binutils-gdb/sim/arm/iwmmxt.c

3732 lines
82 KiB
C
Raw Normal View History

2003-03-28 01:13:33 +08:00
/* iwmmxt.c -- Intel(r) Wireless MMX(tm) technology co-processor interface.
Copyright (C) 2002, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
2003-03-28 01:13:33 +08:00
Contributed by matthew green (mrg@redhat.com).
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
2003-03-28 01:13:33 +08:00
(at your option) any later version.
2003-03-28 01:13:33 +08:00
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
2003-03-28 01:13:33 +08:00
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
2003-03-28 01:13:33 +08:00
#include <string.h>
2003-03-28 01:13:33 +08:00
#include "armdefs.h"
#include "armos.h"
#include "armemu.h"
#include "ansidecl.h"
#include "iwmmxt.h"
/* #define DEBUG 1 */
/* Intel(r) Wireless MMX(tm) technology co-processor.
It uses co-processor numbers (0 and 1). There are 16 vector registers wRx
and 16 control registers wCx. Co-processors 0 and 1 are used in MCR/MRC
to access wRx and wCx respectively. */
static ARMdword wR[16];
static ARMword wC[16] = { 0x69051010 };
#define SUBSTR(w,t,m,n) ((t)(w << ((sizeof (t) * 8 - 1) - (n))) \
>> (((sizeof (t) * 8 - 1) - (n)) + (m)))
#define wCBITS(w,x,y) SUBSTR (wC[w], ARMword, x, y)
#define wRBITS(w,x,y) SUBSTR (wR[w], ARMdword, x, y)
#define wCID 0
#define wCon 1
#define wCSSF 2
#define wCASF 3
#define wCGR0 8
#define wCGR1 9
#define wCGR2 10
#define wCGR3 11
/* Bits in the wCon register. */
#define WCON_CUP (1 << 0)
#define WCON_MUP (1 << 1)
/* Set the SIMD wCASF flags for 8, 16, 32 or 64-bit operations. */
#define SIMD8_SET(x, v, n, b) (x) |= ((v != 0) << ((((b) + 1) * 4) + (n)))
#define SIMD16_SET(x, v, n, h) (x) |= ((v != 0) << ((((h) + 1) * 8) + (n)))
#define SIMD32_SET(x, v, n, w) (x) |= ((v != 0) << ((((w) + 1) * 16) + (n)))
#define SIMD64_SET(x, v, n) (x) |= ((v != 0) << (32 + (n)))
/* Flags to pass as "n" above. */
#define SIMD_NBIT -1
#define SIMD_ZBIT -2
#define SIMD_CBIT -3
#define SIMD_VBIT -4
/* Various status bit macros. */
#define NBIT8(x) ((x) & 0x80)
#define NBIT16(x) ((x) & 0x8000)
#define NBIT32(x) ((x) & 0x80000000)
#define NBIT64(x) ((x) & 0x8000000000000000ULL)
#define ZBIT8(x) (((x) & 0xff) == 0)
#define ZBIT16(x) (((x) & 0xffff) == 0)
#define ZBIT32(x) (((x) & 0xffffffff) == 0)
#define ZBIT64(x) (x == 0)
/* Access byte/half/word "n" of register "x". */
#define wRBYTE(x,n) wRBITS ((x), (n) * 8, (n) * 8 + 7)
#define wRHALF(x,n) wRBITS ((x), (n) * 16, (n) * 16 + 15)
#define wRWORD(x,n) wRBITS ((x), (n) * 32, (n) * 32 + 31)
/* Macro to handle how the G bit selects wCGR registers. */
#define DECODE_G_BIT(state, instr, shift) \
{ \
unsigned int reg; \
\
reg = BITS (0, 3); \
\
if (BIT (8)) /* G */ \
{ \
if (reg < wCGR0 || reg > wCGR3) \
{ \
ARMul_UndefInstr (state, instr); \
return ARMul_DONE; \
} \
shift = wC [reg]; \
} \
else \
shift = wR [reg]; \
\
shift &= 0xff; \
}
/* Index calculations for the satrv[] array. */
#define BITIDX8(x) (x)
#define BITIDX16(x) (((x) + 1) * 2 - 1)
#define BITIDX32(x) (((x) + 1) * 4 - 1)
/* Sign extension macros. */
#define EXTEND8(a) ((a) & 0x80 ? ((a) | 0xffffff00) : (a))
#define EXTEND16(a) ((a) & 0x8000 ? ((a) | 0xffff0000) : (a))
#define EXTEND32(a) ((a) & 0x80000000ULL ? ((a) | 0xffffffff00000000ULL) : (a))
/* Set the wCSSF from 8 values. */
#define SET_wCSSF(a,b,c,d,e,f,g,h) \
wC[wCSSF] = (((h) != 0) << 7) | (((g) != 0) << 6) \
| (((f) != 0) << 5) | (((e) != 0) << 4) \
| (((d) != 0) << 3) | (((c) != 0) << 2) \
| (((b) != 0) << 1) | (((a) != 0) << 0);
/* Set the wCSSR from an array with 8 values. */
#define SET_wCSSFvec(v) \
SET_wCSSF((v)[0],(v)[1],(v)[2],(v)[3],(v)[4],(v)[5],(v)[6],(v)[7])
/* Size qualifiers for vector operations. */
#define Bqual 0
#define Hqual 1
#define Wqual 2
#define Dqual 3
/* Saturation qualifiers for vector operations. */
#define NoSaturation 0
#define UnsignedSaturation 1
#define SignedSaturation 3
/* Prototypes. */
static ARMword Add32 (ARMword, ARMword, int *, int *, ARMword);
static ARMdword AddS32 (ARMdword, ARMdword, int *, int *);
static ARMdword AddU32 (ARMdword, ARMdword, int *, int *);
static ARMword AddS16 (ARMword, ARMword, int *, int *);
static ARMword AddU16 (ARMword, ARMword, int *, int *);
static ARMword AddS8 (ARMword, ARMword, int *, int *);
static ARMword AddU8 (ARMword, ARMword, int *, int *);
static ARMword Sub32 (ARMword, ARMword, int *, int *, ARMword);
static ARMdword SubS32 (ARMdword, ARMdword, int *, int *);
static ARMdword SubU32 (ARMdword, ARMdword, int *, int *);
static ARMword SubS16 (ARMword, ARMword, int *, int *);
static ARMword SubS8 (ARMword, ARMword, int *, int *);
static ARMword SubU16 (ARMword, ARMword, int *, int *);
static ARMword SubU8 (ARMword, ARMword, int *, int *);
static unsigned char IwmmxtSaturateU8 (signed short, int *);
static signed char IwmmxtSaturateS8 (signed short, int *);
static unsigned short IwmmxtSaturateU16 (signed int, int *);
static signed short IwmmxtSaturateS16 (signed int, int *);
static unsigned long IwmmxtSaturateU32 (signed long long, int *);
static signed long IwmmxtSaturateS32 (signed long long, int *);
static ARMword Compute_Iwmmxt_Address (ARMul_State *, ARMword, int *);
static ARMdword Iwmmxt_Load_Double_Word (ARMul_State *, ARMword);
static ARMword Iwmmxt_Load_Word (ARMul_State *, ARMword);
static ARMword Iwmmxt_Load_Half_Word (ARMul_State *, ARMword);
static ARMword Iwmmxt_Load_Byte (ARMul_State *, ARMword);
static void Iwmmxt_Store_Double_Word (ARMul_State *, ARMword, ARMdword);
static void Iwmmxt_Store_Word (ARMul_State *, ARMword, ARMword);
static void Iwmmxt_Store_Half_Word (ARMul_State *, ARMword, ARMword);
static void Iwmmxt_Store_Byte (ARMul_State *, ARMword, ARMword);
static int Process_Instruction (ARMul_State *, ARMword);
static int TANDC (ARMul_State *, ARMword);
static int TBCST (ARMul_State *, ARMword);
static int TEXTRC (ARMul_State *, ARMword);
static int TEXTRM (ARMul_State *, ARMword);
static int TINSR (ARMul_State *, ARMword);
static int TMCR (ARMul_State *, ARMword);
static int TMCRR (ARMul_State *, ARMword);
static int TMIA (ARMul_State *, ARMword);
static int TMIAPH (ARMul_State *, ARMword);
static int TMIAxy (ARMul_State *, ARMword);
static int TMOVMSK (ARMul_State *, ARMword);
static int TMRC (ARMul_State *, ARMword);
static int TMRRC (ARMul_State *, ARMword);
static int TORC (ARMul_State *, ARMword);
static int WACC (ARMul_State *, ARMword);
static int WADD (ARMul_State *, ARMword);
static int WALIGNI (ARMword);
static int WALIGNR (ARMul_State *, ARMword);
static int WAND (ARMword);
static int WANDN (ARMword);
static int WAVG2 (ARMword);
static int WCMPEQ (ARMul_State *, ARMword);
static int WCMPGT (ARMul_State *, ARMword);
static int WLDR (ARMul_State *, ARMword);
static int WMAC (ARMword);
static int WMADD (ARMword);
static int WMAX (ARMul_State *, ARMword);
static int WMIN (ARMul_State *, ARMword);
static int WMUL (ARMword);
static int WOR (ARMword);
static int WPACK (ARMul_State *, ARMword);
static int WROR (ARMul_State *, ARMword);
static int WSAD (ARMword);
static int WSHUFH (ARMword);
static int WSLL (ARMul_State *, ARMword);
static int WSRA (ARMul_State *, ARMword);
static int WSRL (ARMul_State *, ARMword);
static int WSTR (ARMul_State *, ARMword);
static int WSUB (ARMul_State *, ARMword);
static int WUNPCKEH (ARMul_State *, ARMword);
static int WUNPCKEL (ARMul_State *, ARMword);
static int WUNPCKIH (ARMul_State *, ARMword);
static int WUNPCKIL (ARMul_State *, ARMword);
static int WXOR (ARMword);
/* This function does the work of adding two 32bit values
together, and calculating if a carry has occurred. */
static ARMword
Add32 (ARMword a1,
ARMword a2,
int * carry_ptr,
int * overflow_ptr,
ARMword sign_mask)
{
ARMword result = (a1 + a2);
unsigned int uresult = (unsigned int) result;
unsigned int ua1 = (unsigned int) a1;
/* If (result == a1) and (a2 == 0),
or (result > a2) then we have no carry. */
* carry_ptr = ((uresult == ua1) ? (a2 != 0) : (uresult < ua1));
/* Overflow occurs when both arguments are the
same sign, but the result is a different sign. */
* overflow_ptr = ( ( (result & sign_mask) && !(a1 & sign_mask) && !(a2 & sign_mask))
|| (!(result & sign_mask) && (a1 & sign_mask) && (a2 & sign_mask)));
return result;
}
static ARMdword
AddS32 (ARMdword a1, ARMdword a2, int * carry_ptr, int * overflow_ptr)
{
ARMdword result;
unsigned int uresult;
unsigned int ua1;
a1 = EXTEND32 (a1);
a2 = EXTEND32 (a2);
result = a1 + a2;
uresult = (unsigned int) result;
ua1 = (unsigned int) a1;
* carry_ptr = ((uresult == a1) ? (a2 != 0) : (uresult < ua1));
* overflow_ptr = ( ( (result & 0x80000000ULL) && !(a1 & 0x80000000ULL) && !(a2 & 0x80000000ULL))
|| (!(result & 0x80000000ULL) && (a1 & 0x80000000ULL) && (a2 & 0x80000000ULL)));
return result;
}
static ARMdword
AddU32 (ARMdword a1, ARMdword a2, int * carry_ptr, int * overflow_ptr)
{
ARMdword result;
unsigned int uresult;
unsigned int ua1;
a1 &= 0xffffffff;
a2 &= 0xffffffff;
result = a1 + a2;
uresult = (unsigned int) result;
ua1 = (unsigned int) a1;
* carry_ptr = ((uresult == a1) ? (a2 != 0) : (uresult < ua1));
* overflow_ptr = ( ( (result & 0x80000000ULL) && !(a1 & 0x80000000ULL) && !(a2 & 0x80000000ULL))
|| (!(result & 0x80000000ULL) && (a1 & 0x80000000ULL) && (a2 & 0x80000000ULL)));
return result;
}
static ARMword
AddS16 (ARMword a1, ARMword a2, int * carry_ptr, int * overflow_ptr)
{
a1 = EXTEND16 (a1);
a2 = EXTEND16 (a2);
return Add32 (a1, a2, carry_ptr, overflow_ptr, 0x8000);
}
static ARMword
AddU16 (ARMword a1, ARMword a2, int * carry_ptr, int * overflow_ptr)
{
a1 &= 0xffff;
a2 &= 0xffff;
return Add32 (a1, a2, carry_ptr, overflow_ptr, 0x8000);
}
static ARMword
AddS8 (ARMword a1, ARMword a2, int * carry_ptr, int * overflow_ptr)
{
a1 = EXTEND8 (a1);
a2 = EXTEND8 (a2);
return Add32 (a1, a2, carry_ptr, overflow_ptr, 0x80);
}
static ARMword
AddU8 (ARMword a1, ARMword a2, int * carry_ptr, int * overflow_ptr)
{
a1 &= 0xff;
a2 &= 0xff;
return Add32 (a1, a2, carry_ptr, overflow_ptr, 0x80);
}
static ARMword
Sub32 (ARMword a1,
ARMword a2,
int * borrow_ptr,
int * overflow_ptr,
ARMword sign_mask)
{
ARMword result = (a1 - a2);
unsigned int ua1 = (unsigned int) a1;
unsigned int ua2 = (unsigned int) a2;
/* A borrow occurs if a2 is (unsigned) larger than a1.
However the carry flag is *cleared* if a borrow occurs. */
* borrow_ptr = ! (ua2 > ua1);
/* Overflow occurs when a negative number is subtracted from a
positive number and the result is negative or a positive
number is subtracted from a negative number and the result is
positive. */
* overflow_ptr = ( (! (a1 & sign_mask) && (a2 & sign_mask) && (result & sign_mask))
|| ((a1 & sign_mask) && ! (a2 & sign_mask) && ! (result & sign_mask)));
return result;
}
static ARMdword
SubS32 (ARMdword a1, ARMdword a2, int * borrow_ptr, int * overflow_ptr)
{
ARMdword result;
unsigned int ua1;
unsigned int ua2;
a1 = EXTEND32 (a1);
a2 = EXTEND32 (a2);
result = a1 - a2;
ua1 = (unsigned int) a1;
ua2 = (unsigned int) a2;
* borrow_ptr = ! (ua2 > ua1);
* overflow_ptr = ( (! (a1 & 0x80000000ULL) && (a2 & 0x80000000ULL) && (result & 0x80000000ULL))
|| ((a1 & 0x80000000ULL) && ! (a2 & 0x80000000ULL) && ! (result & 0x80000000ULL)));
return result;
}
static ARMword
SubS16 (ARMword a1, ARMword a2, int * carry_ptr, int * overflow_ptr)
{
a1 = EXTEND16 (a1);
a2 = EXTEND16 (a2);
return Sub32 (a1, a2, carry_ptr, overflow_ptr, 0x8000);
}
static ARMword
SubS8 (ARMword a1, ARMword a2, int * carry_ptr, int * overflow_ptr)
{
a1 = EXTEND8 (a1);
a2 = EXTEND8 (a2);
return Sub32 (a1, a2, carry_ptr, overflow_ptr, 0x80);
}
static ARMword
SubU16 (ARMword a1, ARMword a2, int * carry_ptr, int * overflow_ptr)
{
a1 &= 0xffff;
a2 &= 0xffff;
return Sub32 (a1, a2, carry_ptr, overflow_ptr, 0x8000);
}
static ARMword
SubU8 (ARMword a1, ARMword a2, int * carry_ptr, int * overflow_ptr)
{
a1 &= 0xff;
a2 &= 0xff;
return Sub32 (a1, a2, carry_ptr, overflow_ptr, 0x80);
}
static ARMdword
SubU32 (ARMdword a1, ARMdword a2, int * borrow_ptr, int * overflow_ptr)
{
ARMdword result;
unsigned int ua1;
unsigned int ua2;
a1 &= 0xffffffff;
a2 &= 0xffffffff;
result = a1 - a2;
ua1 = (unsigned int) a1;
ua2 = (unsigned int) a2;
* borrow_ptr = ! (ua2 > ua1);
* overflow_ptr = ( (! (a1 & 0x80000000ULL) && (a2 & 0x80000000ULL) && (result & 0x80000000ULL))
|| ((a1 & 0x80000000ULL) && ! (a2 & 0x80000000ULL) && ! (result & 0x80000000ULL)));
return result;
}
/* For the saturation. */
static unsigned char
IwmmxtSaturateU8 (signed short val, int * sat)
{
unsigned char rv;
if (val < 0)
{
rv = 0;
*sat = 1;
}
else if (val > 0xff)
{
rv = 0xff;
*sat = 1;
}
else
{
rv = val & 0xff;
*sat = 0;
}
return rv;
}
static signed char
IwmmxtSaturateS8 (signed short val, int * sat)
{
signed char rv;
if (val < -0x80)
{
rv = -0x80;
*sat = 1;
}
else if (val > 0x7f)
{
rv = 0x7f;
*sat = 1;
}
else
{
rv = val & 0xff;
*sat = 0;
}
return rv;
}
static unsigned short
IwmmxtSaturateU16 (signed int val, int * sat)
{
unsigned short rv;
if (val < 0)
{
rv = 0;
*sat = 1;
}
else if (val > 0xffff)
{
rv = 0xffff;
*sat = 1;
}
else
{
rv = val & 0xffff;
*sat = 0;
}
return rv;
}
static signed short
IwmmxtSaturateS16 (signed int val, int * sat)
{
signed short rv;
if (val < -0x8000)
{
rv = - 0x8000;
*sat = 1;
}
else if (val > 0x7fff)
{
rv = 0x7fff;
*sat = 1;
}
else
{
rv = val & 0xffff;
*sat = 0;
}
return rv;
}
static unsigned long
IwmmxtSaturateU32 (signed long long val, int * sat)
{
unsigned long rv;
if (val < 0)
{
rv = 0;
*sat = 1;
}
else if (val > 0xffffffff)
{
rv = 0xffffffff;
*sat = 1;
}
else
{
rv = val & 0xffffffff;
*sat = 0;
}
return rv;
}
static signed long
IwmmxtSaturateS32 (signed long long val, int * sat)
{
signed long rv;
if (val < -0x80000000LL)
{
rv = -0x80000000;
*sat = 1;
}
else if (val > 0x7fffffff)
{
rv = 0x7fffffff;
*sat = 1;
}
else
{
rv = val & 0xffffffff;
*sat = 0;
}
return rv;
}
/* Intel(r) Wireless MMX(tm) technology Acessor functions. */
unsigned
IwmmxtLDC (ARMul_State * state ATTRIBUTE_UNUSED,
unsigned type ATTRIBUTE_UNUSED,
ARMword instr,
ARMword data)
{
return ARMul_CANT;
}
unsigned
IwmmxtSTC (ARMul_State * state ATTRIBUTE_UNUSED,
unsigned type ATTRIBUTE_UNUSED,
ARMword instr,
ARMword * data)
{
return ARMul_CANT;
}
unsigned
IwmmxtMRC (ARMul_State * state ATTRIBUTE_UNUSED,
unsigned type ATTRIBUTE_UNUSED,
ARMword instr,
ARMword * value)
{
return ARMul_CANT;
}
unsigned
IwmmxtMCR (ARMul_State * state ATTRIBUTE_UNUSED,
unsigned type ATTRIBUTE_UNUSED,
ARMword instr,
ARMword value)
{
return ARMul_CANT;
}
unsigned
IwmmxtCDP (ARMul_State * state, unsigned type, ARMword instr)
{
return ARMul_CANT;
}
/* Intel(r) Wireless MMX(tm) technology instruction implementations. */
static int
TANDC (ARMul_State * state, ARMword instr)
{
ARMword cpsr;
if ((read_cp15_reg (15, 0, 1) & 3) != 3)
return ARMul_CANT;
#ifdef DEBUG
fprintf (stderr, "tandc\n");
#endif
/* The Rd field must be r15. */
if (BITS (12, 15) != 15)
return ARMul_CANT;
/* The CRn field must be r3. */
if (BITS (16, 19) != 3)
return ARMul_CANT;
/* The CRm field must be r0. */
if (BITS (0, 3) != 0)
return ARMul_CANT;
cpsr = ARMul_GetCPSR (state) & 0x0fffffff;
switch (BITS (22, 23))
{
case Bqual:
cpsr |= ( (wCBITS (wCASF, 28, 31) & wCBITS (wCASF, 24, 27)
& wCBITS (wCASF, 20, 23) & wCBITS (wCASF, 16, 19)
& wCBITS (wCASF, 12, 15) & wCBITS (wCASF, 8, 11)
& wCBITS (wCASF, 4, 7) & wCBITS (wCASF, 0, 3)) << 28);
break;
case Hqual:
cpsr |= ( (wCBITS (wCASF, 28, 31) & wCBITS (wCASF, 20, 23)
& wCBITS (wCASF, 12, 15) & wCBITS (wCASF, 4, 7)) << 28);
break;
case Wqual:
cpsr |= ((wCBITS (wCASF, 28, 31) & wCBITS (wCASF, 12, 15)) << 28);
break;
default:
ARMul_UndefInstr (state, instr);
return ARMul_DONE;
}
ARMul_SetCPSR (state, cpsr);
return ARMul_DONE;
}
static int
TBCST (ARMul_State * state, ARMword instr)
{
ARMdword Rn;
int wRd;
if ((read_cp15_reg (15, 0, 1) & 3) != 3)
return ARMul_CANT;
#ifdef DEBUG
fprintf (stderr, "tbcst\n");
#endif
Rn = state->Reg [BITS (12, 15)];
if (BITS (12, 15) == 15)
Rn &= 0xfffffffc;
wRd = BITS (16, 19);
switch (BITS (6, 7))
{
case Bqual:
Rn &= 0xff;
wR [wRd] = (Rn << 56) | (Rn << 48) | (Rn << 40) | (Rn << 32)
| (Rn << 24) | (Rn << 16) | (Rn << 8) | Rn;
break;
case Hqual:
Rn &= 0xffff;
wR [wRd] = (Rn << 48) | (Rn << 32) | (Rn << 16) | Rn;
break;
case Wqual:
Rn &= 0xffffffff;
wR [wRd] = (Rn << 32) | Rn;
break;
default:
ARMul_UndefInstr (state, instr);
break;
}
wC [wCon] |= WCON_MUP;
return ARMul_DONE;
}
static int
TEXTRC (ARMul_State * state, ARMword instr)
{
ARMword cpsr;
ARMword selector;
if ((read_cp15_reg (15, 0, 1) & 3) != 3)
return ARMul_CANT;
#ifdef DEBUG
fprintf (stderr, "textrc\n");
#endif
/* The Rd field must be r15. */
if (BITS (12, 15) != 15)
return ARMul_CANT;
/* The CRn field must be r3. */
if (BITS (16, 19) != 3)
return ARMul_CANT;
/* The CRm field must be 0xxx. */
if (BIT (3) != 0)
return ARMul_CANT;
selector = BITS (0, 2);
cpsr = ARMul_GetCPSR (state) & 0x0fffffff;
switch (BITS (22, 23))
{
case Bqual: selector *= 4; break;
case Hqual: selector = ((selector & 3) * 8) + 4; break;
case Wqual: selector = ((selector & 1) * 16) + 12; break;
default:
ARMul_UndefInstr (state, instr);
return ARMul_DONE;
}
cpsr |= wCBITS (wCASF, selector, selector + 3) << 28;
ARMul_SetCPSR (state, cpsr);
return ARMul_DONE;
}
static int
TEXTRM (ARMul_State * state, ARMword instr)
{
ARMword Rd;
int offset;
int wRn;
int sign;
if ((read_cp15_reg (15, 0, 1) & 3) != 3)
return ARMul_CANT;
#ifdef DEBUG
fprintf (stderr, "textrm\n");
#endif
wRn = BITS (16, 19);
sign = BIT (3);
offset = BITS (0, 2);
switch (BITS (22, 23))
{
case Bqual:
offset *= 8;
Rd = wRBITS (wRn, offset, offset + 7);
if (sign)
Rd = EXTEND8 (Rd);
break;
case Hqual:
offset = (offset & 3) * 16;
Rd = wRBITS (wRn, offset, offset + 15);
if (sign)
Rd = EXTEND16 (Rd);
break;
case Wqual:
offset = (offset & 1) * 32;
Rd = wRBITS (wRn, offset, offset + 31);
break;
default:
ARMul_UndefInstr (state, instr);
return ARMul_DONE;
}
if (BITS (12, 15) == 15)
ARMul_UndefInstr (state, instr);
else
state->Reg [BITS (12, 15)] = Rd;
return ARMul_DONE;
}
static int
TINSR (ARMul_State * state, ARMword instr)
{
ARMdword data;
ARMword offset;
int wRd;
if ((read_cp15_reg (15, 0, 1) & 3) != 3)
return ARMul_CANT;
#ifdef DEBUG
fprintf (stderr, "tinsr\n");
#endif
wRd = BITS (16, 19);
data = state->Reg [BITS (12, 15)];
offset = BITS (0, 2);
switch (BITS (6, 7))
{
case Bqual:
data &= 0xff;
switch (offset)
{
case 0: wR [wRd] = data | (wRBITS (wRd, 8, 63) << 8); break;
case 1: wR [wRd] = wRBITS (wRd, 0, 7) | (data << 8) | (wRBITS (wRd, 16, 63) << 16); break;
case 2: wR [wRd] = wRBITS (wRd, 0, 15) | (data << 16) | (wRBITS (wRd, 24, 63) << 24); break;
case 3: wR [wRd] = wRBITS (wRd, 0, 23) | (data << 24) | (wRBITS (wRd, 32, 63) << 32); break;
case 4: wR [wRd] = wRBITS (wRd, 0, 31) | (data << 32) | (wRBITS (wRd, 40, 63) << 40); break;
case 5: wR [wRd] = wRBITS (wRd, 0, 39) | (data << 40) | (wRBITS (wRd, 48, 63) << 48); break;
case 6: wR [wRd] = wRBITS (wRd, 0, 47) | (data << 48) | (wRBITS (wRd, 56, 63) << 56); break;
case 7: wR [wRd] = wRBITS (wRd, 0, 55) | (data << 56); break;
}
break;
case Hqual:
data &= 0xffff;
switch (offset & 3)
{
case 0: wR [wRd] = data | (wRBITS (wRd, 16, 63) << 16); break;
case 1: wR [wRd] = wRBITS (wRd, 0, 15) | (data << 16) | (wRBITS (wRd, 32, 63) << 32); break;
case 2: wR [wRd] = wRBITS (wRd, 0, 31) | (data << 32) | (wRBITS (wRd, 48, 63) << 48); break;
case 3: wR [wRd] = wRBITS (wRd, 0, 47) | (data << 48); break;
}
break;
case Wqual:
if (offset & 1)
wR [wRd] = wRBITS (wRd, 0, 31) | (data << 32);
else
wR [wRd] = (wRBITS (wRd, 32, 63) << 32) | data;
break;
default:
ARMul_UndefInstr (state, instr);
break;
}
wC [wCon] |= WCON_MUP;
return ARMul_DONE;
}
static int
TMCR (ARMul_State * state, ARMword instr)
{
ARMword val;
int wCreg;
if ((read_cp15_reg (15, 0, 1) & 3) != 3)
return ARMul_CANT;
#ifdef DEBUG
fprintf (stderr, "tmcr\n");
#endif
if (BITS (0, 3) != 0)
return ARMul_CANT;
val = state->Reg [BITS (12, 15)];
if (BITS (12, 15) == 15)
val &= 0xfffffffc;
wCreg = BITS (16, 19);
switch (wCreg)
{
case wCID:
/* The wCID register is read only. */
break;
case wCon:
/* Writing to the MUP or CUP bits clears them. */
wC [wCon] &= ~ (val & 0x3);
break;
case wCSSF:
/* Only the bottom 8 bits can be written to.
The higher bits write as zero. */
wC [wCSSF] = (val & 0xff);
wC [wCon] |= WCON_CUP;
break;
default:
wC [wCreg] = val;
wC [wCon] |= WCON_CUP;
break;
}
return ARMul_DONE;
}
static int
TMCRR (ARMul_State * state, ARMword instr)
{
ARMdword RdHi = state->Reg [BITS (16, 19)];
ARMword RdLo = state->Reg [BITS (12, 15)];
if ((read_cp15_reg (15, 0, 1) & 3) != 3)
return ARMul_CANT;
#ifdef DEBUG
fprintf (stderr, "tmcrr\n");
#endif
if ((BITS (16, 19) == 15) || (BITS (12, 15) == 15))
return ARMul_CANT;
wR [BITS (0, 3)] = (RdHi << 32) | RdLo;
wC [wCon] |= WCON_MUP;
return ARMul_DONE;
}
static int
TMIA (ARMul_State * state, ARMword instr)
{
signed long long a, b;
if ((read_cp15_reg (15, 0, 1) & 3) != 3)
return ARMul_CANT;
#ifdef DEBUG
fprintf (stderr, "tmia\n");
#endif
if ((BITS (0, 3) == 15) || (BITS (12, 15) == 15))
{
ARMul_UndefInstr (state, instr);
return ARMul_DONE;
}
a = state->Reg [BITS (0, 3)];
b = state->Reg [BITS (12, 15)];
a = EXTEND32 (a);
b = EXTEND32 (b);
wR [BITS (5, 8)] += a * b;
wC [wCon] |= WCON_MUP;
return ARMul_DONE;
}
static int
TMIAPH (ARMul_State * state, ARMword instr)
{
signed long a, b, result;
signed long long r;
ARMword Rm = state->Reg [BITS (0, 3)];
ARMword Rs = state->Reg [BITS (12, 15)];
if ((read_cp15_reg (15, 0, 1) & 3) != 3)
return ARMul_CANT;
#ifdef DEBUG
fprintf (stderr, "tmiaph\n");
#endif
if (BITS (0, 3) == 15 || BITS (12, 15) == 15)
{
ARMul_UndefInstr (state, instr);
return ARMul_DONE;
}
a = SUBSTR (Rs, ARMword, 16, 31);
b = SUBSTR (Rm, ARMword, 16, 31);
a = EXTEND16 (a);
b = EXTEND16 (b);
result = a * b;
r = result;
r = EXTEND32 (r);
wR [BITS (5, 8)] += r;
a = SUBSTR (Rs, ARMword, 0, 15);
b = SUBSTR (Rm, ARMword, 0, 15);
a = EXTEND16 (a);
b = EXTEND16 (b);
result = a * b;
r = result;
r = EXTEND32 (r);
wR [BITS (5, 8)] += r;
wC [wCon] |= WCON_MUP;
return ARMul_DONE;
}
static int
TMIAxy (ARMul_State * state, ARMword instr)
{
ARMword Rm;
ARMword Rs;
long long temp;
if ((read_cp15_reg (15, 0, 1) & 3) != 3)
return ARMul_CANT;
#ifdef DEBUG
fprintf (stderr, "tmiaxy\n");
#endif
if (BITS (0, 3) == 15 || BITS (12, 15) == 15)
{
ARMul_UndefInstr (state, instr);
return ARMul_DONE;
}
Rm = state->Reg [BITS (0, 3)];
if (BIT (17))
Rm >>= 16;
else
Rm &= 0xffff;
Rs = state->Reg [BITS (12, 15)];
if (BIT (16))
Rs >>= 16;
else
Rs &= 0xffff;
if (Rm & (1 << 15))
Rm -= 1 << 16;
if (Rs & (1 << 15))
Rs -= 1 << 16;
Rm *= Rs;
temp = Rm;
if (temp & (1 << 31))
temp -= 1ULL << 32;
wR [BITS (5, 8)] += temp;
wC [wCon] |= WCON_MUP;
return ARMul_DONE;
}
static int
TMOVMSK (ARMul_State * state, ARMword instr)
{
ARMdword result;
int wRn;
if ((read_cp15_reg (15, 0, 1) & 3) != 3)
return ARMul_CANT;
#ifdef DEBUG
fprintf (stderr, "tmovmsk\n");
#endif
/* The CRm field must be r0. */
if (BITS (0, 3) != 0)
return ARMul_CANT;
wRn = BITS (16, 19);
switch (BITS (22, 23))
{
case Bqual:
result = ( (wRBITS (wRn, 63, 63) << 7)
| (wRBITS (wRn, 55, 55) << 6)
| (wRBITS (wRn, 47, 47) << 5)
| (wRBITS (wRn, 39, 39) << 4)
| (wRBITS (wRn, 31, 31) << 3)
| (wRBITS (wRn, 23, 23) << 2)
| (wRBITS (wRn, 15, 15) << 1)
| (wRBITS (wRn, 7, 7) << 0));
break;
case Hqual:
result = ( (wRBITS (wRn, 63, 63) << 3)
| (wRBITS (wRn, 47, 47) << 2)
| (wRBITS (wRn, 31, 31) << 1)
| (wRBITS (wRn, 15, 15) << 0));
break;
case Wqual:
result = (wRBITS (wRn, 63, 63) << 1) | wRBITS (wRn, 31, 31);
break;
default:
ARMul_UndefInstr (state, instr);
return ARMul_DONE;
}
state->Reg [BITS (12, 15)] = result;
return ARMul_DONE;
}
static int
TMRC (ARMul_State * state, ARMword instr)
{
int reg = BITS (12, 15);
if ((read_cp15_reg (15, 0, 1) & 3) != 3)
return ARMul_CANT;
#ifdef DEBUG
fprintf (stderr, "tmrc\n");
#endif
if (BITS (0, 3) != 0)
return ARMul_CANT;
if (reg == 15)
ARMul_UndefInstr (state, instr);
else
state->Reg [reg] = wC [BITS (16, 19)];
return ARMul_DONE;
}
static int
TMRRC (ARMul_State * state, ARMword instr)
{
if ((read_cp15_reg (15, 0, 1) & 3) != 3)
return ARMul_CANT;
#ifdef DEBUG
fprintf (stderr, "tmrrc\n");
#endif
if ((BITS (16, 19) == 15) || (BITS (12, 15) == 15) || (BITS (4, 11) != 0))
ARMul_UndefInstr (state, instr);
else
{
state->Reg [BITS (16, 19)] = wRBITS (BITS (0, 3), 32, 63);
state->Reg [BITS (12, 15)] = wRBITS (BITS (0, 3), 0, 31);
}
return ARMul_DONE;
}
static int
TORC (ARMul_State * state, ARMword instr)
{
ARMword cpsr = ARMul_GetCPSR (state);
if ((read_cp15_reg (15, 0, 1) & 3) != 3)
return ARMul_CANT;
#ifdef DEBUG
fprintf (stderr, "torc\n");
#endif
/* The Rd field must be r15. */
if (BITS (12, 15) != 15)
return ARMul_CANT;
/* The CRn field must be r3. */
if (BITS (16, 19) != 3)
return ARMul_CANT;
/* The CRm field must be r0. */
if (BITS (0, 3) != 0)
return ARMul_CANT;
cpsr &= 0x0fffffff;
switch (BITS (22, 23))
{
case Bqual:
cpsr |= ( (wCBITS (wCASF, 28, 31) | wCBITS (wCASF, 24, 27)
| wCBITS (wCASF, 20, 23) | wCBITS (wCASF, 16, 19)
| wCBITS (wCASF, 12, 15) | wCBITS (wCASF, 8, 11)
| wCBITS (wCASF, 4, 7) | wCBITS (wCASF, 0, 3)) << 28);
break;
case Hqual:
cpsr |= ( (wCBITS (wCASF, 28, 31) | wCBITS (wCASF, 20, 23)
| wCBITS (wCASF, 12, 15) | wCBITS (wCASF, 4, 7)) << 28);
break;
case Wqual:
cpsr |= ((wCBITS (wCASF, 28, 31) | wCBITS (wCASF, 12, 15)) << 28);
break;
default:
ARMul_UndefInstr (state, instr);
return ARMul_DONE;
}
ARMul_SetCPSR (state, cpsr);
return ARMul_DONE;
}
static int
WACC (ARMul_State * state, ARMword instr)
{
int wRn;
if ((read_cp15_reg (15, 0, 1) & 3) != 3)
return ARMul_CANT;
#ifdef DEBUG
fprintf (stderr, "wacc\n");
#endif
wRn = BITS (16, 19);
switch (BITS (22, 23))
{
case Bqual:
wR [BITS (12, 15)] =
wRBITS (wRn, 56, 63) + wRBITS (wRn, 48, 55)
+ wRBITS (wRn, 40, 47) + wRBITS (wRn, 32, 39)
+ wRBITS (wRn, 24, 31) + wRBITS (wRn, 16, 23)
+ wRBITS (wRn, 8, 15) + wRBITS (wRn, 0, 7);
break;
case Hqual:
wR [BITS (12, 15)] =
wRBITS (wRn, 48, 63) + wRBITS (wRn, 32, 47)
+ wRBITS (wRn, 16, 31) + wRBITS (wRn, 0, 15);
break;
case Wqual:
wR [BITS (12, 15)] = wRBITS (wRn, 32, 63) + wRBITS (wRn, 0, 31);
break;
default:
ARMul_UndefInstr (state, instr);
break;
}
wC [wCon] |= WCON_MUP;
return ARMul_DONE;
}
static int
WADD (ARMul_State * state, ARMword instr)
{
ARMdword r = 0;
ARMdword x;
ARMdword s;
ARMword psr = 0;
int i;
int carry;
int overflow;
int satrv[8];
if ((read_cp15_reg (15, 0, 1) & 3) != 3)
return ARMul_CANT;
#ifdef DEBUG
fprintf (stderr, "wadd\n");
#endif
/* Add two numbers using the specified function,
leaving setting the carry bit as required. */
#define ADDx(x, y, m, f) \
(*f) (wRBITS (BITS (16, 19), (x), (y)) & (m), \
wRBITS (BITS ( 0, 3), (x), (y)) & (m), \
& carry, & overflow)
switch (BITS (22, 23))
{
case Bqual:
for (i = 0; i < 8; i++)
{
switch (BITS (20, 21))
{
case NoSaturation:
s = ADDx ((i * 8), (i * 8) + 7, 0xff, AddS8);
satrv [BITIDX8 (i)] = 0;
r |= (s & 0xff) << (i * 8);
SIMD8_SET (psr, NBIT8 (s), SIMD_NBIT, i);
SIMD8_SET (psr, ZBIT8 (s), SIMD_ZBIT, i);
SIMD8_SET (psr, carry, SIMD_CBIT, i);
SIMD8_SET (psr, overflow, SIMD_VBIT, i);
break;
case UnsignedSaturation:
s = ADDx ((i * 8), (i * 8) + 7, 0xff, AddU8);
x = IwmmxtSaturateU8 (s, satrv + BITIDX8 (i));
r |= (x & 0xff) << (i * 8);
SIMD8_SET (psr, NBIT8 (x), SIMD_NBIT, i);
SIMD8_SET (psr, ZBIT8 (x), SIMD_ZBIT, i);
if (! satrv [BITIDX8 (i)])
{
SIMD8_SET (psr, carry, SIMD_CBIT, i);
SIMD8_SET (psr, overflow, SIMD_VBIT, i);
}
break;
case SignedSaturation:
s = ADDx ((i * 8), (i * 8) + 7, 0xff, AddS8);
x = IwmmxtSaturateS8 (s, satrv + BITIDX8 (i));
r |= (x & 0xff) << (i * 8);
SIMD8_SET (psr, NBIT8 (x), SIMD_NBIT, i);
SIMD8_SET (psr, ZBIT8 (x), SIMD_ZBIT, i);
if (! satrv [BITIDX8 (i)])
{
SIMD8_SET (psr, carry, SIMD_CBIT, i);
SIMD8_SET (psr, overflow, SIMD_VBIT, i);
}
break;
default:
ARMul_UndefInstr (state, instr);
return ARMul_DONE;
}
}
break;
case Hqual:
satrv[0] = satrv[2] = satrv[4] = satrv[6] = 0;
for (i = 0; i < 4; i++)
{
switch (BITS (20, 21))
{
case NoSaturation:
s = ADDx ((i * 16), (i * 16) + 15, 0xffff, AddS16);
satrv [BITIDX16 (i)] = 0;
r |= (s & 0xffff) << (i * 16);
SIMD16_SET (psr, NBIT16 (s), SIMD_NBIT, i);
SIMD16_SET (psr, ZBIT16 (s), SIMD_ZBIT, i);
SIMD16_SET (psr, carry, SIMD_CBIT, i);
SIMD16_SET (psr, overflow, SIMD_VBIT, i);
break;
case UnsignedSaturation:
s = ADDx ((i * 16), (i * 16) + 15, 0xffff, AddU16);
x = IwmmxtSaturateU16 (s, satrv + BITIDX16 (i));
r |= (x & 0xffff) << (i * 16);
SIMD16_SET (psr, NBIT16 (x), SIMD_NBIT, i);
SIMD16_SET (psr, ZBIT16 (x), SIMD_ZBIT, i);
if (! satrv [BITIDX16 (i)])
{
SIMD16_SET (psr, carry, SIMD_CBIT, i);
SIMD16_SET (psr, overflow, SIMD_VBIT, i);
}
break;
case SignedSaturation:
s = ADDx ((i * 16), (i * 16) + 15, 0xffff, AddS16);
x = IwmmxtSaturateS16 (s, satrv + BITIDX16 (i));
r |= (x & 0xffff) << (i * 16);
SIMD16_SET (psr, NBIT16 (x), SIMD_NBIT, i);
SIMD16_SET (psr, ZBIT16 (x), SIMD_ZBIT, i);
if (! satrv [BITIDX16 (i)])
{
SIMD16_SET (psr, carry, SIMD_CBIT, i);
SIMD16_SET (psr, overflow, SIMD_VBIT, i);
}
break;
default:
ARMul_UndefInstr (state, instr);
return ARMul_DONE;
}
}
break;
case Wqual:
satrv[0] = satrv[1] = satrv[2] = satrv[4] = satrv[5] = satrv[6] = 0;
for (i = 0; i < 2; i++)
{
switch (BITS (20, 21))
{
case NoSaturation:
s = ADDx ((i * 32), (i * 32) + 31, 0xffffffff, AddS32);
satrv [BITIDX32 (i)] = 0;
r |= (s & 0xffffffff) << (i * 32);
SIMD32_SET (psr, NBIT32 (s), SIMD_NBIT, i);
SIMD32_SET (psr, ZBIT32 (s), SIMD_ZBIT, i);
SIMD32_SET (psr, carry, SIMD_CBIT, i);
SIMD32_SET (psr, overflow, SIMD_VBIT, i);
break;
case UnsignedSaturation:
s = ADDx ((i * 32), (i * 32) + 31, 0xffffffff, AddU32);
x = IwmmxtSaturateU32 (s, satrv + BITIDX32 (i));
r |= (x & 0xffffffff) << (i * 32);
SIMD32_SET (psr, NBIT32 (x), SIMD_NBIT, i);
SIMD32_SET (psr, ZBIT32 (x), SIMD_ZBIT, i);
if (! satrv [BITIDX32 (i)])
{
SIMD32_SET (psr, carry, SIMD_CBIT, i);
SIMD32_SET (psr, overflow, SIMD_VBIT, i);
}
break;
case SignedSaturation:
s = ADDx ((i * 32), (i * 32) + 31, 0xffffffff, AddS32);
x = IwmmxtSaturateS32 (s, satrv + BITIDX32 (i));
r |= (x & 0xffffffff) << (i * 32);
SIMD32_SET (psr, NBIT32 (x), SIMD_NBIT, i);
SIMD32_SET (psr, ZBIT32 (x), SIMD_ZBIT, i);
if (! satrv [BITIDX32 (i)])
{
SIMD32_SET (psr, carry, SIMD_CBIT, i);
SIMD32_SET (psr, overflow, SIMD_VBIT, i);
}
break;
default:
ARMul_UndefInstr (state, instr);
return ARMul_DONE;
}
}
break;
default:
ARMul_UndefInstr (state, instr);
return ARMul_DONE;
}
wC [wCASF] = psr;
wR [BITS (12, 15)] = r;
wC [wCon] |= (WCON_MUP | WCON_CUP);
SET_wCSSFvec (satrv);
#undef ADDx
return ARMul_DONE;
}
static int
WALIGNI (ARMword instr)
{
int shift = BITS (20, 22) * 8;
if ((read_cp15_reg (15, 0, 1) & 3) != 3)
return ARMul_CANT;
#ifdef DEBUG
fprintf (stderr, "waligni\n");
#endif
if (shift)
wR [BITS (12, 15)] =
wRBITS (BITS (16, 19), shift, 63)
| (wRBITS (BITS (0, 3), 0, shift) << ((64 - shift)));
else
wR [BITS (12, 15)] = wR [BITS (16, 19)];
wC [wCon] |= WCON_MUP;
return ARMul_DONE;
}
static int
WALIGNR (ARMul_State * state, ARMword instr)
{
int shift = (wC [BITS (20, 21) + 8] & 0x7) * 8;
if ((read_cp15_reg (15, 0, 1) & 3) != 3)
return ARMul_CANT;
#ifdef DEBUG
fprintf (stderr, "walignr\n");
#endif
if (shift)
wR [BITS (12, 15)] =
wRBITS (BITS (16, 19), shift, 63)
| (wRBITS (BITS (0, 3), 0, shift) << ((64 - shift)));
else
wR [BITS (12, 15)] = wR [BITS (16, 19)];
wC [wCon] |= WCON_MUP;
return ARMul_DONE;
}
static int
WAND (ARMword instr)
{
ARMdword result;
ARMword psr = 0;
if ((read_cp15_reg (15, 0, 1) & 3) != 3)
return ARMul_CANT;
#ifdef DEBUG
fprintf (stderr, "wand\n");
#endif
result = wR [BITS (16, 19)] & wR [BITS (0, 3)];
wR [BITS (12, 15)] = result;
SIMD64_SET (psr, (result == 0), SIMD_ZBIT);
SIMD64_SET (psr, (result & (1ULL << 63)), SIMD_NBIT);
wC [wCASF] = psr;
wC [wCon] |= (WCON_CUP | WCON_MUP);
return ARMul_DONE;
}
static int
WANDN (ARMword instr)
{
ARMdword result;
ARMword psr = 0;
if ((read_cp15_reg (15, 0, 1) & 3) != 3)
return ARMul_CANT;
#ifdef DEBUG
fprintf (stderr, "wandn\n");
#endif
result = wR [BITS (16, 19)] & ~ wR [BITS (0, 3)];
wR [BITS (12, 15)] = result;
SIMD64_SET (psr, (result == 0), SIMD_ZBIT);
SIMD64_SET (psr, (result & (1ULL << 63)), SIMD_NBIT);
wC [wCASF] = psr;
wC [wCon] |= (WCON_CUP | WCON_MUP);
return ARMul_DONE;
}
static int
WAVG2 (ARMword instr)
{
ARMdword r = 0;
ARMword psr = 0;
ARMdword s;
int i;
int round = BIT (20) ? 1 : 0;
if ((read_cp15_reg (15, 0, 1) & 3) != 3)
return ARMul_CANT;
#ifdef DEBUG
fprintf (stderr, "wavg2\n");
#endif
#define AVG2x(x, y, m) (((wRBITS (BITS (16, 19), (x), (y)) & (m)) \
+ (wRBITS (BITS ( 0, 3), (x), (y)) & (m)) \
+ round) / 2)
if (BIT (22))
{
for (i = 0; i < 4; i++)
{
s = AVG2x ((i * 16), (i * 16) + 15, 0xffff) & 0xffff;
SIMD16_SET (psr, ZBIT16 (s), SIMD_ZBIT, i);
r |= s << (i * 16);
}
}
else
{
for (i = 0; i < 8; i++)
{
s = AVG2x ((i * 8), (i * 8) + 7, 0xff) & 0xff;
SIMD8_SET (psr, ZBIT8 (s), SIMD_ZBIT, i);
r |= s << (i * 8);
}
}
wR [BITS (12, 15)] = r;
wC [wCASF] = psr;
wC [wCon] |= (WCON_CUP | WCON_MUP);
return ARMul_DONE;
}
static int
WCMPEQ (ARMul_State * state, ARMword instr)
{
ARMdword r = 0;
ARMword psr = 0;
ARMdword s;
int i;
if ((read_cp15_reg (15, 0, 1) & 3) != 3)
return ARMul_CANT;
#ifdef DEBUG
fprintf (stderr, "wcmpeq\n");
#endif
switch (BITS (22, 23))
{
case Bqual:
for (i = 0; i < 8; i++)
{
s = wRBYTE (BITS (16, 19), i) == wRBYTE (BITS (0, 3), i) ? 0xff : 0;
r |= s << (i * 8);
SIMD8_SET (psr, NBIT8 (s), SIMD_NBIT, i);
SIMD8_SET (psr, ZBIT8 (s), SIMD_ZBIT, i);
}
break;
case Hqual:
for (i = 0; i < 4; i++)
{
s = wRHALF (BITS (16, 19), i) == wRHALF (BITS (0, 3), i) ? 0xffff : 0;
r |= s << (i * 16);
SIMD16_SET (psr, NBIT16 (s), SIMD_NBIT, i);
SIMD16_SET (psr, ZBIT16 (s), SIMD_ZBIT, i);
}
break;
case Wqual:
for (i = 0; i < 2; i++)
{
s = wRWORD (BITS (16, 19), i) == wRWORD (BITS (0, 3), i) ? 0xffffffff : 0;
r |= s << (i * 32);
SIMD32_SET (psr, NBIT32 (s), SIMD_NBIT, i);
SIMD32_SET (psr, ZBIT32 (s), SIMD_ZBIT, i);
}
break;
default:
ARMul_UndefInstr (state, instr);
return ARMul_DONE;
}
wC [wCASF] = psr;
wR [BITS (12, 15)] = r;
wC [wCon] |= (WCON_CUP | WCON_MUP);
return ARMul_DONE;
}
static int
WCMPGT (ARMul_State * state, ARMword instr)
{
ARMdword r = 0;
ARMword psr = 0;
ARMdword s;
int i;
if ((read_cp15_reg (15, 0, 1) & 3) != 3)
return ARMul_CANT;
#ifdef DEBUG
fprintf (stderr, "wcmpgt\n");
#endif
switch (BITS (22, 23))
{
case Bqual:
if (BIT (21))
{
/* Use a signed comparison. */
for (i = 0; i < 8; i++)
{
signed char a, b;
a = wRBYTE (BITS (16, 19), i);
b = wRBYTE (BITS (0, 3), i);
s = (a > b) ? 0xff : 0;
r |= s << (i * 8);
SIMD8_SET (psr, NBIT8 (s), SIMD_NBIT, i);
SIMD8_SET (psr, ZBIT8 (s), SIMD_ZBIT, i);
}
}
else
{
for (i = 0; i < 8; i++)
{
s = (wRBYTE (BITS (16, 19), i) > wRBYTE (BITS (0, 3), i))
? 0xff : 0;
r |= s << (i * 8);
SIMD8_SET (psr, NBIT8 (s), SIMD_NBIT, i);
SIMD8_SET (psr, ZBIT8 (s), SIMD_ZBIT, i);
}
}
break;
case Hqual:
if (BIT (21))
{
for (i = 0; i < 4; i++)
{
signed int a, b;
a = wRHALF (BITS (16, 19), i);
a = EXTEND16 (a);
b = wRHALF (BITS (0, 3), i);
b = EXTEND16 (b);
s = (a > b) ? 0xffff : 0;
r |= s << (i * 16);
SIMD16_SET (psr, NBIT16 (s), SIMD_NBIT, i);
SIMD16_SET (psr, ZBIT16 (s), SIMD_ZBIT, i);
}
}
else
{
for (i = 0; i < 4; i++)
{
s = (wRHALF (BITS (16, 19), i) > wRHALF (BITS (0, 3), i))
? 0xffff : 0;
r |= s << (i * 16);
SIMD16_SET (psr, NBIT16 (s), SIMD_NBIT, i);
SIMD16_SET (psr, ZBIT16 (s), SIMD_ZBIT, i);
}
}
break;
case Wqual:
if (BIT (21))
{
for (i = 0; i < 2; i++)
{
signed long a, b;
a = wRWORD (BITS (16, 19), i);
b = wRWORD (BITS (0, 3), i);
s = (a > b) ? 0xffffffff : 0;
r |= s << (i * 32);
SIMD32_SET (psr, NBIT32 (s), SIMD_NBIT, i);
SIMD32_SET (psr, ZBIT32 (s), SIMD_ZBIT, i);
}
}
else
{
for (i = 0; i < 2; i++)
{
s = (wRWORD (BITS (16, 19), i) > wRWORD (BITS (0, 3), i))
? 0xffffffff : 0;
r |= s << (i * 32);
SIMD32_SET (psr, NBIT32 (s), SIMD_NBIT, i);
SIMD32_SET (psr, ZBIT32 (s), SIMD_ZBIT, i);
}
}
break;
default:
ARMul_UndefInstr (state, instr);
return ARMul_DONE;
}
wC [wCASF] = psr;
wR [BITS (12, 15)] = r;
wC [wCon] |= (WCON_CUP | WCON_MUP);
return ARMul_DONE;
}
static ARMword
Compute_Iwmmxt_Address (ARMul_State * state, ARMword instr, int * pFailed)
{
ARMword Rn;
ARMword addr;
ARMword offset;
ARMword multiplier;
* pFailed = 0;
Rn = BITS (16, 19);
addr = state->Reg [Rn];
offset = BITS (0, 7);
multiplier = BIT (8) ? 4 : 1;
if (BIT (24)) /* P */
{
/* Pre Indexed Addressing. */
if (BIT (23))
addr += offset * multiplier;
else
addr -= offset * multiplier;
/* Immediate Pre-Indexed. */
if (BIT (21)) /* W */
{
if (Rn == 15)
{
/* Writeback into R15 is UNPREDICTABLE. */
#ifdef DEBUG
fprintf (stderr, "iWMMXt: writeback into r15\n");
#endif
* pFailed = 1;
}
else
state->Reg [Rn] = addr;
}
}
else
{
/* Post Indexed Addressing. */
if (BIT (21)) /* W */
{
/* Handle the write back of the final address. */
if (Rn == 15)
{
/* Writeback into R15 is UNPREDICTABLE. */
#ifdef DEBUG
fprintf (stderr, "iWMMXt: writeback into r15\n");
#endif
* pFailed = 1;
}
else
{
ARMword increment;
if (BIT (23))
increment = offset * multiplier;
else
increment = - (offset * multiplier);
state->Reg [Rn] = addr + increment;
}
}
else
{
/* P == 0, W == 0, U == 0 is UNPREDICTABLE. */
if (BIT (23) == 0)
{
#ifdef DEBUG
fprintf (stderr, "iWMMXt: undefined addressing mode\n");
#endif
* pFailed = 1;
}
}
}
return addr;
}
static ARMdword
Iwmmxt_Load_Double_Word (ARMul_State * state, ARMword address)
{
ARMdword value;
/* The address must be aligned on a 8 byte boundary. */
if (address & 0x7)
{
fprintf (stderr, "iWMMXt: At addr 0x%x: Unaligned double word load from 0x%x\n",
(state->Reg[15] - 8) & ~0x3, address);
#ifdef DEBUG
#endif
/* No need to check for alignment traps. An unaligned
double word load with alignment trapping disabled is
UNPREDICTABLE. */
ARMul_Abort (state, ARMul_DataAbortV);
}
/* Load the words. */
if (! state->bigendSig)
{
value = ARMul_LoadWordN (state, address + 4);
value <<= 32;
value |= ARMul_LoadWordN (state, address);
}
else
{
value = ARMul_LoadWordN (state, address);
value <<= 32;
value |= ARMul_LoadWordN (state, address + 4);
}
/* Check for data aborts. */
if (state->Aborted)
ARMul_Abort (state, ARMul_DataAbortV);
else
ARMul_Icycles (state, 2, 0L);
return value;
}
static ARMword
Iwmmxt_Load_Word (ARMul_State * state, ARMword address)
{
ARMword value;
/* Check for a misaligned address. */
if (address & 3)
{
if ((read_cp15_reg (1, 0, 0) & ARMul_CP15_R1_ALIGN))
ARMul_Abort (state, ARMul_DataAbortV);
else
address &= ~ 3;
}
value = ARMul_LoadWordN (state, address);
if (state->Aborted)
ARMul_Abort (state, ARMul_DataAbortV);
else
ARMul_Icycles (state, 1, 0L);
return value;
}
static ARMword
Iwmmxt_Load_Half_Word (ARMul_State * state, ARMword address)
{
ARMword value;
/* Check for a misaligned address. */
if (address & 1)
{
if ((read_cp15_reg (1, 0, 0) & ARMul_CP15_R1_ALIGN))
ARMul_Abort (state, ARMul_DataAbortV);
else
address &= ~ 1;
}
value = ARMul_LoadHalfWord (state, address);
if (state->Aborted)
ARMul_Abort (state, ARMul_DataAbortV);
else
ARMul_Icycles (state, 1, 0L);
return value;
}
static ARMword
Iwmmxt_Load_Byte (ARMul_State * state, ARMword address)
{
ARMword value;
value = ARMul_LoadByte (state, address);
if (state->Aborted)
ARMul_Abort (state, ARMul_DataAbortV);
else
ARMul_Icycles (state, 1, 0L);
return value;
}
static void
Iwmmxt_Store_Double_Word (ARMul_State * state, ARMword address, ARMdword value)
{
/* The address must be aligned on a 8 byte boundary. */
if (address & 0x7)
{
fprintf (stderr, "iWMMXt: At addr 0x%x: Unaligned double word store to 0x%x\n",
(state->Reg[15] - 8) & ~0x3, address);
#ifdef DEBUG
#endif
/* No need to check for alignment traps. An unaligned
double word store with alignment trapping disabled is
UNPREDICTABLE. */
ARMul_Abort (state, ARMul_DataAbortV);
}
/* Store the words. */
if (! state->bigendSig)
{
ARMul_StoreWordN (state, address, value);
ARMul_StoreWordN (state, address + 4, value >> 32);
}
else
{
ARMul_StoreWordN (state, address + 4, value);
ARMul_StoreWordN (state, address, value >> 32);
}
/* Check for data aborts. */
if (state->Aborted)
ARMul_Abort (state, ARMul_DataAbortV);
else
ARMul_Icycles (state, 2, 0L);
}
static void
Iwmmxt_Store_Word (ARMul_State * state, ARMword address, ARMword value)
{
/* Check for a misaligned address. */
if (address & 3)
{
if ((read_cp15_reg (1, 0, 0) & ARMul_CP15_R1_ALIGN))
ARMul_Abort (state, ARMul_DataAbortV);
else
address &= ~ 3;
}
ARMul_StoreWordN (state, address, value);
if (state->Aborted)
ARMul_Abort (state, ARMul_DataAbortV);
}
static void
Iwmmxt_Store_Half_Word (ARMul_State * state, ARMword address, ARMword value)
{
/* Check for a misaligned address. */
if (address & 1)
{
if ((read_cp15_reg (1, 0, 0) & ARMul_CP15_R1_ALIGN))
ARMul_Abort (state, ARMul_DataAbortV);
else
address &= ~ 1;
}
ARMul_StoreHalfWord (state, address, value);
if (state->Aborted)
ARMul_Abort (state, ARMul_DataAbortV);
}
static void
Iwmmxt_Store_Byte (ARMul_State * state, ARMword address, ARMword value)
{
ARMul_StoreByte (state, address, value);
if (state->Aborted)
ARMul_Abort (state, ARMul_DataAbortV);
}
static int
WLDR (ARMul_State * state, ARMword instr)
{
ARMword address;
int failed;
if ((read_cp15_reg (15, 0, 1) & 3) != 3)
return ARMul_CANT;
#ifdef DEBUG
fprintf (stderr, "wldr\n");
#endif
address = Compute_Iwmmxt_Address (state, instr, & failed);
if (failed)
return ARMul_CANT;
if (BITS (28, 31) == 0xf)
{
/* WLDRW wCx */
wC [BITS (12, 15)] = Iwmmxt_Load_Word (state, address);
}
else if (BIT (8) == 0)
{
if (BIT (22) == 0)
/* WLDRB */
wR [BITS (12, 15)] = Iwmmxt_Load_Byte (state, address);
else
/* WLDRH */
wR [BITS (12, 15)] = Iwmmxt_Load_Half_Word (state, address);
}
else
{
if (BIT (22) == 0)
/* WLDRW wRd */
wR [BITS (12, 15)] = Iwmmxt_Load_Word (state, address);
else
/* WLDRD */
wR [BITS (12, 15)] = Iwmmxt_Load_Double_Word (state, address);
}
wC [wCon] |= WCON_MUP;
return ARMul_DONE;
}
static int
WMAC (ARMword instr)
{
int i;
ARMdword t = 0;
ARMword a, b;
if ((read_cp15_reg (15, 0, 1) & 3) != 3)
return ARMul_CANT;
#ifdef DEBUG
fprintf (stderr, "wmac\n");
#endif
for (i = 0; i < 4; i++)
{
if (BIT (21))
{
/* Signed. */
signed long s;
a = wRHALF (BITS (16, 19), i);
a = EXTEND16 (a);
b = wRHALF (BITS (0, 3), i);
b = EXTEND16 (b);
s = (signed long) a * (signed long) b;
t = t + (ARMdword) s;
2003-03-28 01:13:33 +08:00
}
else
{
/* Unsigned. */
a = wRHALF (BITS (16, 19), i);
b = wRHALF (BITS ( 0, 3), i);
t += a * b;
}
}
if (BIT (20))
wR [BITS (12, 15)] = 0;
if (BIT (21)) /* Signed. */
wR[BITS (12, 15)] += t;
2003-03-28 01:13:33 +08:00
else
wR [BITS (12, 15)] += t;
wC [wCon] |= WCON_MUP;
return ARMul_DONE;
}
static int
WMADD (ARMword instr)
{
ARMdword r = 0;
int i;
if ((read_cp15_reg (15, 0, 1) & 3) != 3)
return ARMul_CANT;
#ifdef DEBUG
fprintf (stderr, "wmadd\n");
#endif
for (i = 0; i < 2; i++)
{
ARMdword s1, s2;
if (BIT (21)) /* Signed. */
{
signed long a, b;
a = wRHALF (BITS (16, 19), i * 2);
a = EXTEND16 (a);
b = wRHALF (BITS (0, 3), i * 2);
b = EXTEND16 (b);
s1 = (ARMdword) (a * b);
2003-03-28 01:13:33 +08:00
a = wRHALF (BITS (16, 19), i * 2 + 1);
a = EXTEND16 (a);
b = wRHALF (BITS (0, 3), i * 2 + 1);
b = EXTEND16 (b);
s2 = (ARMdword) (a * b);
2003-03-28 01:13:33 +08:00
}
else /* Unsigned. */
{
unsigned long a, b;
a = wRHALF (BITS (16, 19), i * 2);
b = wRHALF (BITS ( 0, 3), i * 2);
s1 = (ARMdword) (a * b);
2003-03-28 01:13:33 +08:00
a = wRHALF (BITS (16, 19), i * 2 + 1);
b = wRHALF (BITS ( 0, 3), i * 2 + 1);
s2 = (ARMdword) a * b;
2003-03-28 01:13:33 +08:00
}
r |= (ARMdword) ((s1 + s2) & 0xffffffff) << (i ? 32 : 0);
}
wR [BITS (12, 15)] = r;
wC [wCon] |= WCON_MUP;
return ARMul_DONE;
}
static int
WMAX (ARMul_State * state, ARMword instr)
{
ARMdword r = 0;
ARMdword s;
int i;
if ((read_cp15_reg (15, 0, 1) & 3) != 3)
return ARMul_CANT;
#ifdef DEBUG
fprintf (stderr, "wmax\n");
#endif
switch (BITS (22, 23))
{
case Bqual:
for (i = 0; i < 8; i++)
if (BIT (21)) /* Signed. */
{
int a, b;
a = wRBYTE (BITS (16, 19), i);
a = EXTEND8 (a);
b = wRBYTE (BITS (0, 3), i);
b = EXTEND8 (b);
if (a > b)
s = a;
else
s = b;
r |= (s & 0xff) << (i * 8);
}
else /* Unsigned. */
{
unsigned int a, b;
a = wRBYTE (BITS (16, 19), i);
b = wRBYTE (BITS (0, 3), i);
if (a > b)
s = a;
else
s = b;
r |= (s & 0xff) << (i * 8);
}
break;
case Hqual:
for (i = 0; i < 4; i++)
if (BIT (21)) /* Signed. */
{
int a, b;
a = wRHALF (BITS (16, 19), i);
a = EXTEND16 (a);
b = wRHALF (BITS (0, 3), i);
b = EXTEND16 (b);
if (a > b)
s = a;
else
s = b;
r |= (s & 0xffff) << (i * 16);
}
else /* Unsigned. */
{
unsigned int a, b;
a = wRHALF (BITS (16, 19), i);
b = wRHALF (BITS (0, 3), i);
if (a > b)
s = a;
else
s = b;
r |= (s & 0xffff) << (i * 16);
}
break;
case Wqual:
for (i = 0; i < 2; i++)
if (BIT (21)) /* Signed. */
{
int a, b;
a = wRWORD (BITS (16, 19), i);
b = wRWORD (BITS (0, 3), i);
if (a > b)
s = a;
else
s = b;
r |= (s & 0xffffffff) << (i * 32);
}
else
{
unsigned int a, b;
a = wRWORD (BITS (16, 19), i);
b = wRWORD (BITS (0, 3), i);
if (a > b)
s = a;
else
s = b;
r |= (s & 0xffffffff) << (i * 32);
}
break;
default:
ARMul_UndefInstr (state, instr);
return ARMul_DONE;
}
wR [BITS (12, 15)] = r;
wC [wCon] |= WCON_MUP;
return ARMul_DONE;
}
static int
WMIN (ARMul_State * state, ARMword instr)
{
ARMdword r = 0;
ARMdword s;
int i;
if ((read_cp15_reg (15, 0, 1) & 3) != 3)
return ARMul_CANT;
#ifdef DEBUG
fprintf (stderr, "wmin\n");
#endif
switch (BITS (22, 23))
{
case Bqual:
for (i = 0; i < 8; i++)
if (BIT (21)) /* Signed. */
{
int a, b;
a = wRBYTE (BITS (16, 19), i);
a = EXTEND8 (a);
b = wRBYTE (BITS (0, 3), i);
b = EXTEND8 (b);
if (a < b)
s = a;
else
s = b;
r |= (s & 0xff) << (i * 8);
}
else /* Unsigned. */
{
unsigned int a, b;
a = wRBYTE (BITS (16, 19), i);
b = wRBYTE (BITS (0, 3), i);
if (a < b)
s = a;
else
s = b;
r |= (s & 0xff) << (i * 8);
}
break;
case Hqual:
for (i = 0; i < 4; i++)
if (BIT (21)) /* Signed. */
{
int a, b;
a = wRHALF (BITS (16, 19), i);
a = EXTEND16 (a);
b = wRHALF (BITS (0, 3), i);
b = EXTEND16 (b);
if (a < b)
s = a;
else
s = b;
r |= (s & 0xffff) << (i * 16);
}
else
{
/* Unsigned. */
unsigned int a, b;
a = wRHALF (BITS (16, 19), i);
b = wRHALF (BITS ( 0, 3), i);
if (a < b)
s = a;
else
s = b;
r |= (s & 0xffff) << (i * 16);
}
break;
case Wqual:
for (i = 0; i < 2; i++)
if (BIT (21)) /* Signed. */
{
int a, b;
a = wRWORD (BITS (16, 19), i);
b = wRWORD (BITS ( 0, 3), i);
if (a < b)
s = a;
else
s = b;
r |= (s & 0xffffffff) << (i * 32);
}
else
{
unsigned int a, b;
a = wRWORD (BITS (16, 19), i);
b = wRWORD (BITS (0, 3), i);
if (a < b)
s = a;
else
s = b;
r |= (s & 0xffffffff) << (i * 32);
}
break;
default:
ARMul_UndefInstr (state, instr);
return ARMul_DONE;
}
wR [BITS (12, 15)] = r;
wC [wCon] |= WCON_MUP;
return ARMul_DONE;
}
static int
WMUL (ARMword instr)
{
ARMdword r = 0;
ARMdword s;
int i;
if ((read_cp15_reg (15, 0, 1) & 3) != 3)
return ARMul_CANT;
#ifdef DEBUG
fprintf (stderr, "wmul\n");
#endif
for (i = 0; i < 4; i++)
if (BIT (21)) /* Signed. */
{
long a, b;
a = wRHALF (BITS (16, 19), i);
a = EXTEND16 (a);
b = wRHALF (BITS (0, 3), i);
b = EXTEND16 (b);
s = a * b;
if (BIT (20))
r |= ((s >> 16) & 0xffff) << (i * 16);
else
r |= (s & 0xffff) << (i * 16);
}
else /* Unsigned. */
{
unsigned long a, b;
a = wRHALF (BITS (16, 19), i);
b = wRHALF (BITS (0, 3), i);
s = a * b;
if (BIT (20))
r |= ((s >> 16) & 0xffff) << (i * 16);
else
r |= (s & 0xffff) << (i * 16);
}
wR [BITS (12, 15)] = r;
wC [wCon] |= WCON_MUP;
return ARMul_DONE;
}
static int
WOR (ARMword instr)
{
ARMword psr = 0;
ARMdword result;
if ((read_cp15_reg (15, 0, 1) & 3) != 3)
return ARMul_CANT;
#ifdef DEBUG
fprintf (stderr, "wor\n");
#endif
result = wR [BITS (16, 19)] | wR [BITS (0, 3)];
wR [BITS (12, 15)] = result;
SIMD64_SET (psr, (result == 0), SIMD_ZBIT);
SIMD64_SET (psr, (result & (1ULL << 63)), SIMD_NBIT);
wC [wCASF] = psr;
wC [wCon] |= (WCON_CUP | WCON_MUP);
return ARMul_DONE;
}
static int
WPACK (ARMul_State * state, ARMword instr)
{
ARMdword r = 0;
ARMword psr = 0;
ARMdword x;
ARMdword s;
int i;
int satrv[8];
if ((read_cp15_reg (15, 0, 1) & 3) != 3)
return ARMul_CANT;
#ifdef DEBUG
fprintf (stderr, "wpack\n");
#endif
switch (BITS (22, 23))
{
case Hqual:
for (i = 0; i < 8; i++)
{
x = wRHALF (i < 4 ? BITS (16, 19) : BITS (0, 3), i & 3);
switch (BITS (20, 21))
{
case UnsignedSaturation:
s = IwmmxtSaturateU8 (x, satrv + BITIDX8 (i));
break;
case SignedSaturation:
s = IwmmxtSaturateS8 (x, satrv + BITIDX8 (i));
break;
default:
ARMul_UndefInstr (state, instr);
return ARMul_DONE;
}
r |= (s & 0xff) << (i * 8);
SIMD8_SET (psr, NBIT8 (s), SIMD_NBIT, i);
SIMD8_SET (psr, ZBIT8 (s), SIMD_ZBIT, i);
}
break;
case Wqual:
satrv[0] = satrv[2] = satrv[4] = satrv[6] = 0;
for (i = 0; i < 4; i++)
{
x = wRWORD (i < 2 ? BITS (16, 19) : BITS (0, 3), i & 1);
switch (BITS (20, 21))
{
case UnsignedSaturation:
s = IwmmxtSaturateU16 (x, satrv + BITIDX16 (i));
break;
case SignedSaturation:
s = IwmmxtSaturateS16 (x, satrv + BITIDX16 (i));
break;
default:
ARMul_UndefInstr (state, instr);
return ARMul_DONE;
}
r |= (s & 0xffff) << (i * 16);
SIMD16_SET (psr, NBIT16 (s), SIMD_NBIT, i);
SIMD16_SET (psr, ZBIT16 (s), SIMD_ZBIT, i);
}
break;
case Dqual:
satrv[0] = satrv[1] = satrv[2] = satrv[4] = satrv[5] = satrv[6] = 0;
for (i = 0; i < 2; i++)
{
x = wR [i ? BITS (0, 3) : BITS (16, 19)];
switch (BITS (20, 21))
{
case UnsignedSaturation:
s = IwmmxtSaturateU32 (x, satrv + BITIDX32 (i));
break;
case SignedSaturation:
s = IwmmxtSaturateS32 (x, satrv + BITIDX32 (i));
break;
default:
ARMul_UndefInstr (state, instr);
return ARMul_DONE;
}
r |= (s & 0xffffffff) << (i * 32);
SIMD32_SET (psr, NBIT32 (s), SIMD_NBIT, i);
SIMD32_SET (psr, ZBIT32 (s), SIMD_ZBIT, i);
}
break;
default:
ARMul_UndefInstr (state, instr);
return ARMul_DONE;
}
wC [wCASF] = psr;
wR [BITS (12, 15)] = r;
SET_wCSSFvec (satrv);
wC [wCon] |= (WCON_CUP | WCON_MUP);
return ARMul_DONE;
}
static int
WROR (ARMul_State * state, ARMword instr)
{
ARMdword r = 0;
ARMdword s;
ARMword psr = 0;
int i;
int shift;
if ((read_cp15_reg (15, 0, 1) & 3) != 3)
return ARMul_CANT;
#ifdef DEBUG
fprintf (stderr, "wror\n");
#endif
DECODE_G_BIT (state, instr, shift);
switch (BITS (22, 23))
{
case Hqual:
shift &= 0xf;
for (i = 0; i < 4; i++)
{
s = ((wRHALF (BITS (16, 19), i) & 0xffff) << (16 - shift))
| ((wRHALF (BITS (16, 19), i) & 0xffff) >> shift);
r |= (s & 0xffff) << (i * 16);
SIMD16_SET (psr, NBIT16 (s), SIMD_NBIT, i);
SIMD16_SET (psr, ZBIT16 (s), SIMD_ZBIT, i);
}
break;
case Wqual:
shift &= 0x1f;
for (i = 0; i < 2; i++)
{
s = ((wRWORD (BITS (16, 19), i) & 0xffffffff) << (32 - shift))
| ((wRWORD (BITS (16, 19), i) & 0xffffffff) >> shift);
r |= (s & 0xffffffff) << (i * 32);
SIMD32_SET (psr, NBIT32 (s), SIMD_NBIT, i);
SIMD32_SET (psr, ZBIT32 (s), SIMD_ZBIT, i);
}
break;
case Dqual:
shift &= 0x3f;
r = (wR [BITS (16, 19)] >> shift)
| (wR [BITS (16, 19)] << (64 - shift));
SIMD64_SET (psr, NBIT64 (r), SIMD_NBIT);
SIMD64_SET (psr, ZBIT64 (r), SIMD_ZBIT);
break;
default:
ARMul_UndefInstr (state, instr);
return ARMul_DONE;
}
wC [wCASF] = psr;
wR [BITS (12, 15)] = r;
wC [wCon] |= (WCON_CUP | WCON_MUP);
return ARMul_DONE;
}
static int
WSAD (ARMword instr)
{
ARMdword r;
int s;
int i;
if ((read_cp15_reg (15, 0, 1) & 3) != 3)
return ARMul_CANT;
#ifdef DEBUG
fprintf (stderr, "wsad\n");
#endif
/* Z bit. */
r = BIT (20) ? 0 : (wR [BITS (12, 15)] & 0xffffffff);
if (BIT (22))
/* Half. */
for (i = 0; i < 4; i++)
{
s = (wRHALF (BITS (16, 19), i) - wRHALF (BITS (0, 3), i));
r += abs (s);
}
else
/* Byte. */
for (i = 0; i < 8; i++)
{
s = (wRBYTE (BITS (16, 19), i) - wRBYTE (BITS (0, 3), i));
r += abs (s);
}
wR [BITS (12, 15)] = r;
wC [wCon] |= WCON_MUP;
return ARMul_DONE;
}
static int
WSHUFH (ARMword instr)
{
ARMdword r = 0;
ARMword psr = 0;
ARMdword s;
int i;
int imm8;
if ((read_cp15_reg (15, 0, 1) & 3) != 3)
return ARMul_CANT;
#ifdef DEBUG
fprintf (stderr, "wshufh\n");
#endif
imm8 = (BITS (20, 23) << 4) | BITS (0, 3);
for (i = 0; i < 4; i++)
{
s = wRHALF (BITS (16, 19), ((imm8 >> (i * 2) & 3)) & 0xff);
r |= (s & 0xffff) << (i * 16);
SIMD16_SET (psr, NBIT16 (s), SIMD_NBIT, i);
SIMD16_SET (psr, ZBIT16 (s), SIMD_ZBIT, i);
}
wC [wCASF] = psr;
wR [BITS (12, 15)] = r;
wC [wCon] |= (WCON_CUP | WCON_MUP);
return ARMul_DONE;
}
static int
WSLL (ARMul_State * state, ARMword instr)
{
ARMdword r = 0;
ARMdword s;
ARMword psr = 0;
int i;
unsigned shift;
if ((read_cp15_reg (15, 0, 1) & 3) != 3)
return ARMul_CANT;
#ifdef DEBUG
fprintf (stderr, "wsll\n");
#endif
DECODE_G_BIT (state, instr, shift);
switch (BITS (22, 23))
{
case Hqual:
for (i = 0; i < 4; i++)
{
if (shift > 15)
s = 0;
else
s = ((wRHALF (BITS (16, 19), i) & 0xffff) << shift);
r |= (s & 0xffff) << (i * 16);
SIMD16_SET (psr, NBIT16 (s), SIMD_NBIT, i);
SIMD16_SET (psr, ZBIT16 (s), SIMD_ZBIT, i);
}
break;
case Wqual:
for (i = 0; i < 2; i++)
{
if (shift > 31)
s = 0;
else
s = ((wRWORD (BITS (16, 19), i) & 0xffffffff) << shift);
r |= (s & 0xffffffff) << (i * 32);
SIMD32_SET (psr, NBIT32 (s), SIMD_NBIT, i);
SIMD32_SET (psr, ZBIT32 (s), SIMD_ZBIT, i);
}
break;
case Dqual:
if (shift > 63)
r = 0;
else
r = ((wR[BITS (16, 19)] & 0xffffffffffffffffULL) << shift);
2003-03-28 01:13:33 +08:00
SIMD64_SET (psr, NBIT64 (r), SIMD_NBIT);
SIMD64_SET (psr, ZBIT64 (r), SIMD_ZBIT);
break;
default:
ARMul_UndefInstr (state, instr);
return ARMul_DONE;
}
wC [wCASF] = psr;
wR [BITS (12, 15)] = r;
wC [wCon] |= (WCON_CUP | WCON_MUP);
return ARMul_DONE;
}
static int
WSRA (ARMul_State * state, ARMword instr)
{
ARMdword r = 0;
ARMdword s;
ARMword psr = 0;
int i;
unsigned shift;
signed long t;
if ((read_cp15_reg (15, 0, 1) & 3) != 3)
return ARMul_CANT;
#ifdef DEBUG
fprintf (stderr, "wsra\n");
#endif
DECODE_G_BIT (state, instr, shift);
switch (BITS (22, 23))
{
case Hqual:
for (i = 0; i < 4; i++)
{
if (shift > 15)
t = (wRHALF (BITS (16, 19), i) & 0x8000) ? 0xffff : 0;
else
{
t = wRHALF (BITS (16, 19), i);
t = EXTEND16 (t);
t >>= shift;
}
s = t;
r |= (s & 0xffff) << (i * 16);
SIMD16_SET (psr, NBIT16 (s), SIMD_NBIT, i);
SIMD16_SET (psr, ZBIT16 (s), SIMD_ZBIT, i);
}
break;
case Wqual:
for (i = 0; i < 2; i++)
{
if (shift > 31)
t = (wRWORD (BITS (16, 19), i) & 0x80000000) ? 0xffffffff : 0;
else
{
t = wRWORD (BITS (16, 19), i);
t >>= shift;
}
s = t;
r |= (s & 0xffffffff) << (i * 32);
SIMD32_SET (psr, NBIT32 (s), SIMD_NBIT, i);
SIMD32_SET (psr, ZBIT32 (s), SIMD_ZBIT, i);
}
break;
case Dqual:
if (shift > 63)
r = (wR [BITS (16, 19)] & 0x8000000000000000ULL) ? 0xffffffffffffffffULL : 0;
2003-03-28 01:13:33 +08:00
else
r = ((signed long long) (wR[BITS (16, 19)] & 0xffffffffffffffffULL) >> shift);
2003-03-28 01:13:33 +08:00
SIMD64_SET (psr, NBIT64 (r), SIMD_NBIT);
SIMD64_SET (psr, ZBIT64 (r), SIMD_ZBIT);
break;
default:
ARMul_UndefInstr (state, instr);
return ARMul_DONE;
}
wC [wCASF] = psr;
wR [BITS (12, 15)] = r;
wC [wCon] |= (WCON_CUP | WCON_MUP);
return ARMul_DONE;
}
static int
WSRL (ARMul_State * state, ARMword instr)
{
ARMdword r = 0;
ARMdword s;
ARMword psr = 0;
int i;
unsigned int shift;
if ((read_cp15_reg (15, 0, 1) & 3) != 3)
return ARMul_CANT;
#ifdef DEBUG
fprintf (stderr, "wsrl\n");
#endif
DECODE_G_BIT (state, instr, shift);
switch (BITS (22, 23))
{
case Hqual:
for (i = 0; i < 4; i++)
{
if (shift > 15)
s = 0;
else
s = ((unsigned) (wRHALF (BITS (16, 19), i) & 0xffff) >> shift);
r |= (s & 0xffff) << (i * 16);
SIMD16_SET (psr, NBIT16 (s), SIMD_NBIT, i);
SIMD16_SET (psr, ZBIT16 (s), SIMD_ZBIT, i);
}
break;
case Wqual:
for (i = 0; i < 2; i++)
{
if (shift > 31)
s = 0;
else
s = ((unsigned long) (wRWORD (BITS (16, 19), i) & 0xffffffff) >> shift);
r |= (s & 0xffffffff) << (i * 32);
SIMD32_SET (psr, NBIT32 (s), SIMD_NBIT, i);
SIMD32_SET (psr, ZBIT32 (s), SIMD_ZBIT, i);
}
break;
case Dqual:
if (shift > 63)
r = 0;
else
r = (wR [BITS (16, 19)] & 0xffffffffffffffffULL) >> shift;
2003-03-28 01:13:33 +08:00
SIMD64_SET (psr, NBIT64 (r), SIMD_NBIT);
SIMD64_SET (psr, ZBIT64 (r), SIMD_ZBIT);
break;
default:
ARMul_UndefInstr (state, instr);
return ARMul_DONE;
}
wC [wCASF] = psr;
wR [BITS (12, 15)] = r;
wC [wCon] |= (WCON_CUP | WCON_MUP);
return ARMul_DONE;
}
static int
WSTR (ARMul_State * state, ARMword instr)
{
ARMword address;
int failed;
if ((read_cp15_reg (15, 0, 1) & 3) != 3)
return ARMul_CANT;
#ifdef DEBUG
fprintf (stderr, "wstr\n");
#endif
address = Compute_Iwmmxt_Address (state, instr, & failed);
if (failed)
return ARMul_CANT;
if (BITS (28, 31) == 0xf)
{
/* WSTRW wCx */
Iwmmxt_Store_Word (state, address, wC [BITS (12, 15)]);
}
else if (BIT (8) == 0)
{
if (BIT (22) == 0)
/* WSTRB */
Iwmmxt_Store_Byte (state, address, wR [BITS (12, 15)]);
else
/* WSTRH */
Iwmmxt_Store_Half_Word (state, address, wR [BITS (12, 15)]);
}
else
{
if (BIT (22) == 0)
/* WSTRW wRd */
Iwmmxt_Store_Word (state, address, wR [BITS (12, 15)]);
else
/* WSTRD */
Iwmmxt_Store_Double_Word (state, address, wR [BITS (12, 15)]);
}
return ARMul_DONE;
}
static int
WSUB (ARMul_State * state, ARMword instr)
{
ARMdword r = 0;
ARMword psr = 0;
ARMdword x;
ARMdword s;
int i;
int carry;
int overflow;
int satrv[8];
if ((read_cp15_reg (15, 0, 1) & 3) != 3)
return ARMul_CANT;
#ifdef DEBUG
fprintf (stderr, "wsub\n");
#endif
/* Subtract two numbers using the specified function,
leaving setting the carry bit as required. */
#define SUBx(x, y, m, f) \
(*f) (wRBITS (BITS (16, 19), (x), (y)) & (m), \
wRBITS (BITS ( 0, 3), (x), (y)) & (m), & carry, & overflow)
switch (BITS (22, 23))
{
case Bqual:
for (i = 0; i < 8; i++)
{
switch (BITS (20, 21))
{
case NoSaturation:
s = SUBx ((i * 8), (i * 8) + 7, 0xff, SubS8);
satrv [BITIDX8 (i)] = 0;
r |= (s & 0xff) << (i * 8);
SIMD8_SET (psr, NBIT8 (s), SIMD_NBIT, i);
SIMD8_SET (psr, ZBIT8 (s), SIMD_ZBIT, i);
SIMD8_SET (psr, carry, SIMD_CBIT, i);
SIMD8_SET (psr, overflow, SIMD_VBIT, i);
break;
case UnsignedSaturation:
s = SUBx ((i * 8), (i * 8) + 7, 0xff, SubU8);
x = IwmmxtSaturateU8 (s, satrv + BITIDX8 (i));
r |= (x & 0xff) << (i * 8);
SIMD8_SET (psr, NBIT8 (x), SIMD_NBIT, i);
SIMD8_SET (psr, ZBIT8 (x), SIMD_ZBIT, i);
if (! satrv [BITIDX8 (i)])
{
SIMD8_SET (psr, carry, SIMD_CBIT, i);
SIMD8_SET (psr, overflow, SIMD_VBIT, i);
}
break;
case SignedSaturation:
s = SUBx ((i * 8), (i * 8) + 7, 0xff, SubS8);
x = IwmmxtSaturateS8 (s, satrv + BITIDX8 (i));
r |= (x & 0xff) << (i * 8);
SIMD8_SET (psr, NBIT8 (x), SIMD_NBIT, i);
SIMD8_SET (psr, ZBIT8 (x), SIMD_ZBIT, i);
if (! satrv [BITIDX8 (i)])
{
SIMD8_SET (psr, carry, SIMD_CBIT, i);
SIMD8_SET (psr, overflow, SIMD_VBIT, i);
}
break;
default:
ARMul_UndefInstr (state, instr);
return ARMul_DONE;
}
}
break;
case Hqual:
satrv[0] = satrv[2] = satrv[4] = satrv[6] = 0;
for (i = 0; i < 4; i++)
{
switch (BITS (20, 21))
{
case NoSaturation:
s = SUBx ((i * 16), (i * 16) + 15, 0xffff, SubU16);
satrv [BITIDX16 (i)] = 0;
r |= (s & 0xffff) << (i * 16);
SIMD16_SET (psr, NBIT16 (s), SIMD_NBIT, i);
SIMD16_SET (psr, ZBIT16 (s), SIMD_ZBIT, i);
SIMD16_SET (psr, carry, SIMD_CBIT, i);
SIMD16_SET (psr, overflow, SIMD_VBIT, i);
break;
case UnsignedSaturation:
s = SUBx ((i * 16), (i * 16) + 15, 0xffff, SubU16);
x = IwmmxtSaturateU16 (s, satrv + BITIDX16 (i));
r |= (x & 0xffff) << (i * 16);
SIMD16_SET (psr, NBIT16 (x & 0xffff), SIMD_NBIT, i);
SIMD16_SET (psr, ZBIT16 (x), SIMD_ZBIT, i);
if (! satrv [BITIDX16 (i)])
{
SIMD16_SET (psr, carry, SIMD_CBIT, i);
SIMD16_SET (psr, overflow, SIMD_VBIT, i);
}
break;
case SignedSaturation:
s = SUBx ((i * 16), (i * 16) + 15, 0xffff, SubS16);
x = IwmmxtSaturateS16 (s, satrv + BITIDX16 (i));
r |= (x & 0xffff) << (i * 16);
SIMD16_SET (psr, NBIT16 (x), SIMD_NBIT, i);
SIMD16_SET (psr, ZBIT16 (x), SIMD_ZBIT, i);
if (! satrv [BITIDX16 (i)])
{
SIMD16_SET (psr, carry, SIMD_CBIT, i);
SIMD16_SET (psr, overflow, SIMD_VBIT, i);
}
break;
default:
ARMul_UndefInstr (state, instr);
return ARMul_DONE;
}
}
break;
case Wqual:
satrv[0] = satrv[1] = satrv[2] = satrv[4] = satrv[5] = satrv[6] = 0;
for (i = 0; i < 2; i++)
{
switch (BITS (20, 21))
{
case NoSaturation:
s = SUBx ((i * 32), (i * 32) + 31, 0xffffffff, SubU32);
satrv[BITIDX32 (i)] = 0;
r |= (s & 0xffffffff) << (i * 32);
SIMD32_SET (psr, NBIT32 (s), SIMD_NBIT, i);
SIMD32_SET (psr, ZBIT32 (s), SIMD_ZBIT, i);
SIMD32_SET (psr, carry, SIMD_CBIT, i);
SIMD32_SET (psr, overflow, SIMD_VBIT, i);
break;
case UnsignedSaturation:
s = SUBx ((i * 32), (i * 32) + 31, 0xffffffff, SubU32);
x = IwmmxtSaturateU32 (s, satrv + BITIDX32 (i));
r |= (x & 0xffffffff) << (i * 32);
SIMD32_SET (psr, NBIT32 (x), SIMD_NBIT, i);
SIMD32_SET (psr, ZBIT32 (x), SIMD_ZBIT, i);
if (! satrv [BITIDX32 (i)])
{
SIMD32_SET (psr, carry, SIMD_CBIT, i);
SIMD32_SET (psr, overflow, SIMD_VBIT, i);
}
break;
case SignedSaturation:
s = SUBx ((i * 32), (i * 32) + 31, 0xffffffff, SubS32);
x = IwmmxtSaturateS32 (s, satrv + BITIDX32 (i));
r |= (x & 0xffffffff) << (i * 32);
SIMD32_SET (psr, NBIT32 (x), SIMD_NBIT, i);
SIMD32_SET (psr, ZBIT32 (x), SIMD_ZBIT, i);
if (! satrv [BITIDX32 (i)])
{
SIMD32_SET (psr, carry, SIMD_CBIT, i);
SIMD32_SET (psr, overflow, SIMD_VBIT, i);
}
break;
default:
ARMul_UndefInstr (state, instr);
return ARMul_DONE;
}
}
break;
default:
ARMul_UndefInstr (state, instr);
return ARMul_DONE;
}
wR [BITS (12, 15)] = r;
wC [wCASF] = psr;
SET_wCSSFvec (satrv);
wC [wCon] |= (WCON_CUP | WCON_MUP);
#undef SUBx
return ARMul_DONE;
}
static int
WUNPCKEH (ARMul_State * state, ARMword instr)
{
ARMdword r = 0;
ARMword psr = 0;
ARMdword s;
int i;
if ((read_cp15_reg (15, 0, 1) & 3) != 3)
return ARMul_CANT;
#ifdef DEBUG
fprintf (stderr, "wunpckeh\n");
#endif
switch (BITS (22, 23))
{
case Bqual:
for (i = 0; i < 4; i++)
{
s = wRBYTE (BITS (16, 19), i + 4);
if (BIT (21) && NBIT8 (s))
s |= 0xff00;
r |= (s & 0xffff) << (i * 16);
SIMD16_SET (psr, NBIT16 (s), SIMD_NBIT, i);
SIMD16_SET (psr, ZBIT16 (s), SIMD_ZBIT, i);
}
break;
case Hqual:
for (i = 0; i < 2; i++)
{
s = wRHALF (BITS (16, 19), i + 2);
if (BIT (21) && NBIT16 (s))
s |= 0xffff0000;
r |= (s & 0xffffffff) << (i * 32);
SIMD32_SET (psr, NBIT32 (s), SIMD_NBIT, i);
SIMD32_SET (psr, ZBIT32 (s), SIMD_ZBIT, i);
}
break;
case Wqual:
r = wRWORD (BITS (16, 19), 1);
if (BIT (21) && NBIT32 (r))
r |= 0xffffffff00000000ULL;
2003-03-28 01:13:33 +08:00
SIMD64_SET (psr, NBIT64 (r), SIMD_NBIT);
SIMD64_SET (psr, ZBIT64 (r), SIMD_ZBIT);
break;
default:
ARMul_UndefInstr (state, instr);
return ARMul_DONE;
}
wC [wCASF] = psr;
wR [BITS (12, 15)] = r;
wC [wCon] |= (WCON_CUP | WCON_MUP);
return ARMul_DONE;
}
static int
WUNPCKEL (ARMul_State * state, ARMword instr)
{
ARMdword r = 0;
ARMword psr = 0;
ARMdword s;
int i;
if ((read_cp15_reg (15, 0, 1) & 3) != 3)
return ARMul_CANT;
#ifdef DEBUG
fprintf (stderr, "wunpckel\n");
#endif
switch (BITS (22, 23))
{
case Bqual:
for (i = 0; i < 4; i++)
{
s = wRBYTE (BITS (16, 19), i);
if (BIT (21) && NBIT8 (s))
s |= 0xff00;
r |= (s & 0xffff) << (i * 16);
SIMD16_SET (psr, NBIT16 (s), SIMD_NBIT, i);
SIMD16_SET (psr, ZBIT16 (s), SIMD_ZBIT, i);
}
break;
case Hqual:
for (i = 0; i < 2; i++)
{
s = wRHALF (BITS (16, 19), i);
if (BIT (21) && NBIT16 (s))
s |= 0xffff0000;
r |= (s & 0xffffffff) << (i * 32);
SIMD32_SET (psr, NBIT32 (s), SIMD_NBIT, i);
SIMD32_SET (psr, ZBIT32 (s), SIMD_ZBIT, i);
}
break;
case Wqual:
r = wRWORD (BITS (16, 19), 0);
if (BIT (21) && NBIT32 (r))
r |= 0xffffffff00000000ULL;
2003-03-28 01:13:33 +08:00
SIMD64_SET (psr, NBIT64 (r), SIMD_NBIT);
SIMD64_SET (psr, ZBIT64 (r), SIMD_ZBIT);
break;
default:
ARMul_UndefInstr (state, instr);
return ARMul_DONE;
}
wC [wCASF] = psr;
wR [BITS (12, 15)] = r;
wC [wCon] |= (WCON_CUP | WCON_MUP);
return ARMul_DONE;
}
static int
WUNPCKIH (ARMul_State * state, ARMword instr)
{
ARMword a, b;
ARMdword r = 0;
ARMword psr = 0;
ARMdword s;
int i;
if ((read_cp15_reg (15, 0, 1) & 3) != 3)
return ARMul_CANT;
#ifdef DEBUG
fprintf (stderr, "wunpckih\n");
#endif
switch (BITS (22, 23))
{
case Bqual:
for (i = 0; i < 4; i++)
{
a = wRBYTE (BITS (16, 19), i + 4);
b = wRBYTE (BITS ( 0, 3), i + 4);
s = a | (b << 8);
r |= (s & 0xffff) << (i * 16);
SIMD8_SET (psr, NBIT8 (a), SIMD_NBIT, i * 2);
SIMD8_SET (psr, ZBIT8 (a), SIMD_ZBIT, i * 2);
SIMD8_SET (psr, NBIT8 (b), SIMD_NBIT, (i * 2) + 1);
SIMD8_SET (psr, ZBIT8 (b), SIMD_ZBIT, (i * 2) + 1);
}
break;
case Hqual:
for (i = 0; i < 2; i++)
{
a = wRHALF (BITS (16, 19), i + 2);
b = wRHALF (BITS ( 0, 3), i + 2);
s = a | (b << 16);
r |= (s & 0xffffffff) << (i * 32);
SIMD16_SET (psr, NBIT16 (a), SIMD_NBIT, (i * 2));
SIMD16_SET (psr, ZBIT16 (a), SIMD_ZBIT, (i * 2));
SIMD16_SET (psr, NBIT16 (b), SIMD_NBIT, (i * 2) + 1);
SIMD16_SET (psr, ZBIT16 (b), SIMD_ZBIT, (i * 2) + 1);
}
break;
case Wqual:
a = wRWORD (BITS (16, 19), 1);
s = wRWORD (BITS ( 0, 3), 1);
r = a | (s << 32);
SIMD32_SET (psr, NBIT32 (a), SIMD_NBIT, 0);
SIMD32_SET (psr, ZBIT32 (a), SIMD_ZBIT, 0);
SIMD32_SET (psr, NBIT32 (s), SIMD_NBIT, 1);
SIMD32_SET (psr, ZBIT32 (s), SIMD_ZBIT, 1);
break;
default:
ARMul_UndefInstr (state, instr);
return ARMul_DONE;
}
wC [wCASF] = psr;
wR [BITS (12, 15)] = r;
wC [wCon] |= (WCON_CUP | WCON_MUP);
return ARMul_DONE;
}
static int
WUNPCKIL (ARMul_State * state, ARMword instr)
{
ARMword a, b;
ARMdword r = 0;
ARMword psr = 0;
ARMdword s;
int i;
if ((read_cp15_reg (15, 0, 1) & 3) != 3)
return ARMul_CANT;
#ifdef DEBUG
fprintf (stderr, "wunpckil\n");
#endif
switch (BITS (22, 23))
{
case Bqual:
for (i = 0; i < 4; i++)
{
a = wRBYTE (BITS (16, 19), i);
b = wRBYTE (BITS ( 0, 3), i);
s = a | (b << 8);
r |= (s & 0xffff) << (i * 16);
SIMD8_SET (psr, NBIT8 (a), SIMD_NBIT, i * 2);
SIMD8_SET (psr, ZBIT8 (a), SIMD_ZBIT, i * 2);
SIMD8_SET (psr, NBIT8 (b), SIMD_NBIT, (i * 2) + 1);
SIMD8_SET (psr, ZBIT8 (b), SIMD_ZBIT, (i * 2) + 1);
}
break;
case Hqual:
for (i = 0; i < 2; i++)
{
a = wRHALF (BITS (16, 19), i);
b = wRHALF (BITS ( 0, 3), i);
s = a | (b << 16);
r |= (s & 0xffffffff) << (i * 32);
SIMD16_SET (psr, NBIT16 (a), SIMD_NBIT, (i * 2));
SIMD16_SET (psr, ZBIT16 (a), SIMD_ZBIT, (i * 2));
SIMD16_SET (psr, NBIT16 (b), SIMD_NBIT, (i * 2) + 1);
SIMD16_SET (psr, ZBIT16 (b), SIMD_ZBIT, (i * 2) + 1);
}
break;
case Wqual:
a = wRWORD (BITS (16, 19), 0);
s = wRWORD (BITS ( 0, 3), 0);
r = a | (s << 32);
SIMD32_SET (psr, NBIT32 (a), SIMD_NBIT, 0);
SIMD32_SET (psr, ZBIT32 (a), SIMD_ZBIT, 0);
SIMD32_SET (psr, NBIT32 (s), SIMD_NBIT, 1);
SIMD32_SET (psr, ZBIT32 (s), SIMD_ZBIT, 1);
break;
default:
ARMul_UndefInstr (state, instr);
return ARMul_DONE;
}
wC [wCASF] = psr;
wR [BITS (12, 15)] = r;
wC [wCon] |= (WCON_CUP | WCON_MUP);
return ARMul_DONE;
}
static int
WXOR (ARMword instr)
{
ARMword psr = 0;
ARMdword result;
if ((read_cp15_reg (15, 0, 1) & 3) != 3)
return ARMul_CANT;
#ifdef DEBUG
fprintf (stderr, "wxor\n");
#endif
result = wR [BITS (16, 19)] ^ wR [BITS (0, 3)];
wR [BITS (12, 15)] = result;
SIMD64_SET (psr, (result == 0), SIMD_ZBIT);
SIMD64_SET (psr, (result & (1ULL << 63)), SIMD_NBIT);
wC [wCASF] = psr;
wC [wCon] |= (WCON_CUP | WCON_MUP);
return ARMul_DONE;
}
/* This switch table is moved to a seperate function in order
to work around a compiler bug in the host compiler... */
static int
Process_Instruction (ARMul_State * state, ARMword instr)
{
int status = ARMul_BUSY;
switch ((BITS (20, 23) << 8) | BITS (4, 11))
{
case 0x000: status = WOR (instr); break;
case 0x011: status = TMCR (state, instr); break;
case 0x100: status = WXOR (instr); break;
case 0x111: status = TMRC (state, instr); break;
case 0x300: status = WANDN (instr); break;
case 0x200: status = WAND (instr); break;
case 0x810: case 0xa10:
status = WMADD (instr); break;
case 0x10e: case 0x50e: case 0x90e: case 0xd0e:
status = WUNPCKIL (state, instr); break;
case 0x10c: case 0x50c: case 0x90c: case 0xd0c:
status = WUNPCKIH (state, instr); break;
case 0x012: case 0x112: case 0x412: case 0x512:
status = WSAD (instr); break;
case 0x010: case 0x110: case 0x210: case 0x310:
status = WMUL (instr); break;
case 0x410: case 0x510: case 0x610: case 0x710:
status = WMAC (instr); break;
case 0x006: case 0x406: case 0x806: case 0xc06:
status = WCMPEQ (state, instr); break;
case 0x800: case 0x900: case 0xc00: case 0xd00:
status = WAVG2 (instr); break;
case 0x802: case 0x902: case 0xa02: case 0xb02:
status = WALIGNR (state, instr); break;
case 0x601: case 0x605: case 0x609: case 0x60d:
status = TINSR (state, instr); break;
case 0x107: case 0x507: case 0x907: case 0xd07:
status = TEXTRM (state, instr); break;
case 0x117: case 0x517: case 0x917: case 0xd17:
status = TEXTRC (state, instr); break;
case 0x401: case 0x405: case 0x409: case 0x40d:
status = TBCST (state, instr); break;
case 0x113: case 0x513: case 0x913: case 0xd13:
status = TANDC (state, instr); break;
case 0x01c: case 0x41c: case 0x81c: case 0xc1c:
status = WACC (state, instr); break;
case 0x115: case 0x515: case 0x915: case 0xd15:
status = TORC (state, instr); break;
case 0x103: case 0x503: case 0x903: case 0xd03:
status = TMOVMSK (state, instr); break;
case 0x106: case 0x306: case 0x506: case 0x706:
case 0x906: case 0xb06: case 0xd06: case 0xf06:
status = WCMPGT (state, instr); break;
case 0x00e: case 0x20e: case 0x40e: case 0x60e:
case 0x80e: case 0xa0e: case 0xc0e: case 0xe0e:
status = WUNPCKEL (state, instr); break;
case 0x00c: case 0x20c: case 0x40c: case 0x60c:
case 0x80c: case 0xa0c: case 0xc0c: case 0xe0c:
status = WUNPCKEH (state, instr); break;
case 0x204: case 0x604: case 0xa04: case 0xe04:
case 0x214: case 0x614: case 0xa14: case 0xe14:
status = WSRL (state, instr); break;
case 0x004: case 0x404: case 0x804: case 0xc04:
case 0x014: case 0x414: case 0x814: case 0xc14:
status = WSRA (state, instr); break;
case 0x104: case 0x504: case 0x904: case 0xd04:
case 0x114: case 0x514: case 0x914: case 0xd14:
status = WSLL (state, instr); break;
case 0x304: case 0x704: case 0xb04: case 0xf04:
case 0x314: case 0x714: case 0xb14: case 0xf14:
status = WROR (state, instr); break;
case 0x116: case 0x316: case 0x516: case 0x716:
case 0x916: case 0xb16: case 0xd16: case 0xf16:
status = WMIN (state, instr); break;
case 0x016: case 0x216: case 0x416: case 0x616:
case 0x816: case 0xa16: case 0xc16: case 0xe16:
status = WMAX (state, instr); break;
case 0x002: case 0x102: case 0x202: case 0x302:
case 0x402: case 0x502: case 0x602: case 0x702:
status = WALIGNI (instr); break;
case 0x01a: case 0x11a: case 0x21a: case 0x31a:
case 0x41a: case 0x51a: case 0x61a: case 0x71a:
case 0x81a: case 0x91a: case 0xa1a: case 0xb1a:
case 0xc1a: case 0xd1a: case 0xe1a: case 0xf1a:
status = WSUB (state, instr); break;
case 0x01e: case 0x11e: case 0x21e: case 0x31e:
case 0x41e: case 0x51e: case 0x61e: case 0x71e:
case 0x81e: case 0x91e: case 0xa1e: case 0xb1e:
case 0xc1e: case 0xd1e: case 0xe1e: case 0xf1e:
status = WSHUFH (instr); break;
case 0x018: case 0x118: case 0x218: case 0x318:
case 0x418: case 0x518: case 0x618: case 0x718:
case 0x818: case 0x918: case 0xa18: case 0xb18:
case 0xc18: case 0xd18: case 0xe18: case 0xf18:
status = WADD (state, instr); break;
case 0x008: case 0x108: case 0x208: case 0x308:
case 0x408: case 0x508: case 0x608: case 0x708:
case 0x808: case 0x908: case 0xa08: case 0xb08:
case 0xc08: case 0xd08: case 0xe08: case 0xf08:
status = WPACK (state, instr); break;
case 0x201: case 0x203: case 0x205: case 0x207:
case 0x209: case 0x20b: case 0x20d: case 0x20f:
case 0x211: case 0x213: case 0x215: case 0x217:
case 0x219: case 0x21b: case 0x21d: case 0x21f:
switch (BITS (16, 19))
{
case 0x0: status = TMIA (state, instr); break;
case 0x8: status = TMIAPH (state, instr); break;
case 0xc:
case 0xd:
case 0xe:
case 0xf: status = TMIAxy (state, instr); break;
default: break;
}
break;
default:
break;
}
return status;
}
/* Process a possibly Intel(r) Wireless MMX(tm) technology instruction.
Return true if the instruction was handled. */
int
ARMul_HandleIwmmxt (ARMul_State * state, ARMword instr)
{
int status = ARMul_BUSY;
if (BITS (24, 27) == 0xe)
{
status = Process_Instruction (state, instr);
}
else if (BITS (25, 27) == 0x6)
{
if (BITS (4, 11) == 0x0 && BITS (20, 24) == 0x4)
status = TMCRR (state, instr);
else if (BITS (9, 11) == 0x0)
{
if (BIT (20) == 0x0)
status = WSTR (state, instr);
else if (BITS (20, 24) == 0x5)
status = TMRRC (state, instr);
else
status = WLDR (state, instr);
}
}
if (status == ARMul_CANT)
{
/* If the instruction was a recognised but illegal,
perform the abort here rather than returning false.
If we return false then ARMul_MRC may be called which
will still abort, but which also perform the register
transfer... */
ARMul_Abort (state, ARMul_UndefinedInstrV);
status = ARMul_DONE;
}
return status == ARMul_DONE;
}
int
Fetch_Iwmmxt_Register (unsigned int regnum, unsigned char * memory)
{
if (regnum >= 16)
{
memcpy (memory, wC + (regnum - 16), sizeof wC [0]);
return sizeof wC [0];
}
else
{
memcpy (memory, wR + regnum, sizeof wR [0]);
return sizeof wR [0];
}
}
int
Store_Iwmmxt_Register (unsigned int regnum, unsigned char * memory)
{
if (regnum >= 16)
{
memcpy (wC + (regnum - 16), memory, sizeof wC [0]);
return sizeof wC [0];
}
else
{
memcpy (wR + regnum, memory, sizeof wR [0]);
return sizeof wR [0];
}
}