* dfp.h: Remove file.
* target-float.c: Do not include "doublest.h" and "dfp.h".
(DOUBLEST): Move here from doublest.h.
(enum float_kind): Likewise.
(FLOATFORMAT_CHAR_BIT): Likewise.
(FLOATFORMAT_LARGEST_BYTES): Likewise.
(floatformat_totalsize_bytes): Move here from doublest.c. Make static.
(floatformat_precision): Likewise.
(floatformat_normalize_byteorder, get_field, put_field): Likewise.
(floatformat_is_negative, floatformat_classify, floatformat_mantissa):
Likewise.
(host_float_format, host_double_format, host_long_double_format):
Likewise.
(floatformat_to_string, floatformat_from_string): Likewise.
(floatformat_to_doublest): Likewise. Also, inline the original
convert_floatformat_to_doublest.
(floatformat_from_doublest): Likewise. Also, inline the original
convert_floatformat_from_doublest.
Include "dpd/decimal128.h", "dpd/decimal64.h", and "dpd/decimal32.h".
(MAX_DECIMAL_STRING): Move here from dfp.c.
(match_endianness): Likewise.
(set_decnumber_context, decimal_check_errors): Likewise.
(decimal_from_number, decimal_to_number): Likewise.
(decimal_to_string, decimal_from_string): Likewise. Make static.
(decimal_from_longest, decimal_from_ulongest): Likewise.
(decimal_to_longest): Likewise.
(decimal_binop, decimal_is_zero, decimal_compare): Likewise.
(decimal_convert): Likewise.
2017-11-06 23:04:03 +08:00
|
|
|
|
Target FP: Refactor use of host floating-point arithmetic
Prepare for using MPFR to implement floating-point arithmetic by
refactoring the way host floating-point arithmetic is currently used.
In particular, fix the following two problems that cause different
(and incorrect) results due to using host arithmetic:
- Current processing always uses host "long double", and then converts
back to the actual target format. This may introduce rounding errors.
- Conversion of FP values to LONGEST simply does a host C++ type cast.
However the result of such a cast is undefined if the source value
is outside the representable range. MPFR always has defined behavior
here (returns the minimum or maximum representable value).
To fix the first issue, I've now created not just one set of routines
using host FP arithmetic (on long double), but instead three different
sets of routines, one each for host float, double, and long double.
Operations can then be performed in the desired type directly, avoiding
the extra rounding step. Using C++ templates, the three sets can all
share the same source code without duplication.
To fix the second issue, I'm simply enforcing the same conversion rule
(which makes sense anyway) when converting out-of-range values from
FP to LONGEST.
To contain the code complexity with the variety of options now possible,
I've created a new class "target_float_ops". There are a total of five
separate implementations of this:
host_float_ops<float> Implemented via host FP in given type
host_float_ops<double>
host_float_ops<long double>
mpfr_float_ops Implemented via MPFR if available
decimal_float_ops Implemented via libdecnumber
Note instead of using the DOUBLEST define, this always just uses the
"long double" data type. But since we now require C++11 anyway, this
type must in any case be avaialble unconditionally.
Most target floating-point operations simply dispatch to a (virtual)
member routine of this class. Which implementation to choose is
determined from the target types involved, and whether they match
some host type or not. E.g. any operation on a single type that
matches a host type is performed in that type. Operations involving
two types that both match host types are performed in the larger one
(according to C/C++ implicit conversion rules). Operations that
involve any type that does not match a host type are performed using
MPFR. (And of course operations involving decimal FP are performed
using libdecnumber.)
This first patch implements the refactoring of target-float.c as
described above, introduing the host_float_ops and decimal_float_ops
classes, and using them. Use of MPFR is introduced in the second patch.
A bit of special-case handling code is moved around to as to avoid
code duplication between host_float_ops and mpfr_float_ops.
Note that due to the changes mentioned above, I've had to update (fix)
the floating-point register values tested in the gdb.arch/vsx-regs.exp
test case. (The new values now work both with host arithmetic and MPFR.)
gdb/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* target-float.c: Do not include <math.h>.
Include <cmath> and <limits>.
(DOUBLEST): Do not define.
(class target_float_ops): New type.
(class host_float_ops): New templated type.
(class decimal_float_ops): New type.
(floatformat_to_doublest): Rename to ...
(host_float_ops<T>::from_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::from_target): New overload using a type argument.
(floatformat_from_doublest): Rename to ...
(host_float_ops<T>::to_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::to_target): New overload using a type argument.
(floatformat_printf_format): New function.
(struct printf_length_modifier): New templated type.
(floatformat_to_string): Rename to ...
(host_float_ops<T>::to_string): ... this. Use type instead of
floatformat argument. Use floatformat_printf_format and
printf_length_modifier. Remove special handling of invalid numbers,
infinities and NaN (moved to target_float_to_string).
(struct scanf_length_modifier): New templated type.
(floatformat_from_string): Rename to ...
(host_float_ops<T>::from_string): ... this. Use type instead of
floatformat argument. Use scanf_length_modifier.
(floatformat_to_longest): Rename to ...
(host_float_ops<T>::to_longest): ... this. Use type instead of
floatformat argument. Handle out-of-range values deterministically.
(floatformat_from_longest): Rename to ...
(host_float_ops<T>::from_longest): ... this. Use type instead of
floatformat argument.
(floatformat_from_ulongest): Rename to ...
(host_float_ops<T>::from_ulongest): ... this. Use type instead of
floatformat argument.
(floatformat_to_host_double): Rename to ...
(host_float_ops<T>::to_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_from_host_double): Rename to ...
(host_float_ops<T>::from_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_convert): Rename to ...
(host_float_ops<T>::convert): ... this. Use type instead of
floatformat arguments. Remove handling of no-op conversions.
(floatformat_binop): Rename to ...
(host_float_ops<T>::binop): ... this. Use type instead of
floatformat arguments.
(floatformat_compare): Rename to ...
(host_float_ops<T>::compare): ... this. Use type instead of
floatformat arguments.
(match_endianness): Use type instead of length/byte_order arguments.
(set_decnumber_context): Likewise.
(decimal_from_number): Likewise. Update calls.
(decimal_to_number): Likewise.
(decimal_is_zero): Likewise. Update calls. Move to earlier in file.
(decimal_float_ops::to_host_double): New dummy function.
(decimal_float_ops::from_host_double): Likewise.
(decimal_to_string): Rename to ...
(decimal_float_ops::to_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_string): Rename to ...
(decimal_float_ops::from_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_longest): Rename to ...
(decimal_float_ops::from_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_ulongest): Rename to ...
(decimal_float_ops::from_ulongest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_to_longest): Rename to ...
(decimal_float_ops::to_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_binop): Rename to ...
(decimal_float_ops::binop): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_compare): Rename to ...
(decimal_float_ops::compare): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_convert): Rename to ...
(decimal_float_ops::convert): ... this. Use type instead of
length/byte_order arguments. Update calls.
(target_float_same_category_p): New function.
(target_float_same_format_p): Likewise.
(target_float_format_length): Likewise.
(enum target_float_ops_kind): New type.
(get_target_float_ops_kind): New function.
(get_target_float_ops): Three new overloaded functions.
(target_float_is_zero): Update call.
(target_float_to_string): Add special handling of invalid numbers,
infinities and NaN (moved from floatformat_to_string). Use
target_float_ops callback.
(target_float_from_string): Use target_float_ops callback.
(target_float_to_longest): Likewise.
(target_float_from_longest): Likewise.
(target_float_from_ulongest): Likewise.
(target_float_to_host_double): Likewise.
(target_float_from_host_double): Likewise.
(target_float_convert): Add special case for no-op conversions.
Use target_float_ops callback.
(target_float_binop): Use target_float_ops callback.
(target_float_compare): Likewise.
gdb/testsuite/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
|
|
|
switch (TYPE_LENGTH (type))
|
Target FP: Merge doublest.c and dfp.c into target-float.c
Now that all target FP operations are performed via target-float.c,
this file remains the sole caller of functions in doublest.c and dfp.c.
Therefore, this patch merges the latter files into the former and
makes all their function static there.
gdb/ChangeLog:
2017-11-06 Ulrich Weigand <uweigand@de.ibm.com>
* Makefile.in (SFILES): Remove doublest.c and dfp.c.
(HFILES_NO_SRCDIR): Remove doublest.h and dfp.h.
(COMMON_OBS): Remove doublest.o and dfp.o.
Do not build target-float.c (instead of doublest.c)
with -Wformat-nonliteral.
* doublest.c: Remove file.
* doublest.h: Remove file.
* dfp.c: Remove file.
* dfp.h: Remove file.
* target-float.c: Do not include "doublest.h" and "dfp.h".
(DOUBLEST): Move here from doublest.h.
(enum float_kind): Likewise.
(FLOATFORMAT_CHAR_BIT): Likewise.
(FLOATFORMAT_LARGEST_BYTES): Likewise.
(floatformat_totalsize_bytes): Move here from doublest.c. Make static.
(floatformat_precision): Likewise.
(floatformat_normalize_byteorder, get_field, put_field): Likewise.
(floatformat_is_negative, floatformat_classify, floatformat_mantissa):
Likewise.
(host_float_format, host_double_format, host_long_double_format):
Likewise.
(floatformat_to_string, floatformat_from_string): Likewise.
(floatformat_to_doublest): Likewise. Also, inline the original
convert_floatformat_to_doublest.
(floatformat_from_doublest): Likewise. Also, inline the original
convert_floatformat_from_doublest.
Include "dpd/decimal128.h", "dpd/decimal64.h", and "dpd/decimal32.h".
(MAX_DECIMAL_STRING): Move here from dfp.c.
(match_endianness): Likewise.
(set_decnumber_context, decimal_check_errors): Likewise.
(decimal_from_number, decimal_to_number): Likewise.
(decimal_to_string, decimal_from_string): Likewise. Make static.
(decimal_from_longest, decimal_from_ulongest): Likewise.
(decimal_to_longest): Likewise.
(decimal_binop, decimal_is_zero, decimal_compare): Likewise.
(decimal_convert): Likewise.
2017-11-06 23:04:03 +08:00
|
|
|
{
|
|
|
|
case 4:
|
|
|
|
decimal32FromString ((decimal32 *) dec, string.c_str (), &set);
|
|
|
|
break;
|
|
|
|
case 8:
|
|
|
|
decimal64FromString ((decimal64 *) dec, string.c_str (), &set);
|
|
|
|
break;
|
|
|
|
case 16:
|
|
|
|
decimal128FromString ((decimal128 *) dec, string.c_str (), &set);
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
error (_("Unknown decimal floating point type."));
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
Target FP: Refactor use of host floating-point arithmetic
Prepare for using MPFR to implement floating-point arithmetic by
refactoring the way host floating-point arithmetic is currently used.
In particular, fix the following two problems that cause different
(and incorrect) results due to using host arithmetic:
- Current processing always uses host "long double", and then converts
back to the actual target format. This may introduce rounding errors.
- Conversion of FP values to LONGEST simply does a host C++ type cast.
However the result of such a cast is undefined if the source value
is outside the representable range. MPFR always has defined behavior
here (returns the minimum or maximum representable value).
To fix the first issue, I've now created not just one set of routines
using host FP arithmetic (on long double), but instead three different
sets of routines, one each for host float, double, and long double.
Operations can then be performed in the desired type directly, avoiding
the extra rounding step. Using C++ templates, the three sets can all
share the same source code without duplication.
To fix the second issue, I'm simply enforcing the same conversion rule
(which makes sense anyway) when converting out-of-range values from
FP to LONGEST.
To contain the code complexity with the variety of options now possible,
I've created a new class "target_float_ops". There are a total of five
separate implementations of this:
host_float_ops<float> Implemented via host FP in given type
host_float_ops<double>
host_float_ops<long double>
mpfr_float_ops Implemented via MPFR if available
decimal_float_ops Implemented via libdecnumber
Note instead of using the DOUBLEST define, this always just uses the
"long double" data type. But since we now require C++11 anyway, this
type must in any case be avaialble unconditionally.
Most target floating-point operations simply dispatch to a (virtual)
member routine of this class. Which implementation to choose is
determined from the target types involved, and whether they match
some host type or not. E.g. any operation on a single type that
matches a host type is performed in that type. Operations involving
two types that both match host types are performed in the larger one
(according to C/C++ implicit conversion rules). Operations that
involve any type that does not match a host type are performed using
MPFR. (And of course operations involving decimal FP are performed
using libdecnumber.)
This first patch implements the refactoring of target-float.c as
described above, introduing the host_float_ops and decimal_float_ops
classes, and using them. Use of MPFR is introduced in the second patch.
A bit of special-case handling code is moved around to as to avoid
code duplication between host_float_ops and mpfr_float_ops.
Note that due to the changes mentioned above, I've had to update (fix)
the floating-point register values tested in the gdb.arch/vsx-regs.exp
test case. (The new values now work both with host arithmetic and MPFR.)
gdb/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* target-float.c: Do not include <math.h>.
Include <cmath> and <limits>.
(DOUBLEST): Do not define.
(class target_float_ops): New type.
(class host_float_ops): New templated type.
(class decimal_float_ops): New type.
(floatformat_to_doublest): Rename to ...
(host_float_ops<T>::from_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::from_target): New overload using a type argument.
(floatformat_from_doublest): Rename to ...
(host_float_ops<T>::to_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::to_target): New overload using a type argument.
(floatformat_printf_format): New function.
(struct printf_length_modifier): New templated type.
(floatformat_to_string): Rename to ...
(host_float_ops<T>::to_string): ... this. Use type instead of
floatformat argument. Use floatformat_printf_format and
printf_length_modifier. Remove special handling of invalid numbers,
infinities and NaN (moved to target_float_to_string).
(struct scanf_length_modifier): New templated type.
(floatformat_from_string): Rename to ...
(host_float_ops<T>::from_string): ... this. Use type instead of
floatformat argument. Use scanf_length_modifier.
(floatformat_to_longest): Rename to ...
(host_float_ops<T>::to_longest): ... this. Use type instead of
floatformat argument. Handle out-of-range values deterministically.
(floatformat_from_longest): Rename to ...
(host_float_ops<T>::from_longest): ... this. Use type instead of
floatformat argument.
(floatformat_from_ulongest): Rename to ...
(host_float_ops<T>::from_ulongest): ... this. Use type instead of
floatformat argument.
(floatformat_to_host_double): Rename to ...
(host_float_ops<T>::to_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_from_host_double): Rename to ...
(host_float_ops<T>::from_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_convert): Rename to ...
(host_float_ops<T>::convert): ... this. Use type instead of
floatformat arguments. Remove handling of no-op conversions.
(floatformat_binop): Rename to ...
(host_float_ops<T>::binop): ... this. Use type instead of
floatformat arguments.
(floatformat_compare): Rename to ...
(host_float_ops<T>::compare): ... this. Use type instead of
floatformat arguments.
(match_endianness): Use type instead of length/byte_order arguments.
(set_decnumber_context): Likewise.
(decimal_from_number): Likewise. Update calls.
(decimal_to_number): Likewise.
(decimal_is_zero): Likewise. Update calls. Move to earlier in file.
(decimal_float_ops::to_host_double): New dummy function.
(decimal_float_ops::from_host_double): Likewise.
(decimal_to_string): Rename to ...
(decimal_float_ops::to_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_string): Rename to ...
(decimal_float_ops::from_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_longest): Rename to ...
(decimal_float_ops::from_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_ulongest): Rename to ...
(decimal_float_ops::from_ulongest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_to_longest): Rename to ...
(decimal_float_ops::to_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_binop): Rename to ...
(decimal_float_ops::binop): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_compare): Rename to ...
(decimal_float_ops::compare): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_convert): Rename to ...
(decimal_float_ops::convert): ... this. Use type instead of
length/byte_order arguments. Update calls.
(target_float_same_category_p): New function.
(target_float_same_format_p): Likewise.
(target_float_format_length): Likewise.
(enum target_float_ops_kind): New type.
(get_target_float_ops_kind): New function.
(get_target_float_ops): Three new overloaded functions.
(target_float_is_zero): Update call.
(target_float_to_string): Add special handling of invalid numbers,
infinities and NaN (moved from floatformat_to_string). Use
target_float_ops callback.
(target_float_from_string): Use target_float_ops callback.
(target_float_to_longest): Likewise.
(target_float_from_longest): Likewise.
(target_float_from_ulongest): Likewise.
(target_float_to_host_double): Likewise.
(target_float_from_host_double): Likewise.
(target_float_convert): Add special case for no-op conversions.
Use target_float_ops callback.
(target_float_binop): Use target_float_ops callback.
(target_float_compare): Likewise.
gdb/testsuite/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
|
|
|
match_endianness (dec, type, addr);
|
Target FP: Merge doublest.c and dfp.c into target-float.c
Now that all target FP operations are performed via target-float.c,
this file remains the sole caller of functions in doublest.c and dfp.c.
Therefore, this patch merges the latter files into the former and
makes all their function static there.
gdb/ChangeLog:
2017-11-06 Ulrich Weigand <uweigand@de.ibm.com>
* Makefile.in (SFILES): Remove doublest.c and dfp.c.
(HFILES_NO_SRCDIR): Remove doublest.h and dfp.h.
(COMMON_OBS): Remove doublest.o and dfp.o.
Do not build target-float.c (instead of doublest.c)
with -Wformat-nonliteral.
* doublest.c: Remove file.
* doublest.h: Remove file.
* dfp.c: Remove file.
* dfp.h: Remove file.
* target-float.c: Do not include "doublest.h" and "dfp.h".
(DOUBLEST): Move here from doublest.h.
(enum float_kind): Likewise.
(FLOATFORMAT_CHAR_BIT): Likewise.
(FLOATFORMAT_LARGEST_BYTES): Likewise.
(floatformat_totalsize_bytes): Move here from doublest.c. Make static.
(floatformat_precision): Likewise.
(floatformat_normalize_byteorder, get_field, put_field): Likewise.
(floatformat_is_negative, floatformat_classify, floatformat_mantissa):
Likewise.
(host_float_format, host_double_format, host_long_double_format):
Likewise.
(floatformat_to_string, floatformat_from_string): Likewise.
(floatformat_to_doublest): Likewise. Also, inline the original
convert_floatformat_to_doublest.
(floatformat_from_doublest): Likewise. Also, inline the original
convert_floatformat_from_doublest.
Include "dpd/decimal128.h", "dpd/decimal64.h", and "dpd/decimal32.h".
(MAX_DECIMAL_STRING): Move here from dfp.c.
(match_endianness): Likewise.
(set_decnumber_context, decimal_check_errors): Likewise.
(decimal_from_number, decimal_to_number): Likewise.
(decimal_to_string, decimal_from_string): Likewise. Make static.
(decimal_from_longest, decimal_from_ulongest): Likewise.
(decimal_to_longest): Likewise.
(decimal_binop, decimal_is_zero, decimal_compare): Likewise.
(decimal_convert): Likewise.
2017-11-06 23:04:03 +08:00
|
|
|
|
|
|
|
/* Check for errors in the DFP operation. */
|
|
|
|
decimal_check_errors (&set);
|
|
|
|
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Converts a LONGEST to a decimal float of specified LEN bytes. */
|
Target FP: Refactor use of host floating-point arithmetic
Prepare for using MPFR to implement floating-point arithmetic by
refactoring the way host floating-point arithmetic is currently used.
In particular, fix the following two problems that cause different
(and incorrect) results due to using host arithmetic:
- Current processing always uses host "long double", and then converts
back to the actual target format. This may introduce rounding errors.
- Conversion of FP values to LONGEST simply does a host C++ type cast.
However the result of such a cast is undefined if the source value
is outside the representable range. MPFR always has defined behavior
here (returns the minimum or maximum representable value).
To fix the first issue, I've now created not just one set of routines
using host FP arithmetic (on long double), but instead three different
sets of routines, one each for host float, double, and long double.
Operations can then be performed in the desired type directly, avoiding
the extra rounding step. Using C++ templates, the three sets can all
share the same source code without duplication.
To fix the second issue, I'm simply enforcing the same conversion rule
(which makes sense anyway) when converting out-of-range values from
FP to LONGEST.
To contain the code complexity with the variety of options now possible,
I've created a new class "target_float_ops". There are a total of five
separate implementations of this:
host_float_ops<float> Implemented via host FP in given type
host_float_ops<double>
host_float_ops<long double>
mpfr_float_ops Implemented via MPFR if available
decimal_float_ops Implemented via libdecnumber
Note instead of using the DOUBLEST define, this always just uses the
"long double" data type. But since we now require C++11 anyway, this
type must in any case be avaialble unconditionally.
Most target floating-point operations simply dispatch to a (virtual)
member routine of this class. Which implementation to choose is
determined from the target types involved, and whether they match
some host type or not. E.g. any operation on a single type that
matches a host type is performed in that type. Operations involving
two types that both match host types are performed in the larger one
(according to C/C++ implicit conversion rules). Operations that
involve any type that does not match a host type are performed using
MPFR. (And of course operations involving decimal FP are performed
using libdecnumber.)
This first patch implements the refactoring of target-float.c as
described above, introduing the host_float_ops and decimal_float_ops
classes, and using them. Use of MPFR is introduced in the second patch.
A bit of special-case handling code is moved around to as to avoid
code duplication between host_float_ops and mpfr_float_ops.
Note that due to the changes mentioned above, I've had to update (fix)
the floating-point register values tested in the gdb.arch/vsx-regs.exp
test case. (The new values now work both with host arithmetic and MPFR.)
gdb/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* target-float.c: Do not include <math.h>.
Include <cmath> and <limits>.
(DOUBLEST): Do not define.
(class target_float_ops): New type.
(class host_float_ops): New templated type.
(class decimal_float_ops): New type.
(floatformat_to_doublest): Rename to ...
(host_float_ops<T>::from_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::from_target): New overload using a type argument.
(floatformat_from_doublest): Rename to ...
(host_float_ops<T>::to_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::to_target): New overload using a type argument.
(floatformat_printf_format): New function.
(struct printf_length_modifier): New templated type.
(floatformat_to_string): Rename to ...
(host_float_ops<T>::to_string): ... this. Use type instead of
floatformat argument. Use floatformat_printf_format and
printf_length_modifier. Remove special handling of invalid numbers,
infinities and NaN (moved to target_float_to_string).
(struct scanf_length_modifier): New templated type.
(floatformat_from_string): Rename to ...
(host_float_ops<T>::from_string): ... this. Use type instead of
floatformat argument. Use scanf_length_modifier.
(floatformat_to_longest): Rename to ...
(host_float_ops<T>::to_longest): ... this. Use type instead of
floatformat argument. Handle out-of-range values deterministically.
(floatformat_from_longest): Rename to ...
(host_float_ops<T>::from_longest): ... this. Use type instead of
floatformat argument.
(floatformat_from_ulongest): Rename to ...
(host_float_ops<T>::from_ulongest): ... this. Use type instead of
floatformat argument.
(floatformat_to_host_double): Rename to ...
(host_float_ops<T>::to_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_from_host_double): Rename to ...
(host_float_ops<T>::from_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_convert): Rename to ...
(host_float_ops<T>::convert): ... this. Use type instead of
floatformat arguments. Remove handling of no-op conversions.
(floatformat_binop): Rename to ...
(host_float_ops<T>::binop): ... this. Use type instead of
floatformat arguments.
(floatformat_compare): Rename to ...
(host_float_ops<T>::compare): ... this. Use type instead of
floatformat arguments.
(match_endianness): Use type instead of length/byte_order arguments.
(set_decnumber_context): Likewise.
(decimal_from_number): Likewise. Update calls.
(decimal_to_number): Likewise.
(decimal_is_zero): Likewise. Update calls. Move to earlier in file.
(decimal_float_ops::to_host_double): New dummy function.
(decimal_float_ops::from_host_double): Likewise.
(decimal_to_string): Rename to ...
(decimal_float_ops::to_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_string): Rename to ...
(decimal_float_ops::from_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_longest): Rename to ...
(decimal_float_ops::from_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_ulongest): Rename to ...
(decimal_float_ops::from_ulongest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_to_longest): Rename to ...
(decimal_float_ops::to_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_binop): Rename to ...
(decimal_float_ops::binop): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_compare): Rename to ...
(decimal_float_ops::compare): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_convert): Rename to ...
(decimal_float_ops::convert): ... this. Use type instead of
length/byte_order arguments. Update calls.
(target_float_same_category_p): New function.
(target_float_same_format_p): Likewise.
(target_float_format_length): Likewise.
(enum target_float_ops_kind): New type.
(get_target_float_ops_kind): New function.
(get_target_float_ops): Three new overloaded functions.
(target_float_is_zero): Update call.
(target_float_to_string): Add special handling of invalid numbers,
infinities and NaN (moved from floatformat_to_string). Use
target_float_ops callback.
(target_float_from_string): Use target_float_ops callback.
(target_float_to_longest): Likewise.
(target_float_from_longest): Likewise.
(target_float_from_ulongest): Likewise.
(target_float_to_host_double): Likewise.
(target_float_from_host_double): Likewise.
(target_float_convert): Add special case for no-op conversions.
Use target_float_ops callback.
(target_float_binop): Use target_float_ops callback.
(target_float_compare): Likewise.
gdb/testsuite/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
|
|
|
void
|
|
|
|
decimal_float_ops::from_longest (gdb_byte *addr, const struct type *type,
|
|
|
|
LONGEST from) const
|
Target FP: Merge doublest.c and dfp.c into target-float.c
Now that all target FP operations are performed via target-float.c,
this file remains the sole caller of functions in doublest.c and dfp.c.
Therefore, this patch merges the latter files into the former and
makes all their function static there.
gdb/ChangeLog:
2017-11-06 Ulrich Weigand <uweigand@de.ibm.com>
* Makefile.in (SFILES): Remove doublest.c and dfp.c.
(HFILES_NO_SRCDIR): Remove doublest.h and dfp.h.
(COMMON_OBS): Remove doublest.o and dfp.o.
Do not build target-float.c (instead of doublest.c)
with -Wformat-nonliteral.
* doublest.c: Remove file.
* doublest.h: Remove file.
* dfp.c: Remove file.
* dfp.h: Remove file.
* target-float.c: Do not include "doublest.h" and "dfp.h".
(DOUBLEST): Move here from doublest.h.
(enum float_kind): Likewise.
(FLOATFORMAT_CHAR_BIT): Likewise.
(FLOATFORMAT_LARGEST_BYTES): Likewise.
(floatformat_totalsize_bytes): Move here from doublest.c. Make static.
(floatformat_precision): Likewise.
(floatformat_normalize_byteorder, get_field, put_field): Likewise.
(floatformat_is_negative, floatformat_classify, floatformat_mantissa):
Likewise.
(host_float_format, host_double_format, host_long_double_format):
Likewise.
(floatformat_to_string, floatformat_from_string): Likewise.
(floatformat_to_doublest): Likewise. Also, inline the original
convert_floatformat_to_doublest.
(floatformat_from_doublest): Likewise. Also, inline the original
convert_floatformat_from_doublest.
Include "dpd/decimal128.h", "dpd/decimal64.h", and "dpd/decimal32.h".
(MAX_DECIMAL_STRING): Move here from dfp.c.
(match_endianness): Likewise.
(set_decnumber_context, decimal_check_errors): Likewise.
(decimal_from_number, decimal_to_number): Likewise.
(decimal_to_string, decimal_from_string): Likewise. Make static.
(decimal_from_longest, decimal_from_ulongest): Likewise.
(decimal_to_longest): Likewise.
(decimal_binop, decimal_is_zero, decimal_compare): Likewise.
(decimal_convert): Likewise.
2017-11-06 23:04:03 +08:00
|
|
|
{
|
|
|
|
decNumber number;
|
2017-11-17 01:49:11 +08:00
|
|
|
|
Target FP: Merge doublest.c and dfp.c into target-float.c
Now that all target FP operations are performed via target-float.c,
this file remains the sole caller of functions in doublest.c and dfp.c.
Therefore, this patch merges the latter files into the former and
makes all their function static there.
gdb/ChangeLog:
2017-11-06 Ulrich Weigand <uweigand@de.ibm.com>
* Makefile.in (SFILES): Remove doublest.c and dfp.c.
(HFILES_NO_SRCDIR): Remove doublest.h and dfp.h.
(COMMON_OBS): Remove doublest.o and dfp.o.
Do not build target-float.c (instead of doublest.c)
with -Wformat-nonliteral.
* doublest.c: Remove file.
* doublest.h: Remove file.
* dfp.c: Remove file.
* dfp.h: Remove file.
* target-float.c: Do not include "doublest.h" and "dfp.h".
(DOUBLEST): Move here from doublest.h.
(enum float_kind): Likewise.
(FLOATFORMAT_CHAR_BIT): Likewise.
(FLOATFORMAT_LARGEST_BYTES): Likewise.
(floatformat_totalsize_bytes): Move here from doublest.c. Make static.
(floatformat_precision): Likewise.
(floatformat_normalize_byteorder, get_field, put_field): Likewise.
(floatformat_is_negative, floatformat_classify, floatformat_mantissa):
Likewise.
(host_float_format, host_double_format, host_long_double_format):
Likewise.
(floatformat_to_string, floatformat_from_string): Likewise.
(floatformat_to_doublest): Likewise. Also, inline the original
convert_floatformat_to_doublest.
(floatformat_from_doublest): Likewise. Also, inline the original
convert_floatformat_from_doublest.
Include "dpd/decimal128.h", "dpd/decimal64.h", and "dpd/decimal32.h".
(MAX_DECIMAL_STRING): Move here from dfp.c.
(match_endianness): Likewise.
(set_decnumber_context, decimal_check_errors): Likewise.
(decimal_from_number, decimal_to_number): Likewise.
(decimal_to_string, decimal_from_string): Likewise. Make static.
(decimal_from_longest, decimal_from_ulongest): Likewise.
(decimal_to_longest): Likewise.
(decimal_binop, decimal_is_zero, decimal_compare): Likewise.
(decimal_convert): Likewise.
2017-11-06 23:04:03 +08:00
|
|
|
if ((int32_t) from != from)
|
|
|
|
/* libdecnumber can convert only 32-bit integers. */
|
|
|
|
error (_("Conversion of large integer to a "
|
|
|
|
"decimal floating type is not supported."));
|
|
|
|
|
|
|
|
decNumberFromInt32 (&number, (int32_t) from);
|
|
|
|
|
Target FP: Refactor use of host floating-point arithmetic
Prepare for using MPFR to implement floating-point arithmetic by
refactoring the way host floating-point arithmetic is currently used.
In particular, fix the following two problems that cause different
(and incorrect) results due to using host arithmetic:
- Current processing always uses host "long double", and then converts
back to the actual target format. This may introduce rounding errors.
- Conversion of FP values to LONGEST simply does a host C++ type cast.
However the result of such a cast is undefined if the source value
is outside the representable range. MPFR always has defined behavior
here (returns the minimum or maximum representable value).
To fix the first issue, I've now created not just one set of routines
using host FP arithmetic (on long double), but instead three different
sets of routines, one each for host float, double, and long double.
Operations can then be performed in the desired type directly, avoiding
the extra rounding step. Using C++ templates, the three sets can all
share the same source code without duplication.
To fix the second issue, I'm simply enforcing the same conversion rule
(which makes sense anyway) when converting out-of-range values from
FP to LONGEST.
To contain the code complexity with the variety of options now possible,
I've created a new class "target_float_ops". There are a total of five
separate implementations of this:
host_float_ops<float> Implemented via host FP in given type
host_float_ops<double>
host_float_ops<long double>
mpfr_float_ops Implemented via MPFR if available
decimal_float_ops Implemented via libdecnumber
Note instead of using the DOUBLEST define, this always just uses the
"long double" data type. But since we now require C++11 anyway, this
type must in any case be avaialble unconditionally.
Most target floating-point operations simply dispatch to a (virtual)
member routine of this class. Which implementation to choose is
determined from the target types involved, and whether they match
some host type or not. E.g. any operation on a single type that
matches a host type is performed in that type. Operations involving
two types that both match host types are performed in the larger one
(according to C/C++ implicit conversion rules). Operations that
involve any type that does not match a host type are performed using
MPFR. (And of course operations involving decimal FP are performed
using libdecnumber.)
This first patch implements the refactoring of target-float.c as
described above, introduing the host_float_ops and decimal_float_ops
classes, and using them. Use of MPFR is introduced in the second patch.
A bit of special-case handling code is moved around to as to avoid
code duplication between host_float_ops and mpfr_float_ops.
Note that due to the changes mentioned above, I've had to update (fix)
the floating-point register values tested in the gdb.arch/vsx-regs.exp
test case. (The new values now work both with host arithmetic and MPFR.)
gdb/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* target-float.c: Do not include <math.h>.
Include <cmath> and <limits>.
(DOUBLEST): Do not define.
(class target_float_ops): New type.
(class host_float_ops): New templated type.
(class decimal_float_ops): New type.
(floatformat_to_doublest): Rename to ...
(host_float_ops<T>::from_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::from_target): New overload using a type argument.
(floatformat_from_doublest): Rename to ...
(host_float_ops<T>::to_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::to_target): New overload using a type argument.
(floatformat_printf_format): New function.
(struct printf_length_modifier): New templated type.
(floatformat_to_string): Rename to ...
(host_float_ops<T>::to_string): ... this. Use type instead of
floatformat argument. Use floatformat_printf_format and
printf_length_modifier. Remove special handling of invalid numbers,
infinities and NaN (moved to target_float_to_string).
(struct scanf_length_modifier): New templated type.
(floatformat_from_string): Rename to ...
(host_float_ops<T>::from_string): ... this. Use type instead of
floatformat argument. Use scanf_length_modifier.
(floatformat_to_longest): Rename to ...
(host_float_ops<T>::to_longest): ... this. Use type instead of
floatformat argument. Handle out-of-range values deterministically.
(floatformat_from_longest): Rename to ...
(host_float_ops<T>::from_longest): ... this. Use type instead of
floatformat argument.
(floatformat_from_ulongest): Rename to ...
(host_float_ops<T>::from_ulongest): ... this. Use type instead of
floatformat argument.
(floatformat_to_host_double): Rename to ...
(host_float_ops<T>::to_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_from_host_double): Rename to ...
(host_float_ops<T>::from_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_convert): Rename to ...
(host_float_ops<T>::convert): ... this. Use type instead of
floatformat arguments. Remove handling of no-op conversions.
(floatformat_binop): Rename to ...
(host_float_ops<T>::binop): ... this. Use type instead of
floatformat arguments.
(floatformat_compare): Rename to ...
(host_float_ops<T>::compare): ... this. Use type instead of
floatformat arguments.
(match_endianness): Use type instead of length/byte_order arguments.
(set_decnumber_context): Likewise.
(decimal_from_number): Likewise. Update calls.
(decimal_to_number): Likewise.
(decimal_is_zero): Likewise. Update calls. Move to earlier in file.
(decimal_float_ops::to_host_double): New dummy function.
(decimal_float_ops::from_host_double): Likewise.
(decimal_to_string): Rename to ...
(decimal_float_ops::to_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_string): Rename to ...
(decimal_float_ops::from_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_longest): Rename to ...
(decimal_float_ops::from_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_ulongest): Rename to ...
(decimal_float_ops::from_ulongest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_to_longest): Rename to ...
(decimal_float_ops::to_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_binop): Rename to ...
(decimal_float_ops::binop): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_compare): Rename to ...
(decimal_float_ops::compare): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_convert): Rename to ...
(decimal_float_ops::convert): ... this. Use type instead of
length/byte_order arguments. Update calls.
(target_float_same_category_p): New function.
(target_float_same_format_p): Likewise.
(target_float_format_length): Likewise.
(enum target_float_ops_kind): New type.
(get_target_float_ops_kind): New function.
(get_target_float_ops): Three new overloaded functions.
(target_float_is_zero): Update call.
(target_float_to_string): Add special handling of invalid numbers,
infinities and NaN (moved from floatformat_to_string). Use
target_float_ops callback.
(target_float_from_string): Use target_float_ops callback.
(target_float_to_longest): Likewise.
(target_float_from_longest): Likewise.
(target_float_from_ulongest): Likewise.
(target_float_to_host_double): Likewise.
(target_float_from_host_double): Likewise.
(target_float_convert): Add special case for no-op conversions.
Use target_float_ops callback.
(target_float_binop): Use target_float_ops callback.
(target_float_compare): Likewise.
gdb/testsuite/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
|
|
|
decimal_from_number (&number, addr, type);
|
Target FP: Merge doublest.c and dfp.c into target-float.c
Now that all target FP operations are performed via target-float.c,
this file remains the sole caller of functions in doublest.c and dfp.c.
Therefore, this patch merges the latter files into the former and
makes all their function static there.
gdb/ChangeLog:
2017-11-06 Ulrich Weigand <uweigand@de.ibm.com>
* Makefile.in (SFILES): Remove doublest.c and dfp.c.
(HFILES_NO_SRCDIR): Remove doublest.h and dfp.h.
(COMMON_OBS): Remove doublest.o and dfp.o.
Do not build target-float.c (instead of doublest.c)
with -Wformat-nonliteral.
* doublest.c: Remove file.
* doublest.h: Remove file.
* dfp.c: Remove file.
* dfp.h: Remove file.
* target-float.c: Do not include "doublest.h" and "dfp.h".
(DOUBLEST): Move here from doublest.h.
(enum float_kind): Likewise.
(FLOATFORMAT_CHAR_BIT): Likewise.
(FLOATFORMAT_LARGEST_BYTES): Likewise.
(floatformat_totalsize_bytes): Move here from doublest.c. Make static.
(floatformat_precision): Likewise.
(floatformat_normalize_byteorder, get_field, put_field): Likewise.
(floatformat_is_negative, floatformat_classify, floatformat_mantissa):
Likewise.
(host_float_format, host_double_format, host_long_double_format):
Likewise.
(floatformat_to_string, floatformat_from_string): Likewise.
(floatformat_to_doublest): Likewise. Also, inline the original
convert_floatformat_to_doublest.
(floatformat_from_doublest): Likewise. Also, inline the original
convert_floatformat_from_doublest.
Include "dpd/decimal128.h", "dpd/decimal64.h", and "dpd/decimal32.h".
(MAX_DECIMAL_STRING): Move here from dfp.c.
(match_endianness): Likewise.
(set_decnumber_context, decimal_check_errors): Likewise.
(decimal_from_number, decimal_to_number): Likewise.
(decimal_to_string, decimal_from_string): Likewise. Make static.
(decimal_from_longest, decimal_from_ulongest): Likewise.
(decimal_to_longest): Likewise.
(decimal_binop, decimal_is_zero, decimal_compare): Likewise.
(decimal_convert): Likewise.
2017-11-06 23:04:03 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
/* Converts a ULONGEST to a decimal float of specified LEN bytes. */
|
Target FP: Refactor use of host floating-point arithmetic
Prepare for using MPFR to implement floating-point arithmetic by
refactoring the way host floating-point arithmetic is currently used.
In particular, fix the following two problems that cause different
(and incorrect) results due to using host arithmetic:
- Current processing always uses host "long double", and then converts
back to the actual target format. This may introduce rounding errors.
- Conversion of FP values to LONGEST simply does a host C++ type cast.
However the result of such a cast is undefined if the source value
is outside the representable range. MPFR always has defined behavior
here (returns the minimum or maximum representable value).
To fix the first issue, I've now created not just one set of routines
using host FP arithmetic (on long double), but instead three different
sets of routines, one each for host float, double, and long double.
Operations can then be performed in the desired type directly, avoiding
the extra rounding step. Using C++ templates, the three sets can all
share the same source code without duplication.
To fix the second issue, I'm simply enforcing the same conversion rule
(which makes sense anyway) when converting out-of-range values from
FP to LONGEST.
To contain the code complexity with the variety of options now possible,
I've created a new class "target_float_ops". There are a total of five
separate implementations of this:
host_float_ops<float> Implemented via host FP in given type
host_float_ops<double>
host_float_ops<long double>
mpfr_float_ops Implemented via MPFR if available
decimal_float_ops Implemented via libdecnumber
Note instead of using the DOUBLEST define, this always just uses the
"long double" data type. But since we now require C++11 anyway, this
type must in any case be avaialble unconditionally.
Most target floating-point operations simply dispatch to a (virtual)
member routine of this class. Which implementation to choose is
determined from the target types involved, and whether they match
some host type or not. E.g. any operation on a single type that
matches a host type is performed in that type. Operations involving
two types that both match host types are performed in the larger one
(according to C/C++ implicit conversion rules). Operations that
involve any type that does not match a host type are performed using
MPFR. (And of course operations involving decimal FP are performed
using libdecnumber.)
This first patch implements the refactoring of target-float.c as
described above, introduing the host_float_ops and decimal_float_ops
classes, and using them. Use of MPFR is introduced in the second patch.
A bit of special-case handling code is moved around to as to avoid
code duplication between host_float_ops and mpfr_float_ops.
Note that due to the changes mentioned above, I've had to update (fix)
the floating-point register values tested in the gdb.arch/vsx-regs.exp
test case. (The new values now work both with host arithmetic and MPFR.)
gdb/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* target-float.c: Do not include <math.h>.
Include <cmath> and <limits>.
(DOUBLEST): Do not define.
(class target_float_ops): New type.
(class host_float_ops): New templated type.
(class decimal_float_ops): New type.
(floatformat_to_doublest): Rename to ...
(host_float_ops<T>::from_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::from_target): New overload using a type argument.
(floatformat_from_doublest): Rename to ...
(host_float_ops<T>::to_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::to_target): New overload using a type argument.
(floatformat_printf_format): New function.
(struct printf_length_modifier): New templated type.
(floatformat_to_string): Rename to ...
(host_float_ops<T>::to_string): ... this. Use type instead of
floatformat argument. Use floatformat_printf_format and
printf_length_modifier. Remove special handling of invalid numbers,
infinities and NaN (moved to target_float_to_string).
(struct scanf_length_modifier): New templated type.
(floatformat_from_string): Rename to ...
(host_float_ops<T>::from_string): ... this. Use type instead of
floatformat argument. Use scanf_length_modifier.
(floatformat_to_longest): Rename to ...
(host_float_ops<T>::to_longest): ... this. Use type instead of
floatformat argument. Handle out-of-range values deterministically.
(floatformat_from_longest): Rename to ...
(host_float_ops<T>::from_longest): ... this. Use type instead of
floatformat argument.
(floatformat_from_ulongest): Rename to ...
(host_float_ops<T>::from_ulongest): ... this. Use type instead of
floatformat argument.
(floatformat_to_host_double): Rename to ...
(host_float_ops<T>::to_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_from_host_double): Rename to ...
(host_float_ops<T>::from_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_convert): Rename to ...
(host_float_ops<T>::convert): ... this. Use type instead of
floatformat arguments. Remove handling of no-op conversions.
(floatformat_binop): Rename to ...
(host_float_ops<T>::binop): ... this. Use type instead of
floatformat arguments.
(floatformat_compare): Rename to ...
(host_float_ops<T>::compare): ... this. Use type instead of
floatformat arguments.
(match_endianness): Use type instead of length/byte_order arguments.
(set_decnumber_context): Likewise.
(decimal_from_number): Likewise. Update calls.
(decimal_to_number): Likewise.
(decimal_is_zero): Likewise. Update calls. Move to earlier in file.
(decimal_float_ops::to_host_double): New dummy function.
(decimal_float_ops::from_host_double): Likewise.
(decimal_to_string): Rename to ...
(decimal_float_ops::to_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_string): Rename to ...
(decimal_float_ops::from_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_longest): Rename to ...
(decimal_float_ops::from_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_ulongest): Rename to ...
(decimal_float_ops::from_ulongest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_to_longest): Rename to ...
(decimal_float_ops::to_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_binop): Rename to ...
(decimal_float_ops::binop): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_compare): Rename to ...
(decimal_float_ops::compare): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_convert): Rename to ...
(decimal_float_ops::convert): ... this. Use type instead of
length/byte_order arguments. Update calls.
(target_float_same_category_p): New function.
(target_float_same_format_p): Likewise.
(target_float_format_length): Likewise.
(enum target_float_ops_kind): New type.
(get_target_float_ops_kind): New function.
(get_target_float_ops): Three new overloaded functions.
(target_float_is_zero): Update call.
(target_float_to_string): Add special handling of invalid numbers,
infinities and NaN (moved from floatformat_to_string). Use
target_float_ops callback.
(target_float_from_string): Use target_float_ops callback.
(target_float_to_longest): Likewise.
(target_float_from_longest): Likewise.
(target_float_from_ulongest): Likewise.
(target_float_to_host_double): Likewise.
(target_float_from_host_double): Likewise.
(target_float_convert): Add special case for no-op conversions.
Use target_float_ops callback.
(target_float_binop): Use target_float_ops callback.
(target_float_compare): Likewise.
gdb/testsuite/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
|
|
|
void
|
|
|
|
decimal_float_ops::from_ulongest (gdb_byte *addr, const struct type *type,
|
|
|
|
ULONGEST from) const
|
Target FP: Merge doublest.c and dfp.c into target-float.c
Now that all target FP operations are performed via target-float.c,
this file remains the sole caller of functions in doublest.c and dfp.c.
Therefore, this patch merges the latter files into the former and
makes all their function static there.
gdb/ChangeLog:
2017-11-06 Ulrich Weigand <uweigand@de.ibm.com>
* Makefile.in (SFILES): Remove doublest.c and dfp.c.
(HFILES_NO_SRCDIR): Remove doublest.h and dfp.h.
(COMMON_OBS): Remove doublest.o and dfp.o.
Do not build target-float.c (instead of doublest.c)
with -Wformat-nonliteral.
* doublest.c: Remove file.
* doublest.h: Remove file.
* dfp.c: Remove file.
* dfp.h: Remove file.
* target-float.c: Do not include "doublest.h" and "dfp.h".
(DOUBLEST): Move here from doublest.h.
(enum float_kind): Likewise.
(FLOATFORMAT_CHAR_BIT): Likewise.
(FLOATFORMAT_LARGEST_BYTES): Likewise.
(floatformat_totalsize_bytes): Move here from doublest.c. Make static.
(floatformat_precision): Likewise.
(floatformat_normalize_byteorder, get_field, put_field): Likewise.
(floatformat_is_negative, floatformat_classify, floatformat_mantissa):
Likewise.
(host_float_format, host_double_format, host_long_double_format):
Likewise.
(floatformat_to_string, floatformat_from_string): Likewise.
(floatformat_to_doublest): Likewise. Also, inline the original
convert_floatformat_to_doublest.
(floatformat_from_doublest): Likewise. Also, inline the original
convert_floatformat_from_doublest.
Include "dpd/decimal128.h", "dpd/decimal64.h", and "dpd/decimal32.h".
(MAX_DECIMAL_STRING): Move here from dfp.c.
(match_endianness): Likewise.
(set_decnumber_context, decimal_check_errors): Likewise.
(decimal_from_number, decimal_to_number): Likewise.
(decimal_to_string, decimal_from_string): Likewise. Make static.
(decimal_from_longest, decimal_from_ulongest): Likewise.
(decimal_to_longest): Likewise.
(decimal_binop, decimal_is_zero, decimal_compare): Likewise.
(decimal_convert): Likewise.
2017-11-06 23:04:03 +08:00
|
|
|
{
|
|
|
|
decNumber number;
|
|
|
|
|
|
|
|
if ((uint32_t) from != from)
|
|
|
|
/* libdecnumber can convert only 32-bit integers. */
|
|
|
|
error (_("Conversion of large integer to a "
|
|
|
|
"decimal floating type is not supported."));
|
|
|
|
|
|
|
|
decNumberFromUInt32 (&number, (uint32_t) from);
|
|
|
|
|
Target FP: Refactor use of host floating-point arithmetic
Prepare for using MPFR to implement floating-point arithmetic by
refactoring the way host floating-point arithmetic is currently used.
In particular, fix the following two problems that cause different
(and incorrect) results due to using host arithmetic:
- Current processing always uses host "long double", and then converts
back to the actual target format. This may introduce rounding errors.
- Conversion of FP values to LONGEST simply does a host C++ type cast.
However the result of such a cast is undefined if the source value
is outside the representable range. MPFR always has defined behavior
here (returns the minimum or maximum representable value).
To fix the first issue, I've now created not just one set of routines
using host FP arithmetic (on long double), but instead three different
sets of routines, one each for host float, double, and long double.
Operations can then be performed in the desired type directly, avoiding
the extra rounding step. Using C++ templates, the three sets can all
share the same source code without duplication.
To fix the second issue, I'm simply enforcing the same conversion rule
(which makes sense anyway) when converting out-of-range values from
FP to LONGEST.
To contain the code complexity with the variety of options now possible,
I've created a new class "target_float_ops". There are a total of five
separate implementations of this:
host_float_ops<float> Implemented via host FP in given type
host_float_ops<double>
host_float_ops<long double>
mpfr_float_ops Implemented via MPFR if available
decimal_float_ops Implemented via libdecnumber
Note instead of using the DOUBLEST define, this always just uses the
"long double" data type. But since we now require C++11 anyway, this
type must in any case be avaialble unconditionally.
Most target floating-point operations simply dispatch to a (virtual)
member routine of this class. Which implementation to choose is
determined from the target types involved, and whether they match
some host type or not. E.g. any operation on a single type that
matches a host type is performed in that type. Operations involving
two types that both match host types are performed in the larger one
(according to C/C++ implicit conversion rules). Operations that
involve any type that does not match a host type are performed using
MPFR. (And of course operations involving decimal FP are performed
using libdecnumber.)
This first patch implements the refactoring of target-float.c as
described above, introduing the host_float_ops and decimal_float_ops
classes, and using them. Use of MPFR is introduced in the second patch.
A bit of special-case handling code is moved around to as to avoid
code duplication between host_float_ops and mpfr_float_ops.
Note that due to the changes mentioned above, I've had to update (fix)
the floating-point register values tested in the gdb.arch/vsx-regs.exp
test case. (The new values now work both with host arithmetic and MPFR.)
gdb/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* target-float.c: Do not include <math.h>.
Include <cmath> and <limits>.
(DOUBLEST): Do not define.
(class target_float_ops): New type.
(class host_float_ops): New templated type.
(class decimal_float_ops): New type.
(floatformat_to_doublest): Rename to ...
(host_float_ops<T>::from_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::from_target): New overload using a type argument.
(floatformat_from_doublest): Rename to ...
(host_float_ops<T>::to_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::to_target): New overload using a type argument.
(floatformat_printf_format): New function.
(struct printf_length_modifier): New templated type.
(floatformat_to_string): Rename to ...
(host_float_ops<T>::to_string): ... this. Use type instead of
floatformat argument. Use floatformat_printf_format and
printf_length_modifier. Remove special handling of invalid numbers,
infinities and NaN (moved to target_float_to_string).
(struct scanf_length_modifier): New templated type.
(floatformat_from_string): Rename to ...
(host_float_ops<T>::from_string): ... this. Use type instead of
floatformat argument. Use scanf_length_modifier.
(floatformat_to_longest): Rename to ...
(host_float_ops<T>::to_longest): ... this. Use type instead of
floatformat argument. Handle out-of-range values deterministically.
(floatformat_from_longest): Rename to ...
(host_float_ops<T>::from_longest): ... this. Use type instead of
floatformat argument.
(floatformat_from_ulongest): Rename to ...
(host_float_ops<T>::from_ulongest): ... this. Use type instead of
floatformat argument.
(floatformat_to_host_double): Rename to ...
(host_float_ops<T>::to_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_from_host_double): Rename to ...
(host_float_ops<T>::from_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_convert): Rename to ...
(host_float_ops<T>::convert): ... this. Use type instead of
floatformat arguments. Remove handling of no-op conversions.
(floatformat_binop): Rename to ...
(host_float_ops<T>::binop): ... this. Use type instead of
floatformat arguments.
(floatformat_compare): Rename to ...
(host_float_ops<T>::compare): ... this. Use type instead of
floatformat arguments.
(match_endianness): Use type instead of length/byte_order arguments.
(set_decnumber_context): Likewise.
(decimal_from_number): Likewise. Update calls.
(decimal_to_number): Likewise.
(decimal_is_zero): Likewise. Update calls. Move to earlier in file.
(decimal_float_ops::to_host_double): New dummy function.
(decimal_float_ops::from_host_double): Likewise.
(decimal_to_string): Rename to ...
(decimal_float_ops::to_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_string): Rename to ...
(decimal_float_ops::from_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_longest): Rename to ...
(decimal_float_ops::from_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_ulongest): Rename to ...
(decimal_float_ops::from_ulongest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_to_longest): Rename to ...
(decimal_float_ops::to_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_binop): Rename to ...
(decimal_float_ops::binop): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_compare): Rename to ...
(decimal_float_ops::compare): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_convert): Rename to ...
(decimal_float_ops::convert): ... this. Use type instead of
length/byte_order arguments. Update calls.
(target_float_same_category_p): New function.
(target_float_same_format_p): Likewise.
(target_float_format_length): Likewise.
(enum target_float_ops_kind): New type.
(get_target_float_ops_kind): New function.
(get_target_float_ops): Three new overloaded functions.
(target_float_is_zero): Update call.
(target_float_to_string): Add special handling of invalid numbers,
infinities and NaN (moved from floatformat_to_string). Use
target_float_ops callback.
(target_float_from_string): Use target_float_ops callback.
(target_float_to_longest): Likewise.
(target_float_from_longest): Likewise.
(target_float_from_ulongest): Likewise.
(target_float_to_host_double): Likewise.
(target_float_from_host_double): Likewise.
(target_float_convert): Add special case for no-op conversions.
Use target_float_ops callback.
(target_float_binop): Use target_float_ops callback.
(target_float_compare): Likewise.
gdb/testsuite/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
|
|
|
decimal_from_number (&number, addr, type);
|
Target FP: Merge doublest.c and dfp.c into target-float.c
Now that all target FP operations are performed via target-float.c,
this file remains the sole caller of functions in doublest.c and dfp.c.
Therefore, this patch merges the latter files into the former and
makes all their function static there.
gdb/ChangeLog:
2017-11-06 Ulrich Weigand <uweigand@de.ibm.com>
* Makefile.in (SFILES): Remove doublest.c and dfp.c.
(HFILES_NO_SRCDIR): Remove doublest.h and dfp.h.
(COMMON_OBS): Remove doublest.o and dfp.o.
Do not build target-float.c (instead of doublest.c)
with -Wformat-nonliteral.
* doublest.c: Remove file.
* doublest.h: Remove file.
* dfp.c: Remove file.
* dfp.h: Remove file.
* target-float.c: Do not include "doublest.h" and "dfp.h".
(DOUBLEST): Move here from doublest.h.
(enum float_kind): Likewise.
(FLOATFORMAT_CHAR_BIT): Likewise.
(FLOATFORMAT_LARGEST_BYTES): Likewise.
(floatformat_totalsize_bytes): Move here from doublest.c. Make static.
(floatformat_precision): Likewise.
(floatformat_normalize_byteorder, get_field, put_field): Likewise.
(floatformat_is_negative, floatformat_classify, floatformat_mantissa):
Likewise.
(host_float_format, host_double_format, host_long_double_format):
Likewise.
(floatformat_to_string, floatformat_from_string): Likewise.
(floatformat_to_doublest): Likewise. Also, inline the original
convert_floatformat_to_doublest.
(floatformat_from_doublest): Likewise. Also, inline the original
convert_floatformat_from_doublest.
Include "dpd/decimal128.h", "dpd/decimal64.h", and "dpd/decimal32.h".
(MAX_DECIMAL_STRING): Move here from dfp.c.
(match_endianness): Likewise.
(set_decnumber_context, decimal_check_errors): Likewise.
(decimal_from_number, decimal_to_number): Likewise.
(decimal_to_string, decimal_from_string): Likewise. Make static.
(decimal_from_longest, decimal_from_ulongest): Likewise.
(decimal_to_longest): Likewise.
(decimal_binop, decimal_is_zero, decimal_compare): Likewise.
(decimal_convert): Likewise.
2017-11-06 23:04:03 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
/* Converts a decimal float of LEN bytes to a LONGEST. */
|
Target FP: Refactor use of host floating-point arithmetic
Prepare for using MPFR to implement floating-point arithmetic by
refactoring the way host floating-point arithmetic is currently used.
In particular, fix the following two problems that cause different
(and incorrect) results due to using host arithmetic:
- Current processing always uses host "long double", and then converts
back to the actual target format. This may introduce rounding errors.
- Conversion of FP values to LONGEST simply does a host C++ type cast.
However the result of such a cast is undefined if the source value
is outside the representable range. MPFR always has defined behavior
here (returns the minimum or maximum representable value).
To fix the first issue, I've now created not just one set of routines
using host FP arithmetic (on long double), but instead three different
sets of routines, one each for host float, double, and long double.
Operations can then be performed in the desired type directly, avoiding
the extra rounding step. Using C++ templates, the three sets can all
share the same source code without duplication.
To fix the second issue, I'm simply enforcing the same conversion rule
(which makes sense anyway) when converting out-of-range values from
FP to LONGEST.
To contain the code complexity with the variety of options now possible,
I've created a new class "target_float_ops". There are a total of five
separate implementations of this:
host_float_ops<float> Implemented via host FP in given type
host_float_ops<double>
host_float_ops<long double>
mpfr_float_ops Implemented via MPFR if available
decimal_float_ops Implemented via libdecnumber
Note instead of using the DOUBLEST define, this always just uses the
"long double" data type. But since we now require C++11 anyway, this
type must in any case be avaialble unconditionally.
Most target floating-point operations simply dispatch to a (virtual)
member routine of this class. Which implementation to choose is
determined from the target types involved, and whether they match
some host type or not. E.g. any operation on a single type that
matches a host type is performed in that type. Operations involving
two types that both match host types are performed in the larger one
(according to C/C++ implicit conversion rules). Operations that
involve any type that does not match a host type are performed using
MPFR. (And of course operations involving decimal FP are performed
using libdecnumber.)
This first patch implements the refactoring of target-float.c as
described above, introduing the host_float_ops and decimal_float_ops
classes, and using them. Use of MPFR is introduced in the second patch.
A bit of special-case handling code is moved around to as to avoid
code duplication between host_float_ops and mpfr_float_ops.
Note that due to the changes mentioned above, I've had to update (fix)
the floating-point register values tested in the gdb.arch/vsx-regs.exp
test case. (The new values now work both with host arithmetic and MPFR.)
gdb/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* target-float.c: Do not include <math.h>.
Include <cmath> and <limits>.
(DOUBLEST): Do not define.
(class target_float_ops): New type.
(class host_float_ops): New templated type.
(class decimal_float_ops): New type.
(floatformat_to_doublest): Rename to ...
(host_float_ops<T>::from_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::from_target): New overload using a type argument.
(floatformat_from_doublest): Rename to ...
(host_float_ops<T>::to_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::to_target): New overload using a type argument.
(floatformat_printf_format): New function.
(struct printf_length_modifier): New templated type.
(floatformat_to_string): Rename to ...
(host_float_ops<T>::to_string): ... this. Use type instead of
floatformat argument. Use floatformat_printf_format and
printf_length_modifier. Remove special handling of invalid numbers,
infinities and NaN (moved to target_float_to_string).
(struct scanf_length_modifier): New templated type.
(floatformat_from_string): Rename to ...
(host_float_ops<T>::from_string): ... this. Use type instead of
floatformat argument. Use scanf_length_modifier.
(floatformat_to_longest): Rename to ...
(host_float_ops<T>::to_longest): ... this. Use type instead of
floatformat argument. Handle out-of-range values deterministically.
(floatformat_from_longest): Rename to ...
(host_float_ops<T>::from_longest): ... this. Use type instead of
floatformat argument.
(floatformat_from_ulongest): Rename to ...
(host_float_ops<T>::from_ulongest): ... this. Use type instead of
floatformat argument.
(floatformat_to_host_double): Rename to ...
(host_float_ops<T>::to_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_from_host_double): Rename to ...
(host_float_ops<T>::from_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_convert): Rename to ...
(host_float_ops<T>::convert): ... this. Use type instead of
floatformat arguments. Remove handling of no-op conversions.
(floatformat_binop): Rename to ...
(host_float_ops<T>::binop): ... this. Use type instead of
floatformat arguments.
(floatformat_compare): Rename to ...
(host_float_ops<T>::compare): ... this. Use type instead of
floatformat arguments.
(match_endianness): Use type instead of length/byte_order arguments.
(set_decnumber_context): Likewise.
(decimal_from_number): Likewise. Update calls.
(decimal_to_number): Likewise.
(decimal_is_zero): Likewise. Update calls. Move to earlier in file.
(decimal_float_ops::to_host_double): New dummy function.
(decimal_float_ops::from_host_double): Likewise.
(decimal_to_string): Rename to ...
(decimal_float_ops::to_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_string): Rename to ...
(decimal_float_ops::from_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_longest): Rename to ...
(decimal_float_ops::from_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_ulongest): Rename to ...
(decimal_float_ops::from_ulongest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_to_longest): Rename to ...
(decimal_float_ops::to_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_binop): Rename to ...
(decimal_float_ops::binop): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_compare): Rename to ...
(decimal_float_ops::compare): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_convert): Rename to ...
(decimal_float_ops::convert): ... this. Use type instead of
length/byte_order arguments. Update calls.
(target_float_same_category_p): New function.
(target_float_same_format_p): Likewise.
(target_float_format_length): Likewise.
(enum target_float_ops_kind): New type.
(get_target_float_ops_kind): New function.
(get_target_float_ops): Three new overloaded functions.
(target_float_is_zero): Update call.
(target_float_to_string): Add special handling of invalid numbers,
infinities and NaN (moved from floatformat_to_string). Use
target_float_ops callback.
(target_float_from_string): Use target_float_ops callback.
(target_float_to_longest): Likewise.
(target_float_from_longest): Likewise.
(target_float_from_ulongest): Likewise.
(target_float_to_host_double): Likewise.
(target_float_from_host_double): Likewise.
(target_float_convert): Add special case for no-op conversions.
Use target_float_ops callback.
(target_float_binop): Use target_float_ops callback.
(target_float_compare): Likewise.
gdb/testsuite/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
|
|
|
LONGEST
|
|
|
|
decimal_float_ops::to_longest (const gdb_byte *addr,
|
|
|
|
const struct type *type) const
|
Target FP: Merge doublest.c and dfp.c into target-float.c
Now that all target FP operations are performed via target-float.c,
this file remains the sole caller of functions in doublest.c and dfp.c.
Therefore, this patch merges the latter files into the former and
makes all their function static there.
gdb/ChangeLog:
2017-11-06 Ulrich Weigand <uweigand@de.ibm.com>
* Makefile.in (SFILES): Remove doublest.c and dfp.c.
(HFILES_NO_SRCDIR): Remove doublest.h and dfp.h.
(COMMON_OBS): Remove doublest.o and dfp.o.
Do not build target-float.c (instead of doublest.c)
with -Wformat-nonliteral.
* doublest.c: Remove file.
* doublest.h: Remove file.
* dfp.c: Remove file.
* dfp.h: Remove file.
* target-float.c: Do not include "doublest.h" and "dfp.h".
(DOUBLEST): Move here from doublest.h.
(enum float_kind): Likewise.
(FLOATFORMAT_CHAR_BIT): Likewise.
(FLOATFORMAT_LARGEST_BYTES): Likewise.
(floatformat_totalsize_bytes): Move here from doublest.c. Make static.
(floatformat_precision): Likewise.
(floatformat_normalize_byteorder, get_field, put_field): Likewise.
(floatformat_is_negative, floatformat_classify, floatformat_mantissa):
Likewise.
(host_float_format, host_double_format, host_long_double_format):
Likewise.
(floatformat_to_string, floatformat_from_string): Likewise.
(floatformat_to_doublest): Likewise. Also, inline the original
convert_floatformat_to_doublest.
(floatformat_from_doublest): Likewise. Also, inline the original
convert_floatformat_from_doublest.
Include "dpd/decimal128.h", "dpd/decimal64.h", and "dpd/decimal32.h".
(MAX_DECIMAL_STRING): Move here from dfp.c.
(match_endianness): Likewise.
(set_decnumber_context, decimal_check_errors): Likewise.
(decimal_from_number, decimal_to_number): Likewise.
(decimal_to_string, decimal_from_string): Likewise. Make static.
(decimal_from_longest, decimal_from_ulongest): Likewise.
(decimal_to_longest): Likewise.
(decimal_binop, decimal_is_zero, decimal_compare): Likewise.
(decimal_convert): Likewise.
2017-11-06 23:04:03 +08:00
|
|
|
{
|
|
|
|
/* libdecnumber has a function to convert from decimal to integer, but
|
|
|
|
it doesn't work when the decimal number has a fractional part. */
|
Target FP: Refactor use of host floating-point arithmetic
Prepare for using MPFR to implement floating-point arithmetic by
refactoring the way host floating-point arithmetic is currently used.
In particular, fix the following two problems that cause different
(and incorrect) results due to using host arithmetic:
- Current processing always uses host "long double", and then converts
back to the actual target format. This may introduce rounding errors.
- Conversion of FP values to LONGEST simply does a host C++ type cast.
However the result of such a cast is undefined if the source value
is outside the representable range. MPFR always has defined behavior
here (returns the minimum or maximum representable value).
To fix the first issue, I've now created not just one set of routines
using host FP arithmetic (on long double), but instead three different
sets of routines, one each for host float, double, and long double.
Operations can then be performed in the desired type directly, avoiding
the extra rounding step. Using C++ templates, the three sets can all
share the same source code without duplication.
To fix the second issue, I'm simply enforcing the same conversion rule
(which makes sense anyway) when converting out-of-range values from
FP to LONGEST.
To contain the code complexity with the variety of options now possible,
I've created a new class "target_float_ops". There are a total of five
separate implementations of this:
host_float_ops<float> Implemented via host FP in given type
host_float_ops<double>
host_float_ops<long double>
mpfr_float_ops Implemented via MPFR if available
decimal_float_ops Implemented via libdecnumber
Note instead of using the DOUBLEST define, this always just uses the
"long double" data type. But since we now require C++11 anyway, this
type must in any case be avaialble unconditionally.
Most target floating-point operations simply dispatch to a (virtual)
member routine of this class. Which implementation to choose is
determined from the target types involved, and whether they match
some host type or not. E.g. any operation on a single type that
matches a host type is performed in that type. Operations involving
two types that both match host types are performed in the larger one
(according to C/C++ implicit conversion rules). Operations that
involve any type that does not match a host type are performed using
MPFR. (And of course operations involving decimal FP are performed
using libdecnumber.)
This first patch implements the refactoring of target-float.c as
described above, introduing the host_float_ops and decimal_float_ops
classes, and using them. Use of MPFR is introduced in the second patch.
A bit of special-case handling code is moved around to as to avoid
code duplication between host_float_ops and mpfr_float_ops.
Note that due to the changes mentioned above, I've had to update (fix)
the floating-point register values tested in the gdb.arch/vsx-regs.exp
test case. (The new values now work both with host arithmetic and MPFR.)
gdb/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* target-float.c: Do not include <math.h>.
Include <cmath> and <limits>.
(DOUBLEST): Do not define.
(class target_float_ops): New type.
(class host_float_ops): New templated type.
(class decimal_float_ops): New type.
(floatformat_to_doublest): Rename to ...
(host_float_ops<T>::from_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::from_target): New overload using a type argument.
(floatformat_from_doublest): Rename to ...
(host_float_ops<T>::to_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::to_target): New overload using a type argument.
(floatformat_printf_format): New function.
(struct printf_length_modifier): New templated type.
(floatformat_to_string): Rename to ...
(host_float_ops<T>::to_string): ... this. Use type instead of
floatformat argument. Use floatformat_printf_format and
printf_length_modifier. Remove special handling of invalid numbers,
infinities and NaN (moved to target_float_to_string).
(struct scanf_length_modifier): New templated type.
(floatformat_from_string): Rename to ...
(host_float_ops<T>::from_string): ... this. Use type instead of
floatformat argument. Use scanf_length_modifier.
(floatformat_to_longest): Rename to ...
(host_float_ops<T>::to_longest): ... this. Use type instead of
floatformat argument. Handle out-of-range values deterministically.
(floatformat_from_longest): Rename to ...
(host_float_ops<T>::from_longest): ... this. Use type instead of
floatformat argument.
(floatformat_from_ulongest): Rename to ...
(host_float_ops<T>::from_ulongest): ... this. Use type instead of
floatformat argument.
(floatformat_to_host_double): Rename to ...
(host_float_ops<T>::to_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_from_host_double): Rename to ...
(host_float_ops<T>::from_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_convert): Rename to ...
(host_float_ops<T>::convert): ... this. Use type instead of
floatformat arguments. Remove handling of no-op conversions.
(floatformat_binop): Rename to ...
(host_float_ops<T>::binop): ... this. Use type instead of
floatformat arguments.
(floatformat_compare): Rename to ...
(host_float_ops<T>::compare): ... this. Use type instead of
floatformat arguments.
(match_endianness): Use type instead of length/byte_order arguments.
(set_decnumber_context): Likewise.
(decimal_from_number): Likewise. Update calls.
(decimal_to_number): Likewise.
(decimal_is_zero): Likewise. Update calls. Move to earlier in file.
(decimal_float_ops::to_host_double): New dummy function.
(decimal_float_ops::from_host_double): Likewise.
(decimal_to_string): Rename to ...
(decimal_float_ops::to_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_string): Rename to ...
(decimal_float_ops::from_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_longest): Rename to ...
(decimal_float_ops::from_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_ulongest): Rename to ...
(decimal_float_ops::from_ulongest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_to_longest): Rename to ...
(decimal_float_ops::to_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_binop): Rename to ...
(decimal_float_ops::binop): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_compare): Rename to ...
(decimal_float_ops::compare): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_convert): Rename to ...
(decimal_float_ops::convert): ... this. Use type instead of
length/byte_order arguments. Update calls.
(target_float_same_category_p): New function.
(target_float_same_format_p): Likewise.
(target_float_format_length): Likewise.
(enum target_float_ops_kind): New type.
(get_target_float_ops_kind): New function.
(get_target_float_ops): Three new overloaded functions.
(target_float_is_zero): Update call.
(target_float_to_string): Add special handling of invalid numbers,
infinities and NaN (moved from floatformat_to_string). Use
target_float_ops callback.
(target_float_from_string): Use target_float_ops callback.
(target_float_to_longest): Likewise.
(target_float_from_longest): Likewise.
(target_float_from_ulongest): Likewise.
(target_float_to_host_double): Likewise.
(target_float_from_host_double): Likewise.
(target_float_convert): Add special case for no-op conversions.
Use target_float_ops callback.
(target_float_binop): Use target_float_ops callback.
(target_float_compare): Likewise.
gdb/testsuite/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
|
|
|
std::string str = to_string (addr, type);
|
Target FP: Merge doublest.c and dfp.c into target-float.c
Now that all target FP operations are performed via target-float.c,
this file remains the sole caller of functions in doublest.c and dfp.c.
Therefore, this patch merges the latter files into the former and
makes all their function static there.
gdb/ChangeLog:
2017-11-06 Ulrich Weigand <uweigand@de.ibm.com>
* Makefile.in (SFILES): Remove doublest.c and dfp.c.
(HFILES_NO_SRCDIR): Remove doublest.h and dfp.h.
(COMMON_OBS): Remove doublest.o and dfp.o.
Do not build target-float.c (instead of doublest.c)
with -Wformat-nonliteral.
* doublest.c: Remove file.
* doublest.h: Remove file.
* dfp.c: Remove file.
* dfp.h: Remove file.
* target-float.c: Do not include "doublest.h" and "dfp.h".
(DOUBLEST): Move here from doublest.h.
(enum float_kind): Likewise.
(FLOATFORMAT_CHAR_BIT): Likewise.
(FLOATFORMAT_LARGEST_BYTES): Likewise.
(floatformat_totalsize_bytes): Move here from doublest.c. Make static.
(floatformat_precision): Likewise.
(floatformat_normalize_byteorder, get_field, put_field): Likewise.
(floatformat_is_negative, floatformat_classify, floatformat_mantissa):
Likewise.
(host_float_format, host_double_format, host_long_double_format):
Likewise.
(floatformat_to_string, floatformat_from_string): Likewise.
(floatformat_to_doublest): Likewise. Also, inline the original
convert_floatformat_to_doublest.
(floatformat_from_doublest): Likewise. Also, inline the original
convert_floatformat_from_doublest.
Include "dpd/decimal128.h", "dpd/decimal64.h", and "dpd/decimal32.h".
(MAX_DECIMAL_STRING): Move here from dfp.c.
(match_endianness): Likewise.
(set_decnumber_context, decimal_check_errors): Likewise.
(decimal_from_number, decimal_to_number): Likewise.
(decimal_to_string, decimal_from_string): Likewise. Make static.
(decimal_from_longest, decimal_from_ulongest): Likewise.
(decimal_to_longest): Likewise.
(decimal_binop, decimal_is_zero, decimal_compare): Likewise.
(decimal_convert): Likewise.
2017-11-06 23:04:03 +08:00
|
|
|
return strtoll (str.c_str (), NULL, 10);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Perform operation OP with operands X and Y with sizes LEN_X and LEN_Y
|
|
|
|
and byte orders BYTE_ORDER_X and BYTE_ORDER_Y, and store value in
|
|
|
|
RESULT with size LEN_RESULT and byte order BYTE_ORDER_RESULT. */
|
Target FP: Refactor use of host floating-point arithmetic
Prepare for using MPFR to implement floating-point arithmetic by
refactoring the way host floating-point arithmetic is currently used.
In particular, fix the following two problems that cause different
(and incorrect) results due to using host arithmetic:
- Current processing always uses host "long double", and then converts
back to the actual target format. This may introduce rounding errors.
- Conversion of FP values to LONGEST simply does a host C++ type cast.
However the result of such a cast is undefined if the source value
is outside the representable range. MPFR always has defined behavior
here (returns the minimum or maximum representable value).
To fix the first issue, I've now created not just one set of routines
using host FP arithmetic (on long double), but instead three different
sets of routines, one each for host float, double, and long double.
Operations can then be performed in the desired type directly, avoiding
the extra rounding step. Using C++ templates, the three sets can all
share the same source code without duplication.
To fix the second issue, I'm simply enforcing the same conversion rule
(which makes sense anyway) when converting out-of-range values from
FP to LONGEST.
To contain the code complexity with the variety of options now possible,
I've created a new class "target_float_ops". There are a total of five
separate implementations of this:
host_float_ops<float> Implemented via host FP in given type
host_float_ops<double>
host_float_ops<long double>
mpfr_float_ops Implemented via MPFR if available
decimal_float_ops Implemented via libdecnumber
Note instead of using the DOUBLEST define, this always just uses the
"long double" data type. But since we now require C++11 anyway, this
type must in any case be avaialble unconditionally.
Most target floating-point operations simply dispatch to a (virtual)
member routine of this class. Which implementation to choose is
determined from the target types involved, and whether they match
some host type or not. E.g. any operation on a single type that
matches a host type is performed in that type. Operations involving
two types that both match host types are performed in the larger one
(according to C/C++ implicit conversion rules). Operations that
involve any type that does not match a host type are performed using
MPFR. (And of course operations involving decimal FP are performed
using libdecnumber.)
This first patch implements the refactoring of target-float.c as
described above, introduing the host_float_ops and decimal_float_ops
classes, and using them. Use of MPFR is introduced in the second patch.
A bit of special-case handling code is moved around to as to avoid
code duplication between host_float_ops and mpfr_float_ops.
Note that due to the changes mentioned above, I've had to update (fix)
the floating-point register values tested in the gdb.arch/vsx-regs.exp
test case. (The new values now work both with host arithmetic and MPFR.)
gdb/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* target-float.c: Do not include <math.h>.
Include <cmath> and <limits>.
(DOUBLEST): Do not define.
(class target_float_ops): New type.
(class host_float_ops): New templated type.
(class decimal_float_ops): New type.
(floatformat_to_doublest): Rename to ...
(host_float_ops<T>::from_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::from_target): New overload using a type argument.
(floatformat_from_doublest): Rename to ...
(host_float_ops<T>::to_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::to_target): New overload using a type argument.
(floatformat_printf_format): New function.
(struct printf_length_modifier): New templated type.
(floatformat_to_string): Rename to ...
(host_float_ops<T>::to_string): ... this. Use type instead of
floatformat argument. Use floatformat_printf_format and
printf_length_modifier. Remove special handling of invalid numbers,
infinities and NaN (moved to target_float_to_string).
(struct scanf_length_modifier): New templated type.
(floatformat_from_string): Rename to ...
(host_float_ops<T>::from_string): ... this. Use type instead of
floatformat argument. Use scanf_length_modifier.
(floatformat_to_longest): Rename to ...
(host_float_ops<T>::to_longest): ... this. Use type instead of
floatformat argument. Handle out-of-range values deterministically.
(floatformat_from_longest): Rename to ...
(host_float_ops<T>::from_longest): ... this. Use type instead of
floatformat argument.
(floatformat_from_ulongest): Rename to ...
(host_float_ops<T>::from_ulongest): ... this. Use type instead of
floatformat argument.
(floatformat_to_host_double): Rename to ...
(host_float_ops<T>::to_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_from_host_double): Rename to ...
(host_float_ops<T>::from_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_convert): Rename to ...
(host_float_ops<T>::convert): ... this. Use type instead of
floatformat arguments. Remove handling of no-op conversions.
(floatformat_binop): Rename to ...
(host_float_ops<T>::binop): ... this. Use type instead of
floatformat arguments.
(floatformat_compare): Rename to ...
(host_float_ops<T>::compare): ... this. Use type instead of
floatformat arguments.
(match_endianness): Use type instead of length/byte_order arguments.
(set_decnumber_context): Likewise.
(decimal_from_number): Likewise. Update calls.
(decimal_to_number): Likewise.
(decimal_is_zero): Likewise. Update calls. Move to earlier in file.
(decimal_float_ops::to_host_double): New dummy function.
(decimal_float_ops::from_host_double): Likewise.
(decimal_to_string): Rename to ...
(decimal_float_ops::to_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_string): Rename to ...
(decimal_float_ops::from_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_longest): Rename to ...
(decimal_float_ops::from_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_ulongest): Rename to ...
(decimal_float_ops::from_ulongest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_to_longest): Rename to ...
(decimal_float_ops::to_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_binop): Rename to ...
(decimal_float_ops::binop): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_compare): Rename to ...
(decimal_float_ops::compare): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_convert): Rename to ...
(decimal_float_ops::convert): ... this. Use type instead of
length/byte_order arguments. Update calls.
(target_float_same_category_p): New function.
(target_float_same_format_p): Likewise.
(target_float_format_length): Likewise.
(enum target_float_ops_kind): New type.
(get_target_float_ops_kind): New function.
(get_target_float_ops): Three new overloaded functions.
(target_float_is_zero): Update call.
(target_float_to_string): Add special handling of invalid numbers,
infinities and NaN (moved from floatformat_to_string). Use
target_float_ops callback.
(target_float_from_string): Use target_float_ops callback.
(target_float_to_longest): Likewise.
(target_float_from_longest): Likewise.
(target_float_from_ulongest): Likewise.
(target_float_to_host_double): Likewise.
(target_float_from_host_double): Likewise.
(target_float_convert): Add special case for no-op conversions.
Use target_float_ops callback.
(target_float_binop): Use target_float_ops callback.
(target_float_compare): Likewise.
gdb/testsuite/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
|
|
|
void
|
|
|
|
decimal_float_ops::binop (enum exp_opcode op,
|
|
|
|
const gdb_byte *x, const struct type *type_x,
|
|
|
|
const gdb_byte *y, const struct type *type_y,
|
|
|
|
gdb_byte *res, const struct type *type_res) const
|
Target FP: Merge doublest.c and dfp.c into target-float.c
Now that all target FP operations are performed via target-float.c,
this file remains the sole caller of functions in doublest.c and dfp.c.
Therefore, this patch merges the latter files into the former and
makes all their function static there.
gdb/ChangeLog:
2017-11-06 Ulrich Weigand <uweigand@de.ibm.com>
* Makefile.in (SFILES): Remove doublest.c and dfp.c.
(HFILES_NO_SRCDIR): Remove doublest.h and dfp.h.
(COMMON_OBS): Remove doublest.o and dfp.o.
Do not build target-float.c (instead of doublest.c)
with -Wformat-nonliteral.
* doublest.c: Remove file.
* doublest.h: Remove file.
* dfp.c: Remove file.
* dfp.h: Remove file.
* target-float.c: Do not include "doublest.h" and "dfp.h".
(DOUBLEST): Move here from doublest.h.
(enum float_kind): Likewise.
(FLOATFORMAT_CHAR_BIT): Likewise.
(FLOATFORMAT_LARGEST_BYTES): Likewise.
(floatformat_totalsize_bytes): Move here from doublest.c. Make static.
(floatformat_precision): Likewise.
(floatformat_normalize_byteorder, get_field, put_field): Likewise.
(floatformat_is_negative, floatformat_classify, floatformat_mantissa):
Likewise.
(host_float_format, host_double_format, host_long_double_format):
Likewise.
(floatformat_to_string, floatformat_from_string): Likewise.
(floatformat_to_doublest): Likewise. Also, inline the original
convert_floatformat_to_doublest.
(floatformat_from_doublest): Likewise. Also, inline the original
convert_floatformat_from_doublest.
Include "dpd/decimal128.h", "dpd/decimal64.h", and "dpd/decimal32.h".
(MAX_DECIMAL_STRING): Move here from dfp.c.
(match_endianness): Likewise.
(set_decnumber_context, decimal_check_errors): Likewise.
(decimal_from_number, decimal_to_number): Likewise.
(decimal_to_string, decimal_from_string): Likewise. Make static.
(decimal_from_longest, decimal_from_ulongest): Likewise.
(decimal_to_longest): Likewise.
(decimal_binop, decimal_is_zero, decimal_compare): Likewise.
(decimal_convert): Likewise.
2017-11-06 23:04:03 +08:00
|
|
|
{
|
|
|
|
decContext set;
|
|
|
|
decNumber number1, number2, number3;
|
|
|
|
|
Target FP: Refactor use of host floating-point arithmetic
Prepare for using MPFR to implement floating-point arithmetic by
refactoring the way host floating-point arithmetic is currently used.
In particular, fix the following two problems that cause different
(and incorrect) results due to using host arithmetic:
- Current processing always uses host "long double", and then converts
back to the actual target format. This may introduce rounding errors.
- Conversion of FP values to LONGEST simply does a host C++ type cast.
However the result of such a cast is undefined if the source value
is outside the representable range. MPFR always has defined behavior
here (returns the minimum or maximum representable value).
To fix the first issue, I've now created not just one set of routines
using host FP arithmetic (on long double), but instead three different
sets of routines, one each for host float, double, and long double.
Operations can then be performed in the desired type directly, avoiding
the extra rounding step. Using C++ templates, the three sets can all
share the same source code without duplication.
To fix the second issue, I'm simply enforcing the same conversion rule
(which makes sense anyway) when converting out-of-range values from
FP to LONGEST.
To contain the code complexity with the variety of options now possible,
I've created a new class "target_float_ops". There are a total of five
separate implementations of this:
host_float_ops<float> Implemented via host FP in given type
host_float_ops<double>
host_float_ops<long double>
mpfr_float_ops Implemented via MPFR if available
decimal_float_ops Implemented via libdecnumber
Note instead of using the DOUBLEST define, this always just uses the
"long double" data type. But since we now require C++11 anyway, this
type must in any case be avaialble unconditionally.
Most target floating-point operations simply dispatch to a (virtual)
member routine of this class. Which implementation to choose is
determined from the target types involved, and whether they match
some host type or not. E.g. any operation on a single type that
matches a host type is performed in that type. Operations involving
two types that both match host types are performed in the larger one
(according to C/C++ implicit conversion rules). Operations that
involve any type that does not match a host type are performed using
MPFR. (And of course operations involving decimal FP are performed
using libdecnumber.)
This first patch implements the refactoring of target-float.c as
described above, introduing the host_float_ops and decimal_float_ops
classes, and using them. Use of MPFR is introduced in the second patch.
A bit of special-case handling code is moved around to as to avoid
code duplication between host_float_ops and mpfr_float_ops.
Note that due to the changes mentioned above, I've had to update (fix)
the floating-point register values tested in the gdb.arch/vsx-regs.exp
test case. (The new values now work both with host arithmetic and MPFR.)
gdb/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* target-float.c: Do not include <math.h>.
Include <cmath> and <limits>.
(DOUBLEST): Do not define.
(class target_float_ops): New type.
(class host_float_ops): New templated type.
(class decimal_float_ops): New type.
(floatformat_to_doublest): Rename to ...
(host_float_ops<T>::from_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::from_target): New overload using a type argument.
(floatformat_from_doublest): Rename to ...
(host_float_ops<T>::to_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::to_target): New overload using a type argument.
(floatformat_printf_format): New function.
(struct printf_length_modifier): New templated type.
(floatformat_to_string): Rename to ...
(host_float_ops<T>::to_string): ... this. Use type instead of
floatformat argument. Use floatformat_printf_format and
printf_length_modifier. Remove special handling of invalid numbers,
infinities and NaN (moved to target_float_to_string).
(struct scanf_length_modifier): New templated type.
(floatformat_from_string): Rename to ...
(host_float_ops<T>::from_string): ... this. Use type instead of
floatformat argument. Use scanf_length_modifier.
(floatformat_to_longest): Rename to ...
(host_float_ops<T>::to_longest): ... this. Use type instead of
floatformat argument. Handle out-of-range values deterministically.
(floatformat_from_longest): Rename to ...
(host_float_ops<T>::from_longest): ... this. Use type instead of
floatformat argument.
(floatformat_from_ulongest): Rename to ...
(host_float_ops<T>::from_ulongest): ... this. Use type instead of
floatformat argument.
(floatformat_to_host_double): Rename to ...
(host_float_ops<T>::to_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_from_host_double): Rename to ...
(host_float_ops<T>::from_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_convert): Rename to ...
(host_float_ops<T>::convert): ... this. Use type instead of
floatformat arguments. Remove handling of no-op conversions.
(floatformat_binop): Rename to ...
(host_float_ops<T>::binop): ... this. Use type instead of
floatformat arguments.
(floatformat_compare): Rename to ...
(host_float_ops<T>::compare): ... this. Use type instead of
floatformat arguments.
(match_endianness): Use type instead of length/byte_order arguments.
(set_decnumber_context): Likewise.
(decimal_from_number): Likewise. Update calls.
(decimal_to_number): Likewise.
(decimal_is_zero): Likewise. Update calls. Move to earlier in file.
(decimal_float_ops::to_host_double): New dummy function.
(decimal_float_ops::from_host_double): Likewise.
(decimal_to_string): Rename to ...
(decimal_float_ops::to_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_string): Rename to ...
(decimal_float_ops::from_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_longest): Rename to ...
(decimal_float_ops::from_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_ulongest): Rename to ...
(decimal_float_ops::from_ulongest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_to_longest): Rename to ...
(decimal_float_ops::to_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_binop): Rename to ...
(decimal_float_ops::binop): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_compare): Rename to ...
(decimal_float_ops::compare): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_convert): Rename to ...
(decimal_float_ops::convert): ... this. Use type instead of
length/byte_order arguments. Update calls.
(target_float_same_category_p): New function.
(target_float_same_format_p): Likewise.
(target_float_format_length): Likewise.
(enum target_float_ops_kind): New type.
(get_target_float_ops_kind): New function.
(get_target_float_ops): Three new overloaded functions.
(target_float_is_zero): Update call.
(target_float_to_string): Add special handling of invalid numbers,
infinities and NaN (moved from floatformat_to_string). Use
target_float_ops callback.
(target_float_from_string): Use target_float_ops callback.
(target_float_to_longest): Likewise.
(target_float_from_longest): Likewise.
(target_float_from_ulongest): Likewise.
(target_float_to_host_double): Likewise.
(target_float_from_host_double): Likewise.
(target_float_convert): Add special case for no-op conversions.
Use target_float_ops callback.
(target_float_binop): Use target_float_ops callback.
(target_float_compare): Likewise.
gdb/testsuite/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
|
|
|
decimal_to_number (x, type_x, &number1);
|
|
|
|
decimal_to_number (y, type_y, &number2);
|
Target FP: Merge doublest.c and dfp.c into target-float.c
Now that all target FP operations are performed via target-float.c,
this file remains the sole caller of functions in doublest.c and dfp.c.
Therefore, this patch merges the latter files into the former and
makes all their function static there.
gdb/ChangeLog:
2017-11-06 Ulrich Weigand <uweigand@de.ibm.com>
* Makefile.in (SFILES): Remove doublest.c and dfp.c.
(HFILES_NO_SRCDIR): Remove doublest.h and dfp.h.
(COMMON_OBS): Remove doublest.o and dfp.o.
Do not build target-float.c (instead of doublest.c)
with -Wformat-nonliteral.
* doublest.c: Remove file.
* doublest.h: Remove file.
* dfp.c: Remove file.
* dfp.h: Remove file.
* target-float.c: Do not include "doublest.h" and "dfp.h".
(DOUBLEST): Move here from doublest.h.
(enum float_kind): Likewise.
(FLOATFORMAT_CHAR_BIT): Likewise.
(FLOATFORMAT_LARGEST_BYTES): Likewise.
(floatformat_totalsize_bytes): Move here from doublest.c. Make static.
(floatformat_precision): Likewise.
(floatformat_normalize_byteorder, get_field, put_field): Likewise.
(floatformat_is_negative, floatformat_classify, floatformat_mantissa):
Likewise.
(host_float_format, host_double_format, host_long_double_format):
Likewise.
(floatformat_to_string, floatformat_from_string): Likewise.
(floatformat_to_doublest): Likewise. Also, inline the original
convert_floatformat_to_doublest.
(floatformat_from_doublest): Likewise. Also, inline the original
convert_floatformat_from_doublest.
Include "dpd/decimal128.h", "dpd/decimal64.h", and "dpd/decimal32.h".
(MAX_DECIMAL_STRING): Move here from dfp.c.
(match_endianness): Likewise.
(set_decnumber_context, decimal_check_errors): Likewise.
(decimal_from_number, decimal_to_number): Likewise.
(decimal_to_string, decimal_from_string): Likewise. Make static.
(decimal_from_longest, decimal_from_ulongest): Likewise.
(decimal_to_longest): Likewise.
(decimal_binop, decimal_is_zero, decimal_compare): Likewise.
(decimal_convert): Likewise.
2017-11-06 23:04:03 +08:00
|
|
|
|
Target FP: Refactor use of host floating-point arithmetic
Prepare for using MPFR to implement floating-point arithmetic by
refactoring the way host floating-point arithmetic is currently used.
In particular, fix the following two problems that cause different
(and incorrect) results due to using host arithmetic:
- Current processing always uses host "long double", and then converts
back to the actual target format. This may introduce rounding errors.
- Conversion of FP values to LONGEST simply does a host C++ type cast.
However the result of such a cast is undefined if the source value
is outside the representable range. MPFR always has defined behavior
here (returns the minimum or maximum representable value).
To fix the first issue, I've now created not just one set of routines
using host FP arithmetic (on long double), but instead three different
sets of routines, one each for host float, double, and long double.
Operations can then be performed in the desired type directly, avoiding
the extra rounding step. Using C++ templates, the three sets can all
share the same source code without duplication.
To fix the second issue, I'm simply enforcing the same conversion rule
(which makes sense anyway) when converting out-of-range values from
FP to LONGEST.
To contain the code complexity with the variety of options now possible,
I've created a new class "target_float_ops". There are a total of five
separate implementations of this:
host_float_ops<float> Implemented via host FP in given type
host_float_ops<double>
host_float_ops<long double>
mpfr_float_ops Implemented via MPFR if available
decimal_float_ops Implemented via libdecnumber
Note instead of using the DOUBLEST define, this always just uses the
"long double" data type. But since we now require C++11 anyway, this
type must in any case be avaialble unconditionally.
Most target floating-point operations simply dispatch to a (virtual)
member routine of this class. Which implementation to choose is
determined from the target types involved, and whether they match
some host type or not. E.g. any operation on a single type that
matches a host type is performed in that type. Operations involving
two types that both match host types are performed in the larger one
(according to C/C++ implicit conversion rules). Operations that
involve any type that does not match a host type are performed using
MPFR. (And of course operations involving decimal FP are performed
using libdecnumber.)
This first patch implements the refactoring of target-float.c as
described above, introduing the host_float_ops and decimal_float_ops
classes, and using them. Use of MPFR is introduced in the second patch.
A bit of special-case handling code is moved around to as to avoid
code duplication between host_float_ops and mpfr_float_ops.
Note that due to the changes mentioned above, I've had to update (fix)
the floating-point register values tested in the gdb.arch/vsx-regs.exp
test case. (The new values now work both with host arithmetic and MPFR.)
gdb/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* target-float.c: Do not include <math.h>.
Include <cmath> and <limits>.
(DOUBLEST): Do not define.
(class target_float_ops): New type.
(class host_float_ops): New templated type.
(class decimal_float_ops): New type.
(floatformat_to_doublest): Rename to ...
(host_float_ops<T>::from_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::from_target): New overload using a type argument.
(floatformat_from_doublest): Rename to ...
(host_float_ops<T>::to_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::to_target): New overload using a type argument.
(floatformat_printf_format): New function.
(struct printf_length_modifier): New templated type.
(floatformat_to_string): Rename to ...
(host_float_ops<T>::to_string): ... this. Use type instead of
floatformat argument. Use floatformat_printf_format and
printf_length_modifier. Remove special handling of invalid numbers,
infinities and NaN (moved to target_float_to_string).
(struct scanf_length_modifier): New templated type.
(floatformat_from_string): Rename to ...
(host_float_ops<T>::from_string): ... this. Use type instead of
floatformat argument. Use scanf_length_modifier.
(floatformat_to_longest): Rename to ...
(host_float_ops<T>::to_longest): ... this. Use type instead of
floatformat argument. Handle out-of-range values deterministically.
(floatformat_from_longest): Rename to ...
(host_float_ops<T>::from_longest): ... this. Use type instead of
floatformat argument.
(floatformat_from_ulongest): Rename to ...
(host_float_ops<T>::from_ulongest): ... this. Use type instead of
floatformat argument.
(floatformat_to_host_double): Rename to ...
(host_float_ops<T>::to_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_from_host_double): Rename to ...
(host_float_ops<T>::from_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_convert): Rename to ...
(host_float_ops<T>::convert): ... this. Use type instead of
floatformat arguments. Remove handling of no-op conversions.
(floatformat_binop): Rename to ...
(host_float_ops<T>::binop): ... this. Use type instead of
floatformat arguments.
(floatformat_compare): Rename to ...
(host_float_ops<T>::compare): ... this. Use type instead of
floatformat arguments.
(match_endianness): Use type instead of length/byte_order arguments.
(set_decnumber_context): Likewise.
(decimal_from_number): Likewise. Update calls.
(decimal_to_number): Likewise.
(decimal_is_zero): Likewise. Update calls. Move to earlier in file.
(decimal_float_ops::to_host_double): New dummy function.
(decimal_float_ops::from_host_double): Likewise.
(decimal_to_string): Rename to ...
(decimal_float_ops::to_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_string): Rename to ...
(decimal_float_ops::from_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_longest): Rename to ...
(decimal_float_ops::from_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_ulongest): Rename to ...
(decimal_float_ops::from_ulongest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_to_longest): Rename to ...
(decimal_float_ops::to_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_binop): Rename to ...
(decimal_float_ops::binop): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_compare): Rename to ...
(decimal_float_ops::compare): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_convert): Rename to ...
(decimal_float_ops::convert): ... this. Use type instead of
length/byte_order arguments. Update calls.
(target_float_same_category_p): New function.
(target_float_same_format_p): Likewise.
(target_float_format_length): Likewise.
(enum target_float_ops_kind): New type.
(get_target_float_ops_kind): New function.
(get_target_float_ops): Three new overloaded functions.
(target_float_is_zero): Update call.
(target_float_to_string): Add special handling of invalid numbers,
infinities and NaN (moved from floatformat_to_string). Use
target_float_ops callback.
(target_float_from_string): Use target_float_ops callback.
(target_float_to_longest): Likewise.
(target_float_from_longest): Likewise.
(target_float_from_ulongest): Likewise.
(target_float_to_host_double): Likewise.
(target_float_from_host_double): Likewise.
(target_float_convert): Add special case for no-op conversions.
Use target_float_ops callback.
(target_float_binop): Use target_float_ops callback.
(target_float_compare): Likewise.
gdb/testsuite/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
|
|
|
set_decnumber_context (&set, type_res);
|
Target FP: Merge doublest.c and dfp.c into target-float.c
Now that all target FP operations are performed via target-float.c,
this file remains the sole caller of functions in doublest.c and dfp.c.
Therefore, this patch merges the latter files into the former and
makes all their function static there.
gdb/ChangeLog:
2017-11-06 Ulrich Weigand <uweigand@de.ibm.com>
* Makefile.in (SFILES): Remove doublest.c and dfp.c.
(HFILES_NO_SRCDIR): Remove doublest.h and dfp.h.
(COMMON_OBS): Remove doublest.o and dfp.o.
Do not build target-float.c (instead of doublest.c)
with -Wformat-nonliteral.
* doublest.c: Remove file.
* doublest.h: Remove file.
* dfp.c: Remove file.
* dfp.h: Remove file.
* target-float.c: Do not include "doublest.h" and "dfp.h".
(DOUBLEST): Move here from doublest.h.
(enum float_kind): Likewise.
(FLOATFORMAT_CHAR_BIT): Likewise.
(FLOATFORMAT_LARGEST_BYTES): Likewise.
(floatformat_totalsize_bytes): Move here from doublest.c. Make static.
(floatformat_precision): Likewise.
(floatformat_normalize_byteorder, get_field, put_field): Likewise.
(floatformat_is_negative, floatformat_classify, floatformat_mantissa):
Likewise.
(host_float_format, host_double_format, host_long_double_format):
Likewise.
(floatformat_to_string, floatformat_from_string): Likewise.
(floatformat_to_doublest): Likewise. Also, inline the original
convert_floatformat_to_doublest.
(floatformat_from_doublest): Likewise. Also, inline the original
convert_floatformat_from_doublest.
Include "dpd/decimal128.h", "dpd/decimal64.h", and "dpd/decimal32.h".
(MAX_DECIMAL_STRING): Move here from dfp.c.
(match_endianness): Likewise.
(set_decnumber_context, decimal_check_errors): Likewise.
(decimal_from_number, decimal_to_number): Likewise.
(decimal_to_string, decimal_from_string): Likewise. Make static.
(decimal_from_longest, decimal_from_ulongest): Likewise.
(decimal_to_longest): Likewise.
(decimal_binop, decimal_is_zero, decimal_compare): Likewise.
(decimal_convert): Likewise.
2017-11-06 23:04:03 +08:00
|
|
|
|
|
|
|
switch (op)
|
|
|
|
{
|
|
|
|
case BINOP_ADD:
|
|
|
|
decNumberAdd (&number3, &number1, &number2, &set);
|
|
|
|
break;
|
|
|
|
case BINOP_SUB:
|
|
|
|
decNumberSubtract (&number3, &number1, &number2, &set);
|
|
|
|
break;
|
|
|
|
case BINOP_MUL:
|
|
|
|
decNumberMultiply (&number3, &number1, &number2, &set);
|
|
|
|
break;
|
|
|
|
case BINOP_DIV:
|
|
|
|
decNumberDivide (&number3, &number1, &number2, &set);
|
|
|
|
break;
|
|
|
|
case BINOP_EXP:
|
|
|
|
decNumberPower (&number3, &number1, &number2, &set);
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
error (_("Operation not valid for decimal floating point number."));
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Check for errors in the DFP operation. */
|
|
|
|
decimal_check_errors (&set);
|
|
|
|
|
Target FP: Refactor use of host floating-point arithmetic
Prepare for using MPFR to implement floating-point arithmetic by
refactoring the way host floating-point arithmetic is currently used.
In particular, fix the following two problems that cause different
(and incorrect) results due to using host arithmetic:
- Current processing always uses host "long double", and then converts
back to the actual target format. This may introduce rounding errors.
- Conversion of FP values to LONGEST simply does a host C++ type cast.
However the result of such a cast is undefined if the source value
is outside the representable range. MPFR always has defined behavior
here (returns the minimum or maximum representable value).
To fix the first issue, I've now created not just one set of routines
using host FP arithmetic (on long double), but instead three different
sets of routines, one each for host float, double, and long double.
Operations can then be performed in the desired type directly, avoiding
the extra rounding step. Using C++ templates, the three sets can all
share the same source code without duplication.
To fix the second issue, I'm simply enforcing the same conversion rule
(which makes sense anyway) when converting out-of-range values from
FP to LONGEST.
To contain the code complexity with the variety of options now possible,
I've created a new class "target_float_ops". There are a total of five
separate implementations of this:
host_float_ops<float> Implemented via host FP in given type
host_float_ops<double>
host_float_ops<long double>
mpfr_float_ops Implemented via MPFR if available
decimal_float_ops Implemented via libdecnumber
Note instead of using the DOUBLEST define, this always just uses the
"long double" data type. But since we now require C++11 anyway, this
type must in any case be avaialble unconditionally.
Most target floating-point operations simply dispatch to a (virtual)
member routine of this class. Which implementation to choose is
determined from the target types involved, and whether they match
some host type or not. E.g. any operation on a single type that
matches a host type is performed in that type. Operations involving
two types that both match host types are performed in the larger one
(according to C/C++ implicit conversion rules). Operations that
involve any type that does not match a host type are performed using
MPFR. (And of course operations involving decimal FP are performed
using libdecnumber.)
This first patch implements the refactoring of target-float.c as
described above, introduing the host_float_ops and decimal_float_ops
classes, and using them. Use of MPFR is introduced in the second patch.
A bit of special-case handling code is moved around to as to avoid
code duplication between host_float_ops and mpfr_float_ops.
Note that due to the changes mentioned above, I've had to update (fix)
the floating-point register values tested in the gdb.arch/vsx-regs.exp
test case. (The new values now work both with host arithmetic and MPFR.)
gdb/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* target-float.c: Do not include <math.h>.
Include <cmath> and <limits>.
(DOUBLEST): Do not define.
(class target_float_ops): New type.
(class host_float_ops): New templated type.
(class decimal_float_ops): New type.
(floatformat_to_doublest): Rename to ...
(host_float_ops<T>::from_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::from_target): New overload using a type argument.
(floatformat_from_doublest): Rename to ...
(host_float_ops<T>::to_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::to_target): New overload using a type argument.
(floatformat_printf_format): New function.
(struct printf_length_modifier): New templated type.
(floatformat_to_string): Rename to ...
(host_float_ops<T>::to_string): ... this. Use type instead of
floatformat argument. Use floatformat_printf_format and
printf_length_modifier. Remove special handling of invalid numbers,
infinities and NaN (moved to target_float_to_string).
(struct scanf_length_modifier): New templated type.
(floatformat_from_string): Rename to ...
(host_float_ops<T>::from_string): ... this. Use type instead of
floatformat argument. Use scanf_length_modifier.
(floatformat_to_longest): Rename to ...
(host_float_ops<T>::to_longest): ... this. Use type instead of
floatformat argument. Handle out-of-range values deterministically.
(floatformat_from_longest): Rename to ...
(host_float_ops<T>::from_longest): ... this. Use type instead of
floatformat argument.
(floatformat_from_ulongest): Rename to ...
(host_float_ops<T>::from_ulongest): ... this. Use type instead of
floatformat argument.
(floatformat_to_host_double): Rename to ...
(host_float_ops<T>::to_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_from_host_double): Rename to ...
(host_float_ops<T>::from_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_convert): Rename to ...
(host_float_ops<T>::convert): ... this. Use type instead of
floatformat arguments. Remove handling of no-op conversions.
(floatformat_binop): Rename to ...
(host_float_ops<T>::binop): ... this. Use type instead of
floatformat arguments.
(floatformat_compare): Rename to ...
(host_float_ops<T>::compare): ... this. Use type instead of
floatformat arguments.
(match_endianness): Use type instead of length/byte_order arguments.
(set_decnumber_context): Likewise.
(decimal_from_number): Likewise. Update calls.
(decimal_to_number): Likewise.
(decimal_is_zero): Likewise. Update calls. Move to earlier in file.
(decimal_float_ops::to_host_double): New dummy function.
(decimal_float_ops::from_host_double): Likewise.
(decimal_to_string): Rename to ...
(decimal_float_ops::to_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_string): Rename to ...
(decimal_float_ops::from_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_longest): Rename to ...
(decimal_float_ops::from_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_ulongest): Rename to ...
(decimal_float_ops::from_ulongest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_to_longest): Rename to ...
(decimal_float_ops::to_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_binop): Rename to ...
(decimal_float_ops::binop): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_compare): Rename to ...
(decimal_float_ops::compare): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_convert): Rename to ...
(decimal_float_ops::convert): ... this. Use type instead of
length/byte_order arguments. Update calls.
(target_float_same_category_p): New function.
(target_float_same_format_p): Likewise.
(target_float_format_length): Likewise.
(enum target_float_ops_kind): New type.
(get_target_float_ops_kind): New function.
(get_target_float_ops): Three new overloaded functions.
(target_float_is_zero): Update call.
(target_float_to_string): Add special handling of invalid numbers,
infinities and NaN (moved from floatformat_to_string). Use
target_float_ops callback.
(target_float_from_string): Use target_float_ops callback.
(target_float_to_longest): Likewise.
(target_float_from_longest): Likewise.
(target_float_from_ulongest): Likewise.
(target_float_to_host_double): Likewise.
(target_float_from_host_double): Likewise.
(target_float_convert): Add special case for no-op conversions.
Use target_float_ops callback.
(target_float_binop): Use target_float_ops callback.
(target_float_compare): Likewise.
gdb/testsuite/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
|
|
|
decimal_from_number (&number3, res, type_res);
|
Target FP: Merge doublest.c and dfp.c into target-float.c
Now that all target FP operations are performed via target-float.c,
this file remains the sole caller of functions in doublest.c and dfp.c.
Therefore, this patch merges the latter files into the former and
makes all their function static there.
gdb/ChangeLog:
2017-11-06 Ulrich Weigand <uweigand@de.ibm.com>
* Makefile.in (SFILES): Remove doublest.c and dfp.c.
(HFILES_NO_SRCDIR): Remove doublest.h and dfp.h.
(COMMON_OBS): Remove doublest.o and dfp.o.
Do not build target-float.c (instead of doublest.c)
with -Wformat-nonliteral.
* doublest.c: Remove file.
* doublest.h: Remove file.
* dfp.c: Remove file.
* dfp.h: Remove file.
* target-float.c: Do not include "doublest.h" and "dfp.h".
(DOUBLEST): Move here from doublest.h.
(enum float_kind): Likewise.
(FLOATFORMAT_CHAR_BIT): Likewise.
(FLOATFORMAT_LARGEST_BYTES): Likewise.
(floatformat_totalsize_bytes): Move here from doublest.c. Make static.
(floatformat_precision): Likewise.
(floatformat_normalize_byteorder, get_field, put_field): Likewise.
(floatformat_is_negative, floatformat_classify, floatformat_mantissa):
Likewise.
(host_float_format, host_double_format, host_long_double_format):
Likewise.
(floatformat_to_string, floatformat_from_string): Likewise.
(floatformat_to_doublest): Likewise. Also, inline the original
convert_floatformat_to_doublest.
(floatformat_from_doublest): Likewise. Also, inline the original
convert_floatformat_from_doublest.
Include "dpd/decimal128.h", "dpd/decimal64.h", and "dpd/decimal32.h".
(MAX_DECIMAL_STRING): Move here from dfp.c.
(match_endianness): Likewise.
(set_decnumber_context, decimal_check_errors): Likewise.
(decimal_from_number, decimal_to_number): Likewise.
(decimal_to_string, decimal_from_string): Likewise. Make static.
(decimal_from_longest, decimal_from_ulongest): Likewise.
(decimal_to_longest): Likewise.
(decimal_binop, decimal_is_zero, decimal_compare): Likewise.
(decimal_convert): Likewise.
2017-11-06 23:04:03 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
/* Compares two numbers numerically. If X is less than Y then the return value
|
|
|
|
will be -1. If they are equal, then the return value will be 0. If X is
|
|
|
|
greater than the Y then the return value will be 1. */
|
Target FP: Refactor use of host floating-point arithmetic
Prepare for using MPFR to implement floating-point arithmetic by
refactoring the way host floating-point arithmetic is currently used.
In particular, fix the following two problems that cause different
(and incorrect) results due to using host arithmetic:
- Current processing always uses host "long double", and then converts
back to the actual target format. This may introduce rounding errors.
- Conversion of FP values to LONGEST simply does a host C++ type cast.
However the result of such a cast is undefined if the source value
is outside the representable range. MPFR always has defined behavior
here (returns the minimum or maximum representable value).
To fix the first issue, I've now created not just one set of routines
using host FP arithmetic (on long double), but instead three different
sets of routines, one each for host float, double, and long double.
Operations can then be performed in the desired type directly, avoiding
the extra rounding step. Using C++ templates, the three sets can all
share the same source code without duplication.
To fix the second issue, I'm simply enforcing the same conversion rule
(which makes sense anyway) when converting out-of-range values from
FP to LONGEST.
To contain the code complexity with the variety of options now possible,
I've created a new class "target_float_ops". There are a total of five
separate implementations of this:
host_float_ops<float> Implemented via host FP in given type
host_float_ops<double>
host_float_ops<long double>
mpfr_float_ops Implemented via MPFR if available
decimal_float_ops Implemented via libdecnumber
Note instead of using the DOUBLEST define, this always just uses the
"long double" data type. But since we now require C++11 anyway, this
type must in any case be avaialble unconditionally.
Most target floating-point operations simply dispatch to a (virtual)
member routine of this class. Which implementation to choose is
determined from the target types involved, and whether they match
some host type or not. E.g. any operation on a single type that
matches a host type is performed in that type. Operations involving
two types that both match host types are performed in the larger one
(according to C/C++ implicit conversion rules). Operations that
involve any type that does not match a host type are performed using
MPFR. (And of course operations involving decimal FP are performed
using libdecnumber.)
This first patch implements the refactoring of target-float.c as
described above, introduing the host_float_ops and decimal_float_ops
classes, and using them. Use of MPFR is introduced in the second patch.
A bit of special-case handling code is moved around to as to avoid
code duplication between host_float_ops and mpfr_float_ops.
Note that due to the changes mentioned above, I've had to update (fix)
the floating-point register values tested in the gdb.arch/vsx-regs.exp
test case. (The new values now work both with host arithmetic and MPFR.)
gdb/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* target-float.c: Do not include <math.h>.
Include <cmath> and <limits>.
(DOUBLEST): Do not define.
(class target_float_ops): New type.
(class host_float_ops): New templated type.
(class decimal_float_ops): New type.
(floatformat_to_doublest): Rename to ...
(host_float_ops<T>::from_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::from_target): New overload using a type argument.
(floatformat_from_doublest): Rename to ...
(host_float_ops<T>::to_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::to_target): New overload using a type argument.
(floatformat_printf_format): New function.
(struct printf_length_modifier): New templated type.
(floatformat_to_string): Rename to ...
(host_float_ops<T>::to_string): ... this. Use type instead of
floatformat argument. Use floatformat_printf_format and
printf_length_modifier. Remove special handling of invalid numbers,
infinities and NaN (moved to target_float_to_string).
(struct scanf_length_modifier): New templated type.
(floatformat_from_string): Rename to ...
(host_float_ops<T>::from_string): ... this. Use type instead of
floatformat argument. Use scanf_length_modifier.
(floatformat_to_longest): Rename to ...
(host_float_ops<T>::to_longest): ... this. Use type instead of
floatformat argument. Handle out-of-range values deterministically.
(floatformat_from_longest): Rename to ...
(host_float_ops<T>::from_longest): ... this. Use type instead of
floatformat argument.
(floatformat_from_ulongest): Rename to ...
(host_float_ops<T>::from_ulongest): ... this. Use type instead of
floatformat argument.
(floatformat_to_host_double): Rename to ...
(host_float_ops<T>::to_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_from_host_double): Rename to ...
(host_float_ops<T>::from_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_convert): Rename to ...
(host_float_ops<T>::convert): ... this. Use type instead of
floatformat arguments. Remove handling of no-op conversions.
(floatformat_binop): Rename to ...
(host_float_ops<T>::binop): ... this. Use type instead of
floatformat arguments.
(floatformat_compare): Rename to ...
(host_float_ops<T>::compare): ... this. Use type instead of
floatformat arguments.
(match_endianness): Use type instead of length/byte_order arguments.
(set_decnumber_context): Likewise.
(decimal_from_number): Likewise. Update calls.
(decimal_to_number): Likewise.
(decimal_is_zero): Likewise. Update calls. Move to earlier in file.
(decimal_float_ops::to_host_double): New dummy function.
(decimal_float_ops::from_host_double): Likewise.
(decimal_to_string): Rename to ...
(decimal_float_ops::to_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_string): Rename to ...
(decimal_float_ops::from_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_longest): Rename to ...
(decimal_float_ops::from_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_ulongest): Rename to ...
(decimal_float_ops::from_ulongest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_to_longest): Rename to ...
(decimal_float_ops::to_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_binop): Rename to ...
(decimal_float_ops::binop): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_compare): Rename to ...
(decimal_float_ops::compare): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_convert): Rename to ...
(decimal_float_ops::convert): ... this. Use type instead of
length/byte_order arguments. Update calls.
(target_float_same_category_p): New function.
(target_float_same_format_p): Likewise.
(target_float_format_length): Likewise.
(enum target_float_ops_kind): New type.
(get_target_float_ops_kind): New function.
(get_target_float_ops): Three new overloaded functions.
(target_float_is_zero): Update call.
(target_float_to_string): Add special handling of invalid numbers,
infinities and NaN (moved from floatformat_to_string). Use
target_float_ops callback.
(target_float_from_string): Use target_float_ops callback.
(target_float_to_longest): Likewise.
(target_float_from_longest): Likewise.
(target_float_from_ulongest): Likewise.
(target_float_to_host_double): Likewise.
(target_float_from_host_double): Likewise.
(target_float_convert): Add special case for no-op conversions.
Use target_float_ops callback.
(target_float_binop): Use target_float_ops callback.
(target_float_compare): Likewise.
gdb/testsuite/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
|
|
|
int
|
|
|
|
decimal_float_ops::compare (const gdb_byte *x, const struct type *type_x,
|
|
|
|
const gdb_byte *y, const struct type *type_y) const
|
Target FP: Merge doublest.c and dfp.c into target-float.c
Now that all target FP operations are performed via target-float.c,
this file remains the sole caller of functions in doublest.c and dfp.c.
Therefore, this patch merges the latter files into the former and
makes all their function static there.
gdb/ChangeLog:
2017-11-06 Ulrich Weigand <uweigand@de.ibm.com>
* Makefile.in (SFILES): Remove doublest.c and dfp.c.
(HFILES_NO_SRCDIR): Remove doublest.h and dfp.h.
(COMMON_OBS): Remove doublest.o and dfp.o.
Do not build target-float.c (instead of doublest.c)
with -Wformat-nonliteral.
* doublest.c: Remove file.
* doublest.h: Remove file.
* dfp.c: Remove file.
* dfp.h: Remove file.
* target-float.c: Do not include "doublest.h" and "dfp.h".
(DOUBLEST): Move here from doublest.h.
(enum float_kind): Likewise.
(FLOATFORMAT_CHAR_BIT): Likewise.
(FLOATFORMAT_LARGEST_BYTES): Likewise.
(floatformat_totalsize_bytes): Move here from doublest.c. Make static.
(floatformat_precision): Likewise.
(floatformat_normalize_byteorder, get_field, put_field): Likewise.
(floatformat_is_negative, floatformat_classify, floatformat_mantissa):
Likewise.
(host_float_format, host_double_format, host_long_double_format):
Likewise.
(floatformat_to_string, floatformat_from_string): Likewise.
(floatformat_to_doublest): Likewise. Also, inline the original
convert_floatformat_to_doublest.
(floatformat_from_doublest): Likewise. Also, inline the original
convert_floatformat_from_doublest.
Include "dpd/decimal128.h", "dpd/decimal64.h", and "dpd/decimal32.h".
(MAX_DECIMAL_STRING): Move here from dfp.c.
(match_endianness): Likewise.
(set_decnumber_context, decimal_check_errors): Likewise.
(decimal_from_number, decimal_to_number): Likewise.
(decimal_to_string, decimal_from_string): Likewise. Make static.
(decimal_from_longest, decimal_from_ulongest): Likewise.
(decimal_to_longest): Likewise.
(decimal_binop, decimal_is_zero, decimal_compare): Likewise.
(decimal_convert): Likewise.
2017-11-06 23:04:03 +08:00
|
|
|
{
|
|
|
|
decNumber number1, number2, result;
|
|
|
|
decContext set;
|
Target FP: Refactor use of host floating-point arithmetic
Prepare for using MPFR to implement floating-point arithmetic by
refactoring the way host floating-point arithmetic is currently used.
In particular, fix the following two problems that cause different
(and incorrect) results due to using host arithmetic:
- Current processing always uses host "long double", and then converts
back to the actual target format. This may introduce rounding errors.
- Conversion of FP values to LONGEST simply does a host C++ type cast.
However the result of such a cast is undefined if the source value
is outside the representable range. MPFR always has defined behavior
here (returns the minimum or maximum representable value).
To fix the first issue, I've now created not just one set of routines
using host FP arithmetic (on long double), but instead three different
sets of routines, one each for host float, double, and long double.
Operations can then be performed in the desired type directly, avoiding
the extra rounding step. Using C++ templates, the three sets can all
share the same source code without duplication.
To fix the second issue, I'm simply enforcing the same conversion rule
(which makes sense anyway) when converting out-of-range values from
FP to LONGEST.
To contain the code complexity with the variety of options now possible,
I've created a new class "target_float_ops". There are a total of five
separate implementations of this:
host_float_ops<float> Implemented via host FP in given type
host_float_ops<double>
host_float_ops<long double>
mpfr_float_ops Implemented via MPFR if available
decimal_float_ops Implemented via libdecnumber
Note instead of using the DOUBLEST define, this always just uses the
"long double" data type. But since we now require C++11 anyway, this
type must in any case be avaialble unconditionally.
Most target floating-point operations simply dispatch to a (virtual)
member routine of this class. Which implementation to choose is
determined from the target types involved, and whether they match
some host type or not. E.g. any operation on a single type that
matches a host type is performed in that type. Operations involving
two types that both match host types are performed in the larger one
(according to C/C++ implicit conversion rules). Operations that
involve any type that does not match a host type are performed using
MPFR. (And of course operations involving decimal FP are performed
using libdecnumber.)
This first patch implements the refactoring of target-float.c as
described above, introduing the host_float_ops and decimal_float_ops
classes, and using them. Use of MPFR is introduced in the second patch.
A bit of special-case handling code is moved around to as to avoid
code duplication between host_float_ops and mpfr_float_ops.
Note that due to the changes mentioned above, I've had to update (fix)
the floating-point register values tested in the gdb.arch/vsx-regs.exp
test case. (The new values now work both with host arithmetic and MPFR.)
gdb/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* target-float.c: Do not include <math.h>.
Include <cmath> and <limits>.
(DOUBLEST): Do not define.
(class target_float_ops): New type.
(class host_float_ops): New templated type.
(class decimal_float_ops): New type.
(floatformat_to_doublest): Rename to ...
(host_float_ops<T>::from_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::from_target): New overload using a type argument.
(floatformat_from_doublest): Rename to ...
(host_float_ops<T>::to_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::to_target): New overload using a type argument.
(floatformat_printf_format): New function.
(struct printf_length_modifier): New templated type.
(floatformat_to_string): Rename to ...
(host_float_ops<T>::to_string): ... this. Use type instead of
floatformat argument. Use floatformat_printf_format and
printf_length_modifier. Remove special handling of invalid numbers,
infinities and NaN (moved to target_float_to_string).
(struct scanf_length_modifier): New templated type.
(floatformat_from_string): Rename to ...
(host_float_ops<T>::from_string): ... this. Use type instead of
floatformat argument. Use scanf_length_modifier.
(floatformat_to_longest): Rename to ...
(host_float_ops<T>::to_longest): ... this. Use type instead of
floatformat argument. Handle out-of-range values deterministically.
(floatformat_from_longest): Rename to ...
(host_float_ops<T>::from_longest): ... this. Use type instead of
floatformat argument.
(floatformat_from_ulongest): Rename to ...
(host_float_ops<T>::from_ulongest): ... this. Use type instead of
floatformat argument.
(floatformat_to_host_double): Rename to ...
(host_float_ops<T>::to_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_from_host_double): Rename to ...
(host_float_ops<T>::from_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_convert): Rename to ...
(host_float_ops<T>::convert): ... this. Use type instead of
floatformat arguments. Remove handling of no-op conversions.
(floatformat_binop): Rename to ...
(host_float_ops<T>::binop): ... this. Use type instead of
floatformat arguments.
(floatformat_compare): Rename to ...
(host_float_ops<T>::compare): ... this. Use type instead of
floatformat arguments.
(match_endianness): Use type instead of length/byte_order arguments.
(set_decnumber_context): Likewise.
(decimal_from_number): Likewise. Update calls.
(decimal_to_number): Likewise.
(decimal_is_zero): Likewise. Update calls. Move to earlier in file.
(decimal_float_ops::to_host_double): New dummy function.
(decimal_float_ops::from_host_double): Likewise.
(decimal_to_string): Rename to ...
(decimal_float_ops::to_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_string): Rename to ...
(decimal_float_ops::from_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_longest): Rename to ...
(decimal_float_ops::from_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_ulongest): Rename to ...
(decimal_float_ops::from_ulongest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_to_longest): Rename to ...
(decimal_float_ops::to_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_binop): Rename to ...
(decimal_float_ops::binop): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_compare): Rename to ...
(decimal_float_ops::compare): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_convert): Rename to ...
(decimal_float_ops::convert): ... this. Use type instead of
length/byte_order arguments. Update calls.
(target_float_same_category_p): New function.
(target_float_same_format_p): Likewise.
(target_float_format_length): Likewise.
(enum target_float_ops_kind): New type.
(get_target_float_ops_kind): New function.
(get_target_float_ops): Three new overloaded functions.
(target_float_is_zero): Update call.
(target_float_to_string): Add special handling of invalid numbers,
infinities and NaN (moved from floatformat_to_string). Use
target_float_ops callback.
(target_float_from_string): Use target_float_ops callback.
(target_float_to_longest): Likewise.
(target_float_from_longest): Likewise.
(target_float_from_ulongest): Likewise.
(target_float_to_host_double): Likewise.
(target_float_from_host_double): Likewise.
(target_float_convert): Add special case for no-op conversions.
Use target_float_ops callback.
(target_float_binop): Use target_float_ops callback.
(target_float_compare): Likewise.
gdb/testsuite/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
|
|
|
const struct type *type_result;
|
Target FP: Merge doublest.c and dfp.c into target-float.c
Now that all target FP operations are performed via target-float.c,
this file remains the sole caller of functions in doublest.c and dfp.c.
Therefore, this patch merges the latter files into the former and
makes all their function static there.
gdb/ChangeLog:
2017-11-06 Ulrich Weigand <uweigand@de.ibm.com>
* Makefile.in (SFILES): Remove doublest.c and dfp.c.
(HFILES_NO_SRCDIR): Remove doublest.h and dfp.h.
(COMMON_OBS): Remove doublest.o and dfp.o.
Do not build target-float.c (instead of doublest.c)
with -Wformat-nonliteral.
* doublest.c: Remove file.
* doublest.h: Remove file.
* dfp.c: Remove file.
* dfp.h: Remove file.
* target-float.c: Do not include "doublest.h" and "dfp.h".
(DOUBLEST): Move here from doublest.h.
(enum float_kind): Likewise.
(FLOATFORMAT_CHAR_BIT): Likewise.
(FLOATFORMAT_LARGEST_BYTES): Likewise.
(floatformat_totalsize_bytes): Move here from doublest.c. Make static.
(floatformat_precision): Likewise.
(floatformat_normalize_byteorder, get_field, put_field): Likewise.
(floatformat_is_negative, floatformat_classify, floatformat_mantissa):
Likewise.
(host_float_format, host_double_format, host_long_double_format):
Likewise.
(floatformat_to_string, floatformat_from_string): Likewise.
(floatformat_to_doublest): Likewise. Also, inline the original
convert_floatformat_to_doublest.
(floatformat_from_doublest): Likewise. Also, inline the original
convert_floatformat_from_doublest.
Include "dpd/decimal128.h", "dpd/decimal64.h", and "dpd/decimal32.h".
(MAX_DECIMAL_STRING): Move here from dfp.c.
(match_endianness): Likewise.
(set_decnumber_context, decimal_check_errors): Likewise.
(decimal_from_number, decimal_to_number): Likewise.
(decimal_to_string, decimal_from_string): Likewise. Make static.
(decimal_from_longest, decimal_from_ulongest): Likewise.
(decimal_to_longest): Likewise.
(decimal_binop, decimal_is_zero, decimal_compare): Likewise.
(decimal_convert): Likewise.
2017-11-06 23:04:03 +08:00
|
|
|
|
Target FP: Refactor use of host floating-point arithmetic
Prepare for using MPFR to implement floating-point arithmetic by
refactoring the way host floating-point arithmetic is currently used.
In particular, fix the following two problems that cause different
(and incorrect) results due to using host arithmetic:
- Current processing always uses host "long double", and then converts
back to the actual target format. This may introduce rounding errors.
- Conversion of FP values to LONGEST simply does a host C++ type cast.
However the result of such a cast is undefined if the source value
is outside the representable range. MPFR always has defined behavior
here (returns the minimum or maximum representable value).
To fix the first issue, I've now created not just one set of routines
using host FP arithmetic (on long double), but instead three different
sets of routines, one each for host float, double, and long double.
Operations can then be performed in the desired type directly, avoiding
the extra rounding step. Using C++ templates, the three sets can all
share the same source code without duplication.
To fix the second issue, I'm simply enforcing the same conversion rule
(which makes sense anyway) when converting out-of-range values from
FP to LONGEST.
To contain the code complexity with the variety of options now possible,
I've created a new class "target_float_ops". There are a total of five
separate implementations of this:
host_float_ops<float> Implemented via host FP in given type
host_float_ops<double>
host_float_ops<long double>
mpfr_float_ops Implemented via MPFR if available
decimal_float_ops Implemented via libdecnumber
Note instead of using the DOUBLEST define, this always just uses the
"long double" data type. But since we now require C++11 anyway, this
type must in any case be avaialble unconditionally.
Most target floating-point operations simply dispatch to a (virtual)
member routine of this class. Which implementation to choose is
determined from the target types involved, and whether they match
some host type or not. E.g. any operation on a single type that
matches a host type is performed in that type. Operations involving
two types that both match host types are performed in the larger one
(according to C/C++ implicit conversion rules). Operations that
involve any type that does not match a host type are performed using
MPFR. (And of course operations involving decimal FP are performed
using libdecnumber.)
This first patch implements the refactoring of target-float.c as
described above, introduing the host_float_ops and decimal_float_ops
classes, and using them. Use of MPFR is introduced in the second patch.
A bit of special-case handling code is moved around to as to avoid
code duplication between host_float_ops and mpfr_float_ops.
Note that due to the changes mentioned above, I've had to update (fix)
the floating-point register values tested in the gdb.arch/vsx-regs.exp
test case. (The new values now work both with host arithmetic and MPFR.)
gdb/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* target-float.c: Do not include <math.h>.
Include <cmath> and <limits>.
(DOUBLEST): Do not define.
(class target_float_ops): New type.
(class host_float_ops): New templated type.
(class decimal_float_ops): New type.
(floatformat_to_doublest): Rename to ...
(host_float_ops<T>::from_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::from_target): New overload using a type argument.
(floatformat_from_doublest): Rename to ...
(host_float_ops<T>::to_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::to_target): New overload using a type argument.
(floatformat_printf_format): New function.
(struct printf_length_modifier): New templated type.
(floatformat_to_string): Rename to ...
(host_float_ops<T>::to_string): ... this. Use type instead of
floatformat argument. Use floatformat_printf_format and
printf_length_modifier. Remove special handling of invalid numbers,
infinities and NaN (moved to target_float_to_string).
(struct scanf_length_modifier): New templated type.
(floatformat_from_string): Rename to ...
(host_float_ops<T>::from_string): ... this. Use type instead of
floatformat argument. Use scanf_length_modifier.
(floatformat_to_longest): Rename to ...
(host_float_ops<T>::to_longest): ... this. Use type instead of
floatformat argument. Handle out-of-range values deterministically.
(floatformat_from_longest): Rename to ...
(host_float_ops<T>::from_longest): ... this. Use type instead of
floatformat argument.
(floatformat_from_ulongest): Rename to ...
(host_float_ops<T>::from_ulongest): ... this. Use type instead of
floatformat argument.
(floatformat_to_host_double): Rename to ...
(host_float_ops<T>::to_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_from_host_double): Rename to ...
(host_float_ops<T>::from_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_convert): Rename to ...
(host_float_ops<T>::convert): ... this. Use type instead of
floatformat arguments. Remove handling of no-op conversions.
(floatformat_binop): Rename to ...
(host_float_ops<T>::binop): ... this. Use type instead of
floatformat arguments.
(floatformat_compare): Rename to ...
(host_float_ops<T>::compare): ... this. Use type instead of
floatformat arguments.
(match_endianness): Use type instead of length/byte_order arguments.
(set_decnumber_context): Likewise.
(decimal_from_number): Likewise. Update calls.
(decimal_to_number): Likewise.
(decimal_is_zero): Likewise. Update calls. Move to earlier in file.
(decimal_float_ops::to_host_double): New dummy function.
(decimal_float_ops::from_host_double): Likewise.
(decimal_to_string): Rename to ...
(decimal_float_ops::to_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_string): Rename to ...
(decimal_float_ops::from_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_longest): Rename to ...
(decimal_float_ops::from_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_ulongest): Rename to ...
(decimal_float_ops::from_ulongest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_to_longest): Rename to ...
(decimal_float_ops::to_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_binop): Rename to ...
(decimal_float_ops::binop): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_compare): Rename to ...
(decimal_float_ops::compare): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_convert): Rename to ...
(decimal_float_ops::convert): ... this. Use type instead of
length/byte_order arguments. Update calls.
(target_float_same_category_p): New function.
(target_float_same_format_p): Likewise.
(target_float_format_length): Likewise.
(enum target_float_ops_kind): New type.
(get_target_float_ops_kind): New function.
(get_target_float_ops): Three new overloaded functions.
(target_float_is_zero): Update call.
(target_float_to_string): Add special handling of invalid numbers,
infinities and NaN (moved from floatformat_to_string). Use
target_float_ops callback.
(target_float_from_string): Use target_float_ops callback.
(target_float_to_longest): Likewise.
(target_float_from_longest): Likewise.
(target_float_from_ulongest): Likewise.
(target_float_to_host_double): Likewise.
(target_float_from_host_double): Likewise.
(target_float_convert): Add special case for no-op conversions.
Use target_float_ops callback.
(target_float_binop): Use target_float_ops callback.
(target_float_compare): Likewise.
gdb/testsuite/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
|
|
|
decimal_to_number (x, type_x, &number1);
|
|
|
|
decimal_to_number (y, type_y, &number2);
|
Target FP: Merge doublest.c and dfp.c into target-float.c
Now that all target FP operations are performed via target-float.c,
this file remains the sole caller of functions in doublest.c and dfp.c.
Therefore, this patch merges the latter files into the former and
makes all their function static there.
gdb/ChangeLog:
2017-11-06 Ulrich Weigand <uweigand@de.ibm.com>
* Makefile.in (SFILES): Remove doublest.c and dfp.c.
(HFILES_NO_SRCDIR): Remove doublest.h and dfp.h.
(COMMON_OBS): Remove doublest.o and dfp.o.
Do not build target-float.c (instead of doublest.c)
with -Wformat-nonliteral.
* doublest.c: Remove file.
* doublest.h: Remove file.
* dfp.c: Remove file.
* dfp.h: Remove file.
* target-float.c: Do not include "doublest.h" and "dfp.h".
(DOUBLEST): Move here from doublest.h.
(enum float_kind): Likewise.
(FLOATFORMAT_CHAR_BIT): Likewise.
(FLOATFORMAT_LARGEST_BYTES): Likewise.
(floatformat_totalsize_bytes): Move here from doublest.c. Make static.
(floatformat_precision): Likewise.
(floatformat_normalize_byteorder, get_field, put_field): Likewise.
(floatformat_is_negative, floatformat_classify, floatformat_mantissa):
Likewise.
(host_float_format, host_double_format, host_long_double_format):
Likewise.
(floatformat_to_string, floatformat_from_string): Likewise.
(floatformat_to_doublest): Likewise. Also, inline the original
convert_floatformat_to_doublest.
(floatformat_from_doublest): Likewise. Also, inline the original
convert_floatformat_from_doublest.
Include "dpd/decimal128.h", "dpd/decimal64.h", and "dpd/decimal32.h".
(MAX_DECIMAL_STRING): Move here from dfp.c.
(match_endianness): Likewise.
(set_decnumber_context, decimal_check_errors): Likewise.
(decimal_from_number, decimal_to_number): Likewise.
(decimal_to_string, decimal_from_string): Likewise. Make static.
(decimal_from_longest, decimal_from_ulongest): Likewise.
(decimal_to_longest): Likewise.
(decimal_binop, decimal_is_zero, decimal_compare): Likewise.
(decimal_convert): Likewise.
2017-11-06 23:04:03 +08:00
|
|
|
|
|
|
|
/* Perform the comparison in the larger of the two sizes. */
|
Target FP: Refactor use of host floating-point arithmetic
Prepare for using MPFR to implement floating-point arithmetic by
refactoring the way host floating-point arithmetic is currently used.
In particular, fix the following two problems that cause different
(and incorrect) results due to using host arithmetic:
- Current processing always uses host "long double", and then converts
back to the actual target format. This may introduce rounding errors.
- Conversion of FP values to LONGEST simply does a host C++ type cast.
However the result of such a cast is undefined if the source value
is outside the representable range. MPFR always has defined behavior
here (returns the minimum or maximum representable value).
To fix the first issue, I've now created not just one set of routines
using host FP arithmetic (on long double), but instead three different
sets of routines, one each for host float, double, and long double.
Operations can then be performed in the desired type directly, avoiding
the extra rounding step. Using C++ templates, the three sets can all
share the same source code without duplication.
To fix the second issue, I'm simply enforcing the same conversion rule
(which makes sense anyway) when converting out-of-range values from
FP to LONGEST.
To contain the code complexity with the variety of options now possible,
I've created a new class "target_float_ops". There are a total of five
separate implementations of this:
host_float_ops<float> Implemented via host FP in given type
host_float_ops<double>
host_float_ops<long double>
mpfr_float_ops Implemented via MPFR if available
decimal_float_ops Implemented via libdecnumber
Note instead of using the DOUBLEST define, this always just uses the
"long double" data type. But since we now require C++11 anyway, this
type must in any case be avaialble unconditionally.
Most target floating-point operations simply dispatch to a (virtual)
member routine of this class. Which implementation to choose is
determined from the target types involved, and whether they match
some host type or not. E.g. any operation on a single type that
matches a host type is performed in that type. Operations involving
two types that both match host types are performed in the larger one
(according to C/C++ implicit conversion rules). Operations that
involve any type that does not match a host type are performed using
MPFR. (And of course operations involving decimal FP are performed
using libdecnumber.)
This first patch implements the refactoring of target-float.c as
described above, introduing the host_float_ops and decimal_float_ops
classes, and using them. Use of MPFR is introduced in the second patch.
A bit of special-case handling code is moved around to as to avoid
code duplication between host_float_ops and mpfr_float_ops.
Note that due to the changes mentioned above, I've had to update (fix)
the floating-point register values tested in the gdb.arch/vsx-regs.exp
test case. (The new values now work both with host arithmetic and MPFR.)
gdb/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* target-float.c: Do not include <math.h>.
Include <cmath> and <limits>.
(DOUBLEST): Do not define.
(class target_float_ops): New type.
(class host_float_ops): New templated type.
(class decimal_float_ops): New type.
(floatformat_to_doublest): Rename to ...
(host_float_ops<T>::from_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::from_target): New overload using a type argument.
(floatformat_from_doublest): Rename to ...
(host_float_ops<T>::to_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::to_target): New overload using a type argument.
(floatformat_printf_format): New function.
(struct printf_length_modifier): New templated type.
(floatformat_to_string): Rename to ...
(host_float_ops<T>::to_string): ... this. Use type instead of
floatformat argument. Use floatformat_printf_format and
printf_length_modifier. Remove special handling of invalid numbers,
infinities and NaN (moved to target_float_to_string).
(struct scanf_length_modifier): New templated type.
(floatformat_from_string): Rename to ...
(host_float_ops<T>::from_string): ... this. Use type instead of
floatformat argument. Use scanf_length_modifier.
(floatformat_to_longest): Rename to ...
(host_float_ops<T>::to_longest): ... this. Use type instead of
floatformat argument. Handle out-of-range values deterministically.
(floatformat_from_longest): Rename to ...
(host_float_ops<T>::from_longest): ... this. Use type instead of
floatformat argument.
(floatformat_from_ulongest): Rename to ...
(host_float_ops<T>::from_ulongest): ... this. Use type instead of
floatformat argument.
(floatformat_to_host_double): Rename to ...
(host_float_ops<T>::to_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_from_host_double): Rename to ...
(host_float_ops<T>::from_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_convert): Rename to ...
(host_float_ops<T>::convert): ... this. Use type instead of
floatformat arguments. Remove handling of no-op conversions.
(floatformat_binop): Rename to ...
(host_float_ops<T>::binop): ... this. Use type instead of
floatformat arguments.
(floatformat_compare): Rename to ...
(host_float_ops<T>::compare): ... this. Use type instead of
floatformat arguments.
(match_endianness): Use type instead of length/byte_order arguments.
(set_decnumber_context): Likewise.
(decimal_from_number): Likewise. Update calls.
(decimal_to_number): Likewise.
(decimal_is_zero): Likewise. Update calls. Move to earlier in file.
(decimal_float_ops::to_host_double): New dummy function.
(decimal_float_ops::from_host_double): Likewise.
(decimal_to_string): Rename to ...
(decimal_float_ops::to_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_string): Rename to ...
(decimal_float_ops::from_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_longest): Rename to ...
(decimal_float_ops::from_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_ulongest): Rename to ...
(decimal_float_ops::from_ulongest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_to_longest): Rename to ...
(decimal_float_ops::to_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_binop): Rename to ...
(decimal_float_ops::binop): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_compare): Rename to ...
(decimal_float_ops::compare): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_convert): Rename to ...
(decimal_float_ops::convert): ... this. Use type instead of
length/byte_order arguments. Update calls.
(target_float_same_category_p): New function.
(target_float_same_format_p): Likewise.
(target_float_format_length): Likewise.
(enum target_float_ops_kind): New type.
(get_target_float_ops_kind): New function.
(get_target_float_ops): Three new overloaded functions.
(target_float_is_zero): Update call.
(target_float_to_string): Add special handling of invalid numbers,
infinities and NaN (moved from floatformat_to_string). Use
target_float_ops callback.
(target_float_from_string): Use target_float_ops callback.
(target_float_to_longest): Likewise.
(target_float_from_longest): Likewise.
(target_float_from_ulongest): Likewise.
(target_float_to_host_double): Likewise.
(target_float_from_host_double): Likewise.
(target_float_convert): Add special case for no-op conversions.
Use target_float_ops callback.
(target_float_binop): Use target_float_ops callback.
(target_float_compare): Likewise.
gdb/testsuite/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
|
|
|
type_result = TYPE_LENGTH (type_x) > TYPE_LENGTH (type_y) ? type_x : type_y;
|
|
|
|
set_decnumber_context (&set, type_result);
|
Target FP: Merge doublest.c and dfp.c into target-float.c
Now that all target FP operations are performed via target-float.c,
this file remains the sole caller of functions in doublest.c and dfp.c.
Therefore, this patch merges the latter files into the former and
makes all their function static there.
gdb/ChangeLog:
2017-11-06 Ulrich Weigand <uweigand@de.ibm.com>
* Makefile.in (SFILES): Remove doublest.c and dfp.c.
(HFILES_NO_SRCDIR): Remove doublest.h and dfp.h.
(COMMON_OBS): Remove doublest.o and dfp.o.
Do not build target-float.c (instead of doublest.c)
with -Wformat-nonliteral.
* doublest.c: Remove file.
* doublest.h: Remove file.
* dfp.c: Remove file.
* dfp.h: Remove file.
* target-float.c: Do not include "doublest.h" and "dfp.h".
(DOUBLEST): Move here from doublest.h.
(enum float_kind): Likewise.
(FLOATFORMAT_CHAR_BIT): Likewise.
(FLOATFORMAT_LARGEST_BYTES): Likewise.
(floatformat_totalsize_bytes): Move here from doublest.c. Make static.
(floatformat_precision): Likewise.
(floatformat_normalize_byteorder, get_field, put_field): Likewise.
(floatformat_is_negative, floatformat_classify, floatformat_mantissa):
Likewise.
(host_float_format, host_double_format, host_long_double_format):
Likewise.
(floatformat_to_string, floatformat_from_string): Likewise.
(floatformat_to_doublest): Likewise. Also, inline the original
convert_floatformat_to_doublest.
(floatformat_from_doublest): Likewise. Also, inline the original
convert_floatformat_from_doublest.
Include "dpd/decimal128.h", "dpd/decimal64.h", and "dpd/decimal32.h".
(MAX_DECIMAL_STRING): Move here from dfp.c.
(match_endianness): Likewise.
(set_decnumber_context, decimal_check_errors): Likewise.
(decimal_from_number, decimal_to_number): Likewise.
(decimal_to_string, decimal_from_string): Likewise. Make static.
(decimal_from_longest, decimal_from_ulongest): Likewise.
(decimal_to_longest): Likewise.
(decimal_binop, decimal_is_zero, decimal_compare): Likewise.
(decimal_convert): Likewise.
2017-11-06 23:04:03 +08:00
|
|
|
|
|
|
|
decNumberCompare (&result, &number1, &number2, &set);
|
|
|
|
|
|
|
|
/* Check for errors in the DFP operation. */
|
|
|
|
decimal_check_errors (&set);
|
|
|
|
|
|
|
|
if (decNumberIsNaN (&result))
|
|
|
|
error (_("Comparison with an invalid number (NaN)."));
|
|
|
|
else if (decNumberIsZero (&result))
|
|
|
|
return 0;
|
|
|
|
else if (decNumberIsNegative (&result))
|
|
|
|
return -1;
|
|
|
|
else
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Convert a decimal value from a decimal type with LEN_FROM bytes to a
|
|
|
|
decimal type with LEN_TO bytes. */
|
Target FP: Refactor use of host floating-point arithmetic
Prepare for using MPFR to implement floating-point arithmetic by
refactoring the way host floating-point arithmetic is currently used.
In particular, fix the following two problems that cause different
(and incorrect) results due to using host arithmetic:
- Current processing always uses host "long double", and then converts
back to the actual target format. This may introduce rounding errors.
- Conversion of FP values to LONGEST simply does a host C++ type cast.
However the result of such a cast is undefined if the source value
is outside the representable range. MPFR always has defined behavior
here (returns the minimum or maximum representable value).
To fix the first issue, I've now created not just one set of routines
using host FP arithmetic (on long double), but instead three different
sets of routines, one each for host float, double, and long double.
Operations can then be performed in the desired type directly, avoiding
the extra rounding step. Using C++ templates, the three sets can all
share the same source code without duplication.
To fix the second issue, I'm simply enforcing the same conversion rule
(which makes sense anyway) when converting out-of-range values from
FP to LONGEST.
To contain the code complexity with the variety of options now possible,
I've created a new class "target_float_ops". There are a total of five
separate implementations of this:
host_float_ops<float> Implemented via host FP in given type
host_float_ops<double>
host_float_ops<long double>
mpfr_float_ops Implemented via MPFR if available
decimal_float_ops Implemented via libdecnumber
Note instead of using the DOUBLEST define, this always just uses the
"long double" data type. But since we now require C++11 anyway, this
type must in any case be avaialble unconditionally.
Most target floating-point operations simply dispatch to a (virtual)
member routine of this class. Which implementation to choose is
determined from the target types involved, and whether they match
some host type or not. E.g. any operation on a single type that
matches a host type is performed in that type. Operations involving
two types that both match host types are performed in the larger one
(according to C/C++ implicit conversion rules). Operations that
involve any type that does not match a host type are performed using
MPFR. (And of course operations involving decimal FP are performed
using libdecnumber.)
This first patch implements the refactoring of target-float.c as
described above, introduing the host_float_ops and decimal_float_ops
classes, and using them. Use of MPFR is introduced in the second patch.
A bit of special-case handling code is moved around to as to avoid
code duplication between host_float_ops and mpfr_float_ops.
Note that due to the changes mentioned above, I've had to update (fix)
the floating-point register values tested in the gdb.arch/vsx-regs.exp
test case. (The new values now work both with host arithmetic and MPFR.)
gdb/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* target-float.c: Do not include <math.h>.
Include <cmath> and <limits>.
(DOUBLEST): Do not define.
(class target_float_ops): New type.
(class host_float_ops): New templated type.
(class decimal_float_ops): New type.
(floatformat_to_doublest): Rename to ...
(host_float_ops<T>::from_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::from_target): New overload using a type argument.
(floatformat_from_doublest): Rename to ...
(host_float_ops<T>::to_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::to_target): New overload using a type argument.
(floatformat_printf_format): New function.
(struct printf_length_modifier): New templated type.
(floatformat_to_string): Rename to ...
(host_float_ops<T>::to_string): ... this. Use type instead of
floatformat argument. Use floatformat_printf_format and
printf_length_modifier. Remove special handling of invalid numbers,
infinities and NaN (moved to target_float_to_string).
(struct scanf_length_modifier): New templated type.
(floatformat_from_string): Rename to ...
(host_float_ops<T>::from_string): ... this. Use type instead of
floatformat argument. Use scanf_length_modifier.
(floatformat_to_longest): Rename to ...
(host_float_ops<T>::to_longest): ... this. Use type instead of
floatformat argument. Handle out-of-range values deterministically.
(floatformat_from_longest): Rename to ...
(host_float_ops<T>::from_longest): ... this. Use type instead of
floatformat argument.
(floatformat_from_ulongest): Rename to ...
(host_float_ops<T>::from_ulongest): ... this. Use type instead of
floatformat argument.
(floatformat_to_host_double): Rename to ...
(host_float_ops<T>::to_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_from_host_double): Rename to ...
(host_float_ops<T>::from_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_convert): Rename to ...
(host_float_ops<T>::convert): ... this. Use type instead of
floatformat arguments. Remove handling of no-op conversions.
(floatformat_binop): Rename to ...
(host_float_ops<T>::binop): ... this. Use type instead of
floatformat arguments.
(floatformat_compare): Rename to ...
(host_float_ops<T>::compare): ... this. Use type instead of
floatformat arguments.
(match_endianness): Use type instead of length/byte_order arguments.
(set_decnumber_context): Likewise.
(decimal_from_number): Likewise. Update calls.
(decimal_to_number): Likewise.
(decimal_is_zero): Likewise. Update calls. Move to earlier in file.
(decimal_float_ops::to_host_double): New dummy function.
(decimal_float_ops::from_host_double): Likewise.
(decimal_to_string): Rename to ...
(decimal_float_ops::to_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_string): Rename to ...
(decimal_float_ops::from_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_longest): Rename to ...
(decimal_float_ops::from_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_ulongest): Rename to ...
(decimal_float_ops::from_ulongest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_to_longest): Rename to ...
(decimal_float_ops::to_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_binop): Rename to ...
(decimal_float_ops::binop): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_compare): Rename to ...
(decimal_float_ops::compare): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_convert): Rename to ...
(decimal_float_ops::convert): ... this. Use type instead of
length/byte_order arguments. Update calls.
(target_float_same_category_p): New function.
(target_float_same_format_p): Likewise.
(target_float_format_length): Likewise.
(enum target_float_ops_kind): New type.
(get_target_float_ops_kind): New function.
(get_target_float_ops): Three new overloaded functions.
(target_float_is_zero): Update call.
(target_float_to_string): Add special handling of invalid numbers,
infinities and NaN (moved from floatformat_to_string). Use
target_float_ops callback.
(target_float_from_string): Use target_float_ops callback.
(target_float_to_longest): Likewise.
(target_float_from_longest): Likewise.
(target_float_from_ulongest): Likewise.
(target_float_to_host_double): Likewise.
(target_float_from_host_double): Likewise.
(target_float_convert): Add special case for no-op conversions.
Use target_float_ops callback.
(target_float_binop): Use target_float_ops callback.
(target_float_compare): Likewise.
gdb/testsuite/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
|
|
|
void
|
|
|
|
decimal_float_ops::convert (const gdb_byte *from, const struct type *from_type,
|
|
|
|
gdb_byte *to, const struct type *to_type) const
|
Target FP: Merge doublest.c and dfp.c into target-float.c
Now that all target FP operations are performed via target-float.c,
this file remains the sole caller of functions in doublest.c and dfp.c.
Therefore, this patch merges the latter files into the former and
makes all their function static there.
gdb/ChangeLog:
2017-11-06 Ulrich Weigand <uweigand@de.ibm.com>
* Makefile.in (SFILES): Remove doublest.c and dfp.c.
(HFILES_NO_SRCDIR): Remove doublest.h and dfp.h.
(COMMON_OBS): Remove doublest.o and dfp.o.
Do not build target-float.c (instead of doublest.c)
with -Wformat-nonliteral.
* doublest.c: Remove file.
* doublest.h: Remove file.
* dfp.c: Remove file.
* dfp.h: Remove file.
* target-float.c: Do not include "doublest.h" and "dfp.h".
(DOUBLEST): Move here from doublest.h.
(enum float_kind): Likewise.
(FLOATFORMAT_CHAR_BIT): Likewise.
(FLOATFORMAT_LARGEST_BYTES): Likewise.
(floatformat_totalsize_bytes): Move here from doublest.c. Make static.
(floatformat_precision): Likewise.
(floatformat_normalize_byteorder, get_field, put_field): Likewise.
(floatformat_is_negative, floatformat_classify, floatformat_mantissa):
Likewise.
(host_float_format, host_double_format, host_long_double_format):
Likewise.
(floatformat_to_string, floatformat_from_string): Likewise.
(floatformat_to_doublest): Likewise. Also, inline the original
convert_floatformat_to_doublest.
(floatformat_from_doublest): Likewise. Also, inline the original
convert_floatformat_from_doublest.
Include "dpd/decimal128.h", "dpd/decimal64.h", and "dpd/decimal32.h".
(MAX_DECIMAL_STRING): Move here from dfp.c.
(match_endianness): Likewise.
(set_decnumber_context, decimal_check_errors): Likewise.
(decimal_from_number, decimal_to_number): Likewise.
(decimal_to_string, decimal_from_string): Likewise. Make static.
(decimal_from_longest, decimal_from_ulongest): Likewise.
(decimal_to_longest): Likewise.
(decimal_binop, decimal_is_zero, decimal_compare): Likewise.
(decimal_convert): Likewise.
2017-11-06 23:04:03 +08:00
|
|
|
{
|
|
|
|
decNumber number;
|
|
|
|
|
Target FP: Refactor use of host floating-point arithmetic
Prepare for using MPFR to implement floating-point arithmetic by
refactoring the way host floating-point arithmetic is currently used.
In particular, fix the following two problems that cause different
(and incorrect) results due to using host arithmetic:
- Current processing always uses host "long double", and then converts
back to the actual target format. This may introduce rounding errors.
- Conversion of FP values to LONGEST simply does a host C++ type cast.
However the result of such a cast is undefined if the source value
is outside the representable range. MPFR always has defined behavior
here (returns the minimum or maximum representable value).
To fix the first issue, I've now created not just one set of routines
using host FP arithmetic (on long double), but instead three different
sets of routines, one each for host float, double, and long double.
Operations can then be performed in the desired type directly, avoiding
the extra rounding step. Using C++ templates, the three sets can all
share the same source code without duplication.
To fix the second issue, I'm simply enforcing the same conversion rule
(which makes sense anyway) when converting out-of-range values from
FP to LONGEST.
To contain the code complexity with the variety of options now possible,
I've created a new class "target_float_ops". There are a total of five
separate implementations of this:
host_float_ops<float> Implemented via host FP in given type
host_float_ops<double>
host_float_ops<long double>
mpfr_float_ops Implemented via MPFR if available
decimal_float_ops Implemented via libdecnumber
Note instead of using the DOUBLEST define, this always just uses the
"long double" data type. But since we now require C++11 anyway, this
type must in any case be avaialble unconditionally.
Most target floating-point operations simply dispatch to a (virtual)
member routine of this class. Which implementation to choose is
determined from the target types involved, and whether they match
some host type or not. E.g. any operation on a single type that
matches a host type is performed in that type. Operations involving
two types that both match host types are performed in the larger one
(according to C/C++ implicit conversion rules). Operations that
involve any type that does not match a host type are performed using
MPFR. (And of course operations involving decimal FP are performed
using libdecnumber.)
This first patch implements the refactoring of target-float.c as
described above, introduing the host_float_ops and decimal_float_ops
classes, and using them. Use of MPFR is introduced in the second patch.
A bit of special-case handling code is moved around to as to avoid
code duplication between host_float_ops and mpfr_float_ops.
Note that due to the changes mentioned above, I've had to update (fix)
the floating-point register values tested in the gdb.arch/vsx-regs.exp
test case. (The new values now work both with host arithmetic and MPFR.)
gdb/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* target-float.c: Do not include <math.h>.
Include <cmath> and <limits>.
(DOUBLEST): Do not define.
(class target_float_ops): New type.
(class host_float_ops): New templated type.
(class decimal_float_ops): New type.
(floatformat_to_doublest): Rename to ...
(host_float_ops<T>::from_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::from_target): New overload using a type argument.
(floatformat_from_doublest): Rename to ...
(host_float_ops<T>::to_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::to_target): New overload using a type argument.
(floatformat_printf_format): New function.
(struct printf_length_modifier): New templated type.
(floatformat_to_string): Rename to ...
(host_float_ops<T>::to_string): ... this. Use type instead of
floatformat argument. Use floatformat_printf_format and
printf_length_modifier. Remove special handling of invalid numbers,
infinities and NaN (moved to target_float_to_string).
(struct scanf_length_modifier): New templated type.
(floatformat_from_string): Rename to ...
(host_float_ops<T>::from_string): ... this. Use type instead of
floatformat argument. Use scanf_length_modifier.
(floatformat_to_longest): Rename to ...
(host_float_ops<T>::to_longest): ... this. Use type instead of
floatformat argument. Handle out-of-range values deterministically.
(floatformat_from_longest): Rename to ...
(host_float_ops<T>::from_longest): ... this. Use type instead of
floatformat argument.
(floatformat_from_ulongest): Rename to ...
(host_float_ops<T>::from_ulongest): ... this. Use type instead of
floatformat argument.
(floatformat_to_host_double): Rename to ...
(host_float_ops<T>::to_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_from_host_double): Rename to ...
(host_float_ops<T>::from_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_convert): Rename to ...
(host_float_ops<T>::convert): ... this. Use type instead of
floatformat arguments. Remove handling of no-op conversions.
(floatformat_binop): Rename to ...
(host_float_ops<T>::binop): ... this. Use type instead of
floatformat arguments.
(floatformat_compare): Rename to ...
(host_float_ops<T>::compare): ... this. Use type instead of
floatformat arguments.
(match_endianness): Use type instead of length/byte_order arguments.
(set_decnumber_context): Likewise.
(decimal_from_number): Likewise. Update calls.
(decimal_to_number): Likewise.
(decimal_is_zero): Likewise. Update calls. Move to earlier in file.
(decimal_float_ops::to_host_double): New dummy function.
(decimal_float_ops::from_host_double): Likewise.
(decimal_to_string): Rename to ...
(decimal_float_ops::to_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_string): Rename to ...
(decimal_float_ops::from_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_longest): Rename to ...
(decimal_float_ops::from_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_ulongest): Rename to ...
(decimal_float_ops::from_ulongest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_to_longest): Rename to ...
(decimal_float_ops::to_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_binop): Rename to ...
(decimal_float_ops::binop): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_compare): Rename to ...
(decimal_float_ops::compare): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_convert): Rename to ...
(decimal_float_ops::convert): ... this. Use type instead of
length/byte_order arguments. Update calls.
(target_float_same_category_p): New function.
(target_float_same_format_p): Likewise.
(target_float_format_length): Likewise.
(enum target_float_ops_kind): New type.
(get_target_float_ops_kind): New function.
(get_target_float_ops): Three new overloaded functions.
(target_float_is_zero): Update call.
(target_float_to_string): Add special handling of invalid numbers,
infinities and NaN (moved from floatformat_to_string). Use
target_float_ops callback.
(target_float_from_string): Use target_float_ops callback.
(target_float_to_longest): Likewise.
(target_float_from_longest): Likewise.
(target_float_from_ulongest): Likewise.
(target_float_to_host_double): Likewise.
(target_float_from_host_double): Likewise.
(target_float_convert): Add special case for no-op conversions.
Use target_float_ops callback.
(target_float_binop): Use target_float_ops callback.
(target_float_compare): Likewise.
gdb/testsuite/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
|
|
|
decimal_to_number (from, from_type, &number);
|
|
|
|
decimal_from_number (&number, to, to_type);
|
Target FP: Merge doublest.c and dfp.c into target-float.c
Now that all target FP operations are performed via target-float.c,
this file remains the sole caller of functions in doublest.c and dfp.c.
Therefore, this patch merges the latter files into the former and
makes all their function static there.
gdb/ChangeLog:
2017-11-06 Ulrich Weigand <uweigand@de.ibm.com>
* Makefile.in (SFILES): Remove doublest.c and dfp.c.
(HFILES_NO_SRCDIR): Remove doublest.h and dfp.h.
(COMMON_OBS): Remove doublest.o and dfp.o.
Do not build target-float.c (instead of doublest.c)
with -Wformat-nonliteral.
* doublest.c: Remove file.
* doublest.h: Remove file.
* dfp.c: Remove file.
* dfp.h: Remove file.
* target-float.c: Do not include "doublest.h" and "dfp.h".
(DOUBLEST): Move here from doublest.h.
(enum float_kind): Likewise.
(FLOATFORMAT_CHAR_BIT): Likewise.
(FLOATFORMAT_LARGEST_BYTES): Likewise.
(floatformat_totalsize_bytes): Move here from doublest.c. Make static.
(floatformat_precision): Likewise.
(floatformat_normalize_byteorder, get_field, put_field): Likewise.
(floatformat_is_negative, floatformat_classify, floatformat_mantissa):
Likewise.
(host_float_format, host_double_format, host_long_double_format):
Likewise.
(floatformat_to_string, floatformat_from_string): Likewise.
(floatformat_to_doublest): Likewise. Also, inline the original
convert_floatformat_to_doublest.
(floatformat_from_doublest): Likewise. Also, inline the original
convert_floatformat_from_doublest.
Include "dpd/decimal128.h", "dpd/decimal64.h", and "dpd/decimal32.h".
(MAX_DECIMAL_STRING): Move here from dfp.c.
(match_endianness): Likewise.
(set_decnumber_context, decimal_check_errors): Likewise.
(decimal_from_number, decimal_to_number): Likewise.
(decimal_to_string, decimal_from_string): Likewise. Make static.
(decimal_from_longest, decimal_from_ulongest): Likewise.
(decimal_to_longest): Likewise.
(decimal_binop, decimal_is_zero, decimal_compare): Likewise.
(decimal_convert): Likewise.
2017-11-06 23:04:03 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
|
Target FP: Introduce target-float.{c,h}
This patch introduces the new set of target floating-point handling routines
in target-float.{c,h}. In the end, the intention is that this file will
contain support for all operations in target FP format, fully replacing
both the current doublest.{c,h} and dfp.{c,h}.
To begin with, this patch only adds a target_float_is_zero routine,
which handles the equivalent of decimal_is_zero for both binary and
decimal FP. For the binary case, to avoid conversion to DOUBLEST,
this is implemented using the floatformat_classify routine.
However, it turns out that floatformat_classify actually has a bug
(it was not used to check for zero before), so this is fixed as well.
The new routine is used in both value_logical_not and valpy_nonzero.
There is one extra twist: the code previously used value_as_double
to convert to DOUBLEST and then compare against zero. That routine
performs an extra task: it detects invalid floating-point values
and raises an error. In any place where value_as_double is removed
in favor of some target-float.c routine, we need to replace that check.
To keep this check centralized in one place, I've added a new routine
is_floating_value, which returns a boolean determining whether a
value's type is floating point (binary or decimal), and if so, also
performs the validity check. Since we need to check whether a value
is FP before calling any of the target-float routines anyway, this
seems a good place to add the check without much code size overhead.
In some places where we only want to check for floating-point types
and not perform a validity check (e.g. for the *output* of an operation),
we can use the new is_floating_type routine (in gdbarch) instead.
The validity check itself is done by a new target_float_is_valid
routine in target-float, encapsulating floatformat_is_valid.
ChangeLog:
2017-11-06 Ulrich Weigand <uweigand@de.ibm.com>
* Makefile.c (SFILES): Add target-float.c.
(HFILES_NO_SRCDIR): Add target-float.h.
(COMMON_OBS): Add target-float.o.
* target-float.h: New file.
* target-float.c: New file.
* doublest.c (floatformat_classify): Fix detection of float_zero.
* gdbtypes.c (is_floating_type): New function.
* gdbtypes.h (is_floating_type): Add prototype.
* value.c: Do not include "floatformat.h".
(unpack_double): Use target_float_is_valid.
(is_floating_value): New function.
* value.h (is_floating_value): Add prototype-
* valarith.c: Include "target-float.h".
(value_logical_not): Use target_float_is_zero.
* python/py-value.c: Include "target-float.h".
(valpy_nonzero): Use target_float_is_zero.
2017-11-06 22:55:11 +08:00
|
|
|
/* Typed floating-point routines. These routines operate on floating-point
|
|
|
|
values in target format, represented by a byte buffer interpreted as a
|
|
|
|
"struct type", which may be either a binary or decimal floating-point
|
|
|
|
type (TYPE_CODE_FLT or TYPE_CODE_DECFLOAT). */
|
|
|
|
|
Target FP: Refactor use of host floating-point arithmetic
Prepare for using MPFR to implement floating-point arithmetic by
refactoring the way host floating-point arithmetic is currently used.
In particular, fix the following two problems that cause different
(and incorrect) results due to using host arithmetic:
- Current processing always uses host "long double", and then converts
back to the actual target format. This may introduce rounding errors.
- Conversion of FP values to LONGEST simply does a host C++ type cast.
However the result of such a cast is undefined if the source value
is outside the representable range. MPFR always has defined behavior
here (returns the minimum or maximum representable value).
To fix the first issue, I've now created not just one set of routines
using host FP arithmetic (on long double), but instead three different
sets of routines, one each for host float, double, and long double.
Operations can then be performed in the desired type directly, avoiding
the extra rounding step. Using C++ templates, the three sets can all
share the same source code without duplication.
To fix the second issue, I'm simply enforcing the same conversion rule
(which makes sense anyway) when converting out-of-range values from
FP to LONGEST.
To contain the code complexity with the variety of options now possible,
I've created a new class "target_float_ops". There are a total of five
separate implementations of this:
host_float_ops<float> Implemented via host FP in given type
host_float_ops<double>
host_float_ops<long double>
mpfr_float_ops Implemented via MPFR if available
decimal_float_ops Implemented via libdecnumber
Note instead of using the DOUBLEST define, this always just uses the
"long double" data type. But since we now require C++11 anyway, this
type must in any case be avaialble unconditionally.
Most target floating-point operations simply dispatch to a (virtual)
member routine of this class. Which implementation to choose is
determined from the target types involved, and whether they match
some host type or not. E.g. any operation on a single type that
matches a host type is performed in that type. Operations involving
two types that both match host types are performed in the larger one
(according to C/C++ implicit conversion rules). Operations that
involve any type that does not match a host type are performed using
MPFR. (And of course operations involving decimal FP are performed
using libdecnumber.)
This first patch implements the refactoring of target-float.c as
described above, introduing the host_float_ops and decimal_float_ops
classes, and using them. Use of MPFR is introduced in the second patch.
A bit of special-case handling code is moved around to as to avoid
code duplication between host_float_ops and mpfr_float_ops.
Note that due to the changes mentioned above, I've had to update (fix)
the floating-point register values tested in the gdb.arch/vsx-regs.exp
test case. (The new values now work both with host arithmetic and MPFR.)
gdb/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* target-float.c: Do not include <math.h>.
Include <cmath> and <limits>.
(DOUBLEST): Do not define.
(class target_float_ops): New type.
(class host_float_ops): New templated type.
(class decimal_float_ops): New type.
(floatformat_to_doublest): Rename to ...
(host_float_ops<T>::from_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::from_target): New overload using a type argument.
(floatformat_from_doublest): Rename to ...
(host_float_ops<T>::to_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::to_target): New overload using a type argument.
(floatformat_printf_format): New function.
(struct printf_length_modifier): New templated type.
(floatformat_to_string): Rename to ...
(host_float_ops<T>::to_string): ... this. Use type instead of
floatformat argument. Use floatformat_printf_format and
printf_length_modifier. Remove special handling of invalid numbers,
infinities and NaN (moved to target_float_to_string).
(struct scanf_length_modifier): New templated type.
(floatformat_from_string): Rename to ...
(host_float_ops<T>::from_string): ... this. Use type instead of
floatformat argument. Use scanf_length_modifier.
(floatformat_to_longest): Rename to ...
(host_float_ops<T>::to_longest): ... this. Use type instead of
floatformat argument. Handle out-of-range values deterministically.
(floatformat_from_longest): Rename to ...
(host_float_ops<T>::from_longest): ... this. Use type instead of
floatformat argument.
(floatformat_from_ulongest): Rename to ...
(host_float_ops<T>::from_ulongest): ... this. Use type instead of
floatformat argument.
(floatformat_to_host_double): Rename to ...
(host_float_ops<T>::to_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_from_host_double): Rename to ...
(host_float_ops<T>::from_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_convert): Rename to ...
(host_float_ops<T>::convert): ... this. Use type instead of
floatformat arguments. Remove handling of no-op conversions.
(floatformat_binop): Rename to ...
(host_float_ops<T>::binop): ... this. Use type instead of
floatformat arguments.
(floatformat_compare): Rename to ...
(host_float_ops<T>::compare): ... this. Use type instead of
floatformat arguments.
(match_endianness): Use type instead of length/byte_order arguments.
(set_decnumber_context): Likewise.
(decimal_from_number): Likewise. Update calls.
(decimal_to_number): Likewise.
(decimal_is_zero): Likewise. Update calls. Move to earlier in file.
(decimal_float_ops::to_host_double): New dummy function.
(decimal_float_ops::from_host_double): Likewise.
(decimal_to_string): Rename to ...
(decimal_float_ops::to_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_string): Rename to ...
(decimal_float_ops::from_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_longest): Rename to ...
(decimal_float_ops::from_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_ulongest): Rename to ...
(decimal_float_ops::from_ulongest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_to_longest): Rename to ...
(decimal_float_ops::to_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_binop): Rename to ...
(decimal_float_ops::binop): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_compare): Rename to ...
(decimal_float_ops::compare): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_convert): Rename to ...
(decimal_float_ops::convert): ... this. Use type instead of
length/byte_order arguments. Update calls.
(target_float_same_category_p): New function.
(target_float_same_format_p): Likewise.
(target_float_format_length): Likewise.
(enum target_float_ops_kind): New type.
(get_target_float_ops_kind): New function.
(get_target_float_ops): Three new overloaded functions.
(target_float_is_zero): Update call.
(target_float_to_string): Add special handling of invalid numbers,
infinities and NaN (moved from floatformat_to_string). Use
target_float_ops callback.
(target_float_from_string): Use target_float_ops callback.
(target_float_to_longest): Likewise.
(target_float_from_longest): Likewise.
(target_float_from_ulongest): Likewise.
(target_float_to_host_double): Likewise.
(target_float_from_host_double): Likewise.
(target_float_convert): Add special case for no-op conversions.
Use target_float_ops callback.
(target_float_binop): Use target_float_ops callback.
(target_float_compare): Likewise.
gdb/testsuite/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
|
|
|
/* Return whether TYPE1 and TYPE2 are of the same category (binary or
|
|
|
|
decimal floating-point). */
|
|
|
|
static bool
|
|
|
|
target_float_same_category_p (const struct type *type1,
|
|
|
|
const struct type *type2)
|
|
|
|
{
|
|
|
|
return TYPE_CODE (type1) == TYPE_CODE (type2);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Return whether TYPE1 and TYPE2 use the same floating-point format. */
|
|
|
|
static bool
|
|
|
|
target_float_same_format_p (const struct type *type1,
|
|
|
|
const struct type *type2)
|
|
|
|
{
|
|
|
|
if (!target_float_same_category_p (type1, type2))
|
|
|
|
return false;
|
|
|
|
|
|
|
|
switch (TYPE_CODE (type1))
|
|
|
|
{
|
|
|
|
case TYPE_CODE_FLT:
|
|
|
|
return floatformat_from_type (type1) == floatformat_from_type (type2);
|
|
|
|
|
|
|
|
case TYPE_CODE_DECFLOAT:
|
|
|
|
return (TYPE_LENGTH (type1) == TYPE_LENGTH (type2)
|
|
|
|
&& (gdbarch_byte_order (get_type_arch (type1))
|
|
|
|
== gdbarch_byte_order (get_type_arch (type2))));
|
|
|
|
|
|
|
|
default:
|
|
|
|
gdb_assert_not_reached ("unexpected type code");
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Return the size (without padding) of the target floating-point
|
|
|
|
format used by TYPE. */
|
|
|
|
static int
|
|
|
|
target_float_format_length (const struct type *type)
|
|
|
|
{
|
|
|
|
switch (TYPE_CODE (type))
|
|
|
|
{
|
|
|
|
case TYPE_CODE_FLT:
|
|
|
|
return floatformat_totalsize_bytes (floatformat_from_type (type));
|
|
|
|
|
|
|
|
case TYPE_CODE_DECFLOAT:
|
|
|
|
return TYPE_LENGTH (type);
|
|
|
|
|
|
|
|
default:
|
|
|
|
gdb_assert_not_reached ("unexpected type code");
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Identifiers of available host-side intermediate formats. These must
|
|
|
|
be sorted so the that the more "general" kinds come later. */
|
|
|
|
enum target_float_ops_kind
|
|
|
|
{
|
|
|
|
/* Target binary floating-point formats that match a host format. */
|
|
|
|
host_float = 0,
|
|
|
|
host_double,
|
|
|
|
host_long_double,
|
|
|
|
/* Any other target binary floating-point format. */
|
|
|
|
binary,
|
|
|
|
/* Any target decimal floating-point format. */
|
|
|
|
decimal
|
|
|
|
};
|
|
|
|
|
|
|
|
/* Given a target type TYPE, choose the best host-side intermediate format
|
|
|
|
to perform operations on TYPE in. */
|
|
|
|
static enum target_float_ops_kind
|
|
|
|
get_target_float_ops_kind (const struct type *type)
|
|
|
|
{
|
|
|
|
switch (TYPE_CODE (type))
|
|
|
|
{
|
|
|
|
case TYPE_CODE_FLT:
|
|
|
|
{
|
|
|
|
const struct floatformat *fmt = floatformat_from_type (type);
|
|
|
|
|
|
|
|
/* Binary floating-point formats matching a host format. */
|
|
|
|
if (fmt == host_float_format)
|
|
|
|
return target_float_ops_kind::host_float;
|
|
|
|
if (fmt == host_double_format)
|
|
|
|
return target_float_ops_kind::host_double;
|
|
|
|
if (fmt == host_long_double_format)
|
|
|
|
return target_float_ops_kind::host_long_double;
|
|
|
|
|
|
|
|
/* Any other binary floating-point format. */
|
|
|
|
return target_float_ops_kind::binary;
|
|
|
|
}
|
|
|
|
|
|
|
|
case TYPE_CODE_DECFLOAT:
|
|
|
|
{
|
|
|
|
/* Any decimal floating-point format. */
|
|
|
|
return target_float_ops_kind::decimal;
|
|
|
|
}
|
|
|
|
|
|
|
|
default:
|
|
|
|
gdb_assert_not_reached ("unexpected type code");
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Return target_float_ops to peform operations for KIND. */
|
|
|
|
static const target_float_ops *
|
|
|
|
get_target_float_ops (enum target_float_ops_kind kind)
|
|
|
|
{
|
|
|
|
switch (kind)
|
|
|
|
{
|
|
|
|
/* If the type format matches one of the host floating-point
|
|
|
|
types, use that type as intermediate format. */
|
|
|
|
case target_float_ops_kind::host_float:
|
|
|
|
{
|
|
|
|
static host_float_ops<float> host_float_ops_float;
|
|
|
|
return &host_float_ops_float;
|
|
|
|
}
|
|
|
|
|
|
|
|
case target_float_ops_kind::host_double:
|
|
|
|
{
|
|
|
|
static host_float_ops<double> host_float_ops_double;
|
|
|
|
return &host_float_ops_double;
|
|
|
|
}
|
|
|
|
|
|
|
|
case target_float_ops_kind::host_long_double:
|
|
|
|
{
|
|
|
|
static host_float_ops<long double> host_float_ops_long_double;
|
|
|
|
return &host_float_ops_long_double;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* For binary floating-point formats that do not match any host format,
|
2017-11-22 20:53:43 +08:00
|
|
|
use mpfr_t as intermediate format to provide precise target-floating
|
|
|
|
point emulation. However, if the MPFR library is not availabe,
|
Target FP: Refactor use of host floating-point arithmetic
Prepare for using MPFR to implement floating-point arithmetic by
refactoring the way host floating-point arithmetic is currently used.
In particular, fix the following two problems that cause different
(and incorrect) results due to using host arithmetic:
- Current processing always uses host "long double", and then converts
back to the actual target format. This may introduce rounding errors.
- Conversion of FP values to LONGEST simply does a host C++ type cast.
However the result of such a cast is undefined if the source value
is outside the representable range. MPFR always has defined behavior
here (returns the minimum or maximum representable value).
To fix the first issue, I've now created not just one set of routines
using host FP arithmetic (on long double), but instead three different
sets of routines, one each for host float, double, and long double.
Operations can then be performed in the desired type directly, avoiding
the extra rounding step. Using C++ templates, the three sets can all
share the same source code without duplication.
To fix the second issue, I'm simply enforcing the same conversion rule
(which makes sense anyway) when converting out-of-range values from
FP to LONGEST.
To contain the code complexity with the variety of options now possible,
I've created a new class "target_float_ops". There are a total of five
separate implementations of this:
host_float_ops<float> Implemented via host FP in given type
host_float_ops<double>
host_float_ops<long double>
mpfr_float_ops Implemented via MPFR if available
decimal_float_ops Implemented via libdecnumber
Note instead of using the DOUBLEST define, this always just uses the
"long double" data type. But since we now require C++11 anyway, this
type must in any case be avaialble unconditionally.
Most target floating-point operations simply dispatch to a (virtual)
member routine of this class. Which implementation to choose is
determined from the target types involved, and whether they match
some host type or not. E.g. any operation on a single type that
matches a host type is performed in that type. Operations involving
two types that both match host types are performed in the larger one
(according to C/C++ implicit conversion rules). Operations that
involve any type that does not match a host type are performed using
MPFR. (And of course operations involving decimal FP are performed
using libdecnumber.)
This first patch implements the refactoring of target-float.c as
described above, introduing the host_float_ops and decimal_float_ops
classes, and using them. Use of MPFR is introduced in the second patch.
A bit of special-case handling code is moved around to as to avoid
code duplication between host_float_ops and mpfr_float_ops.
Note that due to the changes mentioned above, I've had to update (fix)
the floating-point register values tested in the gdb.arch/vsx-regs.exp
test case. (The new values now work both with host arithmetic and MPFR.)
gdb/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* target-float.c: Do not include <math.h>.
Include <cmath> and <limits>.
(DOUBLEST): Do not define.
(class target_float_ops): New type.
(class host_float_ops): New templated type.
(class decimal_float_ops): New type.
(floatformat_to_doublest): Rename to ...
(host_float_ops<T>::from_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::from_target): New overload using a type argument.
(floatformat_from_doublest): Rename to ...
(host_float_ops<T>::to_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::to_target): New overload using a type argument.
(floatformat_printf_format): New function.
(struct printf_length_modifier): New templated type.
(floatformat_to_string): Rename to ...
(host_float_ops<T>::to_string): ... this. Use type instead of
floatformat argument. Use floatformat_printf_format and
printf_length_modifier. Remove special handling of invalid numbers,
infinities and NaN (moved to target_float_to_string).
(struct scanf_length_modifier): New templated type.
(floatformat_from_string): Rename to ...
(host_float_ops<T>::from_string): ... this. Use type instead of
floatformat argument. Use scanf_length_modifier.
(floatformat_to_longest): Rename to ...
(host_float_ops<T>::to_longest): ... this. Use type instead of
floatformat argument. Handle out-of-range values deterministically.
(floatformat_from_longest): Rename to ...
(host_float_ops<T>::from_longest): ... this. Use type instead of
floatformat argument.
(floatformat_from_ulongest): Rename to ...
(host_float_ops<T>::from_ulongest): ... this. Use type instead of
floatformat argument.
(floatformat_to_host_double): Rename to ...
(host_float_ops<T>::to_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_from_host_double): Rename to ...
(host_float_ops<T>::from_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_convert): Rename to ...
(host_float_ops<T>::convert): ... this. Use type instead of
floatformat arguments. Remove handling of no-op conversions.
(floatformat_binop): Rename to ...
(host_float_ops<T>::binop): ... this. Use type instead of
floatformat arguments.
(floatformat_compare): Rename to ...
(host_float_ops<T>::compare): ... this. Use type instead of
floatformat arguments.
(match_endianness): Use type instead of length/byte_order arguments.
(set_decnumber_context): Likewise.
(decimal_from_number): Likewise. Update calls.
(decimal_to_number): Likewise.
(decimal_is_zero): Likewise. Update calls. Move to earlier in file.
(decimal_float_ops::to_host_double): New dummy function.
(decimal_float_ops::from_host_double): Likewise.
(decimal_to_string): Rename to ...
(decimal_float_ops::to_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_string): Rename to ...
(decimal_float_ops::from_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_longest): Rename to ...
(decimal_float_ops::from_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_ulongest): Rename to ...
(decimal_float_ops::from_ulongest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_to_longest): Rename to ...
(decimal_float_ops::to_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_binop): Rename to ...
(decimal_float_ops::binop): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_compare): Rename to ...
(decimal_float_ops::compare): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_convert): Rename to ...
(decimal_float_ops::convert): ... this. Use type instead of
length/byte_order arguments. Update calls.
(target_float_same_category_p): New function.
(target_float_same_format_p): Likewise.
(target_float_format_length): Likewise.
(enum target_float_ops_kind): New type.
(get_target_float_ops_kind): New function.
(get_target_float_ops): Three new overloaded functions.
(target_float_is_zero): Update call.
(target_float_to_string): Add special handling of invalid numbers,
infinities and NaN (moved from floatformat_to_string). Use
target_float_ops callback.
(target_float_from_string): Use target_float_ops callback.
(target_float_to_longest): Likewise.
(target_float_from_longest): Likewise.
(target_float_from_ulongest): Likewise.
(target_float_to_host_double): Likewise.
(target_float_from_host_double): Likewise.
(target_float_convert): Add special case for no-op conversions.
Use target_float_ops callback.
(target_float_binop): Use target_float_ops callback.
(target_float_compare): Likewise.
gdb/testsuite/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
|
|
|
use the largest host floating-point type as intermediate format. */
|
|
|
|
case target_float_ops_kind::binary:
|
|
|
|
{
|
2017-11-22 20:53:43 +08:00
|
|
|
#ifdef HAVE_LIBMPFR
|
|
|
|
static mpfr_float_ops binary_float_ops;
|
|
|
|
#else
|
Target FP: Refactor use of host floating-point arithmetic
Prepare for using MPFR to implement floating-point arithmetic by
refactoring the way host floating-point arithmetic is currently used.
In particular, fix the following two problems that cause different
(and incorrect) results due to using host arithmetic:
- Current processing always uses host "long double", and then converts
back to the actual target format. This may introduce rounding errors.
- Conversion of FP values to LONGEST simply does a host C++ type cast.
However the result of such a cast is undefined if the source value
is outside the representable range. MPFR always has defined behavior
here (returns the minimum or maximum representable value).
To fix the first issue, I've now created not just one set of routines
using host FP arithmetic (on long double), but instead three different
sets of routines, one each for host float, double, and long double.
Operations can then be performed in the desired type directly, avoiding
the extra rounding step. Using C++ templates, the three sets can all
share the same source code without duplication.
To fix the second issue, I'm simply enforcing the same conversion rule
(which makes sense anyway) when converting out-of-range values from
FP to LONGEST.
To contain the code complexity with the variety of options now possible,
I've created a new class "target_float_ops". There are a total of five
separate implementations of this:
host_float_ops<float> Implemented via host FP in given type
host_float_ops<double>
host_float_ops<long double>
mpfr_float_ops Implemented via MPFR if available
decimal_float_ops Implemented via libdecnumber
Note instead of using the DOUBLEST define, this always just uses the
"long double" data type. But since we now require C++11 anyway, this
type must in any case be avaialble unconditionally.
Most target floating-point operations simply dispatch to a (virtual)
member routine of this class. Which implementation to choose is
determined from the target types involved, and whether they match
some host type or not. E.g. any operation on a single type that
matches a host type is performed in that type. Operations involving
two types that both match host types are performed in the larger one
(according to C/C++ implicit conversion rules). Operations that
involve any type that does not match a host type are performed using
MPFR. (And of course operations involving decimal FP are performed
using libdecnumber.)
This first patch implements the refactoring of target-float.c as
described above, introduing the host_float_ops and decimal_float_ops
classes, and using them. Use of MPFR is introduced in the second patch.
A bit of special-case handling code is moved around to as to avoid
code duplication between host_float_ops and mpfr_float_ops.
Note that due to the changes mentioned above, I've had to update (fix)
the floating-point register values tested in the gdb.arch/vsx-regs.exp
test case. (The new values now work both with host arithmetic and MPFR.)
gdb/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* target-float.c: Do not include <math.h>.
Include <cmath> and <limits>.
(DOUBLEST): Do not define.
(class target_float_ops): New type.
(class host_float_ops): New templated type.
(class decimal_float_ops): New type.
(floatformat_to_doublest): Rename to ...
(host_float_ops<T>::from_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::from_target): New overload using a type argument.
(floatformat_from_doublest): Rename to ...
(host_float_ops<T>::to_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::to_target): New overload using a type argument.
(floatformat_printf_format): New function.
(struct printf_length_modifier): New templated type.
(floatformat_to_string): Rename to ...
(host_float_ops<T>::to_string): ... this. Use type instead of
floatformat argument. Use floatformat_printf_format and
printf_length_modifier. Remove special handling of invalid numbers,
infinities and NaN (moved to target_float_to_string).
(struct scanf_length_modifier): New templated type.
(floatformat_from_string): Rename to ...
(host_float_ops<T>::from_string): ... this. Use type instead of
floatformat argument. Use scanf_length_modifier.
(floatformat_to_longest): Rename to ...
(host_float_ops<T>::to_longest): ... this. Use type instead of
floatformat argument. Handle out-of-range values deterministically.
(floatformat_from_longest): Rename to ...
(host_float_ops<T>::from_longest): ... this. Use type instead of
floatformat argument.
(floatformat_from_ulongest): Rename to ...
(host_float_ops<T>::from_ulongest): ... this. Use type instead of
floatformat argument.
(floatformat_to_host_double): Rename to ...
(host_float_ops<T>::to_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_from_host_double): Rename to ...
(host_float_ops<T>::from_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_convert): Rename to ...
(host_float_ops<T>::convert): ... this. Use type instead of
floatformat arguments. Remove handling of no-op conversions.
(floatformat_binop): Rename to ...
(host_float_ops<T>::binop): ... this. Use type instead of
floatformat arguments.
(floatformat_compare): Rename to ...
(host_float_ops<T>::compare): ... this. Use type instead of
floatformat arguments.
(match_endianness): Use type instead of length/byte_order arguments.
(set_decnumber_context): Likewise.
(decimal_from_number): Likewise. Update calls.
(decimal_to_number): Likewise.
(decimal_is_zero): Likewise. Update calls. Move to earlier in file.
(decimal_float_ops::to_host_double): New dummy function.
(decimal_float_ops::from_host_double): Likewise.
(decimal_to_string): Rename to ...
(decimal_float_ops::to_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_string): Rename to ...
(decimal_float_ops::from_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_longest): Rename to ...
(decimal_float_ops::from_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_ulongest): Rename to ...
(decimal_float_ops::from_ulongest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_to_longest): Rename to ...
(decimal_float_ops::to_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_binop): Rename to ...
(decimal_float_ops::binop): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_compare): Rename to ...
(decimal_float_ops::compare): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_convert): Rename to ...
(decimal_float_ops::convert): ... this. Use type instead of
length/byte_order arguments. Update calls.
(target_float_same_category_p): New function.
(target_float_same_format_p): Likewise.
(target_float_format_length): Likewise.
(enum target_float_ops_kind): New type.
(get_target_float_ops_kind): New function.
(get_target_float_ops): Three new overloaded functions.
(target_float_is_zero): Update call.
(target_float_to_string): Add special handling of invalid numbers,
infinities and NaN (moved from floatformat_to_string). Use
target_float_ops callback.
(target_float_from_string): Use target_float_ops callback.
(target_float_to_longest): Likewise.
(target_float_from_longest): Likewise.
(target_float_from_ulongest): Likewise.
(target_float_to_host_double): Likewise.
(target_float_from_host_double): Likewise.
(target_float_convert): Add special case for no-op conversions.
Use target_float_ops callback.
(target_float_binop): Use target_float_ops callback.
(target_float_compare): Likewise.
gdb/testsuite/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
|
|
|
static host_float_ops<long double> binary_float_ops;
|
2017-11-22 20:53:43 +08:00
|
|
|
#endif
|
Target FP: Refactor use of host floating-point arithmetic
Prepare for using MPFR to implement floating-point arithmetic by
refactoring the way host floating-point arithmetic is currently used.
In particular, fix the following two problems that cause different
(and incorrect) results due to using host arithmetic:
- Current processing always uses host "long double", and then converts
back to the actual target format. This may introduce rounding errors.
- Conversion of FP values to LONGEST simply does a host C++ type cast.
However the result of such a cast is undefined if the source value
is outside the representable range. MPFR always has defined behavior
here (returns the minimum or maximum representable value).
To fix the first issue, I've now created not just one set of routines
using host FP arithmetic (on long double), but instead three different
sets of routines, one each for host float, double, and long double.
Operations can then be performed in the desired type directly, avoiding
the extra rounding step. Using C++ templates, the three sets can all
share the same source code without duplication.
To fix the second issue, I'm simply enforcing the same conversion rule
(which makes sense anyway) when converting out-of-range values from
FP to LONGEST.
To contain the code complexity with the variety of options now possible,
I've created a new class "target_float_ops". There are a total of five
separate implementations of this:
host_float_ops<float> Implemented via host FP in given type
host_float_ops<double>
host_float_ops<long double>
mpfr_float_ops Implemented via MPFR if available
decimal_float_ops Implemented via libdecnumber
Note instead of using the DOUBLEST define, this always just uses the
"long double" data type. But since we now require C++11 anyway, this
type must in any case be avaialble unconditionally.
Most target floating-point operations simply dispatch to a (virtual)
member routine of this class. Which implementation to choose is
determined from the target types involved, and whether they match
some host type or not. E.g. any operation on a single type that
matches a host type is performed in that type. Operations involving
two types that both match host types are performed in the larger one
(according to C/C++ implicit conversion rules). Operations that
involve any type that does not match a host type are performed using
MPFR. (And of course operations involving decimal FP are performed
using libdecnumber.)
This first patch implements the refactoring of target-float.c as
described above, introduing the host_float_ops and decimal_float_ops
classes, and using them. Use of MPFR is introduced in the second patch.
A bit of special-case handling code is moved around to as to avoid
code duplication between host_float_ops and mpfr_float_ops.
Note that due to the changes mentioned above, I've had to update (fix)
the floating-point register values tested in the gdb.arch/vsx-regs.exp
test case. (The new values now work both with host arithmetic and MPFR.)
gdb/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* target-float.c: Do not include <math.h>.
Include <cmath> and <limits>.
(DOUBLEST): Do not define.
(class target_float_ops): New type.
(class host_float_ops): New templated type.
(class decimal_float_ops): New type.
(floatformat_to_doublest): Rename to ...
(host_float_ops<T>::from_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::from_target): New overload using a type argument.
(floatformat_from_doublest): Rename to ...
(host_float_ops<T>::to_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::to_target): New overload using a type argument.
(floatformat_printf_format): New function.
(struct printf_length_modifier): New templated type.
(floatformat_to_string): Rename to ...
(host_float_ops<T>::to_string): ... this. Use type instead of
floatformat argument. Use floatformat_printf_format and
printf_length_modifier. Remove special handling of invalid numbers,
infinities and NaN (moved to target_float_to_string).
(struct scanf_length_modifier): New templated type.
(floatformat_from_string): Rename to ...
(host_float_ops<T>::from_string): ... this. Use type instead of
floatformat argument. Use scanf_length_modifier.
(floatformat_to_longest): Rename to ...
(host_float_ops<T>::to_longest): ... this. Use type instead of
floatformat argument. Handle out-of-range values deterministically.
(floatformat_from_longest): Rename to ...
(host_float_ops<T>::from_longest): ... this. Use type instead of
floatformat argument.
(floatformat_from_ulongest): Rename to ...
(host_float_ops<T>::from_ulongest): ... this. Use type instead of
floatformat argument.
(floatformat_to_host_double): Rename to ...
(host_float_ops<T>::to_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_from_host_double): Rename to ...
(host_float_ops<T>::from_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_convert): Rename to ...
(host_float_ops<T>::convert): ... this. Use type instead of
floatformat arguments. Remove handling of no-op conversions.
(floatformat_binop): Rename to ...
(host_float_ops<T>::binop): ... this. Use type instead of
floatformat arguments.
(floatformat_compare): Rename to ...
(host_float_ops<T>::compare): ... this. Use type instead of
floatformat arguments.
(match_endianness): Use type instead of length/byte_order arguments.
(set_decnumber_context): Likewise.
(decimal_from_number): Likewise. Update calls.
(decimal_to_number): Likewise.
(decimal_is_zero): Likewise. Update calls. Move to earlier in file.
(decimal_float_ops::to_host_double): New dummy function.
(decimal_float_ops::from_host_double): Likewise.
(decimal_to_string): Rename to ...
(decimal_float_ops::to_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_string): Rename to ...
(decimal_float_ops::from_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_longest): Rename to ...
(decimal_float_ops::from_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_ulongest): Rename to ...
(decimal_float_ops::from_ulongest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_to_longest): Rename to ...
(decimal_float_ops::to_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_binop): Rename to ...
(decimal_float_ops::binop): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_compare): Rename to ...
(decimal_float_ops::compare): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_convert): Rename to ...
(decimal_float_ops::convert): ... this. Use type instead of
length/byte_order arguments. Update calls.
(target_float_same_category_p): New function.
(target_float_same_format_p): Likewise.
(target_float_format_length): Likewise.
(enum target_float_ops_kind): New type.
(get_target_float_ops_kind): New function.
(get_target_float_ops): Three new overloaded functions.
(target_float_is_zero): Update call.
(target_float_to_string): Add special handling of invalid numbers,
infinities and NaN (moved from floatformat_to_string). Use
target_float_ops callback.
(target_float_from_string): Use target_float_ops callback.
(target_float_to_longest): Likewise.
(target_float_from_longest): Likewise.
(target_float_from_ulongest): Likewise.
(target_float_to_host_double): Likewise.
(target_float_from_host_double): Likewise.
(target_float_convert): Add special case for no-op conversions.
Use target_float_ops callback.
(target_float_binop): Use target_float_ops callback.
(target_float_compare): Likewise.
gdb/testsuite/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
|
|
|
return &binary_float_ops;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* For decimal floating-point types, always use the libdecnumber
|
|
|
|
decNumber type as intermediate format. */
|
|
|
|
case target_float_ops_kind::decimal:
|
|
|
|
{
|
|
|
|
static decimal_float_ops decimal_float_ops;
|
|
|
|
return &decimal_float_ops;
|
|
|
|
}
|
|
|
|
|
|
|
|
default:
|
|
|
|
gdb_assert_not_reached ("unexpected target_float_ops_kind");
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Given a target type TYPE, determine the best host-side intermediate format
|
|
|
|
to perform operations on TYPE in. */
|
|
|
|
static const target_float_ops *
|
|
|
|
get_target_float_ops (const struct type *type)
|
|
|
|
{
|
|
|
|
enum target_float_ops_kind kind = get_target_float_ops_kind (type);
|
|
|
|
return get_target_float_ops (kind);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* The same for operations involving two target types TYPE1 and TYPE2. */
|
|
|
|
static const target_float_ops *
|
|
|
|
get_target_float_ops (const struct type *type1, const struct type *type2)
|
|
|
|
{
|
|
|
|
gdb_assert (TYPE_CODE (type1) == TYPE_CODE (type2));
|
|
|
|
|
|
|
|
enum target_float_ops_kind kind1 = get_target_float_ops_kind (type1);
|
|
|
|
enum target_float_ops_kind kind2 = get_target_float_ops_kind (type2);
|
|
|
|
|
|
|
|
/* Given the way the kinds are sorted, we simply choose the larger one;
|
|
|
|
this will be able to hold values of either type. */
|
|
|
|
return get_target_float_ops (std::max (kind1, kind2));
|
|
|
|
}
|
|
|
|
|
Target FP: Introduce target-float.{c,h}
This patch introduces the new set of target floating-point handling routines
in target-float.{c,h}. In the end, the intention is that this file will
contain support for all operations in target FP format, fully replacing
both the current doublest.{c,h} and dfp.{c,h}.
To begin with, this patch only adds a target_float_is_zero routine,
which handles the equivalent of decimal_is_zero for both binary and
decimal FP. For the binary case, to avoid conversion to DOUBLEST,
this is implemented using the floatformat_classify routine.
However, it turns out that floatformat_classify actually has a bug
(it was not used to check for zero before), so this is fixed as well.
The new routine is used in both value_logical_not and valpy_nonzero.
There is one extra twist: the code previously used value_as_double
to convert to DOUBLEST and then compare against zero. That routine
performs an extra task: it detects invalid floating-point values
and raises an error. In any place where value_as_double is removed
in favor of some target-float.c routine, we need to replace that check.
To keep this check centralized in one place, I've added a new routine
is_floating_value, which returns a boolean determining whether a
value's type is floating point (binary or decimal), and if so, also
performs the validity check. Since we need to check whether a value
is FP before calling any of the target-float routines anyway, this
seems a good place to add the check without much code size overhead.
In some places where we only want to check for floating-point types
and not perform a validity check (e.g. for the *output* of an operation),
we can use the new is_floating_type routine (in gdbarch) instead.
The validity check itself is done by a new target_float_is_valid
routine in target-float, encapsulating floatformat_is_valid.
ChangeLog:
2017-11-06 Ulrich Weigand <uweigand@de.ibm.com>
* Makefile.c (SFILES): Add target-float.c.
(HFILES_NO_SRCDIR): Add target-float.h.
(COMMON_OBS): Add target-float.o.
* target-float.h: New file.
* target-float.c: New file.
* doublest.c (floatformat_classify): Fix detection of float_zero.
* gdbtypes.c (is_floating_type): New function.
* gdbtypes.h (is_floating_type): Add prototype.
* value.c: Do not include "floatformat.h".
(unpack_double): Use target_float_is_valid.
(is_floating_value): New function.
* value.h (is_floating_value): Add prototype-
* valarith.c: Include "target-float.h".
(value_logical_not): Use target_float_is_zero.
* python/py-value.c: Include "target-float.h".
(valpy_nonzero): Use target_float_is_zero.
2017-11-06 22:55:11 +08:00
|
|
|
/* Return whether the byte-stream ADDR holds a valid value of
|
|
|
|
floating-point type TYPE. */
|
|
|
|
bool
|
|
|
|
target_float_is_valid (const gdb_byte *addr, const struct type *type)
|
|
|
|
{
|
|
|
|
if (TYPE_CODE (type) == TYPE_CODE_FLT)
|
|
|
|
return floatformat_is_valid (floatformat_from_type (type), addr);
|
|
|
|
|
|
|
|
if (TYPE_CODE (type) == TYPE_CODE_DECFLOAT)
|
|
|
|
return true;
|
|
|
|
|
|
|
|
gdb_assert_not_reached ("unexpected type code");
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Return whether the byte-stream ADDR, interpreted as floating-point
|
|
|
|
type TYPE, is numerically equal to zero (of either sign). */
|
|
|
|
bool
|
|
|
|
target_float_is_zero (const gdb_byte *addr, const struct type *type)
|
|
|
|
{
|
|
|
|
if (TYPE_CODE (type) == TYPE_CODE_FLT)
|
|
|
|
return (floatformat_classify (floatformat_from_type (type), addr)
|
|
|
|
== float_zero);
|
|
|
|
|
|
|
|
if (TYPE_CODE (type) == TYPE_CODE_DECFLOAT)
|
Target FP: Refactor use of host floating-point arithmetic
Prepare for using MPFR to implement floating-point arithmetic by
refactoring the way host floating-point arithmetic is currently used.
In particular, fix the following two problems that cause different
(and incorrect) results due to using host arithmetic:
- Current processing always uses host "long double", and then converts
back to the actual target format. This may introduce rounding errors.
- Conversion of FP values to LONGEST simply does a host C++ type cast.
However the result of such a cast is undefined if the source value
is outside the representable range. MPFR always has defined behavior
here (returns the minimum or maximum representable value).
To fix the first issue, I've now created not just one set of routines
using host FP arithmetic (on long double), but instead three different
sets of routines, one each for host float, double, and long double.
Operations can then be performed in the desired type directly, avoiding
the extra rounding step. Using C++ templates, the three sets can all
share the same source code without duplication.
To fix the second issue, I'm simply enforcing the same conversion rule
(which makes sense anyway) when converting out-of-range values from
FP to LONGEST.
To contain the code complexity with the variety of options now possible,
I've created a new class "target_float_ops". There are a total of five
separate implementations of this:
host_float_ops<float> Implemented via host FP in given type
host_float_ops<double>
host_float_ops<long double>
mpfr_float_ops Implemented via MPFR if available
decimal_float_ops Implemented via libdecnumber
Note instead of using the DOUBLEST define, this always just uses the
"long double" data type. But since we now require C++11 anyway, this
type must in any case be avaialble unconditionally.
Most target floating-point operations simply dispatch to a (virtual)
member routine of this class. Which implementation to choose is
determined from the target types involved, and whether they match
some host type or not. E.g. any operation on a single type that
matches a host type is performed in that type. Operations involving
two types that both match host types are performed in the larger one
(according to C/C++ implicit conversion rules). Operations that
involve any type that does not match a host type are performed using
MPFR. (And of course operations involving decimal FP are performed
using libdecnumber.)
This first patch implements the refactoring of target-float.c as
described above, introduing the host_float_ops and decimal_float_ops
classes, and using them. Use of MPFR is introduced in the second patch.
A bit of special-case handling code is moved around to as to avoid
code duplication between host_float_ops and mpfr_float_ops.
Note that due to the changes mentioned above, I've had to update (fix)
the floating-point register values tested in the gdb.arch/vsx-regs.exp
test case. (The new values now work both with host arithmetic and MPFR.)
gdb/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* target-float.c: Do not include <math.h>.
Include <cmath> and <limits>.
(DOUBLEST): Do not define.
(class target_float_ops): New type.
(class host_float_ops): New templated type.
(class decimal_float_ops): New type.
(floatformat_to_doublest): Rename to ...
(host_float_ops<T>::from_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::from_target): New overload using a type argument.
(floatformat_from_doublest): Rename to ...
(host_float_ops<T>::to_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::to_target): New overload using a type argument.
(floatformat_printf_format): New function.
(struct printf_length_modifier): New templated type.
(floatformat_to_string): Rename to ...
(host_float_ops<T>::to_string): ... this. Use type instead of
floatformat argument. Use floatformat_printf_format and
printf_length_modifier. Remove special handling of invalid numbers,
infinities and NaN (moved to target_float_to_string).
(struct scanf_length_modifier): New templated type.
(floatformat_from_string): Rename to ...
(host_float_ops<T>::from_string): ... this. Use type instead of
floatformat argument. Use scanf_length_modifier.
(floatformat_to_longest): Rename to ...
(host_float_ops<T>::to_longest): ... this. Use type instead of
floatformat argument. Handle out-of-range values deterministically.
(floatformat_from_longest): Rename to ...
(host_float_ops<T>::from_longest): ... this. Use type instead of
floatformat argument.
(floatformat_from_ulongest): Rename to ...
(host_float_ops<T>::from_ulongest): ... this. Use type instead of
floatformat argument.
(floatformat_to_host_double): Rename to ...
(host_float_ops<T>::to_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_from_host_double): Rename to ...
(host_float_ops<T>::from_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_convert): Rename to ...
(host_float_ops<T>::convert): ... this. Use type instead of
floatformat arguments. Remove handling of no-op conversions.
(floatformat_binop): Rename to ...
(host_float_ops<T>::binop): ... this. Use type instead of
floatformat arguments.
(floatformat_compare): Rename to ...
(host_float_ops<T>::compare): ... this. Use type instead of
floatformat arguments.
(match_endianness): Use type instead of length/byte_order arguments.
(set_decnumber_context): Likewise.
(decimal_from_number): Likewise. Update calls.
(decimal_to_number): Likewise.
(decimal_is_zero): Likewise. Update calls. Move to earlier in file.
(decimal_float_ops::to_host_double): New dummy function.
(decimal_float_ops::from_host_double): Likewise.
(decimal_to_string): Rename to ...
(decimal_float_ops::to_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_string): Rename to ...
(decimal_float_ops::from_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_longest): Rename to ...
(decimal_float_ops::from_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_ulongest): Rename to ...
(decimal_float_ops::from_ulongest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_to_longest): Rename to ...
(decimal_float_ops::to_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_binop): Rename to ...
(decimal_float_ops::binop): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_compare): Rename to ...
(decimal_float_ops::compare): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_convert): Rename to ...
(decimal_float_ops::convert): ... this. Use type instead of
length/byte_order arguments. Update calls.
(target_float_same_category_p): New function.
(target_float_same_format_p): Likewise.
(target_float_format_length): Likewise.
(enum target_float_ops_kind): New type.
(get_target_float_ops_kind): New function.
(get_target_float_ops): Three new overloaded functions.
(target_float_is_zero): Update call.
(target_float_to_string): Add special handling of invalid numbers,
infinities and NaN (moved from floatformat_to_string). Use
target_float_ops callback.
(target_float_from_string): Use target_float_ops callback.
(target_float_to_longest): Likewise.
(target_float_from_longest): Likewise.
(target_float_from_ulongest): Likewise.
(target_float_to_host_double): Likewise.
(target_float_from_host_double): Likewise.
(target_float_convert): Add special case for no-op conversions.
Use target_float_ops callback.
(target_float_binop): Use target_float_ops callback.
(target_float_compare): Likewise.
gdb/testsuite/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
|
|
|
return decimal_is_zero (addr, type);
|
Target FP: Introduce target-float.{c,h}
This patch introduces the new set of target floating-point handling routines
in target-float.{c,h}. In the end, the intention is that this file will
contain support for all operations in target FP format, fully replacing
both the current doublest.{c,h} and dfp.{c,h}.
To begin with, this patch only adds a target_float_is_zero routine,
which handles the equivalent of decimal_is_zero for both binary and
decimal FP. For the binary case, to avoid conversion to DOUBLEST,
this is implemented using the floatformat_classify routine.
However, it turns out that floatformat_classify actually has a bug
(it was not used to check for zero before), so this is fixed as well.
The new routine is used in both value_logical_not and valpy_nonzero.
There is one extra twist: the code previously used value_as_double
to convert to DOUBLEST and then compare against zero. That routine
performs an extra task: it detects invalid floating-point values
and raises an error. In any place where value_as_double is removed
in favor of some target-float.c routine, we need to replace that check.
To keep this check centralized in one place, I've added a new routine
is_floating_value, which returns a boolean determining whether a
value's type is floating point (binary or decimal), and if so, also
performs the validity check. Since we need to check whether a value
is FP before calling any of the target-float routines anyway, this
seems a good place to add the check without much code size overhead.
In some places where we only want to check for floating-point types
and not perform a validity check (e.g. for the *output* of an operation),
we can use the new is_floating_type routine (in gdbarch) instead.
The validity check itself is done by a new target_float_is_valid
routine in target-float, encapsulating floatformat_is_valid.
ChangeLog:
2017-11-06 Ulrich Weigand <uweigand@de.ibm.com>
* Makefile.c (SFILES): Add target-float.c.
(HFILES_NO_SRCDIR): Add target-float.h.
(COMMON_OBS): Add target-float.o.
* target-float.h: New file.
* target-float.c: New file.
* doublest.c (floatformat_classify): Fix detection of float_zero.
* gdbtypes.c (is_floating_type): New function.
* gdbtypes.h (is_floating_type): Add prototype.
* value.c: Do not include "floatformat.h".
(unpack_double): Use target_float_is_valid.
(is_floating_value): New function.
* value.h (is_floating_value): Add prototype-
* valarith.c: Include "target-float.h".
(value_logical_not): Use target_float_is_zero.
* python/py-value.c: Include "target-float.h".
(valpy_nonzero): Use target_float_is_zero.
2017-11-06 22:55:11 +08:00
|
|
|
|
|
|
|
gdb_assert_not_reached ("unexpected type code");
|
|
|
|
}
|
|
|
|
|
2017-11-06 22:56:35 +08:00
|
|
|
/* Convert the byte-stream ADDR, interpreted as floating-point type TYPE,
|
|
|
|
to a string, optionally using the print format FORMAT. */
|
|
|
|
std::string
|
|
|
|
target_float_to_string (const gdb_byte *addr, const struct type *type,
|
|
|
|
const char *format)
|
|
|
|
{
|
Target FP: Refactor use of host floating-point arithmetic
Prepare for using MPFR to implement floating-point arithmetic by
refactoring the way host floating-point arithmetic is currently used.
In particular, fix the following two problems that cause different
(and incorrect) results due to using host arithmetic:
- Current processing always uses host "long double", and then converts
back to the actual target format. This may introduce rounding errors.
- Conversion of FP values to LONGEST simply does a host C++ type cast.
However the result of such a cast is undefined if the source value
is outside the representable range. MPFR always has defined behavior
here (returns the minimum or maximum representable value).
To fix the first issue, I've now created not just one set of routines
using host FP arithmetic (on long double), but instead three different
sets of routines, one each for host float, double, and long double.
Operations can then be performed in the desired type directly, avoiding
the extra rounding step. Using C++ templates, the three sets can all
share the same source code without duplication.
To fix the second issue, I'm simply enforcing the same conversion rule
(which makes sense anyway) when converting out-of-range values from
FP to LONGEST.
To contain the code complexity with the variety of options now possible,
I've created a new class "target_float_ops". There are a total of five
separate implementations of this:
host_float_ops<float> Implemented via host FP in given type
host_float_ops<double>
host_float_ops<long double>
mpfr_float_ops Implemented via MPFR if available
decimal_float_ops Implemented via libdecnumber
Note instead of using the DOUBLEST define, this always just uses the
"long double" data type. But since we now require C++11 anyway, this
type must in any case be avaialble unconditionally.
Most target floating-point operations simply dispatch to a (virtual)
member routine of this class. Which implementation to choose is
determined from the target types involved, and whether they match
some host type or not. E.g. any operation on a single type that
matches a host type is performed in that type. Operations involving
two types that both match host types are performed in the larger one
(according to C/C++ implicit conversion rules). Operations that
involve any type that does not match a host type are performed using
MPFR. (And of course operations involving decimal FP are performed
using libdecnumber.)
This first patch implements the refactoring of target-float.c as
described above, introduing the host_float_ops and decimal_float_ops
classes, and using them. Use of MPFR is introduced in the second patch.
A bit of special-case handling code is moved around to as to avoid
code duplication between host_float_ops and mpfr_float_ops.
Note that due to the changes mentioned above, I've had to update (fix)
the floating-point register values tested in the gdb.arch/vsx-regs.exp
test case. (The new values now work both with host arithmetic and MPFR.)
gdb/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* target-float.c: Do not include <math.h>.
Include <cmath> and <limits>.
(DOUBLEST): Do not define.
(class target_float_ops): New type.
(class host_float_ops): New templated type.
(class decimal_float_ops): New type.
(floatformat_to_doublest): Rename to ...
(host_float_ops<T>::from_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::from_target): New overload using a type argument.
(floatformat_from_doublest): Rename to ...
(host_float_ops<T>::to_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::to_target): New overload using a type argument.
(floatformat_printf_format): New function.
(struct printf_length_modifier): New templated type.
(floatformat_to_string): Rename to ...
(host_float_ops<T>::to_string): ... this. Use type instead of
floatformat argument. Use floatformat_printf_format and
printf_length_modifier. Remove special handling of invalid numbers,
infinities and NaN (moved to target_float_to_string).
(struct scanf_length_modifier): New templated type.
(floatformat_from_string): Rename to ...
(host_float_ops<T>::from_string): ... this. Use type instead of
floatformat argument. Use scanf_length_modifier.
(floatformat_to_longest): Rename to ...
(host_float_ops<T>::to_longest): ... this. Use type instead of
floatformat argument. Handle out-of-range values deterministically.
(floatformat_from_longest): Rename to ...
(host_float_ops<T>::from_longest): ... this. Use type instead of
floatformat argument.
(floatformat_from_ulongest): Rename to ...
(host_float_ops<T>::from_ulongest): ... this. Use type instead of
floatformat argument.
(floatformat_to_host_double): Rename to ...
(host_float_ops<T>::to_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_from_host_double): Rename to ...
(host_float_ops<T>::from_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_convert): Rename to ...
(host_float_ops<T>::convert): ... this. Use type instead of
floatformat arguments. Remove handling of no-op conversions.
(floatformat_binop): Rename to ...
(host_float_ops<T>::binop): ... this. Use type instead of
floatformat arguments.
(floatformat_compare): Rename to ...
(host_float_ops<T>::compare): ... this. Use type instead of
floatformat arguments.
(match_endianness): Use type instead of length/byte_order arguments.
(set_decnumber_context): Likewise.
(decimal_from_number): Likewise. Update calls.
(decimal_to_number): Likewise.
(decimal_is_zero): Likewise. Update calls. Move to earlier in file.
(decimal_float_ops::to_host_double): New dummy function.
(decimal_float_ops::from_host_double): Likewise.
(decimal_to_string): Rename to ...
(decimal_float_ops::to_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_string): Rename to ...
(decimal_float_ops::from_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_longest): Rename to ...
(decimal_float_ops::from_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_ulongest): Rename to ...
(decimal_float_ops::from_ulongest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_to_longest): Rename to ...
(decimal_float_ops::to_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_binop): Rename to ...
(decimal_float_ops::binop): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_compare): Rename to ...
(decimal_float_ops::compare): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_convert): Rename to ...
(decimal_float_ops::convert): ... this. Use type instead of
length/byte_order arguments. Update calls.
(target_float_same_category_p): New function.
(target_float_same_format_p): Likewise.
(target_float_format_length): Likewise.
(enum target_float_ops_kind): New type.
(get_target_float_ops_kind): New function.
(get_target_float_ops): Three new overloaded functions.
(target_float_is_zero): Update call.
(target_float_to_string): Add special handling of invalid numbers,
infinities and NaN (moved from floatformat_to_string). Use
target_float_ops callback.
(target_float_from_string): Use target_float_ops callback.
(target_float_to_longest): Likewise.
(target_float_from_longest): Likewise.
(target_float_from_ulongest): Likewise.
(target_float_to_host_double): Likewise.
(target_float_from_host_double): Likewise.
(target_float_convert): Add special case for no-op conversions.
Use target_float_ops callback.
(target_float_binop): Use target_float_ops callback.
(target_float_compare): Likewise.
gdb/testsuite/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
|
|
|
/* Unless we need to adhere to a specific format, provide special
|
|
|
|
output for special cases of binary floating-point numbers. */
|
|
|
|
if (format == nullptr && TYPE_CODE (type) == TYPE_CODE_FLT)
|
|
|
|
{
|
|
|
|
const struct floatformat *fmt = floatformat_from_type (type);
|
2017-11-06 22:56:35 +08:00
|
|
|
|
Target FP: Refactor use of host floating-point arithmetic
Prepare for using MPFR to implement floating-point arithmetic by
refactoring the way host floating-point arithmetic is currently used.
In particular, fix the following two problems that cause different
(and incorrect) results due to using host arithmetic:
- Current processing always uses host "long double", and then converts
back to the actual target format. This may introduce rounding errors.
- Conversion of FP values to LONGEST simply does a host C++ type cast.
However the result of such a cast is undefined if the source value
is outside the representable range. MPFR always has defined behavior
here (returns the minimum or maximum representable value).
To fix the first issue, I've now created not just one set of routines
using host FP arithmetic (on long double), but instead three different
sets of routines, one each for host float, double, and long double.
Operations can then be performed in the desired type directly, avoiding
the extra rounding step. Using C++ templates, the three sets can all
share the same source code without duplication.
To fix the second issue, I'm simply enforcing the same conversion rule
(which makes sense anyway) when converting out-of-range values from
FP to LONGEST.
To contain the code complexity with the variety of options now possible,
I've created a new class "target_float_ops". There are a total of five
separate implementations of this:
host_float_ops<float> Implemented via host FP in given type
host_float_ops<double>
host_float_ops<long double>
mpfr_float_ops Implemented via MPFR if available
decimal_float_ops Implemented via libdecnumber
Note instead of using the DOUBLEST define, this always just uses the
"long double" data type. But since we now require C++11 anyway, this
type must in any case be avaialble unconditionally.
Most target floating-point operations simply dispatch to a (virtual)
member routine of this class. Which implementation to choose is
determined from the target types involved, and whether they match
some host type or not. E.g. any operation on a single type that
matches a host type is performed in that type. Operations involving
two types that both match host types are performed in the larger one
(according to C/C++ implicit conversion rules). Operations that
involve any type that does not match a host type are performed using
MPFR. (And of course operations involving decimal FP are performed
using libdecnumber.)
This first patch implements the refactoring of target-float.c as
described above, introduing the host_float_ops and decimal_float_ops
classes, and using them. Use of MPFR is introduced in the second patch.
A bit of special-case handling code is moved around to as to avoid
code duplication between host_float_ops and mpfr_float_ops.
Note that due to the changes mentioned above, I've had to update (fix)
the floating-point register values tested in the gdb.arch/vsx-regs.exp
test case. (The new values now work both with host arithmetic and MPFR.)
gdb/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* target-float.c: Do not include <math.h>.
Include <cmath> and <limits>.
(DOUBLEST): Do not define.
(class target_float_ops): New type.
(class host_float_ops): New templated type.
(class decimal_float_ops): New type.
(floatformat_to_doublest): Rename to ...
(host_float_ops<T>::from_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::from_target): New overload using a type argument.
(floatformat_from_doublest): Rename to ...
(host_float_ops<T>::to_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::to_target): New overload using a type argument.
(floatformat_printf_format): New function.
(struct printf_length_modifier): New templated type.
(floatformat_to_string): Rename to ...
(host_float_ops<T>::to_string): ... this. Use type instead of
floatformat argument. Use floatformat_printf_format and
printf_length_modifier. Remove special handling of invalid numbers,
infinities and NaN (moved to target_float_to_string).
(struct scanf_length_modifier): New templated type.
(floatformat_from_string): Rename to ...
(host_float_ops<T>::from_string): ... this. Use type instead of
floatformat argument. Use scanf_length_modifier.
(floatformat_to_longest): Rename to ...
(host_float_ops<T>::to_longest): ... this. Use type instead of
floatformat argument. Handle out-of-range values deterministically.
(floatformat_from_longest): Rename to ...
(host_float_ops<T>::from_longest): ... this. Use type instead of
floatformat argument.
(floatformat_from_ulongest): Rename to ...
(host_float_ops<T>::from_ulongest): ... this. Use type instead of
floatformat argument.
(floatformat_to_host_double): Rename to ...
(host_float_ops<T>::to_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_from_host_double): Rename to ...
(host_float_ops<T>::from_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_convert): Rename to ...
(host_float_ops<T>::convert): ... this. Use type instead of
floatformat arguments. Remove handling of no-op conversions.
(floatformat_binop): Rename to ...
(host_float_ops<T>::binop): ... this. Use type instead of
floatformat arguments.
(floatformat_compare): Rename to ...
(host_float_ops<T>::compare): ... this. Use type instead of
floatformat arguments.
(match_endianness): Use type instead of length/byte_order arguments.
(set_decnumber_context): Likewise.
(decimal_from_number): Likewise. Update calls.
(decimal_to_number): Likewise.
(decimal_is_zero): Likewise. Update calls. Move to earlier in file.
(decimal_float_ops::to_host_double): New dummy function.
(decimal_float_ops::from_host_double): Likewise.
(decimal_to_string): Rename to ...
(decimal_float_ops::to_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_string): Rename to ...
(decimal_float_ops::from_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_longest): Rename to ...
(decimal_float_ops::from_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_ulongest): Rename to ...
(decimal_float_ops::from_ulongest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_to_longest): Rename to ...
(decimal_float_ops::to_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_binop): Rename to ...
(decimal_float_ops::binop): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_compare): Rename to ...
(decimal_float_ops::compare): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_convert): Rename to ...
(decimal_float_ops::convert): ... this. Use type instead of
length/byte_order arguments. Update calls.
(target_float_same_category_p): New function.
(target_float_same_format_p): Likewise.
(target_float_format_length): Likewise.
(enum target_float_ops_kind): New type.
(get_target_float_ops_kind): New function.
(get_target_float_ops): Three new overloaded functions.
(target_float_is_zero): Update call.
(target_float_to_string): Add special handling of invalid numbers,
infinities and NaN (moved from floatformat_to_string). Use
target_float_ops callback.
(target_float_from_string): Use target_float_ops callback.
(target_float_to_longest): Likewise.
(target_float_from_longest): Likewise.
(target_float_from_ulongest): Likewise.
(target_float_to_host_double): Likewise.
(target_float_from_host_double): Likewise.
(target_float_convert): Add special case for no-op conversions.
Use target_float_ops callback.
(target_float_binop): Use target_float_ops callback.
(target_float_compare): Likewise.
gdb/testsuite/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
|
|
|
/* Detect invalid representations. */
|
|
|
|
if (!floatformat_is_valid (fmt, addr))
|
|
|
|
return "<invalid float value>";
|
2017-11-06 22:56:35 +08:00
|
|
|
|
Target FP: Refactor use of host floating-point arithmetic
Prepare for using MPFR to implement floating-point arithmetic by
refactoring the way host floating-point arithmetic is currently used.
In particular, fix the following two problems that cause different
(and incorrect) results due to using host arithmetic:
- Current processing always uses host "long double", and then converts
back to the actual target format. This may introduce rounding errors.
- Conversion of FP values to LONGEST simply does a host C++ type cast.
However the result of such a cast is undefined if the source value
is outside the representable range. MPFR always has defined behavior
here (returns the minimum or maximum representable value).
To fix the first issue, I've now created not just one set of routines
using host FP arithmetic (on long double), but instead three different
sets of routines, one each for host float, double, and long double.
Operations can then be performed in the desired type directly, avoiding
the extra rounding step. Using C++ templates, the three sets can all
share the same source code without duplication.
To fix the second issue, I'm simply enforcing the same conversion rule
(which makes sense anyway) when converting out-of-range values from
FP to LONGEST.
To contain the code complexity with the variety of options now possible,
I've created a new class "target_float_ops". There are a total of five
separate implementations of this:
host_float_ops<float> Implemented via host FP in given type
host_float_ops<double>
host_float_ops<long double>
mpfr_float_ops Implemented via MPFR if available
decimal_float_ops Implemented via libdecnumber
Note instead of using the DOUBLEST define, this always just uses the
"long double" data type. But since we now require C++11 anyway, this
type must in any case be avaialble unconditionally.
Most target floating-point operations simply dispatch to a (virtual)
member routine of this class. Which implementation to choose is
determined from the target types involved, and whether they match
some host type or not. E.g. any operation on a single type that
matches a host type is performed in that type. Operations involving
two types that both match host types are performed in the larger one
(according to C/C++ implicit conversion rules). Operations that
involve any type that does not match a host type are performed using
MPFR. (And of course operations involving decimal FP are performed
using libdecnumber.)
This first patch implements the refactoring of target-float.c as
described above, introduing the host_float_ops and decimal_float_ops
classes, and using them. Use of MPFR is introduced in the second patch.
A bit of special-case handling code is moved around to as to avoid
code duplication between host_float_ops and mpfr_float_ops.
Note that due to the changes mentioned above, I've had to update (fix)
the floating-point register values tested in the gdb.arch/vsx-regs.exp
test case. (The new values now work both with host arithmetic and MPFR.)
gdb/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* target-float.c: Do not include <math.h>.
Include <cmath> and <limits>.
(DOUBLEST): Do not define.
(class target_float_ops): New type.
(class host_float_ops): New templated type.
(class decimal_float_ops): New type.
(floatformat_to_doublest): Rename to ...
(host_float_ops<T>::from_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::from_target): New overload using a type argument.
(floatformat_from_doublest): Rename to ...
(host_float_ops<T>::to_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::to_target): New overload using a type argument.
(floatformat_printf_format): New function.
(struct printf_length_modifier): New templated type.
(floatformat_to_string): Rename to ...
(host_float_ops<T>::to_string): ... this. Use type instead of
floatformat argument. Use floatformat_printf_format and
printf_length_modifier. Remove special handling of invalid numbers,
infinities and NaN (moved to target_float_to_string).
(struct scanf_length_modifier): New templated type.
(floatformat_from_string): Rename to ...
(host_float_ops<T>::from_string): ... this. Use type instead of
floatformat argument. Use scanf_length_modifier.
(floatformat_to_longest): Rename to ...
(host_float_ops<T>::to_longest): ... this. Use type instead of
floatformat argument. Handle out-of-range values deterministically.
(floatformat_from_longest): Rename to ...
(host_float_ops<T>::from_longest): ... this. Use type instead of
floatformat argument.
(floatformat_from_ulongest): Rename to ...
(host_float_ops<T>::from_ulongest): ... this. Use type instead of
floatformat argument.
(floatformat_to_host_double): Rename to ...
(host_float_ops<T>::to_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_from_host_double): Rename to ...
(host_float_ops<T>::from_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_convert): Rename to ...
(host_float_ops<T>::convert): ... this. Use type instead of
floatformat arguments. Remove handling of no-op conversions.
(floatformat_binop): Rename to ...
(host_float_ops<T>::binop): ... this. Use type instead of
floatformat arguments.
(floatformat_compare): Rename to ...
(host_float_ops<T>::compare): ... this. Use type instead of
floatformat arguments.
(match_endianness): Use type instead of length/byte_order arguments.
(set_decnumber_context): Likewise.
(decimal_from_number): Likewise. Update calls.
(decimal_to_number): Likewise.
(decimal_is_zero): Likewise. Update calls. Move to earlier in file.
(decimal_float_ops::to_host_double): New dummy function.
(decimal_float_ops::from_host_double): Likewise.
(decimal_to_string): Rename to ...
(decimal_float_ops::to_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_string): Rename to ...
(decimal_float_ops::from_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_longest): Rename to ...
(decimal_float_ops::from_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_ulongest): Rename to ...
(decimal_float_ops::from_ulongest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_to_longest): Rename to ...
(decimal_float_ops::to_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_binop): Rename to ...
(decimal_float_ops::binop): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_compare): Rename to ...
(decimal_float_ops::compare): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_convert): Rename to ...
(decimal_float_ops::convert): ... this. Use type instead of
length/byte_order arguments. Update calls.
(target_float_same_category_p): New function.
(target_float_same_format_p): Likewise.
(target_float_format_length): Likewise.
(enum target_float_ops_kind): New type.
(get_target_float_ops_kind): New function.
(get_target_float_ops): Three new overloaded functions.
(target_float_is_zero): Update call.
(target_float_to_string): Add special handling of invalid numbers,
infinities and NaN (moved from floatformat_to_string). Use
target_float_ops callback.
(target_float_from_string): Use target_float_ops callback.
(target_float_to_longest): Likewise.
(target_float_from_longest): Likewise.
(target_float_from_ulongest): Likewise.
(target_float_to_host_double): Likewise.
(target_float_from_host_double): Likewise.
(target_float_convert): Add special case for no-op conversions.
Use target_float_ops callback.
(target_float_binop): Use target_float_ops callback.
(target_float_compare): Likewise.
gdb/testsuite/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
|
|
|
/* Handle NaN and Inf. */
|
|
|
|
enum float_kind kind = floatformat_classify (fmt, addr);
|
|
|
|
if (kind == float_nan)
|
|
|
|
{
|
|
|
|
const char *sign = floatformat_is_negative (fmt, addr)? "-" : "";
|
|
|
|
const char *mantissa = floatformat_mantissa (fmt, addr);
|
|
|
|
return string_printf ("%snan(0x%s)", sign, mantissa);
|
|
|
|
}
|
|
|
|
else if (kind == float_infinite)
|
|
|
|
{
|
|
|
|
const char *sign = floatformat_is_negative (fmt, addr)? "-" : "";
|
|
|
|
return string_printf ("%sinf", sign);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
const target_float_ops *ops = get_target_float_ops (type);
|
|
|
|
return ops->to_string (addr, type, format);
|
2017-11-06 22:56:35 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
/* Parse string STRING into a target floating-number of type TYPE and
|
|
|
|
store it as byte-stream ADDR. Return whether parsing succeeded. */
|
|
|
|
bool
|
|
|
|
target_float_from_string (gdb_byte *addr, const struct type *type,
|
|
|
|
const std::string &string)
|
|
|
|
{
|
Target FP: Refactor use of host floating-point arithmetic
Prepare for using MPFR to implement floating-point arithmetic by
refactoring the way host floating-point arithmetic is currently used.
In particular, fix the following two problems that cause different
(and incorrect) results due to using host arithmetic:
- Current processing always uses host "long double", and then converts
back to the actual target format. This may introduce rounding errors.
- Conversion of FP values to LONGEST simply does a host C++ type cast.
However the result of such a cast is undefined if the source value
is outside the representable range. MPFR always has defined behavior
here (returns the minimum or maximum representable value).
To fix the first issue, I've now created not just one set of routines
using host FP arithmetic (on long double), but instead three different
sets of routines, one each for host float, double, and long double.
Operations can then be performed in the desired type directly, avoiding
the extra rounding step. Using C++ templates, the three sets can all
share the same source code without duplication.
To fix the second issue, I'm simply enforcing the same conversion rule
(which makes sense anyway) when converting out-of-range values from
FP to LONGEST.
To contain the code complexity with the variety of options now possible,
I've created a new class "target_float_ops". There are a total of five
separate implementations of this:
host_float_ops<float> Implemented via host FP in given type
host_float_ops<double>
host_float_ops<long double>
mpfr_float_ops Implemented via MPFR if available
decimal_float_ops Implemented via libdecnumber
Note instead of using the DOUBLEST define, this always just uses the
"long double" data type. But since we now require C++11 anyway, this
type must in any case be avaialble unconditionally.
Most target floating-point operations simply dispatch to a (virtual)
member routine of this class. Which implementation to choose is
determined from the target types involved, and whether they match
some host type or not. E.g. any operation on a single type that
matches a host type is performed in that type. Operations involving
two types that both match host types are performed in the larger one
(according to C/C++ implicit conversion rules). Operations that
involve any type that does not match a host type are performed using
MPFR. (And of course operations involving decimal FP are performed
using libdecnumber.)
This first patch implements the refactoring of target-float.c as
described above, introduing the host_float_ops and decimal_float_ops
classes, and using them. Use of MPFR is introduced in the second patch.
A bit of special-case handling code is moved around to as to avoid
code duplication between host_float_ops and mpfr_float_ops.
Note that due to the changes mentioned above, I've had to update (fix)
the floating-point register values tested in the gdb.arch/vsx-regs.exp
test case. (The new values now work both with host arithmetic and MPFR.)
gdb/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* target-float.c: Do not include <math.h>.
Include <cmath> and <limits>.
(DOUBLEST): Do not define.
(class target_float_ops): New type.
(class host_float_ops): New templated type.
(class decimal_float_ops): New type.
(floatformat_to_doublest): Rename to ...
(host_float_ops<T>::from_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::from_target): New overload using a type argument.
(floatformat_from_doublest): Rename to ...
(host_float_ops<T>::to_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::to_target): New overload using a type argument.
(floatformat_printf_format): New function.
(struct printf_length_modifier): New templated type.
(floatformat_to_string): Rename to ...
(host_float_ops<T>::to_string): ... this. Use type instead of
floatformat argument. Use floatformat_printf_format and
printf_length_modifier. Remove special handling of invalid numbers,
infinities and NaN (moved to target_float_to_string).
(struct scanf_length_modifier): New templated type.
(floatformat_from_string): Rename to ...
(host_float_ops<T>::from_string): ... this. Use type instead of
floatformat argument. Use scanf_length_modifier.
(floatformat_to_longest): Rename to ...
(host_float_ops<T>::to_longest): ... this. Use type instead of
floatformat argument. Handle out-of-range values deterministically.
(floatformat_from_longest): Rename to ...
(host_float_ops<T>::from_longest): ... this. Use type instead of
floatformat argument.
(floatformat_from_ulongest): Rename to ...
(host_float_ops<T>::from_ulongest): ... this. Use type instead of
floatformat argument.
(floatformat_to_host_double): Rename to ...
(host_float_ops<T>::to_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_from_host_double): Rename to ...
(host_float_ops<T>::from_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_convert): Rename to ...
(host_float_ops<T>::convert): ... this. Use type instead of
floatformat arguments. Remove handling of no-op conversions.
(floatformat_binop): Rename to ...
(host_float_ops<T>::binop): ... this. Use type instead of
floatformat arguments.
(floatformat_compare): Rename to ...
(host_float_ops<T>::compare): ... this. Use type instead of
floatformat arguments.
(match_endianness): Use type instead of length/byte_order arguments.
(set_decnumber_context): Likewise.
(decimal_from_number): Likewise. Update calls.
(decimal_to_number): Likewise.
(decimal_is_zero): Likewise. Update calls. Move to earlier in file.
(decimal_float_ops::to_host_double): New dummy function.
(decimal_float_ops::from_host_double): Likewise.
(decimal_to_string): Rename to ...
(decimal_float_ops::to_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_string): Rename to ...
(decimal_float_ops::from_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_longest): Rename to ...
(decimal_float_ops::from_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_ulongest): Rename to ...
(decimal_float_ops::from_ulongest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_to_longest): Rename to ...
(decimal_float_ops::to_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_binop): Rename to ...
(decimal_float_ops::binop): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_compare): Rename to ...
(decimal_float_ops::compare): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_convert): Rename to ...
(decimal_float_ops::convert): ... this. Use type instead of
length/byte_order arguments. Update calls.
(target_float_same_category_p): New function.
(target_float_same_format_p): Likewise.
(target_float_format_length): Likewise.
(enum target_float_ops_kind): New type.
(get_target_float_ops_kind): New function.
(get_target_float_ops): Three new overloaded functions.
(target_float_is_zero): Update call.
(target_float_to_string): Add special handling of invalid numbers,
infinities and NaN (moved from floatformat_to_string). Use
target_float_ops callback.
(target_float_from_string): Use target_float_ops callback.
(target_float_to_longest): Likewise.
(target_float_from_longest): Likewise.
(target_float_from_ulongest): Likewise.
(target_float_to_host_double): Likewise.
(target_float_from_host_double): Likewise.
(target_float_convert): Add special case for no-op conversions.
Use target_float_ops callback.
(target_float_binop): Use target_float_ops callback.
(target_float_compare): Likewise.
gdb/testsuite/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
|
|
|
const target_float_ops *ops = get_target_float_ops (type);
|
|
|
|
return ops->from_string (addr, type, string);
|
2017-11-06 22:56:35 +08:00
|
|
|
}
|
Target FP: Add conversion routines to target-float.{c,h}
This patch adds the following conversion routines:
- target_float_to_longest
- target_float_from_longest
- target_float_from_ulongest
- target_float_convert
which call the equivalent decimal_ routines to handle decimal FP,
and call helper routines that currently still go via DOUBLEST to
handle binary FP.
The target_float_convert routine not only handles BFP<->BFP and
DFP<->DFP conversions, but also BFP<->DFP, which are implemented
by converting to a string and back.
These helpers are used in particular to implement conversion
from and to FP in value_cast, without going through DOUBLEST there.
In order to implement this for the FP<-integer case, the
pack_long / pack_unsigned_long routines are extended to support
floating-point values as output (thereby allowing use of
value_from_[u]longest with a floating-point target type).
This latter change also allows simplification of value_one.
gdb/ChangeLog:
2017-11-06 Ulrich Weigand <uweigand@de.ibm.com>
* target-float.c (floatformat_to_longest): New function.
(floatformat_from_longest, floatformat_from_ulongest): Likewise.
(floatformat_convert): Likewise.
(target_float_to_longest): Likewise.
(target_float_from_longest, target_float_from_ulongest): Likewise.
(target_float_convert): Likewise.
* target-float.h (target_float_to_longest): Add prototype.
(target_float_from_longest, target_float_from_ulongest): Likewise.
(target_float_convert): Likewise.
* value.c (unpack_long): Use target_float_to_longest.
(pack_long): Allow FP types. Use target_float_from_longest.
(pack_unsigned_long): Likewise using target_float_from_ulongest.
* valops.c: Include "target-float.h". Do not include "dfp.h".
(value_cast): Handle conversions to FP using target_float_convert,
value_from_ulongest, and value_from_longest.
(value_one): Use value_from_longest for FP types as well.
2017-11-06 22:57:31 +08:00
|
|
|
|
|
|
|
/* Convert the byte-stream ADDR, interpreted as floating-point type TYPE,
|
|
|
|
to an integer value (rounding towards zero). */
|
|
|
|
LONGEST
|
|
|
|
target_float_to_longest (const gdb_byte *addr, const struct type *type)
|
|
|
|
{
|
Target FP: Refactor use of host floating-point arithmetic
Prepare for using MPFR to implement floating-point arithmetic by
refactoring the way host floating-point arithmetic is currently used.
In particular, fix the following two problems that cause different
(and incorrect) results due to using host arithmetic:
- Current processing always uses host "long double", and then converts
back to the actual target format. This may introduce rounding errors.
- Conversion of FP values to LONGEST simply does a host C++ type cast.
However the result of such a cast is undefined if the source value
is outside the representable range. MPFR always has defined behavior
here (returns the minimum or maximum representable value).
To fix the first issue, I've now created not just one set of routines
using host FP arithmetic (on long double), but instead three different
sets of routines, one each for host float, double, and long double.
Operations can then be performed in the desired type directly, avoiding
the extra rounding step. Using C++ templates, the three sets can all
share the same source code without duplication.
To fix the second issue, I'm simply enforcing the same conversion rule
(which makes sense anyway) when converting out-of-range values from
FP to LONGEST.
To contain the code complexity with the variety of options now possible,
I've created a new class "target_float_ops". There are a total of five
separate implementations of this:
host_float_ops<float> Implemented via host FP in given type
host_float_ops<double>
host_float_ops<long double>
mpfr_float_ops Implemented via MPFR if available
decimal_float_ops Implemented via libdecnumber
Note instead of using the DOUBLEST define, this always just uses the
"long double" data type. But since we now require C++11 anyway, this
type must in any case be avaialble unconditionally.
Most target floating-point operations simply dispatch to a (virtual)
member routine of this class. Which implementation to choose is
determined from the target types involved, and whether they match
some host type or not. E.g. any operation on a single type that
matches a host type is performed in that type. Operations involving
two types that both match host types are performed in the larger one
(according to C/C++ implicit conversion rules). Operations that
involve any type that does not match a host type are performed using
MPFR. (And of course operations involving decimal FP are performed
using libdecnumber.)
This first patch implements the refactoring of target-float.c as
described above, introduing the host_float_ops and decimal_float_ops
classes, and using them. Use of MPFR is introduced in the second patch.
A bit of special-case handling code is moved around to as to avoid
code duplication between host_float_ops and mpfr_float_ops.
Note that due to the changes mentioned above, I've had to update (fix)
the floating-point register values tested in the gdb.arch/vsx-regs.exp
test case. (The new values now work both with host arithmetic and MPFR.)
gdb/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* target-float.c: Do not include <math.h>.
Include <cmath> and <limits>.
(DOUBLEST): Do not define.
(class target_float_ops): New type.
(class host_float_ops): New templated type.
(class decimal_float_ops): New type.
(floatformat_to_doublest): Rename to ...
(host_float_ops<T>::from_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::from_target): New overload using a type argument.
(floatformat_from_doublest): Rename to ...
(host_float_ops<T>::to_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::to_target): New overload using a type argument.
(floatformat_printf_format): New function.
(struct printf_length_modifier): New templated type.
(floatformat_to_string): Rename to ...
(host_float_ops<T>::to_string): ... this. Use type instead of
floatformat argument. Use floatformat_printf_format and
printf_length_modifier. Remove special handling of invalid numbers,
infinities and NaN (moved to target_float_to_string).
(struct scanf_length_modifier): New templated type.
(floatformat_from_string): Rename to ...
(host_float_ops<T>::from_string): ... this. Use type instead of
floatformat argument. Use scanf_length_modifier.
(floatformat_to_longest): Rename to ...
(host_float_ops<T>::to_longest): ... this. Use type instead of
floatformat argument. Handle out-of-range values deterministically.
(floatformat_from_longest): Rename to ...
(host_float_ops<T>::from_longest): ... this. Use type instead of
floatformat argument.
(floatformat_from_ulongest): Rename to ...
(host_float_ops<T>::from_ulongest): ... this. Use type instead of
floatformat argument.
(floatformat_to_host_double): Rename to ...
(host_float_ops<T>::to_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_from_host_double): Rename to ...
(host_float_ops<T>::from_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_convert): Rename to ...
(host_float_ops<T>::convert): ... this. Use type instead of
floatformat arguments. Remove handling of no-op conversions.
(floatformat_binop): Rename to ...
(host_float_ops<T>::binop): ... this. Use type instead of
floatformat arguments.
(floatformat_compare): Rename to ...
(host_float_ops<T>::compare): ... this. Use type instead of
floatformat arguments.
(match_endianness): Use type instead of length/byte_order arguments.
(set_decnumber_context): Likewise.
(decimal_from_number): Likewise. Update calls.
(decimal_to_number): Likewise.
(decimal_is_zero): Likewise. Update calls. Move to earlier in file.
(decimal_float_ops::to_host_double): New dummy function.
(decimal_float_ops::from_host_double): Likewise.
(decimal_to_string): Rename to ...
(decimal_float_ops::to_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_string): Rename to ...
(decimal_float_ops::from_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_longest): Rename to ...
(decimal_float_ops::from_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_ulongest): Rename to ...
(decimal_float_ops::from_ulongest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_to_longest): Rename to ...
(decimal_float_ops::to_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_binop): Rename to ...
(decimal_float_ops::binop): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_compare): Rename to ...
(decimal_float_ops::compare): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_convert): Rename to ...
(decimal_float_ops::convert): ... this. Use type instead of
length/byte_order arguments. Update calls.
(target_float_same_category_p): New function.
(target_float_same_format_p): Likewise.
(target_float_format_length): Likewise.
(enum target_float_ops_kind): New type.
(get_target_float_ops_kind): New function.
(get_target_float_ops): Three new overloaded functions.
(target_float_is_zero): Update call.
(target_float_to_string): Add special handling of invalid numbers,
infinities and NaN (moved from floatformat_to_string). Use
target_float_ops callback.
(target_float_from_string): Use target_float_ops callback.
(target_float_to_longest): Likewise.
(target_float_from_longest): Likewise.
(target_float_from_ulongest): Likewise.
(target_float_to_host_double): Likewise.
(target_float_from_host_double): Likewise.
(target_float_convert): Add special case for no-op conversions.
Use target_float_ops callback.
(target_float_binop): Use target_float_ops callback.
(target_float_compare): Likewise.
gdb/testsuite/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
|
|
|
const target_float_ops *ops = get_target_float_ops (type);
|
|
|
|
return ops->to_longest (addr, type);
|
Target FP: Add conversion routines to target-float.{c,h}
This patch adds the following conversion routines:
- target_float_to_longest
- target_float_from_longest
- target_float_from_ulongest
- target_float_convert
which call the equivalent decimal_ routines to handle decimal FP,
and call helper routines that currently still go via DOUBLEST to
handle binary FP.
The target_float_convert routine not only handles BFP<->BFP and
DFP<->DFP conversions, but also BFP<->DFP, which are implemented
by converting to a string and back.
These helpers are used in particular to implement conversion
from and to FP in value_cast, without going through DOUBLEST there.
In order to implement this for the FP<-integer case, the
pack_long / pack_unsigned_long routines are extended to support
floating-point values as output (thereby allowing use of
value_from_[u]longest with a floating-point target type).
This latter change also allows simplification of value_one.
gdb/ChangeLog:
2017-11-06 Ulrich Weigand <uweigand@de.ibm.com>
* target-float.c (floatformat_to_longest): New function.
(floatformat_from_longest, floatformat_from_ulongest): Likewise.
(floatformat_convert): Likewise.
(target_float_to_longest): Likewise.
(target_float_from_longest, target_float_from_ulongest): Likewise.
(target_float_convert): Likewise.
* target-float.h (target_float_to_longest): Add prototype.
(target_float_from_longest, target_float_from_ulongest): Likewise.
(target_float_convert): Likewise.
* value.c (unpack_long): Use target_float_to_longest.
(pack_long): Allow FP types. Use target_float_from_longest.
(pack_unsigned_long): Likewise using target_float_from_ulongest.
* valops.c: Include "target-float.h". Do not include "dfp.h".
(value_cast): Handle conversions to FP using target_float_convert,
value_from_ulongest, and value_from_longest.
(value_one): Use value_from_longest for FP types as well.
2017-11-06 22:57:31 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
/* Convert signed integer VAL to a target floating-number of type TYPE
|
|
|
|
and store it as byte-stream ADDR. */
|
|
|
|
void
|
|
|
|
target_float_from_longest (gdb_byte *addr, const struct type *type,
|
|
|
|
LONGEST val)
|
|
|
|
{
|
Target FP: Refactor use of host floating-point arithmetic
Prepare for using MPFR to implement floating-point arithmetic by
refactoring the way host floating-point arithmetic is currently used.
In particular, fix the following two problems that cause different
(and incorrect) results due to using host arithmetic:
- Current processing always uses host "long double", and then converts
back to the actual target format. This may introduce rounding errors.
- Conversion of FP values to LONGEST simply does a host C++ type cast.
However the result of such a cast is undefined if the source value
is outside the representable range. MPFR always has defined behavior
here (returns the minimum or maximum representable value).
To fix the first issue, I've now created not just one set of routines
using host FP arithmetic (on long double), but instead three different
sets of routines, one each for host float, double, and long double.
Operations can then be performed in the desired type directly, avoiding
the extra rounding step. Using C++ templates, the three sets can all
share the same source code without duplication.
To fix the second issue, I'm simply enforcing the same conversion rule
(which makes sense anyway) when converting out-of-range values from
FP to LONGEST.
To contain the code complexity with the variety of options now possible,
I've created a new class "target_float_ops". There are a total of five
separate implementations of this:
host_float_ops<float> Implemented via host FP in given type
host_float_ops<double>
host_float_ops<long double>
mpfr_float_ops Implemented via MPFR if available
decimal_float_ops Implemented via libdecnumber
Note instead of using the DOUBLEST define, this always just uses the
"long double" data type. But since we now require C++11 anyway, this
type must in any case be avaialble unconditionally.
Most target floating-point operations simply dispatch to a (virtual)
member routine of this class. Which implementation to choose is
determined from the target types involved, and whether they match
some host type or not. E.g. any operation on a single type that
matches a host type is performed in that type. Operations involving
two types that both match host types are performed in the larger one
(according to C/C++ implicit conversion rules). Operations that
involve any type that does not match a host type are performed using
MPFR. (And of course operations involving decimal FP are performed
using libdecnumber.)
This first patch implements the refactoring of target-float.c as
described above, introduing the host_float_ops and decimal_float_ops
classes, and using them. Use of MPFR is introduced in the second patch.
A bit of special-case handling code is moved around to as to avoid
code duplication between host_float_ops and mpfr_float_ops.
Note that due to the changes mentioned above, I've had to update (fix)
the floating-point register values tested in the gdb.arch/vsx-regs.exp
test case. (The new values now work both with host arithmetic and MPFR.)
gdb/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* target-float.c: Do not include <math.h>.
Include <cmath> and <limits>.
(DOUBLEST): Do not define.
(class target_float_ops): New type.
(class host_float_ops): New templated type.
(class decimal_float_ops): New type.
(floatformat_to_doublest): Rename to ...
(host_float_ops<T>::from_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::from_target): New overload using a type argument.
(floatformat_from_doublest): Rename to ...
(host_float_ops<T>::to_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::to_target): New overload using a type argument.
(floatformat_printf_format): New function.
(struct printf_length_modifier): New templated type.
(floatformat_to_string): Rename to ...
(host_float_ops<T>::to_string): ... this. Use type instead of
floatformat argument. Use floatformat_printf_format and
printf_length_modifier. Remove special handling of invalid numbers,
infinities and NaN (moved to target_float_to_string).
(struct scanf_length_modifier): New templated type.
(floatformat_from_string): Rename to ...
(host_float_ops<T>::from_string): ... this. Use type instead of
floatformat argument. Use scanf_length_modifier.
(floatformat_to_longest): Rename to ...
(host_float_ops<T>::to_longest): ... this. Use type instead of
floatformat argument. Handle out-of-range values deterministically.
(floatformat_from_longest): Rename to ...
(host_float_ops<T>::from_longest): ... this. Use type instead of
floatformat argument.
(floatformat_from_ulongest): Rename to ...
(host_float_ops<T>::from_ulongest): ... this. Use type instead of
floatformat argument.
(floatformat_to_host_double): Rename to ...
(host_float_ops<T>::to_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_from_host_double): Rename to ...
(host_float_ops<T>::from_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_convert): Rename to ...
(host_float_ops<T>::convert): ... this. Use type instead of
floatformat arguments. Remove handling of no-op conversions.
(floatformat_binop): Rename to ...
(host_float_ops<T>::binop): ... this. Use type instead of
floatformat arguments.
(floatformat_compare): Rename to ...
(host_float_ops<T>::compare): ... this. Use type instead of
floatformat arguments.
(match_endianness): Use type instead of length/byte_order arguments.
(set_decnumber_context): Likewise.
(decimal_from_number): Likewise. Update calls.
(decimal_to_number): Likewise.
(decimal_is_zero): Likewise. Update calls. Move to earlier in file.
(decimal_float_ops::to_host_double): New dummy function.
(decimal_float_ops::from_host_double): Likewise.
(decimal_to_string): Rename to ...
(decimal_float_ops::to_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_string): Rename to ...
(decimal_float_ops::from_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_longest): Rename to ...
(decimal_float_ops::from_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_ulongest): Rename to ...
(decimal_float_ops::from_ulongest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_to_longest): Rename to ...
(decimal_float_ops::to_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_binop): Rename to ...
(decimal_float_ops::binop): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_compare): Rename to ...
(decimal_float_ops::compare): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_convert): Rename to ...
(decimal_float_ops::convert): ... this. Use type instead of
length/byte_order arguments. Update calls.
(target_float_same_category_p): New function.
(target_float_same_format_p): Likewise.
(target_float_format_length): Likewise.
(enum target_float_ops_kind): New type.
(get_target_float_ops_kind): New function.
(get_target_float_ops): Three new overloaded functions.
(target_float_is_zero): Update call.
(target_float_to_string): Add special handling of invalid numbers,
infinities and NaN (moved from floatformat_to_string). Use
target_float_ops callback.
(target_float_from_string): Use target_float_ops callback.
(target_float_to_longest): Likewise.
(target_float_from_longest): Likewise.
(target_float_from_ulongest): Likewise.
(target_float_to_host_double): Likewise.
(target_float_from_host_double): Likewise.
(target_float_convert): Add special case for no-op conversions.
Use target_float_ops callback.
(target_float_binop): Use target_float_ops callback.
(target_float_compare): Likewise.
gdb/testsuite/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
|
|
|
const target_float_ops *ops = get_target_float_ops (type);
|
|
|
|
ops->from_longest (addr, type, val);
|
Target FP: Add conversion routines to target-float.{c,h}
This patch adds the following conversion routines:
- target_float_to_longest
- target_float_from_longest
- target_float_from_ulongest
- target_float_convert
which call the equivalent decimal_ routines to handle decimal FP,
and call helper routines that currently still go via DOUBLEST to
handle binary FP.
The target_float_convert routine not only handles BFP<->BFP and
DFP<->DFP conversions, but also BFP<->DFP, which are implemented
by converting to a string and back.
These helpers are used in particular to implement conversion
from and to FP in value_cast, without going through DOUBLEST there.
In order to implement this for the FP<-integer case, the
pack_long / pack_unsigned_long routines are extended to support
floating-point values as output (thereby allowing use of
value_from_[u]longest with a floating-point target type).
This latter change also allows simplification of value_one.
gdb/ChangeLog:
2017-11-06 Ulrich Weigand <uweigand@de.ibm.com>
* target-float.c (floatformat_to_longest): New function.
(floatformat_from_longest, floatformat_from_ulongest): Likewise.
(floatformat_convert): Likewise.
(target_float_to_longest): Likewise.
(target_float_from_longest, target_float_from_ulongest): Likewise.
(target_float_convert): Likewise.
* target-float.h (target_float_to_longest): Add prototype.
(target_float_from_longest, target_float_from_ulongest): Likewise.
(target_float_convert): Likewise.
* value.c (unpack_long): Use target_float_to_longest.
(pack_long): Allow FP types. Use target_float_from_longest.
(pack_unsigned_long): Likewise using target_float_from_ulongest.
* valops.c: Include "target-float.h". Do not include "dfp.h".
(value_cast): Handle conversions to FP using target_float_convert,
value_from_ulongest, and value_from_longest.
(value_one): Use value_from_longest for FP types as well.
2017-11-06 22:57:31 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
/* Convert unsigned integer VAL to a target floating-number of type TYPE
|
|
|
|
and store it as byte-stream ADDR. */
|
|
|
|
void
|
|
|
|
target_float_from_ulongest (gdb_byte *addr, const struct type *type,
|
|
|
|
ULONGEST val)
|
|
|
|
{
|
Target FP: Refactor use of host floating-point arithmetic
Prepare for using MPFR to implement floating-point arithmetic by
refactoring the way host floating-point arithmetic is currently used.
In particular, fix the following two problems that cause different
(and incorrect) results due to using host arithmetic:
- Current processing always uses host "long double", and then converts
back to the actual target format. This may introduce rounding errors.
- Conversion of FP values to LONGEST simply does a host C++ type cast.
However the result of such a cast is undefined if the source value
is outside the representable range. MPFR always has defined behavior
here (returns the minimum or maximum representable value).
To fix the first issue, I've now created not just one set of routines
using host FP arithmetic (on long double), but instead three different
sets of routines, one each for host float, double, and long double.
Operations can then be performed in the desired type directly, avoiding
the extra rounding step. Using C++ templates, the three sets can all
share the same source code without duplication.
To fix the second issue, I'm simply enforcing the same conversion rule
(which makes sense anyway) when converting out-of-range values from
FP to LONGEST.
To contain the code complexity with the variety of options now possible,
I've created a new class "target_float_ops". There are a total of five
separate implementations of this:
host_float_ops<float> Implemented via host FP in given type
host_float_ops<double>
host_float_ops<long double>
mpfr_float_ops Implemented via MPFR if available
decimal_float_ops Implemented via libdecnumber
Note instead of using the DOUBLEST define, this always just uses the
"long double" data type. But since we now require C++11 anyway, this
type must in any case be avaialble unconditionally.
Most target floating-point operations simply dispatch to a (virtual)
member routine of this class. Which implementation to choose is
determined from the target types involved, and whether they match
some host type or not. E.g. any operation on a single type that
matches a host type is performed in that type. Operations involving
two types that both match host types are performed in the larger one
(according to C/C++ implicit conversion rules). Operations that
involve any type that does not match a host type are performed using
MPFR. (And of course operations involving decimal FP are performed
using libdecnumber.)
This first patch implements the refactoring of target-float.c as
described above, introduing the host_float_ops and decimal_float_ops
classes, and using them. Use of MPFR is introduced in the second patch.
A bit of special-case handling code is moved around to as to avoid
code duplication between host_float_ops and mpfr_float_ops.
Note that due to the changes mentioned above, I've had to update (fix)
the floating-point register values tested in the gdb.arch/vsx-regs.exp
test case. (The new values now work both with host arithmetic and MPFR.)
gdb/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* target-float.c: Do not include <math.h>.
Include <cmath> and <limits>.
(DOUBLEST): Do not define.
(class target_float_ops): New type.
(class host_float_ops): New templated type.
(class decimal_float_ops): New type.
(floatformat_to_doublest): Rename to ...
(host_float_ops<T>::from_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::from_target): New overload using a type argument.
(floatformat_from_doublest): Rename to ...
(host_float_ops<T>::to_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::to_target): New overload using a type argument.
(floatformat_printf_format): New function.
(struct printf_length_modifier): New templated type.
(floatformat_to_string): Rename to ...
(host_float_ops<T>::to_string): ... this. Use type instead of
floatformat argument. Use floatformat_printf_format and
printf_length_modifier. Remove special handling of invalid numbers,
infinities and NaN (moved to target_float_to_string).
(struct scanf_length_modifier): New templated type.
(floatformat_from_string): Rename to ...
(host_float_ops<T>::from_string): ... this. Use type instead of
floatformat argument. Use scanf_length_modifier.
(floatformat_to_longest): Rename to ...
(host_float_ops<T>::to_longest): ... this. Use type instead of
floatformat argument. Handle out-of-range values deterministically.
(floatformat_from_longest): Rename to ...
(host_float_ops<T>::from_longest): ... this. Use type instead of
floatformat argument.
(floatformat_from_ulongest): Rename to ...
(host_float_ops<T>::from_ulongest): ... this. Use type instead of
floatformat argument.
(floatformat_to_host_double): Rename to ...
(host_float_ops<T>::to_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_from_host_double): Rename to ...
(host_float_ops<T>::from_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_convert): Rename to ...
(host_float_ops<T>::convert): ... this. Use type instead of
floatformat arguments. Remove handling of no-op conversions.
(floatformat_binop): Rename to ...
(host_float_ops<T>::binop): ... this. Use type instead of
floatformat arguments.
(floatformat_compare): Rename to ...
(host_float_ops<T>::compare): ... this. Use type instead of
floatformat arguments.
(match_endianness): Use type instead of length/byte_order arguments.
(set_decnumber_context): Likewise.
(decimal_from_number): Likewise. Update calls.
(decimal_to_number): Likewise.
(decimal_is_zero): Likewise. Update calls. Move to earlier in file.
(decimal_float_ops::to_host_double): New dummy function.
(decimal_float_ops::from_host_double): Likewise.
(decimal_to_string): Rename to ...
(decimal_float_ops::to_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_string): Rename to ...
(decimal_float_ops::from_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_longest): Rename to ...
(decimal_float_ops::from_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_ulongest): Rename to ...
(decimal_float_ops::from_ulongest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_to_longest): Rename to ...
(decimal_float_ops::to_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_binop): Rename to ...
(decimal_float_ops::binop): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_compare): Rename to ...
(decimal_float_ops::compare): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_convert): Rename to ...
(decimal_float_ops::convert): ... this. Use type instead of
length/byte_order arguments. Update calls.
(target_float_same_category_p): New function.
(target_float_same_format_p): Likewise.
(target_float_format_length): Likewise.
(enum target_float_ops_kind): New type.
(get_target_float_ops_kind): New function.
(get_target_float_ops): Three new overloaded functions.
(target_float_is_zero): Update call.
(target_float_to_string): Add special handling of invalid numbers,
infinities and NaN (moved from floatformat_to_string). Use
target_float_ops callback.
(target_float_from_string): Use target_float_ops callback.
(target_float_to_longest): Likewise.
(target_float_from_longest): Likewise.
(target_float_from_ulongest): Likewise.
(target_float_to_host_double): Likewise.
(target_float_from_host_double): Likewise.
(target_float_convert): Add special case for no-op conversions.
Use target_float_ops callback.
(target_float_binop): Use target_float_ops callback.
(target_float_compare): Likewise.
gdb/testsuite/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
|
|
|
const target_float_ops *ops = get_target_float_ops (type);
|
|
|
|
ops->from_ulongest (addr, type, val);
|
Target FP: Add conversion routines to target-float.{c,h}
This patch adds the following conversion routines:
- target_float_to_longest
- target_float_from_longest
- target_float_from_ulongest
- target_float_convert
which call the equivalent decimal_ routines to handle decimal FP,
and call helper routines that currently still go via DOUBLEST to
handle binary FP.
The target_float_convert routine not only handles BFP<->BFP and
DFP<->DFP conversions, but also BFP<->DFP, which are implemented
by converting to a string and back.
These helpers are used in particular to implement conversion
from and to FP in value_cast, without going through DOUBLEST there.
In order to implement this for the FP<-integer case, the
pack_long / pack_unsigned_long routines are extended to support
floating-point values as output (thereby allowing use of
value_from_[u]longest with a floating-point target type).
This latter change also allows simplification of value_one.
gdb/ChangeLog:
2017-11-06 Ulrich Weigand <uweigand@de.ibm.com>
* target-float.c (floatformat_to_longest): New function.
(floatformat_from_longest, floatformat_from_ulongest): Likewise.
(floatformat_convert): Likewise.
(target_float_to_longest): Likewise.
(target_float_from_longest, target_float_from_ulongest): Likewise.
(target_float_convert): Likewise.
* target-float.h (target_float_to_longest): Add prototype.
(target_float_from_longest, target_float_from_ulongest): Likewise.
(target_float_convert): Likewise.
* value.c (unpack_long): Use target_float_to_longest.
(pack_long): Allow FP types. Use target_float_from_longest.
(pack_unsigned_long): Likewise using target_float_from_ulongest.
* valops.c: Include "target-float.h". Do not include "dfp.h".
(value_cast): Handle conversions to FP using target_float_convert,
value_from_ulongest, and value_from_longest.
(value_one): Use value_from_longest for FP types as well.
2017-11-06 22:57:31 +08:00
|
|
|
}
|
|
|
|
|
2017-11-06 23:00:47 +08:00
|
|
|
/* Convert the byte-stream ADDR, interpreted as floating-point type TYPE,
|
|
|
|
to a floating-point value in the host "double" format. */
|
|
|
|
double
|
|
|
|
target_float_to_host_double (const gdb_byte *addr,
|
|
|
|
const struct type *type)
|
|
|
|
{
|
Target FP: Refactor use of host floating-point arithmetic
Prepare for using MPFR to implement floating-point arithmetic by
refactoring the way host floating-point arithmetic is currently used.
In particular, fix the following two problems that cause different
(and incorrect) results due to using host arithmetic:
- Current processing always uses host "long double", and then converts
back to the actual target format. This may introduce rounding errors.
- Conversion of FP values to LONGEST simply does a host C++ type cast.
However the result of such a cast is undefined if the source value
is outside the representable range. MPFR always has defined behavior
here (returns the minimum or maximum representable value).
To fix the first issue, I've now created not just one set of routines
using host FP arithmetic (on long double), but instead three different
sets of routines, one each for host float, double, and long double.
Operations can then be performed in the desired type directly, avoiding
the extra rounding step. Using C++ templates, the three sets can all
share the same source code without duplication.
To fix the second issue, I'm simply enforcing the same conversion rule
(which makes sense anyway) when converting out-of-range values from
FP to LONGEST.
To contain the code complexity with the variety of options now possible,
I've created a new class "target_float_ops". There are a total of five
separate implementations of this:
host_float_ops<float> Implemented via host FP in given type
host_float_ops<double>
host_float_ops<long double>
mpfr_float_ops Implemented via MPFR if available
decimal_float_ops Implemented via libdecnumber
Note instead of using the DOUBLEST define, this always just uses the
"long double" data type. But since we now require C++11 anyway, this
type must in any case be avaialble unconditionally.
Most target floating-point operations simply dispatch to a (virtual)
member routine of this class. Which implementation to choose is
determined from the target types involved, and whether they match
some host type or not. E.g. any operation on a single type that
matches a host type is performed in that type. Operations involving
two types that both match host types are performed in the larger one
(according to C/C++ implicit conversion rules). Operations that
involve any type that does not match a host type are performed using
MPFR. (And of course operations involving decimal FP are performed
using libdecnumber.)
This first patch implements the refactoring of target-float.c as
described above, introduing the host_float_ops and decimal_float_ops
classes, and using them. Use of MPFR is introduced in the second patch.
A bit of special-case handling code is moved around to as to avoid
code duplication between host_float_ops and mpfr_float_ops.
Note that due to the changes mentioned above, I've had to update (fix)
the floating-point register values tested in the gdb.arch/vsx-regs.exp
test case. (The new values now work both with host arithmetic and MPFR.)
gdb/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* target-float.c: Do not include <math.h>.
Include <cmath> and <limits>.
(DOUBLEST): Do not define.
(class target_float_ops): New type.
(class host_float_ops): New templated type.
(class decimal_float_ops): New type.
(floatformat_to_doublest): Rename to ...
(host_float_ops<T>::from_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::from_target): New overload using a type argument.
(floatformat_from_doublest): Rename to ...
(host_float_ops<T>::to_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::to_target): New overload using a type argument.
(floatformat_printf_format): New function.
(struct printf_length_modifier): New templated type.
(floatformat_to_string): Rename to ...
(host_float_ops<T>::to_string): ... this. Use type instead of
floatformat argument. Use floatformat_printf_format and
printf_length_modifier. Remove special handling of invalid numbers,
infinities and NaN (moved to target_float_to_string).
(struct scanf_length_modifier): New templated type.
(floatformat_from_string): Rename to ...
(host_float_ops<T>::from_string): ... this. Use type instead of
floatformat argument. Use scanf_length_modifier.
(floatformat_to_longest): Rename to ...
(host_float_ops<T>::to_longest): ... this. Use type instead of
floatformat argument. Handle out-of-range values deterministically.
(floatformat_from_longest): Rename to ...
(host_float_ops<T>::from_longest): ... this. Use type instead of
floatformat argument.
(floatformat_from_ulongest): Rename to ...
(host_float_ops<T>::from_ulongest): ... this. Use type instead of
floatformat argument.
(floatformat_to_host_double): Rename to ...
(host_float_ops<T>::to_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_from_host_double): Rename to ...
(host_float_ops<T>::from_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_convert): Rename to ...
(host_float_ops<T>::convert): ... this. Use type instead of
floatformat arguments. Remove handling of no-op conversions.
(floatformat_binop): Rename to ...
(host_float_ops<T>::binop): ... this. Use type instead of
floatformat arguments.
(floatformat_compare): Rename to ...
(host_float_ops<T>::compare): ... this. Use type instead of
floatformat arguments.
(match_endianness): Use type instead of length/byte_order arguments.
(set_decnumber_context): Likewise.
(decimal_from_number): Likewise. Update calls.
(decimal_to_number): Likewise.
(decimal_is_zero): Likewise. Update calls. Move to earlier in file.
(decimal_float_ops::to_host_double): New dummy function.
(decimal_float_ops::from_host_double): Likewise.
(decimal_to_string): Rename to ...
(decimal_float_ops::to_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_string): Rename to ...
(decimal_float_ops::from_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_longest): Rename to ...
(decimal_float_ops::from_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_ulongest): Rename to ...
(decimal_float_ops::from_ulongest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_to_longest): Rename to ...
(decimal_float_ops::to_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_binop): Rename to ...
(decimal_float_ops::binop): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_compare): Rename to ...
(decimal_float_ops::compare): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_convert): Rename to ...
(decimal_float_ops::convert): ... this. Use type instead of
length/byte_order arguments. Update calls.
(target_float_same_category_p): New function.
(target_float_same_format_p): Likewise.
(target_float_format_length): Likewise.
(enum target_float_ops_kind): New type.
(get_target_float_ops_kind): New function.
(get_target_float_ops): Three new overloaded functions.
(target_float_is_zero): Update call.
(target_float_to_string): Add special handling of invalid numbers,
infinities and NaN (moved from floatformat_to_string). Use
target_float_ops callback.
(target_float_from_string): Use target_float_ops callback.
(target_float_to_longest): Likewise.
(target_float_from_longest): Likewise.
(target_float_from_ulongest): Likewise.
(target_float_to_host_double): Likewise.
(target_float_from_host_double): Likewise.
(target_float_convert): Add special case for no-op conversions.
Use target_float_ops callback.
(target_float_binop): Use target_float_ops callback.
(target_float_compare): Likewise.
gdb/testsuite/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
|
|
|
const target_float_ops *ops = get_target_float_ops (type);
|
|
|
|
return ops->to_host_double (addr, type);
|
2017-11-06 23:00:47 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
/* Convert floating-point value VAL in the host "double" format to a target
|
|
|
|
floating-number of type TYPE and store it as byte-stream ADDR. */
|
|
|
|
void
|
|
|
|
target_float_from_host_double (gdb_byte *addr, const struct type *type,
|
|
|
|
double val)
|
|
|
|
{
|
Target FP: Refactor use of host floating-point arithmetic
Prepare for using MPFR to implement floating-point arithmetic by
refactoring the way host floating-point arithmetic is currently used.
In particular, fix the following two problems that cause different
(and incorrect) results due to using host arithmetic:
- Current processing always uses host "long double", and then converts
back to the actual target format. This may introduce rounding errors.
- Conversion of FP values to LONGEST simply does a host C++ type cast.
However the result of such a cast is undefined if the source value
is outside the representable range. MPFR always has defined behavior
here (returns the minimum or maximum representable value).
To fix the first issue, I've now created not just one set of routines
using host FP arithmetic (on long double), but instead three different
sets of routines, one each for host float, double, and long double.
Operations can then be performed in the desired type directly, avoiding
the extra rounding step. Using C++ templates, the three sets can all
share the same source code without duplication.
To fix the second issue, I'm simply enforcing the same conversion rule
(which makes sense anyway) when converting out-of-range values from
FP to LONGEST.
To contain the code complexity with the variety of options now possible,
I've created a new class "target_float_ops". There are a total of five
separate implementations of this:
host_float_ops<float> Implemented via host FP in given type
host_float_ops<double>
host_float_ops<long double>
mpfr_float_ops Implemented via MPFR if available
decimal_float_ops Implemented via libdecnumber
Note instead of using the DOUBLEST define, this always just uses the
"long double" data type. But since we now require C++11 anyway, this
type must in any case be avaialble unconditionally.
Most target floating-point operations simply dispatch to a (virtual)
member routine of this class. Which implementation to choose is
determined from the target types involved, and whether they match
some host type or not. E.g. any operation on a single type that
matches a host type is performed in that type. Operations involving
two types that both match host types are performed in the larger one
(according to C/C++ implicit conversion rules). Operations that
involve any type that does not match a host type are performed using
MPFR. (And of course operations involving decimal FP are performed
using libdecnumber.)
This first patch implements the refactoring of target-float.c as
described above, introduing the host_float_ops and decimal_float_ops
classes, and using them. Use of MPFR is introduced in the second patch.
A bit of special-case handling code is moved around to as to avoid
code duplication between host_float_ops and mpfr_float_ops.
Note that due to the changes mentioned above, I've had to update (fix)
the floating-point register values tested in the gdb.arch/vsx-regs.exp
test case. (The new values now work both with host arithmetic and MPFR.)
gdb/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* target-float.c: Do not include <math.h>.
Include <cmath> and <limits>.
(DOUBLEST): Do not define.
(class target_float_ops): New type.
(class host_float_ops): New templated type.
(class decimal_float_ops): New type.
(floatformat_to_doublest): Rename to ...
(host_float_ops<T>::from_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::from_target): New overload using a type argument.
(floatformat_from_doublest): Rename to ...
(host_float_ops<T>::to_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::to_target): New overload using a type argument.
(floatformat_printf_format): New function.
(struct printf_length_modifier): New templated type.
(floatformat_to_string): Rename to ...
(host_float_ops<T>::to_string): ... this. Use type instead of
floatformat argument. Use floatformat_printf_format and
printf_length_modifier. Remove special handling of invalid numbers,
infinities and NaN (moved to target_float_to_string).
(struct scanf_length_modifier): New templated type.
(floatformat_from_string): Rename to ...
(host_float_ops<T>::from_string): ... this. Use type instead of
floatformat argument. Use scanf_length_modifier.
(floatformat_to_longest): Rename to ...
(host_float_ops<T>::to_longest): ... this. Use type instead of
floatformat argument. Handle out-of-range values deterministically.
(floatformat_from_longest): Rename to ...
(host_float_ops<T>::from_longest): ... this. Use type instead of
floatformat argument.
(floatformat_from_ulongest): Rename to ...
(host_float_ops<T>::from_ulongest): ... this. Use type instead of
floatformat argument.
(floatformat_to_host_double): Rename to ...
(host_float_ops<T>::to_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_from_host_double): Rename to ...
(host_float_ops<T>::from_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_convert): Rename to ...
(host_float_ops<T>::convert): ... this. Use type instead of
floatformat arguments. Remove handling of no-op conversions.
(floatformat_binop): Rename to ...
(host_float_ops<T>::binop): ... this. Use type instead of
floatformat arguments.
(floatformat_compare): Rename to ...
(host_float_ops<T>::compare): ... this. Use type instead of
floatformat arguments.
(match_endianness): Use type instead of length/byte_order arguments.
(set_decnumber_context): Likewise.
(decimal_from_number): Likewise. Update calls.
(decimal_to_number): Likewise.
(decimal_is_zero): Likewise. Update calls. Move to earlier in file.
(decimal_float_ops::to_host_double): New dummy function.
(decimal_float_ops::from_host_double): Likewise.
(decimal_to_string): Rename to ...
(decimal_float_ops::to_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_string): Rename to ...
(decimal_float_ops::from_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_longest): Rename to ...
(decimal_float_ops::from_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_ulongest): Rename to ...
(decimal_float_ops::from_ulongest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_to_longest): Rename to ...
(decimal_float_ops::to_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_binop): Rename to ...
(decimal_float_ops::binop): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_compare): Rename to ...
(decimal_float_ops::compare): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_convert): Rename to ...
(decimal_float_ops::convert): ... this. Use type instead of
length/byte_order arguments. Update calls.
(target_float_same_category_p): New function.
(target_float_same_format_p): Likewise.
(target_float_format_length): Likewise.
(enum target_float_ops_kind): New type.
(get_target_float_ops_kind): New function.
(get_target_float_ops): Three new overloaded functions.
(target_float_is_zero): Update call.
(target_float_to_string): Add special handling of invalid numbers,
infinities and NaN (moved from floatformat_to_string). Use
target_float_ops callback.
(target_float_from_string): Use target_float_ops callback.
(target_float_to_longest): Likewise.
(target_float_from_longest): Likewise.
(target_float_from_ulongest): Likewise.
(target_float_to_host_double): Likewise.
(target_float_from_host_double): Likewise.
(target_float_convert): Add special case for no-op conversions.
Use target_float_ops callback.
(target_float_binop): Use target_float_ops callback.
(target_float_compare): Likewise.
gdb/testsuite/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
|
|
|
const target_float_ops *ops = get_target_float_ops (type);
|
|
|
|
ops->from_host_double (addr, type, val);
|
2017-11-06 23:00:47 +08:00
|
|
|
}
|
|
|
|
|
Target FP: Add conversion routines to target-float.{c,h}
This patch adds the following conversion routines:
- target_float_to_longest
- target_float_from_longest
- target_float_from_ulongest
- target_float_convert
which call the equivalent decimal_ routines to handle decimal FP,
and call helper routines that currently still go via DOUBLEST to
handle binary FP.
The target_float_convert routine not only handles BFP<->BFP and
DFP<->DFP conversions, but also BFP<->DFP, which are implemented
by converting to a string and back.
These helpers are used in particular to implement conversion
from and to FP in value_cast, without going through DOUBLEST there.
In order to implement this for the FP<-integer case, the
pack_long / pack_unsigned_long routines are extended to support
floating-point values as output (thereby allowing use of
value_from_[u]longest with a floating-point target type).
This latter change also allows simplification of value_one.
gdb/ChangeLog:
2017-11-06 Ulrich Weigand <uweigand@de.ibm.com>
* target-float.c (floatformat_to_longest): New function.
(floatformat_from_longest, floatformat_from_ulongest): Likewise.
(floatformat_convert): Likewise.
(target_float_to_longest): Likewise.
(target_float_from_longest, target_float_from_ulongest): Likewise.
(target_float_convert): Likewise.
* target-float.h (target_float_to_longest): Add prototype.
(target_float_from_longest, target_float_from_ulongest): Likewise.
(target_float_convert): Likewise.
* value.c (unpack_long): Use target_float_to_longest.
(pack_long): Allow FP types. Use target_float_from_longest.
(pack_unsigned_long): Likewise using target_float_from_ulongest.
* valops.c: Include "target-float.h". Do not include "dfp.h".
(value_cast): Handle conversions to FP using target_float_convert,
value_from_ulongest, and value_from_longest.
(value_one): Use value_from_longest for FP types as well.
2017-11-06 22:57:31 +08:00
|
|
|
/* Convert a floating-point number of type FROM_TYPE from the target
|
|
|
|
byte-stream FROM to a floating-point number of type TO_TYPE, and
|
|
|
|
store it to the target byte-stream TO. */
|
|
|
|
void
|
|
|
|
target_float_convert (const gdb_byte *from, const struct type *from_type,
|
|
|
|
gdb_byte *to, const struct type *to_type)
|
|
|
|
{
|
|
|
|
/* We cannot directly convert between binary and decimal floating-point
|
|
|
|
types, so go via an intermediary string. */
|
Target FP: Refactor use of host floating-point arithmetic
Prepare for using MPFR to implement floating-point arithmetic by
refactoring the way host floating-point arithmetic is currently used.
In particular, fix the following two problems that cause different
(and incorrect) results due to using host arithmetic:
- Current processing always uses host "long double", and then converts
back to the actual target format. This may introduce rounding errors.
- Conversion of FP values to LONGEST simply does a host C++ type cast.
However the result of such a cast is undefined if the source value
is outside the representable range. MPFR always has defined behavior
here (returns the minimum or maximum representable value).
To fix the first issue, I've now created not just one set of routines
using host FP arithmetic (on long double), but instead three different
sets of routines, one each for host float, double, and long double.
Operations can then be performed in the desired type directly, avoiding
the extra rounding step. Using C++ templates, the three sets can all
share the same source code without duplication.
To fix the second issue, I'm simply enforcing the same conversion rule
(which makes sense anyway) when converting out-of-range values from
FP to LONGEST.
To contain the code complexity with the variety of options now possible,
I've created a new class "target_float_ops". There are a total of five
separate implementations of this:
host_float_ops<float> Implemented via host FP in given type
host_float_ops<double>
host_float_ops<long double>
mpfr_float_ops Implemented via MPFR if available
decimal_float_ops Implemented via libdecnumber
Note instead of using the DOUBLEST define, this always just uses the
"long double" data type. But since we now require C++11 anyway, this
type must in any case be avaialble unconditionally.
Most target floating-point operations simply dispatch to a (virtual)
member routine of this class. Which implementation to choose is
determined from the target types involved, and whether they match
some host type or not. E.g. any operation on a single type that
matches a host type is performed in that type. Operations involving
two types that both match host types are performed in the larger one
(according to C/C++ implicit conversion rules). Operations that
involve any type that does not match a host type are performed using
MPFR. (And of course operations involving decimal FP are performed
using libdecnumber.)
This first patch implements the refactoring of target-float.c as
described above, introduing the host_float_ops and decimal_float_ops
classes, and using them. Use of MPFR is introduced in the second patch.
A bit of special-case handling code is moved around to as to avoid
code duplication between host_float_ops and mpfr_float_ops.
Note that due to the changes mentioned above, I've had to update (fix)
the floating-point register values tested in the gdb.arch/vsx-regs.exp
test case. (The new values now work both with host arithmetic and MPFR.)
gdb/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* target-float.c: Do not include <math.h>.
Include <cmath> and <limits>.
(DOUBLEST): Do not define.
(class target_float_ops): New type.
(class host_float_ops): New templated type.
(class decimal_float_ops): New type.
(floatformat_to_doublest): Rename to ...
(host_float_ops<T>::from_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::from_target): New overload using a type argument.
(floatformat_from_doublest): Rename to ...
(host_float_ops<T>::to_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::to_target): New overload using a type argument.
(floatformat_printf_format): New function.
(struct printf_length_modifier): New templated type.
(floatformat_to_string): Rename to ...
(host_float_ops<T>::to_string): ... this. Use type instead of
floatformat argument. Use floatformat_printf_format and
printf_length_modifier. Remove special handling of invalid numbers,
infinities and NaN (moved to target_float_to_string).
(struct scanf_length_modifier): New templated type.
(floatformat_from_string): Rename to ...
(host_float_ops<T>::from_string): ... this. Use type instead of
floatformat argument. Use scanf_length_modifier.
(floatformat_to_longest): Rename to ...
(host_float_ops<T>::to_longest): ... this. Use type instead of
floatformat argument. Handle out-of-range values deterministically.
(floatformat_from_longest): Rename to ...
(host_float_ops<T>::from_longest): ... this. Use type instead of
floatformat argument.
(floatformat_from_ulongest): Rename to ...
(host_float_ops<T>::from_ulongest): ... this. Use type instead of
floatformat argument.
(floatformat_to_host_double): Rename to ...
(host_float_ops<T>::to_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_from_host_double): Rename to ...
(host_float_ops<T>::from_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_convert): Rename to ...
(host_float_ops<T>::convert): ... this. Use type instead of
floatformat arguments. Remove handling of no-op conversions.
(floatformat_binop): Rename to ...
(host_float_ops<T>::binop): ... this. Use type instead of
floatformat arguments.
(floatformat_compare): Rename to ...
(host_float_ops<T>::compare): ... this. Use type instead of
floatformat arguments.
(match_endianness): Use type instead of length/byte_order arguments.
(set_decnumber_context): Likewise.
(decimal_from_number): Likewise. Update calls.
(decimal_to_number): Likewise.
(decimal_is_zero): Likewise. Update calls. Move to earlier in file.
(decimal_float_ops::to_host_double): New dummy function.
(decimal_float_ops::from_host_double): Likewise.
(decimal_to_string): Rename to ...
(decimal_float_ops::to_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_string): Rename to ...
(decimal_float_ops::from_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_longest): Rename to ...
(decimal_float_ops::from_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_ulongest): Rename to ...
(decimal_float_ops::from_ulongest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_to_longest): Rename to ...
(decimal_float_ops::to_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_binop): Rename to ...
(decimal_float_ops::binop): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_compare): Rename to ...
(decimal_float_ops::compare): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_convert): Rename to ...
(decimal_float_ops::convert): ... this. Use type instead of
length/byte_order arguments. Update calls.
(target_float_same_category_p): New function.
(target_float_same_format_p): Likewise.
(target_float_format_length): Likewise.
(enum target_float_ops_kind): New type.
(get_target_float_ops_kind): New function.
(get_target_float_ops): Three new overloaded functions.
(target_float_is_zero): Update call.
(target_float_to_string): Add special handling of invalid numbers,
infinities and NaN (moved from floatformat_to_string). Use
target_float_ops callback.
(target_float_from_string): Use target_float_ops callback.
(target_float_to_longest): Likewise.
(target_float_from_longest): Likewise.
(target_float_from_ulongest): Likewise.
(target_float_to_host_double): Likewise.
(target_float_from_host_double): Likewise.
(target_float_convert): Add special case for no-op conversions.
Use target_float_ops callback.
(target_float_binop): Use target_float_ops callback.
(target_float_compare): Likewise.
gdb/testsuite/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
|
|
|
if (!target_float_same_category_p (from_type, to_type))
|
Target FP: Add conversion routines to target-float.{c,h}
This patch adds the following conversion routines:
- target_float_to_longest
- target_float_from_longest
- target_float_from_ulongest
- target_float_convert
which call the equivalent decimal_ routines to handle decimal FP,
and call helper routines that currently still go via DOUBLEST to
handle binary FP.
The target_float_convert routine not only handles BFP<->BFP and
DFP<->DFP conversions, but also BFP<->DFP, which are implemented
by converting to a string and back.
These helpers are used in particular to implement conversion
from and to FP in value_cast, without going through DOUBLEST there.
In order to implement this for the FP<-integer case, the
pack_long / pack_unsigned_long routines are extended to support
floating-point values as output (thereby allowing use of
value_from_[u]longest with a floating-point target type).
This latter change also allows simplification of value_one.
gdb/ChangeLog:
2017-11-06 Ulrich Weigand <uweigand@de.ibm.com>
* target-float.c (floatformat_to_longest): New function.
(floatformat_from_longest, floatformat_from_ulongest): Likewise.
(floatformat_convert): Likewise.
(target_float_to_longest): Likewise.
(target_float_from_longest, target_float_from_ulongest): Likewise.
(target_float_convert): Likewise.
* target-float.h (target_float_to_longest): Add prototype.
(target_float_from_longest, target_float_from_ulongest): Likewise.
(target_float_convert): Likewise.
* value.c (unpack_long): Use target_float_to_longest.
(pack_long): Allow FP types. Use target_float_from_longest.
(pack_unsigned_long): Likewise using target_float_from_ulongest.
* valops.c: Include "target-float.h". Do not include "dfp.h".
(value_cast): Handle conversions to FP using target_float_convert,
value_from_ulongest, and value_from_longest.
(value_one): Use value_from_longest for FP types as well.
2017-11-06 22:57:31 +08:00
|
|
|
{
|
|
|
|
std::string str = target_float_to_string (from, from_type);
|
|
|
|
target_float_from_string (to, to_type, str);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
Target FP: Refactor use of host floating-point arithmetic
Prepare for using MPFR to implement floating-point arithmetic by
refactoring the way host floating-point arithmetic is currently used.
In particular, fix the following two problems that cause different
(and incorrect) results due to using host arithmetic:
- Current processing always uses host "long double", and then converts
back to the actual target format. This may introduce rounding errors.
- Conversion of FP values to LONGEST simply does a host C++ type cast.
However the result of such a cast is undefined if the source value
is outside the representable range. MPFR always has defined behavior
here (returns the minimum or maximum representable value).
To fix the first issue, I've now created not just one set of routines
using host FP arithmetic (on long double), but instead three different
sets of routines, one each for host float, double, and long double.
Operations can then be performed in the desired type directly, avoiding
the extra rounding step. Using C++ templates, the three sets can all
share the same source code without duplication.
To fix the second issue, I'm simply enforcing the same conversion rule
(which makes sense anyway) when converting out-of-range values from
FP to LONGEST.
To contain the code complexity with the variety of options now possible,
I've created a new class "target_float_ops". There are a total of five
separate implementations of this:
host_float_ops<float> Implemented via host FP in given type
host_float_ops<double>
host_float_ops<long double>
mpfr_float_ops Implemented via MPFR if available
decimal_float_ops Implemented via libdecnumber
Note instead of using the DOUBLEST define, this always just uses the
"long double" data type. But since we now require C++11 anyway, this
type must in any case be avaialble unconditionally.
Most target floating-point operations simply dispatch to a (virtual)
member routine of this class. Which implementation to choose is
determined from the target types involved, and whether they match
some host type or not. E.g. any operation on a single type that
matches a host type is performed in that type. Operations involving
two types that both match host types are performed in the larger one
(according to C/C++ implicit conversion rules). Operations that
involve any type that does not match a host type are performed using
MPFR. (And of course operations involving decimal FP are performed
using libdecnumber.)
This first patch implements the refactoring of target-float.c as
described above, introduing the host_float_ops and decimal_float_ops
classes, and using them. Use of MPFR is introduced in the second patch.
A bit of special-case handling code is moved around to as to avoid
code duplication between host_float_ops and mpfr_float_ops.
Note that due to the changes mentioned above, I've had to update (fix)
the floating-point register values tested in the gdb.arch/vsx-regs.exp
test case. (The new values now work both with host arithmetic and MPFR.)
gdb/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* target-float.c: Do not include <math.h>.
Include <cmath> and <limits>.
(DOUBLEST): Do not define.
(class target_float_ops): New type.
(class host_float_ops): New templated type.
(class decimal_float_ops): New type.
(floatformat_to_doublest): Rename to ...
(host_float_ops<T>::from_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::from_target): New overload using a type argument.
(floatformat_from_doublest): Rename to ...
(host_float_ops<T>::to_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::to_target): New overload using a type argument.
(floatformat_printf_format): New function.
(struct printf_length_modifier): New templated type.
(floatformat_to_string): Rename to ...
(host_float_ops<T>::to_string): ... this. Use type instead of
floatformat argument. Use floatformat_printf_format and
printf_length_modifier. Remove special handling of invalid numbers,
infinities and NaN (moved to target_float_to_string).
(struct scanf_length_modifier): New templated type.
(floatformat_from_string): Rename to ...
(host_float_ops<T>::from_string): ... this. Use type instead of
floatformat argument. Use scanf_length_modifier.
(floatformat_to_longest): Rename to ...
(host_float_ops<T>::to_longest): ... this. Use type instead of
floatformat argument. Handle out-of-range values deterministically.
(floatformat_from_longest): Rename to ...
(host_float_ops<T>::from_longest): ... this. Use type instead of
floatformat argument.
(floatformat_from_ulongest): Rename to ...
(host_float_ops<T>::from_ulongest): ... this. Use type instead of
floatformat argument.
(floatformat_to_host_double): Rename to ...
(host_float_ops<T>::to_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_from_host_double): Rename to ...
(host_float_ops<T>::from_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_convert): Rename to ...
(host_float_ops<T>::convert): ... this. Use type instead of
floatformat arguments. Remove handling of no-op conversions.
(floatformat_binop): Rename to ...
(host_float_ops<T>::binop): ... this. Use type instead of
floatformat arguments.
(floatformat_compare): Rename to ...
(host_float_ops<T>::compare): ... this. Use type instead of
floatformat arguments.
(match_endianness): Use type instead of length/byte_order arguments.
(set_decnumber_context): Likewise.
(decimal_from_number): Likewise. Update calls.
(decimal_to_number): Likewise.
(decimal_is_zero): Likewise. Update calls. Move to earlier in file.
(decimal_float_ops::to_host_double): New dummy function.
(decimal_float_ops::from_host_double): Likewise.
(decimal_to_string): Rename to ...
(decimal_float_ops::to_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_string): Rename to ...
(decimal_float_ops::from_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_longest): Rename to ...
(decimal_float_ops::from_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_ulongest): Rename to ...
(decimal_float_ops::from_ulongest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_to_longest): Rename to ...
(decimal_float_ops::to_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_binop): Rename to ...
(decimal_float_ops::binop): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_compare): Rename to ...
(decimal_float_ops::compare): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_convert): Rename to ...
(decimal_float_ops::convert): ... this. Use type instead of
length/byte_order arguments. Update calls.
(target_float_same_category_p): New function.
(target_float_same_format_p): Likewise.
(target_float_format_length): Likewise.
(enum target_float_ops_kind): New type.
(get_target_float_ops_kind): New function.
(get_target_float_ops): Three new overloaded functions.
(target_float_is_zero): Update call.
(target_float_to_string): Add special handling of invalid numbers,
infinities and NaN (moved from floatformat_to_string). Use
target_float_ops callback.
(target_float_from_string): Use target_float_ops callback.
(target_float_to_longest): Likewise.
(target_float_from_longest): Likewise.
(target_float_from_ulongest): Likewise.
(target_float_to_host_double): Likewise.
(target_float_from_host_double): Likewise.
(target_float_convert): Add special case for no-op conversions.
Use target_float_ops callback.
(target_float_binop): Use target_float_ops callback.
(target_float_compare): Likewise.
gdb/testsuite/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
|
|
|
/* Convert between two different formats in the same category. */
|
|
|
|
if (!target_float_same_format_p (from_type, to_type))
|
|
|
|
{
|
|
|
|
const target_float_ops *ops = get_target_float_ops (from_type, to_type);
|
|
|
|
ops->convert (from, from_type, to, to_type);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* The floating-point formats match, so we simply copy the data, ensuring
|
|
|
|
possible padding bytes in the target buffer are zeroed out. */
|
|
|
|
memset (to, 0, TYPE_LENGTH (to_type));
|
|
|
|
memcpy (to, from, target_float_format_length (to_type));
|
Target FP: Add conversion routines to target-float.{c,h}
This patch adds the following conversion routines:
- target_float_to_longest
- target_float_from_longest
- target_float_from_ulongest
- target_float_convert
which call the equivalent decimal_ routines to handle decimal FP,
and call helper routines that currently still go via DOUBLEST to
handle binary FP.
The target_float_convert routine not only handles BFP<->BFP and
DFP<->DFP conversions, but also BFP<->DFP, which are implemented
by converting to a string and back.
These helpers are used in particular to implement conversion
from and to FP in value_cast, without going through DOUBLEST there.
In order to implement this for the FP<-integer case, the
pack_long / pack_unsigned_long routines are extended to support
floating-point values as output (thereby allowing use of
value_from_[u]longest with a floating-point target type).
This latter change also allows simplification of value_one.
gdb/ChangeLog:
2017-11-06 Ulrich Weigand <uweigand@de.ibm.com>
* target-float.c (floatformat_to_longest): New function.
(floatformat_from_longest, floatformat_from_ulongest): Likewise.
(floatformat_convert): Likewise.
(target_float_to_longest): Likewise.
(target_float_from_longest, target_float_from_ulongest): Likewise.
(target_float_convert): Likewise.
* target-float.h (target_float_to_longest): Add prototype.
(target_float_from_longest, target_float_from_ulongest): Likewise.
(target_float_convert): Likewise.
* value.c (unpack_long): Use target_float_to_longest.
(pack_long): Allow FP types. Use target_float_from_longest.
(pack_unsigned_long): Likewise using target_float_from_ulongest.
* valops.c: Include "target-float.h". Do not include "dfp.h".
(value_cast): Handle conversions to FP using target_float_convert,
value_from_ulongest, and value_from_longest.
(value_one): Use value_from_longest for FP types as well.
2017-11-06 22:57:31 +08:00
|
|
|
}
|
2017-11-06 22:58:46 +08:00
|
|
|
|
|
|
|
/* Perform the binary operation indicated by OPCODE, using as operands the
|
|
|
|
target byte streams X and Y, interpreted as floating-point numbers of
|
|
|
|
types TYPE_X and TYPE_Y, respectively. Convert the result to type
|
|
|
|
TYPE_RES and store it into the byte-stream RES.
|
|
|
|
|
|
|
|
The three types must either be all binary floating-point types, or else
|
|
|
|
all decimal floating-point types. Binary and decimal floating-point
|
|
|
|
types cannot be mixed within a single operation. */
|
|
|
|
void
|
|
|
|
target_float_binop (enum exp_opcode opcode,
|
|
|
|
const gdb_byte *x, const struct type *type_x,
|
|
|
|
const gdb_byte *y, const struct type *type_y,
|
|
|
|
gdb_byte *res, const struct type *type_res)
|
|
|
|
{
|
Target FP: Refactor use of host floating-point arithmetic
Prepare for using MPFR to implement floating-point arithmetic by
refactoring the way host floating-point arithmetic is currently used.
In particular, fix the following two problems that cause different
(and incorrect) results due to using host arithmetic:
- Current processing always uses host "long double", and then converts
back to the actual target format. This may introduce rounding errors.
- Conversion of FP values to LONGEST simply does a host C++ type cast.
However the result of such a cast is undefined if the source value
is outside the representable range. MPFR always has defined behavior
here (returns the minimum or maximum representable value).
To fix the first issue, I've now created not just one set of routines
using host FP arithmetic (on long double), but instead three different
sets of routines, one each for host float, double, and long double.
Operations can then be performed in the desired type directly, avoiding
the extra rounding step. Using C++ templates, the three sets can all
share the same source code without duplication.
To fix the second issue, I'm simply enforcing the same conversion rule
(which makes sense anyway) when converting out-of-range values from
FP to LONGEST.
To contain the code complexity with the variety of options now possible,
I've created a new class "target_float_ops". There are a total of five
separate implementations of this:
host_float_ops<float> Implemented via host FP in given type
host_float_ops<double>
host_float_ops<long double>
mpfr_float_ops Implemented via MPFR if available
decimal_float_ops Implemented via libdecnumber
Note instead of using the DOUBLEST define, this always just uses the
"long double" data type. But since we now require C++11 anyway, this
type must in any case be avaialble unconditionally.
Most target floating-point operations simply dispatch to a (virtual)
member routine of this class. Which implementation to choose is
determined from the target types involved, and whether they match
some host type or not. E.g. any operation on a single type that
matches a host type is performed in that type. Operations involving
two types that both match host types are performed in the larger one
(according to C/C++ implicit conversion rules). Operations that
involve any type that does not match a host type are performed using
MPFR. (And of course operations involving decimal FP are performed
using libdecnumber.)
This first patch implements the refactoring of target-float.c as
described above, introduing the host_float_ops and decimal_float_ops
classes, and using them. Use of MPFR is introduced in the second patch.
A bit of special-case handling code is moved around to as to avoid
code duplication between host_float_ops and mpfr_float_ops.
Note that due to the changes mentioned above, I've had to update (fix)
the floating-point register values tested in the gdb.arch/vsx-regs.exp
test case. (The new values now work both with host arithmetic and MPFR.)
gdb/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* target-float.c: Do not include <math.h>.
Include <cmath> and <limits>.
(DOUBLEST): Do not define.
(class target_float_ops): New type.
(class host_float_ops): New templated type.
(class decimal_float_ops): New type.
(floatformat_to_doublest): Rename to ...
(host_float_ops<T>::from_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::from_target): New overload using a type argument.
(floatformat_from_doublest): Rename to ...
(host_float_ops<T>::to_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::to_target): New overload using a type argument.
(floatformat_printf_format): New function.
(struct printf_length_modifier): New templated type.
(floatformat_to_string): Rename to ...
(host_float_ops<T>::to_string): ... this. Use type instead of
floatformat argument. Use floatformat_printf_format and
printf_length_modifier. Remove special handling of invalid numbers,
infinities and NaN (moved to target_float_to_string).
(struct scanf_length_modifier): New templated type.
(floatformat_from_string): Rename to ...
(host_float_ops<T>::from_string): ... this. Use type instead of
floatformat argument. Use scanf_length_modifier.
(floatformat_to_longest): Rename to ...
(host_float_ops<T>::to_longest): ... this. Use type instead of
floatformat argument. Handle out-of-range values deterministically.
(floatformat_from_longest): Rename to ...
(host_float_ops<T>::from_longest): ... this. Use type instead of
floatformat argument.
(floatformat_from_ulongest): Rename to ...
(host_float_ops<T>::from_ulongest): ... this. Use type instead of
floatformat argument.
(floatformat_to_host_double): Rename to ...
(host_float_ops<T>::to_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_from_host_double): Rename to ...
(host_float_ops<T>::from_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_convert): Rename to ...
(host_float_ops<T>::convert): ... this. Use type instead of
floatformat arguments. Remove handling of no-op conversions.
(floatformat_binop): Rename to ...
(host_float_ops<T>::binop): ... this. Use type instead of
floatformat arguments.
(floatformat_compare): Rename to ...
(host_float_ops<T>::compare): ... this. Use type instead of
floatformat arguments.
(match_endianness): Use type instead of length/byte_order arguments.
(set_decnumber_context): Likewise.
(decimal_from_number): Likewise. Update calls.
(decimal_to_number): Likewise.
(decimal_is_zero): Likewise. Update calls. Move to earlier in file.
(decimal_float_ops::to_host_double): New dummy function.
(decimal_float_ops::from_host_double): Likewise.
(decimal_to_string): Rename to ...
(decimal_float_ops::to_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_string): Rename to ...
(decimal_float_ops::from_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_longest): Rename to ...
(decimal_float_ops::from_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_ulongest): Rename to ...
(decimal_float_ops::from_ulongest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_to_longest): Rename to ...
(decimal_float_ops::to_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_binop): Rename to ...
(decimal_float_ops::binop): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_compare): Rename to ...
(decimal_float_ops::compare): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_convert): Rename to ...
(decimal_float_ops::convert): ... this. Use type instead of
length/byte_order arguments. Update calls.
(target_float_same_category_p): New function.
(target_float_same_format_p): Likewise.
(target_float_format_length): Likewise.
(enum target_float_ops_kind): New type.
(get_target_float_ops_kind): New function.
(get_target_float_ops): Three new overloaded functions.
(target_float_is_zero): Update call.
(target_float_to_string): Add special handling of invalid numbers,
infinities and NaN (moved from floatformat_to_string). Use
target_float_ops callback.
(target_float_from_string): Use target_float_ops callback.
(target_float_to_longest): Likewise.
(target_float_from_longest): Likewise.
(target_float_from_ulongest): Likewise.
(target_float_to_host_double): Likewise.
(target_float_from_host_double): Likewise.
(target_float_convert): Add special case for no-op conversions.
Use target_float_ops callback.
(target_float_binop): Use target_float_ops callback.
(target_float_compare): Likewise.
gdb/testsuite/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
|
|
|
gdb_assert (target_float_same_category_p (type_x, type_res));
|
|
|
|
gdb_assert (target_float_same_category_p (type_y, type_res));
|
2017-11-06 22:58:46 +08:00
|
|
|
|
Target FP: Refactor use of host floating-point arithmetic
Prepare for using MPFR to implement floating-point arithmetic by
refactoring the way host floating-point arithmetic is currently used.
In particular, fix the following two problems that cause different
(and incorrect) results due to using host arithmetic:
- Current processing always uses host "long double", and then converts
back to the actual target format. This may introduce rounding errors.
- Conversion of FP values to LONGEST simply does a host C++ type cast.
However the result of such a cast is undefined if the source value
is outside the representable range. MPFR always has defined behavior
here (returns the minimum or maximum representable value).
To fix the first issue, I've now created not just one set of routines
using host FP arithmetic (on long double), but instead three different
sets of routines, one each for host float, double, and long double.
Operations can then be performed in the desired type directly, avoiding
the extra rounding step. Using C++ templates, the three sets can all
share the same source code without duplication.
To fix the second issue, I'm simply enforcing the same conversion rule
(which makes sense anyway) when converting out-of-range values from
FP to LONGEST.
To contain the code complexity with the variety of options now possible,
I've created a new class "target_float_ops". There are a total of five
separate implementations of this:
host_float_ops<float> Implemented via host FP in given type
host_float_ops<double>
host_float_ops<long double>
mpfr_float_ops Implemented via MPFR if available
decimal_float_ops Implemented via libdecnumber
Note instead of using the DOUBLEST define, this always just uses the
"long double" data type. But since we now require C++11 anyway, this
type must in any case be avaialble unconditionally.
Most target floating-point operations simply dispatch to a (virtual)
member routine of this class. Which implementation to choose is
determined from the target types involved, and whether they match
some host type or not. E.g. any operation on a single type that
matches a host type is performed in that type. Operations involving
two types that both match host types are performed in the larger one
(according to C/C++ implicit conversion rules). Operations that
involve any type that does not match a host type are performed using
MPFR. (And of course operations involving decimal FP are performed
using libdecnumber.)
This first patch implements the refactoring of target-float.c as
described above, introduing the host_float_ops and decimal_float_ops
classes, and using them. Use of MPFR is introduced in the second patch.
A bit of special-case handling code is moved around to as to avoid
code duplication between host_float_ops and mpfr_float_ops.
Note that due to the changes mentioned above, I've had to update (fix)
the floating-point register values tested in the gdb.arch/vsx-regs.exp
test case. (The new values now work both with host arithmetic and MPFR.)
gdb/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* target-float.c: Do not include <math.h>.
Include <cmath> and <limits>.
(DOUBLEST): Do not define.
(class target_float_ops): New type.
(class host_float_ops): New templated type.
(class decimal_float_ops): New type.
(floatformat_to_doublest): Rename to ...
(host_float_ops<T>::from_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::from_target): New overload using a type argument.
(floatformat_from_doublest): Rename to ...
(host_float_ops<T>::to_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::to_target): New overload using a type argument.
(floatformat_printf_format): New function.
(struct printf_length_modifier): New templated type.
(floatformat_to_string): Rename to ...
(host_float_ops<T>::to_string): ... this. Use type instead of
floatformat argument. Use floatformat_printf_format and
printf_length_modifier. Remove special handling of invalid numbers,
infinities and NaN (moved to target_float_to_string).
(struct scanf_length_modifier): New templated type.
(floatformat_from_string): Rename to ...
(host_float_ops<T>::from_string): ... this. Use type instead of
floatformat argument. Use scanf_length_modifier.
(floatformat_to_longest): Rename to ...
(host_float_ops<T>::to_longest): ... this. Use type instead of
floatformat argument. Handle out-of-range values deterministically.
(floatformat_from_longest): Rename to ...
(host_float_ops<T>::from_longest): ... this. Use type instead of
floatformat argument.
(floatformat_from_ulongest): Rename to ...
(host_float_ops<T>::from_ulongest): ... this. Use type instead of
floatformat argument.
(floatformat_to_host_double): Rename to ...
(host_float_ops<T>::to_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_from_host_double): Rename to ...
(host_float_ops<T>::from_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_convert): Rename to ...
(host_float_ops<T>::convert): ... this. Use type instead of
floatformat arguments. Remove handling of no-op conversions.
(floatformat_binop): Rename to ...
(host_float_ops<T>::binop): ... this. Use type instead of
floatformat arguments.
(floatformat_compare): Rename to ...
(host_float_ops<T>::compare): ... this. Use type instead of
floatformat arguments.
(match_endianness): Use type instead of length/byte_order arguments.
(set_decnumber_context): Likewise.
(decimal_from_number): Likewise. Update calls.
(decimal_to_number): Likewise.
(decimal_is_zero): Likewise. Update calls. Move to earlier in file.
(decimal_float_ops::to_host_double): New dummy function.
(decimal_float_ops::from_host_double): Likewise.
(decimal_to_string): Rename to ...
(decimal_float_ops::to_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_string): Rename to ...
(decimal_float_ops::from_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_longest): Rename to ...
(decimal_float_ops::from_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_ulongest): Rename to ...
(decimal_float_ops::from_ulongest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_to_longest): Rename to ...
(decimal_float_ops::to_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_binop): Rename to ...
(decimal_float_ops::binop): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_compare): Rename to ...
(decimal_float_ops::compare): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_convert): Rename to ...
(decimal_float_ops::convert): ... this. Use type instead of
length/byte_order arguments. Update calls.
(target_float_same_category_p): New function.
(target_float_same_format_p): Likewise.
(target_float_format_length): Likewise.
(enum target_float_ops_kind): New type.
(get_target_float_ops_kind): New function.
(get_target_float_ops): Three new overloaded functions.
(target_float_is_zero): Update call.
(target_float_to_string): Add special handling of invalid numbers,
infinities and NaN (moved from floatformat_to_string). Use
target_float_ops callback.
(target_float_from_string): Use target_float_ops callback.
(target_float_to_longest): Likewise.
(target_float_from_longest): Likewise.
(target_float_from_ulongest): Likewise.
(target_float_to_host_double): Likewise.
(target_float_from_host_double): Likewise.
(target_float_convert): Add special case for no-op conversions.
Use target_float_ops callback.
(target_float_binop): Use target_float_ops callback.
(target_float_compare): Likewise.
gdb/testsuite/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
|
|
|
const target_float_ops *ops = get_target_float_ops (type_x, type_y);
|
|
|
|
ops->binop (opcode, x, type_x, y, type_y, res, type_res);
|
2017-11-06 22:58:46 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
/* Compare the two target byte streams X and Y, interpreted as floating-point
|
|
|
|
numbers of types TYPE_X and TYPE_Y, respectively. Return zero if X and Y
|
|
|
|
are equal, -1 if X is less than Y, and 1 otherwise.
|
|
|
|
|
|
|
|
The two types must either both be binary floating-point types, or else
|
|
|
|
both be decimal floating-point types. Binary and decimal floating-point
|
|
|
|
types cannot compared directly against each other. */
|
|
|
|
int
|
|
|
|
target_float_compare (const gdb_byte *x, const struct type *type_x,
|
|
|
|
const gdb_byte *y, const struct type *type_y)
|
|
|
|
{
|
Target FP: Refactor use of host floating-point arithmetic
Prepare for using MPFR to implement floating-point arithmetic by
refactoring the way host floating-point arithmetic is currently used.
In particular, fix the following two problems that cause different
(and incorrect) results due to using host arithmetic:
- Current processing always uses host "long double", and then converts
back to the actual target format. This may introduce rounding errors.
- Conversion of FP values to LONGEST simply does a host C++ type cast.
However the result of such a cast is undefined if the source value
is outside the representable range. MPFR always has defined behavior
here (returns the minimum or maximum representable value).
To fix the first issue, I've now created not just one set of routines
using host FP arithmetic (on long double), but instead three different
sets of routines, one each for host float, double, and long double.
Operations can then be performed in the desired type directly, avoiding
the extra rounding step. Using C++ templates, the three sets can all
share the same source code without duplication.
To fix the second issue, I'm simply enforcing the same conversion rule
(which makes sense anyway) when converting out-of-range values from
FP to LONGEST.
To contain the code complexity with the variety of options now possible,
I've created a new class "target_float_ops". There are a total of five
separate implementations of this:
host_float_ops<float> Implemented via host FP in given type
host_float_ops<double>
host_float_ops<long double>
mpfr_float_ops Implemented via MPFR if available
decimal_float_ops Implemented via libdecnumber
Note instead of using the DOUBLEST define, this always just uses the
"long double" data type. But since we now require C++11 anyway, this
type must in any case be avaialble unconditionally.
Most target floating-point operations simply dispatch to a (virtual)
member routine of this class. Which implementation to choose is
determined from the target types involved, and whether they match
some host type or not. E.g. any operation on a single type that
matches a host type is performed in that type. Operations involving
two types that both match host types are performed in the larger one
(according to C/C++ implicit conversion rules). Operations that
involve any type that does not match a host type are performed using
MPFR. (And of course operations involving decimal FP are performed
using libdecnumber.)
This first patch implements the refactoring of target-float.c as
described above, introduing the host_float_ops and decimal_float_ops
classes, and using them. Use of MPFR is introduced in the second patch.
A bit of special-case handling code is moved around to as to avoid
code duplication between host_float_ops and mpfr_float_ops.
Note that due to the changes mentioned above, I've had to update (fix)
the floating-point register values tested in the gdb.arch/vsx-regs.exp
test case. (The new values now work both with host arithmetic and MPFR.)
gdb/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* target-float.c: Do not include <math.h>.
Include <cmath> and <limits>.
(DOUBLEST): Do not define.
(class target_float_ops): New type.
(class host_float_ops): New templated type.
(class decimal_float_ops): New type.
(floatformat_to_doublest): Rename to ...
(host_float_ops<T>::from_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::from_target): New overload using a type argument.
(floatformat_from_doublest): Rename to ...
(host_float_ops<T>::to_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::to_target): New overload using a type argument.
(floatformat_printf_format): New function.
(struct printf_length_modifier): New templated type.
(floatformat_to_string): Rename to ...
(host_float_ops<T>::to_string): ... this. Use type instead of
floatformat argument. Use floatformat_printf_format and
printf_length_modifier. Remove special handling of invalid numbers,
infinities and NaN (moved to target_float_to_string).
(struct scanf_length_modifier): New templated type.
(floatformat_from_string): Rename to ...
(host_float_ops<T>::from_string): ... this. Use type instead of
floatformat argument. Use scanf_length_modifier.
(floatformat_to_longest): Rename to ...
(host_float_ops<T>::to_longest): ... this. Use type instead of
floatformat argument. Handle out-of-range values deterministically.
(floatformat_from_longest): Rename to ...
(host_float_ops<T>::from_longest): ... this. Use type instead of
floatformat argument.
(floatformat_from_ulongest): Rename to ...
(host_float_ops<T>::from_ulongest): ... this. Use type instead of
floatformat argument.
(floatformat_to_host_double): Rename to ...
(host_float_ops<T>::to_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_from_host_double): Rename to ...
(host_float_ops<T>::from_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_convert): Rename to ...
(host_float_ops<T>::convert): ... this. Use type instead of
floatformat arguments. Remove handling of no-op conversions.
(floatformat_binop): Rename to ...
(host_float_ops<T>::binop): ... this. Use type instead of
floatformat arguments.
(floatformat_compare): Rename to ...
(host_float_ops<T>::compare): ... this. Use type instead of
floatformat arguments.
(match_endianness): Use type instead of length/byte_order arguments.
(set_decnumber_context): Likewise.
(decimal_from_number): Likewise. Update calls.
(decimal_to_number): Likewise.
(decimal_is_zero): Likewise. Update calls. Move to earlier in file.
(decimal_float_ops::to_host_double): New dummy function.
(decimal_float_ops::from_host_double): Likewise.
(decimal_to_string): Rename to ...
(decimal_float_ops::to_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_string): Rename to ...
(decimal_float_ops::from_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_longest): Rename to ...
(decimal_float_ops::from_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_ulongest): Rename to ...
(decimal_float_ops::from_ulongest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_to_longest): Rename to ...
(decimal_float_ops::to_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_binop): Rename to ...
(decimal_float_ops::binop): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_compare): Rename to ...
(decimal_float_ops::compare): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_convert): Rename to ...
(decimal_float_ops::convert): ... this. Use type instead of
length/byte_order arguments. Update calls.
(target_float_same_category_p): New function.
(target_float_same_format_p): Likewise.
(target_float_format_length): Likewise.
(enum target_float_ops_kind): New type.
(get_target_float_ops_kind): New function.
(get_target_float_ops): Three new overloaded functions.
(target_float_is_zero): Update call.
(target_float_to_string): Add special handling of invalid numbers,
infinities and NaN (moved from floatformat_to_string). Use
target_float_ops callback.
(target_float_from_string): Use target_float_ops callback.
(target_float_to_longest): Likewise.
(target_float_from_longest): Likewise.
(target_float_from_ulongest): Likewise.
(target_float_to_host_double): Likewise.
(target_float_from_host_double): Likewise.
(target_float_convert): Add special case for no-op conversions.
Use target_float_ops callback.
(target_float_binop): Use target_float_ops callback.
(target_float_compare): Likewise.
gdb/testsuite/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
|
|
|
gdb_assert (target_float_same_category_p (type_x, type_y));
|
2017-11-06 22:58:46 +08:00
|
|
|
|
Target FP: Refactor use of host floating-point arithmetic
Prepare for using MPFR to implement floating-point arithmetic by
refactoring the way host floating-point arithmetic is currently used.
In particular, fix the following two problems that cause different
(and incorrect) results due to using host arithmetic:
- Current processing always uses host "long double", and then converts
back to the actual target format. This may introduce rounding errors.
- Conversion of FP values to LONGEST simply does a host C++ type cast.
However the result of such a cast is undefined if the source value
is outside the representable range. MPFR always has defined behavior
here (returns the minimum or maximum representable value).
To fix the first issue, I've now created not just one set of routines
using host FP arithmetic (on long double), but instead three different
sets of routines, one each for host float, double, and long double.
Operations can then be performed in the desired type directly, avoiding
the extra rounding step. Using C++ templates, the three sets can all
share the same source code without duplication.
To fix the second issue, I'm simply enforcing the same conversion rule
(which makes sense anyway) when converting out-of-range values from
FP to LONGEST.
To contain the code complexity with the variety of options now possible,
I've created a new class "target_float_ops". There are a total of five
separate implementations of this:
host_float_ops<float> Implemented via host FP in given type
host_float_ops<double>
host_float_ops<long double>
mpfr_float_ops Implemented via MPFR if available
decimal_float_ops Implemented via libdecnumber
Note instead of using the DOUBLEST define, this always just uses the
"long double" data type. But since we now require C++11 anyway, this
type must in any case be avaialble unconditionally.
Most target floating-point operations simply dispatch to a (virtual)
member routine of this class. Which implementation to choose is
determined from the target types involved, and whether they match
some host type or not. E.g. any operation on a single type that
matches a host type is performed in that type. Operations involving
two types that both match host types are performed in the larger one
(according to C/C++ implicit conversion rules). Operations that
involve any type that does not match a host type are performed using
MPFR. (And of course operations involving decimal FP are performed
using libdecnumber.)
This first patch implements the refactoring of target-float.c as
described above, introduing the host_float_ops and decimal_float_ops
classes, and using them. Use of MPFR is introduced in the second patch.
A bit of special-case handling code is moved around to as to avoid
code duplication between host_float_ops and mpfr_float_ops.
Note that due to the changes mentioned above, I've had to update (fix)
the floating-point register values tested in the gdb.arch/vsx-regs.exp
test case. (The new values now work both with host arithmetic and MPFR.)
gdb/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* target-float.c: Do not include <math.h>.
Include <cmath> and <limits>.
(DOUBLEST): Do not define.
(class target_float_ops): New type.
(class host_float_ops): New templated type.
(class decimal_float_ops): New type.
(floatformat_to_doublest): Rename to ...
(host_float_ops<T>::from_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::from_target): New overload using a type argument.
(floatformat_from_doublest): Rename to ...
(host_float_ops<T>::to_target): ... this. Use template type T
instead of DOUBLEST. Use C++ math routines. Update recursive calls.
(host_float_ops<T>::to_target): New overload using a type argument.
(floatformat_printf_format): New function.
(struct printf_length_modifier): New templated type.
(floatformat_to_string): Rename to ...
(host_float_ops<T>::to_string): ... this. Use type instead of
floatformat argument. Use floatformat_printf_format and
printf_length_modifier. Remove special handling of invalid numbers,
infinities and NaN (moved to target_float_to_string).
(struct scanf_length_modifier): New templated type.
(floatformat_from_string): Rename to ...
(host_float_ops<T>::from_string): ... this. Use type instead of
floatformat argument. Use scanf_length_modifier.
(floatformat_to_longest): Rename to ...
(host_float_ops<T>::to_longest): ... this. Use type instead of
floatformat argument. Handle out-of-range values deterministically.
(floatformat_from_longest): Rename to ...
(host_float_ops<T>::from_longest): ... this. Use type instead of
floatformat argument.
(floatformat_from_ulongest): Rename to ...
(host_float_ops<T>::from_ulongest): ... this. Use type instead of
floatformat argument.
(floatformat_to_host_double): Rename to ...
(host_float_ops<T>::to_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_from_host_double): Rename to ...
(host_float_ops<T>::from_host_double): ... this. Use type instead of
floatformat argument.
(floatformat_convert): Rename to ...
(host_float_ops<T>::convert): ... this. Use type instead of
floatformat arguments. Remove handling of no-op conversions.
(floatformat_binop): Rename to ...
(host_float_ops<T>::binop): ... this. Use type instead of
floatformat arguments.
(floatformat_compare): Rename to ...
(host_float_ops<T>::compare): ... this. Use type instead of
floatformat arguments.
(match_endianness): Use type instead of length/byte_order arguments.
(set_decnumber_context): Likewise.
(decimal_from_number): Likewise. Update calls.
(decimal_to_number): Likewise.
(decimal_is_zero): Likewise. Update calls. Move to earlier in file.
(decimal_float_ops::to_host_double): New dummy function.
(decimal_float_ops::from_host_double): Likewise.
(decimal_to_string): Rename to ...
(decimal_float_ops::to_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_string): Rename to ...
(decimal_float_ops::from_string): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_longest): Rename to ...
(decimal_float_ops::from_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_from_ulongest): Rename to ...
(decimal_float_ops::from_ulongest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_to_longest): Rename to ...
(decimal_float_ops::to_longest): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_binop): Rename to ...
(decimal_float_ops::binop): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_compare): Rename to ...
(decimal_float_ops::compare): ... this. Use type instead of
length/byte_order arguments. Update calls.
(decimal_convert): Rename to ...
(decimal_float_ops::convert): ... this. Use type instead of
length/byte_order arguments. Update calls.
(target_float_same_category_p): New function.
(target_float_same_format_p): Likewise.
(target_float_format_length): Likewise.
(enum target_float_ops_kind): New type.
(get_target_float_ops_kind): New function.
(get_target_float_ops): Three new overloaded functions.
(target_float_is_zero): Update call.
(target_float_to_string): Add special handling of invalid numbers,
infinities and NaN (moved from floatformat_to_string). Use
target_float_ops callback.
(target_float_from_string): Use target_float_ops callback.
(target_float_to_longest): Likewise.
(target_float_from_longest): Likewise.
(target_float_from_ulongest): Likewise.
(target_float_to_host_double): Likewise.
(target_float_from_host_double): Likewise.
(target_float_convert): Add special case for no-op conversions.
Use target_float_ops callback.
(target_float_binop): Use target_float_ops callback.
(target_float_compare): Likewise.
gdb/testsuite/ChangeLog:
2017-11-22 Ulrich Weigand <uweigand@de.ibm.com>
* gdb.arch/vsx-regs.exp: Update register content checks.
2017-11-22 20:51:49 +08:00
|
|
|
const target_float_ops *ops = get_target_float_ops (type_x, type_y);
|
|
|
|
return ops->compare (x, type_x, y, type_y);
|
2017-11-06 22:58:46 +08:00
|
|
|
}
|
|
|
|
|