mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2024-11-27 03:51:15 +08:00
422 lines
15 KiB
C
422 lines
15 KiB
C
|
/* Parameters for execution on a Sun, for GDB, the GNU debugger.
|
|||
|
Copyright (C) 1986, 1987 Free Software Foundation, Inc.
|
|||
|
|
|||
|
GDB is distributed in the hope that it will be useful, but WITHOUT ANY
|
|||
|
WARRANTY. No author or distributor accepts responsibility to anyone
|
|||
|
for the consequences of using it or for whether it serves any
|
|||
|
particular purpose or works at all, unless he says so in writing.
|
|||
|
Refer to the GDB General Public License for full details.
|
|||
|
|
|||
|
Everyone is granted permission to copy, modify and redistribute GDB,
|
|||
|
but only under the conditions described in the GDB General Public
|
|||
|
License. A copy of this license is supposed to have been given to you
|
|||
|
along with GDB so you can know your rights and responsibilities. It
|
|||
|
should be in a file named COPYING. Among other things, the copyright
|
|||
|
notice and this notice must be preserved on all copies.
|
|||
|
|
|||
|
In other words, go ahead and share GDB, but don't try to stop
|
|||
|
anyone else from sharing it farther. Help stamp out software hoarding!
|
|||
|
*/
|
|||
|
|
|||
|
#ifndef sun2
|
|||
|
#define sun2
|
|||
|
#endif
|
|||
|
|
|||
|
/* Define this if the C compiler puts an underscore at the front
|
|||
|
of external names before giving them to the linker. */
|
|||
|
|
|||
|
#define NAMES_HAVE_UNDERSCORE
|
|||
|
|
|||
|
/* Debugger information will be in DBX format. */
|
|||
|
|
|||
|
#define READ_DBX_FORMAT
|
|||
|
|
|||
|
/* Offset from address of function to start of its code.
|
|||
|
Zero on most machines. */
|
|||
|
|
|||
|
#define FUNCTION_START_OFFSET 0
|
|||
|
|
|||
|
/* Advance PC across any function entry prologue instructions
|
|||
|
to reach some "real" code. */
|
|||
|
|
|||
|
#define SKIP_PROLOGUE(pc) \
|
|||
|
{ register int op = read_memory_integer (pc, 2); \
|
|||
|
if (op == 0047126) \
|
|||
|
pc += 4; /* Skip link #word */ \
|
|||
|
else if (op == 0044016) \
|
|||
|
pc += 6; /* Skip link #long */ \
|
|||
|
}
|
|||
|
|
|||
|
/* Immediately after a function call, return the saved pc.
|
|||
|
Can't go through the frames for this because on some machines
|
|||
|
the new frame is not set up until the new function executes
|
|||
|
some instructions. */
|
|||
|
|
|||
|
#define SAVED_PC_AFTER_CALL(frame) \
|
|||
|
read_memory_integer (read_register (SP_REGNUM), 4)
|
|||
|
|
|||
|
/* This is the amount to subtract from u.u_ar0
|
|||
|
to get the offset in the core file of the register values. */
|
|||
|
|
|||
|
#define KERNEL_U_ADDR 0x2800
|
|||
|
|
|||
|
/* Address of end of stack space. */
|
|||
|
|
|||
|
#define STACK_END_ADDR 0x1000000
|
|||
|
|
|||
|
/* Stack grows downward. */
|
|||
|
|
|||
|
#define INNER_THAN <
|
|||
|
|
|||
|
/* Sequence of bytes for breakpoint instruction. */
|
|||
|
|
|||
|
#define BREAKPOINT {0x4e, 0x4f}
|
|||
|
|
|||
|
/* Amount PC must be decremented by after a breakpoint.
|
|||
|
This is often the number of bytes in BREAKPOINT
|
|||
|
but not always. */
|
|||
|
|
|||
|
#define DECR_PC_AFTER_BREAK 2
|
|||
|
|
|||
|
/* Nonzero if instruction at PC is a return instruction. */
|
|||
|
|
|||
|
#define ABOUT_TO_RETURN(pc) (read_memory_integer (pc, 2) == 0x4e76)
|
|||
|
|
|||
|
/* Return 1 if P points to an invalid floating point value. */
|
|||
|
|
|||
|
#define INVALID_FLOAT(p, len) 0 /* Just a first guess; not checked */
|
|||
|
|
|||
|
/* Say how long registers are. */
|
|||
|
|
|||
|
#define REGISTER_TYPE long
|
|||
|
|
|||
|
/* Number of machine registers */
|
|||
|
|
|||
|
#define NUM_REGS 18
|
|||
|
|
|||
|
/* Number that are really general registers */
|
|||
|
|
|||
|
#define NUM_GENERAL_REGS 16
|
|||
|
|
|||
|
/* Initializer for an array of names of registers.
|
|||
|
There should be NUM_REGS strings in this initializer. */
|
|||
|
|
|||
|
#define REGISTER_NAMES {"d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7", "a0", "a1", "a2", "a3", "a4", "a5", "fp", "sp", "ps", "pc"}
|
|||
|
|
|||
|
/* Register numbers of various important registers.
|
|||
|
Note that some of these values are "real" register numbers,
|
|||
|
and correspond to the general registers of the machine,
|
|||
|
and some are "phony" register numbers which are too large
|
|||
|
to be actual register numbers as far as the user is concerned
|
|||
|
but do serve to get the desired values when passed to read_register. */
|
|||
|
|
|||
|
#define FP_REGNUM 14 /* Contains address of executing stack frame */
|
|||
|
#define SP_REGNUM 15 /* Contains address of top of stack */
|
|||
|
#define PS_REGNUM 16 /* Contains processor status */
|
|||
|
#define PC_REGNUM 17 /* Contains program counter */
|
|||
|
|
|||
|
/* Total amount of space needed to store our copies of the machine's
|
|||
|
register state, the array `registers'. */
|
|||
|
#define REGISTER_BYTES (16*4+8)
|
|||
|
|
|||
|
/* Index within `registers' of the first byte of the space for
|
|||
|
register N. */
|
|||
|
|
|||
|
#define REGISTER_BYTE(N) ((N) * 4)
|
|||
|
|
|||
|
/* Number of bytes of storage in the actual machine representation
|
|||
|
for register N. On the 68000, all regs are 4 bytes. */
|
|||
|
|
|||
|
#define REGISTER_RAW_SIZE(N) 4
|
|||
|
|
|||
|
/* Number of bytes of storage in the program's representation
|
|||
|
for register N. On the 68000, all regs are 4 bytes. */
|
|||
|
|
|||
|
#define REGISTER_VIRTUAL_SIZE(N) 4
|
|||
|
|
|||
|
/* Largest value REGISTER_RAW_SIZE can have. */
|
|||
|
|
|||
|
#define MAX_REGISTER_RAW_SIZE 4
|
|||
|
|
|||
|
/* Largest value REGISTER_VIRTUAL_SIZE can have. */
|
|||
|
|
|||
|
#define MAX_REGISTER_VIRTUAL_SIZE 4
|
|||
|
|
|||
|
/* Nonzero if register N requires conversion
|
|||
|
from raw format to virtual format. */
|
|||
|
|
|||
|
#define REGISTER_CONVERTIBLE(N) 0
|
|||
|
|
|||
|
/* Convert data from raw format for register REGNUM
|
|||
|
to virtual format for register REGNUM. */
|
|||
|
|
|||
|
#define REGISTER_CONVERT_TO_VIRTUAL(REGNUM,FROM,TO) bcopy ((FROM), (TO), 4);
|
|||
|
|
|||
|
/* Convert data from virtual format for register REGNUM
|
|||
|
to raw format for register REGNUM. */
|
|||
|
|
|||
|
#define REGISTER_CONVERT_TO_RAW(REGNUM,FROM,TO) bcopy ((FROM), (TO), 4);
|
|||
|
|
|||
|
/* Return the GDB type object for the "standard" data type
|
|||
|
of data in register N. */
|
|||
|
|
|||
|
#define REGISTER_VIRTUAL_TYPE(N) builtin_type_int
|
|||
|
|
|||
|
/* Extract from an array REGBUF containing the (raw) register state
|
|||
|
a function return value of type TYPE, and copy that, in virtual format,
|
|||
|
into VALBUF. */
|
|||
|
|
|||
|
#define EXTRACT_RETURN_VALUE(TYPE,REGBUF,VALBUF) \
|
|||
|
bcopy (REGBUF, VALBUF, TYPE_LENGTH (TYPE))
|
|||
|
|
|||
|
/* Write into appropriate registers a function return value
|
|||
|
of type TYPE, given in virtual format. */
|
|||
|
|
|||
|
#define STORE_RETURN_VALUE(TYPE,VALBUF) \
|
|||
|
write_register_bytes (0, VALBUF, TYPE_LENGTH (TYPE))
|
|||
|
|
|||
|
/* Extract from an array REGBUF containing the (raw) register state
|
|||
|
the address in which a function should return its structure value,
|
|||
|
as a CORE_ADDR (or an expression that can be used as one). */
|
|||
|
|
|||
|
#define EXTRACT_STRUCT_VALUE_ADDRESS(REGBUF) (*(int *)(REGBUF))
|
|||
|
|
|||
|
/* This is a piece of magic that is given a register number REGNO
|
|||
|
and as BLOCKEND the address in the system of the end of the user structure
|
|||
|
and stores in ADDR the address in the kernel or core dump
|
|||
|
of that register. */
|
|||
|
|
|||
|
#define REGISTER_U_ADDR(addr, blockend, regno) \
|
|||
|
{ addr = blockend + regno * 4; }
|
|||
|
|
|||
|
/* Describe the pointer in each stack frame to the previous stack frame
|
|||
|
(its caller). */
|
|||
|
|
|||
|
/* FRAME_CHAIN takes a frame's nominal address
|
|||
|
and produces the frame's chain-pointer.
|
|||
|
|
|||
|
FRAME_CHAIN_COMBINE takes the chain pointer and the frame's nominal address
|
|||
|
and produces the nominal address of the caller frame.
|
|||
|
|
|||
|
However, if FRAME_CHAIN_VALID returns zero,
|
|||
|
it means the given frame is the outermost one and has no caller.
|
|||
|
In that case, FRAME_CHAIN_COMBINE is not used. */
|
|||
|
|
|||
|
/* In the case of the Sun, the frame's nominal address
|
|||
|
is the address of a 4-byte word containing the calling frame's address. */
|
|||
|
|
|||
|
#define FRAME_CHAIN(thisframe) (read_memory_integer (thisframe, 4))
|
|||
|
|
|||
|
#define FRAME_CHAIN_VALID(chain, thisframe) \
|
|||
|
(chain != 0 && (FRAME_SAVED_PC (thisframe) >= first_object_file_end))
|
|||
|
|
|||
|
#define FRAME_CHAIN_COMBINE(chain, thisframe) (chain)
|
|||
|
|
|||
|
/* Define other aspects of the stack frame. */
|
|||
|
|
|||
|
#define FRAME_SAVED_PC(frame) (read_memory_integer (frame + 4, 4))
|
|||
|
|
|||
|
#define FRAME_ARGS_ADDRESS(fi) (fi.frame)
|
|||
|
|
|||
|
#define FRAME_LOCALS_ADDRESS(fi) (fi.frame)
|
|||
|
|
|||
|
/* Set VAL to the number of args passed to frame described by FI.
|
|||
|
Can set VAL to -1, meaning no way to tell. */
|
|||
|
|
|||
|
/* We can't tell how many args there are
|
|||
|
now that the C compiler delays popping them. */
|
|||
|
#define FRAME_NUM_ARGS(val,fi) (val = -1)
|
|||
|
|
|||
|
#if 0
|
|||
|
#define FRAME_NUM_ARGS(val, fi) \
|
|||
|
{ register CORE_ADDR pc = FRAME_SAVED_PC (fi.frame); \
|
|||
|
register int insn = 0177777 & read_memory_integer (pc, 2); \
|
|||
|
val = 0; \
|
|||
|
if (insn == 0047757 || insn == 0157374) /* lea W(sp),sp or addaw #W,sp */ \
|
|||
|
val = read_memory_integer (pc + 2, 2); \
|
|||
|
else if ((insn & 0170777) == 0050217 /* addql #N, sp */ \
|
|||
|
|| (insn & 0170777) == 0050117) /* addqw */ \
|
|||
|
{ val = (insn >> 9) & 7; if (val == 0) val = 8; } \
|
|||
|
else if (insn == 0157774) /* addal #WW, sp */ \
|
|||
|
val = read_memory_integer (pc + 2, 4); \
|
|||
|
val >>= 2; }
|
|||
|
#endif
|
|||
|
|
|||
|
/* Return number of bytes at start of arglist that are not really args. */
|
|||
|
|
|||
|
#define FRAME_ARGS_SKIP 8
|
|||
|
|
|||
|
/* Put here the code to store, into a struct frame_saved_regs,
|
|||
|
the addresses of the saved registers of frame described by FRAME_INFO.
|
|||
|
This includes special registers such as pc and fp saved in special
|
|||
|
ways in the stack frame. sp is even more special:
|
|||
|
the address we return for it IS the sp for the next frame. */
|
|||
|
|
|||
|
#define FRAME_FIND_SAVED_REGS(frame_info, frame_saved_regs) \
|
|||
|
{ register int regnum; \
|
|||
|
register int regmask; \
|
|||
|
register CORE_ADDR next_addr; \
|
|||
|
register CORE_ADDR pc; \
|
|||
|
bzero (&frame_saved_regs, sizeof frame_saved_regs); \
|
|||
|
if ((frame_info).pc >= (frame_info).frame - CALL_DUMMY_LENGTH - FP_REGNUM*4 - 4 \
|
|||
|
&& (frame_info).pc <= (frame_info).frame) \
|
|||
|
{ next_addr = (frame_info).frame; \
|
|||
|
pc = (frame_info).frame - CALL_DUMMY_LENGTH - FP_REGNUM * 4 - 4; }\
|
|||
|
else \
|
|||
|
{ pc = get_pc_function_start ((frame_info).pc); \
|
|||
|
/* Verify we have a link a6 instruction next; \
|
|||
|
if not we lose. If we win, find the address above the saved \
|
|||
|
regs using the amount of storage from the link instruction. */\
|
|||
|
if (044016 == read_memory_integer (pc, 2)) \
|
|||
|
next_addr = (frame_info).frame + read_memory_integer (pc += 2, 4), pc+=4; \
|
|||
|
else if (047126 == read_memory_integer (pc, 2)) \
|
|||
|
next_addr = (frame_info).frame + read_memory_integer (pc += 2, 2), pc+=2; \
|
|||
|
else goto lose; \
|
|||
|
/* If have an addal #-n, sp next, adjust next_addr. */ \
|
|||
|
if ((0177777 & read_memory_integer (pc, 2)) == 0157774) \
|
|||
|
next_addr += read_memory_integer (pc += 2, 4), pc += 4; \
|
|||
|
} \
|
|||
|
/* next should be a moveml to (sp) or -(sp) or a movl r,-(sp) */ \
|
|||
|
regmask = read_memory_integer (pc + 2, 2); \
|
|||
|
if (0044327 == read_memory_integer (pc, 2)) \
|
|||
|
{ pc += 4; /* Regmask's low bit is for register 0, the first written */ \
|
|||
|
for (regnum = 0; regnum < 16; regnum++, regmask >>= 1) \
|
|||
|
if (regmask & 1) \
|
|||
|
(frame_saved_regs).regs[regnum] = (next_addr += 4) - 4; } \
|
|||
|
else if (0044347 == read_memory_integer (pc, 2)) \
|
|||
|
{ pc += 4; /* Regmask's low bit is for register 15, the first pushed */ \
|
|||
|
for (regnum = 15; regnum >= 0; regnum--, regmask >>= 1) \
|
|||
|
if (regmask & 1) \
|
|||
|
(frame_saved_regs).regs[regnum] = (next_addr -= 4); } \
|
|||
|
else if (0x2f00 == 0xfff0 & read_memory_integer (pc, 2)) \
|
|||
|
{ regnum = 0xf & read_memory_integer (pc, 2); pc += 2; \
|
|||
|
(frame_saved_regs).regs[regnum] = (next_addr -= 4); } \
|
|||
|
/* clrw -(sp); movw ccr,-(sp) may follow. */ \
|
|||
|
if (0x426742e7 == read_memory_integer (pc, 4)) \
|
|||
|
(frame_saved_regs).regs[PS_REGNUM] = (next_addr -= 4); \
|
|||
|
lose: ; \
|
|||
|
(frame_saved_regs).regs[SP_REGNUM] = (frame_info).frame + 8; \
|
|||
|
(frame_saved_regs).regs[FP_REGNUM] = (frame_info).frame; \
|
|||
|
(frame_saved_regs).regs[PC_REGNUM] = (frame_info).frame + 4; \
|
|||
|
}
|
|||
|
|
|||
|
/* Things needed for making the inferior call functions. */
|
|||
|
|
|||
|
/* Push an empty stack frame, to record the current PC, etc. */
|
|||
|
|
|||
|
#define PUSH_DUMMY_FRAME \
|
|||
|
{ register CORE_ADDR sp = read_register (SP_REGNUM);\
|
|||
|
register int regnum; \
|
|||
|
sp = push_word (sp, read_register (PC_REGNUM)); \
|
|||
|
sp = push_word (sp, read_register (FP_REGNUM)); \
|
|||
|
write_register (FP_REGNUM, sp); \
|
|||
|
for (regnum = FP_REGNUM - 1; regnum >= 0; regnum--) \
|
|||
|
sp = push_word (sp, read_register (regnum)); \
|
|||
|
sp = push_word (sp, read_register (PS_REGNUM)); \
|
|||
|
write_register (SP_REGNUM, sp); }
|
|||
|
|
|||
|
/* Discard from the stack the innermost frame, restoring all registers. */
|
|||
|
|
|||
|
#define POP_FRAME \
|
|||
|
{ register CORE_ADDR fp = read_register (FP_REGNUM); \
|
|||
|
register int regnum; \
|
|||
|
struct frame_saved_regs fsr; \
|
|||
|
struct frame_info fi; \
|
|||
|
fi = get_frame_info (fp); \
|
|||
|
get_frame_saved_regs (&fi, &fsr); \
|
|||
|
for (regnum = FP_REGNUM - 1; regnum >= 0; regnum--) \
|
|||
|
if (fsr.regs[regnum]) \
|
|||
|
write_register (regnum, read_memory_integer (fsr.regs[regnum], 4)); \
|
|||
|
if (fsr.regs[PS_REGNUM]) \
|
|||
|
write_register (PS_REGNUM, read_memory_integer (fsr.regs[PS_REGNUM], 4)); \
|
|||
|
write_register (FP_REGNUM, read_memory_integer (fp, 4)); \
|
|||
|
write_register (PC_REGNUM, read_memory_integer (fp + 4, 4)); \
|
|||
|
write_register (SP_REGNUM, fp + 8); \
|
|||
|
}
|
|||
|
|
|||
|
/* This sequence of words is the instructions
|
|||
|
moveml 0xfffc,-(sp)
|
|||
|
clrw -(sp)
|
|||
|
movew ccr,-(sp)
|
|||
|
/..* The arguments are pushed at this point by GDB;
|
|||
|
no code is needed in the dummy for this.
|
|||
|
The CALL_DUMMY_START_OFFSET gives the position of
|
|||
|
the following jsr instruction. *../
|
|||
|
jsr @#32323232
|
|||
|
addl #69696969,sp
|
|||
|
bpt
|
|||
|
nop
|
|||
|
Note this is 24 bytes.
|
|||
|
We actually start executing at the jsr, since the pushing of the
|
|||
|
registers is done by PUSH_DUMMY_FRAME. If this were real code,
|
|||
|
the arguments for the function called by the jsr would be pushed
|
|||
|
between the moveml and the jsr, and we could allow it to execute through.
|
|||
|
But the arguments have to be pushed by GDB after the PUSH_DUMMY_FRAME is done,
|
|||
|
and we cannot allow the moveml to push the registers again lest they be
|
|||
|
taken for the arguments. */
|
|||
|
|
|||
|
#define CALL_DUMMY {0x48e7fffc, 0x426742e7, 0x4eb93232, 0x3232dffc, 0x69696969, 0x4e4f4e71}
|
|||
|
|
|||
|
#define CALL_DUMMY_LENGTH 24
|
|||
|
|
|||
|
#define CALL_DUMMY_START_OFFSET 8
|
|||
|
|
|||
|
/* Insert the specified number of args and function address
|
|||
|
into a call sequence of the above form stored at DUMMYNAME. */
|
|||
|
|
|||
|
#define FIX_CALL_DUMMY(dummyname, fun, nargs) \
|
|||
|
{ *(int *)((char *) dummyname + 16) = nargs * 4; \
|
|||
|
*(int *)((char *) dummyname + 10) = fun; }
|
|||
|
|
|||
|
/* Interface definitions for kernel debugger KDB. */
|
|||
|
|
|||
|
/* Map machine fault codes into signal numbers.
|
|||
|
First subtract 0, divide by 4, then index in a table.
|
|||
|
Faults for which the entry in this table is 0
|
|||
|
are not handled by KDB; the program's own trap handler
|
|||
|
gets to handle then. */
|
|||
|
|
|||
|
#define FAULT_CODE_ORIGIN 0
|
|||
|
#define FAULT_CODE_UNITS 4
|
|||
|
#define FAULT_TABLE \
|
|||
|
{ 0, 0, 0, 0, SIGTRAP, 0, 0, 0, \
|
|||
|
0, SIGTRAP, 0, 0, 0, 0, 0, SIGKILL, \
|
|||
|
0, 0, 0, 0, 0, 0, 0, 0, \
|
|||
|
SIGILL }
|
|||
|
|
|||
|
/* Start running with a stack stretching from BEG to END.
|
|||
|
BEG and END should be symbols meaningful to the assembler.
|
|||
|
This is used only for kdb. */
|
|||
|
|
|||
|
#define INIT_STACK(beg, end) \
|
|||
|
{ asm (".globl end"); \
|
|||
|
asm ("movel $ end, sp"); \
|
|||
|
asm ("clrl fp"); }
|
|||
|
|
|||
|
/* Push the frame pointer register on the stack. */
|
|||
|
#define PUSH_FRAME_PTR \
|
|||
|
asm ("movel fp, -(sp)");
|
|||
|
|
|||
|
/* Copy the top-of-stack to the frame pointer register. */
|
|||
|
#define POP_FRAME_PTR \
|
|||
|
asm ("movl (sp), fp");
|
|||
|
|
|||
|
/* After KDB is entered by a fault, push all registers
|
|||
|
that GDB thinks about (all NUM_REGS of them),
|
|||
|
so that they appear in order of ascending GDB register number.
|
|||
|
The fault code will be on the stack beyond the last register. */
|
|||
|
|
|||
|
#define PUSH_REGISTERS \
|
|||
|
{ asm ("clrw -(sp)"); \
|
|||
|
asm ("pea 10(sp)"); \
|
|||
|
asm ("movem $ 0xfffe,-(sp)"); }
|
|||
|
|
|||
|
/* Assuming the registers (including processor status) have been
|
|||
|
pushed on the stack in order of ascending GDB register number,
|
|||
|
restore them and return to the address in the saved PC register. */
|
|||
|
|
|||
|
#define POP_REGISTERS \
|
|||
|
{ asm ("subil $8,28(sp)"); \
|
|||
|
asm ("movem (sp),$ 0xffff"); \
|
|||
|
asm ("rte"); }
|