binutils-gdb/gas/config/tc-d30v.c

1312 lines
32 KiB
C
Raw Normal View History

/* tc-d30v.c -- Assembler code for the Mitsubishi D30V
Copyright (C) 1997 Free Software Foundation.
This file is part of GAS, the GNU Assembler.
GAS is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GAS is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GAS; see the file COPYING. If not, write to
the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
#include <stdio.h>
#include <ctype.h>
#include "as.h"
#include "subsegs.h"
#include "opcode/d30v.h"
const char comment_chars[] = ";";
const char line_comment_chars[] = "#";
const char line_separator_chars[] = "";
const char *md_shortopts = "O";
const char EXP_CHARS[] = "eE";
const char FLT_CHARS[] = "dD";
int Optimizing = 0;
/* fixups */
#define MAX_INSN_FIXUPS (5)
struct d30v_fixup
{
expressionS exp;
int operand;
int pcrel;
int size;
bfd_reloc_code_real_type reloc;
};
typedef struct _fixups
{
int fc;
struct d30v_fixup fix[MAX_INSN_FIXUPS];
struct _fixups *next;
} Fixups;
static Fixups FixUps[2];
static Fixups *fixups;
/* local functions */
static int reg_name_search PARAMS ((char *name));
static int register_name PARAMS ((expressionS *expressionP));
static int check_range PARAMS ((unsigned long num, int bits, int flags));
static int postfix PARAMS ((char *p));
static bfd_reloc_code_real_type get_reloc PARAMS ((struct d30v_operand *op, int rel_flag));
static int get_operands PARAMS ((expressionS exp[], int cmp_hack));
static struct d30v_format *find_format PARAMS ((struct d30v_opcode *opcode, expressionS ops[],
int cmp_hack));
static long long build_insn PARAMS ((struct d30v_insn *opcode, expressionS *opers));
static void write_long PARAMS ((struct d30v_insn *opcode, long long insn, Fixups *fx));
static void write_1_short PARAMS ((struct d30v_insn *opcode, long long insn, Fixups *fx));
static int write_2_short PARAMS ((struct d30v_insn *opcode1, long long insn1,
struct d30v_insn *opcode2, long long insn2, int exec_type, Fixups *fx));
static long long do_assemble PARAMS ((char *str, struct d30v_insn *opcode));
static unsigned long d30v_insert_operand PARAMS (( unsigned long insn, int op_type,
offsetT value, int left, fixS *fix));
static int parallel_ok PARAMS ((struct d30v_insn *opcode1, unsigned long insn1,
struct d30v_insn *opcode2, unsigned long insn2,
int exec_type));
static void d30v_number_to_chars PARAMS ((char *buf, long long value, int nbytes));
struct option md_longopts[] = {
{NULL, no_argument, NULL, 0}
};
size_t md_longopts_size = sizeof(md_longopts);
/* The target specific pseudo-ops which we support. */
const pseudo_typeS md_pseudo_table[] =
{
{ NULL, NULL, 0 }
};
/* Opcode hash table. */
static struct hash_control *d30v_hash;
/* reg_name_search does a binary search of the pre_defined_registers
array to see if "name" is a valid regiter name. Returns the register
number from the array on success, or -1 on failure. */
static int
reg_name_search (name)
char *name;
{
int middle, low, high;
int cmp;
low = 0;
high = reg_name_cnt() - 1;
do
{
middle = (low + high) / 2;
cmp = strcasecmp (name, pre_defined_registers[middle].name);
if (cmp < 0)
high = middle - 1;
else if (cmp > 0)
low = middle + 1;
else
return pre_defined_registers[middle].value;
}
while (low <= high);
return -1;
}
/* register_name() checks the string at input_line_pointer
to see if it is a valid register name */
static int
register_name (expressionP)
expressionS *expressionP;
{
int reg_number;
char c, *p = input_line_pointer;
while (*p && *p!='\n' && *p!='\r' && *p !=',' && *p!=' ' && *p!=')')
p++;
c = *p;
if (c)
*p++ = 0;
/* look to see if it's in the register table */
reg_number = reg_name_search (input_line_pointer);
if (reg_number >= 0)
{
expressionP->X_op = O_register;
/* temporarily store a pointer to the string here */
expressionP->X_op_symbol = (struct symbol *)input_line_pointer;
expressionP->X_add_number = reg_number;
input_line_pointer = p;
return 1;
}
if (c)
*(p-1) = c;
return 0;
}
static int
check_range (num, bits, flags)
unsigned long num;
int bits;
int flags;
{
long min, max, bit1;
int retval=0;
/* don't bother checking 32-bit values */
if (bits == 32)
return 0;
if (flags & OPERAND_SIGNED)
{
max = (1 << (bits - 1))-1;
min = - (1 << (bits - 1));
if (((long)num > max) || ((long)num < min))
retval = 1;
}
else
{
max = (1 << bits) - 1;
min = 0;
if ((num > max) || (num < min))
retval = 1;
}
return retval;
}
void
md_show_usage (stream)
FILE *stream;
{
fprintf(stream, "D30V options:\n\
-O optimize. Will do some operations in parallel.\n");
}
int
md_parse_option (c, arg)
int c;
char *arg;
{
switch (c)
{
case 'O':
/* Optimize. Will attempt to parallelize operations */
Optimizing = 1;
break;
default:
return 0;
}
return 1;
}
symbolS *
md_undefined_symbol (name)
char *name;
{
return 0;
}
/* Turn a string in input_line_pointer into a floating point constant of type
type, and store the appropriate bytes in *litP. The number of LITTLENUMS
emitted is stored in *sizeP . An error message is returned, or NULL on OK.
*/
char *
md_atof (type, litP, sizeP)
int type;
char *litP;
int *sizeP;
{
int prec;
LITTLENUM_TYPE words[4];
char *t;
int i;
switch (type)
{
case 'f':
prec = 2;
break;
case 'd':
prec = 4;
break;
default:
*sizeP = 0;
return "bad call to md_atof";
}
t = atof_ieee (input_line_pointer, type, words);
if (t)
input_line_pointer = t;
*sizeP = prec * 2;
for (i = 0; i < prec; i++)
{
md_number_to_chars (litP, (valueT) words[i], 2);
litP += 2;
}
return NULL;
}
void
md_convert_frag (abfd, sec, fragP)
bfd *abfd;
asection *sec;
fragS *fragP;
{
abort ();
}
valueT
md_section_align (seg, addr)
asection *seg;
valueT addr;
{
int align = bfd_get_section_alignment (stdoutput, seg);
return ((addr + (1 << align) - 1) & (-1 << align));
}
void
md_begin ()
{
struct d30v_opcode *opcode;
d30v_hash = hash_new();
/* Insert opcode names into a hash table. */
for (opcode = (struct d30v_opcode *)d30v_opcode_table; opcode->name; opcode++)
hash_insert (d30v_hash, opcode->name, (char *) opcode);
fixups = &FixUps[0];
FixUps[0].next = &FixUps[1];
FixUps[1].next = &FixUps[0];
}
/* this function removes the postincrement or postdecrement
operator ( '+' or '-' ) from an expression */
static int postfix (p)
char *p;
{
while (*p != '-' && *p != '+')
{
if (*p==0 || *p=='\n' || *p=='\r')
break;
p++;
}
if (*p == '-')
{
*p = ' ';
return (-1);
}
if (*p == '+')
{
*p = ' ';
return (1);
}
return (0);
}
static bfd_reloc_code_real_type
get_reloc (op, rel_flag)
struct d30v_operand *op;
int rel_flag;
{
switch (op->bits)
{
case 6:
return BFD_RELOC_D30V_6;
case 12:
if (!(op->flags & OPERAND_SHIFT))
as_warn("unexpected 12-bit reloc type");
if (rel_flag == RELOC_PCREL)
return BFD_RELOC_D30V_15_PCREL;
else
return BFD_RELOC_D30V_15;
case 18:
if (!(op->flags & OPERAND_SHIFT))
as_warn("unexpected 18-bit reloc type");
if (rel_flag == RELOC_PCREL)
return BFD_RELOC_D30V_21_PCREL;
else
return BFD_RELOC_D30V_21;
case 32:
if (rel_flag == RELOC_PCREL)
return BFD_RELOC_D30V_32_PCREL;
else
return BFD_RELOC_D30V_32;
default:
return 0;
}
}
/* get_operands parses a string of operands and returns
an array of expressions */
static int
get_operands (exp, cmp_hack)
expressionS exp[];
int cmp_hack;
{
char *p = input_line_pointer;
int numops = 0;
int post = 0;
if (cmp_hack)
{
exp[numops].X_op = O_absent;
exp[numops++].X_add_number = cmp_hack - 1;
}
while (*p)
{
while (*p == ' ' || *p == '\t' || *p == ',')
p++;
if (*p==0 || *p=='\n' || *p=='\r')
break;
if (*p == '@')
{
p++;
exp[numops].X_op = O_absent;
if (*p == '(')
{
p++;
exp[numops].X_add_number = OPERAND_ATPAR;
post = postfix (p);
}
else if (*p == '-')
{
p++;
exp[numops].X_add_number = OPERAND_ATMINUS;
}
else
{
exp[numops].X_add_number = OPERAND_ATSIGN;
post = postfix (p);
}
numops++;
continue;
}
if (*p == ')')
{
/* just skip the trailing paren */
p++;
continue;
}
input_line_pointer = p;
/* check to see if it might be a register name */
if (!register_name (&exp[numops]))
{
/* parse as an expression */
expression (&exp[numops]);
}
if (exp[numops].X_op == O_illegal)
as_bad ("illegal operand");
else if (exp[numops].X_op == O_absent)
as_bad ("missing operand");
numops++;
p = input_line_pointer;
switch (post)
{
case -1: /* postdecrement mode */
exp[numops].X_op = O_absent;
exp[numops++].X_add_number = OPERAND_MINUS;
break;
case 1: /* postincrement mode */
exp[numops].X_op = O_absent;
exp[numops++].X_add_number = OPERAND_PLUS;
break;
}
post = 0;
}
exp[numops].X_op = 0;
return (numops);
}
/* build_insn generates the instruction. It does everything */
/* but write the FM bits. */
static long long
build_insn (opcode, opers)
struct d30v_insn *opcode;
expressionS *opers;
{
int i, length, bits, shift, flags, format;
unsigned int number, id=0;
long long insn;
struct d30v_opcode *op = opcode->op;
struct d30v_format *form = opcode->form;
/* printf("ecc=%x op1=%x op2=%x mod=%x\n",opcode->ecc,op->op1,op->op2,form->modifier); */
insn = opcode->ecc << 28 | op->op1 << 25 | op->op2 << 20 | form->modifier << 18;
/* printf("insn=%llx\n",insn); */
for (i=0; form->operands[i]; i++)
{
flags = d30v_operand_table[form->operands[i]].flags;
/* must be a register or number */
if (!(flags & OPERAND_REG) && !(flags & OPERAND_NUM) &&
!(flags & OPERAND_NAME) && !(flags & OPERAND_SPECIAL))
continue;
bits = d30v_operand_table[form->operands[i]].bits;
length = d30v_operand_table[form->operands[i]].length;
shift = 12 - d30v_operand_table[form->operands[i]].position;
number = opers[i].X_add_number;
if (flags & OPERAND_REG)
{
/* now check for mvfsys or mvtsys control registers */
if (flags & OPERAND_CONTROL && (number & 0x3f) > MAX_CONTROL_REG)
{
/* PSWL or PSWH */
id = (number & 0x3f) - MAX_CONTROL_REG;
number = 1;
}
else if (number & OPERAND_FLAG)
{
id = 3; /* number is a flag register */
}
number &= 0x3F;
}
else if (flags & OPERAND_SPECIAL)
{
number = id;
}
if (opers[i].X_op != O_register && opers[i].X_op != O_constant && !(flags & OPERAND_NAME))
{
/* now create a fixup */
if (fixups->fc >= MAX_INSN_FIXUPS)
as_fatal ("too many fixups");
fixups->fix[fixups->fc].reloc =
get_reloc((struct d30v_operand *)&d30v_operand_table[form->operands[i]], op->reloc_flag);
fixups->fix[fixups->fc].size = 4;
fixups->fix[fixups->fc].exp = opers[i];
fixups->fix[fixups->fc].operand = form->operands[i];
fixups->fix[fixups->fc].pcrel = op->reloc_flag;
(fixups->fc)++;
}
/* truncate to the proper number of bits */
/*
if ((opers[i].X_op == O_constant) && check_range (number, bits, flags))
as_bad("operand out of range: %d",number);
number &= 0x7FFFFFFF >> (31 - bits);
*/
if (bits == 32)
{
/* it's a LONG instruction */
insn |= (number >> 26); /* top 6 bits */
insn <<= 32; /* shift the first word over */
insn |= ((number & 0x03FC0000) << 2); /* next 8 bits */
insn |= number & 0x0003FFFF; /* bottom 18 bits */
}
else
insn |= number << shift;
}
return insn;
}
/* write out a long form instruction */
static void
write_long (opcode, insn, fx)
struct d30v_insn *opcode;
long long insn;
Fixups *fx;
{
int i, where;
char *f = frag_more(8);
insn |= FM11;
d30v_number_to_chars (f, insn, 8);
for (i=0; i < fx->fc; i++)
{
if (fx->fix[i].reloc)
{
where = f - frag_now->fr_literal;
fix_new_exp (frag_now,
where,
fx->fix[i].size,
&(fx->fix[i].exp),
fx->fix[i].pcrel,
fx->fix[i].reloc);
}
}
fx->fc = 0;
}
/* write out a short form instruction by itself */
static void
write_1_short (opcode, insn, fx)
struct d30v_insn *opcode;
long long insn;
Fixups *fx;
{
char *f = frag_more(8);
int i, where;
/* the other container needs to be NOP */
/* according to 4.3.1: for FM=00, sub-instructions performed only
by IU cannot be encoded in L-container. */
if (opcode->op->unit == IU)
insn |= FM00 | ((long long)NOP << 32); /* right container */
else
insn = FM00 | (insn << 32) | (long long)NOP; /* left container */
d30v_number_to_chars (f, insn, 8);
for (i=0; i < fx->fc; i++)
{
if (fx->fix[i].reloc)
{
where = f - frag_now->fr_literal;
fix_new_exp (frag_now,
where,
fx->fix[i].size,
&(fx->fix[i].exp),
fx->fix[i].pcrel,
fx->fix[i].reloc);
}
}
fx->fc = 0;
}
/* write out a short form instruction if possible */
/* return number of instructions not written out */
static int
write_2_short (opcode1, insn1, opcode2, insn2, exec_type, fx)
struct d30v_insn *opcode1, *opcode2;
long long insn1, insn2;
int exec_type;
Fixups *fx;
{
long long insn;
char *f;
int i,j, where;
if(exec_type != 1 && (opcode1->op->flags_used == FLAG_JSR))
{
/* subroutines must be called from 32-bit boundaries */
/* so the return address will be correct */
write_1_short (opcode1, insn1, fx->next);
return (1);
}
switch (exec_type)
{
case 0: /* order not specified */
if ( Optimizing && parallel_ok (opcode1, insn1, opcode2, insn2, exec_type))
{
/* parallel */
if (opcode1->op->unit == IU)
insn = FM00 | (insn2 << 32) | insn1;
else if (opcode2->op->unit == MU)
insn = FM00 | (insn2 << 32) | insn1;
else
{
insn = FM00 | (insn1 << 32) | insn2;
fx = fx->next;
}
}
else if (opcode1->op->unit == IU)
{
/* reverse sequential */
insn = FM10 | (insn2 << 32) | insn1;
}
else
{
/* sequential */
insn = FM01 | (insn1 << 32) | insn2;
fx = fx->next;
}
break;
case 1: /* parallel */
if (opcode1->op->unit == IU)
{
if (opcode2->op->unit == IU)
as_fatal ("Two IU instructions may not be executed in parallel");
as_warn ("Swapping instruction order");
insn = FM00 | (insn2 << 32) | insn1;
}
else if (opcode2->op->unit == MU)
{
if (opcode1->op->unit == MU)
as_fatal ("Two MU instructions may not be executed in parallel");
as_warn ("Swapping instruction order");
insn = FM00 | (insn2 << 32) | insn1;
}
else
{
insn = FM00 | (insn1 << 32) | insn2;
fx = fx->next;
}
break;
case 2: /* sequential */
if (opcode1->op->unit == IU)
as_fatal ("IU instruction may not be in the left container");
insn = FM01 | (insn1 << 32) | insn2;
fx = fx->next;
break;
case 3: /* reverse sequential */
if (opcode2->op->unit == MU)
as_fatal ("MU instruction may not be in the right container");
insn = FM10 | (insn1 << 32) | insn2;
fx = fx->next;
break;
default:
as_fatal("unknown execution type passed to write_2_short()");
}
/* printf("writing out %llx\n",insn); */
f = frag_more(8);
d30v_number_to_chars (f, insn, 8);
for (j=0; j<2; j++)
{
for (i=0; i < fx->fc; i++)
{
if (fx->fix[i].reloc)
{
where = (f - frag_now->fr_literal) + 4*j;
fix_new_exp (frag_now,
where,
fx->fix[i].size,
&(fx->fix[i].exp),
fx->fix[i].pcrel,
fx->fix[i].reloc);
}
}
fx->fc = 0;
fx = fx->next;
}
return (0);
}
/* Check 2 instructions and determine if they can be safely */
/* executed in parallel. Returns 1 if they can be. */
static int
parallel_ok (op1, insn1, op2, insn2, exec_type)
struct d30v_insn *op1, *op2;
unsigned long insn1, insn2;
int exec_type;
{
int i, j, flags, mask, shift, regno, bits;
unsigned long ins, mod_reg[2][3], used_reg[2][3];
struct d30v_format *f;
struct d30v_opcode *op;
/* section 4.3: both instructions must not be IU or MU only */
if ((op1->op->unit == IU && op2->op->unit == IU)
|| (op1->op->unit == MU && op2->op->unit == MU))
return 0;
/*
[0] r0-r31
[1] r32-r63
[2] a0, a1
*/
for (j = 0; j < 2; j++)
{
if (j == 0)
{
f = op1->form;
op = op1->op;
ins = insn1;
}
else
{
f = op2->form;
op = op2->op;
ins = insn2;
}
mod_reg[j][0] = mod_reg[j][1] = 0;
mod_reg[j][2] = op->flags_set;
used_reg[j][0] = used_reg[j][1] = 0;
used_reg[j][2] = op->flags_used;
for (i = 0; f->operands[i]; i++)
{
flags = d30v_operand_table[f->operands[i]].flags;
shift = 12 - d30v_operand_table[f->operands[i]].position;
bits = d30v_operand_table[f->operands[i]].bits;
if (bits == 32)
mask = 0xffffffff;
else
mask = 0x7FFFFFFF >> (31 - bits);
if (flags & OPERAND_REG)
{
regno = (ins >> shift) & mask;
if (flags & OPERAND_DEST)
{
if (flags & OPERAND_ACC)
mod_reg[j][2] = 1 << (regno+16);
else if (flags & OPERAND_FLAG)
mod_reg[j][2] = 1 << regno;
else if (!(flags & OPERAND_CONTROL))
{
if (regno >= 32)
mod_reg[j][1] = 1 << (regno - 32);
else
mod_reg[j][0] = 1 << regno;
}
}
else
{
if (flags & OPERAND_ACC)
used_reg[j][2] = 1 << (regno+16);
else if (flags & OPERAND_FLAG)
used_reg[j][2] = 1 << regno;
else if (!(flags & OPERAND_CONTROL))
{
if (regno >= 32)
used_reg[j][1] = 1 << (regno - 32);
else
used_reg[j][0] = 1 << regno;
}
}
}
}
}
for(j = 0; j < 3; j++)
if ((mod_reg[0][j] & mod_reg[1][j])
|| (mod_reg[0][j] & used_reg[1][j])
|| (mod_reg[1][j] & used_reg[0][j]))
return 0;
return 1;
}
/* This is the main entry point for the machine-dependent assembler. str points to a
machine-dependent instruction. This function is supposed to emit the frags/bytes
it assembles to. For the D30V, it mostly handles the special VLIW parsing and packing
and leaves the difficult stuff to do_assemble().
*/
static long long prev_insn = -1;
static struct d30v_insn prev_opcode;
static subsegT prev_subseg;
static segT prev_seg = 0;
void
md_assemble (str)
char *str;
{
struct d30v_insn opcode;
long long insn;
int extype=0; /* execution type; parallel, etc */
static int etype=0; /* saved extype. used for multiline instructions */
char *str2;
if (etype == 0)
{
/* look for the special multiple instruction separators */
str2 = strstr (str, "||");
if (str2)
extype = 1;
else
{
str2 = strstr (str, "->");
if (str2)
extype = 2;
else
{
str2 = strstr (str, "<-");
if (str2)
extype = 3;
}
}
/* str2 points to the separator, if one */
if (str2)
{
*str2 = 0;
/* if two instructions are present and we already have one saved
then first write it out */
d30v_cleanup();
/* assemble first instruction and save it */
prev_insn = do_assemble (str, &prev_opcode);
if (prev_insn == -1)
as_fatal ("can't find opcode ");
fixups = fixups->next;
str = str2 + 2;
}
}
insn = do_assemble (str, &opcode);
if (insn == -1)
{
if (extype)
{
etype = extype;
return;
}
as_fatal ("can't find opcode ");
}
if (etype)
{
extype = etype;
etype = 0;
}
/* if this is a long instruction, write it and any previous short instruction */
if (opcode.form->form >= LONG)
{
if (extype)
as_fatal("Unable to mix instructions as specified");
d30v_cleanup();
write_long (&opcode, insn, fixups);
prev_insn = -1;
return;
}
if ( (prev_insn != -1) && prev_seg && ((prev_seg != now_seg) || (prev_subseg != now_subseg)))
d30v_cleanup();
if ( (prev_insn != -1) &&
(write_2_short (&prev_opcode, (long)prev_insn, &opcode, (long)insn, extype, fixups) == 0))
{
/* no instructions saved */
prev_insn = -1;
}
else
{
if (extype)
as_fatal("Unable to mix instructions as specified");
/* save off last instruction so it may be packed on next pass */
memcpy( &prev_opcode, &opcode, sizeof(prev_opcode));
prev_insn = insn;
prev_seg = now_seg;
prev_subseg = now_subseg;
fixups = fixups->next;
}
}
/* do_assemble assembles a single instruction and returns an opcode */
/* it returns -1 (an invalid opcode) on error */
static long long
do_assemble (str, opcode)
char *str;
struct d30v_insn *opcode;
{
unsigned char *op_start, *save;
unsigned char *op_end;
char name[20];
int cmp_hack, nlen = 0;
expressionS myops[6];
long long insn;
/* Drop leading whitespace */
while (*str == ' ')
str++;
/* find the opcode end */
for (op_start = op_end = (unsigned char *) (str);
*op_end
&& nlen < 20
&& *op_end != '/'
&& !is_end_of_line[*op_end] && *op_end != ' ';
op_end++)
{
name[nlen] = tolower(op_start[nlen]);
nlen++;
}
if (nlen == 0)
return (-1);
name[nlen] = 0;
/* if there is an execution condition code, handle it */
if (*op_end == '/')
{
int i = 0;
while ( (i < ECC_MAX) && strncasecmp(d30v_ecc_names[i],op_end+1,2))
i++;
if (i == ECC_MAX)
{
char tmp[4];
strncpy(tmp,op_end+1,2);
tmp[2] = 0;
as_fatal ("unknown condition code: %s",tmp);
return -1;
}
/* printf("condition code=%d\n",i); */
opcode->ecc = i;
op_end += 3;
}
else
opcode->ecc = ECC_AL;
/* CMP and CMPU change their name based on condition codes */
if (!strncmp(name,"cmp",3))
{
int p,i;
char **str = (char **)d30v_cc_names;
if (name[3] == 'u')
p = 4;
else
p = 3;
for(i=1; *str && strncmp(*str,&name[p],2); i++, *str++)
;
if (!*str)
{
name[p+2]=0;
as_fatal ("unknown condition code: %s",&name[p]);
}
cmp_hack = i;
name[p] = 0;
}
else
cmp_hack = 0;
/* printf("cmp_hack=%d\n",cmp_hack); */
/* find the first opcode with the proper name */
opcode->op = (struct d30v_opcode *)hash_find (d30v_hash, name);
if (opcode->op == NULL)
as_fatal ("unknown opcode: %s",name);
save = input_line_pointer;
input_line_pointer = op_end;
while (!(opcode->form = find_format (opcode->op, myops, cmp_hack)))
{
opcode->op++;
if (strcmp(opcode->op->name,name))
return -1;
}
input_line_pointer = save;
insn = build_insn (opcode, myops);
return (insn);
}
/* find_format() gets a pointer to an entry in the format table. */
/* It must look at all formats for an opcode and use the operands */
/* to choose the correct one. Returns NULL on error. */
static struct d30v_format *
find_format (opcode, myops, cmp_hack)
struct d30v_opcode *opcode;
expressionS myops[];
int cmp_hack;
{
int numops, match, index, i=0, j, k;
struct d30v_format *fm;
struct d30v_operand *op;
/* get all the operands and save them as expressions */
numops = get_operands (myops, cmp_hack);
while (index = opcode->format[i++])
{
fm = (struct d30v_format *)&d30v_format_table[index];
k = index;
while (fm->form == index)
{
match = 1;
/* now check the operands for compatibility */
for (j = 0; match && fm->operands[j]; j++)
{
int flags = d30v_operand_table[fm->operands[j]].flags;
int X_op = myops[j].X_op;
int num = myops[j].X_add_number;
if ( flags & OPERAND_SPECIAL )
break;
else if (X_op == 0)
match = 0;
else if (flags & OPERAND_REG)
{
if ((X_op != O_register) ||
((flags & OPERAND_ACC) && !(num & OPERAND_ACC)) ||
((flags & OPERAND_FLAG) && !(num & OPERAND_FLAG)) ||
(flags & OPERAND_CONTROL && !(num & OPERAND_CONTROL | num & OPERAND_FLAG)))
{
match = 0;
}
}
else
if (((flags & OPERAND_MINUS) && ((X_op != O_absent) || (num != OPERAND_MINUS))) ||
((flags & OPERAND_PLUS) && ((X_op != O_absent) || (num != OPERAND_PLUS))) ||
((flags & OPERAND_ATMINUS) && ((X_op != O_absent) || (num != OPERAND_ATMINUS))) ||
((flags & OPERAND_ATPAR) && ((X_op != O_absent) || (num != OPERAND_ATPAR))) ||
((flags & OPERAND_ATSIGN) && ((X_op != O_absent) || (num != OPERAND_ATSIGN))))
{
match=0;
}
else if (flags & OPERAND_NUM)
{
/* a number can be a constant or symbol expression */
if (fm->form >= LONG)
{
/* If we're testing for a LONG format, either fits */
if (X_op != O_constant && X_op != O_symbol)
match = 0;
}
/* This is the tricky part. Will the constant or symbol */
/* fit into the space in the current format? */
else if (X_op == O_constant)
{
if (check_range (num, d30v_operand_table[fm->operands[j]].bits, flags))
match = 0;
}
else if (X_op == O_symbol && S_IS_DEFINED(myops[j].X_add_symbol) &&
(S_GET_SEGMENT(myops[j].X_add_symbol) == now_seg))
{
/* if the symbol is defined, see if the value will fit */
/* into the form we're considering */
fragS *f;
long value;
/* calculate the current address by running through the previous frags */
/* and adding our current offset */
for (value = 0, f = frchain_now->frch_root; f; f = f->fr_next)
value += f->fr_fix + f->fr_offset;
if (opcode->reloc_flag == RELOC_PCREL)
value = S_GET_VALUE(myops[j].X_add_symbol) - value -
(obstack_next_free(&frchain_now->frch_obstack) - frag_now->fr_literal);
else
value = S_GET_VALUE(myops[j].X_add_symbol);
if (check_range (value, d30v_operand_table[fm->operands[j]].bits, flags))
match = 0;
}
else
match = 0;
}
}
/* printf("through the loop: match=%d\n",match); */
/* we're only done if the operands matched so far AND there
are no more to check */
if (match && myops[j].X_op==0)
return fm;
match = 0;
fm = (struct d30v_format *)&d30v_format_table[++k];
}
/* printf("trying another format: i=%d\n",i); */
}
return NULL;
}
/* if while processing a fixup, a reloc really needs to be created */
/* then it is done here */
arelent *
tc_gen_reloc (seg, fixp)
asection *seg;
fixS *fixp;
{
arelent *reloc;
reloc = (arelent *) bfd_alloc_by_size_t (stdoutput, sizeof (arelent));
reloc->sym_ptr_ptr = &fixp->fx_addsy->bsym;
reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
reloc->howto = bfd_reloc_type_lookup (stdoutput, fixp->fx_r_type);
if (reloc->howto == (reloc_howto_type *) NULL)
{
as_bad_where (fixp->fx_file, fixp->fx_line,
"reloc %d not supported by object file format", (int)fixp->fx_r_type);
return NULL;
}
reloc->addend = fixp->fx_addnumber;
return reloc;
}
int
md_estimate_size_before_relax (fragp, seg)
fragS *fragp;
asection *seg;
{
abort ();
return 0;
}
long
md_pcrel_from_section (fixp, sec)
fixS *fixp;
segT sec;
{
if (fixp->fx_addsy != (symbolS *)NULL && !S_IS_DEFINED (fixp->fx_addsy))
return 0;
return fixp->fx_frag->fr_address + fixp->fx_where;
}
int
md_apply_fix3 (fixp, valuep, seg)
fixS *fixp;
valueT *valuep;
segT seg;
{
char *where;
unsigned long insn, insn2;
long value;
int op_type;
int left=0;
if (fixp->fx_addsy == (symbolS *) NULL)
{
value = *valuep;
fixp->fx_done = 1;
}
else if (!S_IS_DEFINED(fixp->fx_addsy))
return 0;
else if (fixp->fx_pcrel)
{
value = *valuep;
}
else
{
value = fixp->fx_offset;
if (fixp->fx_subsy != (symbolS *) NULL)
{
if (S_GET_SEGMENT (fixp->fx_subsy) == absolute_section)
value -= S_GET_VALUE (fixp->fx_subsy);
else
{
/* We don't actually support subtracting a symbol. */
as_bad_where (fixp->fx_file, fixp->fx_line,
"expression too complex");
}
}
}
/* Fetch the instruction, insert the fully resolved operand
value, and stuff the instruction back again. */
where = fixp->fx_frag->fr_literal + fixp->fx_where;
insn = bfd_getb32 ((unsigned char *) where);
switch (fixp->fx_r_type)
{
case BFD_RELOC_D30V_6:
insn |= value & 0x3F;
bfd_putb32 ((bfd_vma) insn, (unsigned char *) where);
break;
case BFD_RELOC_D30V_15:
insn |= (value >> 3) & 0xFFF;
bfd_putb32 ((bfd_vma) insn, (unsigned char *) where);
break;
case BFD_RELOC_D30V_15_PCREL:
if ((long)fixp->fx_where & 0x7)
value += 4;
insn |= (value >> 3) & 0xFFF;
bfd_putb32 ((bfd_vma) insn, (unsigned char *) where);
break;
case BFD_RELOC_D30V_21:
insn |= (value >> 3) & 0x3FFFF;
bfd_putb32 ((bfd_vma) insn, (unsigned char *) where);
break;
case BFD_RELOC_D30V_21_PCREL:
if ((long)fixp->fx_where & 0x7)
value += 4;
insn |= (value >> 3) & 0x3FFFF;
bfd_putb32 ((bfd_vma) insn, (unsigned char *) where);
break;
case BFD_RELOC_D30V_32:
insn2 = bfd_getb32 ((unsigned char *) where + 4);
insn |= (value >> 26) & 0x3F; /* top 6 bits */
insn2 |= ((value & 0x03FC0000) << 2); /* next 8 bits */
insn2 |= value & 0x0003FFFF; /* bottom 18 bits */
bfd_putb32 ((bfd_vma) insn, (unsigned char *) where);
bfd_putb32 ((bfd_vma) insn2, (unsigned char *) where + 4);
break;
case BFD_RELOC_D30V_32_PCREL:
if ((long)fixp->fx_where & 0x7)
value += 4;
insn2 = bfd_getb32 ((unsigned char *) where + 4);
insn |= (value >> 26) & 0x3F; /* top 6 bits */
insn2 |= ((value & 0x03FC0000) << 2); /* next 8 bits */
insn2 |= value & 0x0003FFFF; /* bottom 18 bits */
bfd_putb32 ((bfd_vma) insn, (unsigned char *) where);
bfd_putb32 ((bfd_vma) insn2, (unsigned char *) where + 4);
break;
case BFD_RELOC_32:
bfd_putb32 ((bfd_vma) value, (unsigned char *) where);
break;
default:
as_fatal ("line %d: unknown relocation type: 0x%x",fixp->fx_line,fixp->fx_r_type);
}
fixp->fx_done = 1;
return 0;
}
/* d30v_cleanup() is called after the assembler has finished parsing the input
file or after a label is defined. Because the D30V assembler sometimes saves short
instructions to see if it can package them with the next instruction, there may
be a short instruction that still needs written. */
int
d30v_cleanup ()
{
segT seg;
subsegT subseg;
if (prev_insn != -1)
{
seg = now_seg;
subseg = now_subseg;
subseg_set (prev_seg, prev_subseg);
write_1_short (&prev_opcode, (long)prev_insn, fixups->next);
subseg_set (seg, subseg);
prev_insn = -1;
}
return 1;
}
static void
d30v_number_to_chars (buf, value, n)
char *buf; /* Return 'nbytes' of chars here. */
long long value; /* The value of the bits. */
int n; /* Number of bytes in the output. */
{
while (n--)
{
buf[n] = value & 0xff;
value >>= 8;
}
}