2000-09-04 02:41:28 +08:00
|
|
|
|
/* Multi-threaded debugging support for Linux (LWP layer).
|
|
|
|
|
Copyright 2000 Free Software Foundation, Inc.
|
|
|
|
|
|
|
|
|
|
This file is part of GDB.
|
|
|
|
|
|
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
|
|
|
it under the terms of the GNU General Public License as published by
|
|
|
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
|
|
|
(at your option) any later version.
|
|
|
|
|
|
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
|
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
|
GNU General Public License for more details.
|
|
|
|
|
|
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
|
|
|
along with this program; if not, write to the Free Software
|
|
|
|
|
Foundation, Inc., 59 Temple Place - Suite 330,
|
|
|
|
|
Boston, MA 02111-1307, USA. */
|
|
|
|
|
|
|
|
|
|
#include "defs.h"
|
|
|
|
|
|
|
|
|
|
#include "gdb_assert.h"
|
|
|
|
|
#include <errno.h>
|
|
|
|
|
#include <signal.h>
|
|
|
|
|
#include <sys/ptrace.h>
|
|
|
|
|
#include "gdb_wait.h"
|
|
|
|
|
|
|
|
|
|
#include "gdbthread.h"
|
|
|
|
|
#include "inferior.h"
|
|
|
|
|
#include "target.h"
|
|
|
|
|
|
|
|
|
|
#define DEBUG 1
|
|
|
|
|
|
|
|
|
|
#if DEBUG
|
|
|
|
|
extern const char *strsignal (int sig);
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
/* On Linux there are no real LWP's. The closest thing to LWP's are
|
|
|
|
|
processes sharing the same VM space. A multi-threaded process is
|
|
|
|
|
basically a group of such processes. However, such a grouping is
|
|
|
|
|
almost entirely a user-space issue; the kernel doesn't enforce such
|
|
|
|
|
a grouping at all (this might change in the future). In general,
|
|
|
|
|
we'll rely on the threads library (i.e. the LinuxThreads library)
|
|
|
|
|
to provide such a grouping.
|
|
|
|
|
|
|
|
|
|
It is perfectly well possible to write a multi-threaded application
|
|
|
|
|
without the assistance of a threads library, by using the clone
|
|
|
|
|
system call directly. This module should be able to give some
|
|
|
|
|
rudimentary support for debugging such applications if developers
|
|
|
|
|
specify the CLONE_PTRACE flag in the clone system call, and are
|
|
|
|
|
using Linux 2.4 or above.
|
|
|
|
|
|
|
|
|
|
Note that there are some peculiarities in Linux that affect this
|
|
|
|
|
code:
|
|
|
|
|
|
|
|
|
|
- In general one should specify the __WCLONE flag to waitpid in
|
2000-09-09 15:54:20 +08:00
|
|
|
|
order to make it report events for any of the cloned processes
|
|
|
|
|
(and leave it out for the initial process). However, if a cloned
|
|
|
|
|
process has exited the exit status is only reported if the
|
|
|
|
|
__WCLONE flag is absent. Linux 2.4 has a __WALL flag, but we
|
|
|
|
|
cannot use it since GDB must work on older systems too.
|
2000-09-04 02:41:28 +08:00
|
|
|
|
|
|
|
|
|
- When a traced, cloned process exits and is waited for by the
|
|
|
|
|
debugger, the kernel reassigns it to the origional parent and
|
|
|
|
|
keeps it around as a "zombie". Somehow, the LinuxThreads library
|
|
|
|
|
doesn't notice this, which leads to the "zombie problem": When
|
|
|
|
|
debugged a multi-threaded process that spawns a lot of threads
|
|
|
|
|
will run out of processes, even if the threads exit, because the
|
|
|
|
|
"zombies" stay around. */
|
|
|
|
|
|
|
|
|
|
/* Structure describing a LWP. */
|
|
|
|
|
struct lwp_info
|
|
|
|
|
{
|
|
|
|
|
/* The process id of the LWP. This is a combination of the LWP id
|
|
|
|
|
and overall process id. */
|
|
|
|
|
int pid;
|
|
|
|
|
|
|
|
|
|
/* Non-zero if we sent this LWP a SIGSTOP (but the LWP didn't report
|
|
|
|
|
it back yet). */
|
|
|
|
|
int signalled;
|
|
|
|
|
|
|
|
|
|
/* Non-zero if this LWP is stopped. */
|
|
|
|
|
int stopped;
|
|
|
|
|
|
|
|
|
|
/* If non-zero, a pending wait status. */
|
|
|
|
|
int status;
|
|
|
|
|
|
|
|
|
|
/* Non-zero if we were stepping this LWP. */
|
|
|
|
|
int step;
|
|
|
|
|
|
|
|
|
|
/* Next LWP in list. */
|
|
|
|
|
struct lwp_info *next;
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
/* List of known LWPs. */
|
|
|
|
|
static struct lwp_info *lwp_list;
|
|
|
|
|
|
|
|
|
|
/* Number of LWPs in the list. */
|
|
|
|
|
static int num_lwps;
|
|
|
|
|
|
|
|
|
|
/* Non-zero if we're running in "threaded" mode. */
|
|
|
|
|
static int threaded;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#ifndef TIDGET
|
|
|
|
|
#define TIDGET(PID) (((PID) & 0x7fffffff) >> 16)
|
|
|
|
|
#define PIDGET(PID) (((PID) & 0xffff))
|
|
|
|
|
#define MERGEPID(PID, TID) (((PID) & 0xffff) | ((TID) << 16))
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
#define THREAD_FLAG 0x80000000
|
|
|
|
|
#define is_lwp(pid) (((pid) & THREAD_FLAG) == 0 && TIDGET (pid))
|
|
|
|
|
#define GET_LWP(pid) TIDGET (pid)
|
|
|
|
|
#define GET_PID(pid) PIDGET (pid)
|
|
|
|
|
#define BUILD_LWP(tid, pid) MERGEPID (pid, tid)
|
|
|
|
|
|
|
|
|
|
#define is_cloned(pid) (GET_LWP (pid) != GET_PID (pid))
|
|
|
|
|
|
|
|
|
|
/* If the last reported event was a SIGTRAP, this variable is set to
|
|
|
|
|
the process id of the LWP/thread that got it. */
|
|
|
|
|
int trap_pid;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/* This module's target-specific operations. */
|
|
|
|
|
static struct target_ops lin_lwp_ops;
|
|
|
|
|
|
|
|
|
|
/* The standard child operations. */
|
|
|
|
|
extern struct target_ops child_ops;
|
|
|
|
|
|
2000-09-09 15:54:20 +08:00
|
|
|
|
/* Since we cannot wait (in lin_lwp_wait) for the initial process and
|
|
|
|
|
any cloned processes with a single call to waitpid, we have to use
|
|
|
|
|
use the WNOHANG flag and call waitpid in a loop. To optimize
|
|
|
|
|
things a bit we use `sigsuspend' to wake us up when a process has
|
|
|
|
|
something to report (it will send us a SIGCHLD if it has). To make
|
|
|
|
|
this work we have to juggle with the signal mask. We save the
|
|
|
|
|
origional signal mask such that we can restore it before creating a
|
|
|
|
|
new process in order to avoid blocking certain signals in the
|
|
|
|
|
inferior. We then block SIGCHLD during the waitpid/sigsuspend
|
|
|
|
|
loop. */
|
|
|
|
|
|
|
|
|
|
/* Origional signal mask. */
|
|
|
|
|
static sigset_t normal_mask;
|
|
|
|
|
|
2000-09-04 02:41:28 +08:00
|
|
|
|
/* Signal mask for use with sigsuspend in lin_lwp_wait, initialized in
|
|
|
|
|
_initialize_lin_lwp. */
|
|
|
|
|
static sigset_t suspend_mask;
|
2000-09-09 15:54:20 +08:00
|
|
|
|
|
|
|
|
|
/* Signals to block to make that sigsuspend work. */
|
|
|
|
|
static sigset_t blocked_mask;
|
2000-09-04 02:41:28 +08:00
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/* Prototypes for local functions. */
|
|
|
|
|
static void lin_lwp_mourn_inferior (void);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/* Initialize the list of LWPs. */
|
|
|
|
|
|
|
|
|
|
static void
|
|
|
|
|
init_lwp_list (void)
|
|
|
|
|
{
|
|
|
|
|
struct lwp_info *lp, *lpnext;
|
|
|
|
|
|
|
|
|
|
for (lp = lwp_list; lp; lp = lpnext)
|
|
|
|
|
{
|
|
|
|
|
lpnext = lp->next;
|
2000-12-15 09:01:51 +08:00
|
|
|
|
xfree (lp);
|
2000-09-04 02:41:28 +08:00
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
lwp_list = NULL;
|
|
|
|
|
num_lwps = 0;
|
|
|
|
|
threaded = 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Add the LWP specified by PID to the list. If this causes the
|
|
|
|
|
number of LWPs to become larger than one, go into "threaded" mode.
|
|
|
|
|
Return a pointer to the structure describing the new LWP. */
|
|
|
|
|
|
|
|
|
|
static struct lwp_info *
|
|
|
|
|
add_lwp (int pid)
|
|
|
|
|
{
|
|
|
|
|
struct lwp_info *lp;
|
|
|
|
|
|
|
|
|
|
gdb_assert (is_lwp (pid));
|
|
|
|
|
|
|
|
|
|
lp = (struct lwp_info *) xmalloc (sizeof (struct lwp_info));
|
|
|
|
|
|
|
|
|
|
memset (lp, 0, sizeof (struct lwp_info));
|
|
|
|
|
|
|
|
|
|
lp->pid = pid;
|
|
|
|
|
|
|
|
|
|
lp->next = lwp_list;
|
|
|
|
|
lwp_list = lp;
|
|
|
|
|
if (++num_lwps > 1)
|
|
|
|
|
threaded = 1;
|
|
|
|
|
|
|
|
|
|
return lp;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Remove the LWP specified by PID from the list. */
|
|
|
|
|
|
|
|
|
|
static void
|
|
|
|
|
delete_lwp (int pid)
|
|
|
|
|
{
|
|
|
|
|
struct lwp_info *lp, *lpprev;
|
|
|
|
|
|
|
|
|
|
lpprev = NULL;
|
|
|
|
|
|
|
|
|
|
for (lp = lwp_list; lp; lpprev = lp, lp = lp->next)
|
|
|
|
|
if (lp->pid == pid)
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
if (!lp)
|
|
|
|
|
return;
|
|
|
|
|
|
|
|
|
|
/* We don't go back to "non-threaded" mode if the number of threads
|
|
|
|
|
becomes less than two. */
|
|
|
|
|
num_lwps--;
|
|
|
|
|
|
|
|
|
|
if (lpprev)
|
|
|
|
|
lpprev->next = lp->next;
|
|
|
|
|
else
|
|
|
|
|
lwp_list = lp->next;
|
|
|
|
|
|
2000-12-15 09:01:51 +08:00
|
|
|
|
xfree (lp);
|
2000-09-04 02:41:28 +08:00
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Return a pointer to the structure describing the LWP corresponding
|
|
|
|
|
to PID. If no corresponding LWP could be found, return NULL. */
|
|
|
|
|
|
|
|
|
|
static struct lwp_info *
|
|
|
|
|
find_lwp_pid (int pid)
|
|
|
|
|
{
|
|
|
|
|
struct lwp_info *lp;
|
|
|
|
|
|
|
|
|
|
if (is_lwp (pid))
|
|
|
|
|
pid = GET_LWP (pid);
|
|
|
|
|
|
|
|
|
|
for (lp = lwp_list; lp; lp = lp->next)
|
|
|
|
|
if (pid == GET_LWP (lp->pid))
|
|
|
|
|
return lp;
|
|
|
|
|
|
|
|
|
|
return NULL;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Call CALLBACK with its second argument set to DATA for every LWP in
|
|
|
|
|
the list. If CALLBACK returns 1 for a particular LWP, return a
|
|
|
|
|
pointer to the structure describing that LWP immediately.
|
|
|
|
|
Otherwise return NULL. */
|
|
|
|
|
|
|
|
|
|
struct lwp_info *
|
|
|
|
|
iterate_over_lwps (int (*callback) (struct lwp_info *, void *), void *data)
|
|
|
|
|
{
|
|
|
|
|
struct lwp_info *lp;
|
|
|
|
|
|
|
|
|
|
for (lp = lwp_list; lp; lp = lp->next)
|
|
|
|
|
if ((*callback) (lp, data))
|
|
|
|
|
return lp;
|
|
|
|
|
|
|
|
|
|
return NULL;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/* Helper functions. */
|
|
|
|
|
|
|
|
|
|
static void
|
|
|
|
|
restore_inferior_pid (void *arg)
|
|
|
|
|
{
|
|
|
|
|
int *saved_pid_ptr = arg;
|
|
|
|
|
inferior_pid = *saved_pid_ptr;
|
2000-12-15 09:01:51 +08:00
|
|
|
|
xfree (arg);
|
2000-09-04 02:41:28 +08:00
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static struct cleanup *
|
|
|
|
|
save_inferior_pid (void)
|
|
|
|
|
{
|
|
|
|
|
int *saved_pid_ptr;
|
|
|
|
|
|
|
|
|
|
saved_pid_ptr = xmalloc (sizeof (int));
|
|
|
|
|
*saved_pid_ptr = inferior_pid;
|
|
|
|
|
return make_cleanup (restore_inferior_pid, saved_pid_ptr);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/* Implementation of the PREPARE_TO_PROCEED hook for the Linux LWP layer. */
|
|
|
|
|
|
|
|
|
|
int
|
|
|
|
|
lin_lwp_prepare_to_proceed (void)
|
|
|
|
|
{
|
|
|
|
|
if (trap_pid && inferior_pid != trap_pid)
|
|
|
|
|
{
|
|
|
|
|
/* Switched over from TRAP_PID. */
|
|
|
|
|
CORE_ADDR stop_pc = read_pc ();
|
|
|
|
|
CORE_ADDR trap_pc;
|
|
|
|
|
|
|
|
|
|
/* Avoid switching where it wouldn't do any good, i.e. if both
|
|
|
|
|
threads are at the same breakpoint. */
|
|
|
|
|
trap_pc = read_pc_pid (trap_pid);
|
|
|
|
|
if (trap_pc != stop_pc && breakpoint_here_p (trap_pc))
|
|
|
|
|
{
|
|
|
|
|
/* User hasn't deleted the breakpoint. Return non-zero, and
|
|
|
|
|
switch back to TRAP_PID. */
|
|
|
|
|
inferior_pid = trap_pid;
|
|
|
|
|
|
|
|
|
|
/* FIXME: Is this stuff really necessary? */
|
|
|
|
|
flush_cached_frames ();
|
|
|
|
|
registers_changed ();
|
|
|
|
|
|
|
|
|
|
return 1;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#if 0
|
|
|
|
|
static void
|
|
|
|
|
lin_lwp_open (char *args, int from_tty)
|
|
|
|
|
{
|
|
|
|
|
push_target (&lin_lwp_ops);
|
|
|
|
|
}
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
/* Attach to the LWP specified by PID. If VERBOSE is non-zero, print
|
|
|
|
|
a message telling the user that a new LWP has been added to the
|
|
|
|
|
process. */
|
|
|
|
|
|
|
|
|
|
void
|
|
|
|
|
lin_lwp_attach_lwp (int pid, int verbose)
|
|
|
|
|
{
|
|
|
|
|
struct lwp_info *lp;
|
|
|
|
|
|
|
|
|
|
gdb_assert (is_lwp (pid));
|
|
|
|
|
|
|
|
|
|
if (verbose)
|
|
|
|
|
printf_filtered ("[New %s]\n", target_pid_to_str (pid));
|
|
|
|
|
|
|
|
|
|
if (ptrace (PTRACE_ATTACH, GET_LWP (pid), 0, 0) < 0)
|
|
|
|
|
error ("Can't attach %s: %s", target_pid_to_str (pid), strerror (errno));
|
|
|
|
|
|
|
|
|
|
lp = add_lwp (pid);
|
|
|
|
|
lp->signalled = 1;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static void
|
|
|
|
|
lin_lwp_attach (char *args, int from_tty)
|
|
|
|
|
{
|
|
|
|
|
/* FIXME: We should probably accept a list of process id's, and
|
|
|
|
|
attach all of them. */
|
|
|
|
|
error("Not implemented yet");
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static void
|
|
|
|
|
lin_lwp_detach (char *args, int from_tty)
|
|
|
|
|
{
|
|
|
|
|
/* FIXME: Provide implementation when we implement lin_lwp_attach. */
|
|
|
|
|
error ("Not implemented yet");
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
struct private_thread_info
|
|
|
|
|
{
|
|
|
|
|
int lwpid;
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
/* Return non-zero if TP corresponds to the LWP specified by DATA
|
|
|
|
|
(which is assumed to be a pointer to a `struct lwp_info'. */
|
|
|
|
|
|
|
|
|
|
static int
|
|
|
|
|
find_lwp_callback (struct thread_info *tp, void *data)
|
|
|
|
|
{
|
|
|
|
|
struct lwp_info *lp = data;
|
|
|
|
|
|
|
|
|
|
if (tp->private->lwpid == GET_LWP (lp->pid))
|
|
|
|
|
return 1;
|
|
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Resume LP. */
|
|
|
|
|
|
|
|
|
|
static int
|
|
|
|
|
resume_callback (struct lwp_info *lp, void *data)
|
|
|
|
|
{
|
|
|
|
|
if (lp->stopped && lp->status == 0)
|
|
|
|
|
{
|
|
|
|
|
struct thread_info *tp;
|
|
|
|
|
|
|
|
|
|
#if 1
|
|
|
|
|
/* FIXME: kettenis/2000-08-26: This should really be handled
|
|
|
|
|
properly by core GDB. */
|
|
|
|
|
|
|
|
|
|
tp = find_thread_pid (lp->pid);
|
|
|
|
|
if (tp == NULL)
|
|
|
|
|
tp = iterate_over_threads (find_lwp_callback, lp);
|
|
|
|
|
gdb_assert (tp);
|
|
|
|
|
|
|
|
|
|
/* If we were previously stepping the thread, and now continue
|
|
|
|
|
the thread we must invalidate the stepping range. However,
|
|
|
|
|
if there is a step_resume breakpoint for this thread, we must
|
|
|
|
|
preserve the stepping range to make it possible to continue
|
|
|
|
|
stepping once we hit it. */
|
|
|
|
|
if (tp->step_range_end && tp->step_resume_breakpoint == NULL)
|
|
|
|
|
{
|
|
|
|
|
gdb_assert (lp->step);
|
|
|
|
|
tp->step_range_start = tp->step_range_end = 0;
|
|
|
|
|
}
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
child_resume (GET_LWP (lp->pid), 0, TARGET_SIGNAL_0);
|
|
|
|
|
lp->stopped = 0;
|
|
|
|
|
lp->step = 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static void
|
|
|
|
|
lin_lwp_resume (int pid, int step, enum target_signal signo)
|
|
|
|
|
{
|
|
|
|
|
struct lwp_info *lp;
|
|
|
|
|
int resume_all;
|
|
|
|
|
|
|
|
|
|
/* Apparently the interpretation of PID is dependent on STEP: If
|
|
|
|
|
STEP is non-zero, a specific PID means `step only this process
|
|
|
|
|
id'. But if STEP is zero, then PID means `continue *all*
|
|
|
|
|
processes, but give the signal only to this one'. */
|
|
|
|
|
resume_all = (pid == -1) || !step;
|
|
|
|
|
|
|
|
|
|
/* If PID is -1, it's the current inferior that should be
|
|
|
|
|
handled special. */
|
|
|
|
|
if (pid == -1)
|
|
|
|
|
pid = inferior_pid;
|
|
|
|
|
|
|
|
|
|
lp = find_lwp_pid (pid);
|
|
|
|
|
if (lp)
|
|
|
|
|
{
|
|
|
|
|
pid = GET_LWP (lp->pid);
|
|
|
|
|
|
|
|
|
|
/* Mark LWP as not stopped to prevent it from being continued by
|
|
|
|
|
resume_callback. */
|
|
|
|
|
lp->stopped = 0;
|
|
|
|
|
|
|
|
|
|
/* Remember if we're stepping. */
|
|
|
|
|
lp->step = step;
|
|
|
|
|
|
|
|
|
|
/* If we have a pending wait status for this thread, there is no
|
|
|
|
|
point in resuming the process. */
|
|
|
|
|
if (lp->status)
|
|
|
|
|
{
|
|
|
|
|
/* FIXME: What should we do if we are supposed to continue
|
|
|
|
|
this thread with a signal? */
|
|
|
|
|
gdb_assert (signo == TARGET_SIGNAL_0);
|
|
|
|
|
return;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (resume_all)
|
|
|
|
|
iterate_over_lwps (resume_callback, NULL);
|
|
|
|
|
|
|
|
|
|
child_resume (pid, step, signo);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/* Send a SIGSTOP to LP. */
|
|
|
|
|
|
|
|
|
|
static int
|
|
|
|
|
stop_callback (struct lwp_info *lp, void *data)
|
|
|
|
|
{
|
|
|
|
|
if (! lp->stopped && ! lp->signalled)
|
|
|
|
|
{
|
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
|
|
ret = kill (GET_LWP (lp->pid), SIGSTOP);
|
|
|
|
|
gdb_assert (ret == 0);
|
|
|
|
|
|
|
|
|
|
lp->signalled = 1;
|
|
|
|
|
gdb_assert (lp->status == 0);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Wait until LP is stopped. */
|
|
|
|
|
|
|
|
|
|
static int
|
|
|
|
|
stop_wait_callback (struct lwp_info *lp, void *data)
|
|
|
|
|
{
|
|
|
|
|
if (! lp->stopped && lp->signalled)
|
|
|
|
|
{
|
|
|
|
|
pid_t pid;
|
|
|
|
|
int status;
|
|
|
|
|
|
|
|
|
|
gdb_assert (lp->status == 0);
|
|
|
|
|
|
|
|
|
|
pid = waitpid (GET_LWP (lp->pid), &status,
|
|
|
|
|
is_cloned (lp->pid) ? __WCLONE : 0);
|
|
|
|
|
if (pid == -1 && errno == ECHILD)
|
|
|
|
|
/* OK, the proccess has disappeared. We'll catch the actual
|
2000-09-09 15:54:20 +08:00
|
|
|
|
exit event in lin_lwp_wait. */
|
2000-09-04 02:41:28 +08:00
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
|
|
gdb_assert (pid == GET_LWP (lp->pid));
|
|
|
|
|
|
|
|
|
|
if (WIFEXITED (status) || WIFSIGNALED (status))
|
|
|
|
|
{
|
|
|
|
|
gdb_assert (num_lwps > 1);
|
|
|
|
|
|
2000-09-18 21:09:12 +08:00
|
|
|
|
if (in_thread_list (lp->pid))
|
|
|
|
|
{
|
|
|
|
|
/* Core GDB cannot deal with us deleting the current
|
|
|
|
|
thread. */
|
|
|
|
|
if (lp->pid != inferior_pid)
|
|
|
|
|
delete_thread (lp->pid);
|
|
|
|
|
printf_unfiltered ("[%s exited]\n",
|
|
|
|
|
target_pid_to_str (lp->pid));
|
|
|
|
|
}
|
|
|
|
|
#if DEBUG
|
|
|
|
|
printf ("%s exited.\n", target_pid_to_str (lp->pid));
|
|
|
|
|
#endif
|
2000-09-04 02:41:28 +08:00
|
|
|
|
delete_lwp (lp->pid);
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
gdb_assert (WIFSTOPPED (status));
|
|
|
|
|
lp->stopped = 1;
|
|
|
|
|
|
|
|
|
|
if (WSTOPSIG (status) != SIGSTOP)
|
|
|
|
|
{
|
|
|
|
|
if (WSTOPSIG (status) == SIGTRAP
|
|
|
|
|
&& breakpoint_inserted_here_p (read_pc_pid (pid)
|
|
|
|
|
- DECR_PC_AFTER_BREAK))
|
|
|
|
|
{
|
|
|
|
|
/* If a LWP other than the LWP that we're reporting an
|
|
|
|
|
event for has hit a GDB breakpoint (as opposed to
|
|
|
|
|
some random trap signal), then just arrange for it to
|
|
|
|
|
hit it again later. We don't keep the SIGTRAP status
|
|
|
|
|
and don't forward the SIGTRAP signal to the LWP. We
|
|
|
|
|
will handle the current event, eventually we will
|
|
|
|
|
resume all LWPs, and this one will get its breakpoint
|
|
|
|
|
trap again.
|
|
|
|
|
|
|
|
|
|
If we do not do this, then we run the risk that the
|
|
|
|
|
user will delete or disable the breakpoint, but the
|
|
|
|
|
thread will have already tripped on it. */
|
|
|
|
|
#if DEBUG
|
|
|
|
|
printf ("Tripped breakpoint at %lx in LWP %d"
|
|
|
|
|
" while waiting for SIGSTOP.\n",
|
|
|
|
|
(long) read_pc_pid (lp->pid), pid);
|
|
|
|
|
#endif
|
|
|
|
|
/* Set the PC to before the trap. */
|
|
|
|
|
if (DECR_PC_AFTER_BREAK)
|
|
|
|
|
write_pc_pid (read_pc_pid (pid) - DECR_PC_AFTER_BREAK, pid);
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
#if DEBUG
|
|
|
|
|
printf ("Received %s in LWP %d while waiting for SIGSTOP.\n",
|
|
|
|
|
strsignal (WSTOPSIG (status)), pid);
|
|
|
|
|
#endif
|
|
|
|
|
/* The thread was stopped with a signal other than
|
|
|
|
|
SIGSTOP, and didn't accidentiliy trip a breakpoint.
|
|
|
|
|
Record the wait status. */
|
|
|
|
|
lp->status = status;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
/* We caught the SIGSTOP that we intended to catch, so
|
|
|
|
|
there's no SIGSTOP pending. */
|
|
|
|
|
lp->signalled = 0;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Return non-zero if LP has a wait status pending. */
|
|
|
|
|
|
|
|
|
|
static int
|
|
|
|
|
status_callback (struct lwp_info *lp, void *data)
|
|
|
|
|
{
|
|
|
|
|
return (lp->status != 0);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Return non-zero if LP isn't stopped. */
|
|
|
|
|
|
|
|
|
|
static int
|
|
|
|
|
running_callback (struct lwp_info *lp, void *data)
|
|
|
|
|
{
|
|
|
|
|
return (lp->stopped == 0);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static int
|
|
|
|
|
lin_lwp_wait (int pid, struct target_waitstatus *ourstatus)
|
|
|
|
|
{
|
|
|
|
|
struct lwp_info *lp = NULL;
|
|
|
|
|
int options = 0;
|
|
|
|
|
int status = 0;
|
|
|
|
|
|
2000-09-09 15:54:20 +08:00
|
|
|
|
/* Make sure SIGCHLD is blocked. */
|
|
|
|
|
if (! sigismember (&blocked_mask, SIGCHLD))
|
|
|
|
|
{
|
|
|
|
|
sigaddset (&blocked_mask, SIGCHLD);
|
|
|
|
|
sigprocmask (SIG_BLOCK, &blocked_mask, NULL);
|
|
|
|
|
}
|
|
|
|
|
|
2000-09-04 02:41:28 +08:00
|
|
|
|
retry:
|
|
|
|
|
|
|
|
|
|
/* First check if there is a LWP with a wait status pending. */
|
|
|
|
|
if (pid == -1)
|
|
|
|
|
{
|
|
|
|
|
/* Any LWP will do. */
|
|
|
|
|
lp = iterate_over_lwps (status_callback, NULL);
|
|
|
|
|
if (lp)
|
|
|
|
|
{
|
|
|
|
|
#if DEBUG
|
|
|
|
|
printf ("Using pending wait status for LWP %d.\n",
|
|
|
|
|
GET_LWP (lp->pid));
|
|
|
|
|
#endif
|
|
|
|
|
status = lp->status;
|
|
|
|
|
lp->status = 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* But if we don't fine one, we'll have to wait, and check both
|
|
|
|
|
cloned and uncloned processes. We start with the cloned
|
|
|
|
|
processes. */
|
|
|
|
|
options = __WCLONE | WNOHANG;
|
|
|
|
|
}
|
|
|
|
|
else if (is_lwp (pid))
|
|
|
|
|
{
|
|
|
|
|
#if DEBUG
|
|
|
|
|
printf ("Waiting for specific LWP %d.\n", GET_LWP (pid));
|
|
|
|
|
#endif
|
|
|
|
|
/* We have a specific LWP to check. */
|
|
|
|
|
lp = find_lwp_pid (GET_LWP (pid));
|
|
|
|
|
gdb_assert (lp);
|
|
|
|
|
status = lp->status;
|
|
|
|
|
lp->status = 0;
|
|
|
|
|
#if DEBUG
|
|
|
|
|
if (status)
|
|
|
|
|
printf ("Using pending wait status for LWP %d.\n",
|
|
|
|
|
GET_LWP (lp->pid));
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
/* If we have to wait, take into account whether PID is a cloned
|
|
|
|
|
process or not. And we have to convert it to something that
|
|
|
|
|
the layer beneath us can understand. */
|
|
|
|
|
options = is_cloned (lp->pid) ? __WCLONE : 0;
|
|
|
|
|
pid = GET_LWP (pid);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (status && lp->signalled)
|
|
|
|
|
{
|
|
|
|
|
/* A pending SIGSTOP may interfere with the normal stream of
|
|
|
|
|
events. In a typical case where interference is a problem,
|
|
|
|
|
we have a SIGSTOP signal pending for LWP A while
|
|
|
|
|
single-stepping it, encounter an event in LWP B, and take the
|
|
|
|
|
pending SIGSTOP while trying to stop LWP A. After processing
|
|
|
|
|
the event in LWP B, LWP A is continued, and we'll never see
|
|
|
|
|
the SIGTRAP associated with the last time we were
|
|
|
|
|
single-stepping LWP A. */
|
|
|
|
|
|
|
|
|
|
/* Resume the thread. It should halt immediately returning the
|
|
|
|
|
pending SIGSTOP. */
|
|
|
|
|
child_resume (GET_LWP (lp->pid), lp->step, TARGET_SIGNAL_0);
|
|
|
|
|
lp->stopped = 0;
|
|
|
|
|
|
|
|
|
|
/* This should catch the pending SIGSTOP. */
|
|
|
|
|
stop_wait_callback (lp, NULL);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
set_sigint_trap (); /* Causes SIGINT to be passed on to the
|
|
|
|
|
attached process. */
|
|
|
|
|
set_sigio_trap ();
|
|
|
|
|
|
|
|
|
|
while (status == 0)
|
|
|
|
|
{
|
|
|
|
|
pid_t lwpid;
|
|
|
|
|
|
|
|
|
|
lwpid = waitpid (pid, &status, options);
|
|
|
|
|
if (lwpid > 0)
|
|
|
|
|
{
|
|
|
|
|
gdb_assert (pid == -1 || lwpid == pid);
|
|
|
|
|
|
|
|
|
|
lp = find_lwp_pid (lwpid);
|
|
|
|
|
if (! lp)
|
|
|
|
|
{
|
|
|
|
|
lp = add_lwp (BUILD_LWP (lwpid, inferior_pid));
|
|
|
|
|
if (threaded)
|
|
|
|
|
{
|
2000-09-09 15:54:20 +08:00
|
|
|
|
gdb_assert (WIFSTOPPED (status)
|
|
|
|
|
&& WSTOPSIG (status) == SIGSTOP);
|
2000-09-04 02:41:28 +08:00
|
|
|
|
lp->signalled = 1;
|
|
|
|
|
|
|
|
|
|
if (! in_thread_list (inferior_pid))
|
|
|
|
|
{
|
|
|
|
|
inferior_pid = BUILD_LWP (inferior_pid, inferior_pid);
|
|
|
|
|
add_thread (inferior_pid);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
add_thread (lp->pid);
|
|
|
|
|
printf_unfiltered ("[New %s]\n",
|
|
|
|
|
target_pid_to_str (lp->pid));
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Make sure we don't report a TARGET_WAITKIND_EXITED or
|
|
|
|
|
TARGET_WAITKIND_SIGNALLED event if there are still LWP's
|
|
|
|
|
left in the process. */
|
|
|
|
|
if ((WIFEXITED (status) || WIFSIGNALED (status)) && num_lwps > 1)
|
|
|
|
|
{
|
|
|
|
|
if (in_thread_list (lp->pid))
|
|
|
|
|
{
|
2000-09-18 21:09:12 +08:00
|
|
|
|
/* Core GDB cannot deal with us deleting the current
|
2000-09-04 02:41:28 +08:00
|
|
|
|
thread. */
|
|
|
|
|
if (lp->pid != inferior_pid)
|
|
|
|
|
delete_thread (lp->pid);
|
|
|
|
|
printf_unfiltered ("[%s exited]\n",
|
|
|
|
|
target_pid_to_str (lp->pid));
|
|
|
|
|
}
|
|
|
|
|
#if DEBUG
|
|
|
|
|
printf ("%s exited.\n", target_pid_to_str (lp->pid));
|
|
|
|
|
#endif
|
|
|
|
|
delete_lwp (lp->pid);
|
|
|
|
|
|
|
|
|
|
/* Make sure there is at least one thread running. */
|
|
|
|
|
gdb_assert (iterate_over_lwps (running_callback, NULL));
|
|
|
|
|
|
|
|
|
|
/* Discard the event. */
|
|
|
|
|
status = 0;
|
|
|
|
|
continue;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Make sure we don't report a SIGSTOP that we sent
|
|
|
|
|
ourselves in an attempt to stop an LWP. */
|
|
|
|
|
if (lp->signalled && WIFSTOPPED (status)
|
|
|
|
|
&& WSTOPSIG (status) == SIGSTOP)
|
|
|
|
|
{
|
|
|
|
|
#if DEBUG
|
|
|
|
|
printf ("Delayed SIGSTOP caught for %s.\n",
|
|
|
|
|
target_pid_to_str (lp->pid));
|
|
|
|
|
#endif
|
|
|
|
|
/* This is a delayed SIGSTOP. */
|
|
|
|
|
lp->signalled = 0;
|
|
|
|
|
|
|
|
|
|
child_resume (GET_LWP (lp->pid), lp->step, TARGET_SIGNAL_0);
|
|
|
|
|
lp->stopped = 0;
|
|
|
|
|
|
|
|
|
|
/* Discard the event. */
|
|
|
|
|
status = 0;
|
|
|
|
|
continue;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (pid == -1)
|
|
|
|
|
{
|
|
|
|
|
/* Alternate between checking cloned and uncloned processes. */
|
|
|
|
|
options ^= __WCLONE;
|
|
|
|
|
|
|
|
|
|
/* And suspend every time we have checked both. */
|
|
|
|
|
if (options & __WCLONE)
|
|
|
|
|
sigsuspend (&suspend_mask);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* We shouldn't end up here unless we want to try again. */
|
|
|
|
|
gdb_assert (status == 0);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
clear_sigio_trap ();
|
|
|
|
|
clear_sigint_trap ();
|
|
|
|
|
|
|
|
|
|
gdb_assert (lp);
|
|
|
|
|
|
|
|
|
|
/* Don't report signals that GDB isn't interested in, such as
|
|
|
|
|
signals that are neither printed nor stopped upon. Stopping all
|
|
|
|
|
threads can be a bit time-consuming so if we want decent
|
|
|
|
|
performance with heavily multi-threaded programs, especially when
|
|
|
|
|
they're using a high frequency timer, we'd better avoid it if we
|
|
|
|
|
can. */
|
|
|
|
|
|
|
|
|
|
if (WIFSTOPPED (status))
|
|
|
|
|
{
|
|
|
|
|
int signo = target_signal_from_host (WSTOPSIG (status));
|
|
|
|
|
|
|
|
|
|
if (signal_stop_state (signo) == 0
|
|
|
|
|
&& signal_print_state (signo) == 0
|
|
|
|
|
&& signal_pass_state (signo) == 1)
|
|
|
|
|
{
|
|
|
|
|
child_resume (GET_LWP (lp->pid), lp->step, signo);
|
|
|
|
|
lp->stopped = 0;
|
|
|
|
|
status = 0;
|
|
|
|
|
goto retry;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* This LWP is stopped now. */
|
|
|
|
|
lp->stopped = 1;
|
|
|
|
|
|
|
|
|
|
/* Now stop all other LWP's ... */
|
|
|
|
|
iterate_over_lwps (stop_callback, NULL);
|
|
|
|
|
|
|
|
|
|
/* ... and wait until all of them have reported back that they're no
|
|
|
|
|
longer running. */
|
|
|
|
|
iterate_over_lwps (stop_wait_callback, NULL);
|
|
|
|
|
|
|
|
|
|
/* If we're not running in "threaded" mode, we'll report the bare
|
|
|
|
|
process id. */
|
|
|
|
|
|
|
|
|
|
if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP)
|
|
|
|
|
trap_pid = (threaded ? lp->pid : GET_LWP (lp->pid));
|
|
|
|
|
else
|
|
|
|
|
trap_pid = 0;
|
|
|
|
|
|
|
|
|
|
store_waitstatus (ourstatus, status);
|
|
|
|
|
return (threaded ? lp->pid : GET_LWP (lp->pid));
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static int
|
|
|
|
|
kill_callback (struct lwp_info *lp, void *data)
|
|
|
|
|
{
|
|
|
|
|
ptrace (PTRACE_KILL, GET_LWP (lp->pid), 0, 0);
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static int
|
|
|
|
|
kill_wait_callback (struct lwp_info *lp, void *data)
|
|
|
|
|
{
|
|
|
|
|
pid_t pid;
|
|
|
|
|
|
|
|
|
|
/* We must make sure that there are no pending events (delayed
|
|
|
|
|
SIGSTOPs, pending SIGTRAPs, etc.) to make sure the current
|
|
|
|
|
program doesn't interfere with any following debugging session. */
|
|
|
|
|
|
|
|
|
|
/* For cloned processes we must check both with __WCLONE and
|
|
|
|
|
without, since the exit status of a cloned process isn't reported
|
|
|
|
|
with __WCLONE. */
|
|
|
|
|
if (is_cloned (lp->pid))
|
|
|
|
|
{
|
|
|
|
|
do
|
|
|
|
|
{
|
|
|
|
|
pid = waitpid (GET_LWP (lp->pid), NULL, __WCLONE);
|
|
|
|
|
}
|
|
|
|
|
while (pid == GET_LWP (lp->pid));
|
|
|
|
|
|
|
|
|
|
gdb_assert (pid == -1 && errno == ECHILD);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
do
|
|
|
|
|
{
|
|
|
|
|
pid = waitpid (GET_LWP (lp->pid), NULL, 0);
|
|
|
|
|
}
|
|
|
|
|
while (pid == GET_LWP (lp->pid));
|
|
|
|
|
|
|
|
|
|
gdb_assert (pid == -1 && errno == ECHILD);
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static void
|
|
|
|
|
lin_lwp_kill (void)
|
|
|
|
|
{
|
|
|
|
|
/* Kill all LWP's ... */
|
|
|
|
|
iterate_over_lwps (kill_callback, NULL);
|
|
|
|
|
|
|
|
|
|
/* ... and wait until we've flushed all events. */
|
|
|
|
|
iterate_over_lwps (kill_wait_callback, NULL);
|
|
|
|
|
|
|
|
|
|
target_mourn_inferior ();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static void
|
|
|
|
|
lin_lwp_create_inferior (char *exec_file, char *allargs, char **env)
|
|
|
|
|
{
|
|
|
|
|
struct target_ops *target_beneath;
|
|
|
|
|
|
|
|
|
|
init_lwp_list ();
|
|
|
|
|
|
|
|
|
|
#if 0
|
|
|
|
|
target_beneath = find_target_beneath (&lin_lwp_ops);
|
|
|
|
|
#else
|
|
|
|
|
target_beneath = &child_ops;
|
|
|
|
|
#endif
|
|
|
|
|
target_beneath->to_create_inferior (exec_file, allargs, env);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static void
|
|
|
|
|
lin_lwp_mourn_inferior (void)
|
|
|
|
|
{
|
|
|
|
|
struct target_ops *target_beneath;
|
|
|
|
|
|
|
|
|
|
init_lwp_list ();
|
|
|
|
|
|
|
|
|
|
trap_pid = 0;
|
|
|
|
|
|
2000-09-09 15:54:20 +08:00
|
|
|
|
/* Restore the origional signal mask. */
|
|
|
|
|
sigprocmask (SIG_SETMASK, &normal_mask, NULL);
|
|
|
|
|
sigemptyset (&blocked_mask);
|
|
|
|
|
|
2000-09-04 02:41:28 +08:00
|
|
|
|
#if 0
|
|
|
|
|
target_beneath = find_target_beneath (&lin_lwp_ops);
|
|
|
|
|
#else
|
|
|
|
|
target_beneath = &child_ops;
|
|
|
|
|
#endif
|
|
|
|
|
target_beneath->to_mourn_inferior ();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static void
|
|
|
|
|
lin_lwp_fetch_registers (int regno)
|
|
|
|
|
{
|
|
|
|
|
struct cleanup *old_chain = save_inferior_pid ();
|
|
|
|
|
|
|
|
|
|
if (is_lwp (inferior_pid))
|
|
|
|
|
inferior_pid = GET_LWP (inferior_pid);
|
|
|
|
|
|
|
|
|
|
fetch_inferior_registers (regno);
|
|
|
|
|
|
|
|
|
|
do_cleanups (old_chain);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static void
|
|
|
|
|
lin_lwp_store_registers (int regno)
|
|
|
|
|
{
|
|
|
|
|
struct cleanup *old_chain = save_inferior_pid ();
|
|
|
|
|
|
|
|
|
|
if (is_lwp (inferior_pid))
|
|
|
|
|
inferior_pid = GET_LWP (inferior_pid);
|
|
|
|
|
|
|
|
|
|
store_inferior_registers (regno);
|
|
|
|
|
|
|
|
|
|
do_cleanups (old_chain);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static int
|
|
|
|
|
lin_lwp_xfer_memory (CORE_ADDR memaddr, char *myaddr, int len, int write,
|
|
|
|
|
struct target_ops *target)
|
|
|
|
|
{
|
|
|
|
|
struct cleanup *old_chain = save_inferior_pid ();
|
|
|
|
|
int xfer;
|
|
|
|
|
|
|
|
|
|
if (is_lwp (inferior_pid))
|
|
|
|
|
inferior_pid = GET_LWP (inferior_pid);
|
|
|
|
|
|
|
|
|
|
xfer = child_xfer_memory (memaddr, myaddr, len, write, target);
|
|
|
|
|
|
|
|
|
|
do_cleanups (old_chain);
|
|
|
|
|
return xfer;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static int
|
|
|
|
|
lin_lwp_thread_alive (int pid)
|
|
|
|
|
{
|
|
|
|
|
gdb_assert (is_lwp (pid));
|
|
|
|
|
|
|
|
|
|
errno = 0;
|
|
|
|
|
ptrace (PTRACE_PEEKUSER, GET_LWP (pid), 0, 0);
|
|
|
|
|
if (errno)
|
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
|
|
return 1;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static char *
|
|
|
|
|
lin_lwp_pid_to_str (int pid)
|
|
|
|
|
{
|
|
|
|
|
static char buf[64];
|
|
|
|
|
|
|
|
|
|
if (is_lwp (pid))
|
|
|
|
|
{
|
|
|
|
|
snprintf (buf, sizeof (buf), "LWP %d", GET_LWP (pid));
|
|
|
|
|
return buf;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return normal_pid_to_str (pid);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static void
|
|
|
|
|
init_lin_lwp_ops (void)
|
|
|
|
|
{
|
|
|
|
|
#if 0
|
|
|
|
|
lin_lwp_ops.to_open = lin_lwp_open;
|
|
|
|
|
#endif
|
|
|
|
|
lin_lwp_ops.to_shortname = "lwp-layer";
|
|
|
|
|
lin_lwp_ops.to_longname = "lwp-layer";
|
|
|
|
|
lin_lwp_ops.to_doc = "Low level threads support (LWP layer)";
|
|
|
|
|
lin_lwp_ops.to_attach = lin_lwp_attach;
|
|
|
|
|
lin_lwp_ops.to_detach = lin_lwp_detach;
|
|
|
|
|
lin_lwp_ops.to_resume = lin_lwp_resume;
|
|
|
|
|
lin_lwp_ops.to_wait = lin_lwp_wait;
|
|
|
|
|
lin_lwp_ops.to_fetch_registers = lin_lwp_fetch_registers;
|
|
|
|
|
lin_lwp_ops.to_store_registers = lin_lwp_store_registers;
|
|
|
|
|
lin_lwp_ops.to_xfer_memory = lin_lwp_xfer_memory;
|
|
|
|
|
lin_lwp_ops.to_kill = lin_lwp_kill;
|
|
|
|
|
lin_lwp_ops.to_create_inferior = lin_lwp_create_inferior;
|
|
|
|
|
lin_lwp_ops.to_mourn_inferior = lin_lwp_mourn_inferior;
|
|
|
|
|
lin_lwp_ops.to_thread_alive = lin_lwp_thread_alive;
|
|
|
|
|
lin_lwp_ops.to_pid_to_str = lin_lwp_pid_to_str;
|
|
|
|
|
lin_lwp_ops.to_stratum = thread_stratum;
|
|
|
|
|
lin_lwp_ops.to_has_thread_control = tc_schedlock;
|
|
|
|
|
lin_lwp_ops.to_magic = OPS_MAGIC;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static void
|
|
|
|
|
sigchld_handler (int signo)
|
|
|
|
|
{
|
|
|
|
|
/* Do nothing. The only reason for this handler is that it allows
|
|
|
|
|
us to use sigsuspend in lin_lwp_wait above to wait for the
|
|
|
|
|
arrival of a SIGCHLD. */
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void
|
|
|
|
|
_initialize_lin_lwp (void)
|
|
|
|
|
{
|
|
|
|
|
struct sigaction action;
|
|
|
|
|
|
|
|
|
|
extern void thread_db_init (struct target_ops *);
|
|
|
|
|
|
|
|
|
|
init_lin_lwp_ops ();
|
|
|
|
|
add_target (&lin_lwp_ops);
|
|
|
|
|
thread_db_init (&lin_lwp_ops);
|
|
|
|
|
|
2000-09-09 15:54:20 +08:00
|
|
|
|
/* Save the origional signal mask. */
|
|
|
|
|
sigprocmask (SIG_SETMASK, NULL, &normal_mask);
|
|
|
|
|
|
2000-09-04 02:41:28 +08:00
|
|
|
|
action.sa_handler = sigchld_handler;
|
|
|
|
|
sigemptyset (&action.sa_mask);
|
|
|
|
|
action.sa_flags = 0;
|
|
|
|
|
sigaction (SIGCHLD, &action, NULL);
|
|
|
|
|
|
2000-09-09 15:54:20 +08:00
|
|
|
|
/* Make sure we don't block SIGCHLD during a sigsuspend. */
|
|
|
|
|
sigprocmask (SIG_SETMASK, NULL, &suspend_mask);
|
2000-09-04 02:41:28 +08:00
|
|
|
|
sigdelset (&suspend_mask, SIGCHLD);
|
2000-09-09 15:54:20 +08:00
|
|
|
|
|
|
|
|
|
sigemptyset (&blocked_mask);
|
2000-09-04 02:41:28 +08:00
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/* FIXME: kettenis/2000-08-26: The stuff on this page is specific to
|
|
|
|
|
the LinuxThreads library and therefore doesn't really belong here. */
|
|
|
|
|
|
|
|
|
|
/* Read variable NAME in the target and return its value if found.
|
|
|
|
|
Otherwise return zero. It is assumed that the type of the variable
|
|
|
|
|
is `int'. */
|
|
|
|
|
|
|
|
|
|
static int
|
|
|
|
|
get_signo (const char *name)
|
|
|
|
|
{
|
|
|
|
|
struct minimal_symbol *ms;
|
|
|
|
|
int signo;
|
|
|
|
|
|
|
|
|
|
ms = lookup_minimal_symbol (name, NULL, NULL);
|
|
|
|
|
if (ms == NULL)
|
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
|
|
if (target_read_memory (SYMBOL_VALUE_ADDRESS (ms), (char *) &signo,
|
|
|
|
|
sizeof (signo)) != 0)
|
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
|
|
return signo;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Return the set of signals used by the threads library in *SET. */
|
|
|
|
|
|
|
|
|
|
void
|
|
|
|
|
lin_thread_get_thread_signals (sigset_t *set)
|
|
|
|
|
{
|
2000-09-09 15:54:20 +08:00
|
|
|
|
struct sigaction action;
|
|
|
|
|
int restart, cancel;
|
2000-09-04 02:41:28 +08:00
|
|
|
|
|
|
|
|
|
sigemptyset (set);
|
|
|
|
|
|
|
|
|
|
restart = get_signo ("__pthread_sig_restart");
|
|
|
|
|
if (restart == 0)
|
|
|
|
|
return;
|
|
|
|
|
|
|
|
|
|
cancel = get_signo ("__pthread_sig_cancel");
|
|
|
|
|
if (cancel == 0)
|
|
|
|
|
return;
|
|
|
|
|
|
|
|
|
|
sigaddset (set, restart);
|
|
|
|
|
sigaddset (set, cancel);
|
2000-09-09 15:54:20 +08:00
|
|
|
|
|
|
|
|
|
/* The LinuxThreads library makes terminating threads send a special
|
|
|
|
|
"cancel" signal instead of SIGCHLD. Make sure we catch those (to
|
|
|
|
|
prevent them from terminating GDB itself, which is likely to be
|
|
|
|
|
their default action) and treat them the same way as SIGCHLD. */
|
|
|
|
|
|
|
|
|
|
action.sa_handler = sigchld_handler;
|
|
|
|
|
sigemptyset (&action.sa_mask);
|
|
|
|
|
action.sa_flags = 0;
|
|
|
|
|
sigaction (cancel, &action, NULL);
|
|
|
|
|
|
|
|
|
|
/* We block the "cancel" signal throughout this code ... */
|
|
|
|
|
sigaddset (&blocked_mask, cancel);
|
|
|
|
|
sigprocmask (SIG_BLOCK, &blocked_mask, NULL);
|
|
|
|
|
|
|
|
|
|
/* ... except during a sigsuspend. */
|
|
|
|
|
sigdelset (&suspend_mask, cancel);
|
2000-09-04 02:41:28 +08:00
|
|
|
|
}
|