infrun: step through indirect branch thunks
With version 7.3 GCC supports new options
-mindirect-branch=<choice>
-mfunction-return=<choice>
The choices are:
keep behaves as before
thunk jumps through a thunk
thunk-external jumps through an external thunk
thunk-inline jumps through an inlined thunk
For thunk and thunk-external, GDB would, on a call to the thunk, step into
the thunk and then resume to its caller assuming that this is an
undebuggable function. On a return thunk, GDB would stop inside the
thunk.
Make GDB step through such thunks instead.
Before:
Temporary breakpoint 1, main ()
at gdb.base/step-indirect-call-thunk.c:37
37 x = apply (inc, 41);
(gdb) s
apply (op=0x80483e6 <inc>, x=41)
at gdb.base/step-indirect-call-thunk.c:29
29 return op (x);
(gdb)
30 }
After:
Temporary breakpoint 1, main ()
at gdb.base/step-indirect-call-thunk.c:37
37 x = apply (inc, 41);
(gdb) s
apply (op=0x80483e6 <inc>, x=41)
at gdb.base/step-indirect-call-thunk.c:29
29 return op (x);
(gdb)
inc (x=41) at gdb.base/step-indirect-call-thunk.c:23
23 return x + 1;
This is independent of the step-mode. In order to step into the thunk,
you would need to use stepi.
When stepping over an indirect call thunk, GDB would first step through
the thunk, then recognize that it stepped into a sub-routine and resume to
the caller (of the thunk). Not sure whether this is worth optimizing.
Thunk detection is implemented via gdbarch. I implemented the methods for
IA. Other architectures may run into unexpected fails.
The tests assume a fixed number of instruction steps to reach a thunk.
This depends on the compiler as well as the architecture. They may need
adjustments when we add support for more architectures. Or we can simply
drop those tests that cover being able to step into thunks using
instruction stepping.
When using an older GCC, the tests will fail to build and will be reported
as untested:
Running .../gdb.base/step-indirect-call-thunk.exp ...
gdb compile failed, \
gcc: error: unrecognized command line option '-mindirect-branch=thunk'
gcc: error: unrecognized command line option '-mfunction-return=thunk'
=== gdb Summary ===
# of untested testcases 1
gdb/
* infrun.c (process_event_stop_test): Call
gdbarch_in_indirect_branch_thunk.
* gdbarch.sh (in_indirect_branch_thunk): New.
* gdbarch.c: Regenerated.
* gdbarch.h: Regenerated.
* x86-tdep.h: New.
* x86-tdep.c: New.
* Makefile.in (ALL_TARGET_OBS): Add x86-tdep.o.
(HFILES_NO_SRCDIR): Add x86-tdep.h.
(ALLDEPFILES): Add x86-tdep.c.
* arch-utils.h (default_in_indirect_branch_thunk): New.
* arch-utils.c (default_in_indirect_branch_thunk): New.
* i386-tdep: Include x86-tdep.h.
(i386_in_indirect_branch_thunk): New.
(i386_elf_init_abi): Set in_indirect_branch_thunk gdbarch
function.
* amd64-tdep: Include x86-tdep.h.
(amd64_in_indirect_branch_thunk): New.
(amd64_init_abi): Set in_indirect_branch_thunk gdbarch function.
testsuite/
* gdb.base/step-indirect-call-thunk.exp: New.
* gdb.base/step-indirect-call-thunk.c: New.
* gdb.reverse/step-indirect-call-thunk.exp: New.
* gdb.reverse/step-indirect-call-thunk.c: New.
2018-02-14 21:30:57 +08:00
|
|
|
/* Target-dependent code for X86-based targets.
|
|
|
|
|
2020-01-01 14:20:01 +08:00
|
|
|
Copyright (C) 2018-2020 Free Software Foundation, Inc.
|
infrun: step through indirect branch thunks
With version 7.3 GCC supports new options
-mindirect-branch=<choice>
-mfunction-return=<choice>
The choices are:
keep behaves as before
thunk jumps through a thunk
thunk-external jumps through an external thunk
thunk-inline jumps through an inlined thunk
For thunk and thunk-external, GDB would, on a call to the thunk, step into
the thunk and then resume to its caller assuming that this is an
undebuggable function. On a return thunk, GDB would stop inside the
thunk.
Make GDB step through such thunks instead.
Before:
Temporary breakpoint 1, main ()
at gdb.base/step-indirect-call-thunk.c:37
37 x = apply (inc, 41);
(gdb) s
apply (op=0x80483e6 <inc>, x=41)
at gdb.base/step-indirect-call-thunk.c:29
29 return op (x);
(gdb)
30 }
After:
Temporary breakpoint 1, main ()
at gdb.base/step-indirect-call-thunk.c:37
37 x = apply (inc, 41);
(gdb) s
apply (op=0x80483e6 <inc>, x=41)
at gdb.base/step-indirect-call-thunk.c:29
29 return op (x);
(gdb)
inc (x=41) at gdb.base/step-indirect-call-thunk.c:23
23 return x + 1;
This is independent of the step-mode. In order to step into the thunk,
you would need to use stepi.
When stepping over an indirect call thunk, GDB would first step through
the thunk, then recognize that it stepped into a sub-routine and resume to
the caller (of the thunk). Not sure whether this is worth optimizing.
Thunk detection is implemented via gdbarch. I implemented the methods for
IA. Other architectures may run into unexpected fails.
The tests assume a fixed number of instruction steps to reach a thunk.
This depends on the compiler as well as the architecture. They may need
adjustments when we add support for more architectures. Or we can simply
drop those tests that cover being able to step into thunks using
instruction stepping.
When using an older GCC, the tests will fail to build and will be reported
as untested:
Running .../gdb.base/step-indirect-call-thunk.exp ...
gdb compile failed, \
gcc: error: unrecognized command line option '-mindirect-branch=thunk'
gcc: error: unrecognized command line option '-mfunction-return=thunk'
=== gdb Summary ===
# of untested testcases 1
gdb/
* infrun.c (process_event_stop_test): Call
gdbarch_in_indirect_branch_thunk.
* gdbarch.sh (in_indirect_branch_thunk): New.
* gdbarch.c: Regenerated.
* gdbarch.h: Regenerated.
* x86-tdep.h: New.
* x86-tdep.c: New.
* Makefile.in (ALL_TARGET_OBS): Add x86-tdep.o.
(HFILES_NO_SRCDIR): Add x86-tdep.h.
(ALLDEPFILES): Add x86-tdep.c.
* arch-utils.h (default_in_indirect_branch_thunk): New.
* arch-utils.c (default_in_indirect_branch_thunk): New.
* i386-tdep: Include x86-tdep.h.
(i386_in_indirect_branch_thunk): New.
(i386_elf_init_abi): Set in_indirect_branch_thunk gdbarch
function.
* amd64-tdep: Include x86-tdep.h.
(amd64_in_indirect_branch_thunk): New.
(amd64_init_abi): Set in_indirect_branch_thunk gdbarch function.
testsuite/
* gdb.base/step-indirect-call-thunk.exp: New.
* gdb.base/step-indirect-call-thunk.c: New.
* gdb.reverse/step-indirect-call-thunk.exp: New.
* gdb.reverse/step-indirect-call-thunk.c: New.
2018-02-14 21:30:57 +08:00
|
|
|
|
|
|
|
This file is part of GDB.
|
|
|
|
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
|
|
it under the terms of the GNU General Public License as published by
|
|
|
|
the Free Software Foundation; either version 3 of the License, or
|
|
|
|
(at your option) any later version.
|
|
|
|
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
GNU General Public License for more details.
|
|
|
|
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
|
|
|
|
|
|
|
#ifndef X86_TDEP_H
|
|
|
|
#define X86_TDEP_H
|
|
|
|
|
|
|
|
/* Checks whether PC lies in an indirect branch thunk using registers
|
|
|
|
REGISTER_NAMES[LO] (inclusive) to REGISTER_NAMES[HI] (exclusive). */
|
|
|
|
|
|
|
|
extern bool x86_in_indirect_branch_thunk (CORE_ADDR pc,
|
Apply 'const' in more places
Many global arrays in gdb could be marked "const" but are not. This
patch changes some of them. (There may be other arrays that could
benefit from this treatment. I only examined arrays of strings.)
This lets the linker move some symbols to the readonly data section.
For example, previously:
0000000000000000 d _ZL18can_use_agent_enum
is now:
0000000000000030 r _ZL18can_use_agent_enum
2020-09-14 Tom Tromey <tromey@adacore.com>
* x86-tdep.h (x86_in_indirect_branch_thunk): Update.
* x86-tdep.c (x86_is_thunk_register_name)
(x86_in_indirect_branch_thunk): Update.
* sparc64-tdep.c (sparc64_fpu_register_names)
(sparc64_cp0_register_names, sparc64_register_names)
(sparc64_pseudo_register_names): Now const.
* sparc-tdep.h (struct gdbarch_tdep) <fpu_register_names,
cp0_registers_num>: Now const.
* sparc-tdep.c (sparc_core_register_names)
(sparc32_fpu_register_names, sparc32_cp0_register_names)
(sparc32_pseudo_register_names): Now const.
(validate_tdesc_registers): Update.
* rust-lang.c (rust_extensions): Now const.
* p-lang.c (p_extensions): Now const.
* objc-lang.c (objc_extensions): Now const.
* nto-tdep.c (nto_thread_state_str): Now const.
* moxie-tdep.c (moxie_register_names): Now const.
* mips-tdep.h (struct gdbarch_tdep) <mips_processor_reg_names>:
Now const.
* mips-tdep.c (mips_generic_reg_names, mips_tx39_reg_names)
(mips_linux_reg_names): Now const.
(mips_gdbarch_init): Update.
* microblaze-tdep.c (microblaze_register_names): Now const.
* m68k-tdep.c (m68k_register_names): Now const.
* m32r-tdep.c (m32r_register_names): Now const.
* ia64-tdep.c (ia64_register_names): Now const.
* i386-tdep.h (struct gdbarch_tdep) <register_names,
ymmh_register_names, ymm16h_regnum, mpx_register_names,
k_register_names, zmmh_register_names, xmm_avx512_register_names,
ymm_avx512_register_names, pkeys_register_names>: Now const.
* i386-tdep.c (i386_register_names, i386_zmm_names)
(i386_zmmh_names, i386_k_names, i386_ymm_names, i386_ymmh_names)
(i386_mpx_names, i386_pkeys_names, i386_bnd_names)
(i386_mmx_names, i386_byte_names, i386_word_names): Now const.
* f-lang.c (f_extensions): Now const.
* d-lang.c (d_extensions): Now const.
* csky-tdep.c (csky_register_names): Now const.
* charset.c (default_charset_names, charset_enum): Now const.
(_initialize_charset): Update.
* c-lang.c (c_extensions, cplus_extensions, asm_extensions): Now
const.
* bsd-uthread.c (bsd_uthread_solib_names): Now const.
(bsd_uthread_solib_loaded): Update.
(bsd_uthread_state): Now const.
* amd64-tdep.c (amd64_register_names, amd64_ymm_names)
(amd64_ymm_avx512_names, amd64_ymmh_names)
(amd64_ymmh_avx512_names, amd64_mpx_names, amd64_k_names)
(amd64_zmmh_names, amd64_zmm_names, amd64_xmm_avx512_names)
(amd64_pkeys_names, amd64_byte_names, amd64_word_names)
(amd64_dword_names): Now const.
* agent.c (can_use_agent_enum): Now const.
* ada-tasks.c (task_states, long_task_states): Now const.
* ada-lang.c (known_runtime_file_name_patterns)
(known_auxiliary_function_name_patterns, attribute_names)
(standard_exc, ada_extensions): Now const.
gdbserver/ChangeLog
2020-09-14 Tom Tromey <tromey@adacore.com>
* tracepoint.cc (eval_result_names): Now const.
* ax.cc (gdb_agent_op_names): Now const.
2020-09-15 02:09:59 +08:00
|
|
|
const char * const *register_names,
|
infrun: step through indirect branch thunks
With version 7.3 GCC supports new options
-mindirect-branch=<choice>
-mfunction-return=<choice>
The choices are:
keep behaves as before
thunk jumps through a thunk
thunk-external jumps through an external thunk
thunk-inline jumps through an inlined thunk
For thunk and thunk-external, GDB would, on a call to the thunk, step into
the thunk and then resume to its caller assuming that this is an
undebuggable function. On a return thunk, GDB would stop inside the
thunk.
Make GDB step through such thunks instead.
Before:
Temporary breakpoint 1, main ()
at gdb.base/step-indirect-call-thunk.c:37
37 x = apply (inc, 41);
(gdb) s
apply (op=0x80483e6 <inc>, x=41)
at gdb.base/step-indirect-call-thunk.c:29
29 return op (x);
(gdb)
30 }
After:
Temporary breakpoint 1, main ()
at gdb.base/step-indirect-call-thunk.c:37
37 x = apply (inc, 41);
(gdb) s
apply (op=0x80483e6 <inc>, x=41)
at gdb.base/step-indirect-call-thunk.c:29
29 return op (x);
(gdb)
inc (x=41) at gdb.base/step-indirect-call-thunk.c:23
23 return x + 1;
This is independent of the step-mode. In order to step into the thunk,
you would need to use stepi.
When stepping over an indirect call thunk, GDB would first step through
the thunk, then recognize that it stepped into a sub-routine and resume to
the caller (of the thunk). Not sure whether this is worth optimizing.
Thunk detection is implemented via gdbarch. I implemented the methods for
IA. Other architectures may run into unexpected fails.
The tests assume a fixed number of instruction steps to reach a thunk.
This depends on the compiler as well as the architecture. They may need
adjustments when we add support for more architectures. Or we can simply
drop those tests that cover being able to step into thunks using
instruction stepping.
When using an older GCC, the tests will fail to build and will be reported
as untested:
Running .../gdb.base/step-indirect-call-thunk.exp ...
gdb compile failed, \
gcc: error: unrecognized command line option '-mindirect-branch=thunk'
gcc: error: unrecognized command line option '-mfunction-return=thunk'
=== gdb Summary ===
# of untested testcases 1
gdb/
* infrun.c (process_event_stop_test): Call
gdbarch_in_indirect_branch_thunk.
* gdbarch.sh (in_indirect_branch_thunk): New.
* gdbarch.c: Regenerated.
* gdbarch.h: Regenerated.
* x86-tdep.h: New.
* x86-tdep.c: New.
* Makefile.in (ALL_TARGET_OBS): Add x86-tdep.o.
(HFILES_NO_SRCDIR): Add x86-tdep.h.
(ALLDEPFILES): Add x86-tdep.c.
* arch-utils.h (default_in_indirect_branch_thunk): New.
* arch-utils.c (default_in_indirect_branch_thunk): New.
* i386-tdep: Include x86-tdep.h.
(i386_in_indirect_branch_thunk): New.
(i386_elf_init_abi): Set in_indirect_branch_thunk gdbarch
function.
* amd64-tdep: Include x86-tdep.h.
(amd64_in_indirect_branch_thunk): New.
(amd64_init_abi): Set in_indirect_branch_thunk gdbarch function.
testsuite/
* gdb.base/step-indirect-call-thunk.exp: New.
* gdb.base/step-indirect-call-thunk.c: New.
* gdb.reverse/step-indirect-call-thunk.exp: New.
* gdb.reverse/step-indirect-call-thunk.c: New.
2018-02-14 21:30:57 +08:00
|
|
|
int lo, int hi);
|
|
|
|
|
|
|
|
#endif /* x86-tdep.h */
|