2019-04-24 01:55:27 +08:00
|
|
|
/* Implementation header.
|
2021-01-01 06:58:58 +08:00
|
|
|
Copyright (C) 2019-2021 Free Software Foundation, Inc.
|
2019-04-24 01:55:27 +08:00
|
|
|
|
|
|
|
This file is part of libctf.
|
|
|
|
|
|
|
|
libctf is free software; you can redistribute it and/or modify it under
|
|
|
|
the terms of the GNU General Public License as published by the Free
|
|
|
|
Software Foundation; either version 3, or (at your option) any later
|
|
|
|
version.
|
|
|
|
|
|
|
|
This program is distributed in the hope that it will be useful, but
|
|
|
|
WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
|
|
|
|
See the GNU General Public License for more details.
|
|
|
|
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
|
|
along with this program; see the file COPYING. If not see
|
|
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
|
|
|
|
#ifndef _CTF_IMPL_H
|
|
|
|
#define _CTF_IMPL_H
|
|
|
|
|
|
|
|
#include "config.h"
|
libctf: fix a number of build problems found on Solaris and NetBSD
- Use of nonportable <endian.h>
- Use of qsort_r
- Use of zlib without appropriate magic to pull in the binutils zlib
- Use of off64_t without checking (fixed by dropping the unused fields
that need off64_t entirely)
- signedness problems due to long being too short a type on 32-bit
platforms: ctf_id_t is now 'unsigned long', and CTF_ERR must be
used only for functions that return ctf_id_t
- One lingering use of bzero() and of <sys/errno.h>
All fixed, using code from gnulib where possible.
Relatedly, set cts_size in a couple of places it was missed
(string table and symbol table loading upon ctf_bfdopen()).
binutils/
* objdump.c (make_ctfsect): Drop cts_type, cts_flags, and
cts_offset.
* readelf.c (shdr_to_ctf_sect): Likewise.
include/
* ctf-api.h (ctf_sect_t): Drop cts_type, cts_flags, and cts_offset.
(ctf_id_t): This is now an unsigned type.
(CTF_ERR): Cast it to ctf_id_t. Note that it should only be used
for ctf_id_t-returning functions.
libctf/
* Makefile.am (ZLIB): New.
(ZLIBINC): Likewise.
(AM_CFLAGS): Use them.
(libctf_a_LIBADD): New, for LIBOBJS.
* configure.ac: Check for zlib, endian.h, and qsort_r.
* ctf-endian.h: New, providing htole64 and le64toh.
* swap.h: Code style fixes.
(bswap_identity_64): New.
* qsort_r.c: New, from gnulib (with one added #include).
* ctf-decls.h: New, providing a conditional qsort_r declaration,
and unconditional definitions of MIN and MAX.
* ctf-impl.h: Use it. Do not use <sys/errno.h>.
(ctf_set_errno): Now returns unsigned long.
* ctf-util.c (ctf_set_errno): Adjust here too.
* ctf-archive.c: Use ctf-endian.h.
(ctf_arc_open_by_offset): Use memset, not bzero. Drop cts_type,
cts_flags and cts_offset.
(ctf_arc_write): Drop debugging dependent on the size of off_t.
* ctf-create.c: Provide a definition of roundup if not defined.
(ctf_create): Drop cts_type, cts_flags and cts_offset.
(ctf_add_reftype): Do not check if type IDs are below zero.
(ctf_add_slice): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_member_offset): Cast error-returning ssize_t's to size_t
when known error-free. Drop CTF_ERR usage for functions returning
int.
(ctf_add_member_encoded): Drop CTF_ERR usage for functions returning
int.
(ctf_add_variable): Likewise.
(enumcmp): Likewise.
(enumadd): Likewise.
(membcmp): Likewise.
(ctf_add_type): Likewise. Cast error-returning ssize_t's to size_t
when known error-free.
* ctf-dump.c (ctf_is_slice): Drop CTF_ERR usage for functions
returning int: use CTF_ERR for functions returning ctf_type_id.
(ctf_dump_label): Likewise.
(ctf_dump_objts): Likewise.
* ctf-labels.c (ctf_label_topmost): Likewise.
(ctf_label_iter): Likewise.
(ctf_label_info): Likewise.
* ctf-lookup.c (ctf_func_args): Likewise.
* ctf-open.c (upgrade_types): Cast to size_t where appropriate.
(ctf_bufopen): Likewise. Use zlib types as needed.
* ctf-types.c (ctf_member_iter): Drop CTF_ERR usage for functions
returning int.
(ctf_enum_iter): Likewise.
(ctf_type_size): Likewise.
(ctf_type_align): Likewise. Cast to size_t where appropriate.
(ctf_type_kind_unsliced): Likewise.
(ctf_type_kind): Likewise.
(ctf_type_encoding): Likewise.
(ctf_member_info): Likewise.
(ctf_array_info): Likewise.
(ctf_enum_value): Likewise.
(ctf_type_rvisit): Likewise.
* ctf-open-bfd.c (ctf_bfdopen): Drop cts_type, cts_flags and
cts_offset.
(ctf_simple_open): Likewise.
(ctf_bfdopen_ctfsect): Likewise. Set cts_size properly.
* Makefile.in: Regenerate.
* aclocal.m4: Likewise.
* config.h: Likewise.
* configure: Likewise.
2019-05-31 17:10:51 +08:00
|
|
|
#include <errno.h>
|
2019-07-14 04:45:55 +08:00
|
|
|
#include <sys/param.h>
|
libctf: fix a number of build problems found on Solaris and NetBSD
- Use of nonportable <endian.h>
- Use of qsort_r
- Use of zlib without appropriate magic to pull in the binutils zlib
- Use of off64_t without checking (fixed by dropping the unused fields
that need off64_t entirely)
- signedness problems due to long being too short a type on 32-bit
platforms: ctf_id_t is now 'unsigned long', and CTF_ERR must be
used only for functions that return ctf_id_t
- One lingering use of bzero() and of <sys/errno.h>
All fixed, using code from gnulib where possible.
Relatedly, set cts_size in a couple of places it was missed
(string table and symbol table loading upon ctf_bfdopen()).
binutils/
* objdump.c (make_ctfsect): Drop cts_type, cts_flags, and
cts_offset.
* readelf.c (shdr_to_ctf_sect): Likewise.
include/
* ctf-api.h (ctf_sect_t): Drop cts_type, cts_flags, and cts_offset.
(ctf_id_t): This is now an unsigned type.
(CTF_ERR): Cast it to ctf_id_t. Note that it should only be used
for ctf_id_t-returning functions.
libctf/
* Makefile.am (ZLIB): New.
(ZLIBINC): Likewise.
(AM_CFLAGS): Use them.
(libctf_a_LIBADD): New, for LIBOBJS.
* configure.ac: Check for zlib, endian.h, and qsort_r.
* ctf-endian.h: New, providing htole64 and le64toh.
* swap.h: Code style fixes.
(bswap_identity_64): New.
* qsort_r.c: New, from gnulib (with one added #include).
* ctf-decls.h: New, providing a conditional qsort_r declaration,
and unconditional definitions of MIN and MAX.
* ctf-impl.h: Use it. Do not use <sys/errno.h>.
(ctf_set_errno): Now returns unsigned long.
* ctf-util.c (ctf_set_errno): Adjust here too.
* ctf-archive.c: Use ctf-endian.h.
(ctf_arc_open_by_offset): Use memset, not bzero. Drop cts_type,
cts_flags and cts_offset.
(ctf_arc_write): Drop debugging dependent on the size of off_t.
* ctf-create.c: Provide a definition of roundup if not defined.
(ctf_create): Drop cts_type, cts_flags and cts_offset.
(ctf_add_reftype): Do not check if type IDs are below zero.
(ctf_add_slice): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_member_offset): Cast error-returning ssize_t's to size_t
when known error-free. Drop CTF_ERR usage for functions returning
int.
(ctf_add_member_encoded): Drop CTF_ERR usage for functions returning
int.
(ctf_add_variable): Likewise.
(enumcmp): Likewise.
(enumadd): Likewise.
(membcmp): Likewise.
(ctf_add_type): Likewise. Cast error-returning ssize_t's to size_t
when known error-free.
* ctf-dump.c (ctf_is_slice): Drop CTF_ERR usage for functions
returning int: use CTF_ERR for functions returning ctf_type_id.
(ctf_dump_label): Likewise.
(ctf_dump_objts): Likewise.
* ctf-labels.c (ctf_label_topmost): Likewise.
(ctf_label_iter): Likewise.
(ctf_label_info): Likewise.
* ctf-lookup.c (ctf_func_args): Likewise.
* ctf-open.c (upgrade_types): Cast to size_t where appropriate.
(ctf_bufopen): Likewise. Use zlib types as needed.
* ctf-types.c (ctf_member_iter): Drop CTF_ERR usage for functions
returning int.
(ctf_enum_iter): Likewise.
(ctf_type_size): Likewise.
(ctf_type_align): Likewise. Cast to size_t where appropriate.
(ctf_type_kind_unsliced): Likewise.
(ctf_type_kind): Likewise.
(ctf_type_encoding): Likewise.
(ctf_member_info): Likewise.
(ctf_array_info): Likewise.
(ctf_enum_value): Likewise.
(ctf_type_rvisit): Likewise.
* ctf-open-bfd.c (ctf_bfdopen): Drop cts_type, cts_flags and
cts_offset.
(ctf_simple_open): Likewise.
(ctf_bfdopen_ctfsect): Likewise. Set cts_size properly.
* Makefile.in: Regenerate.
* aclocal.m4: Likewise.
* config.h: Likewise.
* configure: Likewise.
2019-05-31 17:10:51 +08:00
|
|
|
#include "ctf-decls.h"
|
2019-04-24 01:55:27 +08:00
|
|
|
#include <ctf-api.h>
|
2020-06-06 04:10:37 +08:00
|
|
|
#include "ctf-sha1.h"
|
2019-04-24 01:55:27 +08:00
|
|
|
#include <sys/types.h>
|
2019-04-24 04:45:30 +08:00
|
|
|
#include <stdlib.h>
|
|
|
|
#include <stdarg.h>
|
2021-03-18 20:37:52 +08:00
|
|
|
#include <stddef.h>
|
2019-04-24 04:45:30 +08:00
|
|
|
#include <stdio.h>
|
|
|
|
#include <stdint.h>
|
2021-03-19 15:09:24 +08:00
|
|
|
#include <string.h>
|
2019-04-24 04:45:30 +08:00
|
|
|
#include <limits.h>
|
|
|
|
#include <ctype.h>
|
|
|
|
#include <elf.h>
|
libctf: ELF file opening via BFD
These functions let you open an ELF file with a customarily-named CTF
section in it, automatically opening the CTF file or archive and
associating the symbol and string tables in the ELF file with the CTF
container, so that you can look up the types of symbols in the ELF file
via ctf_lookup_by_symbol(), and so that strings can be shared between
the ELF file and CTF container, to save space.
It uses BFD machinery to do so. This has now been lightly tested and
seems to work. In particular, if you already have a bfd you can pass
it in to ctf_bfdopen(), and if you want a bfd made for you you can
call ctf_open() or ctf_fdopen(), optionally specifying a target (or
try once without a target and then again with one if you get
ECTF_BFD_AMBIGUOUS back).
We use a forward declaration for the struct bfd in ctf-api.h, so that
ctf-api.h users are not required to pull in <bfd.h>. (This is mostly
for the sake of readelf.)
libctf/
* ctf-open-bfd.c: New file.
* ctf-open.c (ctf_close): New.
* ctf-impl.h: Include bfd.h.
(ctf_file): New members ctf_data_mmapped, ctf_data_mmapped_len.
(ctf_archive_internal): New members ctfi_abfd, ctfi_data,
ctfi_bfd_close.
(ctf_bfdopen_ctfsect): New declaration.
(_CTF_SECTION): likewise.
include/
* ctf-api.h (struct bfd): New forward.
(ctf_fdopen): New.
(ctf_bfdopen): Likewise.
(ctf_open): Likewise.
(ctf_arc_open): Likewise.
2019-04-24 17:46:39 +08:00
|
|
|
#include <bfd.h>
|
libctf, hash: introduce the ctf_dynset
There are many places in the deduplicator which use hashtables as tiny
sets: keys with no value (and usually, but not always, no freeing
function) often with only one or a few members. For each of these, even
after the last change to not store the freeing functions, we are storing
a little malloced block for each item just to track the key/value pair,
and a little malloced block for the hash table itself just to track the
freeing function because we can't use libiberty hashtab's freeing
function because we are using that to free the little malloced per-item
block.
If we only have a key, we don't need any of that: we can ditch the
per-malloced block because we don't have a value, and we can ditch the
per-hashtab structure because we don't need to independently track the
freeing functions since libiberty hashtab is doing it for us. That
means we don't need an owner field in the (now nonexistent) item block
either.
Roughly speaking, this datatype saves about 25% in time and 20% in peak
memory usage for normal links, even fairly big ones. So this might seem
redundant, but it's really worth it.
Instead of a _lookup function, a dynset has two distinct functions:
ctf_dynset_exists, which returns true or false and an optional pointer
to the set member, and ctf_dynhash_lookup_any, which is used if all
members of the set are expected to be equivalent and we just want *any*
member and we don't care which one.
There is no iterator in this set of functions, not because we don't
iterate over dynset members -- we do, a lot -- but because the iterator
here is a member of an entirely new family of much more convenient
iteration functions, introduced in the next commit.
libctf/
* ctf-hash.c (ctf_dynset_eq_string): New.
(ctf_dynset_create): New.
(DYNSET_EMPTY_ENTRY_REPLACEMENT): New.
(DYNSET_DELETED_ENTRY_REPLACEMENT): New.
(key_to_internal): New.
(internal_to_key): New.
(ctf_dynset_insert): New.
(ctf_dynset_remove): New.
(ctf_dynset_destroy): New.
(ctf_dynset_lookup): New.
(ctf_dynset_exists): New.
(ctf_dynset_lookup_any): New.
(ctf_hash_insert_type): Coding style.
(ctf_hash_define_type): Likewise.
* ctf-impl.h (ctf_dynset_t): New.
(ctf_dynset_eq_string): New.
(ctf_dynset_create): New.
(ctf_dynset_insert): New.
(ctf_dynset_remove): New.
(ctf_dynset_destroy): New.
(ctf_dynset_lookup): New.
(ctf_dynset_exists): New.
(ctf_dynset_lookup_any): New.
* ctf-inlines.h (ctf_dynset_cinsert): New.
2020-06-03 05:26:38 +08:00
|
|
|
#include "hashtab.h"
|
2020-07-31 00:43:12 +08:00
|
|
|
#include "ctf-intl.h"
|
2019-04-24 01:55:27 +08:00
|
|
|
|
|
|
|
#ifdef __cplusplus
|
|
|
|
extern "C"
|
2020-06-03 01:56:06 +08:00
|
|
|
{
|
2019-04-24 01:55:27 +08:00
|
|
|
#endif
|
|
|
|
|
libctf: symbol type linking support
This adds facilities to write out the function info and data object
sections, which efficiently map from entries in the symbol table to
types. The write-side code is entirely new: the read-side code was
merely significantly changed and support for indexed tables added
(pointed to by the no-longer-unused cth_objtidxoff and cth_funcidxoff
header fields).
With this in place, you can use ctf_lookup_by_symbol to look up the
types of symbols of function and object type (and, as before, you can
use ctf_lookup_variable to look up types of file-scope variables not
present in the symbol table, as long as you know their name: but
variables that are also data objects are now found in the data object
section instead.)
(Compatible) file format change:
The CTF spec has always said that the function info section looks much
like the CTF_K_FUNCTIONs in the type section: an info word (including an
argument count) followed by a return type and N argument types. This
format is suboptimal: it means function symbols cannot be deduplicated
and it causes a lot of ugly code duplication in libctf. But
conveniently the compiler has never emitted this! Because it has always
emitted a rather different format that libctf has never accepted, we can
be sure that there are no instances of this function info section in the
wild, and can freely change its format without compatibility concerns or
a file format version bump. (And since it has never been emitted in any
code that generated any older file format version, either, we need keep
no code to read the format as specified at all!)
So the function info section is now specified as an array of uint32_t,
exactly like the object data section: each entry is a type ID in the
type section which must be of kind CTF_K_FUNCTION, the prototype of
this function.
This allows function types to be deduplicated and also correctly encodes
the fact that all functions declared in C really are types available to
the program: so they should be stored in the type section like all other
types. (In format v4, we will be able to represent the types of static
functions as well, but that really does require a file format change.)
We introduce a new header flag, CTF_F_NEWFUNCINFO, which is set if the
new function info format is in use. A sufficiently new compiler will
always set this flag. New libctf will always set this flag: old libctf
will refuse to open any CTF dicts that have this flag set. If the flag
is not set on a dict being read in, new libctf will disregard the
function info section. Format v4 will remove this flag (or, rather, the
flag has no meaning there and the bit position may be recycled for some
other purpose).
New API:
Symbol addition:
ctf_add_func_sym: Add a symbol with a given name and type. The
type must be of kind CTF_K_FUNCTION (a function
pointer). Internally this adds a name -> type
mapping to the ctf_funchash in the ctf_dict.
ctf_add_objt_sym: Add a symbol with a given name and type. The type
kind can be anything, including function pointers.
This adds to ctf_objthash.
These both treat symbols as name -> type mappings: the linker associates
symbol names with symbol indexes via the ctf_link_shuffle_syms callback,
which sets up the ctf_dynsyms/ctf_dynsymidx/ctf_dynsymmax fields in the
ctf_dict. Repeated relinks can add more symbols.
Variables that are also exposed as symbols are removed from the variable
section at serialization time.
CTF symbol type sections which have enough pads, defined by
CTF_INDEX_PAD_THRESHOLD (whether because they are in dicts with symbols
where most types are unknown, or in archive where most types are defined
in some child or parent dict, not in this specific dict) are sorted by
name rather than symidx and accompanied by an index which associates
each symbol type entry with a name: the existing ctf_lookup_by_symbol
will map symbol indexes to symbol names and look the names up in the
index automatically. (This is currently ELF-symbol-table-dependent, but
there is almost nothing specific to ELF in here and we can add support
for other symbol table formats easily).
The compiler also uses index sections to communicate the contents of
object file symbol tables without relying on any specific ordering of
symbols: it doesn't need to sort them, and libctf will detect an
unsorted index section via the absence of the new CTF_F_IDXSORTED header
flag, and sort it if needed.
Iteration:
ctf_symbol_next: Iterator which returns the types and names of symbols
one by one, either for function or data symbols.
This does not require any sorting: the ctf_link machinery uses it to
pull in all the compiler-provided symbols cheaply, but it is not
restricted to that use.
(Compatible) changes in API:
ctf_lookup_by_symbol: can now be called for object and function
symbols: never returns ECTF_NOTDATA (which is
now not thrown by anything, but is kept for
compatibility and because it is a plausible
error that we might start throwing again at some
later date).
Internally we also have changes to the ctf-string functionality so that
"external" strings (those where we track a string -> offset mapping, but
only write out an offset) can be consulted via the usual means
(ctf_strptr) before the strtab is written out. This is important
because ctf_link_add_linker_symbol can now be handed symbols named via
strtab offsets, and ctf_link_shuffle_syms must figure out their actual
names by looking in the external symtab we have just been fed by the
ctf_link_add_strtab callback, long before that strtab is written out.
include/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-api.h (ctf_symbol_next): New.
(ctf_add_objt_sym): Likewise.
(ctf_add_func_sym): Likewise.
* ctf.h: Document new function info section format.
(CTF_F_NEWFUNCINFO): New.
(CTF_F_IDXSORTED): New.
(CTF_F_MAX): Adjust accordingly.
libctf/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h (CTF_INDEX_PAD_THRESHOLD): New.
(_libctf_nonnull_): Likewise.
(ctf_in_flight_dynsym_t): New.
(ctf_dict_t) <ctf_funcidx_names>: Likewise.
<ctf_objtidx_names>: Likewise.
<ctf_nfuncidx>: Likewise.
<ctf_nobjtidx>: Likewise.
<ctf_funcidx_sxlate>: Likewise.
<ctf_objtidx_sxlate>: Likewise.
<ctf_objthash>: Likewise.
<ctf_funchash>: Likewise.
<ctf_dynsyms>: Likewise.
<ctf_dynsymidx>: Likewise.
<ctf_dynsymmax>: Likewise.
<ctf_in_flight_dynsym>: Likewise.
(struct ctf_next) <u.ctn_next>: Likewise.
(ctf_symtab_skippable): New prototype.
(ctf_add_funcobjt_sym): Likewise.
(ctf_dynhash_sort_by_name): Likewise.
(ctf_sym_to_elf64): Rename to...
(ctf_elf32_to_link_sym): ... this, and...
(ctf_elf64_to_link_sym): ... this.
* ctf-open.c (init_symtab): Check for lack of CTF_F_NEWFUNCINFO
flag, and presence of index sections. Refactor out
ctf_symtab_skippable and ctf_elf*_to_link_sym, and use them. Use
ctf_link_sym_t, not Elf64_Sym. Skip initializing objt or func
sxlate sections if corresponding index section is present. Adjust
for new func info section format.
(ctf_bufopen_internal): Add ctf_err_warn to corrupt-file error
handling. Report incorrect-length index sections. Always do an
init_symtab, even if there is no symtab section (there may be index
sections still).
(flip_objts): Adjust comment: func and objt sections are actually
identical in structure now, no need to caveat.
(ctf_dict_close): Free newly-added data structures.
* ctf-create.c (ctf_create): Initialize them.
(ctf_symtab_skippable): New, refactored out of
init_symtab, with st_nameidx_set check added.
(ctf_add_funcobjt_sym): New, add a function or object symbol to the
ctf_objthash or ctf_funchash, by name.
(ctf_add_objt_sym): Call it.
(ctf_add_func_sym): Likewise.
(symtypetab_delete_nonstatic_vars): New, delete vars also present as
data objects.
(CTF_SYMTYPETAB_EMIT_FUNCTION): New flag to symtypetab emitters:
this is a function emission, not a data object emission.
(CTF_SYMTYPETAB_EMIT_PAD): New flag to symtypetab emitters: emit
pads for symbols with no type (only set for unindexed sections).
(CTF_SYMTYPETAB_FORCE_INDEXED): New flag to symtypetab emitters:
always emit indexed.
(symtypetab_density): New, figure out section sizes.
(emit_symtypetab): New, emit a symtypetab.
(emit_symtypetab_index): New, emit a symtypetab index.
(ctf_serialize): Call them, emitting suitably sorted symtypetab
sections and indexes. Set suitable header flags. Copy over new
fields.
* ctf-hash.c (ctf_dynhash_sort_by_name): New, used to impose an
order on symtypetab index sections.
* ctf-link.c (ctf_add_type_mapping): Delete erroneous comment
relating to code that was never committed.
(ctf_link_one_variable): Improve variable name.
(check_sym): New, symtypetab analogue of check_variable.
(ctf_link_deduplicating_one_symtypetab): New.
(ctf_link_deduplicating_syms): Likewise.
(ctf_link_deduplicating): Call them.
(ctf_link_deduplicating_per_cu): Note that we don't call them in
this case (yet).
(ctf_link_add_strtab): Set the error on the fp correctly.
(ctf_link_add_linker_symbol): New (no longer a do-nothing stub), add
a linker symbol to the in-flight list.
(ctf_link_shuffle_syms): New (no longer a do-nothing stub), turn the
in-flight list into a mapping we can use, now its names are
resolvable in the external strtab.
* ctf-string.c (ctf_str_rollback_atom): Don't roll back atoms with
external strtab offsets.
(ctf_str_rollback): Adjust comment.
(ctf_str_write_strtab): Migrate ctf_syn_ext_strtab population from
writeout time...
(ctf_str_add_external): ... to string addition time.
* ctf-lookup.c (ctf_lookup_var_key_t): Rename to...
(ctf_lookup_idx_key_t): ... this, now we use it for syms too.
<clik_names>: New member, a name table.
(ctf_lookup_var): Adjust accordingly.
(ctf_lookup_variable): Likewise.
(ctf_lookup_by_id): Shuffle further up in the file.
(ctf_symidx_sort_arg_cb): New, callback for...
(sort_symidx_by_name): ... this new function to sort a symidx
found to be unsorted (likely originating from the compiler).
(ctf_symidx_sort): New, sort a symidx.
(ctf_lookup_symbol_name): Support dynamic symbols with indexes
provided by the linker. Use ctf_link_sym_t, not Elf64_Sym.
Check the parent if a child lookup fails.
(ctf_lookup_by_symbol): Likewise. Work for function symbols too.
(ctf_symbol_next): New, iterate over symbols with types (without
sorting).
(ctf_lookup_idx_name): New, bsearch for symbol names in indexes.
(ctf_try_lookup_indexed): New, attempt an indexed lookup.
(ctf_func_info): Reimplement in terms of ctf_lookup_by_symbol.
(ctf_func_args): Likewise.
(ctf_get_dict): Move...
* ctf-types.c (ctf_get_dict): ... here.
* ctf-util.c (ctf_sym_to_elf64): Re-express as...
(ctf_elf64_to_link_sym): ... this. Add new st_symidx field, and
st_nameidx_set (always 0, so st_nameidx can be ignored). Look in
the ELF strtab for names.
(ctf_elf32_to_link_sym): Likewise, for Elf32_Sym.
(ctf_next_destroy): Destroy ctf_next_t.u.ctn_next if need be.
* libctf.ver: Add ctf_symbol_next, ctf_add_objt_sym and
ctf_add_func_sym.
2020-11-20 21:34:04 +08:00
|
|
|
/* Tuning. */
|
|
|
|
|
|
|
|
/* The proportion of symtypetab entries which must be pads before we consider it
|
|
|
|
worthwhile to emit a symtypetab section as an index. Indexes cost time to
|
|
|
|
look up, but save space all told. Do not set to 1, since this will cause
|
|
|
|
indexes to be eschewed completely, even in child dicts, at considerable space
|
|
|
|
cost. */
|
|
|
|
#define CTF_INDEX_PAD_THRESHOLD .75
|
|
|
|
|
2019-04-24 01:55:27 +08:00
|
|
|
/* Compiler attributes. */
|
|
|
|
|
|
|
|
#if defined (__GNUC__)
|
|
|
|
|
|
|
|
/* GCC. We assume that all compilers claiming to be GCC support sufficiently
|
|
|
|
many GCC attributes that the code below works. If some non-GCC compilers
|
|
|
|
masquerading as GCC in fact do not implement these attributes, version checks
|
|
|
|
may be required. */
|
|
|
|
|
|
|
|
/* We use the _libctf_*_ pattern to avoid clashes with any future attribute
|
|
|
|
macros glibc may introduce, which have names of the pattern
|
|
|
|
__attribute_blah__. */
|
|
|
|
|
|
|
|
#define _libctf_printflike_(string_index,first_to_check) \
|
|
|
|
__attribute__ ((__format__ (__printf__, (string_index), (first_to_check))))
|
|
|
|
#define _libctf_unlikely_(x) __builtin_expect ((x), 0)
|
|
|
|
#define _libctf_unused_ __attribute__ ((__unused__))
|
|
|
|
#define _libctf_malloc_ __attribute__((__malloc__))
|
libctf, ld: fix symtypetab and var section population under ld -r
The variable section in a CTF dict is meant to contain the types of
variables that do not appear in the symbol table (mostly file-scope
static declarations). We implement this by having the compiler emit
all potential data symbols into both sections, then delete those
symbols from the variable section that correspond to data symbols the
linker has reported.
Unfortunately, the check for this in ctf_serialize is wrong: rather than
checking the set of linker-reported symbols, we check the set of names
in the data object symtypetab section: if the linker has reported no
symbols at all (usually if ld -r has been run, or if a non-linker
program that does not use symbol tables is calling ctf_link) this will
include every single symbol, emptying the variable section completely.
Worse, when ld -r is in use, we want to force writeout of every
symtypetab entry on the inputs, in an indexed section, whether or not
the linker has reported them, since this isn't a final link yet and the
symbol table is not finalized (and may grow more symbols than the linker
has yet reported). But the check for this is flawed too: we were
relying on ctf_link_shuffle_syms not having been called if no symbols
exist, but that function is *always* called by ld even when ld -r is in
use: ctf_link_add_linker_symbol is the one that's not called when there
are no symbols.
We clearly need to rethink this. Using the emptiness of the set of
reported symbols as a test for ld -r is just ugly: the linker already
knows if ld -r is underway and can just tell us. So add a new linker
flag CTF_LINK_NO_FILTER_REPORTED_SYMS that is set to stop the linker
filtering the symbols in the symtypetab sections using the set that the
linker has reported: use the presence or absence of this flag to
determine whether to emit unindexed symtabs: we only remove entries from
the variable section when filtering symbols, and we only remove them if
they are in the reported symbol set, fixing the case where no symbols
are reported by the linker at all.
(The negative sense of the new CTF_LINK flag is intentional: the common
case, both for ld and for simple tools that want to do a ctf_link with
no ELF symbol table in sight, is probably to filter out symbols that no
linker has reported: i.e., for the simple tools, all of them.)
There's another wrinkle, though. It is quite possible for a non-linker
to add symbols to a dict via ctf_add_*_sym and then write it out via the
ctf_write APIs: perhaps it's preparing a dict for a later linker
invocation. Right now this would not lead to anything terribly
meaningful happening: ctf_serialize just assumes it was called via
ctf_link if symbols are present. So add an (internal-to-libctf) flag
that indicates that a writeout is happening via ctf_link_write, and set
it there (propagating it to child dicts as needed). ctf_serialize can
then spot when it is not being called by a linker, and arrange to always
write out an indexed, sorted symtypetab for fastest possible future
symbol lookup by name in that case. (The writeouts done by ld -r are
unsorted, because the only thing likely to use those symtabs is the
linker, which doesn't benefit from symtypetab sorting.)
Tests added for all three linking cases (ld -r, ld -shared, ld), with a
bit of testsuite framework enhancement to stop it unconditionally
linking the CTF to be checked by the lookup program with -shared, so
tests can now examine CTF linked with -r or indeed with no flags at all,
though the output filename is still foo.so even in this case.
Another test added for the non-linker case that endeavours to determine
whether the symtypetab is sorted by examining the order of entries
returned from ctf_symbol_next: nobody outside libctf should rely on
this ordering, but this test is not outside libctf :)
include/ChangeLog
2021-01-26 Nick Alcock <nick.alcock@oracle.com>
* ctf-api.h (CTF_LINK_NO_FILTER_REPORTED_SYMS): New.
ld/ChangeLog
2021-01-26 Nick Alcock <nick.alcock@oracle.com>
* ldlang.c (lang_merge_ctf): Set CTF_LINK_NO_FILTER_REPORTED_SYMS
when appropriate.
libctf/ChangeLog
2021-01-27 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.c (_libctf_nonnull_): Add parameters.
(LCTF_LINKING): New flag.
(ctf_dict_t) <ctf_link_flags>: Mention it.
* ctf-link.c (ctf_link): Keep LCTF_LINKING set across call.
(ctf_write): Likewise, including in child dictionaries.
(ctf_link_shuffle_syms): Make sure ctf_dynsyms is NULL if there
are no reported symbols.
* ctf-create.c (symtypetab_delete_nonstatic_vars): Make sure
the variable has been reported as a symbol by the linker.
(symtypetab_skippable): Mention relationship between SYMFP and the
flags.
(symtypetab_density): Adjust nonnullity. Exit early if no symbols
were reported and force-indexing is off (i.e., we are doing a
final link).
(ctf_serialize): Handle the !LCTF_LINKING case by writing out an
indexed, sorted symtypetab (and allow SYMFP to be NULL in this
case). Turn sorting off if this is a non-final link. Only delete
nonstatic vars if we are filtering symbols and the linker has
reported some.
* testsuite/libctf-regression/nonstatic-var-section-ld-r*:
New test of variable and symtypetab section population when
ld -r is used.
* testsuite/libctf-regression/nonstatic-var-section-ld-executable.lk:
Likewise, when ld of an executable is used.
* testsuite/libctf-regression/nonstatic-var-section-ld.lk:
Likewise, when ld -shared alone is used.
* testsuite/libctf-regression/nonstatic-var-section-ld*.c:
Lookup programs for the above.
* testsuite/libctf-writable/symtypetab-nonlinker-writeout.*: New
test, testing survival of symbols across ctf_write paths.
* testsuite/lib/ctf-lib.exp (run_lookup_test): New option,
nonshared, suppressing linking of the SOURCE with -shared.
2021-01-17 00:49:29 +08:00
|
|
|
#define _libctf_nonnull_(params) __attribute__((__nonnull__ params))
|
2019-04-24 01:55:27 +08:00
|
|
|
|
2019-12-13 22:54:09 +08:00
|
|
|
#else
|
|
|
|
|
|
|
|
#define _libctf_printflike_(string_index,first_to_check)
|
|
|
|
#define _libctf_unlikely_(x) (x)
|
|
|
|
#define _libctf_unused_
|
|
|
|
#define _libctf_malloc_
|
libctf, ld: fix symtypetab and var section population under ld -r
The variable section in a CTF dict is meant to contain the types of
variables that do not appear in the symbol table (mostly file-scope
static declarations). We implement this by having the compiler emit
all potential data symbols into both sections, then delete those
symbols from the variable section that correspond to data symbols the
linker has reported.
Unfortunately, the check for this in ctf_serialize is wrong: rather than
checking the set of linker-reported symbols, we check the set of names
in the data object symtypetab section: if the linker has reported no
symbols at all (usually if ld -r has been run, or if a non-linker
program that does not use symbol tables is calling ctf_link) this will
include every single symbol, emptying the variable section completely.
Worse, when ld -r is in use, we want to force writeout of every
symtypetab entry on the inputs, in an indexed section, whether or not
the linker has reported them, since this isn't a final link yet and the
symbol table is not finalized (and may grow more symbols than the linker
has yet reported). But the check for this is flawed too: we were
relying on ctf_link_shuffle_syms not having been called if no symbols
exist, but that function is *always* called by ld even when ld -r is in
use: ctf_link_add_linker_symbol is the one that's not called when there
are no symbols.
We clearly need to rethink this. Using the emptiness of the set of
reported symbols as a test for ld -r is just ugly: the linker already
knows if ld -r is underway and can just tell us. So add a new linker
flag CTF_LINK_NO_FILTER_REPORTED_SYMS that is set to stop the linker
filtering the symbols in the symtypetab sections using the set that the
linker has reported: use the presence or absence of this flag to
determine whether to emit unindexed symtabs: we only remove entries from
the variable section when filtering symbols, and we only remove them if
they are in the reported symbol set, fixing the case where no symbols
are reported by the linker at all.
(The negative sense of the new CTF_LINK flag is intentional: the common
case, both for ld and for simple tools that want to do a ctf_link with
no ELF symbol table in sight, is probably to filter out symbols that no
linker has reported: i.e., for the simple tools, all of them.)
There's another wrinkle, though. It is quite possible for a non-linker
to add symbols to a dict via ctf_add_*_sym and then write it out via the
ctf_write APIs: perhaps it's preparing a dict for a later linker
invocation. Right now this would not lead to anything terribly
meaningful happening: ctf_serialize just assumes it was called via
ctf_link if symbols are present. So add an (internal-to-libctf) flag
that indicates that a writeout is happening via ctf_link_write, and set
it there (propagating it to child dicts as needed). ctf_serialize can
then spot when it is not being called by a linker, and arrange to always
write out an indexed, sorted symtypetab for fastest possible future
symbol lookup by name in that case. (The writeouts done by ld -r are
unsorted, because the only thing likely to use those symtabs is the
linker, which doesn't benefit from symtypetab sorting.)
Tests added for all three linking cases (ld -r, ld -shared, ld), with a
bit of testsuite framework enhancement to stop it unconditionally
linking the CTF to be checked by the lookup program with -shared, so
tests can now examine CTF linked with -r or indeed with no flags at all,
though the output filename is still foo.so even in this case.
Another test added for the non-linker case that endeavours to determine
whether the symtypetab is sorted by examining the order of entries
returned from ctf_symbol_next: nobody outside libctf should rely on
this ordering, but this test is not outside libctf :)
include/ChangeLog
2021-01-26 Nick Alcock <nick.alcock@oracle.com>
* ctf-api.h (CTF_LINK_NO_FILTER_REPORTED_SYMS): New.
ld/ChangeLog
2021-01-26 Nick Alcock <nick.alcock@oracle.com>
* ldlang.c (lang_merge_ctf): Set CTF_LINK_NO_FILTER_REPORTED_SYMS
when appropriate.
libctf/ChangeLog
2021-01-27 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.c (_libctf_nonnull_): Add parameters.
(LCTF_LINKING): New flag.
(ctf_dict_t) <ctf_link_flags>: Mention it.
* ctf-link.c (ctf_link): Keep LCTF_LINKING set across call.
(ctf_write): Likewise, including in child dictionaries.
(ctf_link_shuffle_syms): Make sure ctf_dynsyms is NULL if there
are no reported symbols.
* ctf-create.c (symtypetab_delete_nonstatic_vars): Make sure
the variable has been reported as a symbol by the linker.
(symtypetab_skippable): Mention relationship between SYMFP and the
flags.
(symtypetab_density): Adjust nonnullity. Exit early if no symbols
were reported and force-indexing is off (i.e., we are doing a
final link).
(ctf_serialize): Handle the !LCTF_LINKING case by writing out an
indexed, sorted symtypetab (and allow SYMFP to be NULL in this
case). Turn sorting off if this is a non-final link. Only delete
nonstatic vars if we are filtering symbols and the linker has
reported some.
* testsuite/libctf-regression/nonstatic-var-section-ld-r*:
New test of variable and symtypetab section population when
ld -r is used.
* testsuite/libctf-regression/nonstatic-var-section-ld-executable.lk:
Likewise, when ld of an executable is used.
* testsuite/libctf-regression/nonstatic-var-section-ld.lk:
Likewise, when ld -shared alone is used.
* testsuite/libctf-regression/nonstatic-var-section-ld*.c:
Lookup programs for the above.
* testsuite/libctf-writable/symtypetab-nonlinker-writeout.*: New
test, testing survival of symbols across ctf_write paths.
* testsuite/lib/ctf-lib.exp (run_lookup_test): New option,
nonshared, suppressing linking of the SOURCE with -shared.
2021-01-17 00:49:29 +08:00
|
|
|
#define _libctf_nonnull_(params)
|
2020-06-03 04:16:15 +08:00
|
|
|
#define __extension__
|
2019-12-13 22:54:09 +08:00
|
|
|
|
2019-04-24 01:55:27 +08:00
|
|
|
#endif
|
|
|
|
|
2020-06-06 01:38:03 +08:00
|
|
|
#if defined (ENABLE_LIBCTF_HASH_DEBUGGING) && !defined (NDEBUG)
|
|
|
|
#include <assert.h>
|
|
|
|
#define ctf_assert(fp, expr) (assert (expr), 1)
|
|
|
|
#else
|
libctf, ld, binutils: add textual error/warning reporting for libctf
This commit adds a long-missing piece of infrastructure to libctf: the
ability to report errors and warnings using all the power of printf,
rather than being restricted to one errno value. Internally, libctf
calls ctf_err_warn() to add errors and warnings to a list: a new
iterator ctf_errwarning_next() then consumes this list one by one and
hands it to the caller, which can free it. New errors and warnings are
added until the list is consumed by the caller or the ctf_file_t is
closed, so you can dump them at intervals. The caller can of course
choose to print only those warnings it wants. (I am not sure whether we
want objdump, readelf or ld to print warnings or not: right now I'm
printing them, but maybe we only want to print errors? This entirely
depends on whether warnings are voluminous things describing e.g. the
inability to emit single types because of name clashes or something.
There are no users of this infrastructure yet, so it's hard to say.)
There is no internationalization here yet, but this at least adds a
place where internationalization can be added, to one of
ctf_errwarning_next or ctf_err_warn.
We also provide a new ctf_assert() function which uses this
infrastructure to provide non-fatal assertion failures while emitting an
assert-like string to the caller: to save space and avoid needlessly
duplicating unchanging strings, the assertion test is inlined but the
print-things-out failure case is not. All assertions in libctf will be
converted to use this machinery in future commits and propagate
assertion-failure errors up, so that the linker in particular cannot be
killed by libctf assertion failures when it could perfectly well just
print warnings and drop the CTF section.
include/
* ctf-api.h (ECTF_INTERNAL): Adjust error text.
(ctf_errwarning_next): New.
libctf/
* ctf-impl.h (ctf_assert): New.
(ctf_err_warning_t): Likewise.
(ctf_file_t) <ctf_errs_warnings>: Likewise.
(ctf_err_warn): New prototype.
(ctf_assert_fail_internal): Likewise.
* ctf-inlines.h (ctf_assert_internal): Likewise.
* ctf-open.c (ctf_file_close): Free ctf_errs_warnings.
* ctf-create.c (ctf_serialize): Copy it on serialization.
* ctf-subr.c (ctf_err_warn): New, add an error/warning.
(ctf_errwarning_next): New iterator, free and pass back
errors/warnings in succession.
* libctf.ver (ctf_errwarning_next): Add.
ld/
* ldlang.c (lang_ctf_errs_warnings): New, print CTF errors
and warnings. Assert when libctf asserts.
(lang_merge_ctf): Call it.
(land_write_ctf): Likewise.
binutils/
* objdump.c (ctf_archive_member): Print CTF errors and warnings.
* readelf.c (dump_ctf_archive_member): Likewise.
2020-06-04 22:07:54 +08:00
|
|
|
#define ctf_assert(fp, expr) \
|
|
|
|
_libctf_unlikely_ (ctf_assert_internal (fp, __FILE__, __LINE__, \
|
|
|
|
#expr, !!(expr)))
|
2020-06-06 01:38:03 +08:00
|
|
|
#endif
|
libctf, ld, binutils: add textual error/warning reporting for libctf
This commit adds a long-missing piece of infrastructure to libctf: the
ability to report errors and warnings using all the power of printf,
rather than being restricted to one errno value. Internally, libctf
calls ctf_err_warn() to add errors and warnings to a list: a new
iterator ctf_errwarning_next() then consumes this list one by one and
hands it to the caller, which can free it. New errors and warnings are
added until the list is consumed by the caller or the ctf_file_t is
closed, so you can dump them at intervals. The caller can of course
choose to print only those warnings it wants. (I am not sure whether we
want objdump, readelf or ld to print warnings or not: right now I'm
printing them, but maybe we only want to print errors? This entirely
depends on whether warnings are voluminous things describing e.g. the
inability to emit single types because of name clashes or something.
There are no users of this infrastructure yet, so it's hard to say.)
There is no internationalization here yet, but this at least adds a
place where internationalization can be added, to one of
ctf_errwarning_next or ctf_err_warn.
We also provide a new ctf_assert() function which uses this
infrastructure to provide non-fatal assertion failures while emitting an
assert-like string to the caller: to save space and avoid needlessly
duplicating unchanging strings, the assertion test is inlined but the
print-things-out failure case is not. All assertions in libctf will be
converted to use this machinery in future commits and propagate
assertion-failure errors up, so that the linker in particular cannot be
killed by libctf assertion failures when it could perfectly well just
print warnings and drop the CTF section.
include/
* ctf-api.h (ECTF_INTERNAL): Adjust error text.
(ctf_errwarning_next): New.
libctf/
* ctf-impl.h (ctf_assert): New.
(ctf_err_warning_t): Likewise.
(ctf_file_t) <ctf_errs_warnings>: Likewise.
(ctf_err_warn): New prototype.
(ctf_assert_fail_internal): Likewise.
* ctf-inlines.h (ctf_assert_internal): Likewise.
* ctf-open.c (ctf_file_close): Free ctf_errs_warnings.
* ctf-create.c (ctf_serialize): Copy it on serialization.
* ctf-subr.c (ctf_err_warn): New, add an error/warning.
(ctf_errwarning_next): New iterator, free and pass back
errors/warnings in succession.
* libctf.ver (ctf_errwarning_next): Add.
ld/
* ldlang.c (lang_ctf_errs_warnings): New, print CTF errors
and warnings. Assert when libctf asserts.
(lang_merge_ctf): Call it.
(land_write_ctf): Likewise.
binutils/
* objdump.c (ctf_archive_member): Print CTF errors and warnings.
* readelf.c (dump_ctf_archive_member): Likewise.
2020-06-04 22:07:54 +08:00
|
|
|
|
2019-04-24 05:12:16 +08:00
|
|
|
/* libctf in-memory state. */
|
|
|
|
|
|
|
|
typedef struct ctf_fixed_hash ctf_hash_t; /* Private to ctf-hash.c. */
|
|
|
|
typedef struct ctf_dynhash ctf_dynhash_t; /* Private to ctf-hash.c. */
|
libctf, hash: introduce the ctf_dynset
There are many places in the deduplicator which use hashtables as tiny
sets: keys with no value (and usually, but not always, no freeing
function) often with only one or a few members. For each of these, even
after the last change to not store the freeing functions, we are storing
a little malloced block for each item just to track the key/value pair,
and a little malloced block for the hash table itself just to track the
freeing function because we can't use libiberty hashtab's freeing
function because we are using that to free the little malloced per-item
block.
If we only have a key, we don't need any of that: we can ditch the
per-malloced block because we don't have a value, and we can ditch the
per-hashtab structure because we don't need to independently track the
freeing functions since libiberty hashtab is doing it for us. That
means we don't need an owner field in the (now nonexistent) item block
either.
Roughly speaking, this datatype saves about 25% in time and 20% in peak
memory usage for normal links, even fairly big ones. So this might seem
redundant, but it's really worth it.
Instead of a _lookup function, a dynset has two distinct functions:
ctf_dynset_exists, which returns true or false and an optional pointer
to the set member, and ctf_dynhash_lookup_any, which is used if all
members of the set are expected to be equivalent and we just want *any*
member and we don't care which one.
There is no iterator in this set of functions, not because we don't
iterate over dynset members -- we do, a lot -- but because the iterator
here is a member of an entirely new family of much more convenient
iteration functions, introduced in the next commit.
libctf/
* ctf-hash.c (ctf_dynset_eq_string): New.
(ctf_dynset_create): New.
(DYNSET_EMPTY_ENTRY_REPLACEMENT): New.
(DYNSET_DELETED_ENTRY_REPLACEMENT): New.
(key_to_internal): New.
(internal_to_key): New.
(ctf_dynset_insert): New.
(ctf_dynset_remove): New.
(ctf_dynset_destroy): New.
(ctf_dynset_lookup): New.
(ctf_dynset_exists): New.
(ctf_dynset_lookup_any): New.
(ctf_hash_insert_type): Coding style.
(ctf_hash_define_type): Likewise.
* ctf-impl.h (ctf_dynset_t): New.
(ctf_dynset_eq_string): New.
(ctf_dynset_create): New.
(ctf_dynset_insert): New.
(ctf_dynset_remove): New.
(ctf_dynset_destroy): New.
(ctf_dynset_lookup): New.
(ctf_dynset_exists): New.
(ctf_dynset_lookup_any): New.
* ctf-inlines.h (ctf_dynset_cinsert): New.
2020-06-03 05:26:38 +08:00
|
|
|
typedef struct ctf_dynset ctf_dynset_t; /* Private to ctf-hash.c. */
|
2019-04-24 05:12:16 +08:00
|
|
|
|
2019-04-24 05:24:13 +08:00
|
|
|
typedef struct ctf_strs
|
|
|
|
{
|
|
|
|
const char *cts_strs; /* Base address of string table. */
|
|
|
|
size_t cts_len; /* Size of string table in bytes. */
|
|
|
|
} ctf_strs_t;
|
|
|
|
|
libctf: deduplicate and sort the string table
ctf.h states:
> [...] the CTF string table does not contain any duplicated strings.
Unfortunately this is entirely untrue: libctf has before now made no
attempt whatsoever to deduplicate the string table. It computes the
string table's length on the fly as it adds new strings to the dynamic
CTF file, and ctf_update() just writes each string to the table and
notes the current write position as it traverses the dynamic CTF file's
data structures and builds the final CTF buffer. There is no global
view of the strings and no deduplication.
Fix this by erasing the ctf_dtvstrlen dead-reckoning length, and adding
a new dynhash table ctf_str_atoms that maps unique strings to a list
of references to those strings: a reference is a simple uint32_t * to
some value somewhere in the under-construction CTF buffer that needs
updating to note the string offset when the strtab is laid out.
Adding a string is now a simple matter of calling ctf_str_add_ref(),
which adds a new atom to the atoms table, if one doesn't already exist,
and adding the location of the reference to this atom to the refs list
attached to the atom: this works reliably as long as one takes care to
only call ctf_str_add_ref() once the final location of the offset is
known (so you can't call it on a temporary structure and then memcpy()
that structure into place in the CTF buffer, because the ref will still
point to the old location: ctf_update() changes accordingly).
Generating the CTF string table is a matter of calling
ctf_str_write_strtab(), which counts the length and number of elements
in the atoms table using the ctf_dynhash_iter() function we just added,
populating an array of pointers into the atoms table and sorting it into
order (to help compressors), then traversing this table and emitting it,
updating the refs to each atom as we go. The only complexity here is
arranging to keep the null string at offset zero, since a lot of code in
libctf depends on being able to leave strtab references at 0 to indicate
'no name'. Once the table is constructed and the refs updated, we know
how long it is, so we can realloc() the partial CTF buffer we allocated
earlier and can copy the table on to the end of it (and purge the refs
because they're not needed any more and have been invalidated by the
realloc() call in any case).
The net effect of all this is a reduction in uncompressed strtab sizes
of about 30% (perhaps a quarter to a half of all strings across the
Linux kernel are eliminated as duplicates). Of course, duplicated
strings are highly redundant, so the space saving after compression is
only about 20%: when the other non-strtab sections are factored in, CTF
sizes shrink by about 10%.
No change in externally-visible API or file format (other than the
reduction in pointless redundancy).
libctf/
* ctf-impl.h: (struct ctf_strs_writable): New, non-const version of
struct ctf_strs.
(struct ctf_dtdef): Note that dtd_data.ctt_name is unpopulated.
(struct ctf_str_atom): New, disambiguated single string.
(struct ctf_str_atom_ref): New, points to some other location that
references this string's offset.
(struct ctf_file): New members ctf_str_atoms and ctf_str_num_refs.
Remove member ctf_dtvstrlen: we no longer track the total strlen
as we add strings.
(ctf_str_create_atoms): Declare new function in ctf-string.c.
(ctf_str_free_atoms): Likewise.
(ctf_str_add): Likewise.
(ctf_str_add_ref): Likewise.
(ctf_str_purge_refs): Likewise.
(ctf_str_write_strtab): Likewise.
(ctf_realloc): Declare new function in ctf-util.c.
* ctf-open.c (ctf_bufopen): Create the atoms table.
(ctf_file_close): Destroy it.
* ctf-create.c (ctf_update): Copy-and-free it on update. No longer
special-case the position of the parname string. Construct the
strtab by calling ctf_str_add_ref and ctf_str_write_strtab after the
rest of each buffer element is constructed, not via open-coding:
realloc the CTF buffer and append the strtab to it. No longer
maintain ctf_dtvstrlen. Sort the variable entry table later, after
strtab construction.
(ctf_copy_membnames): Remove: integrated into ctf_copy_{s,l,e}members.
(ctf_copy_smembers): Drop the string offset: call ctf_str_add_ref
after buffer element construction instead.
(ctf_copy_lmembers): Likewise.
(ctf_copy_emembers): Likewise.
(ctf_create): No longer maintain the ctf_dtvstrlen.
(ctf_dtd_delete): Likewise.
(ctf_dvd_delete): Likewise.
(ctf_add_generic): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_variable): Likewise.
(membadd): Likewise.
* ctf-util.c (ctf_realloc): New, wrapper around realloc that aborts
if there are active ctf_str_num_refs.
(ctf_strraw): Move to ctf-string.c.
(ctf_strptr): Likewise.
* ctf-string.c: New file, strtab manipulation.
* Makefile.am (libctf_a_SOURCES): Add it.
* Makefile.in: Regenerate.
2019-06-27 20:51:10 +08:00
|
|
|
typedef struct ctf_strs_writable
|
|
|
|
{
|
|
|
|
char *cts_strs; /* Base address of string table. */
|
|
|
|
size_t cts_len; /* Size of string table in bytes. */
|
|
|
|
} ctf_strs_writable_t;
|
|
|
|
|
2019-04-24 05:24:13 +08:00
|
|
|
typedef struct ctf_dmodel
|
|
|
|
{
|
|
|
|
const char *ctd_name; /* Data model name. */
|
|
|
|
int ctd_code; /* Data model code. */
|
|
|
|
size_t ctd_pointer; /* Size of void * in bytes. */
|
|
|
|
size_t ctd_char; /* Size of char in bytes. */
|
|
|
|
size_t ctd_short; /* Size of short in bytes. */
|
|
|
|
size_t ctd_int; /* Size of int in bytes. */
|
|
|
|
size_t ctd_long; /* Size of long in bytes. */
|
|
|
|
} ctf_dmodel_t;
|
|
|
|
|
libctf: avoid the need to ever use ctf_update
The method of operation of libctf when the dictionary is writable has
before now been that types that are added land in the dynamic type
section, which is a linked list and hash of IDs -> dynamic type
definitions (and, recently a hash of names): the DTDs are a bit of CTF
representing the ctf_type_t and ad hoc C structures representing the
vlen. Historically, libctf was unable to do anything with these types,
not even look them up by ID, let alone by name: if you wanted to do that
say if you were adding a type that depended on one you just added) you
called ctf_update, which serializes all the DTDs into a CTF file and
reopens it, copying its guts over the fp it's called with. The
ctf_updated types are then frozen in amber and unchangeable: all lookups
will return the types in the static portion in preference to the dynamic
portion, and we will refuse to re-add things that already exist in the
static portion (and, of late, in the dynamic portion too). The libctf
machinery remembers the boundary between static and dynamic types and
looks in the right portion for each type. Lots of things still don't
quite work with dynamic types (e.g. getting their size), but enough
works to do a bunch of additions and then a ctf_update, most of the
time.
Except it doesn't, because ctf_add_type finds it necessary to walk the
full dynamic type definition list looking for types with matching names,
so it gets slower and slower with every type you add: fixing this
requires calling ctf_update periodically for no other reason than to
avoid massively slowing things down.
This is all clunky and very slow but kind of works, until you consider
that it is in fact possible and indeed necessary to modify one sort of
type after it has been added: forwards. These are necessarily promoted
to structs, unions or enums, and when they do so *their type ID does not
change*. So all of a sudden we are changing types that already exist in
the static portion. ctf_update gets massively confused by this and
allocates space enough for the forward (with no members), but then emits
the new dynamic type (with all the members) into it. You get an
assertion failure after that, if you're lucky, or a coredump.
So this commit rejigs things a bit and arranges to exclusively use the
dynamic type definitions in writable dictionaries, and the static type
definitions in readable dictionaries: we don't at any time have a mixture
of static and dynamic types, and you don't need to call ctf_update to
make things "appear". The ctf_dtbyname hash I introduced a few months
ago, which maps things like "struct foo" to DTDs, is removed, replaced
instead by a change of type of the four dictionaries which track names.
Rather than just being (unresizable) ctf_hash_t's populated only at
ctf_bufopen time, they are now a ctf_names_t structure, which is a pair
of ctf_hash_t and ctf_dynhash_t, with the ctf_hash_t portion being used
in readonly dictionaries, and the ctf_dynhash_t being used in writable
ones. The decision as to which to use is centralized in the new
functions ctf_lookup_by_rawname (which takes a type kind) and
ctf_lookup_by_rawhash, which it calls (which takes a ctf_names_t *.)
This change lets us switch from using static to dynamic name hashes on
the fly across the entirety of libctf without complexifying anything: in
fact, because we now centralize the knowledge about how to map from type
kind to name hash, it actually simplifies things and lets us throw out
quite a lot of now-unnecessary complexity, from ctf_dtnyname (replaced
by the dynamic half of the name tables), through to ctf_dtnextid (now
that a dictionary's static portion is never referenced if the dictionary
is writable, we can just use ctf_typemax to indicate the maximum type:
dynamic or non-dynamic does not matter, and we no longer need to track
the boundary between the types). You can now ctf_rollback() as far as
you like, even past a ctf_update or for that matter a full writeout; all
the iteration functions work just as well on writable as on read-only
dictionaries; ctf_add_type no longer needs expensive duplicated code to
run over the dynamic types hunting for ones it might be interested in;
and the linker no longer needs a hack to call ctf_update so that calling
ctf_add_type is not impossibly expensive.
There is still a bit more complexity: some new code paths in ctf-types.c
need to know how to extract information from dynamic types. This
complexity will go away again in a few months when libctf acquires a
proper intermediate representation.
You can still call ctf_update if you like (it's public API, after all),
but its only effect now is to set the point to which ctf_discard rolls
back.
Obviously *something* still needs to serialize the CTF file before
writeout, and this job is done by ctf_serialize, which does everything
ctf_update used to except set the counter used by ctf_discard. It is
automatically called by the various functions that do CTF writeout:
nobody else ever needs to call it.
With this in place, forwards that are promoted to non-forwards no longer
crash the link, even if it happens tens of thousands of types later.
v5: fix tabdamage.
libctf/
* ctf-impl.h (ctf_names_t): New.
(ctf_lookup_t) <ctf_hash>: Now a ctf_names_t, not a ctf_hash_t.
(ctf_file_t) <ctf_structs>: Likewise.
<ctf_unions>: Likewise.
<ctf_enums>: Likewise.
<ctf_names>: Likewise.
<ctf_lookups>: Improve comment.
<ctf_ptrtab_len>: New.
<ctf_prov_strtab>: New.
<ctf_str_prov_offset>: New.
<ctf_dtbyname>: Remove, redundant to the names hashes.
<ctf_dtnextid>: Remove, redundant to ctf_typemax.
(ctf_dtdef_t) <dtd_name>: Remove.
<dtd_data>: Note that the ctt_name is now populated.
(ctf_str_atom_t) <csa_offset>: This is now the strtab
offset for internal strings too.
<csa_external_offset>: New, the external strtab offset.
(CTF_INDEX_TO_TYPEPTR): Handle the LCTF_RDWR case.
(ctf_name_table): New declaration.
(ctf_lookup_by_rawname): Likewise.
(ctf_lookup_by_rawhash): Likewise.
(ctf_set_ctl_hashes): Likewise.
(ctf_serialize): Likewise.
(ctf_dtd_insert): Adjust.
(ctf_simple_open_internal): Likewise.
(ctf_bufopen_internal): Likewise.
(ctf_list_empty_p): Likewise.
(ctf_str_remove_ref): Likewise.
(ctf_str_add): Returns uint32_t now.
(ctf_str_add_ref): Likewise.
(ctf_str_add_external): Now returns a boolean (int).
* ctf-string.c (ctf_strraw_explicit): Check the ctf_prov_strtab
for strings in the appropriate range.
(ctf_str_create_atoms): Create the ctf_prov_strtab. Detect OOM
when adding the null string to the new strtab.
(ctf_str_free_atoms): Destroy the ctf_prov_strtab.
(ctf_str_add_ref_internal): Add make_provisional argument. If
make_provisional, populate the offset and fill in the
ctf_prov_strtab accordingly.
(ctf_str_add): Return the offset, not the string.
(ctf_str_add_ref): Likewise.
(ctf_str_add_external): Return a success integer.
(ctf_str_remove_ref): New, remove a single ref.
(ctf_str_count_strtab): Do not count the initial null string's
length or the existence or length of any unreferenced internal
atoms.
(ctf_str_populate_sorttab): Skip atoms with no refs.
(ctf_str_write_strtab): Populate the nullstr earlier. Add one
to the cts_len for the null string, since it is no longer done
in ctf_str_count_strtab. Adjust for csa_external_offset rename.
Populate the csa_offset for both internal and external cases.
Flush the ctf_prov_strtab afterwards, and reset the
ctf_str_prov_offset.
* ctf-create.c (ctf_grow_ptrtab): New.
(ctf_create): Call it. Initialize new fields rather than old
ones. Tell ctf_bufopen_internal that this is a writable dictionary.
Set the ctl hashes and data model.
(ctf_update): Rename to...
(ctf_serialize): ... this. Leave a compatibility function behind.
Tell ctf_simple_open_internal that this is a writable dictionary.
Pass the new fields along from the old dictionary. Drop
ctf_dtnextid and ctf_dtbyname. Use ctf_strraw, not dtd_name.
Do not zero out the DTD's ctt_name.
(ctf_prefixed_name): Rename to...
(ctf_name_table): ... this. No longer return a prefixed name: return
the applicable name table instead.
(ctf_dtd_insert): Use it, and use the right name table. Pass in the
kind we're adding. Migrate away from dtd_name.
(ctf_dtd_delete): Adjust similarly. Remove the ref to the
deleted ctt_name.
(ctf_dtd_lookup_type_by_name): Remove.
(ctf_dynamic_type): Always return NULL on read-only dictionaries.
No longer check ctf_dtnextid: check ctf_typemax instead.
(ctf_snapshot): No longer use ctf_dtnextid: use ctf_typemax instead.
(ctf_rollback): Likewise. No longer fail with ECTF_OVERROLLBACK. Use
ctf_name_table and the right name table, and migrate away from
dtd_name as in ctf_dtd_delete.
(ctf_add_generic): Pass in the kind explicitly and pass it to
ctf_dtd_insert. Use ctf_typemax, not ctf_dtnextid. Migrate away
from dtd_name to using ctf_str_add_ref to populate the ctt_name.
Grow the ptrtab if needed.
(ctf_add_encoded): Pass in the kind.
(ctf_add_slice): Likewise.
(ctf_add_array): Likewise.
(ctf_add_function): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_reftype): Likewise. Initialize the ctf_ptrtab, checking
ctt_name rather than dtd_name.
(ctf_add_struct_sized): Pass in the kind. Use
ctf_lookup_by_rawname, not ctf_hash_lookup_type /
ctf_dtd_lookup_type_by_name.
(ctf_add_union_sized): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_type): Likewise.
(ctf_compress_write): Call ctf_serialize: adjust for ctf_size not
being initialized until after the call.
(ctf_write_mem): Likewise.
(ctf_write): Likewise.
* ctf-archive.c (arc_write_one_ctf): Likewise.
* ctf-lookup.c (ctf_lookup_by_name): Use ctf_lookuup_by_rawhash, not
ctf_hash_lookup_type.
(ctf_lookup_by_id): No longer check the readonly types if the
dictionary is writable.
* ctf-open.c (init_types): Assert that this dictionary is not
writable. Adjust to use the new name hashes, ctf_name_table,
and ctf_ptrtab_len. GNU style fix for the final ptrtab scan.
(ctf_bufopen_internal): New 'writable' parameter. Flip on LCTF_RDWR
if set. Drop out early when dictionary is writable. Split the
ctf_lookups initialization into...
(ctf_set_cth_hashes): ... this new function.
(ctf_simple_open_internal): Adjust. New 'writable' parameter.
(ctf_simple_open): Adjust accordingly.
(ctf_bufopen): Likewise.
(ctf_file_close): Destroy the appropriate name hashes. No longer
destroy ctf_dtbyname, which is gone.
(ctf_getdatasect): Remove spurious "extern".
* ctf-types.c (ctf_lookup_by_rawname): New, look up types in the
specified name table, given a kind.
(ctf_lookup_by_rawhash): Likewise, given a ctf_names_t *.
(ctf_member_iter): Add support for iterating over the
dynamic type list.
(ctf_enum_iter): Likewise.
(ctf_variable_iter): Likewise.
(ctf_type_rvisit): Likewise.
(ctf_member_info): Add support for types in the dynamic type list.
(ctf_enum_name): Likewise.
(ctf_enum_value): Likewise.
(ctf_func_type_info): Likewise.
(ctf_func_type_args): Likewise.
* ctf-link.c (ctf_accumulate_archive_names): No longer call
ctf_update.
(ctf_link_write): Likewise.
(ctf_link_intern_extern_string): Adjust for new
ctf_str_add_external return value.
(ctf_link_add_strtab): Likewise.
* ctf-util.c (ctf_list_empty_p): New.
2019-08-08 00:55:09 +08:00
|
|
|
typedef struct ctf_names
|
|
|
|
{
|
|
|
|
ctf_hash_t *ctn_readonly; /* Hash table when readonly. */
|
|
|
|
ctf_dynhash_t *ctn_writable; /* Hash table when writable. */
|
|
|
|
} ctf_names_t;
|
|
|
|
|
2019-04-24 05:24:13 +08:00
|
|
|
typedef struct ctf_lookup
|
|
|
|
{
|
|
|
|
const char *ctl_prefix; /* String prefix for this lookup. */
|
|
|
|
size_t ctl_len; /* Length of prefix string in bytes. */
|
libctf: avoid the need to ever use ctf_update
The method of operation of libctf when the dictionary is writable has
before now been that types that are added land in the dynamic type
section, which is a linked list and hash of IDs -> dynamic type
definitions (and, recently a hash of names): the DTDs are a bit of CTF
representing the ctf_type_t and ad hoc C structures representing the
vlen. Historically, libctf was unable to do anything with these types,
not even look them up by ID, let alone by name: if you wanted to do that
say if you were adding a type that depended on one you just added) you
called ctf_update, which serializes all the DTDs into a CTF file and
reopens it, copying its guts over the fp it's called with. The
ctf_updated types are then frozen in amber and unchangeable: all lookups
will return the types in the static portion in preference to the dynamic
portion, and we will refuse to re-add things that already exist in the
static portion (and, of late, in the dynamic portion too). The libctf
machinery remembers the boundary between static and dynamic types and
looks in the right portion for each type. Lots of things still don't
quite work with dynamic types (e.g. getting their size), but enough
works to do a bunch of additions and then a ctf_update, most of the
time.
Except it doesn't, because ctf_add_type finds it necessary to walk the
full dynamic type definition list looking for types with matching names,
so it gets slower and slower with every type you add: fixing this
requires calling ctf_update periodically for no other reason than to
avoid massively slowing things down.
This is all clunky and very slow but kind of works, until you consider
that it is in fact possible and indeed necessary to modify one sort of
type after it has been added: forwards. These are necessarily promoted
to structs, unions or enums, and when they do so *their type ID does not
change*. So all of a sudden we are changing types that already exist in
the static portion. ctf_update gets massively confused by this and
allocates space enough for the forward (with no members), but then emits
the new dynamic type (with all the members) into it. You get an
assertion failure after that, if you're lucky, or a coredump.
So this commit rejigs things a bit and arranges to exclusively use the
dynamic type definitions in writable dictionaries, and the static type
definitions in readable dictionaries: we don't at any time have a mixture
of static and dynamic types, and you don't need to call ctf_update to
make things "appear". The ctf_dtbyname hash I introduced a few months
ago, which maps things like "struct foo" to DTDs, is removed, replaced
instead by a change of type of the four dictionaries which track names.
Rather than just being (unresizable) ctf_hash_t's populated only at
ctf_bufopen time, they are now a ctf_names_t structure, which is a pair
of ctf_hash_t and ctf_dynhash_t, with the ctf_hash_t portion being used
in readonly dictionaries, and the ctf_dynhash_t being used in writable
ones. The decision as to which to use is centralized in the new
functions ctf_lookup_by_rawname (which takes a type kind) and
ctf_lookup_by_rawhash, which it calls (which takes a ctf_names_t *.)
This change lets us switch from using static to dynamic name hashes on
the fly across the entirety of libctf without complexifying anything: in
fact, because we now centralize the knowledge about how to map from type
kind to name hash, it actually simplifies things and lets us throw out
quite a lot of now-unnecessary complexity, from ctf_dtnyname (replaced
by the dynamic half of the name tables), through to ctf_dtnextid (now
that a dictionary's static portion is never referenced if the dictionary
is writable, we can just use ctf_typemax to indicate the maximum type:
dynamic or non-dynamic does not matter, and we no longer need to track
the boundary between the types). You can now ctf_rollback() as far as
you like, even past a ctf_update or for that matter a full writeout; all
the iteration functions work just as well on writable as on read-only
dictionaries; ctf_add_type no longer needs expensive duplicated code to
run over the dynamic types hunting for ones it might be interested in;
and the linker no longer needs a hack to call ctf_update so that calling
ctf_add_type is not impossibly expensive.
There is still a bit more complexity: some new code paths in ctf-types.c
need to know how to extract information from dynamic types. This
complexity will go away again in a few months when libctf acquires a
proper intermediate representation.
You can still call ctf_update if you like (it's public API, after all),
but its only effect now is to set the point to which ctf_discard rolls
back.
Obviously *something* still needs to serialize the CTF file before
writeout, and this job is done by ctf_serialize, which does everything
ctf_update used to except set the counter used by ctf_discard. It is
automatically called by the various functions that do CTF writeout:
nobody else ever needs to call it.
With this in place, forwards that are promoted to non-forwards no longer
crash the link, even if it happens tens of thousands of types later.
v5: fix tabdamage.
libctf/
* ctf-impl.h (ctf_names_t): New.
(ctf_lookup_t) <ctf_hash>: Now a ctf_names_t, not a ctf_hash_t.
(ctf_file_t) <ctf_structs>: Likewise.
<ctf_unions>: Likewise.
<ctf_enums>: Likewise.
<ctf_names>: Likewise.
<ctf_lookups>: Improve comment.
<ctf_ptrtab_len>: New.
<ctf_prov_strtab>: New.
<ctf_str_prov_offset>: New.
<ctf_dtbyname>: Remove, redundant to the names hashes.
<ctf_dtnextid>: Remove, redundant to ctf_typemax.
(ctf_dtdef_t) <dtd_name>: Remove.
<dtd_data>: Note that the ctt_name is now populated.
(ctf_str_atom_t) <csa_offset>: This is now the strtab
offset for internal strings too.
<csa_external_offset>: New, the external strtab offset.
(CTF_INDEX_TO_TYPEPTR): Handle the LCTF_RDWR case.
(ctf_name_table): New declaration.
(ctf_lookup_by_rawname): Likewise.
(ctf_lookup_by_rawhash): Likewise.
(ctf_set_ctl_hashes): Likewise.
(ctf_serialize): Likewise.
(ctf_dtd_insert): Adjust.
(ctf_simple_open_internal): Likewise.
(ctf_bufopen_internal): Likewise.
(ctf_list_empty_p): Likewise.
(ctf_str_remove_ref): Likewise.
(ctf_str_add): Returns uint32_t now.
(ctf_str_add_ref): Likewise.
(ctf_str_add_external): Now returns a boolean (int).
* ctf-string.c (ctf_strraw_explicit): Check the ctf_prov_strtab
for strings in the appropriate range.
(ctf_str_create_atoms): Create the ctf_prov_strtab. Detect OOM
when adding the null string to the new strtab.
(ctf_str_free_atoms): Destroy the ctf_prov_strtab.
(ctf_str_add_ref_internal): Add make_provisional argument. If
make_provisional, populate the offset and fill in the
ctf_prov_strtab accordingly.
(ctf_str_add): Return the offset, not the string.
(ctf_str_add_ref): Likewise.
(ctf_str_add_external): Return a success integer.
(ctf_str_remove_ref): New, remove a single ref.
(ctf_str_count_strtab): Do not count the initial null string's
length or the existence or length of any unreferenced internal
atoms.
(ctf_str_populate_sorttab): Skip atoms with no refs.
(ctf_str_write_strtab): Populate the nullstr earlier. Add one
to the cts_len for the null string, since it is no longer done
in ctf_str_count_strtab. Adjust for csa_external_offset rename.
Populate the csa_offset for both internal and external cases.
Flush the ctf_prov_strtab afterwards, and reset the
ctf_str_prov_offset.
* ctf-create.c (ctf_grow_ptrtab): New.
(ctf_create): Call it. Initialize new fields rather than old
ones. Tell ctf_bufopen_internal that this is a writable dictionary.
Set the ctl hashes and data model.
(ctf_update): Rename to...
(ctf_serialize): ... this. Leave a compatibility function behind.
Tell ctf_simple_open_internal that this is a writable dictionary.
Pass the new fields along from the old dictionary. Drop
ctf_dtnextid and ctf_dtbyname. Use ctf_strraw, not dtd_name.
Do not zero out the DTD's ctt_name.
(ctf_prefixed_name): Rename to...
(ctf_name_table): ... this. No longer return a prefixed name: return
the applicable name table instead.
(ctf_dtd_insert): Use it, and use the right name table. Pass in the
kind we're adding. Migrate away from dtd_name.
(ctf_dtd_delete): Adjust similarly. Remove the ref to the
deleted ctt_name.
(ctf_dtd_lookup_type_by_name): Remove.
(ctf_dynamic_type): Always return NULL on read-only dictionaries.
No longer check ctf_dtnextid: check ctf_typemax instead.
(ctf_snapshot): No longer use ctf_dtnextid: use ctf_typemax instead.
(ctf_rollback): Likewise. No longer fail with ECTF_OVERROLLBACK. Use
ctf_name_table and the right name table, and migrate away from
dtd_name as in ctf_dtd_delete.
(ctf_add_generic): Pass in the kind explicitly and pass it to
ctf_dtd_insert. Use ctf_typemax, not ctf_dtnextid. Migrate away
from dtd_name to using ctf_str_add_ref to populate the ctt_name.
Grow the ptrtab if needed.
(ctf_add_encoded): Pass in the kind.
(ctf_add_slice): Likewise.
(ctf_add_array): Likewise.
(ctf_add_function): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_reftype): Likewise. Initialize the ctf_ptrtab, checking
ctt_name rather than dtd_name.
(ctf_add_struct_sized): Pass in the kind. Use
ctf_lookup_by_rawname, not ctf_hash_lookup_type /
ctf_dtd_lookup_type_by_name.
(ctf_add_union_sized): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_type): Likewise.
(ctf_compress_write): Call ctf_serialize: adjust for ctf_size not
being initialized until after the call.
(ctf_write_mem): Likewise.
(ctf_write): Likewise.
* ctf-archive.c (arc_write_one_ctf): Likewise.
* ctf-lookup.c (ctf_lookup_by_name): Use ctf_lookuup_by_rawhash, not
ctf_hash_lookup_type.
(ctf_lookup_by_id): No longer check the readonly types if the
dictionary is writable.
* ctf-open.c (init_types): Assert that this dictionary is not
writable. Adjust to use the new name hashes, ctf_name_table,
and ctf_ptrtab_len. GNU style fix for the final ptrtab scan.
(ctf_bufopen_internal): New 'writable' parameter. Flip on LCTF_RDWR
if set. Drop out early when dictionary is writable. Split the
ctf_lookups initialization into...
(ctf_set_cth_hashes): ... this new function.
(ctf_simple_open_internal): Adjust. New 'writable' parameter.
(ctf_simple_open): Adjust accordingly.
(ctf_bufopen): Likewise.
(ctf_file_close): Destroy the appropriate name hashes. No longer
destroy ctf_dtbyname, which is gone.
(ctf_getdatasect): Remove spurious "extern".
* ctf-types.c (ctf_lookup_by_rawname): New, look up types in the
specified name table, given a kind.
(ctf_lookup_by_rawhash): Likewise, given a ctf_names_t *.
(ctf_member_iter): Add support for iterating over the
dynamic type list.
(ctf_enum_iter): Likewise.
(ctf_variable_iter): Likewise.
(ctf_type_rvisit): Likewise.
(ctf_member_info): Add support for types in the dynamic type list.
(ctf_enum_name): Likewise.
(ctf_enum_value): Likewise.
(ctf_func_type_info): Likewise.
(ctf_func_type_args): Likewise.
* ctf-link.c (ctf_accumulate_archive_names): No longer call
ctf_update.
(ctf_link_write): Likewise.
(ctf_link_intern_extern_string): Adjust for new
ctf_str_add_external return value.
(ctf_link_add_strtab): Likewise.
* ctf-util.c (ctf_list_empty_p): New.
2019-08-08 00:55:09 +08:00
|
|
|
ctf_names_t *ctl_hash; /* Pointer to hash table for lookup. */
|
2019-04-24 05:24:13 +08:00
|
|
|
} ctf_lookup_t;
|
|
|
|
|
libctf, include, binutils, gdb, ld: rename ctf_file_t to ctf_dict_t
The naming of the ctf_file_t type in libctf is a historical curiosity.
Back in the Solaris days, CTF dictionaries were originally generated as
a separate file and then (sometimes) merged into objects: hence the
datatype was named ctf_file_t, and known as a "CTF file". Nowadays, raw
CTF is essentially never written to a file on its own, and the datatype
changed name to a "CTF dictionary" years ago. So the term "CTF file"
refers to something that is never a file! This is at best confusing.
The type has also historically been known as a 'CTF container", which is
even more confusing now that we have CTF archives which are *also* a
sort of container (they contain CTF dictionaries), but which are never
referred to as containers in the source code.
So fix this by completing the renaming, renaming ctf_file_t to
ctf_dict_t throughout, and renaming those few functions that refer to
CTF files by name (keeping compatibility aliases) to refer to dicts
instead. Old users who still refer to ctf_file_t will see (harmless)
pointer-compatibility warnings at compile time, but the ABI is unchanged
(since C doesn't mangle names, and ctf_file_t was always an opaque type)
and things will still compile fine as long as -Werror is not specified.
All references to CTF containers and CTF files in the source code are
fixed to refer to CTF dicts instead.
Further (smaller) renamings of annoyingly-named functions to come, as
part of the process of souping up queries across whole archives at once
(needed for the function info and data object sections).
binutils/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* objdump.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_ctf): Likewise. Use ctf_dict_close, not ctf_file_close.
* readelf.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_section_as_ctf): Likewise. Use ctf_dict_close, not
ctf_file_close.
gdb/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctfread.c: Change uses of ctf_file_t to ctf_dict_t.
(ctf_fp_info::~ctf_fp_info): Call ctf_dict_close, not ctf_file_close.
include/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-api.h (ctf_file_t): Rename to...
(ctf_dict_t): ... this. Keep ctf_file_t around for compatibility.
(struct ctf_file): Likewise rename to...
(struct ctf_dict): ... this.
(ctf_file_close): Rename to...
(ctf_dict_close): ... this, keeping compatibility function.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this, keeping compatibility function.
All callers adjusted.
* ctf.h: Rename references to ctf_file_t to ctf_dict_t.
(struct ctf_archive) <ctfa_nfiles>: Rename to...
<ctfa_ndicts>: ... this.
ld/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ldlang.c (ctf_output): This is a ctf_dict_t now.
(lang_ctf_errs_warnings): Rename ctf_file_t to ctf_dict_t.
(ldlang_open_ctf): Adjust comment.
(lang_merge_ctf): Use ctf_dict_close, not ctf_file_close.
* ldelfgen.h (ldelf_examine_strtab_for_ctf): Rename ctf_file_t to
ctf_dict_t. Change opaque declaration accordingly.
* ldelfgen.c (ldelf_examine_strtab_for_ctf): Adjust.
* ldemul.h (examine_strtab_for_ctf): Likewise.
(ldemul_examine_strtab_for_ctf): Likewise.
* ldeuml.c (ldemul_examine_strtab_for_ctf): Likewise.
libctf/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h: Rename ctf_file_t to ctf_dict_t: all declarations
adjusted.
(ctf_fileops): Rename to...
(ctf_dictops): ... this.
(ctf_dedup_t) <cd_id_to_file_t>: Rename to...
<cd_id_to_dict_t>: ... this.
(ctf_file_t): Fix outdated comment.
<ctf_fileops>: Rename to...
<ctf_dictops>: ... this.
(struct ctf_archive_internal) <ctfi_file>: Rename to...
<ctfi_dict>: ... this.
* ctf-archive.c: Rename ctf_file_t to ctf_dict_t.
Rename ctf_archive.ctfa_nfiles to ctfa_ndicts.
Rename ctf_file_close to ctf_dict_close. All users adjusted.
* ctf-create.c: Likewise. Refer to CTF dicts, not CTF containers.
(ctf_bundle_t) <ctb_file>: Rename to...
<ctb_dict): ... this.
* ctf-decl.c: Rename ctf_file_t to ctf_dict_t.
* ctf-dedup.c: Likewise. Rename ctf_file_close to
ctf_dict_close. Refer to CTF dicts, not CTF containers.
* ctf-dump.c: Likewise.
* ctf-error.c: Likewise.
* ctf-hash.c: Likewise.
* ctf-inlines.h: Likewise.
* ctf-labels.c: Likewise.
* ctf-link.c: Likewise.
* ctf-lookup.c: Likewise.
* ctf-open-bfd.c: Likewise.
* ctf-string.c: Likewise.
* ctf-subr.c: Likewise.
* ctf-types.c: Likewise.
* ctf-util.c: Likewise.
* ctf-open.c: Likewise.
(ctf_file_close): Rename to...
(ctf_dict_close): ...this.
(ctf_file_close): New trivial wrapper around ctf_dict_close, for
compatibility.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this.
(ctf_parent_file): New trivial wrapper around ctf_parent_dict, for
compatibility.
* libctf.ver: Add ctf_dict_close and ctf_parent_dict.
2020-11-20 21:34:04 +08:00
|
|
|
typedef struct ctf_dictops
|
2019-04-24 05:24:13 +08:00
|
|
|
{
|
|
|
|
uint32_t (*ctfo_get_kind) (uint32_t);
|
|
|
|
uint32_t (*ctfo_get_root) (uint32_t);
|
|
|
|
uint32_t (*ctfo_get_vlen) (uint32_t);
|
libctf, include, binutils, gdb, ld: rename ctf_file_t to ctf_dict_t
The naming of the ctf_file_t type in libctf is a historical curiosity.
Back in the Solaris days, CTF dictionaries were originally generated as
a separate file and then (sometimes) merged into objects: hence the
datatype was named ctf_file_t, and known as a "CTF file". Nowadays, raw
CTF is essentially never written to a file on its own, and the datatype
changed name to a "CTF dictionary" years ago. So the term "CTF file"
refers to something that is never a file! This is at best confusing.
The type has also historically been known as a 'CTF container", which is
even more confusing now that we have CTF archives which are *also* a
sort of container (they contain CTF dictionaries), but which are never
referred to as containers in the source code.
So fix this by completing the renaming, renaming ctf_file_t to
ctf_dict_t throughout, and renaming those few functions that refer to
CTF files by name (keeping compatibility aliases) to refer to dicts
instead. Old users who still refer to ctf_file_t will see (harmless)
pointer-compatibility warnings at compile time, but the ABI is unchanged
(since C doesn't mangle names, and ctf_file_t was always an opaque type)
and things will still compile fine as long as -Werror is not specified.
All references to CTF containers and CTF files in the source code are
fixed to refer to CTF dicts instead.
Further (smaller) renamings of annoyingly-named functions to come, as
part of the process of souping up queries across whole archives at once
(needed for the function info and data object sections).
binutils/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* objdump.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_ctf): Likewise. Use ctf_dict_close, not ctf_file_close.
* readelf.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_section_as_ctf): Likewise. Use ctf_dict_close, not
ctf_file_close.
gdb/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctfread.c: Change uses of ctf_file_t to ctf_dict_t.
(ctf_fp_info::~ctf_fp_info): Call ctf_dict_close, not ctf_file_close.
include/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-api.h (ctf_file_t): Rename to...
(ctf_dict_t): ... this. Keep ctf_file_t around for compatibility.
(struct ctf_file): Likewise rename to...
(struct ctf_dict): ... this.
(ctf_file_close): Rename to...
(ctf_dict_close): ... this, keeping compatibility function.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this, keeping compatibility function.
All callers adjusted.
* ctf.h: Rename references to ctf_file_t to ctf_dict_t.
(struct ctf_archive) <ctfa_nfiles>: Rename to...
<ctfa_ndicts>: ... this.
ld/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ldlang.c (ctf_output): This is a ctf_dict_t now.
(lang_ctf_errs_warnings): Rename ctf_file_t to ctf_dict_t.
(ldlang_open_ctf): Adjust comment.
(lang_merge_ctf): Use ctf_dict_close, not ctf_file_close.
* ldelfgen.h (ldelf_examine_strtab_for_ctf): Rename ctf_file_t to
ctf_dict_t. Change opaque declaration accordingly.
* ldelfgen.c (ldelf_examine_strtab_for_ctf): Adjust.
* ldemul.h (examine_strtab_for_ctf): Likewise.
(ldemul_examine_strtab_for_ctf): Likewise.
* ldeuml.c (ldemul_examine_strtab_for_ctf): Likewise.
libctf/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h: Rename ctf_file_t to ctf_dict_t: all declarations
adjusted.
(ctf_fileops): Rename to...
(ctf_dictops): ... this.
(ctf_dedup_t) <cd_id_to_file_t>: Rename to...
<cd_id_to_dict_t>: ... this.
(ctf_file_t): Fix outdated comment.
<ctf_fileops>: Rename to...
<ctf_dictops>: ... this.
(struct ctf_archive_internal) <ctfi_file>: Rename to...
<ctfi_dict>: ... this.
* ctf-archive.c: Rename ctf_file_t to ctf_dict_t.
Rename ctf_archive.ctfa_nfiles to ctfa_ndicts.
Rename ctf_file_close to ctf_dict_close. All users adjusted.
* ctf-create.c: Likewise. Refer to CTF dicts, not CTF containers.
(ctf_bundle_t) <ctb_file>: Rename to...
<ctb_dict): ... this.
* ctf-decl.c: Rename ctf_file_t to ctf_dict_t.
* ctf-dedup.c: Likewise. Rename ctf_file_close to
ctf_dict_close. Refer to CTF dicts, not CTF containers.
* ctf-dump.c: Likewise.
* ctf-error.c: Likewise.
* ctf-hash.c: Likewise.
* ctf-inlines.h: Likewise.
* ctf-labels.c: Likewise.
* ctf-link.c: Likewise.
* ctf-lookup.c: Likewise.
* ctf-open-bfd.c: Likewise.
* ctf-string.c: Likewise.
* ctf-subr.c: Likewise.
* ctf-types.c: Likewise.
* ctf-util.c: Likewise.
* ctf-open.c: Likewise.
(ctf_file_close): Rename to...
(ctf_dict_close): ...this.
(ctf_file_close): New trivial wrapper around ctf_dict_close, for
compatibility.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this.
(ctf_parent_file): New trivial wrapper around ctf_parent_dict, for
compatibility.
* libctf.ver: Add ctf_dict_close and ctf_parent_dict.
2020-11-20 21:34:04 +08:00
|
|
|
ssize_t (*ctfo_get_ctt_size) (const ctf_dict_t *, const ctf_type_t *,
|
2019-04-24 05:24:13 +08:00
|
|
|
ssize_t *, ssize_t *);
|
libctf, include, binutils, gdb, ld: rename ctf_file_t to ctf_dict_t
The naming of the ctf_file_t type in libctf is a historical curiosity.
Back in the Solaris days, CTF dictionaries were originally generated as
a separate file and then (sometimes) merged into objects: hence the
datatype was named ctf_file_t, and known as a "CTF file". Nowadays, raw
CTF is essentially never written to a file on its own, and the datatype
changed name to a "CTF dictionary" years ago. So the term "CTF file"
refers to something that is never a file! This is at best confusing.
The type has also historically been known as a 'CTF container", which is
even more confusing now that we have CTF archives which are *also* a
sort of container (they contain CTF dictionaries), but which are never
referred to as containers in the source code.
So fix this by completing the renaming, renaming ctf_file_t to
ctf_dict_t throughout, and renaming those few functions that refer to
CTF files by name (keeping compatibility aliases) to refer to dicts
instead. Old users who still refer to ctf_file_t will see (harmless)
pointer-compatibility warnings at compile time, but the ABI is unchanged
(since C doesn't mangle names, and ctf_file_t was always an opaque type)
and things will still compile fine as long as -Werror is not specified.
All references to CTF containers and CTF files in the source code are
fixed to refer to CTF dicts instead.
Further (smaller) renamings of annoyingly-named functions to come, as
part of the process of souping up queries across whole archives at once
(needed for the function info and data object sections).
binutils/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* objdump.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_ctf): Likewise. Use ctf_dict_close, not ctf_file_close.
* readelf.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_section_as_ctf): Likewise. Use ctf_dict_close, not
ctf_file_close.
gdb/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctfread.c: Change uses of ctf_file_t to ctf_dict_t.
(ctf_fp_info::~ctf_fp_info): Call ctf_dict_close, not ctf_file_close.
include/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-api.h (ctf_file_t): Rename to...
(ctf_dict_t): ... this. Keep ctf_file_t around for compatibility.
(struct ctf_file): Likewise rename to...
(struct ctf_dict): ... this.
(ctf_file_close): Rename to...
(ctf_dict_close): ... this, keeping compatibility function.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this, keeping compatibility function.
All callers adjusted.
* ctf.h: Rename references to ctf_file_t to ctf_dict_t.
(struct ctf_archive) <ctfa_nfiles>: Rename to...
<ctfa_ndicts>: ... this.
ld/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ldlang.c (ctf_output): This is a ctf_dict_t now.
(lang_ctf_errs_warnings): Rename ctf_file_t to ctf_dict_t.
(ldlang_open_ctf): Adjust comment.
(lang_merge_ctf): Use ctf_dict_close, not ctf_file_close.
* ldelfgen.h (ldelf_examine_strtab_for_ctf): Rename ctf_file_t to
ctf_dict_t. Change opaque declaration accordingly.
* ldelfgen.c (ldelf_examine_strtab_for_ctf): Adjust.
* ldemul.h (examine_strtab_for_ctf): Likewise.
(ldemul_examine_strtab_for_ctf): Likewise.
* ldeuml.c (ldemul_examine_strtab_for_ctf): Likewise.
libctf/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h: Rename ctf_file_t to ctf_dict_t: all declarations
adjusted.
(ctf_fileops): Rename to...
(ctf_dictops): ... this.
(ctf_dedup_t) <cd_id_to_file_t>: Rename to...
<cd_id_to_dict_t>: ... this.
(ctf_file_t): Fix outdated comment.
<ctf_fileops>: Rename to...
<ctf_dictops>: ... this.
(struct ctf_archive_internal) <ctfi_file>: Rename to...
<ctfi_dict>: ... this.
* ctf-archive.c: Rename ctf_file_t to ctf_dict_t.
Rename ctf_archive.ctfa_nfiles to ctfa_ndicts.
Rename ctf_file_close to ctf_dict_close. All users adjusted.
* ctf-create.c: Likewise. Refer to CTF dicts, not CTF containers.
(ctf_bundle_t) <ctb_file>: Rename to...
<ctb_dict): ... this.
* ctf-decl.c: Rename ctf_file_t to ctf_dict_t.
* ctf-dedup.c: Likewise. Rename ctf_file_close to
ctf_dict_close. Refer to CTF dicts, not CTF containers.
* ctf-dump.c: Likewise.
* ctf-error.c: Likewise.
* ctf-hash.c: Likewise.
* ctf-inlines.h: Likewise.
* ctf-labels.c: Likewise.
* ctf-link.c: Likewise.
* ctf-lookup.c: Likewise.
* ctf-open-bfd.c: Likewise.
* ctf-string.c: Likewise.
* ctf-subr.c: Likewise.
* ctf-types.c: Likewise.
* ctf-util.c: Likewise.
* ctf-open.c: Likewise.
(ctf_file_close): Rename to...
(ctf_dict_close): ...this.
(ctf_file_close): New trivial wrapper around ctf_dict_close, for
compatibility.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this.
(ctf_parent_file): New trivial wrapper around ctf_parent_dict, for
compatibility.
* libctf.ver: Add ctf_dict_close and ctf_parent_dict.
2020-11-20 21:34:04 +08:00
|
|
|
ssize_t (*ctfo_get_vbytes) (ctf_dict_t *, unsigned short, ssize_t, size_t);
|
|
|
|
} ctf_dictops_t;
|
2019-04-24 05:24:13 +08:00
|
|
|
|
2019-04-24 04:45:30 +08:00
|
|
|
typedef struct ctf_list
|
|
|
|
{
|
|
|
|
struct ctf_list *l_prev; /* Previous pointer or tail pointer. */
|
|
|
|
struct ctf_list *l_next; /* Next pointer or head pointer. */
|
|
|
|
} ctf_list_t;
|
|
|
|
|
2019-04-24 05:24:13 +08:00
|
|
|
typedef enum
|
|
|
|
{
|
|
|
|
CTF_PREC_BASE,
|
|
|
|
CTF_PREC_POINTER,
|
|
|
|
CTF_PREC_ARRAY,
|
|
|
|
CTF_PREC_FUNCTION,
|
|
|
|
CTF_PREC_MAX
|
|
|
|
} ctf_decl_prec_t;
|
|
|
|
|
|
|
|
typedef struct ctf_decl_node
|
|
|
|
{
|
|
|
|
ctf_list_t cd_list; /* Linked list pointers. */
|
|
|
|
ctf_id_t cd_type; /* Type identifier. */
|
|
|
|
uint32_t cd_kind; /* Type kind. */
|
|
|
|
uint32_t cd_n; /* Type dimension if array. */
|
|
|
|
} ctf_decl_node_t;
|
|
|
|
|
|
|
|
typedef struct ctf_decl
|
|
|
|
{
|
|
|
|
ctf_list_t cd_nodes[CTF_PREC_MAX]; /* Declaration node stacks. */
|
|
|
|
int cd_order[CTF_PREC_MAX]; /* Storage order of decls. */
|
|
|
|
ctf_decl_prec_t cd_qualp; /* Qualifier precision. */
|
|
|
|
ctf_decl_prec_t cd_ordp; /* Ordered precision. */
|
|
|
|
char *cd_buf; /* Buffer for output. */
|
|
|
|
int cd_err; /* Saved error value. */
|
|
|
|
int cd_enomem; /* Nonzero if OOM during printing. */
|
|
|
|
} ctf_decl_t;
|
|
|
|
|
|
|
|
typedef struct ctf_dtdef
|
|
|
|
{
|
|
|
|
ctf_list_t dtd_list; /* List forward/back pointers. */
|
|
|
|
ctf_id_t dtd_type; /* Type identifier for this definition. */
|
libctf: avoid the need to ever use ctf_update
The method of operation of libctf when the dictionary is writable has
before now been that types that are added land in the dynamic type
section, which is a linked list and hash of IDs -> dynamic type
definitions (and, recently a hash of names): the DTDs are a bit of CTF
representing the ctf_type_t and ad hoc C structures representing the
vlen. Historically, libctf was unable to do anything with these types,
not even look them up by ID, let alone by name: if you wanted to do that
say if you were adding a type that depended on one you just added) you
called ctf_update, which serializes all the DTDs into a CTF file and
reopens it, copying its guts over the fp it's called with. The
ctf_updated types are then frozen in amber and unchangeable: all lookups
will return the types in the static portion in preference to the dynamic
portion, and we will refuse to re-add things that already exist in the
static portion (and, of late, in the dynamic portion too). The libctf
machinery remembers the boundary between static and dynamic types and
looks in the right portion for each type. Lots of things still don't
quite work with dynamic types (e.g. getting their size), but enough
works to do a bunch of additions and then a ctf_update, most of the
time.
Except it doesn't, because ctf_add_type finds it necessary to walk the
full dynamic type definition list looking for types with matching names,
so it gets slower and slower with every type you add: fixing this
requires calling ctf_update periodically for no other reason than to
avoid massively slowing things down.
This is all clunky and very slow but kind of works, until you consider
that it is in fact possible and indeed necessary to modify one sort of
type after it has been added: forwards. These are necessarily promoted
to structs, unions or enums, and when they do so *their type ID does not
change*. So all of a sudden we are changing types that already exist in
the static portion. ctf_update gets massively confused by this and
allocates space enough for the forward (with no members), but then emits
the new dynamic type (with all the members) into it. You get an
assertion failure after that, if you're lucky, or a coredump.
So this commit rejigs things a bit and arranges to exclusively use the
dynamic type definitions in writable dictionaries, and the static type
definitions in readable dictionaries: we don't at any time have a mixture
of static and dynamic types, and you don't need to call ctf_update to
make things "appear". The ctf_dtbyname hash I introduced a few months
ago, which maps things like "struct foo" to DTDs, is removed, replaced
instead by a change of type of the four dictionaries which track names.
Rather than just being (unresizable) ctf_hash_t's populated only at
ctf_bufopen time, they are now a ctf_names_t structure, which is a pair
of ctf_hash_t and ctf_dynhash_t, with the ctf_hash_t portion being used
in readonly dictionaries, and the ctf_dynhash_t being used in writable
ones. The decision as to which to use is centralized in the new
functions ctf_lookup_by_rawname (which takes a type kind) and
ctf_lookup_by_rawhash, which it calls (which takes a ctf_names_t *.)
This change lets us switch from using static to dynamic name hashes on
the fly across the entirety of libctf without complexifying anything: in
fact, because we now centralize the knowledge about how to map from type
kind to name hash, it actually simplifies things and lets us throw out
quite a lot of now-unnecessary complexity, from ctf_dtnyname (replaced
by the dynamic half of the name tables), through to ctf_dtnextid (now
that a dictionary's static portion is never referenced if the dictionary
is writable, we can just use ctf_typemax to indicate the maximum type:
dynamic or non-dynamic does not matter, and we no longer need to track
the boundary between the types). You can now ctf_rollback() as far as
you like, even past a ctf_update or for that matter a full writeout; all
the iteration functions work just as well on writable as on read-only
dictionaries; ctf_add_type no longer needs expensive duplicated code to
run over the dynamic types hunting for ones it might be interested in;
and the linker no longer needs a hack to call ctf_update so that calling
ctf_add_type is not impossibly expensive.
There is still a bit more complexity: some new code paths in ctf-types.c
need to know how to extract information from dynamic types. This
complexity will go away again in a few months when libctf acquires a
proper intermediate representation.
You can still call ctf_update if you like (it's public API, after all),
but its only effect now is to set the point to which ctf_discard rolls
back.
Obviously *something* still needs to serialize the CTF file before
writeout, and this job is done by ctf_serialize, which does everything
ctf_update used to except set the counter used by ctf_discard. It is
automatically called by the various functions that do CTF writeout:
nobody else ever needs to call it.
With this in place, forwards that are promoted to non-forwards no longer
crash the link, even if it happens tens of thousands of types later.
v5: fix tabdamage.
libctf/
* ctf-impl.h (ctf_names_t): New.
(ctf_lookup_t) <ctf_hash>: Now a ctf_names_t, not a ctf_hash_t.
(ctf_file_t) <ctf_structs>: Likewise.
<ctf_unions>: Likewise.
<ctf_enums>: Likewise.
<ctf_names>: Likewise.
<ctf_lookups>: Improve comment.
<ctf_ptrtab_len>: New.
<ctf_prov_strtab>: New.
<ctf_str_prov_offset>: New.
<ctf_dtbyname>: Remove, redundant to the names hashes.
<ctf_dtnextid>: Remove, redundant to ctf_typemax.
(ctf_dtdef_t) <dtd_name>: Remove.
<dtd_data>: Note that the ctt_name is now populated.
(ctf_str_atom_t) <csa_offset>: This is now the strtab
offset for internal strings too.
<csa_external_offset>: New, the external strtab offset.
(CTF_INDEX_TO_TYPEPTR): Handle the LCTF_RDWR case.
(ctf_name_table): New declaration.
(ctf_lookup_by_rawname): Likewise.
(ctf_lookup_by_rawhash): Likewise.
(ctf_set_ctl_hashes): Likewise.
(ctf_serialize): Likewise.
(ctf_dtd_insert): Adjust.
(ctf_simple_open_internal): Likewise.
(ctf_bufopen_internal): Likewise.
(ctf_list_empty_p): Likewise.
(ctf_str_remove_ref): Likewise.
(ctf_str_add): Returns uint32_t now.
(ctf_str_add_ref): Likewise.
(ctf_str_add_external): Now returns a boolean (int).
* ctf-string.c (ctf_strraw_explicit): Check the ctf_prov_strtab
for strings in the appropriate range.
(ctf_str_create_atoms): Create the ctf_prov_strtab. Detect OOM
when adding the null string to the new strtab.
(ctf_str_free_atoms): Destroy the ctf_prov_strtab.
(ctf_str_add_ref_internal): Add make_provisional argument. If
make_provisional, populate the offset and fill in the
ctf_prov_strtab accordingly.
(ctf_str_add): Return the offset, not the string.
(ctf_str_add_ref): Likewise.
(ctf_str_add_external): Return a success integer.
(ctf_str_remove_ref): New, remove a single ref.
(ctf_str_count_strtab): Do not count the initial null string's
length or the existence or length of any unreferenced internal
atoms.
(ctf_str_populate_sorttab): Skip atoms with no refs.
(ctf_str_write_strtab): Populate the nullstr earlier. Add one
to the cts_len for the null string, since it is no longer done
in ctf_str_count_strtab. Adjust for csa_external_offset rename.
Populate the csa_offset for both internal and external cases.
Flush the ctf_prov_strtab afterwards, and reset the
ctf_str_prov_offset.
* ctf-create.c (ctf_grow_ptrtab): New.
(ctf_create): Call it. Initialize new fields rather than old
ones. Tell ctf_bufopen_internal that this is a writable dictionary.
Set the ctl hashes and data model.
(ctf_update): Rename to...
(ctf_serialize): ... this. Leave a compatibility function behind.
Tell ctf_simple_open_internal that this is a writable dictionary.
Pass the new fields along from the old dictionary. Drop
ctf_dtnextid and ctf_dtbyname. Use ctf_strraw, not dtd_name.
Do not zero out the DTD's ctt_name.
(ctf_prefixed_name): Rename to...
(ctf_name_table): ... this. No longer return a prefixed name: return
the applicable name table instead.
(ctf_dtd_insert): Use it, and use the right name table. Pass in the
kind we're adding. Migrate away from dtd_name.
(ctf_dtd_delete): Adjust similarly. Remove the ref to the
deleted ctt_name.
(ctf_dtd_lookup_type_by_name): Remove.
(ctf_dynamic_type): Always return NULL on read-only dictionaries.
No longer check ctf_dtnextid: check ctf_typemax instead.
(ctf_snapshot): No longer use ctf_dtnextid: use ctf_typemax instead.
(ctf_rollback): Likewise. No longer fail with ECTF_OVERROLLBACK. Use
ctf_name_table and the right name table, and migrate away from
dtd_name as in ctf_dtd_delete.
(ctf_add_generic): Pass in the kind explicitly and pass it to
ctf_dtd_insert. Use ctf_typemax, not ctf_dtnextid. Migrate away
from dtd_name to using ctf_str_add_ref to populate the ctt_name.
Grow the ptrtab if needed.
(ctf_add_encoded): Pass in the kind.
(ctf_add_slice): Likewise.
(ctf_add_array): Likewise.
(ctf_add_function): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_reftype): Likewise. Initialize the ctf_ptrtab, checking
ctt_name rather than dtd_name.
(ctf_add_struct_sized): Pass in the kind. Use
ctf_lookup_by_rawname, not ctf_hash_lookup_type /
ctf_dtd_lookup_type_by_name.
(ctf_add_union_sized): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_type): Likewise.
(ctf_compress_write): Call ctf_serialize: adjust for ctf_size not
being initialized until after the call.
(ctf_write_mem): Likewise.
(ctf_write): Likewise.
* ctf-archive.c (arc_write_one_ctf): Likewise.
* ctf-lookup.c (ctf_lookup_by_name): Use ctf_lookuup_by_rawhash, not
ctf_hash_lookup_type.
(ctf_lookup_by_id): No longer check the readonly types if the
dictionary is writable.
* ctf-open.c (init_types): Assert that this dictionary is not
writable. Adjust to use the new name hashes, ctf_name_table,
and ctf_ptrtab_len. GNU style fix for the final ptrtab scan.
(ctf_bufopen_internal): New 'writable' parameter. Flip on LCTF_RDWR
if set. Drop out early when dictionary is writable. Split the
ctf_lookups initialization into...
(ctf_set_cth_hashes): ... this new function.
(ctf_simple_open_internal): Adjust. New 'writable' parameter.
(ctf_simple_open): Adjust accordingly.
(ctf_bufopen): Likewise.
(ctf_file_close): Destroy the appropriate name hashes. No longer
destroy ctf_dtbyname, which is gone.
(ctf_getdatasect): Remove spurious "extern".
* ctf-types.c (ctf_lookup_by_rawname): New, look up types in the
specified name table, given a kind.
(ctf_lookup_by_rawhash): Likewise, given a ctf_names_t *.
(ctf_member_iter): Add support for iterating over the
dynamic type list.
(ctf_enum_iter): Likewise.
(ctf_variable_iter): Likewise.
(ctf_type_rvisit): Likewise.
(ctf_member_info): Add support for types in the dynamic type list.
(ctf_enum_name): Likewise.
(ctf_enum_value): Likewise.
(ctf_func_type_info): Likewise.
(ctf_func_type_args): Likewise.
* ctf-link.c (ctf_accumulate_archive_names): No longer call
ctf_update.
(ctf_link_write): Likewise.
(ctf_link_intern_extern_string): Adjust for new
ctf_str_add_external return value.
(ctf_link_add_strtab): Likewise.
* ctf-util.c (ctf_list_empty_p): New.
2019-08-08 00:55:09 +08:00
|
|
|
ctf_type_t dtd_data; /* Type node, including name. */
|
2021-03-18 20:37:52 +08:00
|
|
|
size_t dtd_vlen_alloc; /* Total vlen space allocated. */
|
libctf: eliminate dtd_u, part 1: int/float/slice
This series eliminates a lot of special-case code to handle dynamic
types (types added to writable dicts and not yet serialized).
Historically, when such types have variable-length data in their final
CTF representations, libctf has always worked by adding such types to a
special union (ctf_dtdef_t.dtd_u) in the dynamic type definition
structure, then picking the members out of this structure at
serialization time and packing them into their final form.
This has the advantage that the ctf_add_* code doesn't need to know
anything about the final CTF representation, but the significant
disadvantage that all code that looks up types in any way needs two code
paths, one for dynamic types, one for all others. Historically libctf
"handled" this by not supporting most type lookups on dynamic types at
all until ctf_update was called to do a complete reserialization of the
entire dict (it didn't emit an error, it just emitted wrong results).
Since commit 676c3ecbad6e9c4, which eliminated ctf_update in favour of
the internal-only ctf_serialize function, all the type-lookup paths
grew an extra branch to handle dynamic types.
We can eliminate this branch again by dropping the dtd_u stuff and
simply writing out the vlen in (close to) its final form at ctf_add_*
time: type lookup for types using this approach is then identical for
types in writable dicts and types that are in read-only ones, and
serialization is also simplified (we just need to write out the vlen
we already created).
The only complexity lies in type kinds for which multiple
vlen representations are valid depending on properties of the type,
e.g. structures. But we can start simple, adjusting ints, floats,
and slices to work this way, and leaving everything else as is.
libctf/ChangeLog
2021-03-18 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h (ctf_dtdef_t) <dtd_u.dtu_enc>: Remove.
<dtd_u.dtu_slice>: Likewise.
<dtd_vlen>: New.
* ctf-create.c (ctf_add_generic): Perhaps allocate it. All
callers adjusted.
(ctf_dtd_delete): Free it.
(ctf_add_slice): Use the dtd_vlen, not dtu_enc.
(ctf_add_encoded): Likewise. Assert that this must be an int or
float.
* ctf-serialize.c (ctf_emit_type_sect): Just copy the dtd_vlen.
* ctf-dedup.c (ctf_dedup_rhash_type): Use the dtd_vlen, not
dtu_slice.
* ctf-types.c (ctf_type_reference): Likewise.
(ctf_type_encoding): Remove most dynamic-type-specific code: just
get the vlen from the right place. Report failure to look up the
underlying type's encoding.
2021-03-18 20:37:52 +08:00
|
|
|
unsigned char *dtd_vlen; /* Variable-length data for this type. */
|
2019-04-24 05:24:13 +08:00
|
|
|
} ctf_dtdef_t;
|
|
|
|
|
|
|
|
typedef struct ctf_dvdef
|
|
|
|
{
|
|
|
|
ctf_list_t dvd_list; /* List forward/back pointers. */
|
|
|
|
char *dvd_name; /* Name associated with variable. */
|
|
|
|
ctf_id_t dvd_type; /* Type of variable. */
|
|
|
|
unsigned long dvd_snapshots; /* Snapshot count when inserted. */
|
|
|
|
} ctf_dvdef_t;
|
|
|
|
|
libctf, ld, binutils: add textual error/warning reporting for libctf
This commit adds a long-missing piece of infrastructure to libctf: the
ability to report errors and warnings using all the power of printf,
rather than being restricted to one errno value. Internally, libctf
calls ctf_err_warn() to add errors and warnings to a list: a new
iterator ctf_errwarning_next() then consumes this list one by one and
hands it to the caller, which can free it. New errors and warnings are
added until the list is consumed by the caller or the ctf_file_t is
closed, so you can dump them at intervals. The caller can of course
choose to print only those warnings it wants. (I am not sure whether we
want objdump, readelf or ld to print warnings or not: right now I'm
printing them, but maybe we only want to print errors? This entirely
depends on whether warnings are voluminous things describing e.g. the
inability to emit single types because of name clashes or something.
There are no users of this infrastructure yet, so it's hard to say.)
There is no internationalization here yet, but this at least adds a
place where internationalization can be added, to one of
ctf_errwarning_next or ctf_err_warn.
We also provide a new ctf_assert() function which uses this
infrastructure to provide non-fatal assertion failures while emitting an
assert-like string to the caller: to save space and avoid needlessly
duplicating unchanging strings, the assertion test is inlined but the
print-things-out failure case is not. All assertions in libctf will be
converted to use this machinery in future commits and propagate
assertion-failure errors up, so that the linker in particular cannot be
killed by libctf assertion failures when it could perfectly well just
print warnings and drop the CTF section.
include/
* ctf-api.h (ECTF_INTERNAL): Adjust error text.
(ctf_errwarning_next): New.
libctf/
* ctf-impl.h (ctf_assert): New.
(ctf_err_warning_t): Likewise.
(ctf_file_t) <ctf_errs_warnings>: Likewise.
(ctf_err_warn): New prototype.
(ctf_assert_fail_internal): Likewise.
* ctf-inlines.h (ctf_assert_internal): Likewise.
* ctf-open.c (ctf_file_close): Free ctf_errs_warnings.
* ctf-create.c (ctf_serialize): Copy it on serialization.
* ctf-subr.c (ctf_err_warn): New, add an error/warning.
(ctf_errwarning_next): New iterator, free and pass back
errors/warnings in succession.
* libctf.ver (ctf_errwarning_next): Add.
ld/
* ldlang.c (lang_ctf_errs_warnings): New, print CTF errors
and warnings. Assert when libctf asserts.
(lang_merge_ctf): Call it.
(land_write_ctf): Likewise.
binutils/
* objdump.c (ctf_archive_member): Print CTF errors and warnings.
* readelf.c (dump_ctf_archive_member): Likewise.
2020-06-04 22:07:54 +08:00
|
|
|
typedef struct ctf_err_warning
|
|
|
|
{
|
|
|
|
ctf_list_t cew_list; /* List forward/back pointers. */
|
|
|
|
int cew_is_warning; /* 1 if warning, 0 if error. */
|
|
|
|
char *cew_text; /* Error/warning text. */
|
|
|
|
} ctf_err_warning_t;
|
|
|
|
|
libctf: deduplicate and sort the string table
ctf.h states:
> [...] the CTF string table does not contain any duplicated strings.
Unfortunately this is entirely untrue: libctf has before now made no
attempt whatsoever to deduplicate the string table. It computes the
string table's length on the fly as it adds new strings to the dynamic
CTF file, and ctf_update() just writes each string to the table and
notes the current write position as it traverses the dynamic CTF file's
data structures and builds the final CTF buffer. There is no global
view of the strings and no deduplication.
Fix this by erasing the ctf_dtvstrlen dead-reckoning length, and adding
a new dynhash table ctf_str_atoms that maps unique strings to a list
of references to those strings: a reference is a simple uint32_t * to
some value somewhere in the under-construction CTF buffer that needs
updating to note the string offset when the strtab is laid out.
Adding a string is now a simple matter of calling ctf_str_add_ref(),
which adds a new atom to the atoms table, if one doesn't already exist,
and adding the location of the reference to this atom to the refs list
attached to the atom: this works reliably as long as one takes care to
only call ctf_str_add_ref() once the final location of the offset is
known (so you can't call it on a temporary structure and then memcpy()
that structure into place in the CTF buffer, because the ref will still
point to the old location: ctf_update() changes accordingly).
Generating the CTF string table is a matter of calling
ctf_str_write_strtab(), which counts the length and number of elements
in the atoms table using the ctf_dynhash_iter() function we just added,
populating an array of pointers into the atoms table and sorting it into
order (to help compressors), then traversing this table and emitting it,
updating the refs to each atom as we go. The only complexity here is
arranging to keep the null string at offset zero, since a lot of code in
libctf depends on being able to leave strtab references at 0 to indicate
'no name'. Once the table is constructed and the refs updated, we know
how long it is, so we can realloc() the partial CTF buffer we allocated
earlier and can copy the table on to the end of it (and purge the refs
because they're not needed any more and have been invalidated by the
realloc() call in any case).
The net effect of all this is a reduction in uncompressed strtab sizes
of about 30% (perhaps a quarter to a half of all strings across the
Linux kernel are eliminated as duplicates). Of course, duplicated
strings are highly redundant, so the space saving after compression is
only about 20%: when the other non-strtab sections are factored in, CTF
sizes shrink by about 10%.
No change in externally-visible API or file format (other than the
reduction in pointless redundancy).
libctf/
* ctf-impl.h: (struct ctf_strs_writable): New, non-const version of
struct ctf_strs.
(struct ctf_dtdef): Note that dtd_data.ctt_name is unpopulated.
(struct ctf_str_atom): New, disambiguated single string.
(struct ctf_str_atom_ref): New, points to some other location that
references this string's offset.
(struct ctf_file): New members ctf_str_atoms and ctf_str_num_refs.
Remove member ctf_dtvstrlen: we no longer track the total strlen
as we add strings.
(ctf_str_create_atoms): Declare new function in ctf-string.c.
(ctf_str_free_atoms): Likewise.
(ctf_str_add): Likewise.
(ctf_str_add_ref): Likewise.
(ctf_str_purge_refs): Likewise.
(ctf_str_write_strtab): Likewise.
(ctf_realloc): Declare new function in ctf-util.c.
* ctf-open.c (ctf_bufopen): Create the atoms table.
(ctf_file_close): Destroy it.
* ctf-create.c (ctf_update): Copy-and-free it on update. No longer
special-case the position of the parname string. Construct the
strtab by calling ctf_str_add_ref and ctf_str_write_strtab after the
rest of each buffer element is constructed, not via open-coding:
realloc the CTF buffer and append the strtab to it. No longer
maintain ctf_dtvstrlen. Sort the variable entry table later, after
strtab construction.
(ctf_copy_membnames): Remove: integrated into ctf_copy_{s,l,e}members.
(ctf_copy_smembers): Drop the string offset: call ctf_str_add_ref
after buffer element construction instead.
(ctf_copy_lmembers): Likewise.
(ctf_copy_emembers): Likewise.
(ctf_create): No longer maintain the ctf_dtvstrlen.
(ctf_dtd_delete): Likewise.
(ctf_dvd_delete): Likewise.
(ctf_add_generic): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_variable): Likewise.
(membadd): Likewise.
* ctf-util.c (ctf_realloc): New, wrapper around realloc that aborts
if there are active ctf_str_num_refs.
(ctf_strraw): Move to ctf-string.c.
(ctf_strptr): Likewise.
* ctf-string.c: New file, strtab manipulation.
* Makefile.am (libctf_a_SOURCES): Add it.
* Makefile.in: Regenerate.
2019-06-27 20:51:10 +08:00
|
|
|
/* Atoms associate strings with a list of the CTF items that reference that
|
|
|
|
string, so that ctf_update() can instantiate all the strings using the
|
|
|
|
ctf_str_atoms and then reassociate them with the real string later.
|
|
|
|
|
|
|
|
Strings can be interned into ctf_str_atom without having refs associated
|
|
|
|
with them, for values that are returned to callers, etc. Items are only
|
|
|
|
removed from this table on ctf_close(), but on every ctf_update(), all the
|
|
|
|
csa_refs in all entries are purged. */
|
|
|
|
|
|
|
|
typedef struct ctf_str_atom
|
|
|
|
{
|
|
|
|
const char *csa_str; /* Backpointer to string (hash key). */
|
|
|
|
ctf_list_t csa_refs; /* This string's refs. */
|
libctf: avoid the need to ever use ctf_update
The method of operation of libctf when the dictionary is writable has
before now been that types that are added land in the dynamic type
section, which is a linked list and hash of IDs -> dynamic type
definitions (and, recently a hash of names): the DTDs are a bit of CTF
representing the ctf_type_t and ad hoc C structures representing the
vlen. Historically, libctf was unable to do anything with these types,
not even look them up by ID, let alone by name: if you wanted to do that
say if you were adding a type that depended on one you just added) you
called ctf_update, which serializes all the DTDs into a CTF file and
reopens it, copying its guts over the fp it's called with. The
ctf_updated types are then frozen in amber and unchangeable: all lookups
will return the types in the static portion in preference to the dynamic
portion, and we will refuse to re-add things that already exist in the
static portion (and, of late, in the dynamic portion too). The libctf
machinery remembers the boundary between static and dynamic types and
looks in the right portion for each type. Lots of things still don't
quite work with dynamic types (e.g. getting their size), but enough
works to do a bunch of additions and then a ctf_update, most of the
time.
Except it doesn't, because ctf_add_type finds it necessary to walk the
full dynamic type definition list looking for types with matching names,
so it gets slower and slower with every type you add: fixing this
requires calling ctf_update periodically for no other reason than to
avoid massively slowing things down.
This is all clunky and very slow but kind of works, until you consider
that it is in fact possible and indeed necessary to modify one sort of
type after it has been added: forwards. These are necessarily promoted
to structs, unions or enums, and when they do so *their type ID does not
change*. So all of a sudden we are changing types that already exist in
the static portion. ctf_update gets massively confused by this and
allocates space enough for the forward (with no members), but then emits
the new dynamic type (with all the members) into it. You get an
assertion failure after that, if you're lucky, or a coredump.
So this commit rejigs things a bit and arranges to exclusively use the
dynamic type definitions in writable dictionaries, and the static type
definitions in readable dictionaries: we don't at any time have a mixture
of static and dynamic types, and you don't need to call ctf_update to
make things "appear". The ctf_dtbyname hash I introduced a few months
ago, which maps things like "struct foo" to DTDs, is removed, replaced
instead by a change of type of the four dictionaries which track names.
Rather than just being (unresizable) ctf_hash_t's populated only at
ctf_bufopen time, they are now a ctf_names_t structure, which is a pair
of ctf_hash_t and ctf_dynhash_t, with the ctf_hash_t portion being used
in readonly dictionaries, and the ctf_dynhash_t being used in writable
ones. The decision as to which to use is centralized in the new
functions ctf_lookup_by_rawname (which takes a type kind) and
ctf_lookup_by_rawhash, which it calls (which takes a ctf_names_t *.)
This change lets us switch from using static to dynamic name hashes on
the fly across the entirety of libctf without complexifying anything: in
fact, because we now centralize the knowledge about how to map from type
kind to name hash, it actually simplifies things and lets us throw out
quite a lot of now-unnecessary complexity, from ctf_dtnyname (replaced
by the dynamic half of the name tables), through to ctf_dtnextid (now
that a dictionary's static portion is never referenced if the dictionary
is writable, we can just use ctf_typemax to indicate the maximum type:
dynamic or non-dynamic does not matter, and we no longer need to track
the boundary between the types). You can now ctf_rollback() as far as
you like, even past a ctf_update or for that matter a full writeout; all
the iteration functions work just as well on writable as on read-only
dictionaries; ctf_add_type no longer needs expensive duplicated code to
run over the dynamic types hunting for ones it might be interested in;
and the linker no longer needs a hack to call ctf_update so that calling
ctf_add_type is not impossibly expensive.
There is still a bit more complexity: some new code paths in ctf-types.c
need to know how to extract information from dynamic types. This
complexity will go away again in a few months when libctf acquires a
proper intermediate representation.
You can still call ctf_update if you like (it's public API, after all),
but its only effect now is to set the point to which ctf_discard rolls
back.
Obviously *something* still needs to serialize the CTF file before
writeout, and this job is done by ctf_serialize, which does everything
ctf_update used to except set the counter used by ctf_discard. It is
automatically called by the various functions that do CTF writeout:
nobody else ever needs to call it.
With this in place, forwards that are promoted to non-forwards no longer
crash the link, even if it happens tens of thousands of types later.
v5: fix tabdamage.
libctf/
* ctf-impl.h (ctf_names_t): New.
(ctf_lookup_t) <ctf_hash>: Now a ctf_names_t, not a ctf_hash_t.
(ctf_file_t) <ctf_structs>: Likewise.
<ctf_unions>: Likewise.
<ctf_enums>: Likewise.
<ctf_names>: Likewise.
<ctf_lookups>: Improve comment.
<ctf_ptrtab_len>: New.
<ctf_prov_strtab>: New.
<ctf_str_prov_offset>: New.
<ctf_dtbyname>: Remove, redundant to the names hashes.
<ctf_dtnextid>: Remove, redundant to ctf_typemax.
(ctf_dtdef_t) <dtd_name>: Remove.
<dtd_data>: Note that the ctt_name is now populated.
(ctf_str_atom_t) <csa_offset>: This is now the strtab
offset for internal strings too.
<csa_external_offset>: New, the external strtab offset.
(CTF_INDEX_TO_TYPEPTR): Handle the LCTF_RDWR case.
(ctf_name_table): New declaration.
(ctf_lookup_by_rawname): Likewise.
(ctf_lookup_by_rawhash): Likewise.
(ctf_set_ctl_hashes): Likewise.
(ctf_serialize): Likewise.
(ctf_dtd_insert): Adjust.
(ctf_simple_open_internal): Likewise.
(ctf_bufopen_internal): Likewise.
(ctf_list_empty_p): Likewise.
(ctf_str_remove_ref): Likewise.
(ctf_str_add): Returns uint32_t now.
(ctf_str_add_ref): Likewise.
(ctf_str_add_external): Now returns a boolean (int).
* ctf-string.c (ctf_strraw_explicit): Check the ctf_prov_strtab
for strings in the appropriate range.
(ctf_str_create_atoms): Create the ctf_prov_strtab. Detect OOM
when adding the null string to the new strtab.
(ctf_str_free_atoms): Destroy the ctf_prov_strtab.
(ctf_str_add_ref_internal): Add make_provisional argument. If
make_provisional, populate the offset and fill in the
ctf_prov_strtab accordingly.
(ctf_str_add): Return the offset, not the string.
(ctf_str_add_ref): Likewise.
(ctf_str_add_external): Return a success integer.
(ctf_str_remove_ref): New, remove a single ref.
(ctf_str_count_strtab): Do not count the initial null string's
length or the existence or length of any unreferenced internal
atoms.
(ctf_str_populate_sorttab): Skip atoms with no refs.
(ctf_str_write_strtab): Populate the nullstr earlier. Add one
to the cts_len for the null string, since it is no longer done
in ctf_str_count_strtab. Adjust for csa_external_offset rename.
Populate the csa_offset for both internal and external cases.
Flush the ctf_prov_strtab afterwards, and reset the
ctf_str_prov_offset.
* ctf-create.c (ctf_grow_ptrtab): New.
(ctf_create): Call it. Initialize new fields rather than old
ones. Tell ctf_bufopen_internal that this is a writable dictionary.
Set the ctl hashes and data model.
(ctf_update): Rename to...
(ctf_serialize): ... this. Leave a compatibility function behind.
Tell ctf_simple_open_internal that this is a writable dictionary.
Pass the new fields along from the old dictionary. Drop
ctf_dtnextid and ctf_dtbyname. Use ctf_strraw, not dtd_name.
Do not zero out the DTD's ctt_name.
(ctf_prefixed_name): Rename to...
(ctf_name_table): ... this. No longer return a prefixed name: return
the applicable name table instead.
(ctf_dtd_insert): Use it, and use the right name table. Pass in the
kind we're adding. Migrate away from dtd_name.
(ctf_dtd_delete): Adjust similarly. Remove the ref to the
deleted ctt_name.
(ctf_dtd_lookup_type_by_name): Remove.
(ctf_dynamic_type): Always return NULL on read-only dictionaries.
No longer check ctf_dtnextid: check ctf_typemax instead.
(ctf_snapshot): No longer use ctf_dtnextid: use ctf_typemax instead.
(ctf_rollback): Likewise. No longer fail with ECTF_OVERROLLBACK. Use
ctf_name_table and the right name table, and migrate away from
dtd_name as in ctf_dtd_delete.
(ctf_add_generic): Pass in the kind explicitly and pass it to
ctf_dtd_insert. Use ctf_typemax, not ctf_dtnextid. Migrate away
from dtd_name to using ctf_str_add_ref to populate the ctt_name.
Grow the ptrtab if needed.
(ctf_add_encoded): Pass in the kind.
(ctf_add_slice): Likewise.
(ctf_add_array): Likewise.
(ctf_add_function): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_reftype): Likewise. Initialize the ctf_ptrtab, checking
ctt_name rather than dtd_name.
(ctf_add_struct_sized): Pass in the kind. Use
ctf_lookup_by_rawname, not ctf_hash_lookup_type /
ctf_dtd_lookup_type_by_name.
(ctf_add_union_sized): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_type): Likewise.
(ctf_compress_write): Call ctf_serialize: adjust for ctf_size not
being initialized until after the call.
(ctf_write_mem): Likewise.
(ctf_write): Likewise.
* ctf-archive.c (arc_write_one_ctf): Likewise.
* ctf-lookup.c (ctf_lookup_by_name): Use ctf_lookuup_by_rawhash, not
ctf_hash_lookup_type.
(ctf_lookup_by_id): No longer check the readonly types if the
dictionary is writable.
* ctf-open.c (init_types): Assert that this dictionary is not
writable. Adjust to use the new name hashes, ctf_name_table,
and ctf_ptrtab_len. GNU style fix for the final ptrtab scan.
(ctf_bufopen_internal): New 'writable' parameter. Flip on LCTF_RDWR
if set. Drop out early when dictionary is writable. Split the
ctf_lookups initialization into...
(ctf_set_cth_hashes): ... this new function.
(ctf_simple_open_internal): Adjust. New 'writable' parameter.
(ctf_simple_open): Adjust accordingly.
(ctf_bufopen): Likewise.
(ctf_file_close): Destroy the appropriate name hashes. No longer
destroy ctf_dtbyname, which is gone.
(ctf_getdatasect): Remove spurious "extern".
* ctf-types.c (ctf_lookup_by_rawname): New, look up types in the
specified name table, given a kind.
(ctf_lookup_by_rawhash): Likewise, given a ctf_names_t *.
(ctf_member_iter): Add support for iterating over the
dynamic type list.
(ctf_enum_iter): Likewise.
(ctf_variable_iter): Likewise.
(ctf_type_rvisit): Likewise.
(ctf_member_info): Add support for types in the dynamic type list.
(ctf_enum_name): Likewise.
(ctf_enum_value): Likewise.
(ctf_func_type_info): Likewise.
(ctf_func_type_args): Likewise.
* ctf-link.c (ctf_accumulate_archive_names): No longer call
ctf_update.
(ctf_link_write): Likewise.
(ctf_link_intern_extern_string): Adjust for new
ctf_str_add_external return value.
(ctf_link_add_strtab): Likewise.
* ctf-util.c (ctf_list_empty_p): New.
2019-08-08 00:55:09 +08:00
|
|
|
uint32_t csa_offset; /* Strtab offset, if any. */
|
|
|
|
uint32_t csa_external_offset; /* External strtab offset, if any. */
|
libctf: deduplicate and sort the string table
ctf.h states:
> [...] the CTF string table does not contain any duplicated strings.
Unfortunately this is entirely untrue: libctf has before now made no
attempt whatsoever to deduplicate the string table. It computes the
string table's length on the fly as it adds new strings to the dynamic
CTF file, and ctf_update() just writes each string to the table and
notes the current write position as it traverses the dynamic CTF file's
data structures and builds the final CTF buffer. There is no global
view of the strings and no deduplication.
Fix this by erasing the ctf_dtvstrlen dead-reckoning length, and adding
a new dynhash table ctf_str_atoms that maps unique strings to a list
of references to those strings: a reference is a simple uint32_t * to
some value somewhere in the under-construction CTF buffer that needs
updating to note the string offset when the strtab is laid out.
Adding a string is now a simple matter of calling ctf_str_add_ref(),
which adds a new atom to the atoms table, if one doesn't already exist,
and adding the location of the reference to this atom to the refs list
attached to the atom: this works reliably as long as one takes care to
only call ctf_str_add_ref() once the final location of the offset is
known (so you can't call it on a temporary structure and then memcpy()
that structure into place in the CTF buffer, because the ref will still
point to the old location: ctf_update() changes accordingly).
Generating the CTF string table is a matter of calling
ctf_str_write_strtab(), which counts the length and number of elements
in the atoms table using the ctf_dynhash_iter() function we just added,
populating an array of pointers into the atoms table and sorting it into
order (to help compressors), then traversing this table and emitting it,
updating the refs to each atom as we go. The only complexity here is
arranging to keep the null string at offset zero, since a lot of code in
libctf depends on being able to leave strtab references at 0 to indicate
'no name'. Once the table is constructed and the refs updated, we know
how long it is, so we can realloc() the partial CTF buffer we allocated
earlier and can copy the table on to the end of it (and purge the refs
because they're not needed any more and have been invalidated by the
realloc() call in any case).
The net effect of all this is a reduction in uncompressed strtab sizes
of about 30% (perhaps a quarter to a half of all strings across the
Linux kernel are eliminated as duplicates). Of course, duplicated
strings are highly redundant, so the space saving after compression is
only about 20%: when the other non-strtab sections are factored in, CTF
sizes shrink by about 10%.
No change in externally-visible API or file format (other than the
reduction in pointless redundancy).
libctf/
* ctf-impl.h: (struct ctf_strs_writable): New, non-const version of
struct ctf_strs.
(struct ctf_dtdef): Note that dtd_data.ctt_name is unpopulated.
(struct ctf_str_atom): New, disambiguated single string.
(struct ctf_str_atom_ref): New, points to some other location that
references this string's offset.
(struct ctf_file): New members ctf_str_atoms and ctf_str_num_refs.
Remove member ctf_dtvstrlen: we no longer track the total strlen
as we add strings.
(ctf_str_create_atoms): Declare new function in ctf-string.c.
(ctf_str_free_atoms): Likewise.
(ctf_str_add): Likewise.
(ctf_str_add_ref): Likewise.
(ctf_str_purge_refs): Likewise.
(ctf_str_write_strtab): Likewise.
(ctf_realloc): Declare new function in ctf-util.c.
* ctf-open.c (ctf_bufopen): Create the atoms table.
(ctf_file_close): Destroy it.
* ctf-create.c (ctf_update): Copy-and-free it on update. No longer
special-case the position of the parname string. Construct the
strtab by calling ctf_str_add_ref and ctf_str_write_strtab after the
rest of each buffer element is constructed, not via open-coding:
realloc the CTF buffer and append the strtab to it. No longer
maintain ctf_dtvstrlen. Sort the variable entry table later, after
strtab construction.
(ctf_copy_membnames): Remove: integrated into ctf_copy_{s,l,e}members.
(ctf_copy_smembers): Drop the string offset: call ctf_str_add_ref
after buffer element construction instead.
(ctf_copy_lmembers): Likewise.
(ctf_copy_emembers): Likewise.
(ctf_create): No longer maintain the ctf_dtvstrlen.
(ctf_dtd_delete): Likewise.
(ctf_dvd_delete): Likewise.
(ctf_add_generic): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_variable): Likewise.
(membadd): Likewise.
* ctf-util.c (ctf_realloc): New, wrapper around realloc that aborts
if there are active ctf_str_num_refs.
(ctf_strraw): Move to ctf-string.c.
(ctf_strptr): Likewise.
* ctf-string.c: New file, strtab manipulation.
* Makefile.am (libctf_a_SOURCES): Add it.
* Makefile.in: Regenerate.
2019-06-27 20:51:10 +08:00
|
|
|
unsigned long csa_snapshot_id; /* Snapshot ID at time of creation. */
|
|
|
|
} ctf_str_atom_t;
|
|
|
|
|
|
|
|
/* The refs of a single string in the atoms table. */
|
|
|
|
|
|
|
|
typedef struct ctf_str_atom_ref
|
|
|
|
{
|
|
|
|
ctf_list_t caf_list; /* List forward/back pointers. */
|
|
|
|
uint32_t *caf_ref; /* A single ref to this string. */
|
|
|
|
} ctf_str_atom_ref_t;
|
|
|
|
|
libctf: symbol type linking support
This adds facilities to write out the function info and data object
sections, which efficiently map from entries in the symbol table to
types. The write-side code is entirely new: the read-side code was
merely significantly changed and support for indexed tables added
(pointed to by the no-longer-unused cth_objtidxoff and cth_funcidxoff
header fields).
With this in place, you can use ctf_lookup_by_symbol to look up the
types of symbols of function and object type (and, as before, you can
use ctf_lookup_variable to look up types of file-scope variables not
present in the symbol table, as long as you know their name: but
variables that are also data objects are now found in the data object
section instead.)
(Compatible) file format change:
The CTF spec has always said that the function info section looks much
like the CTF_K_FUNCTIONs in the type section: an info word (including an
argument count) followed by a return type and N argument types. This
format is suboptimal: it means function symbols cannot be deduplicated
and it causes a lot of ugly code duplication in libctf. But
conveniently the compiler has never emitted this! Because it has always
emitted a rather different format that libctf has never accepted, we can
be sure that there are no instances of this function info section in the
wild, and can freely change its format without compatibility concerns or
a file format version bump. (And since it has never been emitted in any
code that generated any older file format version, either, we need keep
no code to read the format as specified at all!)
So the function info section is now specified as an array of uint32_t,
exactly like the object data section: each entry is a type ID in the
type section which must be of kind CTF_K_FUNCTION, the prototype of
this function.
This allows function types to be deduplicated and also correctly encodes
the fact that all functions declared in C really are types available to
the program: so they should be stored in the type section like all other
types. (In format v4, we will be able to represent the types of static
functions as well, but that really does require a file format change.)
We introduce a new header flag, CTF_F_NEWFUNCINFO, which is set if the
new function info format is in use. A sufficiently new compiler will
always set this flag. New libctf will always set this flag: old libctf
will refuse to open any CTF dicts that have this flag set. If the flag
is not set on a dict being read in, new libctf will disregard the
function info section. Format v4 will remove this flag (or, rather, the
flag has no meaning there and the bit position may be recycled for some
other purpose).
New API:
Symbol addition:
ctf_add_func_sym: Add a symbol with a given name and type. The
type must be of kind CTF_K_FUNCTION (a function
pointer). Internally this adds a name -> type
mapping to the ctf_funchash in the ctf_dict.
ctf_add_objt_sym: Add a symbol with a given name and type. The type
kind can be anything, including function pointers.
This adds to ctf_objthash.
These both treat symbols as name -> type mappings: the linker associates
symbol names with symbol indexes via the ctf_link_shuffle_syms callback,
which sets up the ctf_dynsyms/ctf_dynsymidx/ctf_dynsymmax fields in the
ctf_dict. Repeated relinks can add more symbols.
Variables that are also exposed as symbols are removed from the variable
section at serialization time.
CTF symbol type sections which have enough pads, defined by
CTF_INDEX_PAD_THRESHOLD (whether because they are in dicts with symbols
where most types are unknown, or in archive where most types are defined
in some child or parent dict, not in this specific dict) are sorted by
name rather than symidx and accompanied by an index which associates
each symbol type entry with a name: the existing ctf_lookup_by_symbol
will map symbol indexes to symbol names and look the names up in the
index automatically. (This is currently ELF-symbol-table-dependent, but
there is almost nothing specific to ELF in here and we can add support
for other symbol table formats easily).
The compiler also uses index sections to communicate the contents of
object file symbol tables without relying on any specific ordering of
symbols: it doesn't need to sort them, and libctf will detect an
unsorted index section via the absence of the new CTF_F_IDXSORTED header
flag, and sort it if needed.
Iteration:
ctf_symbol_next: Iterator which returns the types and names of symbols
one by one, either for function or data symbols.
This does not require any sorting: the ctf_link machinery uses it to
pull in all the compiler-provided symbols cheaply, but it is not
restricted to that use.
(Compatible) changes in API:
ctf_lookup_by_symbol: can now be called for object and function
symbols: never returns ECTF_NOTDATA (which is
now not thrown by anything, but is kept for
compatibility and because it is a plausible
error that we might start throwing again at some
later date).
Internally we also have changes to the ctf-string functionality so that
"external" strings (those where we track a string -> offset mapping, but
only write out an offset) can be consulted via the usual means
(ctf_strptr) before the strtab is written out. This is important
because ctf_link_add_linker_symbol can now be handed symbols named via
strtab offsets, and ctf_link_shuffle_syms must figure out their actual
names by looking in the external symtab we have just been fed by the
ctf_link_add_strtab callback, long before that strtab is written out.
include/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-api.h (ctf_symbol_next): New.
(ctf_add_objt_sym): Likewise.
(ctf_add_func_sym): Likewise.
* ctf.h: Document new function info section format.
(CTF_F_NEWFUNCINFO): New.
(CTF_F_IDXSORTED): New.
(CTF_F_MAX): Adjust accordingly.
libctf/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h (CTF_INDEX_PAD_THRESHOLD): New.
(_libctf_nonnull_): Likewise.
(ctf_in_flight_dynsym_t): New.
(ctf_dict_t) <ctf_funcidx_names>: Likewise.
<ctf_objtidx_names>: Likewise.
<ctf_nfuncidx>: Likewise.
<ctf_nobjtidx>: Likewise.
<ctf_funcidx_sxlate>: Likewise.
<ctf_objtidx_sxlate>: Likewise.
<ctf_objthash>: Likewise.
<ctf_funchash>: Likewise.
<ctf_dynsyms>: Likewise.
<ctf_dynsymidx>: Likewise.
<ctf_dynsymmax>: Likewise.
<ctf_in_flight_dynsym>: Likewise.
(struct ctf_next) <u.ctn_next>: Likewise.
(ctf_symtab_skippable): New prototype.
(ctf_add_funcobjt_sym): Likewise.
(ctf_dynhash_sort_by_name): Likewise.
(ctf_sym_to_elf64): Rename to...
(ctf_elf32_to_link_sym): ... this, and...
(ctf_elf64_to_link_sym): ... this.
* ctf-open.c (init_symtab): Check for lack of CTF_F_NEWFUNCINFO
flag, and presence of index sections. Refactor out
ctf_symtab_skippable and ctf_elf*_to_link_sym, and use them. Use
ctf_link_sym_t, not Elf64_Sym. Skip initializing objt or func
sxlate sections if corresponding index section is present. Adjust
for new func info section format.
(ctf_bufopen_internal): Add ctf_err_warn to corrupt-file error
handling. Report incorrect-length index sections. Always do an
init_symtab, even if there is no symtab section (there may be index
sections still).
(flip_objts): Adjust comment: func and objt sections are actually
identical in structure now, no need to caveat.
(ctf_dict_close): Free newly-added data structures.
* ctf-create.c (ctf_create): Initialize them.
(ctf_symtab_skippable): New, refactored out of
init_symtab, with st_nameidx_set check added.
(ctf_add_funcobjt_sym): New, add a function or object symbol to the
ctf_objthash or ctf_funchash, by name.
(ctf_add_objt_sym): Call it.
(ctf_add_func_sym): Likewise.
(symtypetab_delete_nonstatic_vars): New, delete vars also present as
data objects.
(CTF_SYMTYPETAB_EMIT_FUNCTION): New flag to symtypetab emitters:
this is a function emission, not a data object emission.
(CTF_SYMTYPETAB_EMIT_PAD): New flag to symtypetab emitters: emit
pads for symbols with no type (only set for unindexed sections).
(CTF_SYMTYPETAB_FORCE_INDEXED): New flag to symtypetab emitters:
always emit indexed.
(symtypetab_density): New, figure out section sizes.
(emit_symtypetab): New, emit a symtypetab.
(emit_symtypetab_index): New, emit a symtypetab index.
(ctf_serialize): Call them, emitting suitably sorted symtypetab
sections and indexes. Set suitable header flags. Copy over new
fields.
* ctf-hash.c (ctf_dynhash_sort_by_name): New, used to impose an
order on symtypetab index sections.
* ctf-link.c (ctf_add_type_mapping): Delete erroneous comment
relating to code that was never committed.
(ctf_link_one_variable): Improve variable name.
(check_sym): New, symtypetab analogue of check_variable.
(ctf_link_deduplicating_one_symtypetab): New.
(ctf_link_deduplicating_syms): Likewise.
(ctf_link_deduplicating): Call them.
(ctf_link_deduplicating_per_cu): Note that we don't call them in
this case (yet).
(ctf_link_add_strtab): Set the error on the fp correctly.
(ctf_link_add_linker_symbol): New (no longer a do-nothing stub), add
a linker symbol to the in-flight list.
(ctf_link_shuffle_syms): New (no longer a do-nothing stub), turn the
in-flight list into a mapping we can use, now its names are
resolvable in the external strtab.
* ctf-string.c (ctf_str_rollback_atom): Don't roll back atoms with
external strtab offsets.
(ctf_str_rollback): Adjust comment.
(ctf_str_write_strtab): Migrate ctf_syn_ext_strtab population from
writeout time...
(ctf_str_add_external): ... to string addition time.
* ctf-lookup.c (ctf_lookup_var_key_t): Rename to...
(ctf_lookup_idx_key_t): ... this, now we use it for syms too.
<clik_names>: New member, a name table.
(ctf_lookup_var): Adjust accordingly.
(ctf_lookup_variable): Likewise.
(ctf_lookup_by_id): Shuffle further up in the file.
(ctf_symidx_sort_arg_cb): New, callback for...
(sort_symidx_by_name): ... this new function to sort a symidx
found to be unsorted (likely originating from the compiler).
(ctf_symidx_sort): New, sort a symidx.
(ctf_lookup_symbol_name): Support dynamic symbols with indexes
provided by the linker. Use ctf_link_sym_t, not Elf64_Sym.
Check the parent if a child lookup fails.
(ctf_lookup_by_symbol): Likewise. Work for function symbols too.
(ctf_symbol_next): New, iterate over symbols with types (without
sorting).
(ctf_lookup_idx_name): New, bsearch for symbol names in indexes.
(ctf_try_lookup_indexed): New, attempt an indexed lookup.
(ctf_func_info): Reimplement in terms of ctf_lookup_by_symbol.
(ctf_func_args): Likewise.
(ctf_get_dict): Move...
* ctf-types.c (ctf_get_dict): ... here.
* ctf-util.c (ctf_sym_to_elf64): Re-express as...
(ctf_elf64_to_link_sym): ... this. Add new st_symidx field, and
st_nameidx_set (always 0, so st_nameidx can be ignored). Look in
the ELF strtab for names.
(ctf_elf32_to_link_sym): Likewise, for Elf32_Sym.
(ctf_next_destroy): Destroy ctf_next_t.u.ctn_next if need be.
* libctf.ver: Add ctf_symbol_next, ctf_add_objt_sym and
ctf_add_func_sym.
2020-11-20 21:34:04 +08:00
|
|
|
/* A single linker-provided symbol, during symbol addition, possibly before we
|
|
|
|
have been given external strtab refs. */
|
|
|
|
typedef struct ctf_in_flight_dynsym
|
|
|
|
{
|
|
|
|
ctf_list_t cid_list; /* List forward/back pointers. */
|
|
|
|
ctf_link_sym_t cid_sym; /* The linker-known symbol. */
|
|
|
|
} ctf_in_flight_dynsym_t;
|
|
|
|
|
2020-06-05 00:21:10 +08:00
|
|
|
/* The structure used as the key in a ctf_link_type_mapping. The value is a
|
|
|
|
type index, not a type ID. */
|
2019-07-14 04:31:26 +08:00
|
|
|
|
2020-06-05 00:21:10 +08:00
|
|
|
typedef struct ctf_link_type_key
|
2019-07-14 04:31:26 +08:00
|
|
|
{
|
libctf, include, binutils, gdb, ld: rename ctf_file_t to ctf_dict_t
The naming of the ctf_file_t type in libctf is a historical curiosity.
Back in the Solaris days, CTF dictionaries were originally generated as
a separate file and then (sometimes) merged into objects: hence the
datatype was named ctf_file_t, and known as a "CTF file". Nowadays, raw
CTF is essentially never written to a file on its own, and the datatype
changed name to a "CTF dictionary" years ago. So the term "CTF file"
refers to something that is never a file! This is at best confusing.
The type has also historically been known as a 'CTF container", which is
even more confusing now that we have CTF archives which are *also* a
sort of container (they contain CTF dictionaries), but which are never
referred to as containers in the source code.
So fix this by completing the renaming, renaming ctf_file_t to
ctf_dict_t throughout, and renaming those few functions that refer to
CTF files by name (keeping compatibility aliases) to refer to dicts
instead. Old users who still refer to ctf_file_t will see (harmless)
pointer-compatibility warnings at compile time, but the ABI is unchanged
(since C doesn't mangle names, and ctf_file_t was always an opaque type)
and things will still compile fine as long as -Werror is not specified.
All references to CTF containers and CTF files in the source code are
fixed to refer to CTF dicts instead.
Further (smaller) renamings of annoyingly-named functions to come, as
part of the process of souping up queries across whole archives at once
(needed for the function info and data object sections).
binutils/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* objdump.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_ctf): Likewise. Use ctf_dict_close, not ctf_file_close.
* readelf.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_section_as_ctf): Likewise. Use ctf_dict_close, not
ctf_file_close.
gdb/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctfread.c: Change uses of ctf_file_t to ctf_dict_t.
(ctf_fp_info::~ctf_fp_info): Call ctf_dict_close, not ctf_file_close.
include/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-api.h (ctf_file_t): Rename to...
(ctf_dict_t): ... this. Keep ctf_file_t around for compatibility.
(struct ctf_file): Likewise rename to...
(struct ctf_dict): ... this.
(ctf_file_close): Rename to...
(ctf_dict_close): ... this, keeping compatibility function.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this, keeping compatibility function.
All callers adjusted.
* ctf.h: Rename references to ctf_file_t to ctf_dict_t.
(struct ctf_archive) <ctfa_nfiles>: Rename to...
<ctfa_ndicts>: ... this.
ld/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ldlang.c (ctf_output): This is a ctf_dict_t now.
(lang_ctf_errs_warnings): Rename ctf_file_t to ctf_dict_t.
(ldlang_open_ctf): Adjust comment.
(lang_merge_ctf): Use ctf_dict_close, not ctf_file_close.
* ldelfgen.h (ldelf_examine_strtab_for_ctf): Rename ctf_file_t to
ctf_dict_t. Change opaque declaration accordingly.
* ldelfgen.c (ldelf_examine_strtab_for_ctf): Adjust.
* ldemul.h (examine_strtab_for_ctf): Likewise.
(ldemul_examine_strtab_for_ctf): Likewise.
* ldeuml.c (ldemul_examine_strtab_for_ctf): Likewise.
libctf/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h: Rename ctf_file_t to ctf_dict_t: all declarations
adjusted.
(ctf_fileops): Rename to...
(ctf_dictops): ... this.
(ctf_dedup_t) <cd_id_to_file_t>: Rename to...
<cd_id_to_dict_t>: ... this.
(ctf_file_t): Fix outdated comment.
<ctf_fileops>: Rename to...
<ctf_dictops>: ... this.
(struct ctf_archive_internal) <ctfi_file>: Rename to...
<ctfi_dict>: ... this.
* ctf-archive.c: Rename ctf_file_t to ctf_dict_t.
Rename ctf_archive.ctfa_nfiles to ctfa_ndicts.
Rename ctf_file_close to ctf_dict_close. All users adjusted.
* ctf-create.c: Likewise. Refer to CTF dicts, not CTF containers.
(ctf_bundle_t) <ctb_file>: Rename to...
<ctb_dict): ... this.
* ctf-decl.c: Rename ctf_file_t to ctf_dict_t.
* ctf-dedup.c: Likewise. Rename ctf_file_close to
ctf_dict_close. Refer to CTF dicts, not CTF containers.
* ctf-dump.c: Likewise.
* ctf-error.c: Likewise.
* ctf-hash.c: Likewise.
* ctf-inlines.h: Likewise.
* ctf-labels.c: Likewise.
* ctf-link.c: Likewise.
* ctf-lookup.c: Likewise.
* ctf-open-bfd.c: Likewise.
* ctf-string.c: Likewise.
* ctf-subr.c: Likewise.
* ctf-types.c: Likewise.
* ctf-util.c: Likewise.
* ctf-open.c: Likewise.
(ctf_file_close): Rename to...
(ctf_dict_close): ...this.
(ctf_file_close): New trivial wrapper around ctf_dict_close, for
compatibility.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this.
(ctf_parent_file): New trivial wrapper around ctf_parent_dict, for
compatibility.
* libctf.ver: Add ctf_dict_close and ctf_parent_dict.
2020-11-20 21:34:04 +08:00
|
|
|
ctf_dict_t *cltk_fp;
|
2020-06-05 00:21:10 +08:00
|
|
|
ctf_id_t cltk_idx;
|
|
|
|
} ctf_link_type_key_t;
|
|
|
|
|
libctf, include, binutils, gdb, ld: rename ctf_file_t to ctf_dict_t
The naming of the ctf_file_t type in libctf is a historical curiosity.
Back in the Solaris days, CTF dictionaries were originally generated as
a separate file and then (sometimes) merged into objects: hence the
datatype was named ctf_file_t, and known as a "CTF file". Nowadays, raw
CTF is essentially never written to a file on its own, and the datatype
changed name to a "CTF dictionary" years ago. So the term "CTF file"
refers to something that is never a file! This is at best confusing.
The type has also historically been known as a 'CTF container", which is
even more confusing now that we have CTF archives which are *also* a
sort of container (they contain CTF dictionaries), but which are never
referred to as containers in the source code.
So fix this by completing the renaming, renaming ctf_file_t to
ctf_dict_t throughout, and renaming those few functions that refer to
CTF files by name (keeping compatibility aliases) to refer to dicts
instead. Old users who still refer to ctf_file_t will see (harmless)
pointer-compatibility warnings at compile time, but the ABI is unchanged
(since C doesn't mangle names, and ctf_file_t was always an opaque type)
and things will still compile fine as long as -Werror is not specified.
All references to CTF containers and CTF files in the source code are
fixed to refer to CTF dicts instead.
Further (smaller) renamings of annoyingly-named functions to come, as
part of the process of souping up queries across whole archives at once
(needed for the function info and data object sections).
binutils/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* objdump.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_ctf): Likewise. Use ctf_dict_close, not ctf_file_close.
* readelf.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_section_as_ctf): Likewise. Use ctf_dict_close, not
ctf_file_close.
gdb/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctfread.c: Change uses of ctf_file_t to ctf_dict_t.
(ctf_fp_info::~ctf_fp_info): Call ctf_dict_close, not ctf_file_close.
include/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-api.h (ctf_file_t): Rename to...
(ctf_dict_t): ... this. Keep ctf_file_t around for compatibility.
(struct ctf_file): Likewise rename to...
(struct ctf_dict): ... this.
(ctf_file_close): Rename to...
(ctf_dict_close): ... this, keeping compatibility function.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this, keeping compatibility function.
All callers adjusted.
* ctf.h: Rename references to ctf_file_t to ctf_dict_t.
(struct ctf_archive) <ctfa_nfiles>: Rename to...
<ctfa_ndicts>: ... this.
ld/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ldlang.c (ctf_output): This is a ctf_dict_t now.
(lang_ctf_errs_warnings): Rename ctf_file_t to ctf_dict_t.
(ldlang_open_ctf): Adjust comment.
(lang_merge_ctf): Use ctf_dict_close, not ctf_file_close.
* ldelfgen.h (ldelf_examine_strtab_for_ctf): Rename ctf_file_t to
ctf_dict_t. Change opaque declaration accordingly.
* ldelfgen.c (ldelf_examine_strtab_for_ctf): Adjust.
* ldemul.h (examine_strtab_for_ctf): Likewise.
(ldemul_examine_strtab_for_ctf): Likewise.
* ldeuml.c (ldemul_examine_strtab_for_ctf): Likewise.
libctf/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h: Rename ctf_file_t to ctf_dict_t: all declarations
adjusted.
(ctf_fileops): Rename to...
(ctf_dictops): ... this.
(ctf_dedup_t) <cd_id_to_file_t>: Rename to...
<cd_id_to_dict_t>: ... this.
(ctf_file_t): Fix outdated comment.
<ctf_fileops>: Rename to...
<ctf_dictops>: ... this.
(struct ctf_archive_internal) <ctfi_file>: Rename to...
<ctfi_dict>: ... this.
* ctf-archive.c: Rename ctf_file_t to ctf_dict_t.
Rename ctf_archive.ctfa_nfiles to ctfa_ndicts.
Rename ctf_file_close to ctf_dict_close. All users adjusted.
* ctf-create.c: Likewise. Refer to CTF dicts, not CTF containers.
(ctf_bundle_t) <ctb_file>: Rename to...
<ctb_dict): ... this.
* ctf-decl.c: Rename ctf_file_t to ctf_dict_t.
* ctf-dedup.c: Likewise. Rename ctf_file_close to
ctf_dict_close. Refer to CTF dicts, not CTF containers.
* ctf-dump.c: Likewise.
* ctf-error.c: Likewise.
* ctf-hash.c: Likewise.
* ctf-inlines.h: Likewise.
* ctf-labels.c: Likewise.
* ctf-link.c: Likewise.
* ctf-lookup.c: Likewise.
* ctf-open-bfd.c: Likewise.
* ctf-string.c: Likewise.
* ctf-subr.c: Likewise.
* ctf-types.c: Likewise.
* ctf-util.c: Likewise.
* ctf-open.c: Likewise.
(ctf_file_close): Rename to...
(ctf_dict_close): ...this.
(ctf_file_close): New trivial wrapper around ctf_dict_close, for
compatibility.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this.
(ctf_parent_file): New trivial wrapper around ctf_parent_dict, for
compatibility.
* libctf.ver: Add ctf_dict_close and ctf_parent_dict.
2020-11-20 21:34:04 +08:00
|
|
|
/* The structure used as the key in a cd_id_to_dict_t on 32-bit platforms. */
|
2020-06-06 01:35:46 +08:00
|
|
|
typedef struct ctf_type_id_key
|
|
|
|
{
|
|
|
|
int ctii_input_num;
|
|
|
|
ctf_id_t ctii_type;
|
|
|
|
} ctf_type_id_key_t;
|
|
|
|
|
|
|
|
/* Deduplicator state.
|
|
|
|
|
|
|
|
The dedup state below uses three terms consistently. A "hash" is a
|
|
|
|
ctf_dynhash_t; a "hash value" is the hash value of a type as returned by
|
|
|
|
ctf_dedup_hash_type; a "global type ID" or "global ID" is a packed-together
|
libctf, include, binutils, gdb, ld: rename ctf_file_t to ctf_dict_t
The naming of the ctf_file_t type in libctf is a historical curiosity.
Back in the Solaris days, CTF dictionaries were originally generated as
a separate file and then (sometimes) merged into objects: hence the
datatype was named ctf_file_t, and known as a "CTF file". Nowadays, raw
CTF is essentially never written to a file on its own, and the datatype
changed name to a "CTF dictionary" years ago. So the term "CTF file"
refers to something that is never a file! This is at best confusing.
The type has also historically been known as a 'CTF container", which is
even more confusing now that we have CTF archives which are *also* a
sort of container (they contain CTF dictionaries), but which are never
referred to as containers in the source code.
So fix this by completing the renaming, renaming ctf_file_t to
ctf_dict_t throughout, and renaming those few functions that refer to
CTF files by name (keeping compatibility aliases) to refer to dicts
instead. Old users who still refer to ctf_file_t will see (harmless)
pointer-compatibility warnings at compile time, but the ABI is unchanged
(since C doesn't mangle names, and ctf_file_t was always an opaque type)
and things will still compile fine as long as -Werror is not specified.
All references to CTF containers and CTF files in the source code are
fixed to refer to CTF dicts instead.
Further (smaller) renamings of annoyingly-named functions to come, as
part of the process of souping up queries across whole archives at once
(needed for the function info and data object sections).
binutils/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* objdump.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_ctf): Likewise. Use ctf_dict_close, not ctf_file_close.
* readelf.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_section_as_ctf): Likewise. Use ctf_dict_close, not
ctf_file_close.
gdb/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctfread.c: Change uses of ctf_file_t to ctf_dict_t.
(ctf_fp_info::~ctf_fp_info): Call ctf_dict_close, not ctf_file_close.
include/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-api.h (ctf_file_t): Rename to...
(ctf_dict_t): ... this. Keep ctf_file_t around for compatibility.
(struct ctf_file): Likewise rename to...
(struct ctf_dict): ... this.
(ctf_file_close): Rename to...
(ctf_dict_close): ... this, keeping compatibility function.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this, keeping compatibility function.
All callers adjusted.
* ctf.h: Rename references to ctf_file_t to ctf_dict_t.
(struct ctf_archive) <ctfa_nfiles>: Rename to...
<ctfa_ndicts>: ... this.
ld/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ldlang.c (ctf_output): This is a ctf_dict_t now.
(lang_ctf_errs_warnings): Rename ctf_file_t to ctf_dict_t.
(ldlang_open_ctf): Adjust comment.
(lang_merge_ctf): Use ctf_dict_close, not ctf_file_close.
* ldelfgen.h (ldelf_examine_strtab_for_ctf): Rename ctf_file_t to
ctf_dict_t. Change opaque declaration accordingly.
* ldelfgen.c (ldelf_examine_strtab_for_ctf): Adjust.
* ldemul.h (examine_strtab_for_ctf): Likewise.
(ldemul_examine_strtab_for_ctf): Likewise.
* ldeuml.c (ldemul_examine_strtab_for_ctf): Likewise.
libctf/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h: Rename ctf_file_t to ctf_dict_t: all declarations
adjusted.
(ctf_fileops): Rename to...
(ctf_dictops): ... this.
(ctf_dedup_t) <cd_id_to_file_t>: Rename to...
<cd_id_to_dict_t>: ... this.
(ctf_file_t): Fix outdated comment.
<ctf_fileops>: Rename to...
<ctf_dictops>: ... this.
(struct ctf_archive_internal) <ctfi_file>: Rename to...
<ctfi_dict>: ... this.
* ctf-archive.c: Rename ctf_file_t to ctf_dict_t.
Rename ctf_archive.ctfa_nfiles to ctfa_ndicts.
Rename ctf_file_close to ctf_dict_close. All users adjusted.
* ctf-create.c: Likewise. Refer to CTF dicts, not CTF containers.
(ctf_bundle_t) <ctb_file>: Rename to...
<ctb_dict): ... this.
* ctf-decl.c: Rename ctf_file_t to ctf_dict_t.
* ctf-dedup.c: Likewise. Rename ctf_file_close to
ctf_dict_close. Refer to CTF dicts, not CTF containers.
* ctf-dump.c: Likewise.
* ctf-error.c: Likewise.
* ctf-hash.c: Likewise.
* ctf-inlines.h: Likewise.
* ctf-labels.c: Likewise.
* ctf-link.c: Likewise.
* ctf-lookup.c: Likewise.
* ctf-open-bfd.c: Likewise.
* ctf-string.c: Likewise.
* ctf-subr.c: Likewise.
* ctf-types.c: Likewise.
* ctf-util.c: Likewise.
* ctf-open.c: Likewise.
(ctf_file_close): Rename to...
(ctf_dict_close): ...this.
(ctf_file_close): New trivial wrapper around ctf_dict_close, for
compatibility.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this.
(ctf_parent_file): New trivial wrapper around ctf_parent_dict, for
compatibility.
* libctf.ver: Add ctf_dict_close and ctf_parent_dict.
2020-11-20 21:34:04 +08:00
|
|
|
reference to a single ctf_dict_t (by array index in an array of inputs) and
|
2020-06-06 01:35:46 +08:00
|
|
|
ctf_id_t, i.e. a single instance of some hash value in some input.
|
|
|
|
|
|
|
|
The deduplication algorithm takes a bunch of inputs and yields a single
|
|
|
|
shared "output" and possibly many outputs corresponding to individual inputs
|
|
|
|
that still contain types after sharing of unconflicted types. Almost all
|
|
|
|
deduplicator state is stored in the struct ctf_dedup in the output, though a
|
|
|
|
(very) few things are stored in inputs for simplicity's sake, usually if they
|
|
|
|
are linking together things within the scope of a single TU.
|
|
|
|
|
|
|
|
Flushed at the end of every ctf_dedup run. */
|
|
|
|
|
|
|
|
typedef struct ctf_dedup
|
|
|
|
{
|
|
|
|
/* The CTF linker flags in force for this dedup run. */
|
|
|
|
int cd_link_flags;
|
|
|
|
|
|
|
|
/* On 32-bit platforms only, a hash of global type IDs, in the form of
|
|
|
|
a ctf_link_type_id_key_t. */
|
libctf, include, binutils, gdb, ld: rename ctf_file_t to ctf_dict_t
The naming of the ctf_file_t type in libctf is a historical curiosity.
Back in the Solaris days, CTF dictionaries were originally generated as
a separate file and then (sometimes) merged into objects: hence the
datatype was named ctf_file_t, and known as a "CTF file". Nowadays, raw
CTF is essentially never written to a file on its own, and the datatype
changed name to a "CTF dictionary" years ago. So the term "CTF file"
refers to something that is never a file! This is at best confusing.
The type has also historically been known as a 'CTF container", which is
even more confusing now that we have CTF archives which are *also* a
sort of container (they contain CTF dictionaries), but which are never
referred to as containers in the source code.
So fix this by completing the renaming, renaming ctf_file_t to
ctf_dict_t throughout, and renaming those few functions that refer to
CTF files by name (keeping compatibility aliases) to refer to dicts
instead. Old users who still refer to ctf_file_t will see (harmless)
pointer-compatibility warnings at compile time, but the ABI is unchanged
(since C doesn't mangle names, and ctf_file_t was always an opaque type)
and things will still compile fine as long as -Werror is not specified.
All references to CTF containers and CTF files in the source code are
fixed to refer to CTF dicts instead.
Further (smaller) renamings of annoyingly-named functions to come, as
part of the process of souping up queries across whole archives at once
(needed for the function info and data object sections).
binutils/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* objdump.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_ctf): Likewise. Use ctf_dict_close, not ctf_file_close.
* readelf.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_section_as_ctf): Likewise. Use ctf_dict_close, not
ctf_file_close.
gdb/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctfread.c: Change uses of ctf_file_t to ctf_dict_t.
(ctf_fp_info::~ctf_fp_info): Call ctf_dict_close, not ctf_file_close.
include/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-api.h (ctf_file_t): Rename to...
(ctf_dict_t): ... this. Keep ctf_file_t around for compatibility.
(struct ctf_file): Likewise rename to...
(struct ctf_dict): ... this.
(ctf_file_close): Rename to...
(ctf_dict_close): ... this, keeping compatibility function.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this, keeping compatibility function.
All callers adjusted.
* ctf.h: Rename references to ctf_file_t to ctf_dict_t.
(struct ctf_archive) <ctfa_nfiles>: Rename to...
<ctfa_ndicts>: ... this.
ld/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ldlang.c (ctf_output): This is a ctf_dict_t now.
(lang_ctf_errs_warnings): Rename ctf_file_t to ctf_dict_t.
(ldlang_open_ctf): Adjust comment.
(lang_merge_ctf): Use ctf_dict_close, not ctf_file_close.
* ldelfgen.h (ldelf_examine_strtab_for_ctf): Rename ctf_file_t to
ctf_dict_t. Change opaque declaration accordingly.
* ldelfgen.c (ldelf_examine_strtab_for_ctf): Adjust.
* ldemul.h (examine_strtab_for_ctf): Likewise.
(ldemul_examine_strtab_for_ctf): Likewise.
* ldeuml.c (ldemul_examine_strtab_for_ctf): Likewise.
libctf/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h: Rename ctf_file_t to ctf_dict_t: all declarations
adjusted.
(ctf_fileops): Rename to...
(ctf_dictops): ... this.
(ctf_dedup_t) <cd_id_to_file_t>: Rename to...
<cd_id_to_dict_t>: ... this.
(ctf_file_t): Fix outdated comment.
<ctf_fileops>: Rename to...
<ctf_dictops>: ... this.
(struct ctf_archive_internal) <ctfi_file>: Rename to...
<ctfi_dict>: ... this.
* ctf-archive.c: Rename ctf_file_t to ctf_dict_t.
Rename ctf_archive.ctfa_nfiles to ctfa_ndicts.
Rename ctf_file_close to ctf_dict_close. All users adjusted.
* ctf-create.c: Likewise. Refer to CTF dicts, not CTF containers.
(ctf_bundle_t) <ctb_file>: Rename to...
<ctb_dict): ... this.
* ctf-decl.c: Rename ctf_file_t to ctf_dict_t.
* ctf-dedup.c: Likewise. Rename ctf_file_close to
ctf_dict_close. Refer to CTF dicts, not CTF containers.
* ctf-dump.c: Likewise.
* ctf-error.c: Likewise.
* ctf-hash.c: Likewise.
* ctf-inlines.h: Likewise.
* ctf-labels.c: Likewise.
* ctf-link.c: Likewise.
* ctf-lookup.c: Likewise.
* ctf-open-bfd.c: Likewise.
* ctf-string.c: Likewise.
* ctf-subr.c: Likewise.
* ctf-types.c: Likewise.
* ctf-util.c: Likewise.
* ctf-open.c: Likewise.
(ctf_file_close): Rename to...
(ctf_dict_close): ...this.
(ctf_file_close): New trivial wrapper around ctf_dict_close, for
compatibility.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this.
(ctf_parent_file): New trivial wrapper around ctf_parent_dict, for
compatibility.
* libctf.ver: Add ctf_dict_close and ctf_parent_dict.
2020-11-20 21:34:04 +08:00
|
|
|
ctf_dynhash_t *cd_id_to_dict_t;
|
2020-06-06 01:35:46 +08:00
|
|
|
|
|
|
|
/* Atoms tables of decorated names: maps undecorated name to decorated name.
|
libctf, include, binutils, gdb, ld: rename ctf_file_t to ctf_dict_t
The naming of the ctf_file_t type in libctf is a historical curiosity.
Back in the Solaris days, CTF dictionaries were originally generated as
a separate file and then (sometimes) merged into objects: hence the
datatype was named ctf_file_t, and known as a "CTF file". Nowadays, raw
CTF is essentially never written to a file on its own, and the datatype
changed name to a "CTF dictionary" years ago. So the term "CTF file"
refers to something that is never a file! This is at best confusing.
The type has also historically been known as a 'CTF container", which is
even more confusing now that we have CTF archives which are *also* a
sort of container (they contain CTF dictionaries), but which are never
referred to as containers in the source code.
So fix this by completing the renaming, renaming ctf_file_t to
ctf_dict_t throughout, and renaming those few functions that refer to
CTF files by name (keeping compatibility aliases) to refer to dicts
instead. Old users who still refer to ctf_file_t will see (harmless)
pointer-compatibility warnings at compile time, but the ABI is unchanged
(since C doesn't mangle names, and ctf_file_t was always an opaque type)
and things will still compile fine as long as -Werror is not specified.
All references to CTF containers and CTF files in the source code are
fixed to refer to CTF dicts instead.
Further (smaller) renamings of annoyingly-named functions to come, as
part of the process of souping up queries across whole archives at once
(needed for the function info and data object sections).
binutils/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* objdump.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_ctf): Likewise. Use ctf_dict_close, not ctf_file_close.
* readelf.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_section_as_ctf): Likewise. Use ctf_dict_close, not
ctf_file_close.
gdb/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctfread.c: Change uses of ctf_file_t to ctf_dict_t.
(ctf_fp_info::~ctf_fp_info): Call ctf_dict_close, not ctf_file_close.
include/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-api.h (ctf_file_t): Rename to...
(ctf_dict_t): ... this. Keep ctf_file_t around for compatibility.
(struct ctf_file): Likewise rename to...
(struct ctf_dict): ... this.
(ctf_file_close): Rename to...
(ctf_dict_close): ... this, keeping compatibility function.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this, keeping compatibility function.
All callers adjusted.
* ctf.h: Rename references to ctf_file_t to ctf_dict_t.
(struct ctf_archive) <ctfa_nfiles>: Rename to...
<ctfa_ndicts>: ... this.
ld/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ldlang.c (ctf_output): This is a ctf_dict_t now.
(lang_ctf_errs_warnings): Rename ctf_file_t to ctf_dict_t.
(ldlang_open_ctf): Adjust comment.
(lang_merge_ctf): Use ctf_dict_close, not ctf_file_close.
* ldelfgen.h (ldelf_examine_strtab_for_ctf): Rename ctf_file_t to
ctf_dict_t. Change opaque declaration accordingly.
* ldelfgen.c (ldelf_examine_strtab_for_ctf): Adjust.
* ldemul.h (examine_strtab_for_ctf): Likewise.
(ldemul_examine_strtab_for_ctf): Likewise.
* ldeuml.c (ldemul_examine_strtab_for_ctf): Likewise.
libctf/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h: Rename ctf_file_t to ctf_dict_t: all declarations
adjusted.
(ctf_fileops): Rename to...
(ctf_dictops): ... this.
(ctf_dedup_t) <cd_id_to_file_t>: Rename to...
<cd_id_to_dict_t>: ... this.
(ctf_file_t): Fix outdated comment.
<ctf_fileops>: Rename to...
<ctf_dictops>: ... this.
(struct ctf_archive_internal) <ctfi_file>: Rename to...
<ctfi_dict>: ... this.
* ctf-archive.c: Rename ctf_file_t to ctf_dict_t.
Rename ctf_archive.ctfa_nfiles to ctfa_ndicts.
Rename ctf_file_close to ctf_dict_close. All users adjusted.
* ctf-create.c: Likewise. Refer to CTF dicts, not CTF containers.
(ctf_bundle_t) <ctb_file>: Rename to...
<ctb_dict): ... this.
* ctf-decl.c: Rename ctf_file_t to ctf_dict_t.
* ctf-dedup.c: Likewise. Rename ctf_file_close to
ctf_dict_close. Refer to CTF dicts, not CTF containers.
* ctf-dump.c: Likewise.
* ctf-error.c: Likewise.
* ctf-hash.c: Likewise.
* ctf-inlines.h: Likewise.
* ctf-labels.c: Likewise.
* ctf-link.c: Likewise.
* ctf-lookup.c: Likewise.
* ctf-open-bfd.c: Likewise.
* ctf-string.c: Likewise.
* ctf-subr.c: Likewise.
* ctf-types.c: Likewise.
* ctf-util.c: Likewise.
* ctf-open.c: Likewise.
(ctf_file_close): Rename to...
(ctf_dict_close): ...this.
(ctf_file_close): New trivial wrapper around ctf_dict_close, for
compatibility.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this.
(ctf_parent_file): New trivial wrapper around ctf_parent_dict, for
compatibility.
* libctf.ver: Add ctf_dict_close and ctf_parent_dict.
2020-11-20 21:34:04 +08:00
|
|
|
(The actual allocations are in the CTF dict for the former and the real
|
2020-06-06 01:35:46 +08:00
|
|
|
atoms table for the latter). Uses the same namespaces as ctf_lookups,
|
|
|
|
below, but has no need for null-termination. */
|
|
|
|
ctf_dynhash_t *cd_decorated_names[4];
|
|
|
|
|
|
|
|
/* Map type names to a hash from type hash value -> number of times each value
|
|
|
|
has appeared. */
|
|
|
|
ctf_dynhash_t *cd_name_counts;
|
|
|
|
|
|
|
|
/* Map global type IDs to type hash values. Used to determine if types are
|
|
|
|
already hashed without having to recompute their hash values again, and to
|
|
|
|
link types together at later stages. Forwards that are peeked through to
|
|
|
|
structs and unions are not represented in here, so lookups that might be
|
|
|
|
such a type (in practice, all lookups) must go via cd_replaced_types first
|
|
|
|
to take this into account. Discarded before each rehashing. */
|
|
|
|
ctf_dynhash_t *cd_type_hashes;
|
|
|
|
|
|
|
|
/* Maps from the names of structs/unions/enums to a a single GID which is the
|
|
|
|
only appearance of that type in any input: if it appears in more than one
|
|
|
|
input, a value which is a GID with an input_num of -1 appears. Used in
|
|
|
|
share-duplicated link mode link modes to determine whether structs/unions
|
|
|
|
can be cited from multiple TUs. Only populated in that link mode. */
|
|
|
|
ctf_dynhash_t *cd_struct_origin;
|
|
|
|
|
|
|
|
/* Maps type hash values to a set of hash values of the types that cite them:
|
|
|
|
i.e., pointing backwards up the type graph. Used for recursive conflict
|
|
|
|
marking. Citations from tagged structures, unions, and forwards do not
|
|
|
|
appear in this graph. */
|
|
|
|
ctf_dynhash_t *cd_citers;
|
|
|
|
|
|
|
|
/* Maps type hash values to input global type IDs. The value is a set (a
|
|
|
|
hash) of global type IDs. Discarded before each rehashing. The result of
|
|
|
|
the ctf_dedup function. */
|
|
|
|
ctf_dynhash_t *cd_output_mapping;
|
|
|
|
|
|
|
|
/* A map giving the GID of the first appearance of each type for each type
|
|
|
|
hash value. */
|
|
|
|
ctf_dynhash_t *cd_output_first_gid;
|
|
|
|
|
|
|
|
/* Used to ensure that we never try to map a single type ID to more than one
|
|
|
|
hash. */
|
|
|
|
ctf_dynhash_t *cd_output_mapping_guard;
|
|
|
|
|
|
|
|
/* Maps the global type IDs of structures in input TUs whose members still
|
|
|
|
need emission to the global type ID of the already-emitted target type
|
|
|
|
(which has no members yet) in the appropriate target. Uniquely, the latter
|
|
|
|
ID represents a *target* ID (i.e. the cd_output_mapping of some specified
|
|
|
|
input): we encode the shared (parent) dict with an ID of -1. */
|
|
|
|
ctf_dynhash_t *cd_emission_struct_members;
|
|
|
|
|
|
|
|
/* A set (a hash) of hash values of conflicting types. */
|
|
|
|
ctf_dynset_t *cd_conflicting_types;
|
|
|
|
|
libctf: add a deduplicator-specific type mapping table
When CTF linking is done, the linker has to track the association
between types in the inputs and types in the outputs. The deduplicator
does this via the cd_output_emission_hashes, which maps from hashes of
types (valid in both the input and output) to the IDs of types in the
specific dict in which the cd_emission_hashes is held. However, the
nondeduplicating linker and ctf_add_type used a different mechanism, a
dedicated hashtab stored in the ctf_link_type_mapping, populated via
ctf_add_type_mapping and queried via the ctf_type_mapping function. To
allow the same functions to be used for variable and symbol population
in both the deduplicating and nondeduplicating linker, the deduplicator
carefully transferred all its input->output mappings into this hashtab
before returning.
This is *expensive*. The number of entries in this hashtab scales as the
number of input types, and unlike the hashing machinery the type mapping
machinery (the only other thing which scales that way) has not been much
optimized.
Now the nondeduplicating linker is gone, we can throw this out, move
the existing type mapping machinery to ctf-create.c and dedicate it to
ctf_add_type alone, and add a new function ctf_dedup_type_mapping which
uses the deduplicator's built-in knowledge of type mappings directly,
without requiring an expensive repopulation phase.
This speeds up a test link of nouveau.ko (a good worst-case candidate
with a lot of types in each of a lot of input files) from 9.11s to 7.15s
in my testing, a speedup of over 20%.
libctf/ChangeLog
2021-03-02 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h (ctf_dict_t) <ctf_link_type_mapping>: No longer used
by the nondeduplicating linker.
(ctf_add_type_mapping): Removed, now static.
(ctf_type_mapping): Likewise.
(ctf_dedup_type_mapping): New.
(ctf_dedup_t) <cd_input_nums>: New.
* ctf-dedup.c (ctf_dedup_init): Populate it.
(ctf_dedup_fini): Free it again. Emphasise that this has to be
the last thing called.
(ctf_dedup): Populate it.
(ctf_dedup_populate_type_mapping): Removed.
(ctf_dedup_populate_type_mappings): Likewise.
(ctf_dedup_emit): No longer call it. No longer call
ctf_dedup_fini either.
(ctf_dedup_type_mapping): New.
* ctf-link.c (ctf_unnamed_cuname): New.
(ctf_create_per_cu): Arguments must be non-null now.
(ctf_in_member_cb_arg): Removed.
(ctf_link): No longer populate it. No longer discard the
mapping table.
(ctf_link_deduplicating_one_symtypetab): Use
ctf_dedup_type_mapping, not ctf_type_mapping. Use
ctf_unnamed_cuname.
(ctf_link_one_variable): Likewise. Pass in args individually: no
longer a ctf_variable_iter callback.
(empty_link_type_mapping): Removed.
(ctf_link_deduplicating_variables): Use ctf_variable_next, not
ctf_variable_iter. No longer pack arguments to
ctf_link_one_variable into a struct.
(ctf_link_deduplicating_per_cu): Call ctf_dedup_fini once
all link phases are done.
(ctf_link_deduplicating): Likewise.
(ctf_link_intern_extern_string): Improve comment.
(ctf_add_type_mapping): Migrate...
(ctf_type_mapping): ... these functions...
* ctf-create.c (ctf_add_type_mapping): ... here...
(ctf_type_mapping): ... and make static, for the sole use of
ctf_add_type.
2021-03-02 23:10:05 +08:00
|
|
|
/* A hash mapping fp *'s of inputs to their input_nums. Used only by
|
|
|
|
functions outside the core ctf_dedup / ctf_dedup_emit machinery which do
|
|
|
|
not take an inputs array. */
|
|
|
|
ctf_dynhash_t *cd_input_nums;
|
|
|
|
|
2020-06-06 01:35:46 +08:00
|
|
|
/* Maps type hashes to ctf_id_t's in this dictionary. Populated only at
|
|
|
|
emission time, in the dictionary where emission is taking place. */
|
|
|
|
ctf_dynhash_t *cd_output_emission_hashes;
|
|
|
|
|
|
|
|
/* Maps the decorated names of conflicted cross-TU forwards that were forcibly
|
|
|
|
emitted in this TU to their emitted ctf_id_ts. Populated only at emission
|
|
|
|
time, in the dictionary where emission is taking place. */
|
|
|
|
ctf_dynhash_t *cd_output_emission_conflicted_forwards;
|
|
|
|
|
|
|
|
/* Points to the output counterpart of this input dictionary, at emission
|
|
|
|
time. */
|
libctf, include, binutils, gdb, ld: rename ctf_file_t to ctf_dict_t
The naming of the ctf_file_t type in libctf is a historical curiosity.
Back in the Solaris days, CTF dictionaries were originally generated as
a separate file and then (sometimes) merged into objects: hence the
datatype was named ctf_file_t, and known as a "CTF file". Nowadays, raw
CTF is essentially never written to a file on its own, and the datatype
changed name to a "CTF dictionary" years ago. So the term "CTF file"
refers to something that is never a file! This is at best confusing.
The type has also historically been known as a 'CTF container", which is
even more confusing now that we have CTF archives which are *also* a
sort of container (they contain CTF dictionaries), but which are never
referred to as containers in the source code.
So fix this by completing the renaming, renaming ctf_file_t to
ctf_dict_t throughout, and renaming those few functions that refer to
CTF files by name (keeping compatibility aliases) to refer to dicts
instead. Old users who still refer to ctf_file_t will see (harmless)
pointer-compatibility warnings at compile time, but the ABI is unchanged
(since C doesn't mangle names, and ctf_file_t was always an opaque type)
and things will still compile fine as long as -Werror is not specified.
All references to CTF containers and CTF files in the source code are
fixed to refer to CTF dicts instead.
Further (smaller) renamings of annoyingly-named functions to come, as
part of the process of souping up queries across whole archives at once
(needed for the function info and data object sections).
binutils/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* objdump.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_ctf): Likewise. Use ctf_dict_close, not ctf_file_close.
* readelf.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_section_as_ctf): Likewise. Use ctf_dict_close, not
ctf_file_close.
gdb/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctfread.c: Change uses of ctf_file_t to ctf_dict_t.
(ctf_fp_info::~ctf_fp_info): Call ctf_dict_close, not ctf_file_close.
include/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-api.h (ctf_file_t): Rename to...
(ctf_dict_t): ... this. Keep ctf_file_t around for compatibility.
(struct ctf_file): Likewise rename to...
(struct ctf_dict): ... this.
(ctf_file_close): Rename to...
(ctf_dict_close): ... this, keeping compatibility function.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this, keeping compatibility function.
All callers adjusted.
* ctf.h: Rename references to ctf_file_t to ctf_dict_t.
(struct ctf_archive) <ctfa_nfiles>: Rename to...
<ctfa_ndicts>: ... this.
ld/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ldlang.c (ctf_output): This is a ctf_dict_t now.
(lang_ctf_errs_warnings): Rename ctf_file_t to ctf_dict_t.
(ldlang_open_ctf): Adjust comment.
(lang_merge_ctf): Use ctf_dict_close, not ctf_file_close.
* ldelfgen.h (ldelf_examine_strtab_for_ctf): Rename ctf_file_t to
ctf_dict_t. Change opaque declaration accordingly.
* ldelfgen.c (ldelf_examine_strtab_for_ctf): Adjust.
* ldemul.h (examine_strtab_for_ctf): Likewise.
(ldemul_examine_strtab_for_ctf): Likewise.
* ldeuml.c (ldemul_examine_strtab_for_ctf): Likewise.
libctf/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h: Rename ctf_file_t to ctf_dict_t: all declarations
adjusted.
(ctf_fileops): Rename to...
(ctf_dictops): ... this.
(ctf_dedup_t) <cd_id_to_file_t>: Rename to...
<cd_id_to_dict_t>: ... this.
(ctf_file_t): Fix outdated comment.
<ctf_fileops>: Rename to...
<ctf_dictops>: ... this.
(struct ctf_archive_internal) <ctfi_file>: Rename to...
<ctfi_dict>: ... this.
* ctf-archive.c: Rename ctf_file_t to ctf_dict_t.
Rename ctf_archive.ctfa_nfiles to ctfa_ndicts.
Rename ctf_file_close to ctf_dict_close. All users adjusted.
* ctf-create.c: Likewise. Refer to CTF dicts, not CTF containers.
(ctf_bundle_t) <ctb_file>: Rename to...
<ctb_dict): ... this.
* ctf-decl.c: Rename ctf_file_t to ctf_dict_t.
* ctf-dedup.c: Likewise. Rename ctf_file_close to
ctf_dict_close. Refer to CTF dicts, not CTF containers.
* ctf-dump.c: Likewise.
* ctf-error.c: Likewise.
* ctf-hash.c: Likewise.
* ctf-inlines.h: Likewise.
* ctf-labels.c: Likewise.
* ctf-link.c: Likewise.
* ctf-lookup.c: Likewise.
* ctf-open-bfd.c: Likewise.
* ctf-string.c: Likewise.
* ctf-subr.c: Likewise.
* ctf-types.c: Likewise.
* ctf-util.c: Likewise.
* ctf-open.c: Likewise.
(ctf_file_close): Rename to...
(ctf_dict_close): ...this.
(ctf_file_close): New trivial wrapper around ctf_dict_close, for
compatibility.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this.
(ctf_parent_file): New trivial wrapper around ctf_parent_dict, for
compatibility.
* libctf.ver: Add ctf_dict_close and ctf_parent_dict.
2020-11-20 21:34:04 +08:00
|
|
|
ctf_dict_t *cd_output;
|
2020-06-06 01:35:46 +08:00
|
|
|
} ctf_dedup_t;
|
2019-07-14 04:31:26 +08:00
|
|
|
|
libctf, include, binutils, gdb, ld: rename ctf_file_t to ctf_dict_t
The naming of the ctf_file_t type in libctf is a historical curiosity.
Back in the Solaris days, CTF dictionaries were originally generated as
a separate file and then (sometimes) merged into objects: hence the
datatype was named ctf_file_t, and known as a "CTF file". Nowadays, raw
CTF is essentially never written to a file on its own, and the datatype
changed name to a "CTF dictionary" years ago. So the term "CTF file"
refers to something that is never a file! This is at best confusing.
The type has also historically been known as a 'CTF container", which is
even more confusing now that we have CTF archives which are *also* a
sort of container (they contain CTF dictionaries), but which are never
referred to as containers in the source code.
So fix this by completing the renaming, renaming ctf_file_t to
ctf_dict_t throughout, and renaming those few functions that refer to
CTF files by name (keeping compatibility aliases) to refer to dicts
instead. Old users who still refer to ctf_file_t will see (harmless)
pointer-compatibility warnings at compile time, but the ABI is unchanged
(since C doesn't mangle names, and ctf_file_t was always an opaque type)
and things will still compile fine as long as -Werror is not specified.
All references to CTF containers and CTF files in the source code are
fixed to refer to CTF dicts instead.
Further (smaller) renamings of annoyingly-named functions to come, as
part of the process of souping up queries across whole archives at once
(needed for the function info and data object sections).
binutils/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* objdump.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_ctf): Likewise. Use ctf_dict_close, not ctf_file_close.
* readelf.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_section_as_ctf): Likewise. Use ctf_dict_close, not
ctf_file_close.
gdb/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctfread.c: Change uses of ctf_file_t to ctf_dict_t.
(ctf_fp_info::~ctf_fp_info): Call ctf_dict_close, not ctf_file_close.
include/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-api.h (ctf_file_t): Rename to...
(ctf_dict_t): ... this. Keep ctf_file_t around for compatibility.
(struct ctf_file): Likewise rename to...
(struct ctf_dict): ... this.
(ctf_file_close): Rename to...
(ctf_dict_close): ... this, keeping compatibility function.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this, keeping compatibility function.
All callers adjusted.
* ctf.h: Rename references to ctf_file_t to ctf_dict_t.
(struct ctf_archive) <ctfa_nfiles>: Rename to...
<ctfa_ndicts>: ... this.
ld/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ldlang.c (ctf_output): This is a ctf_dict_t now.
(lang_ctf_errs_warnings): Rename ctf_file_t to ctf_dict_t.
(ldlang_open_ctf): Adjust comment.
(lang_merge_ctf): Use ctf_dict_close, not ctf_file_close.
* ldelfgen.h (ldelf_examine_strtab_for_ctf): Rename ctf_file_t to
ctf_dict_t. Change opaque declaration accordingly.
* ldelfgen.c (ldelf_examine_strtab_for_ctf): Adjust.
* ldemul.h (examine_strtab_for_ctf): Likewise.
(ldemul_examine_strtab_for_ctf): Likewise.
* ldeuml.c (ldemul_examine_strtab_for_ctf): Likewise.
libctf/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h: Rename ctf_file_t to ctf_dict_t: all declarations
adjusted.
(ctf_fileops): Rename to...
(ctf_dictops): ... this.
(ctf_dedup_t) <cd_id_to_file_t>: Rename to...
<cd_id_to_dict_t>: ... this.
(ctf_file_t): Fix outdated comment.
<ctf_fileops>: Rename to...
<ctf_dictops>: ... this.
(struct ctf_archive_internal) <ctfi_file>: Rename to...
<ctfi_dict>: ... this.
* ctf-archive.c: Rename ctf_file_t to ctf_dict_t.
Rename ctf_archive.ctfa_nfiles to ctfa_ndicts.
Rename ctf_file_close to ctf_dict_close. All users adjusted.
* ctf-create.c: Likewise. Refer to CTF dicts, not CTF containers.
(ctf_bundle_t) <ctb_file>: Rename to...
<ctb_dict): ... this.
* ctf-decl.c: Rename ctf_file_t to ctf_dict_t.
* ctf-dedup.c: Likewise. Rename ctf_file_close to
ctf_dict_close. Refer to CTF dicts, not CTF containers.
* ctf-dump.c: Likewise.
* ctf-error.c: Likewise.
* ctf-hash.c: Likewise.
* ctf-inlines.h: Likewise.
* ctf-labels.c: Likewise.
* ctf-link.c: Likewise.
* ctf-lookup.c: Likewise.
* ctf-open-bfd.c: Likewise.
* ctf-string.c: Likewise.
* ctf-subr.c: Likewise.
* ctf-types.c: Likewise.
* ctf-util.c: Likewise.
* ctf-open.c: Likewise.
(ctf_file_close): Rename to...
(ctf_dict_close): ...this.
(ctf_file_close): New trivial wrapper around ctf_dict_close, for
compatibility.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this.
(ctf_parent_file): New trivial wrapper around ctf_parent_dict, for
compatibility.
* libctf.ver: Add ctf_dict_close and ctf_parent_dict.
2020-11-20 21:34:04 +08:00
|
|
|
/* The ctf_dict is the structure used to represent a CTF dictionary to library
|
2019-04-24 05:24:13 +08:00
|
|
|
clients, who see it only as an opaque pointer. Modifications can therefore
|
|
|
|
be made freely to this structure without regard to client versioning. The
|
libctf, include, binutils, gdb, ld: rename ctf_file_t to ctf_dict_t
The naming of the ctf_file_t type in libctf is a historical curiosity.
Back in the Solaris days, CTF dictionaries were originally generated as
a separate file and then (sometimes) merged into objects: hence the
datatype was named ctf_file_t, and known as a "CTF file". Nowadays, raw
CTF is essentially never written to a file on its own, and the datatype
changed name to a "CTF dictionary" years ago. So the term "CTF file"
refers to something that is never a file! This is at best confusing.
The type has also historically been known as a 'CTF container", which is
even more confusing now that we have CTF archives which are *also* a
sort of container (they contain CTF dictionaries), but which are never
referred to as containers in the source code.
So fix this by completing the renaming, renaming ctf_file_t to
ctf_dict_t throughout, and renaming those few functions that refer to
CTF files by name (keeping compatibility aliases) to refer to dicts
instead. Old users who still refer to ctf_file_t will see (harmless)
pointer-compatibility warnings at compile time, but the ABI is unchanged
(since C doesn't mangle names, and ctf_file_t was always an opaque type)
and things will still compile fine as long as -Werror is not specified.
All references to CTF containers and CTF files in the source code are
fixed to refer to CTF dicts instead.
Further (smaller) renamings of annoyingly-named functions to come, as
part of the process of souping up queries across whole archives at once
(needed for the function info and data object sections).
binutils/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* objdump.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_ctf): Likewise. Use ctf_dict_close, not ctf_file_close.
* readelf.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_section_as_ctf): Likewise. Use ctf_dict_close, not
ctf_file_close.
gdb/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctfread.c: Change uses of ctf_file_t to ctf_dict_t.
(ctf_fp_info::~ctf_fp_info): Call ctf_dict_close, not ctf_file_close.
include/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-api.h (ctf_file_t): Rename to...
(ctf_dict_t): ... this. Keep ctf_file_t around for compatibility.
(struct ctf_file): Likewise rename to...
(struct ctf_dict): ... this.
(ctf_file_close): Rename to...
(ctf_dict_close): ... this, keeping compatibility function.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this, keeping compatibility function.
All callers adjusted.
* ctf.h: Rename references to ctf_file_t to ctf_dict_t.
(struct ctf_archive) <ctfa_nfiles>: Rename to...
<ctfa_ndicts>: ... this.
ld/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ldlang.c (ctf_output): This is a ctf_dict_t now.
(lang_ctf_errs_warnings): Rename ctf_file_t to ctf_dict_t.
(ldlang_open_ctf): Adjust comment.
(lang_merge_ctf): Use ctf_dict_close, not ctf_file_close.
* ldelfgen.h (ldelf_examine_strtab_for_ctf): Rename ctf_file_t to
ctf_dict_t. Change opaque declaration accordingly.
* ldelfgen.c (ldelf_examine_strtab_for_ctf): Adjust.
* ldemul.h (examine_strtab_for_ctf): Likewise.
(ldemul_examine_strtab_for_ctf): Likewise.
* ldeuml.c (ldemul_examine_strtab_for_ctf): Likewise.
libctf/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h: Rename ctf_file_t to ctf_dict_t: all declarations
adjusted.
(ctf_fileops): Rename to...
(ctf_dictops): ... this.
(ctf_dedup_t) <cd_id_to_file_t>: Rename to...
<cd_id_to_dict_t>: ... this.
(ctf_file_t): Fix outdated comment.
<ctf_fileops>: Rename to...
<ctf_dictops>: ... this.
(struct ctf_archive_internal) <ctfi_file>: Rename to...
<ctfi_dict>: ... this.
* ctf-archive.c: Rename ctf_file_t to ctf_dict_t.
Rename ctf_archive.ctfa_nfiles to ctfa_ndicts.
Rename ctf_file_close to ctf_dict_close. All users adjusted.
* ctf-create.c: Likewise. Refer to CTF dicts, not CTF containers.
(ctf_bundle_t) <ctb_file>: Rename to...
<ctb_dict): ... this.
* ctf-decl.c: Rename ctf_file_t to ctf_dict_t.
* ctf-dedup.c: Likewise. Rename ctf_file_close to
ctf_dict_close. Refer to CTF dicts, not CTF containers.
* ctf-dump.c: Likewise.
* ctf-error.c: Likewise.
* ctf-hash.c: Likewise.
* ctf-inlines.h: Likewise.
* ctf-labels.c: Likewise.
* ctf-link.c: Likewise.
* ctf-lookup.c: Likewise.
* ctf-open-bfd.c: Likewise.
* ctf-string.c: Likewise.
* ctf-subr.c: Likewise.
* ctf-types.c: Likewise.
* ctf-util.c: Likewise.
* ctf-open.c: Likewise.
(ctf_file_close): Rename to...
(ctf_dict_close): ...this.
(ctf_file_close): New trivial wrapper around ctf_dict_close, for
compatibility.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this.
(ctf_parent_file): New trivial wrapper around ctf_parent_dict, for
compatibility.
* libctf.ver: Add ctf_dict_close and ctf_parent_dict.
2020-11-20 21:34:04 +08:00
|
|
|
ctf_dict_t typedef appears in <ctf-api.h> and declares a forward tag.
|
|
|
|
(A ctf_file_t typedef also appears there, for historical reasons.)
|
2019-04-24 05:24:13 +08:00
|
|
|
|
2021-03-18 20:37:52 +08:00
|
|
|
NOTE: ctf_serialize requires that everything inside of ctf_dict either be an
|
|
|
|
immediate value, a pointer to dynamically allocated data *outside* of the
|
|
|
|
ctf_dict itself, a pointer to statically allocated data, or specially handled
|
|
|
|
in ctf_serialize. If you add a pointer to ctf_dict that points to something
|
|
|
|
within the ctf_dict itself, you must make corresponding changes to
|
|
|
|
ctf_serialize. */
|
2019-04-24 05:24:13 +08:00
|
|
|
|
libctf, include, binutils, gdb, ld: rename ctf_file_t to ctf_dict_t
The naming of the ctf_file_t type in libctf is a historical curiosity.
Back in the Solaris days, CTF dictionaries were originally generated as
a separate file and then (sometimes) merged into objects: hence the
datatype was named ctf_file_t, and known as a "CTF file". Nowadays, raw
CTF is essentially never written to a file on its own, and the datatype
changed name to a "CTF dictionary" years ago. So the term "CTF file"
refers to something that is never a file! This is at best confusing.
The type has also historically been known as a 'CTF container", which is
even more confusing now that we have CTF archives which are *also* a
sort of container (they contain CTF dictionaries), but which are never
referred to as containers in the source code.
So fix this by completing the renaming, renaming ctf_file_t to
ctf_dict_t throughout, and renaming those few functions that refer to
CTF files by name (keeping compatibility aliases) to refer to dicts
instead. Old users who still refer to ctf_file_t will see (harmless)
pointer-compatibility warnings at compile time, but the ABI is unchanged
(since C doesn't mangle names, and ctf_file_t was always an opaque type)
and things will still compile fine as long as -Werror is not specified.
All references to CTF containers and CTF files in the source code are
fixed to refer to CTF dicts instead.
Further (smaller) renamings of annoyingly-named functions to come, as
part of the process of souping up queries across whole archives at once
(needed for the function info and data object sections).
binutils/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* objdump.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_ctf): Likewise. Use ctf_dict_close, not ctf_file_close.
* readelf.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_section_as_ctf): Likewise. Use ctf_dict_close, not
ctf_file_close.
gdb/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctfread.c: Change uses of ctf_file_t to ctf_dict_t.
(ctf_fp_info::~ctf_fp_info): Call ctf_dict_close, not ctf_file_close.
include/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-api.h (ctf_file_t): Rename to...
(ctf_dict_t): ... this. Keep ctf_file_t around for compatibility.
(struct ctf_file): Likewise rename to...
(struct ctf_dict): ... this.
(ctf_file_close): Rename to...
(ctf_dict_close): ... this, keeping compatibility function.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this, keeping compatibility function.
All callers adjusted.
* ctf.h: Rename references to ctf_file_t to ctf_dict_t.
(struct ctf_archive) <ctfa_nfiles>: Rename to...
<ctfa_ndicts>: ... this.
ld/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ldlang.c (ctf_output): This is a ctf_dict_t now.
(lang_ctf_errs_warnings): Rename ctf_file_t to ctf_dict_t.
(ldlang_open_ctf): Adjust comment.
(lang_merge_ctf): Use ctf_dict_close, not ctf_file_close.
* ldelfgen.h (ldelf_examine_strtab_for_ctf): Rename ctf_file_t to
ctf_dict_t. Change opaque declaration accordingly.
* ldelfgen.c (ldelf_examine_strtab_for_ctf): Adjust.
* ldemul.h (examine_strtab_for_ctf): Likewise.
(ldemul_examine_strtab_for_ctf): Likewise.
* ldeuml.c (ldemul_examine_strtab_for_ctf): Likewise.
libctf/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h: Rename ctf_file_t to ctf_dict_t: all declarations
adjusted.
(ctf_fileops): Rename to...
(ctf_dictops): ... this.
(ctf_dedup_t) <cd_id_to_file_t>: Rename to...
<cd_id_to_dict_t>: ... this.
(ctf_file_t): Fix outdated comment.
<ctf_fileops>: Rename to...
<ctf_dictops>: ... this.
(struct ctf_archive_internal) <ctfi_file>: Rename to...
<ctfi_dict>: ... this.
* ctf-archive.c: Rename ctf_file_t to ctf_dict_t.
Rename ctf_archive.ctfa_nfiles to ctfa_ndicts.
Rename ctf_file_close to ctf_dict_close. All users adjusted.
* ctf-create.c: Likewise. Refer to CTF dicts, not CTF containers.
(ctf_bundle_t) <ctb_file>: Rename to...
<ctb_dict): ... this.
* ctf-decl.c: Rename ctf_file_t to ctf_dict_t.
* ctf-dedup.c: Likewise. Rename ctf_file_close to
ctf_dict_close. Refer to CTF dicts, not CTF containers.
* ctf-dump.c: Likewise.
* ctf-error.c: Likewise.
* ctf-hash.c: Likewise.
* ctf-inlines.h: Likewise.
* ctf-labels.c: Likewise.
* ctf-link.c: Likewise.
* ctf-lookup.c: Likewise.
* ctf-open-bfd.c: Likewise.
* ctf-string.c: Likewise.
* ctf-subr.c: Likewise.
* ctf-types.c: Likewise.
* ctf-util.c: Likewise.
* ctf-open.c: Likewise.
(ctf_file_close): Rename to...
(ctf_dict_close): ...this.
(ctf_file_close): New trivial wrapper around ctf_dict_close, for
compatibility.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this.
(ctf_parent_file): New trivial wrapper around ctf_parent_dict, for
compatibility.
* libctf.ver: Add ctf_dict_close and ctf_parent_dict.
2020-11-20 21:34:04 +08:00
|
|
|
struct ctf_dict
|
2019-04-24 05:24:13 +08:00
|
|
|
{
|
libctf, include, binutils, gdb, ld: rename ctf_file_t to ctf_dict_t
The naming of the ctf_file_t type in libctf is a historical curiosity.
Back in the Solaris days, CTF dictionaries were originally generated as
a separate file and then (sometimes) merged into objects: hence the
datatype was named ctf_file_t, and known as a "CTF file". Nowadays, raw
CTF is essentially never written to a file on its own, and the datatype
changed name to a "CTF dictionary" years ago. So the term "CTF file"
refers to something that is never a file! This is at best confusing.
The type has also historically been known as a 'CTF container", which is
even more confusing now that we have CTF archives which are *also* a
sort of container (they contain CTF dictionaries), but which are never
referred to as containers in the source code.
So fix this by completing the renaming, renaming ctf_file_t to
ctf_dict_t throughout, and renaming those few functions that refer to
CTF files by name (keeping compatibility aliases) to refer to dicts
instead. Old users who still refer to ctf_file_t will see (harmless)
pointer-compatibility warnings at compile time, but the ABI is unchanged
(since C doesn't mangle names, and ctf_file_t was always an opaque type)
and things will still compile fine as long as -Werror is not specified.
All references to CTF containers and CTF files in the source code are
fixed to refer to CTF dicts instead.
Further (smaller) renamings of annoyingly-named functions to come, as
part of the process of souping up queries across whole archives at once
(needed for the function info and data object sections).
binutils/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* objdump.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_ctf): Likewise. Use ctf_dict_close, not ctf_file_close.
* readelf.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_section_as_ctf): Likewise. Use ctf_dict_close, not
ctf_file_close.
gdb/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctfread.c: Change uses of ctf_file_t to ctf_dict_t.
(ctf_fp_info::~ctf_fp_info): Call ctf_dict_close, not ctf_file_close.
include/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-api.h (ctf_file_t): Rename to...
(ctf_dict_t): ... this. Keep ctf_file_t around for compatibility.
(struct ctf_file): Likewise rename to...
(struct ctf_dict): ... this.
(ctf_file_close): Rename to...
(ctf_dict_close): ... this, keeping compatibility function.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this, keeping compatibility function.
All callers adjusted.
* ctf.h: Rename references to ctf_file_t to ctf_dict_t.
(struct ctf_archive) <ctfa_nfiles>: Rename to...
<ctfa_ndicts>: ... this.
ld/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ldlang.c (ctf_output): This is a ctf_dict_t now.
(lang_ctf_errs_warnings): Rename ctf_file_t to ctf_dict_t.
(ldlang_open_ctf): Adjust comment.
(lang_merge_ctf): Use ctf_dict_close, not ctf_file_close.
* ldelfgen.h (ldelf_examine_strtab_for_ctf): Rename ctf_file_t to
ctf_dict_t. Change opaque declaration accordingly.
* ldelfgen.c (ldelf_examine_strtab_for_ctf): Adjust.
* ldemul.h (examine_strtab_for_ctf): Likewise.
(ldemul_examine_strtab_for_ctf): Likewise.
* ldeuml.c (ldemul_examine_strtab_for_ctf): Likewise.
libctf/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h: Rename ctf_file_t to ctf_dict_t: all declarations
adjusted.
(ctf_fileops): Rename to...
(ctf_dictops): ... this.
(ctf_dedup_t) <cd_id_to_file_t>: Rename to...
<cd_id_to_dict_t>: ... this.
(ctf_file_t): Fix outdated comment.
<ctf_fileops>: Rename to...
<ctf_dictops>: ... this.
(struct ctf_archive_internal) <ctfi_file>: Rename to...
<ctfi_dict>: ... this.
* ctf-archive.c: Rename ctf_file_t to ctf_dict_t.
Rename ctf_archive.ctfa_nfiles to ctfa_ndicts.
Rename ctf_file_close to ctf_dict_close. All users adjusted.
* ctf-create.c: Likewise. Refer to CTF dicts, not CTF containers.
(ctf_bundle_t) <ctb_file>: Rename to...
<ctb_dict): ... this.
* ctf-decl.c: Rename ctf_file_t to ctf_dict_t.
* ctf-dedup.c: Likewise. Rename ctf_file_close to
ctf_dict_close. Refer to CTF dicts, not CTF containers.
* ctf-dump.c: Likewise.
* ctf-error.c: Likewise.
* ctf-hash.c: Likewise.
* ctf-inlines.h: Likewise.
* ctf-labels.c: Likewise.
* ctf-link.c: Likewise.
* ctf-lookup.c: Likewise.
* ctf-open-bfd.c: Likewise.
* ctf-string.c: Likewise.
* ctf-subr.c: Likewise.
* ctf-types.c: Likewise.
* ctf-util.c: Likewise.
* ctf-open.c: Likewise.
(ctf_file_close): Rename to...
(ctf_dict_close): ...this.
(ctf_file_close): New trivial wrapper around ctf_dict_close, for
compatibility.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this.
(ctf_parent_file): New trivial wrapper around ctf_parent_dict, for
compatibility.
* libctf.ver: Add ctf_dict_close and ctf_parent_dict.
2020-11-20 21:34:04 +08:00
|
|
|
const ctf_dictops_t *ctf_dictops; /* Version-specific dict operations. */
|
|
|
|
struct ctf_header *ctf_header; /* The header from this CTF dict. */
|
|
|
|
unsigned char ctf_openflags; /* Flags the dict had when opened. */
|
2019-04-24 05:24:13 +08:00
|
|
|
ctf_sect_t ctf_data; /* CTF data from object file. */
|
|
|
|
ctf_sect_t ctf_symtab; /* Symbol table from object file. */
|
|
|
|
ctf_sect_t ctf_strtab; /* String table from object file. */
|
libctf, include: support foreign-endianness symtabs with CTF
The CTF symbol lookup machinery added recently has one deficit: it
assumes the symtab is in the machine's native endianness. This is
always true when the linker is writing out symtabs (because cross
linkers byteswap symbols only after libctf has been called on them), but
may be untrue in the cross case when the linker or another tool
(objdump, etc) is reading them.
Unfortunately the easy way to model this to the caller, as an endianness
field in the ctf_sect_t, is precluded because doing so would change the
size of the ctf_sect_t, which would be an ABI break. So, instead, allow
the endianness of the symtab to be set after open time, by calling one
of the two new API functions ctf_symsect_endianness (for ctf_dict_t's)
or ctf_arc_symsect_endianness (for entire ctf_archive_t's). libctf
calls these functions automatically for objects opened via any of the
BFD-aware mechanisms (ctf_bfdopen, ctf_bfdopen_ctfsect, ctf_fdopen,
ctf_open, or ctf_arc_open), but the various mechanisms that just take
raw ctf_sect_t's will assume the symtab is in native endianness and need
a later call to ctf_*symsect_endianness to adjust it if needed. (This
call is basically free if the endianness is actually native: it only
costs anything if the symtab endianness was previously guessed wrong,
and there is a symtab, and we are using it directly rather than using
symtab indexing.)
Obviously, calling ctf_lookup_by_symbol or ctf_symbol_next before the
symtab endianness is correctly set will probably give wrong answers --
but you can set it at any time as long as it is before then.
include/ChangeLog
2020-11-23 Nick Alcock <nick.alcock@oracle.com>
* ctf-api.h: Style nit: remove () on function names in comments.
(ctf_sect_t): Mention endianness concerns.
(ctf_symsect_endianness): New declaration.
(ctf_arc_symsect_endianness): Likewise.
libctf/ChangeLog
2020-11-23 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h (ctf_dict_t) <ctf_symtab_little_endian>: New.
(struct ctf_archive_internal) <ctfi_symsect_little_endian>: Likewise.
* ctf-create.c (ctf_serialize): Adjust for new field.
* ctf-open.c (init_symtab): Note the semantics of repeated calls.
(ctf_symsect_endianness): New.
(ctf_bufopen_internal): Set ctf_symtab_little_endian suitably for
the native endianness.
(_Static_assert): Moved...
(swap_thing): ... with this...
* swap.h: ... to here.
* ctf-util.c (ctf_elf32_to_link_sym): Use it, byteswapping the
Elf32_Sym if the ctf_symtab_little_endian demands it.
(ctf_elf64_to_link_sym): Likewise swap the Elf64_Sym if needed.
* ctf-archive.c (ctf_arc_symsect_endianness): New, set the
endianness of the symtab used by the dicts in an archive.
(ctf_archive_iter_internal): Initialize to unknown (assumed native,
do not call ctf_symsect_endianness).
(ctf_dict_open_by_offset): Call ctf_symsect_endianness if need be.
(ctf_dict_open_internal): Propagate the endianness down.
(ctf_dict_open_sections): Likewise.
* ctf-open-bfd.c (ctf_bfdopen_ctfsect): Get the endianness from the
struct bfd and pass it down to the archive.
* libctf.ver: Add ctf_symsect_endianness and
ctf_arc_symsect_endianness.
2020-11-24 05:17:44 +08:00
|
|
|
int ctf_symsect_little_endian; /* Endianness of the ctf_symtab. */
|
libctf, include: find types of symbols by name
The existing ctf_lookup_by_symbol and ctf_arc_lookup_symbol functions
suffice to look up the types of symbols if the caller already has a
symbol number. But the caller often doesn't have one of those and only
knows the name of the symbol: also, in object files, the caller might
not have a useful symbol number in any sense (and neither does libctf:
the 'symbol number' we use in that case literally starts at 0 for the
lexicographically first-sorted symbol in the symtypetab and counts those
symbols, so it corresponds to nothing useful).
This means that even though object files have a symtypetab (generated by
the compiler or by ld -r), the only way we can look up anything in it is
to iterate over all symbols in turn with ctf_symbol_next until we find
the one we want.
This is unhelpful and pointlessly inefficient.
So add a pair of functions to look up symbols by name in a dict and in a
whole archive: ctf_lookup_by_symbol_name and ctf_arc_lookup_symbol_name.
These are identical to the existing functions except that they take
symbol names rather than symbol numbers.
To avoid insane repetition, we do some refactoring in the process, so
that both ctf_lookup_by_symbol and ctf_arc_lookup_symbol turn into thin
wrappers around internal functions that do both lookup by symbol index
and lookup by name. This massively reduces code duplication because
even the existing lookup-by-index stuff wants to use a name sometimes
(when looking up in indexed sections), and the new lookup-by-name stuff
has to turn it into an index sometimes (when looking up in non-indexed
sections): doing it this way lets us share most of that.
The actual name->index lookup is done by ctf_lookup_symbol_idx. We do
not anticipate this lookup to be as heavily used as ld.so symbol lookup
by many orders of magnitude, so using the ELF symbol hashes would
probably take more time to read them than is saved by using the hashes,
and it adds a lot of complexity. Instead, do a linear search for the
symbol name, caching all the name -> index mappings as we go, so that
future searches are likely to hit in the cache. To avoid having to
repeat this search over and over in a CTF archive when
ctf_arc_lookup_symbol_name is used, have cached archive lookups (the
sort done by ctf_arc_lookup_symbol* and the ctf_archive_next iterator)
pick out the first dict they cache in a given archive and store it in a
new ctf_archive field, ctfi_crossdict_cache. This can be used to store
cross-dictionary cached state that depends on things like the ELF symbol
table rather than the contents of any one dict. ctf_lookup_symbol_idx
then caches its name->index mappings in the dictionary named in the
crossdict cache, if any, so that ctf_lookup_symbol_idx in other dicts
in the same archive benefit from the previous linear search, and the
symtab only needs to be scanned at most once.
(Note that if you call ctf_lookup_by_symbol_name in one specific dict,
and then follow it with a ctf_arc_lookup_symbol_name, the former will
not use the crossdict cache because it's only populated by the dict
opens in ctf_arc_lookup_symbol_name. This is harmless except for a small
one-off waste of memory and time: it's only a cache, after all. We can
fix this later by using the archive caching machinery more
aggressively.)
In ctf-archive, we do similar things, turning ctf_arc_lookup_symbol into
a wrapper around a new function that does both index -> ID and name ->
ID lookups across all dicts in an archive. We add a new
ctfi_symnamedicts cache that maps symbol names to the ctf_dict_t * that
it was found in (so that linear searches for symbols don't need to be
repeated): but we also *remove* a cache, the ctfi_syms cache that was
memoizing the actual ctf_id_t returned from every call to
ctf_arc_lookup_symbol. This is pointless: all it saves is one call to
ctf_lookup_by_symbol, and that's basically an array lookup and nothing
more so isn't worth caching. (Equally, given that symbol -> index
mappings are cached by ctf_lookup_by_symbol_name, those calls are nearly
free after the first call, so there's no point caching the ctf_id_t in
that case either.)
We fix up one test that was doing manual symbol lookup to use
ctf_arc_lookup_symbol instead, and enhance it to check that the caching
layer is not totally broken: we also add a new test to do lookups in a
.o file, and another to do lookups in an archive with conflicted types
and make sure that sort of multi-dict lookup is actually working.
include/ChangeLog
2021-02-17 Nick Alcock <nick.alcock@oracle.com>
* ctf-api.h (ctf_arc_lookup_symbol_name): New.
(ctf_lookup_by_symbol_name): Likewise.
libctf/ChangeLog
2021-02-17 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h (ctf_dict_t) <ctf_symhash>: New.
<ctf_symhash_latest>: Likewise.
(struct ctf_archive_internal) <ctfi_crossdict_cache>: New.
<ctfi_symnamedicts>: New.
<ctfi_syms>: Remove.
(ctf_lookup_symbol_name): Remove.
* ctf-lookup.c (ctf_lookup_symbol_name): Propagate errors from
parent properly. Make static.
(ctf_lookup_symbol_idx): New, linear search for the symbol name,
cached in the crossdict cache's ctf_symhash (if available), or
this dict's (otherwise).
(ctf_try_lookup_indexed): Allow the symname to be passed in.
(ctf_lookup_by_symbol): Turn into a wrapper around...
(ctf_lookup_by_sym_or_name): ... this, supporting name lookup too,
using ctf_lookup_symbol_idx in non-writable dicts. Special-case
name lookup in dynamic dicts without reported symbols, which have
no symtab or dynsymidx but where name lookup should still work.
(ctf_lookup_by_symbol_name): New, another wrapper.
* ctf-archive.c (enosym): Note that this is present in
ctfi_symnamedicts too.
(ctf_arc_close): Adjust for removal of ctfi_syms. Free the
ctfi_symnamedicts.
(ctf_arc_flush_caches): Likewise.
(ctf_dict_open_cached): Memoize the first cached dict in the
crossdict cache.
(ctf_arc_lookup_symbol): Turn into a wrapper around...
(ctf_arc_lookup_sym_or_name): ... this. No longer cache
ctf_id_t lookups: just call ctf_lookup_by_symbol as needed (but
still cache the dicts those lookups succeed in). Add
lookup-by-name support, with dicts of successful lookups cached in
ctfi_symnamedicts. Refactor the caching code a bit.
(ctf_arc_lookup_symbol_name): New, another wrapper.
* ctf-open.c (ctf_dict_close): Free the ctf_symhash.
* libctf.ver (LIBCTF_1.2): New version. Add
ctf_lookup_by_symbol_name, ctf_arc_lookup_symbol_name.
* testsuite/libctf-lookup/enum-symbol.c (main): Use
ctf_arc_lookup_symbol rather than looking up the name ourselves.
Fish it out repeatedly, to make sure that symbol caching isn't
broken.
(symidx_64): Remove.
(symidx_32): Remove.
* testsuite/libctf-lookup/enum-symbol-obj.lk: Test symbol lookup
in an unlinked object file (indexed symtypetab sections only).
* testsuite/libctf-writable/symtypetab-nonlinker-writeout.c
(try_maybe_reporting): Check symbol types via
ctf_lookup_by_symbol_name as well as ctf_symbol_next.
* testsuite/libctf-lookup/conflicting-type-syms.*: New test of
lookups in a multi-dict archive.
2021-02-17 23:21:12 +08:00
|
|
|
ctf_dynhash_t *ctf_symhash; /* (partial) hash, symsect name -> idx. */
|
|
|
|
size_t ctf_symhash_latest; /* Amount of symsect scanned so far. */
|
libctf: avoid the need to ever use ctf_update
The method of operation of libctf when the dictionary is writable has
before now been that types that are added land in the dynamic type
section, which is a linked list and hash of IDs -> dynamic type
definitions (and, recently a hash of names): the DTDs are a bit of CTF
representing the ctf_type_t and ad hoc C structures representing the
vlen. Historically, libctf was unable to do anything with these types,
not even look them up by ID, let alone by name: if you wanted to do that
say if you were adding a type that depended on one you just added) you
called ctf_update, which serializes all the DTDs into a CTF file and
reopens it, copying its guts over the fp it's called with. The
ctf_updated types are then frozen in amber and unchangeable: all lookups
will return the types in the static portion in preference to the dynamic
portion, and we will refuse to re-add things that already exist in the
static portion (and, of late, in the dynamic portion too). The libctf
machinery remembers the boundary between static and dynamic types and
looks in the right portion for each type. Lots of things still don't
quite work with dynamic types (e.g. getting their size), but enough
works to do a bunch of additions and then a ctf_update, most of the
time.
Except it doesn't, because ctf_add_type finds it necessary to walk the
full dynamic type definition list looking for types with matching names,
so it gets slower and slower with every type you add: fixing this
requires calling ctf_update periodically for no other reason than to
avoid massively slowing things down.
This is all clunky and very slow but kind of works, until you consider
that it is in fact possible and indeed necessary to modify one sort of
type after it has been added: forwards. These are necessarily promoted
to structs, unions or enums, and when they do so *their type ID does not
change*. So all of a sudden we are changing types that already exist in
the static portion. ctf_update gets massively confused by this and
allocates space enough for the forward (with no members), but then emits
the new dynamic type (with all the members) into it. You get an
assertion failure after that, if you're lucky, or a coredump.
So this commit rejigs things a bit and arranges to exclusively use the
dynamic type definitions in writable dictionaries, and the static type
definitions in readable dictionaries: we don't at any time have a mixture
of static and dynamic types, and you don't need to call ctf_update to
make things "appear". The ctf_dtbyname hash I introduced a few months
ago, which maps things like "struct foo" to DTDs, is removed, replaced
instead by a change of type of the four dictionaries which track names.
Rather than just being (unresizable) ctf_hash_t's populated only at
ctf_bufopen time, they are now a ctf_names_t structure, which is a pair
of ctf_hash_t and ctf_dynhash_t, with the ctf_hash_t portion being used
in readonly dictionaries, and the ctf_dynhash_t being used in writable
ones. The decision as to which to use is centralized in the new
functions ctf_lookup_by_rawname (which takes a type kind) and
ctf_lookup_by_rawhash, which it calls (which takes a ctf_names_t *.)
This change lets us switch from using static to dynamic name hashes on
the fly across the entirety of libctf without complexifying anything: in
fact, because we now centralize the knowledge about how to map from type
kind to name hash, it actually simplifies things and lets us throw out
quite a lot of now-unnecessary complexity, from ctf_dtnyname (replaced
by the dynamic half of the name tables), through to ctf_dtnextid (now
that a dictionary's static portion is never referenced if the dictionary
is writable, we can just use ctf_typemax to indicate the maximum type:
dynamic or non-dynamic does not matter, and we no longer need to track
the boundary between the types). You can now ctf_rollback() as far as
you like, even past a ctf_update or for that matter a full writeout; all
the iteration functions work just as well on writable as on read-only
dictionaries; ctf_add_type no longer needs expensive duplicated code to
run over the dynamic types hunting for ones it might be interested in;
and the linker no longer needs a hack to call ctf_update so that calling
ctf_add_type is not impossibly expensive.
There is still a bit more complexity: some new code paths in ctf-types.c
need to know how to extract information from dynamic types. This
complexity will go away again in a few months when libctf acquires a
proper intermediate representation.
You can still call ctf_update if you like (it's public API, after all),
but its only effect now is to set the point to which ctf_discard rolls
back.
Obviously *something* still needs to serialize the CTF file before
writeout, and this job is done by ctf_serialize, which does everything
ctf_update used to except set the counter used by ctf_discard. It is
automatically called by the various functions that do CTF writeout:
nobody else ever needs to call it.
With this in place, forwards that are promoted to non-forwards no longer
crash the link, even if it happens tens of thousands of types later.
v5: fix tabdamage.
libctf/
* ctf-impl.h (ctf_names_t): New.
(ctf_lookup_t) <ctf_hash>: Now a ctf_names_t, not a ctf_hash_t.
(ctf_file_t) <ctf_structs>: Likewise.
<ctf_unions>: Likewise.
<ctf_enums>: Likewise.
<ctf_names>: Likewise.
<ctf_lookups>: Improve comment.
<ctf_ptrtab_len>: New.
<ctf_prov_strtab>: New.
<ctf_str_prov_offset>: New.
<ctf_dtbyname>: Remove, redundant to the names hashes.
<ctf_dtnextid>: Remove, redundant to ctf_typemax.
(ctf_dtdef_t) <dtd_name>: Remove.
<dtd_data>: Note that the ctt_name is now populated.
(ctf_str_atom_t) <csa_offset>: This is now the strtab
offset for internal strings too.
<csa_external_offset>: New, the external strtab offset.
(CTF_INDEX_TO_TYPEPTR): Handle the LCTF_RDWR case.
(ctf_name_table): New declaration.
(ctf_lookup_by_rawname): Likewise.
(ctf_lookup_by_rawhash): Likewise.
(ctf_set_ctl_hashes): Likewise.
(ctf_serialize): Likewise.
(ctf_dtd_insert): Adjust.
(ctf_simple_open_internal): Likewise.
(ctf_bufopen_internal): Likewise.
(ctf_list_empty_p): Likewise.
(ctf_str_remove_ref): Likewise.
(ctf_str_add): Returns uint32_t now.
(ctf_str_add_ref): Likewise.
(ctf_str_add_external): Now returns a boolean (int).
* ctf-string.c (ctf_strraw_explicit): Check the ctf_prov_strtab
for strings in the appropriate range.
(ctf_str_create_atoms): Create the ctf_prov_strtab. Detect OOM
when adding the null string to the new strtab.
(ctf_str_free_atoms): Destroy the ctf_prov_strtab.
(ctf_str_add_ref_internal): Add make_provisional argument. If
make_provisional, populate the offset and fill in the
ctf_prov_strtab accordingly.
(ctf_str_add): Return the offset, not the string.
(ctf_str_add_ref): Likewise.
(ctf_str_add_external): Return a success integer.
(ctf_str_remove_ref): New, remove a single ref.
(ctf_str_count_strtab): Do not count the initial null string's
length or the existence or length of any unreferenced internal
atoms.
(ctf_str_populate_sorttab): Skip atoms with no refs.
(ctf_str_write_strtab): Populate the nullstr earlier. Add one
to the cts_len for the null string, since it is no longer done
in ctf_str_count_strtab. Adjust for csa_external_offset rename.
Populate the csa_offset for both internal and external cases.
Flush the ctf_prov_strtab afterwards, and reset the
ctf_str_prov_offset.
* ctf-create.c (ctf_grow_ptrtab): New.
(ctf_create): Call it. Initialize new fields rather than old
ones. Tell ctf_bufopen_internal that this is a writable dictionary.
Set the ctl hashes and data model.
(ctf_update): Rename to...
(ctf_serialize): ... this. Leave a compatibility function behind.
Tell ctf_simple_open_internal that this is a writable dictionary.
Pass the new fields along from the old dictionary. Drop
ctf_dtnextid and ctf_dtbyname. Use ctf_strraw, not dtd_name.
Do not zero out the DTD's ctt_name.
(ctf_prefixed_name): Rename to...
(ctf_name_table): ... this. No longer return a prefixed name: return
the applicable name table instead.
(ctf_dtd_insert): Use it, and use the right name table. Pass in the
kind we're adding. Migrate away from dtd_name.
(ctf_dtd_delete): Adjust similarly. Remove the ref to the
deleted ctt_name.
(ctf_dtd_lookup_type_by_name): Remove.
(ctf_dynamic_type): Always return NULL on read-only dictionaries.
No longer check ctf_dtnextid: check ctf_typemax instead.
(ctf_snapshot): No longer use ctf_dtnextid: use ctf_typemax instead.
(ctf_rollback): Likewise. No longer fail with ECTF_OVERROLLBACK. Use
ctf_name_table and the right name table, and migrate away from
dtd_name as in ctf_dtd_delete.
(ctf_add_generic): Pass in the kind explicitly and pass it to
ctf_dtd_insert. Use ctf_typemax, not ctf_dtnextid. Migrate away
from dtd_name to using ctf_str_add_ref to populate the ctt_name.
Grow the ptrtab if needed.
(ctf_add_encoded): Pass in the kind.
(ctf_add_slice): Likewise.
(ctf_add_array): Likewise.
(ctf_add_function): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_reftype): Likewise. Initialize the ctf_ptrtab, checking
ctt_name rather than dtd_name.
(ctf_add_struct_sized): Pass in the kind. Use
ctf_lookup_by_rawname, not ctf_hash_lookup_type /
ctf_dtd_lookup_type_by_name.
(ctf_add_union_sized): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_type): Likewise.
(ctf_compress_write): Call ctf_serialize: adjust for ctf_size not
being initialized until after the call.
(ctf_write_mem): Likewise.
(ctf_write): Likewise.
* ctf-archive.c (arc_write_one_ctf): Likewise.
* ctf-lookup.c (ctf_lookup_by_name): Use ctf_lookuup_by_rawhash, not
ctf_hash_lookup_type.
(ctf_lookup_by_id): No longer check the readonly types if the
dictionary is writable.
* ctf-open.c (init_types): Assert that this dictionary is not
writable. Adjust to use the new name hashes, ctf_name_table,
and ctf_ptrtab_len. GNU style fix for the final ptrtab scan.
(ctf_bufopen_internal): New 'writable' parameter. Flip on LCTF_RDWR
if set. Drop out early when dictionary is writable. Split the
ctf_lookups initialization into...
(ctf_set_cth_hashes): ... this new function.
(ctf_simple_open_internal): Adjust. New 'writable' parameter.
(ctf_simple_open): Adjust accordingly.
(ctf_bufopen): Likewise.
(ctf_file_close): Destroy the appropriate name hashes. No longer
destroy ctf_dtbyname, which is gone.
(ctf_getdatasect): Remove spurious "extern".
* ctf-types.c (ctf_lookup_by_rawname): New, look up types in the
specified name table, given a kind.
(ctf_lookup_by_rawhash): Likewise, given a ctf_names_t *.
(ctf_member_iter): Add support for iterating over the
dynamic type list.
(ctf_enum_iter): Likewise.
(ctf_variable_iter): Likewise.
(ctf_type_rvisit): Likewise.
(ctf_member_info): Add support for types in the dynamic type list.
(ctf_enum_name): Likewise.
(ctf_enum_value): Likewise.
(ctf_func_type_info): Likewise.
(ctf_func_type_args): Likewise.
* ctf-link.c (ctf_accumulate_archive_names): No longer call
ctf_update.
(ctf_link_write): Likewise.
(ctf_link_intern_extern_string): Adjust for new
ctf_str_add_external return value.
(ctf_link_add_strtab): Likewise.
* ctf-util.c (ctf_list_empty_p): New.
2019-08-08 00:55:09 +08:00
|
|
|
ctf_dynhash_t *ctf_prov_strtab; /* Maps provisional-strtab offsets
|
|
|
|
to names. */
|
libctf: support getting strings from the ELF strtab
The CTF file format has always supported "external strtabs", which
internally are strtab offsets with their MSB on: such refs
get their strings from the strtab passed in at CTF file open time:
this is usually intended to be the ELF strtab, and that's what this
implementation is meant to support, though in theory the external
strtab could come from anywhere.
This commit adds support for these external strings in the ctf-string.c
strtab tracking layer. It's quite easy: we just add a field csa_offset
to the atoms table that tracks all strings: this field tracks the offset
of the string in the ELF strtab (with its MSB already on, courtesy of a
new macro CTF_SET_STID), and adds a new function that sets the
csa_offset to the specified offset (plus MSB). Then we just need to
avoid writing out strings to the internal strtab if they have csa_offset
set, and note that the internal strtab is shorter than it might
otherwise be.
(We could in theory save a little more time here by eschewing sorting
such strings, since we never actually write the strings out anywhere,
but that would mean storing them separately and it's just not worth the
complexity cost until profiling shows it's worth doing.)
We also have to go through a bit of extra effort at variable-sorting
time. This was previously using direct references to the internal
strtab: it couldn't use ctf_strptr or ctf_strraw because the new strtab
is not yet ready to put in its usual field (in a ctf_file_t that hasn't
even been allocated yet at this stage): but now we're using the external
strtab, this will no longer do because it'll be looking things up in the
wrong strtab, with disastrous results. Instead, pass the new internal
strtab in to a new ctf_strraw_explicit function which is just like
ctf_strraw except you can specify a ne winternal strtab to use.
But even now that it is using a new internal strtab, this is not quite
enough: it can't look up strings in the external strtab because ld
hasn't written it out yet, and when it does will write it straight to
disk. Instead, when we write the internal strtab, note all the offset
-> string mappings that we have noted belong in the *external* strtab to
a new "synthetic external strtab" dynhash, ctf_syn_ext_strtab, and look
in there at ctf_strraw time if it is set. This uses minimal extra
memory (because only strings in the external strtab that we actually use
are stored, and even those come straight out of the atoms table), but
let both variable sorting and name interning when ctf_bufopen is next
called work fine. (This also means that we don't need to filter out
spurious ECTF_STRTAB warnings from ctf_bufopen but can pass them back to
the caller, once we wrap ctf_bufopen so that we have a new internal
variant of ctf_bufopen etc that we can pass the synthetic external
strtab to. That error has been filtered out since the days of Solaris
libctf, which didn't try to handle the problem of getting external
strtabs right at construction time at all.)
v3: add the synthetic strtab and all associated machinery.
v5: fix tabdamage.
include/
* ctf.h (CTF_SET_STID): New.
libctf/
* ctf-impl.h (ctf_str_atom_t) <csa_offset>: New field.
(ctf_file_t) <ctf_syn_ext_strtab>: Likewise.
(ctf_str_add_ref): Name the last arg.
(ctf_str_add_external) New.
(ctf_str_add_strraw_explicit): Likewise.
(ctf_simple_open_internal): Likewise.
(ctf_bufopen_internal): Likewise.
* ctf-string.c (ctf_strraw_explicit): Split from...
(ctf_strraw): ... here, with new support for ctf_syn_ext_strtab.
(ctf_str_add_ref_internal): Return the atom, not the
string.
(ctf_str_add): Adjust accordingly.
(ctf_str_add_ref): Likewise. Move up in the file.
(ctf_str_add_external): New: update the csa_offset.
(ctf_str_count_strtab): Only account for strings with no csa_offset
in the internal strtab length.
(ctf_str_write_strtab): If the csa_offset is set, update the
string's refs without writing the string out, and update the
ctf_syn_ext_strtab. Make OOM handling less ugly.
* ctf-create.c (struct ctf_sort_var_arg_cb): New.
(ctf_update): Handle failure to populate the strtab. Pass in the
new ctf_sort_var arg. Adjust for ctf_syn_ext_strtab addition.
Call ctf_simple_open_internal, not ctf_simple_open.
(ctf_sort_var): Call ctf_strraw_explicit rather than looking up
strings by hand.
* ctf-hash.c (ctf_hash_insert_type): Likewise (but using
ctf_strraw). Adjust to diagnose ECTF_STRTAB nonetheless.
* ctf-open.c (init_types): No longer filter out ECTF_STRTAB.
(ctf_file_close): Destroy the ctf_syn_ext_strtab.
(ctf_simple_open): Rename to, and reimplement as a wrapper around...
(ctf_simple_open_internal): ... this new function, which calls
ctf_bufopen_internal.
(ctf_bufopen): Rename to, and reimplement as a wrapper around...
(ctf_bufopen_internal): ... this new function, which sets
ctf_syn_ext_strtab.
2019-07-14 03:33:01 +08:00
|
|
|
ctf_dynhash_t *ctf_syn_ext_strtab; /* Maps ext-strtab offsets to names. */
|
libctf: ELF file opening via BFD
These functions let you open an ELF file with a customarily-named CTF
section in it, automatically opening the CTF file or archive and
associating the symbol and string tables in the ELF file with the CTF
container, so that you can look up the types of symbols in the ELF file
via ctf_lookup_by_symbol(), and so that strings can be shared between
the ELF file and CTF container, to save space.
It uses BFD machinery to do so. This has now been lightly tested and
seems to work. In particular, if you already have a bfd you can pass
it in to ctf_bfdopen(), and if you want a bfd made for you you can
call ctf_open() or ctf_fdopen(), optionally specifying a target (or
try once without a target and then again with one if you get
ECTF_BFD_AMBIGUOUS back).
We use a forward declaration for the struct bfd in ctf-api.h, so that
ctf-api.h users are not required to pull in <bfd.h>. (This is mostly
for the sake of readelf.)
libctf/
* ctf-open-bfd.c: New file.
* ctf-open.c (ctf_close): New.
* ctf-impl.h: Include bfd.h.
(ctf_file): New members ctf_data_mmapped, ctf_data_mmapped_len.
(ctf_archive_internal): New members ctfi_abfd, ctfi_data,
ctfi_bfd_close.
(ctf_bfdopen_ctfsect): New declaration.
(_CTF_SECTION): likewise.
include/
* ctf-api.h (struct bfd): New forward.
(ctf_fdopen): New.
(ctf_bfdopen): Likewise.
(ctf_open): Likewise.
(ctf_arc_open): Likewise.
2019-04-24 17:46:39 +08:00
|
|
|
void *ctf_data_mmapped; /* CTF data we mmapped, to free later. */
|
|
|
|
size_t ctf_data_mmapped_len; /* Length of CTF data we mmapped. */
|
libctf: avoid the need to ever use ctf_update
The method of operation of libctf when the dictionary is writable has
before now been that types that are added land in the dynamic type
section, which is a linked list and hash of IDs -> dynamic type
definitions (and, recently a hash of names): the DTDs are a bit of CTF
representing the ctf_type_t and ad hoc C structures representing the
vlen. Historically, libctf was unable to do anything with these types,
not even look them up by ID, let alone by name: if you wanted to do that
say if you were adding a type that depended on one you just added) you
called ctf_update, which serializes all the DTDs into a CTF file and
reopens it, copying its guts over the fp it's called with. The
ctf_updated types are then frozen in amber and unchangeable: all lookups
will return the types in the static portion in preference to the dynamic
portion, and we will refuse to re-add things that already exist in the
static portion (and, of late, in the dynamic portion too). The libctf
machinery remembers the boundary between static and dynamic types and
looks in the right portion for each type. Lots of things still don't
quite work with dynamic types (e.g. getting their size), but enough
works to do a bunch of additions and then a ctf_update, most of the
time.
Except it doesn't, because ctf_add_type finds it necessary to walk the
full dynamic type definition list looking for types with matching names,
so it gets slower and slower with every type you add: fixing this
requires calling ctf_update periodically for no other reason than to
avoid massively slowing things down.
This is all clunky and very slow but kind of works, until you consider
that it is in fact possible and indeed necessary to modify one sort of
type after it has been added: forwards. These are necessarily promoted
to structs, unions or enums, and when they do so *their type ID does not
change*. So all of a sudden we are changing types that already exist in
the static portion. ctf_update gets massively confused by this and
allocates space enough for the forward (with no members), but then emits
the new dynamic type (with all the members) into it. You get an
assertion failure after that, if you're lucky, or a coredump.
So this commit rejigs things a bit and arranges to exclusively use the
dynamic type definitions in writable dictionaries, and the static type
definitions in readable dictionaries: we don't at any time have a mixture
of static and dynamic types, and you don't need to call ctf_update to
make things "appear". The ctf_dtbyname hash I introduced a few months
ago, which maps things like "struct foo" to DTDs, is removed, replaced
instead by a change of type of the four dictionaries which track names.
Rather than just being (unresizable) ctf_hash_t's populated only at
ctf_bufopen time, they are now a ctf_names_t structure, which is a pair
of ctf_hash_t and ctf_dynhash_t, with the ctf_hash_t portion being used
in readonly dictionaries, and the ctf_dynhash_t being used in writable
ones. The decision as to which to use is centralized in the new
functions ctf_lookup_by_rawname (which takes a type kind) and
ctf_lookup_by_rawhash, which it calls (which takes a ctf_names_t *.)
This change lets us switch from using static to dynamic name hashes on
the fly across the entirety of libctf without complexifying anything: in
fact, because we now centralize the knowledge about how to map from type
kind to name hash, it actually simplifies things and lets us throw out
quite a lot of now-unnecessary complexity, from ctf_dtnyname (replaced
by the dynamic half of the name tables), through to ctf_dtnextid (now
that a dictionary's static portion is never referenced if the dictionary
is writable, we can just use ctf_typemax to indicate the maximum type:
dynamic or non-dynamic does not matter, and we no longer need to track
the boundary between the types). You can now ctf_rollback() as far as
you like, even past a ctf_update or for that matter a full writeout; all
the iteration functions work just as well on writable as on read-only
dictionaries; ctf_add_type no longer needs expensive duplicated code to
run over the dynamic types hunting for ones it might be interested in;
and the linker no longer needs a hack to call ctf_update so that calling
ctf_add_type is not impossibly expensive.
There is still a bit more complexity: some new code paths in ctf-types.c
need to know how to extract information from dynamic types. This
complexity will go away again in a few months when libctf acquires a
proper intermediate representation.
You can still call ctf_update if you like (it's public API, after all),
but its only effect now is to set the point to which ctf_discard rolls
back.
Obviously *something* still needs to serialize the CTF file before
writeout, and this job is done by ctf_serialize, which does everything
ctf_update used to except set the counter used by ctf_discard. It is
automatically called by the various functions that do CTF writeout:
nobody else ever needs to call it.
With this in place, forwards that are promoted to non-forwards no longer
crash the link, even if it happens tens of thousands of types later.
v5: fix tabdamage.
libctf/
* ctf-impl.h (ctf_names_t): New.
(ctf_lookup_t) <ctf_hash>: Now a ctf_names_t, not a ctf_hash_t.
(ctf_file_t) <ctf_structs>: Likewise.
<ctf_unions>: Likewise.
<ctf_enums>: Likewise.
<ctf_names>: Likewise.
<ctf_lookups>: Improve comment.
<ctf_ptrtab_len>: New.
<ctf_prov_strtab>: New.
<ctf_str_prov_offset>: New.
<ctf_dtbyname>: Remove, redundant to the names hashes.
<ctf_dtnextid>: Remove, redundant to ctf_typemax.
(ctf_dtdef_t) <dtd_name>: Remove.
<dtd_data>: Note that the ctt_name is now populated.
(ctf_str_atom_t) <csa_offset>: This is now the strtab
offset for internal strings too.
<csa_external_offset>: New, the external strtab offset.
(CTF_INDEX_TO_TYPEPTR): Handle the LCTF_RDWR case.
(ctf_name_table): New declaration.
(ctf_lookup_by_rawname): Likewise.
(ctf_lookup_by_rawhash): Likewise.
(ctf_set_ctl_hashes): Likewise.
(ctf_serialize): Likewise.
(ctf_dtd_insert): Adjust.
(ctf_simple_open_internal): Likewise.
(ctf_bufopen_internal): Likewise.
(ctf_list_empty_p): Likewise.
(ctf_str_remove_ref): Likewise.
(ctf_str_add): Returns uint32_t now.
(ctf_str_add_ref): Likewise.
(ctf_str_add_external): Now returns a boolean (int).
* ctf-string.c (ctf_strraw_explicit): Check the ctf_prov_strtab
for strings in the appropriate range.
(ctf_str_create_atoms): Create the ctf_prov_strtab. Detect OOM
when adding the null string to the new strtab.
(ctf_str_free_atoms): Destroy the ctf_prov_strtab.
(ctf_str_add_ref_internal): Add make_provisional argument. If
make_provisional, populate the offset and fill in the
ctf_prov_strtab accordingly.
(ctf_str_add): Return the offset, not the string.
(ctf_str_add_ref): Likewise.
(ctf_str_add_external): Return a success integer.
(ctf_str_remove_ref): New, remove a single ref.
(ctf_str_count_strtab): Do not count the initial null string's
length or the existence or length of any unreferenced internal
atoms.
(ctf_str_populate_sorttab): Skip atoms with no refs.
(ctf_str_write_strtab): Populate the nullstr earlier. Add one
to the cts_len for the null string, since it is no longer done
in ctf_str_count_strtab. Adjust for csa_external_offset rename.
Populate the csa_offset for both internal and external cases.
Flush the ctf_prov_strtab afterwards, and reset the
ctf_str_prov_offset.
* ctf-create.c (ctf_grow_ptrtab): New.
(ctf_create): Call it. Initialize new fields rather than old
ones. Tell ctf_bufopen_internal that this is a writable dictionary.
Set the ctl hashes and data model.
(ctf_update): Rename to...
(ctf_serialize): ... this. Leave a compatibility function behind.
Tell ctf_simple_open_internal that this is a writable dictionary.
Pass the new fields along from the old dictionary. Drop
ctf_dtnextid and ctf_dtbyname. Use ctf_strraw, not dtd_name.
Do not zero out the DTD's ctt_name.
(ctf_prefixed_name): Rename to...
(ctf_name_table): ... this. No longer return a prefixed name: return
the applicable name table instead.
(ctf_dtd_insert): Use it, and use the right name table. Pass in the
kind we're adding. Migrate away from dtd_name.
(ctf_dtd_delete): Adjust similarly. Remove the ref to the
deleted ctt_name.
(ctf_dtd_lookup_type_by_name): Remove.
(ctf_dynamic_type): Always return NULL on read-only dictionaries.
No longer check ctf_dtnextid: check ctf_typemax instead.
(ctf_snapshot): No longer use ctf_dtnextid: use ctf_typemax instead.
(ctf_rollback): Likewise. No longer fail with ECTF_OVERROLLBACK. Use
ctf_name_table and the right name table, and migrate away from
dtd_name as in ctf_dtd_delete.
(ctf_add_generic): Pass in the kind explicitly and pass it to
ctf_dtd_insert. Use ctf_typemax, not ctf_dtnextid. Migrate away
from dtd_name to using ctf_str_add_ref to populate the ctt_name.
Grow the ptrtab if needed.
(ctf_add_encoded): Pass in the kind.
(ctf_add_slice): Likewise.
(ctf_add_array): Likewise.
(ctf_add_function): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_reftype): Likewise. Initialize the ctf_ptrtab, checking
ctt_name rather than dtd_name.
(ctf_add_struct_sized): Pass in the kind. Use
ctf_lookup_by_rawname, not ctf_hash_lookup_type /
ctf_dtd_lookup_type_by_name.
(ctf_add_union_sized): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_type): Likewise.
(ctf_compress_write): Call ctf_serialize: adjust for ctf_size not
being initialized until after the call.
(ctf_write_mem): Likewise.
(ctf_write): Likewise.
* ctf-archive.c (arc_write_one_ctf): Likewise.
* ctf-lookup.c (ctf_lookup_by_name): Use ctf_lookuup_by_rawhash, not
ctf_hash_lookup_type.
(ctf_lookup_by_id): No longer check the readonly types if the
dictionary is writable.
* ctf-open.c (init_types): Assert that this dictionary is not
writable. Adjust to use the new name hashes, ctf_name_table,
and ctf_ptrtab_len. GNU style fix for the final ptrtab scan.
(ctf_bufopen_internal): New 'writable' parameter. Flip on LCTF_RDWR
if set. Drop out early when dictionary is writable. Split the
ctf_lookups initialization into...
(ctf_set_cth_hashes): ... this new function.
(ctf_simple_open_internal): Adjust. New 'writable' parameter.
(ctf_simple_open): Adjust accordingly.
(ctf_bufopen): Likewise.
(ctf_file_close): Destroy the appropriate name hashes. No longer
destroy ctf_dtbyname, which is gone.
(ctf_getdatasect): Remove spurious "extern".
* ctf-types.c (ctf_lookup_by_rawname): New, look up types in the
specified name table, given a kind.
(ctf_lookup_by_rawhash): Likewise, given a ctf_names_t *.
(ctf_member_iter): Add support for iterating over the
dynamic type list.
(ctf_enum_iter): Likewise.
(ctf_variable_iter): Likewise.
(ctf_type_rvisit): Likewise.
(ctf_member_info): Add support for types in the dynamic type list.
(ctf_enum_name): Likewise.
(ctf_enum_value): Likewise.
(ctf_func_type_info): Likewise.
(ctf_func_type_args): Likewise.
* ctf-link.c (ctf_accumulate_archive_names): No longer call
ctf_update.
(ctf_link_write): Likewise.
(ctf_link_intern_extern_string): Adjust for new
ctf_str_add_external return value.
(ctf_link_add_strtab): Likewise.
* ctf-util.c (ctf_list_empty_p): New.
2019-08-08 00:55:09 +08:00
|
|
|
ctf_names_t ctf_structs; /* Hash table of struct types. */
|
|
|
|
ctf_names_t ctf_unions; /* Hash table of union types. */
|
|
|
|
ctf_names_t ctf_enums; /* Hash table of enum types. */
|
|
|
|
ctf_names_t ctf_names; /* Hash table of remaining type names. */
|
|
|
|
ctf_lookup_t ctf_lookups[5]; /* Pointers to nametabs for name lookup. */
|
2019-04-24 05:24:13 +08:00
|
|
|
ctf_strs_t ctf_str[2]; /* Array of string table base and bounds. */
|
libctf: do not corrupt strings across ctf_serialize
The preceding change revealed a new bug: the string table is sorted for
better compression, so repeated serialization with type (or member)
additions in the middle can move strings around. But every
serialization flushes the set of refs (the memory locations that are
automatically updated with a final string offset when the strtab is
updated), so if we are not to have string offsets go stale, we must do
all ref additions within the serialization code (which walks the
complete set of types and symbols anyway). Unfortunately, we were adding
one ref in another place: the type name in the dynamic type definitions,
which has a ref added to it by ctf_add_generic.
So adding a type, serializing (via, say, one of the ctf_write
functions), adding another type with a name that sorts earlier, and
serializing again will corrupt the name of the first type because it no
longer had a ref pointing to its dtd entry's name when its string offset
was shifted later in the strtab to mae way for the other type.
To ensure that we don't miss strings, we also maintain a set of *pending
refs* that will be added later (during serialization), and remove
entries from that set when the ref is finally added. We always use
ctf_str_add_pending outside ctf-serialize.c, ensure that ctf_serialize
adds all strtab offsets as refs (even those in the dtds) on every
serialization, and mandate that no refs are live on entry to
ctf_serialize and that all pending refs are gone before strtab
finalization. (Of necessity ctf_serialize has to traverse all strtab
offsets in the dtds in order to serialize them, so adding them as refs
at the same time is easy.)
(Note that we still can't erase unused atoms when we roll back, though
we can erase unused refs: members and enums are still not removed by
rollbacks and might reference strings added after the snapshot.)
libctf/ChangeLog
2021-03-18 Nick Alcock <nick.alcock@oracle.com>
* ctf-hash.c (ctf_dynset_elements): New.
* ctf-impl.h (ctf_dynset_elements): Declare it.
(ctf_str_add_pending): Likewise.
(ctf_dict_t) <ctf_str_pending_ref>: New, set of refs that must be
added during serialization.
* ctf-string.c (ctf_str_create_atoms): Initialize it.
(CTF_STR_ADD_REF): New flag.
(CTF_STR_MAKE_PROVISIONAL): Likewise.
(CTF_STR_PENDING_REF): Likewise.
(ctf_str_add_ref_internal): Take a flags word rather than int
params. Populate, and clear out, ctf_str_pending_ref.
(ctf_str_add): Adjust accordingly.
(ctf_str_add_external): Likewise.
(ctf_str_add_pending): New.
(ctf_str_remove_ref): Also remove the potential ref if it is a
pending ref.
* ctf-serialize.c (ctf_serialize): Prohibit addition of strings
with ctf_str_add_ref before serialization. Ensure that the
ctf_str_pending_ref set is empty before strtab finalization.
(ctf_emit_type_sect): Add a ref to the ctt_name.
* ctf-create.c (ctf_add_generic): Add the ctt_name as a pending
ref.
* testsuite/libctf-writable/reserialize-strtab-corruption.*: New test.
2021-03-18 20:37:52 +08:00
|
|
|
ctf_dynhash_t *ctf_str_atoms; /* Hash table of ctf_str_atoms_t. */
|
|
|
|
ctf_dynset_t *ctf_str_pending_ref; /* Locations awaiting ref addition. */
|
libctf: deduplicate and sort the string table
ctf.h states:
> [...] the CTF string table does not contain any duplicated strings.
Unfortunately this is entirely untrue: libctf has before now made no
attempt whatsoever to deduplicate the string table. It computes the
string table's length on the fly as it adds new strings to the dynamic
CTF file, and ctf_update() just writes each string to the table and
notes the current write position as it traverses the dynamic CTF file's
data structures and builds the final CTF buffer. There is no global
view of the strings and no deduplication.
Fix this by erasing the ctf_dtvstrlen dead-reckoning length, and adding
a new dynhash table ctf_str_atoms that maps unique strings to a list
of references to those strings: a reference is a simple uint32_t * to
some value somewhere in the under-construction CTF buffer that needs
updating to note the string offset when the strtab is laid out.
Adding a string is now a simple matter of calling ctf_str_add_ref(),
which adds a new atom to the atoms table, if one doesn't already exist,
and adding the location of the reference to this atom to the refs list
attached to the atom: this works reliably as long as one takes care to
only call ctf_str_add_ref() once the final location of the offset is
known (so you can't call it on a temporary structure and then memcpy()
that structure into place in the CTF buffer, because the ref will still
point to the old location: ctf_update() changes accordingly).
Generating the CTF string table is a matter of calling
ctf_str_write_strtab(), which counts the length and number of elements
in the atoms table using the ctf_dynhash_iter() function we just added,
populating an array of pointers into the atoms table and sorting it into
order (to help compressors), then traversing this table and emitting it,
updating the refs to each atom as we go. The only complexity here is
arranging to keep the null string at offset zero, since a lot of code in
libctf depends on being able to leave strtab references at 0 to indicate
'no name'. Once the table is constructed and the refs updated, we know
how long it is, so we can realloc() the partial CTF buffer we allocated
earlier and can copy the table on to the end of it (and purge the refs
because they're not needed any more and have been invalidated by the
realloc() call in any case).
The net effect of all this is a reduction in uncompressed strtab sizes
of about 30% (perhaps a quarter to a half of all strings across the
Linux kernel are eliminated as duplicates). Of course, duplicated
strings are highly redundant, so the space saving after compression is
only about 20%: when the other non-strtab sections are factored in, CTF
sizes shrink by about 10%.
No change in externally-visible API or file format (other than the
reduction in pointless redundancy).
libctf/
* ctf-impl.h: (struct ctf_strs_writable): New, non-const version of
struct ctf_strs.
(struct ctf_dtdef): Note that dtd_data.ctt_name is unpopulated.
(struct ctf_str_atom): New, disambiguated single string.
(struct ctf_str_atom_ref): New, points to some other location that
references this string's offset.
(struct ctf_file): New members ctf_str_atoms and ctf_str_num_refs.
Remove member ctf_dtvstrlen: we no longer track the total strlen
as we add strings.
(ctf_str_create_atoms): Declare new function in ctf-string.c.
(ctf_str_free_atoms): Likewise.
(ctf_str_add): Likewise.
(ctf_str_add_ref): Likewise.
(ctf_str_purge_refs): Likewise.
(ctf_str_write_strtab): Likewise.
(ctf_realloc): Declare new function in ctf-util.c.
* ctf-open.c (ctf_bufopen): Create the atoms table.
(ctf_file_close): Destroy it.
* ctf-create.c (ctf_update): Copy-and-free it on update. No longer
special-case the position of the parname string. Construct the
strtab by calling ctf_str_add_ref and ctf_str_write_strtab after the
rest of each buffer element is constructed, not via open-coding:
realloc the CTF buffer and append the strtab to it. No longer
maintain ctf_dtvstrlen. Sort the variable entry table later, after
strtab construction.
(ctf_copy_membnames): Remove: integrated into ctf_copy_{s,l,e}members.
(ctf_copy_smembers): Drop the string offset: call ctf_str_add_ref
after buffer element construction instead.
(ctf_copy_lmembers): Likewise.
(ctf_copy_emembers): Likewise.
(ctf_create): No longer maintain the ctf_dtvstrlen.
(ctf_dtd_delete): Likewise.
(ctf_dvd_delete): Likewise.
(ctf_add_generic): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_variable): Likewise.
(membadd): Likewise.
* ctf-util.c (ctf_realloc): New, wrapper around realloc that aborts
if there are active ctf_str_num_refs.
(ctf_strraw): Move to ctf-string.c.
(ctf_strptr): Likewise.
* ctf-string.c: New file, strtab manipulation.
* Makefile.am (libctf_a_SOURCES): Add it.
* Makefile.in: Regenerate.
2019-06-27 20:51:10 +08:00
|
|
|
uint64_t ctf_str_num_refs; /* Number of refs to cts_str_atoms. */
|
libctf: avoid the need to ever use ctf_update
The method of operation of libctf when the dictionary is writable has
before now been that types that are added land in the dynamic type
section, which is a linked list and hash of IDs -> dynamic type
definitions (and, recently a hash of names): the DTDs are a bit of CTF
representing the ctf_type_t and ad hoc C structures representing the
vlen. Historically, libctf was unable to do anything with these types,
not even look them up by ID, let alone by name: if you wanted to do that
say if you were adding a type that depended on one you just added) you
called ctf_update, which serializes all the DTDs into a CTF file and
reopens it, copying its guts over the fp it's called with. The
ctf_updated types are then frozen in amber and unchangeable: all lookups
will return the types in the static portion in preference to the dynamic
portion, and we will refuse to re-add things that already exist in the
static portion (and, of late, in the dynamic portion too). The libctf
machinery remembers the boundary between static and dynamic types and
looks in the right portion for each type. Lots of things still don't
quite work with dynamic types (e.g. getting their size), but enough
works to do a bunch of additions and then a ctf_update, most of the
time.
Except it doesn't, because ctf_add_type finds it necessary to walk the
full dynamic type definition list looking for types with matching names,
so it gets slower and slower with every type you add: fixing this
requires calling ctf_update periodically for no other reason than to
avoid massively slowing things down.
This is all clunky and very slow but kind of works, until you consider
that it is in fact possible and indeed necessary to modify one sort of
type after it has been added: forwards. These are necessarily promoted
to structs, unions or enums, and when they do so *their type ID does not
change*. So all of a sudden we are changing types that already exist in
the static portion. ctf_update gets massively confused by this and
allocates space enough for the forward (with no members), but then emits
the new dynamic type (with all the members) into it. You get an
assertion failure after that, if you're lucky, or a coredump.
So this commit rejigs things a bit and arranges to exclusively use the
dynamic type definitions in writable dictionaries, and the static type
definitions in readable dictionaries: we don't at any time have a mixture
of static and dynamic types, and you don't need to call ctf_update to
make things "appear". The ctf_dtbyname hash I introduced a few months
ago, which maps things like "struct foo" to DTDs, is removed, replaced
instead by a change of type of the four dictionaries which track names.
Rather than just being (unresizable) ctf_hash_t's populated only at
ctf_bufopen time, they are now a ctf_names_t structure, which is a pair
of ctf_hash_t and ctf_dynhash_t, with the ctf_hash_t portion being used
in readonly dictionaries, and the ctf_dynhash_t being used in writable
ones. The decision as to which to use is centralized in the new
functions ctf_lookup_by_rawname (which takes a type kind) and
ctf_lookup_by_rawhash, which it calls (which takes a ctf_names_t *.)
This change lets us switch from using static to dynamic name hashes on
the fly across the entirety of libctf without complexifying anything: in
fact, because we now centralize the knowledge about how to map from type
kind to name hash, it actually simplifies things and lets us throw out
quite a lot of now-unnecessary complexity, from ctf_dtnyname (replaced
by the dynamic half of the name tables), through to ctf_dtnextid (now
that a dictionary's static portion is never referenced if the dictionary
is writable, we can just use ctf_typemax to indicate the maximum type:
dynamic or non-dynamic does not matter, and we no longer need to track
the boundary between the types). You can now ctf_rollback() as far as
you like, even past a ctf_update or for that matter a full writeout; all
the iteration functions work just as well on writable as on read-only
dictionaries; ctf_add_type no longer needs expensive duplicated code to
run over the dynamic types hunting for ones it might be interested in;
and the linker no longer needs a hack to call ctf_update so that calling
ctf_add_type is not impossibly expensive.
There is still a bit more complexity: some new code paths in ctf-types.c
need to know how to extract information from dynamic types. This
complexity will go away again in a few months when libctf acquires a
proper intermediate representation.
You can still call ctf_update if you like (it's public API, after all),
but its only effect now is to set the point to which ctf_discard rolls
back.
Obviously *something* still needs to serialize the CTF file before
writeout, and this job is done by ctf_serialize, which does everything
ctf_update used to except set the counter used by ctf_discard. It is
automatically called by the various functions that do CTF writeout:
nobody else ever needs to call it.
With this in place, forwards that are promoted to non-forwards no longer
crash the link, even if it happens tens of thousands of types later.
v5: fix tabdamage.
libctf/
* ctf-impl.h (ctf_names_t): New.
(ctf_lookup_t) <ctf_hash>: Now a ctf_names_t, not a ctf_hash_t.
(ctf_file_t) <ctf_structs>: Likewise.
<ctf_unions>: Likewise.
<ctf_enums>: Likewise.
<ctf_names>: Likewise.
<ctf_lookups>: Improve comment.
<ctf_ptrtab_len>: New.
<ctf_prov_strtab>: New.
<ctf_str_prov_offset>: New.
<ctf_dtbyname>: Remove, redundant to the names hashes.
<ctf_dtnextid>: Remove, redundant to ctf_typemax.
(ctf_dtdef_t) <dtd_name>: Remove.
<dtd_data>: Note that the ctt_name is now populated.
(ctf_str_atom_t) <csa_offset>: This is now the strtab
offset for internal strings too.
<csa_external_offset>: New, the external strtab offset.
(CTF_INDEX_TO_TYPEPTR): Handle the LCTF_RDWR case.
(ctf_name_table): New declaration.
(ctf_lookup_by_rawname): Likewise.
(ctf_lookup_by_rawhash): Likewise.
(ctf_set_ctl_hashes): Likewise.
(ctf_serialize): Likewise.
(ctf_dtd_insert): Adjust.
(ctf_simple_open_internal): Likewise.
(ctf_bufopen_internal): Likewise.
(ctf_list_empty_p): Likewise.
(ctf_str_remove_ref): Likewise.
(ctf_str_add): Returns uint32_t now.
(ctf_str_add_ref): Likewise.
(ctf_str_add_external): Now returns a boolean (int).
* ctf-string.c (ctf_strraw_explicit): Check the ctf_prov_strtab
for strings in the appropriate range.
(ctf_str_create_atoms): Create the ctf_prov_strtab. Detect OOM
when adding the null string to the new strtab.
(ctf_str_free_atoms): Destroy the ctf_prov_strtab.
(ctf_str_add_ref_internal): Add make_provisional argument. If
make_provisional, populate the offset and fill in the
ctf_prov_strtab accordingly.
(ctf_str_add): Return the offset, not the string.
(ctf_str_add_ref): Likewise.
(ctf_str_add_external): Return a success integer.
(ctf_str_remove_ref): New, remove a single ref.
(ctf_str_count_strtab): Do not count the initial null string's
length or the existence or length of any unreferenced internal
atoms.
(ctf_str_populate_sorttab): Skip atoms with no refs.
(ctf_str_write_strtab): Populate the nullstr earlier. Add one
to the cts_len for the null string, since it is no longer done
in ctf_str_count_strtab. Adjust for csa_external_offset rename.
Populate the csa_offset for both internal and external cases.
Flush the ctf_prov_strtab afterwards, and reset the
ctf_str_prov_offset.
* ctf-create.c (ctf_grow_ptrtab): New.
(ctf_create): Call it. Initialize new fields rather than old
ones. Tell ctf_bufopen_internal that this is a writable dictionary.
Set the ctl hashes and data model.
(ctf_update): Rename to...
(ctf_serialize): ... this. Leave a compatibility function behind.
Tell ctf_simple_open_internal that this is a writable dictionary.
Pass the new fields along from the old dictionary. Drop
ctf_dtnextid and ctf_dtbyname. Use ctf_strraw, not dtd_name.
Do not zero out the DTD's ctt_name.
(ctf_prefixed_name): Rename to...
(ctf_name_table): ... this. No longer return a prefixed name: return
the applicable name table instead.
(ctf_dtd_insert): Use it, and use the right name table. Pass in the
kind we're adding. Migrate away from dtd_name.
(ctf_dtd_delete): Adjust similarly. Remove the ref to the
deleted ctt_name.
(ctf_dtd_lookup_type_by_name): Remove.
(ctf_dynamic_type): Always return NULL on read-only dictionaries.
No longer check ctf_dtnextid: check ctf_typemax instead.
(ctf_snapshot): No longer use ctf_dtnextid: use ctf_typemax instead.
(ctf_rollback): Likewise. No longer fail with ECTF_OVERROLLBACK. Use
ctf_name_table and the right name table, and migrate away from
dtd_name as in ctf_dtd_delete.
(ctf_add_generic): Pass in the kind explicitly and pass it to
ctf_dtd_insert. Use ctf_typemax, not ctf_dtnextid. Migrate away
from dtd_name to using ctf_str_add_ref to populate the ctt_name.
Grow the ptrtab if needed.
(ctf_add_encoded): Pass in the kind.
(ctf_add_slice): Likewise.
(ctf_add_array): Likewise.
(ctf_add_function): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_reftype): Likewise. Initialize the ctf_ptrtab, checking
ctt_name rather than dtd_name.
(ctf_add_struct_sized): Pass in the kind. Use
ctf_lookup_by_rawname, not ctf_hash_lookup_type /
ctf_dtd_lookup_type_by_name.
(ctf_add_union_sized): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_type): Likewise.
(ctf_compress_write): Call ctf_serialize: adjust for ctf_size not
being initialized until after the call.
(ctf_write_mem): Likewise.
(ctf_write): Likewise.
* ctf-archive.c (arc_write_one_ctf): Likewise.
* ctf-lookup.c (ctf_lookup_by_name): Use ctf_lookuup_by_rawhash, not
ctf_hash_lookup_type.
(ctf_lookup_by_id): No longer check the readonly types if the
dictionary is writable.
* ctf-open.c (init_types): Assert that this dictionary is not
writable. Adjust to use the new name hashes, ctf_name_table,
and ctf_ptrtab_len. GNU style fix for the final ptrtab scan.
(ctf_bufopen_internal): New 'writable' parameter. Flip on LCTF_RDWR
if set. Drop out early when dictionary is writable. Split the
ctf_lookups initialization into...
(ctf_set_cth_hashes): ... this new function.
(ctf_simple_open_internal): Adjust. New 'writable' parameter.
(ctf_simple_open): Adjust accordingly.
(ctf_bufopen): Likewise.
(ctf_file_close): Destroy the appropriate name hashes. No longer
destroy ctf_dtbyname, which is gone.
(ctf_getdatasect): Remove spurious "extern".
* ctf-types.c (ctf_lookup_by_rawname): New, look up types in the
specified name table, given a kind.
(ctf_lookup_by_rawhash): Likewise, given a ctf_names_t *.
(ctf_member_iter): Add support for iterating over the
dynamic type list.
(ctf_enum_iter): Likewise.
(ctf_variable_iter): Likewise.
(ctf_type_rvisit): Likewise.
(ctf_member_info): Add support for types in the dynamic type list.
(ctf_enum_name): Likewise.
(ctf_enum_value): Likewise.
(ctf_func_type_info): Likewise.
(ctf_func_type_args): Likewise.
* ctf-link.c (ctf_accumulate_archive_names): No longer call
ctf_update.
(ctf_link_write): Likewise.
(ctf_link_intern_extern_string): Adjust for new
ctf_str_add_external return value.
(ctf_link_add_strtab): Likewise.
* ctf-util.c (ctf_list_empty_p): New.
2019-08-08 00:55:09 +08:00
|
|
|
uint32_t ctf_str_prov_offset; /* Latest provisional offset assigned so far. */
|
libctf: allow the header to change between versions
libctf supports dynamic upgrading of the type table as file format
versions change, but before now has not supported changes to the CTF
header. Doing this is complicated by the baroque storage method used:
the CTF header is kept prepended to the rest of the CTF data, just as
when read from the file, and written out from there, and is
endian-flipped in place.
This makes accessing it needlessly hard and makes it almost impossible
to make the header larger if we add fields. The general storage
machinery around the malloced ctf pointer (the 'ctf_base') is also
overcomplicated: the pointer is sometimes malloced locally and sometimes
assigned from a parameter, so freeing it requires checking to see if
that parameter was used, needlessly coupling ctf_bufopen and
ctf_file_close together.
So split the header out into a new ctf_file_t.ctf_header, which is
written out explicitly: squeeze it out of the CTF buffer whenever we
reallocate it, and use ctf_file_t.ctf_buf to skip past the header when
we do not need to reallocate (when no upgrading or endian-flipping is
required). We now track whether the CTF base can be freed explicitly
via a new ctf_dynbase pointer which is non-NULL only when freeing is
possible.
With all this done, we can upgrade the header on the fly and add new
fields as desired, via a new upgrade_header function in ctf-open.
As with other forms of upgrading, libctf upgrades older headers
automatically to the latest supported version at open time.
For a first use of this field, we add a new string field cth_cuname, and
a corresponding setter/getter pair ctf_cuname_set and ctf_cuname: this
is used by debuggers to determine whether a CTF section's types relate
to a single compilation unit, or to all compilation units in the
program. (Types with ambiguous definitions in different CUs have only
one of these types placed in the top-level shared .ctf container: the
rest are placed in much smaller per-CU containers, which have the shared
container as their parent. Since CTF must be useful in the absence of
DWARF, we store the names of the relevant CUs ourselves, so the debugger
can look them up.)
v5: fix tabdamage.
include/
* ctf-api.h (ctf_cuname): New function.
(ctf_cuname_set): Likewise.
* ctf.h: Improve comment around upgrading, no longer
implying that v2 is the target of upgrades (it is v3 now).
(ctf_header_v2_t): New, old-format header for backward
compatibility.
(ctf_header_t): Add cth_cuname: this is the first of several
header changes in format v3.
libctf/
* ctf-impl.h (ctf_file_t): New fields ctf_header, ctf_dynbase,
ctf_cuname, ctf_dyncuname: ctf_base and ctf_buf are no longer const.
* ctf-open.c (ctf_set_base): Preserve the gap between ctf_buf and
ctf_base: do not assume that it is always sizeof (ctf_header_t).
Print out ctf_cuname: only print out ctf_parname if set.
(ctf_free_base): Removed, ctf_base is no longer freed: free
ctf_dynbase instead.
(ctf_set_version): Fix spacing.
(upgrade_header): New, in-place header upgrading.
(upgrade_types): Rename to...
(upgrade_types_v1): ... this. Free ctf_dynbase, not ctf_base. No
longer track old and new headers separately. No longer allow for
header sizes explicitly: squeeze the headers out on upgrade (they
are preserved in fp->ctf_header). Set ctf_dynbase, ctf_base and
ctf_buf explicitly. Use ctf_free, not ctf_free_base.
(upgrade_types): New, also handle ctf_parmax updating.
(flip_header): Flip ctf_cuname.
(flip_types): Flip BUF explicitly rather than deriving BUF from
BASE.
(ctf_bufopen): Store the header in fp->ctf_header. Correct minimum
required alignment of objtoff and funcoff. No longer store it in
the ctf_buf unless that buf is derived unmodified from the input.
Set ctf_dynbase where ctf_base is dynamically allocated. Drop locals
that duplicate fields in ctf_file: move allocation of ctf_file
further up instead. Call upgrade_header as needed. Move
version-specific ctf_parmax initialization into upgrade_types. More
concise error handling.
(ctf_file_close): No longer test for null pointers before freeing.
Free ctf_dyncuname, ctf_dynbase, and ctf_header. Do not call
ctf_free_base.
(ctf_cuname): New.
(ctf_cuname_set): New.
* ctf-create.c (ctf_update): Populate ctf_cuname.
(ctf_gzwrite): Write out the header explicitly. Remove obsolescent
comment.
(ctf_write): Likewise.
(ctf_compress_write): Get the header from ctf_header, not ctf_base.
Fix the compression length: fp->ctf_size never counted the CTF
header. Simplify the compress call accordingly.
2019-07-07 00:36:21 +08:00
|
|
|
unsigned char *ctf_base; /* CTF file pointer. */
|
|
|
|
unsigned char *ctf_dynbase; /* Freeable CTF file pointer. */
|
|
|
|
unsigned char *ctf_buf; /* Uncompressed CTF data buffer. */
|
2019-04-24 05:24:13 +08:00
|
|
|
size_t ctf_size; /* Size of CTF header + uncompressed data. */
|
libctf: symbol type linking support
This adds facilities to write out the function info and data object
sections, which efficiently map from entries in the symbol table to
types. The write-side code is entirely new: the read-side code was
merely significantly changed and support for indexed tables added
(pointed to by the no-longer-unused cth_objtidxoff and cth_funcidxoff
header fields).
With this in place, you can use ctf_lookup_by_symbol to look up the
types of symbols of function and object type (and, as before, you can
use ctf_lookup_variable to look up types of file-scope variables not
present in the symbol table, as long as you know their name: but
variables that are also data objects are now found in the data object
section instead.)
(Compatible) file format change:
The CTF spec has always said that the function info section looks much
like the CTF_K_FUNCTIONs in the type section: an info word (including an
argument count) followed by a return type and N argument types. This
format is suboptimal: it means function symbols cannot be deduplicated
and it causes a lot of ugly code duplication in libctf. But
conveniently the compiler has never emitted this! Because it has always
emitted a rather different format that libctf has never accepted, we can
be sure that there are no instances of this function info section in the
wild, and can freely change its format without compatibility concerns or
a file format version bump. (And since it has never been emitted in any
code that generated any older file format version, either, we need keep
no code to read the format as specified at all!)
So the function info section is now specified as an array of uint32_t,
exactly like the object data section: each entry is a type ID in the
type section which must be of kind CTF_K_FUNCTION, the prototype of
this function.
This allows function types to be deduplicated and also correctly encodes
the fact that all functions declared in C really are types available to
the program: so they should be stored in the type section like all other
types. (In format v4, we will be able to represent the types of static
functions as well, but that really does require a file format change.)
We introduce a new header flag, CTF_F_NEWFUNCINFO, which is set if the
new function info format is in use. A sufficiently new compiler will
always set this flag. New libctf will always set this flag: old libctf
will refuse to open any CTF dicts that have this flag set. If the flag
is not set on a dict being read in, new libctf will disregard the
function info section. Format v4 will remove this flag (or, rather, the
flag has no meaning there and the bit position may be recycled for some
other purpose).
New API:
Symbol addition:
ctf_add_func_sym: Add a symbol with a given name and type. The
type must be of kind CTF_K_FUNCTION (a function
pointer). Internally this adds a name -> type
mapping to the ctf_funchash in the ctf_dict.
ctf_add_objt_sym: Add a symbol with a given name and type. The type
kind can be anything, including function pointers.
This adds to ctf_objthash.
These both treat symbols as name -> type mappings: the linker associates
symbol names with symbol indexes via the ctf_link_shuffle_syms callback,
which sets up the ctf_dynsyms/ctf_dynsymidx/ctf_dynsymmax fields in the
ctf_dict. Repeated relinks can add more symbols.
Variables that are also exposed as symbols are removed from the variable
section at serialization time.
CTF symbol type sections which have enough pads, defined by
CTF_INDEX_PAD_THRESHOLD (whether because they are in dicts with symbols
where most types are unknown, or in archive where most types are defined
in some child or parent dict, not in this specific dict) are sorted by
name rather than symidx and accompanied by an index which associates
each symbol type entry with a name: the existing ctf_lookup_by_symbol
will map symbol indexes to symbol names and look the names up in the
index automatically. (This is currently ELF-symbol-table-dependent, but
there is almost nothing specific to ELF in here and we can add support
for other symbol table formats easily).
The compiler also uses index sections to communicate the contents of
object file symbol tables without relying on any specific ordering of
symbols: it doesn't need to sort them, and libctf will detect an
unsorted index section via the absence of the new CTF_F_IDXSORTED header
flag, and sort it if needed.
Iteration:
ctf_symbol_next: Iterator which returns the types and names of symbols
one by one, either for function or data symbols.
This does not require any sorting: the ctf_link machinery uses it to
pull in all the compiler-provided symbols cheaply, but it is not
restricted to that use.
(Compatible) changes in API:
ctf_lookup_by_symbol: can now be called for object and function
symbols: never returns ECTF_NOTDATA (which is
now not thrown by anything, but is kept for
compatibility and because it is a plausible
error that we might start throwing again at some
later date).
Internally we also have changes to the ctf-string functionality so that
"external" strings (those where we track a string -> offset mapping, but
only write out an offset) can be consulted via the usual means
(ctf_strptr) before the strtab is written out. This is important
because ctf_link_add_linker_symbol can now be handed symbols named via
strtab offsets, and ctf_link_shuffle_syms must figure out their actual
names by looking in the external symtab we have just been fed by the
ctf_link_add_strtab callback, long before that strtab is written out.
include/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-api.h (ctf_symbol_next): New.
(ctf_add_objt_sym): Likewise.
(ctf_add_func_sym): Likewise.
* ctf.h: Document new function info section format.
(CTF_F_NEWFUNCINFO): New.
(CTF_F_IDXSORTED): New.
(CTF_F_MAX): Adjust accordingly.
libctf/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h (CTF_INDEX_PAD_THRESHOLD): New.
(_libctf_nonnull_): Likewise.
(ctf_in_flight_dynsym_t): New.
(ctf_dict_t) <ctf_funcidx_names>: Likewise.
<ctf_objtidx_names>: Likewise.
<ctf_nfuncidx>: Likewise.
<ctf_nobjtidx>: Likewise.
<ctf_funcidx_sxlate>: Likewise.
<ctf_objtidx_sxlate>: Likewise.
<ctf_objthash>: Likewise.
<ctf_funchash>: Likewise.
<ctf_dynsyms>: Likewise.
<ctf_dynsymidx>: Likewise.
<ctf_dynsymmax>: Likewise.
<ctf_in_flight_dynsym>: Likewise.
(struct ctf_next) <u.ctn_next>: Likewise.
(ctf_symtab_skippable): New prototype.
(ctf_add_funcobjt_sym): Likewise.
(ctf_dynhash_sort_by_name): Likewise.
(ctf_sym_to_elf64): Rename to...
(ctf_elf32_to_link_sym): ... this, and...
(ctf_elf64_to_link_sym): ... this.
* ctf-open.c (init_symtab): Check for lack of CTF_F_NEWFUNCINFO
flag, and presence of index sections. Refactor out
ctf_symtab_skippable and ctf_elf*_to_link_sym, and use them. Use
ctf_link_sym_t, not Elf64_Sym. Skip initializing objt or func
sxlate sections if corresponding index section is present. Adjust
for new func info section format.
(ctf_bufopen_internal): Add ctf_err_warn to corrupt-file error
handling. Report incorrect-length index sections. Always do an
init_symtab, even if there is no symtab section (there may be index
sections still).
(flip_objts): Adjust comment: func and objt sections are actually
identical in structure now, no need to caveat.
(ctf_dict_close): Free newly-added data structures.
* ctf-create.c (ctf_create): Initialize them.
(ctf_symtab_skippable): New, refactored out of
init_symtab, with st_nameidx_set check added.
(ctf_add_funcobjt_sym): New, add a function or object symbol to the
ctf_objthash or ctf_funchash, by name.
(ctf_add_objt_sym): Call it.
(ctf_add_func_sym): Likewise.
(symtypetab_delete_nonstatic_vars): New, delete vars also present as
data objects.
(CTF_SYMTYPETAB_EMIT_FUNCTION): New flag to symtypetab emitters:
this is a function emission, not a data object emission.
(CTF_SYMTYPETAB_EMIT_PAD): New flag to symtypetab emitters: emit
pads for symbols with no type (only set for unindexed sections).
(CTF_SYMTYPETAB_FORCE_INDEXED): New flag to symtypetab emitters:
always emit indexed.
(symtypetab_density): New, figure out section sizes.
(emit_symtypetab): New, emit a symtypetab.
(emit_symtypetab_index): New, emit a symtypetab index.
(ctf_serialize): Call them, emitting suitably sorted symtypetab
sections and indexes. Set suitable header flags. Copy over new
fields.
* ctf-hash.c (ctf_dynhash_sort_by_name): New, used to impose an
order on symtypetab index sections.
* ctf-link.c (ctf_add_type_mapping): Delete erroneous comment
relating to code that was never committed.
(ctf_link_one_variable): Improve variable name.
(check_sym): New, symtypetab analogue of check_variable.
(ctf_link_deduplicating_one_symtypetab): New.
(ctf_link_deduplicating_syms): Likewise.
(ctf_link_deduplicating): Call them.
(ctf_link_deduplicating_per_cu): Note that we don't call them in
this case (yet).
(ctf_link_add_strtab): Set the error on the fp correctly.
(ctf_link_add_linker_symbol): New (no longer a do-nothing stub), add
a linker symbol to the in-flight list.
(ctf_link_shuffle_syms): New (no longer a do-nothing stub), turn the
in-flight list into a mapping we can use, now its names are
resolvable in the external strtab.
* ctf-string.c (ctf_str_rollback_atom): Don't roll back atoms with
external strtab offsets.
(ctf_str_rollback): Adjust comment.
(ctf_str_write_strtab): Migrate ctf_syn_ext_strtab population from
writeout time...
(ctf_str_add_external): ... to string addition time.
* ctf-lookup.c (ctf_lookup_var_key_t): Rename to...
(ctf_lookup_idx_key_t): ... this, now we use it for syms too.
<clik_names>: New member, a name table.
(ctf_lookup_var): Adjust accordingly.
(ctf_lookup_variable): Likewise.
(ctf_lookup_by_id): Shuffle further up in the file.
(ctf_symidx_sort_arg_cb): New, callback for...
(sort_symidx_by_name): ... this new function to sort a symidx
found to be unsorted (likely originating from the compiler).
(ctf_symidx_sort): New, sort a symidx.
(ctf_lookup_symbol_name): Support dynamic symbols with indexes
provided by the linker. Use ctf_link_sym_t, not Elf64_Sym.
Check the parent if a child lookup fails.
(ctf_lookup_by_symbol): Likewise. Work for function symbols too.
(ctf_symbol_next): New, iterate over symbols with types (without
sorting).
(ctf_lookup_idx_name): New, bsearch for symbol names in indexes.
(ctf_try_lookup_indexed): New, attempt an indexed lookup.
(ctf_func_info): Reimplement in terms of ctf_lookup_by_symbol.
(ctf_func_args): Likewise.
(ctf_get_dict): Move...
* ctf-types.c (ctf_get_dict): ... here.
* ctf-util.c (ctf_sym_to_elf64): Re-express as...
(ctf_elf64_to_link_sym): ... this. Add new st_symidx field, and
st_nameidx_set (always 0, so st_nameidx can be ignored). Look in
the ELF strtab for names.
(ctf_elf32_to_link_sym): Likewise, for Elf32_Sym.
(ctf_next_destroy): Destroy ctf_next_t.u.ctn_next if need be.
* libctf.ver: Add ctf_symbol_next, ctf_add_objt_sym and
ctf_add_func_sym.
2020-11-20 21:34:04 +08:00
|
|
|
uint32_t *ctf_sxlate; /* Translation table for unindexed symtypetab
|
|
|
|
entries. */
|
2019-04-24 05:24:13 +08:00
|
|
|
unsigned long ctf_nsyms; /* Number of entries in symtab xlate table. */
|
|
|
|
uint32_t *ctf_txlate; /* Translation table for type IDs. */
|
|
|
|
uint32_t *ctf_ptrtab; /* Translation table for pointer-to lookups. */
|
libctf: avoid the need to ever use ctf_update
The method of operation of libctf when the dictionary is writable has
before now been that types that are added land in the dynamic type
section, which is a linked list and hash of IDs -> dynamic type
definitions (and, recently a hash of names): the DTDs are a bit of CTF
representing the ctf_type_t and ad hoc C structures representing the
vlen. Historically, libctf was unable to do anything with these types,
not even look them up by ID, let alone by name: if you wanted to do that
say if you were adding a type that depended on one you just added) you
called ctf_update, which serializes all the DTDs into a CTF file and
reopens it, copying its guts over the fp it's called with. The
ctf_updated types are then frozen in amber and unchangeable: all lookups
will return the types in the static portion in preference to the dynamic
portion, and we will refuse to re-add things that already exist in the
static portion (and, of late, in the dynamic portion too). The libctf
machinery remembers the boundary between static and dynamic types and
looks in the right portion for each type. Lots of things still don't
quite work with dynamic types (e.g. getting their size), but enough
works to do a bunch of additions and then a ctf_update, most of the
time.
Except it doesn't, because ctf_add_type finds it necessary to walk the
full dynamic type definition list looking for types with matching names,
so it gets slower and slower with every type you add: fixing this
requires calling ctf_update periodically for no other reason than to
avoid massively slowing things down.
This is all clunky and very slow but kind of works, until you consider
that it is in fact possible and indeed necessary to modify one sort of
type after it has been added: forwards. These are necessarily promoted
to structs, unions or enums, and when they do so *their type ID does not
change*. So all of a sudden we are changing types that already exist in
the static portion. ctf_update gets massively confused by this and
allocates space enough for the forward (with no members), but then emits
the new dynamic type (with all the members) into it. You get an
assertion failure after that, if you're lucky, or a coredump.
So this commit rejigs things a bit and arranges to exclusively use the
dynamic type definitions in writable dictionaries, and the static type
definitions in readable dictionaries: we don't at any time have a mixture
of static and dynamic types, and you don't need to call ctf_update to
make things "appear". The ctf_dtbyname hash I introduced a few months
ago, which maps things like "struct foo" to DTDs, is removed, replaced
instead by a change of type of the four dictionaries which track names.
Rather than just being (unresizable) ctf_hash_t's populated only at
ctf_bufopen time, they are now a ctf_names_t structure, which is a pair
of ctf_hash_t and ctf_dynhash_t, with the ctf_hash_t portion being used
in readonly dictionaries, and the ctf_dynhash_t being used in writable
ones. The decision as to which to use is centralized in the new
functions ctf_lookup_by_rawname (which takes a type kind) and
ctf_lookup_by_rawhash, which it calls (which takes a ctf_names_t *.)
This change lets us switch from using static to dynamic name hashes on
the fly across the entirety of libctf without complexifying anything: in
fact, because we now centralize the knowledge about how to map from type
kind to name hash, it actually simplifies things and lets us throw out
quite a lot of now-unnecessary complexity, from ctf_dtnyname (replaced
by the dynamic half of the name tables), through to ctf_dtnextid (now
that a dictionary's static portion is never referenced if the dictionary
is writable, we can just use ctf_typemax to indicate the maximum type:
dynamic or non-dynamic does not matter, and we no longer need to track
the boundary between the types). You can now ctf_rollback() as far as
you like, even past a ctf_update or for that matter a full writeout; all
the iteration functions work just as well on writable as on read-only
dictionaries; ctf_add_type no longer needs expensive duplicated code to
run over the dynamic types hunting for ones it might be interested in;
and the linker no longer needs a hack to call ctf_update so that calling
ctf_add_type is not impossibly expensive.
There is still a bit more complexity: some new code paths in ctf-types.c
need to know how to extract information from dynamic types. This
complexity will go away again in a few months when libctf acquires a
proper intermediate representation.
You can still call ctf_update if you like (it's public API, after all),
but its only effect now is to set the point to which ctf_discard rolls
back.
Obviously *something* still needs to serialize the CTF file before
writeout, and this job is done by ctf_serialize, which does everything
ctf_update used to except set the counter used by ctf_discard. It is
automatically called by the various functions that do CTF writeout:
nobody else ever needs to call it.
With this in place, forwards that are promoted to non-forwards no longer
crash the link, even if it happens tens of thousands of types later.
v5: fix tabdamage.
libctf/
* ctf-impl.h (ctf_names_t): New.
(ctf_lookup_t) <ctf_hash>: Now a ctf_names_t, not a ctf_hash_t.
(ctf_file_t) <ctf_structs>: Likewise.
<ctf_unions>: Likewise.
<ctf_enums>: Likewise.
<ctf_names>: Likewise.
<ctf_lookups>: Improve comment.
<ctf_ptrtab_len>: New.
<ctf_prov_strtab>: New.
<ctf_str_prov_offset>: New.
<ctf_dtbyname>: Remove, redundant to the names hashes.
<ctf_dtnextid>: Remove, redundant to ctf_typemax.
(ctf_dtdef_t) <dtd_name>: Remove.
<dtd_data>: Note that the ctt_name is now populated.
(ctf_str_atom_t) <csa_offset>: This is now the strtab
offset for internal strings too.
<csa_external_offset>: New, the external strtab offset.
(CTF_INDEX_TO_TYPEPTR): Handle the LCTF_RDWR case.
(ctf_name_table): New declaration.
(ctf_lookup_by_rawname): Likewise.
(ctf_lookup_by_rawhash): Likewise.
(ctf_set_ctl_hashes): Likewise.
(ctf_serialize): Likewise.
(ctf_dtd_insert): Adjust.
(ctf_simple_open_internal): Likewise.
(ctf_bufopen_internal): Likewise.
(ctf_list_empty_p): Likewise.
(ctf_str_remove_ref): Likewise.
(ctf_str_add): Returns uint32_t now.
(ctf_str_add_ref): Likewise.
(ctf_str_add_external): Now returns a boolean (int).
* ctf-string.c (ctf_strraw_explicit): Check the ctf_prov_strtab
for strings in the appropriate range.
(ctf_str_create_atoms): Create the ctf_prov_strtab. Detect OOM
when adding the null string to the new strtab.
(ctf_str_free_atoms): Destroy the ctf_prov_strtab.
(ctf_str_add_ref_internal): Add make_provisional argument. If
make_provisional, populate the offset and fill in the
ctf_prov_strtab accordingly.
(ctf_str_add): Return the offset, not the string.
(ctf_str_add_ref): Likewise.
(ctf_str_add_external): Return a success integer.
(ctf_str_remove_ref): New, remove a single ref.
(ctf_str_count_strtab): Do not count the initial null string's
length or the existence or length of any unreferenced internal
atoms.
(ctf_str_populate_sorttab): Skip atoms with no refs.
(ctf_str_write_strtab): Populate the nullstr earlier. Add one
to the cts_len for the null string, since it is no longer done
in ctf_str_count_strtab. Adjust for csa_external_offset rename.
Populate the csa_offset for both internal and external cases.
Flush the ctf_prov_strtab afterwards, and reset the
ctf_str_prov_offset.
* ctf-create.c (ctf_grow_ptrtab): New.
(ctf_create): Call it. Initialize new fields rather than old
ones. Tell ctf_bufopen_internal that this is a writable dictionary.
Set the ctl hashes and data model.
(ctf_update): Rename to...
(ctf_serialize): ... this. Leave a compatibility function behind.
Tell ctf_simple_open_internal that this is a writable dictionary.
Pass the new fields along from the old dictionary. Drop
ctf_dtnextid and ctf_dtbyname. Use ctf_strraw, not dtd_name.
Do not zero out the DTD's ctt_name.
(ctf_prefixed_name): Rename to...
(ctf_name_table): ... this. No longer return a prefixed name: return
the applicable name table instead.
(ctf_dtd_insert): Use it, and use the right name table. Pass in the
kind we're adding. Migrate away from dtd_name.
(ctf_dtd_delete): Adjust similarly. Remove the ref to the
deleted ctt_name.
(ctf_dtd_lookup_type_by_name): Remove.
(ctf_dynamic_type): Always return NULL on read-only dictionaries.
No longer check ctf_dtnextid: check ctf_typemax instead.
(ctf_snapshot): No longer use ctf_dtnextid: use ctf_typemax instead.
(ctf_rollback): Likewise. No longer fail with ECTF_OVERROLLBACK. Use
ctf_name_table and the right name table, and migrate away from
dtd_name as in ctf_dtd_delete.
(ctf_add_generic): Pass in the kind explicitly and pass it to
ctf_dtd_insert. Use ctf_typemax, not ctf_dtnextid. Migrate away
from dtd_name to using ctf_str_add_ref to populate the ctt_name.
Grow the ptrtab if needed.
(ctf_add_encoded): Pass in the kind.
(ctf_add_slice): Likewise.
(ctf_add_array): Likewise.
(ctf_add_function): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_reftype): Likewise. Initialize the ctf_ptrtab, checking
ctt_name rather than dtd_name.
(ctf_add_struct_sized): Pass in the kind. Use
ctf_lookup_by_rawname, not ctf_hash_lookup_type /
ctf_dtd_lookup_type_by_name.
(ctf_add_union_sized): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_type): Likewise.
(ctf_compress_write): Call ctf_serialize: adjust for ctf_size not
being initialized until after the call.
(ctf_write_mem): Likewise.
(ctf_write): Likewise.
* ctf-archive.c (arc_write_one_ctf): Likewise.
* ctf-lookup.c (ctf_lookup_by_name): Use ctf_lookuup_by_rawhash, not
ctf_hash_lookup_type.
(ctf_lookup_by_id): No longer check the readonly types if the
dictionary is writable.
* ctf-open.c (init_types): Assert that this dictionary is not
writable. Adjust to use the new name hashes, ctf_name_table,
and ctf_ptrtab_len. GNU style fix for the final ptrtab scan.
(ctf_bufopen_internal): New 'writable' parameter. Flip on LCTF_RDWR
if set. Drop out early when dictionary is writable. Split the
ctf_lookups initialization into...
(ctf_set_cth_hashes): ... this new function.
(ctf_simple_open_internal): Adjust. New 'writable' parameter.
(ctf_simple_open): Adjust accordingly.
(ctf_bufopen): Likewise.
(ctf_file_close): Destroy the appropriate name hashes. No longer
destroy ctf_dtbyname, which is gone.
(ctf_getdatasect): Remove spurious "extern".
* ctf-types.c (ctf_lookup_by_rawname): New, look up types in the
specified name table, given a kind.
(ctf_lookup_by_rawhash): Likewise, given a ctf_names_t *.
(ctf_member_iter): Add support for iterating over the
dynamic type list.
(ctf_enum_iter): Likewise.
(ctf_variable_iter): Likewise.
(ctf_type_rvisit): Likewise.
(ctf_member_info): Add support for types in the dynamic type list.
(ctf_enum_name): Likewise.
(ctf_enum_value): Likewise.
(ctf_func_type_info): Likewise.
(ctf_func_type_args): Likewise.
* ctf-link.c (ctf_accumulate_archive_names): No longer call
ctf_update.
(ctf_link_write): Likewise.
(ctf_link_intern_extern_string): Adjust for new
ctf_str_add_external return value.
(ctf_link_add_strtab): Likewise.
* ctf-util.c (ctf_list_empty_p): New.
2019-08-08 00:55:09 +08:00
|
|
|
size_t ctf_ptrtab_len; /* Num types storable in ptrtab currently. */
|
libctf: fix lookups of pointers by name in parent dicts
When you look up a type by name using ctf_lookup_by_name, in most cases
libctf can just strip off any qualifiers and look for the name, but for
pointer types this doesn't work, since the caller will want the pointer
type itself. But pointer types are nameless, and while they cite the
types they point to, looking up a type by name requires a link going the
*other way*, from the type pointed to to the pointer type that points to
it.
libctf has always built this up at open time: ctf_ptrtab is an array of
type indexes pointing from the index of every type to the index of the
type that points to it. But because it is built up at open time (and
because it uses type indexes and not type IDs) it is restricted to
working within a single dict and ignoring parent/child
relationships. This is normally invisible, unless you manage to get a
dict with a type in the parent but the only pointer to it in a child.
The ctf_ptrtab will not track this relationship, so lookups of this
pointer type by name will fail. Since which type is in the parent and
which in the child is largely opaque to the user (which goes where is up
to the deduplicator, and it can and does reshuffle things to save
space), this leads to a very bad user experience, with an
obviously-visible pointer type which ctf_lookup_by_name claims doesn't
exist.
The fix is to have another array, ctf_pptrtab, which is populated in
child dicts: like the parent's ctf_ptrtab, it has one element per type
in the parent, but is all zeroes except for those types which are
pointed to by types in the child: so it maps parent dict indices to
child dict indices. The array is grown, and new child types scanned,
whenever a lookup happens and new types have been added to the child
since the last time a lookup happened that might need the pptrtab.
(So for non-writable dicts, this only happens once, since new types
cannot be added to non-writable dicts at all.)
Since this introduces new complexity (involving updating only part of
the ctf_pptrtab) which is only seen when a writable dict is in use, we
introduce a new libctf-writable testsuite that contains lookup tests
with no corresponding CTF-containing .c files (which can thus be run
even on platforms with no .ctf-section support in the linker yet), and
add a test to check that creation of pointers in children to types in
parents and a following lookup by name works as expected. The non-
writable case is tested in a new libctf-regression testsuite which is
used to track now-fixed outright bugs in libctf.
libctf/ChangeLog
2021-01-05 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h (ctf_dict_t) <ctf_pptrtab>: New.
<ctf_pptrtab_len>: New.
<ctf_pptrtab_typemax>: New.
* ctf-create.c (ctf_serialize): Update accordingly.
(ctf_add_reftype): Note that we don't need to update pptrtab here,
despite updating ptrtab.
* ctf-open.c (ctf_dict_close): Destroy the pptrtab.
(ctf_import): Likewise.
(ctf_import_unref): Likewise.
* ctf-lookup.c (grow_pptrtab): New.
(refresh_pptrtab): New, update a pptrtab.
(ctf_lookup_by_name): Turn into a wrapper around (and rename to)...
(ctf_lookup_by_name_internal): ... this: construct the pptrtab, and
use it in addition to the parent's ptrtab when parent dicts are
searched.
* testsuite/libctf-regression/regression.exp: New testsuite for
regression tests.
* testsuite/libctf-regression/pptrtab*: New test.
* testsuite/libctf-writable/writable.exp: New testsuite for tests of
writable CTF dicts.
* testsuite/libctf-writable/pptrtab*: New test.
2021-01-05 21:25:56 +08:00
|
|
|
uint32_t *ctf_pptrtab; /* Parent types pointed to by child dicts. */
|
|
|
|
size_t ctf_pptrtab_len; /* Num types storable in pptrtab currently. */
|
|
|
|
uint32_t ctf_pptrtab_typemax; /* Max child type when pptrtab last updated. */
|
libctf: symbol type linking support
This adds facilities to write out the function info and data object
sections, which efficiently map from entries in the symbol table to
types. The write-side code is entirely new: the read-side code was
merely significantly changed and support for indexed tables added
(pointed to by the no-longer-unused cth_objtidxoff and cth_funcidxoff
header fields).
With this in place, you can use ctf_lookup_by_symbol to look up the
types of symbols of function and object type (and, as before, you can
use ctf_lookup_variable to look up types of file-scope variables not
present in the symbol table, as long as you know their name: but
variables that are also data objects are now found in the data object
section instead.)
(Compatible) file format change:
The CTF spec has always said that the function info section looks much
like the CTF_K_FUNCTIONs in the type section: an info word (including an
argument count) followed by a return type and N argument types. This
format is suboptimal: it means function symbols cannot be deduplicated
and it causes a lot of ugly code duplication in libctf. But
conveniently the compiler has never emitted this! Because it has always
emitted a rather different format that libctf has never accepted, we can
be sure that there are no instances of this function info section in the
wild, and can freely change its format without compatibility concerns or
a file format version bump. (And since it has never been emitted in any
code that generated any older file format version, either, we need keep
no code to read the format as specified at all!)
So the function info section is now specified as an array of uint32_t,
exactly like the object data section: each entry is a type ID in the
type section which must be of kind CTF_K_FUNCTION, the prototype of
this function.
This allows function types to be deduplicated and also correctly encodes
the fact that all functions declared in C really are types available to
the program: so they should be stored in the type section like all other
types. (In format v4, we will be able to represent the types of static
functions as well, but that really does require a file format change.)
We introduce a new header flag, CTF_F_NEWFUNCINFO, which is set if the
new function info format is in use. A sufficiently new compiler will
always set this flag. New libctf will always set this flag: old libctf
will refuse to open any CTF dicts that have this flag set. If the flag
is not set on a dict being read in, new libctf will disregard the
function info section. Format v4 will remove this flag (or, rather, the
flag has no meaning there and the bit position may be recycled for some
other purpose).
New API:
Symbol addition:
ctf_add_func_sym: Add a symbol with a given name and type. The
type must be of kind CTF_K_FUNCTION (a function
pointer). Internally this adds a name -> type
mapping to the ctf_funchash in the ctf_dict.
ctf_add_objt_sym: Add a symbol with a given name and type. The type
kind can be anything, including function pointers.
This adds to ctf_objthash.
These both treat symbols as name -> type mappings: the linker associates
symbol names with symbol indexes via the ctf_link_shuffle_syms callback,
which sets up the ctf_dynsyms/ctf_dynsymidx/ctf_dynsymmax fields in the
ctf_dict. Repeated relinks can add more symbols.
Variables that are also exposed as symbols are removed from the variable
section at serialization time.
CTF symbol type sections which have enough pads, defined by
CTF_INDEX_PAD_THRESHOLD (whether because they are in dicts with symbols
where most types are unknown, or in archive where most types are defined
in some child or parent dict, not in this specific dict) are sorted by
name rather than symidx and accompanied by an index which associates
each symbol type entry with a name: the existing ctf_lookup_by_symbol
will map symbol indexes to symbol names and look the names up in the
index automatically. (This is currently ELF-symbol-table-dependent, but
there is almost nothing specific to ELF in here and we can add support
for other symbol table formats easily).
The compiler also uses index sections to communicate the contents of
object file symbol tables without relying on any specific ordering of
symbols: it doesn't need to sort them, and libctf will detect an
unsorted index section via the absence of the new CTF_F_IDXSORTED header
flag, and sort it if needed.
Iteration:
ctf_symbol_next: Iterator which returns the types and names of symbols
one by one, either for function or data symbols.
This does not require any sorting: the ctf_link machinery uses it to
pull in all the compiler-provided symbols cheaply, but it is not
restricted to that use.
(Compatible) changes in API:
ctf_lookup_by_symbol: can now be called for object and function
symbols: never returns ECTF_NOTDATA (which is
now not thrown by anything, but is kept for
compatibility and because it is a plausible
error that we might start throwing again at some
later date).
Internally we also have changes to the ctf-string functionality so that
"external" strings (those where we track a string -> offset mapping, but
only write out an offset) can be consulted via the usual means
(ctf_strptr) before the strtab is written out. This is important
because ctf_link_add_linker_symbol can now be handed symbols named via
strtab offsets, and ctf_link_shuffle_syms must figure out their actual
names by looking in the external symtab we have just been fed by the
ctf_link_add_strtab callback, long before that strtab is written out.
include/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-api.h (ctf_symbol_next): New.
(ctf_add_objt_sym): Likewise.
(ctf_add_func_sym): Likewise.
* ctf.h: Document new function info section format.
(CTF_F_NEWFUNCINFO): New.
(CTF_F_IDXSORTED): New.
(CTF_F_MAX): Adjust accordingly.
libctf/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h (CTF_INDEX_PAD_THRESHOLD): New.
(_libctf_nonnull_): Likewise.
(ctf_in_flight_dynsym_t): New.
(ctf_dict_t) <ctf_funcidx_names>: Likewise.
<ctf_objtidx_names>: Likewise.
<ctf_nfuncidx>: Likewise.
<ctf_nobjtidx>: Likewise.
<ctf_funcidx_sxlate>: Likewise.
<ctf_objtidx_sxlate>: Likewise.
<ctf_objthash>: Likewise.
<ctf_funchash>: Likewise.
<ctf_dynsyms>: Likewise.
<ctf_dynsymidx>: Likewise.
<ctf_dynsymmax>: Likewise.
<ctf_in_flight_dynsym>: Likewise.
(struct ctf_next) <u.ctn_next>: Likewise.
(ctf_symtab_skippable): New prototype.
(ctf_add_funcobjt_sym): Likewise.
(ctf_dynhash_sort_by_name): Likewise.
(ctf_sym_to_elf64): Rename to...
(ctf_elf32_to_link_sym): ... this, and...
(ctf_elf64_to_link_sym): ... this.
* ctf-open.c (init_symtab): Check for lack of CTF_F_NEWFUNCINFO
flag, and presence of index sections. Refactor out
ctf_symtab_skippable and ctf_elf*_to_link_sym, and use them. Use
ctf_link_sym_t, not Elf64_Sym. Skip initializing objt or func
sxlate sections if corresponding index section is present. Adjust
for new func info section format.
(ctf_bufopen_internal): Add ctf_err_warn to corrupt-file error
handling. Report incorrect-length index sections. Always do an
init_symtab, even if there is no symtab section (there may be index
sections still).
(flip_objts): Adjust comment: func and objt sections are actually
identical in structure now, no need to caveat.
(ctf_dict_close): Free newly-added data structures.
* ctf-create.c (ctf_create): Initialize them.
(ctf_symtab_skippable): New, refactored out of
init_symtab, with st_nameidx_set check added.
(ctf_add_funcobjt_sym): New, add a function or object symbol to the
ctf_objthash or ctf_funchash, by name.
(ctf_add_objt_sym): Call it.
(ctf_add_func_sym): Likewise.
(symtypetab_delete_nonstatic_vars): New, delete vars also present as
data objects.
(CTF_SYMTYPETAB_EMIT_FUNCTION): New flag to symtypetab emitters:
this is a function emission, not a data object emission.
(CTF_SYMTYPETAB_EMIT_PAD): New flag to symtypetab emitters: emit
pads for symbols with no type (only set for unindexed sections).
(CTF_SYMTYPETAB_FORCE_INDEXED): New flag to symtypetab emitters:
always emit indexed.
(symtypetab_density): New, figure out section sizes.
(emit_symtypetab): New, emit a symtypetab.
(emit_symtypetab_index): New, emit a symtypetab index.
(ctf_serialize): Call them, emitting suitably sorted symtypetab
sections and indexes. Set suitable header flags. Copy over new
fields.
* ctf-hash.c (ctf_dynhash_sort_by_name): New, used to impose an
order on symtypetab index sections.
* ctf-link.c (ctf_add_type_mapping): Delete erroneous comment
relating to code that was never committed.
(ctf_link_one_variable): Improve variable name.
(check_sym): New, symtypetab analogue of check_variable.
(ctf_link_deduplicating_one_symtypetab): New.
(ctf_link_deduplicating_syms): Likewise.
(ctf_link_deduplicating): Call them.
(ctf_link_deduplicating_per_cu): Note that we don't call them in
this case (yet).
(ctf_link_add_strtab): Set the error on the fp correctly.
(ctf_link_add_linker_symbol): New (no longer a do-nothing stub), add
a linker symbol to the in-flight list.
(ctf_link_shuffle_syms): New (no longer a do-nothing stub), turn the
in-flight list into a mapping we can use, now its names are
resolvable in the external strtab.
* ctf-string.c (ctf_str_rollback_atom): Don't roll back atoms with
external strtab offsets.
(ctf_str_rollback): Adjust comment.
(ctf_str_write_strtab): Migrate ctf_syn_ext_strtab population from
writeout time...
(ctf_str_add_external): ... to string addition time.
* ctf-lookup.c (ctf_lookup_var_key_t): Rename to...
(ctf_lookup_idx_key_t): ... this, now we use it for syms too.
<clik_names>: New member, a name table.
(ctf_lookup_var): Adjust accordingly.
(ctf_lookup_variable): Likewise.
(ctf_lookup_by_id): Shuffle further up in the file.
(ctf_symidx_sort_arg_cb): New, callback for...
(sort_symidx_by_name): ... this new function to sort a symidx
found to be unsorted (likely originating from the compiler).
(ctf_symidx_sort): New, sort a symidx.
(ctf_lookup_symbol_name): Support dynamic symbols with indexes
provided by the linker. Use ctf_link_sym_t, not Elf64_Sym.
Check the parent if a child lookup fails.
(ctf_lookup_by_symbol): Likewise. Work for function symbols too.
(ctf_symbol_next): New, iterate over symbols with types (without
sorting).
(ctf_lookup_idx_name): New, bsearch for symbol names in indexes.
(ctf_try_lookup_indexed): New, attempt an indexed lookup.
(ctf_func_info): Reimplement in terms of ctf_lookup_by_symbol.
(ctf_func_args): Likewise.
(ctf_get_dict): Move...
* ctf-types.c (ctf_get_dict): ... here.
* ctf-util.c (ctf_sym_to_elf64): Re-express as...
(ctf_elf64_to_link_sym): ... this. Add new st_symidx field, and
st_nameidx_set (always 0, so st_nameidx can be ignored). Look in
the ELF strtab for names.
(ctf_elf32_to_link_sym): Likewise, for Elf32_Sym.
(ctf_next_destroy): Destroy ctf_next_t.u.ctn_next if need be.
* libctf.ver: Add ctf_symbol_next, ctf_add_objt_sym and
ctf_add_func_sym.
2020-11-20 21:34:04 +08:00
|
|
|
uint32_t *ctf_funcidx_names; /* Name of each function symbol in symtypetab
|
|
|
|
(if indexed). */
|
|
|
|
uint32_t *ctf_objtidx_names; /* Likewise, for object symbols. */
|
|
|
|
size_t ctf_nfuncidx; /* Number of funcidx entries. */
|
|
|
|
uint32_t *ctf_funcidx_sxlate; /* Offsets into funcinfo for a given funcidx. */
|
|
|
|
uint32_t *ctf_objtidx_sxlate; /* Likewise, for ctf_objtidx. */
|
|
|
|
size_t ctf_nobjtidx; /* Number of objtidx entries. */
|
|
|
|
ctf_dynhash_t *ctf_objthash; /* name -> type ID. */
|
|
|
|
ctf_dynhash_t *ctf_funchash; /* name -> CTF_K_FUNCTION type ID. */
|
|
|
|
|
|
|
|
/* The next three are linker-derived state found in ctf_link targets only. */
|
|
|
|
|
|
|
|
ctf_dynhash_t *ctf_dynsyms; /* Symbol info from ctf_link_shuffle_syms. */
|
|
|
|
ctf_link_sym_t **ctf_dynsymidx; /* Indexes ctf_dynsyms by symidx. */
|
|
|
|
uint32_t ctf_dynsymmax; /* Maximum ctf_dynsym index. */
|
|
|
|
ctf_list_t ctf_in_flight_dynsyms; /* Dynsyms during accumulation. */
|
2019-04-24 05:24:13 +08:00
|
|
|
struct ctf_varent *ctf_vars; /* Sorted variable->type mapping. */
|
|
|
|
unsigned long ctf_nvars; /* Number of variables in ctf_vars. */
|
|
|
|
unsigned long ctf_typemax; /* Maximum valid type ID number. */
|
|
|
|
const ctf_dmodel_t *ctf_dmodel; /* Data model pointer (see above). */
|
libctf: allow the header to change between versions
libctf supports dynamic upgrading of the type table as file format
versions change, but before now has not supported changes to the CTF
header. Doing this is complicated by the baroque storage method used:
the CTF header is kept prepended to the rest of the CTF data, just as
when read from the file, and written out from there, and is
endian-flipped in place.
This makes accessing it needlessly hard and makes it almost impossible
to make the header larger if we add fields. The general storage
machinery around the malloced ctf pointer (the 'ctf_base') is also
overcomplicated: the pointer is sometimes malloced locally and sometimes
assigned from a parameter, so freeing it requires checking to see if
that parameter was used, needlessly coupling ctf_bufopen and
ctf_file_close together.
So split the header out into a new ctf_file_t.ctf_header, which is
written out explicitly: squeeze it out of the CTF buffer whenever we
reallocate it, and use ctf_file_t.ctf_buf to skip past the header when
we do not need to reallocate (when no upgrading or endian-flipping is
required). We now track whether the CTF base can be freed explicitly
via a new ctf_dynbase pointer which is non-NULL only when freeing is
possible.
With all this done, we can upgrade the header on the fly and add new
fields as desired, via a new upgrade_header function in ctf-open.
As with other forms of upgrading, libctf upgrades older headers
automatically to the latest supported version at open time.
For a first use of this field, we add a new string field cth_cuname, and
a corresponding setter/getter pair ctf_cuname_set and ctf_cuname: this
is used by debuggers to determine whether a CTF section's types relate
to a single compilation unit, or to all compilation units in the
program. (Types with ambiguous definitions in different CUs have only
one of these types placed in the top-level shared .ctf container: the
rest are placed in much smaller per-CU containers, which have the shared
container as their parent. Since CTF must be useful in the absence of
DWARF, we store the names of the relevant CUs ourselves, so the debugger
can look them up.)
v5: fix tabdamage.
include/
* ctf-api.h (ctf_cuname): New function.
(ctf_cuname_set): Likewise.
* ctf.h: Improve comment around upgrading, no longer
implying that v2 is the target of upgrades (it is v3 now).
(ctf_header_v2_t): New, old-format header for backward
compatibility.
(ctf_header_t): Add cth_cuname: this is the first of several
header changes in format v3.
libctf/
* ctf-impl.h (ctf_file_t): New fields ctf_header, ctf_dynbase,
ctf_cuname, ctf_dyncuname: ctf_base and ctf_buf are no longer const.
* ctf-open.c (ctf_set_base): Preserve the gap between ctf_buf and
ctf_base: do not assume that it is always sizeof (ctf_header_t).
Print out ctf_cuname: only print out ctf_parname if set.
(ctf_free_base): Removed, ctf_base is no longer freed: free
ctf_dynbase instead.
(ctf_set_version): Fix spacing.
(upgrade_header): New, in-place header upgrading.
(upgrade_types): Rename to...
(upgrade_types_v1): ... this. Free ctf_dynbase, not ctf_base. No
longer track old and new headers separately. No longer allow for
header sizes explicitly: squeeze the headers out on upgrade (they
are preserved in fp->ctf_header). Set ctf_dynbase, ctf_base and
ctf_buf explicitly. Use ctf_free, not ctf_free_base.
(upgrade_types): New, also handle ctf_parmax updating.
(flip_header): Flip ctf_cuname.
(flip_types): Flip BUF explicitly rather than deriving BUF from
BASE.
(ctf_bufopen): Store the header in fp->ctf_header. Correct minimum
required alignment of objtoff and funcoff. No longer store it in
the ctf_buf unless that buf is derived unmodified from the input.
Set ctf_dynbase where ctf_base is dynamically allocated. Drop locals
that duplicate fields in ctf_file: move allocation of ctf_file
further up instead. Call upgrade_header as needed. Move
version-specific ctf_parmax initialization into upgrade_types. More
concise error handling.
(ctf_file_close): No longer test for null pointers before freeing.
Free ctf_dyncuname, ctf_dynbase, and ctf_header. Do not call
ctf_free_base.
(ctf_cuname): New.
(ctf_cuname_set): New.
* ctf-create.c (ctf_update): Populate ctf_cuname.
(ctf_gzwrite): Write out the header explicitly. Remove obsolescent
comment.
(ctf_write): Likewise.
(ctf_compress_write): Get the header from ctf_header, not ctf_base.
Fix the compression length: fp->ctf_size never counted the CTF
header. Simplify the compress call accordingly.
2019-07-07 00:36:21 +08:00
|
|
|
const char *ctf_cuname; /* Compilation unit name (if any). */
|
|
|
|
char *ctf_dyncuname; /* Dynamically allocated name of CU. */
|
libctf, include, binutils, gdb, ld: rename ctf_file_t to ctf_dict_t
The naming of the ctf_file_t type in libctf is a historical curiosity.
Back in the Solaris days, CTF dictionaries were originally generated as
a separate file and then (sometimes) merged into objects: hence the
datatype was named ctf_file_t, and known as a "CTF file". Nowadays, raw
CTF is essentially never written to a file on its own, and the datatype
changed name to a "CTF dictionary" years ago. So the term "CTF file"
refers to something that is never a file! This is at best confusing.
The type has also historically been known as a 'CTF container", which is
even more confusing now that we have CTF archives which are *also* a
sort of container (they contain CTF dictionaries), but which are never
referred to as containers in the source code.
So fix this by completing the renaming, renaming ctf_file_t to
ctf_dict_t throughout, and renaming those few functions that refer to
CTF files by name (keeping compatibility aliases) to refer to dicts
instead. Old users who still refer to ctf_file_t will see (harmless)
pointer-compatibility warnings at compile time, but the ABI is unchanged
(since C doesn't mangle names, and ctf_file_t was always an opaque type)
and things will still compile fine as long as -Werror is not specified.
All references to CTF containers and CTF files in the source code are
fixed to refer to CTF dicts instead.
Further (smaller) renamings of annoyingly-named functions to come, as
part of the process of souping up queries across whole archives at once
(needed for the function info and data object sections).
binutils/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* objdump.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_ctf): Likewise. Use ctf_dict_close, not ctf_file_close.
* readelf.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_section_as_ctf): Likewise. Use ctf_dict_close, not
ctf_file_close.
gdb/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctfread.c: Change uses of ctf_file_t to ctf_dict_t.
(ctf_fp_info::~ctf_fp_info): Call ctf_dict_close, not ctf_file_close.
include/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-api.h (ctf_file_t): Rename to...
(ctf_dict_t): ... this. Keep ctf_file_t around for compatibility.
(struct ctf_file): Likewise rename to...
(struct ctf_dict): ... this.
(ctf_file_close): Rename to...
(ctf_dict_close): ... this, keeping compatibility function.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this, keeping compatibility function.
All callers adjusted.
* ctf.h: Rename references to ctf_file_t to ctf_dict_t.
(struct ctf_archive) <ctfa_nfiles>: Rename to...
<ctfa_ndicts>: ... this.
ld/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ldlang.c (ctf_output): This is a ctf_dict_t now.
(lang_ctf_errs_warnings): Rename ctf_file_t to ctf_dict_t.
(ldlang_open_ctf): Adjust comment.
(lang_merge_ctf): Use ctf_dict_close, not ctf_file_close.
* ldelfgen.h (ldelf_examine_strtab_for_ctf): Rename ctf_file_t to
ctf_dict_t. Change opaque declaration accordingly.
* ldelfgen.c (ldelf_examine_strtab_for_ctf): Adjust.
* ldemul.h (examine_strtab_for_ctf): Likewise.
(ldemul_examine_strtab_for_ctf): Likewise.
* ldeuml.c (ldemul_examine_strtab_for_ctf): Likewise.
libctf/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h: Rename ctf_file_t to ctf_dict_t: all declarations
adjusted.
(ctf_fileops): Rename to...
(ctf_dictops): ... this.
(ctf_dedup_t) <cd_id_to_file_t>: Rename to...
<cd_id_to_dict_t>: ... this.
(ctf_file_t): Fix outdated comment.
<ctf_fileops>: Rename to...
<ctf_dictops>: ... this.
(struct ctf_archive_internal) <ctfi_file>: Rename to...
<ctfi_dict>: ... this.
* ctf-archive.c: Rename ctf_file_t to ctf_dict_t.
Rename ctf_archive.ctfa_nfiles to ctfa_ndicts.
Rename ctf_file_close to ctf_dict_close. All users adjusted.
* ctf-create.c: Likewise. Refer to CTF dicts, not CTF containers.
(ctf_bundle_t) <ctb_file>: Rename to...
<ctb_dict): ... this.
* ctf-decl.c: Rename ctf_file_t to ctf_dict_t.
* ctf-dedup.c: Likewise. Rename ctf_file_close to
ctf_dict_close. Refer to CTF dicts, not CTF containers.
* ctf-dump.c: Likewise.
* ctf-error.c: Likewise.
* ctf-hash.c: Likewise.
* ctf-inlines.h: Likewise.
* ctf-labels.c: Likewise.
* ctf-link.c: Likewise.
* ctf-lookup.c: Likewise.
* ctf-open-bfd.c: Likewise.
* ctf-string.c: Likewise.
* ctf-subr.c: Likewise.
* ctf-types.c: Likewise.
* ctf-util.c: Likewise.
* ctf-open.c: Likewise.
(ctf_file_close): Rename to...
(ctf_dict_close): ...this.
(ctf_file_close): New trivial wrapper around ctf_dict_close, for
compatibility.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this.
(ctf_parent_file): New trivial wrapper around ctf_parent_dict, for
compatibility.
* libctf.ver: Add ctf_dict_close and ctf_parent_dict.
2020-11-20 21:34:04 +08:00
|
|
|
struct ctf_dict *ctf_parent; /* Parent CTF dict (if any). */
|
libctf: sort out potential refcount loops
When you link TUs that contain conflicting types together, the resulting
CTF section is an archive containing many CTF dicts. These dicts appear
in ctf_link_outputs of the shared dict, with each ctf_import'ing that
shared dict. ctf_importing a dict bumps its refcount to stop it going
away while it's in use -- but if the shared dict (whose refcount is
bumped) has the child dict (doing the bumping) in its ctf_link_outputs,
we have a refcount loop, since the child dict only un-ctf_imports and
drops the parent's refcount when it is freed, but the child is only
freed when the parent's refcount falls to zero.
(In the future, this will be able to go wrong on the inputs too, when an
ld -r'ed deduplicated output with conflicts is relinked. Right now this
cannot happen because we don't ctf_import such dicts at all. This will
be fixed in a later commit in this series.)
Fix this by introducing an internal-use-only ctf_import_unref function
that imports a parent dict *witthout* bumping the parent's refcount, and
using it when we create per-CU outputs. This function is only safe to
use if you know the parent cannot go away while the child exists: but if
the parent *owns* the child, as here, this is necessarily true.
Record in the ctf_file_t whether a parent was imported via ctf_import or
ctf_import_unref, so that if you do another ctf_import later on (or a
ctf_import_unref) it can decide whether to drop the refcount of the
existing parent being replaced depending on which function you used to
import that one. Adjust ctf_serialize so that rather than doing a
ctf_import (which is wrong if the original import was
ctf_import_unref'fed), we just copy the parent field and refcount over
and forcibly flip the unref flag on on the old copy we are going to
discard.
ctf_file_close also needs a bit of tweaking to only close the parent if
it was not imported with ctf_import_unref: while we're at it, guard
against repeated closes with a refcount of zero and stop them causing
double-frees, even if destruction of things freed *inside*
ctf_file_close cause such recursion.
Verified no leaks or accesses to freed memory after all of this with
valgrind. (It was leak-happy before.)
libctf/
* ctf-impl.c (ctf_file_t) <ctf_parent_unreffed>: New.
(ctf_import_unref): New.
* ctf-open.c (ctf_file_close) Drop the refcount all the way to
zero. Don't recurse back in if the refcount is already zero.
(ctf_import): Check ctf_parent_unreffed before deciding whether
to close a pre-existing parent. Set it to zero.
(ctf_import_unreffed): New, as above, setting
ctf_parent_unreffed to 1.
* ctf-create.c (ctf_serialize): Do not ctf_import into the new
child: use direct assignment, and set unreffed on the new and
old children.
* ctf-link.c (ctf_create_per_cu): Import the parent using
ctf_import_unreffed.
2020-06-05 00:30:01 +08:00
|
|
|
int ctf_parent_unreffed; /* Parent set by ctf_import_unref? */
|
libctf, include, binutils, gdb, ld: rename ctf_file_t to ctf_dict_t
The naming of the ctf_file_t type in libctf is a historical curiosity.
Back in the Solaris days, CTF dictionaries were originally generated as
a separate file and then (sometimes) merged into objects: hence the
datatype was named ctf_file_t, and known as a "CTF file". Nowadays, raw
CTF is essentially never written to a file on its own, and the datatype
changed name to a "CTF dictionary" years ago. So the term "CTF file"
refers to something that is never a file! This is at best confusing.
The type has also historically been known as a 'CTF container", which is
even more confusing now that we have CTF archives which are *also* a
sort of container (they contain CTF dictionaries), but which are never
referred to as containers in the source code.
So fix this by completing the renaming, renaming ctf_file_t to
ctf_dict_t throughout, and renaming those few functions that refer to
CTF files by name (keeping compatibility aliases) to refer to dicts
instead. Old users who still refer to ctf_file_t will see (harmless)
pointer-compatibility warnings at compile time, but the ABI is unchanged
(since C doesn't mangle names, and ctf_file_t was always an opaque type)
and things will still compile fine as long as -Werror is not specified.
All references to CTF containers and CTF files in the source code are
fixed to refer to CTF dicts instead.
Further (smaller) renamings of annoyingly-named functions to come, as
part of the process of souping up queries across whole archives at once
(needed for the function info and data object sections).
binutils/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* objdump.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_ctf): Likewise. Use ctf_dict_close, not ctf_file_close.
* readelf.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_section_as_ctf): Likewise. Use ctf_dict_close, not
ctf_file_close.
gdb/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctfread.c: Change uses of ctf_file_t to ctf_dict_t.
(ctf_fp_info::~ctf_fp_info): Call ctf_dict_close, not ctf_file_close.
include/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-api.h (ctf_file_t): Rename to...
(ctf_dict_t): ... this. Keep ctf_file_t around for compatibility.
(struct ctf_file): Likewise rename to...
(struct ctf_dict): ... this.
(ctf_file_close): Rename to...
(ctf_dict_close): ... this, keeping compatibility function.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this, keeping compatibility function.
All callers adjusted.
* ctf.h: Rename references to ctf_file_t to ctf_dict_t.
(struct ctf_archive) <ctfa_nfiles>: Rename to...
<ctfa_ndicts>: ... this.
ld/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ldlang.c (ctf_output): This is a ctf_dict_t now.
(lang_ctf_errs_warnings): Rename ctf_file_t to ctf_dict_t.
(ldlang_open_ctf): Adjust comment.
(lang_merge_ctf): Use ctf_dict_close, not ctf_file_close.
* ldelfgen.h (ldelf_examine_strtab_for_ctf): Rename ctf_file_t to
ctf_dict_t. Change opaque declaration accordingly.
* ldelfgen.c (ldelf_examine_strtab_for_ctf): Adjust.
* ldemul.h (examine_strtab_for_ctf): Likewise.
(ldemul_examine_strtab_for_ctf): Likewise.
* ldeuml.c (ldemul_examine_strtab_for_ctf): Likewise.
libctf/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h: Rename ctf_file_t to ctf_dict_t: all declarations
adjusted.
(ctf_fileops): Rename to...
(ctf_dictops): ... this.
(ctf_dedup_t) <cd_id_to_file_t>: Rename to...
<cd_id_to_dict_t>: ... this.
(ctf_file_t): Fix outdated comment.
<ctf_fileops>: Rename to...
<ctf_dictops>: ... this.
(struct ctf_archive_internal) <ctfi_file>: Rename to...
<ctfi_dict>: ... this.
* ctf-archive.c: Rename ctf_file_t to ctf_dict_t.
Rename ctf_archive.ctfa_nfiles to ctfa_ndicts.
Rename ctf_file_close to ctf_dict_close. All users adjusted.
* ctf-create.c: Likewise. Refer to CTF dicts, not CTF containers.
(ctf_bundle_t) <ctb_file>: Rename to...
<ctb_dict): ... this.
* ctf-decl.c: Rename ctf_file_t to ctf_dict_t.
* ctf-dedup.c: Likewise. Rename ctf_file_close to
ctf_dict_close. Refer to CTF dicts, not CTF containers.
* ctf-dump.c: Likewise.
* ctf-error.c: Likewise.
* ctf-hash.c: Likewise.
* ctf-inlines.h: Likewise.
* ctf-labels.c: Likewise.
* ctf-link.c: Likewise.
* ctf-lookup.c: Likewise.
* ctf-open-bfd.c: Likewise.
* ctf-string.c: Likewise.
* ctf-subr.c: Likewise.
* ctf-types.c: Likewise.
* ctf-util.c: Likewise.
* ctf-open.c: Likewise.
(ctf_file_close): Rename to...
(ctf_dict_close): ...this.
(ctf_file_close): New trivial wrapper around ctf_dict_close, for
compatibility.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this.
(ctf_parent_file): New trivial wrapper around ctf_parent_dict, for
compatibility.
* libctf.ver: Add ctf_dict_close and ctf_parent_dict.
2020-11-20 21:34:04 +08:00
|
|
|
const char *ctf_parlabel; /* Label in parent dict (if any). */
|
2019-04-24 05:24:13 +08:00
|
|
|
const char *ctf_parname; /* Basename of parent (if any). */
|
|
|
|
char *ctf_dynparname; /* Dynamically allocated name of parent. */
|
|
|
|
uint32_t ctf_parmax; /* Highest type ID of a parent type. */
|
|
|
|
uint32_t ctf_refcnt; /* Reference count (for parent links). */
|
|
|
|
uint32_t ctf_flags; /* Libctf flags (see below). */
|
|
|
|
int ctf_errno; /* Error code for most recent error. */
|
|
|
|
int ctf_version; /* CTF data version. */
|
|
|
|
ctf_dynhash_t *ctf_dthash; /* Hash of dynamic type definitions. */
|
|
|
|
ctf_list_t ctf_dtdefs; /* List of dynamic type definitions. */
|
|
|
|
ctf_dynhash_t *ctf_dvhash; /* Hash of dynamic variable mappings. */
|
|
|
|
ctf_list_t ctf_dvdefs; /* List of dynamic variable definitions. */
|
|
|
|
unsigned long ctf_dtoldid; /* Oldest id that has been committed. */
|
|
|
|
unsigned long ctf_snapshots; /* ctf_snapshot() plus ctf_update() count. */
|
|
|
|
unsigned long ctf_snapshot_lu; /* ctf_snapshot() call count at last update. */
|
libctf, include, binutils, gdb, ld: rename ctf_file_t to ctf_dict_t
The naming of the ctf_file_t type in libctf is a historical curiosity.
Back in the Solaris days, CTF dictionaries were originally generated as
a separate file and then (sometimes) merged into objects: hence the
datatype was named ctf_file_t, and known as a "CTF file". Nowadays, raw
CTF is essentially never written to a file on its own, and the datatype
changed name to a "CTF dictionary" years ago. So the term "CTF file"
refers to something that is never a file! This is at best confusing.
The type has also historically been known as a 'CTF container", which is
even more confusing now that we have CTF archives which are *also* a
sort of container (they contain CTF dictionaries), but which are never
referred to as containers in the source code.
So fix this by completing the renaming, renaming ctf_file_t to
ctf_dict_t throughout, and renaming those few functions that refer to
CTF files by name (keeping compatibility aliases) to refer to dicts
instead. Old users who still refer to ctf_file_t will see (harmless)
pointer-compatibility warnings at compile time, but the ABI is unchanged
(since C doesn't mangle names, and ctf_file_t was always an opaque type)
and things will still compile fine as long as -Werror is not specified.
All references to CTF containers and CTF files in the source code are
fixed to refer to CTF dicts instead.
Further (smaller) renamings of annoyingly-named functions to come, as
part of the process of souping up queries across whole archives at once
(needed for the function info and data object sections).
binutils/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* objdump.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_ctf): Likewise. Use ctf_dict_close, not ctf_file_close.
* readelf.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_section_as_ctf): Likewise. Use ctf_dict_close, not
ctf_file_close.
gdb/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctfread.c: Change uses of ctf_file_t to ctf_dict_t.
(ctf_fp_info::~ctf_fp_info): Call ctf_dict_close, not ctf_file_close.
include/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-api.h (ctf_file_t): Rename to...
(ctf_dict_t): ... this. Keep ctf_file_t around for compatibility.
(struct ctf_file): Likewise rename to...
(struct ctf_dict): ... this.
(ctf_file_close): Rename to...
(ctf_dict_close): ... this, keeping compatibility function.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this, keeping compatibility function.
All callers adjusted.
* ctf.h: Rename references to ctf_file_t to ctf_dict_t.
(struct ctf_archive) <ctfa_nfiles>: Rename to...
<ctfa_ndicts>: ... this.
ld/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ldlang.c (ctf_output): This is a ctf_dict_t now.
(lang_ctf_errs_warnings): Rename ctf_file_t to ctf_dict_t.
(ldlang_open_ctf): Adjust comment.
(lang_merge_ctf): Use ctf_dict_close, not ctf_file_close.
* ldelfgen.h (ldelf_examine_strtab_for_ctf): Rename ctf_file_t to
ctf_dict_t. Change opaque declaration accordingly.
* ldelfgen.c (ldelf_examine_strtab_for_ctf): Adjust.
* ldemul.h (examine_strtab_for_ctf): Likewise.
(ldemul_examine_strtab_for_ctf): Likewise.
* ldeuml.c (ldemul_examine_strtab_for_ctf): Likewise.
libctf/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h: Rename ctf_file_t to ctf_dict_t: all declarations
adjusted.
(ctf_fileops): Rename to...
(ctf_dictops): ... this.
(ctf_dedup_t) <cd_id_to_file_t>: Rename to...
<cd_id_to_dict_t>: ... this.
(ctf_file_t): Fix outdated comment.
<ctf_fileops>: Rename to...
<ctf_dictops>: ... this.
(struct ctf_archive_internal) <ctfi_file>: Rename to...
<ctfi_dict>: ... this.
* ctf-archive.c: Rename ctf_file_t to ctf_dict_t.
Rename ctf_archive.ctfa_nfiles to ctfa_ndicts.
Rename ctf_file_close to ctf_dict_close. All users adjusted.
* ctf-create.c: Likewise. Refer to CTF dicts, not CTF containers.
(ctf_bundle_t) <ctb_file>: Rename to...
<ctb_dict): ... this.
* ctf-decl.c: Rename ctf_file_t to ctf_dict_t.
* ctf-dedup.c: Likewise. Rename ctf_file_close to
ctf_dict_close. Refer to CTF dicts, not CTF containers.
* ctf-dump.c: Likewise.
* ctf-error.c: Likewise.
* ctf-hash.c: Likewise.
* ctf-inlines.h: Likewise.
* ctf-labels.c: Likewise.
* ctf-link.c: Likewise.
* ctf-lookup.c: Likewise.
* ctf-open-bfd.c: Likewise.
* ctf-string.c: Likewise.
* ctf-subr.c: Likewise.
* ctf-types.c: Likewise.
* ctf-util.c: Likewise.
* ctf-open.c: Likewise.
(ctf_file_close): Rename to...
(ctf_dict_close): ...this.
(ctf_file_close): New trivial wrapper around ctf_dict_close, for
compatibility.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this.
(ctf_parent_file): New trivial wrapper around ctf_parent_dict, for
compatibility.
* libctf.ver: Add ctf_dict_close and ctf_parent_dict.
2020-11-20 21:34:04 +08:00
|
|
|
ctf_archive_t *ctf_archive; /* Archive this ctf_dict_t came from. */
|
libctf, ld, binutils: add textual error/warning reporting for libctf
This commit adds a long-missing piece of infrastructure to libctf: the
ability to report errors and warnings using all the power of printf,
rather than being restricted to one errno value. Internally, libctf
calls ctf_err_warn() to add errors and warnings to a list: a new
iterator ctf_errwarning_next() then consumes this list one by one and
hands it to the caller, which can free it. New errors and warnings are
added until the list is consumed by the caller or the ctf_file_t is
closed, so you can dump them at intervals. The caller can of course
choose to print only those warnings it wants. (I am not sure whether we
want objdump, readelf or ld to print warnings or not: right now I'm
printing them, but maybe we only want to print errors? This entirely
depends on whether warnings are voluminous things describing e.g. the
inability to emit single types because of name clashes or something.
There are no users of this infrastructure yet, so it's hard to say.)
There is no internationalization here yet, but this at least adds a
place where internationalization can be added, to one of
ctf_errwarning_next or ctf_err_warn.
We also provide a new ctf_assert() function which uses this
infrastructure to provide non-fatal assertion failures while emitting an
assert-like string to the caller: to save space and avoid needlessly
duplicating unchanging strings, the assertion test is inlined but the
print-things-out failure case is not. All assertions in libctf will be
converted to use this machinery in future commits and propagate
assertion-failure errors up, so that the linker in particular cannot be
killed by libctf assertion failures when it could perfectly well just
print warnings and drop the CTF section.
include/
* ctf-api.h (ECTF_INTERNAL): Adjust error text.
(ctf_errwarning_next): New.
libctf/
* ctf-impl.h (ctf_assert): New.
(ctf_err_warning_t): Likewise.
(ctf_file_t) <ctf_errs_warnings>: Likewise.
(ctf_err_warn): New prototype.
(ctf_assert_fail_internal): Likewise.
* ctf-inlines.h (ctf_assert_internal): Likewise.
* ctf-open.c (ctf_file_close): Free ctf_errs_warnings.
* ctf-create.c (ctf_serialize): Copy it on serialization.
* ctf-subr.c (ctf_err_warn): New, add an error/warning.
(ctf_errwarning_next): New iterator, free and pass back
errors/warnings in succession.
* libctf.ver (ctf_errwarning_next): Add.
ld/
* ldlang.c (lang_ctf_errs_warnings): New, print CTF errors
and warnings. Assert when libctf asserts.
(lang_merge_ctf): Call it.
(land_write_ctf): Likewise.
binutils/
* objdump.c (ctf_archive_member): Print CTF errors and warnings.
* readelf.c (dump_ctf_archive_member): Likewise.
2020-06-04 22:07:54 +08:00
|
|
|
ctf_list_t ctf_errs_warnings; /* CTF errors and warnings. */
|
libctf: add the ctf_link machinery
This is the start of work on the core of the linking mechanism for CTF
sections. This commit handles the type and string sections.
The linker calls these functions in sequence:
ctf_link_add_ctf: to add each CTF section in the input in turn to a
newly-created ctf_file_t (which will appear in the output, and which
itself will become the shared parent that contains types that all
TUs have in common (in all link modes) and all types that do not
have conflicting definitions between types (by default). Input files
that are themselves products of ld -r are supported, though this is
not heavily tested yet.
ctf_link: called once all input files are added to merge the types in
all the input containers into the output container, eliminating
duplicates.
ctf_link_add_strtab: called once the ELF string table is finalized and
all its offsets are known, this calls a callback provided by the
linker which returns the string content and offset of every string in
the ELF strtab in turn: all these strings which appear in the input
CTF strtab are eliminated from it in favour of the ELF strtab:
equally, any strings that only appear in the input strtab will
reappear in the internal CTF strtab of the output.
ctf_link_shuffle_syms (not yet implemented): called once the ELF symtab
is finalized, this calls a callback provided by the linker which
returns information on every symbol in turn as a ctf_link_sym_t. This
is then used to shuffle the function info and data object sections in
the CTF section into symbol table order, eliminating the index
sections which map those sections to symbol names before that point.
Currently just returns ECTF_NOTYET.
ctf_link_write: Returns a buffer containing either a serialized
ctf_file_t (if there are no types with conflicting definitions in the
object files in the link) or a ctf_archive_t containing a large
ctf_file_t (the common types) and a bunch of small ones named after
individual CUs in which conflicting types are found (containing the
conflicting types, and all types that reference them). A threshold
size above which compression takes place is passed as one parameter.
(Currently, only gzip compression is supported, but I hope to add lzma
as well.)
Lifetime rules for this are simple: don't close the input CTF files
until you've called ctf_link for the last time. We do not assume
that symbols or strings passed in by the callback outlast the
call to ctf_link_add_strtab or ctf_link_shuffle_syms.
Right now, the duplicate elimination mechanism is the one already
present as part of the ctf_add_type function, and is not particularly
good: it misses numerous actual duplicates, and the conflicting-types
detection hardly ever reports that types conflict, even when they do
(one of them just tends to get silently dropped): it is also very slow.
This will all be fixed in the next few weeks, but the fix hardly touches
any of this code, and the linker does work without it, just not as
well as it otherwise might. (And when no CTF section is present,
there is no effect on performance, of course. So only people using
a trunk GCC with not-yet-committed patches will even notice. By the
time it gets upstream, things should be better.)
v3: Fix error handling.
v4: check for strdup failure.
v5: fix tabdamage.
include/
* ctf-api.h (struct ctf_link_sym): New, a symbol in flight to the
libctf linking machinery.
(CTF_LINK_SHARE_UNCONFLICTED): New.
(CTF_LINK_SHARE_DUPLICATED): New.
(ECTF_LINKADDEDLATE): New, replacing ECTF_UNUSED.
(ECTF_NOTYET): New, a 'not yet implemented' message.
(ctf_link_add_ctf): New, add an input file's CTF to the link.
(ctf_link): New, merge the type and string sections.
(ctf_link_strtab_string_f): New, callback for feeding strtab info.
(ctf_link_iter_symbol_f): New, callback for feeding symtab info.
(ctf_link_add_strtab): New, tell the CTF linker about the ELF
strtab's strings.
(ctf_link_shuffle_syms): New, ask the CTF linker to shuffle its
symbols into symtab order.
(ctf_link_write): New, ask the CTF linker to write the CTF out.
libctf/
* ctf-link.c: New file, linking of the string and type sections.
* Makefile.am (libctf_a_SOURCES): Add it.
* Makefile.in: Regenerate.
* ctf-impl.h (ctf_file_t): New fields ctf_link_inputs,
ctf_link_outputs.
* ctf-create.c (ctf_update): Update accordingly.
* ctf-open.c (ctf_file_close): Likewise.
* ctf-error.c (_ctf_errlist): Updated with new errors.
2019-07-14 04:06:55 +08:00
|
|
|
ctf_dynhash_t *ctf_link_inputs; /* Inputs to this link. */
|
|
|
|
ctf_dynhash_t *ctf_link_outputs; /* Additional outputs from this link. */
|
libctf, link: redo cu-mapping handling
Now a bunch of stuff that doesn't apply to ld or any normal use of
libctf, piled into one commit so that it's easier to ignore.
The cu-mapping machinery associates incoming compilation unit names with
outgoing names of CTF dictionaries that should correspond to them, for
non-gdb CTF consumers that would like to group multiple TUs into a
single child dict if conflicting types are found in it (the existing use
case is one kernel module, one child CTF dict, even if the kernel module
is composed of multiple CUs).
The upcoming deduplicator needs to track not only the mapping from
incoming CU name to outgoing dict name, but the inverse mapping from
outgoing dict name to incoming CU name, so it can work over every CTF
dict we might see in the output and link into it.
So rejig the ctf-link machinery to do that. Simultaneously (because
they are closely associated and were written at the same time), we add a
new CTF_LINK_EMPTY_CU_MAPPINGS flag to ctf_link, which tells the
ctf_link machinery to create empty child dicts for each outgoing CU
mapping even if no CUs that correspond to it exist in the link. This is
a bit (OK, quite a lot) of a waste of space, but some existing consumers
require it. (Nobody else should use it.)
Its value is not consecutive with existing CTF_LINK flag values because
we're about to add more flags that are conceptually closer to the
existing ones than this one is.
include/
* ctf-api.h (CTF_LINK_EMPTY_CU_MAPPINGS): New.
libctf/
* ctf-impl.h (ctf_file_t): Improve comments.
<ctf_link_cu_mapping>: Split into...
<ctf_link_in_cu_mapping>: ... this...
<ctf_link_out_cu_mapping>: ... and this.
* ctf-create.c (ctf_serialize): Adjust.
* ctf-open.c (ctf_file_close): Likewise.
* ctf-link.c (ctf_create_per_cu): Look things up in the
in_cu_mapping instead of the cu_mapping.
(ctf_link_add_cu_mapping): The deduplicating link will define
what happens if many FROMs share a TO.
(ctf_link_add_cu_mapping): Create in_cu_mapping and
out_cu_mapping. Do not create ctf_link_outputs here any more, or
create per-CU dicts here: they are already created when needed.
(ctf_link_one_variable): Log a debug message if we skip a
variable due to its type being concealed in a CU-mapped link.
(This is probably too common a case to make into a warning.)
(ctf_link): Create empty per-CU dicts if requested.
2020-06-06 00:36:16 +08:00
|
|
|
|
libctf: add a deduplicator-specific type mapping table
When CTF linking is done, the linker has to track the association
between types in the inputs and types in the outputs. The deduplicator
does this via the cd_output_emission_hashes, which maps from hashes of
types (valid in both the input and output) to the IDs of types in the
specific dict in which the cd_emission_hashes is held. However, the
nondeduplicating linker and ctf_add_type used a different mechanism, a
dedicated hashtab stored in the ctf_link_type_mapping, populated via
ctf_add_type_mapping and queried via the ctf_type_mapping function. To
allow the same functions to be used for variable and symbol population
in both the deduplicating and nondeduplicating linker, the deduplicator
carefully transferred all its input->output mappings into this hashtab
before returning.
This is *expensive*. The number of entries in this hashtab scales as the
number of input types, and unlike the hashing machinery the type mapping
machinery (the only other thing which scales that way) has not been much
optimized.
Now the nondeduplicating linker is gone, we can throw this out, move
the existing type mapping machinery to ctf-create.c and dedicate it to
ctf_add_type alone, and add a new function ctf_dedup_type_mapping which
uses the deduplicator's built-in knowledge of type mappings directly,
without requiring an expensive repopulation phase.
This speeds up a test link of nouveau.ko (a good worst-case candidate
with a lot of types in each of a lot of input files) from 9.11s to 7.15s
in my testing, a speedup of over 20%.
libctf/ChangeLog
2021-03-02 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h (ctf_dict_t) <ctf_link_type_mapping>: No longer used
by the nondeduplicating linker.
(ctf_add_type_mapping): Removed, now static.
(ctf_type_mapping): Likewise.
(ctf_dedup_type_mapping): New.
(ctf_dedup_t) <cd_input_nums>: New.
* ctf-dedup.c (ctf_dedup_init): Populate it.
(ctf_dedup_fini): Free it again. Emphasise that this has to be
the last thing called.
(ctf_dedup): Populate it.
(ctf_dedup_populate_type_mapping): Removed.
(ctf_dedup_populate_type_mappings): Likewise.
(ctf_dedup_emit): No longer call it. No longer call
ctf_dedup_fini either.
(ctf_dedup_type_mapping): New.
* ctf-link.c (ctf_unnamed_cuname): New.
(ctf_create_per_cu): Arguments must be non-null now.
(ctf_in_member_cb_arg): Removed.
(ctf_link): No longer populate it. No longer discard the
mapping table.
(ctf_link_deduplicating_one_symtypetab): Use
ctf_dedup_type_mapping, not ctf_type_mapping. Use
ctf_unnamed_cuname.
(ctf_link_one_variable): Likewise. Pass in args individually: no
longer a ctf_variable_iter callback.
(empty_link_type_mapping): Removed.
(ctf_link_deduplicating_variables): Use ctf_variable_next, not
ctf_variable_iter. No longer pack arguments to
ctf_link_one_variable into a struct.
(ctf_link_deduplicating_per_cu): Call ctf_dedup_fini once
all link phases are done.
(ctf_link_deduplicating): Likewise.
(ctf_link_intern_extern_string): Improve comment.
(ctf_add_type_mapping): Migrate...
(ctf_type_mapping): ... these functions...
* ctf-create.c (ctf_add_type_mapping): ... here...
(ctf_type_mapping): ... and make static, for the sole use of
ctf_add_type.
2021-03-02 23:10:05 +08:00
|
|
|
/* Map input types to output types for ctf_add_type. Key is a
|
|
|
|
ctf_link_type_key_t: value is a type ID. */
|
libctf, link: redo cu-mapping handling
Now a bunch of stuff that doesn't apply to ld or any normal use of
libctf, piled into one commit so that it's easier to ignore.
The cu-mapping machinery associates incoming compilation unit names with
outgoing names of CTF dictionaries that should correspond to them, for
non-gdb CTF consumers that would like to group multiple TUs into a
single child dict if conflicting types are found in it (the existing use
case is one kernel module, one child CTF dict, even if the kernel module
is composed of multiple CUs).
The upcoming deduplicator needs to track not only the mapping from
incoming CU name to outgoing dict name, but the inverse mapping from
outgoing dict name to incoming CU name, so it can work over every CTF
dict we might see in the output and link into it.
So rejig the ctf-link machinery to do that. Simultaneously (because
they are closely associated and were written at the same time), we add a
new CTF_LINK_EMPTY_CU_MAPPINGS flag to ctf_link, which tells the
ctf_link machinery to create empty child dicts for each outgoing CU
mapping even if no CUs that correspond to it exist in the link. This is
a bit (OK, quite a lot) of a waste of space, but some existing consumers
require it. (Nobody else should use it.)
Its value is not consecutive with existing CTF_LINK flag values because
we're about to add more flags that are conceptually closer to the
existing ones than this one is.
include/
* ctf-api.h (CTF_LINK_EMPTY_CU_MAPPINGS): New.
libctf/
* ctf-impl.h (ctf_file_t): Improve comments.
<ctf_link_cu_mapping>: Split into...
<ctf_link_in_cu_mapping>: ... this...
<ctf_link_out_cu_mapping>: ... and this.
* ctf-create.c (ctf_serialize): Adjust.
* ctf-open.c (ctf_file_close): Likewise.
* ctf-link.c (ctf_create_per_cu): Look things up in the
in_cu_mapping instead of the cu_mapping.
(ctf_link_add_cu_mapping): The deduplicating link will define
what happens if many FROMs share a TO.
(ctf_link_add_cu_mapping): Create in_cu_mapping and
out_cu_mapping. Do not create ctf_link_outputs here any more, or
create per-CU dicts here: they are already created when needed.
(ctf_link_one_variable): Log a debug message if we skip a
variable due to its type being concealed in a CU-mapped link.
(This is probably too common a case to make into a warning.)
(ctf_link): Create empty per-CU dicts if requested.
2020-06-06 00:36:16 +08:00
|
|
|
ctf_dynhash_t *ctf_link_type_mapping;
|
|
|
|
|
|
|
|
/* Map input CU names to output CTF dict names: populated in the top-level
|
|
|
|
output dict.
|
|
|
|
|
|
|
|
Key and value are dynamically-allocated strings. */
|
|
|
|
ctf_dynhash_t *ctf_link_in_cu_mapping;
|
|
|
|
|
|
|
|
/* Map output CTF dict names to input CU names: populated in the top-level
|
|
|
|
output dict. A hash of string to hash (set) of strings. Key and
|
|
|
|
individual value members are shared with ctf_link_in_cu_mapping. */
|
|
|
|
ctf_dynhash_t *ctf_link_out_cu_mapping;
|
|
|
|
|
libctf, ld: fix symtypetab and var section population under ld -r
The variable section in a CTF dict is meant to contain the types of
variables that do not appear in the symbol table (mostly file-scope
static declarations). We implement this by having the compiler emit
all potential data symbols into both sections, then delete those
symbols from the variable section that correspond to data symbols the
linker has reported.
Unfortunately, the check for this in ctf_serialize is wrong: rather than
checking the set of linker-reported symbols, we check the set of names
in the data object symtypetab section: if the linker has reported no
symbols at all (usually if ld -r has been run, or if a non-linker
program that does not use symbol tables is calling ctf_link) this will
include every single symbol, emptying the variable section completely.
Worse, when ld -r is in use, we want to force writeout of every
symtypetab entry on the inputs, in an indexed section, whether or not
the linker has reported them, since this isn't a final link yet and the
symbol table is not finalized (and may grow more symbols than the linker
has yet reported). But the check for this is flawed too: we were
relying on ctf_link_shuffle_syms not having been called if no symbols
exist, but that function is *always* called by ld even when ld -r is in
use: ctf_link_add_linker_symbol is the one that's not called when there
are no symbols.
We clearly need to rethink this. Using the emptiness of the set of
reported symbols as a test for ld -r is just ugly: the linker already
knows if ld -r is underway and can just tell us. So add a new linker
flag CTF_LINK_NO_FILTER_REPORTED_SYMS that is set to stop the linker
filtering the symbols in the symtypetab sections using the set that the
linker has reported: use the presence or absence of this flag to
determine whether to emit unindexed symtabs: we only remove entries from
the variable section when filtering symbols, and we only remove them if
they are in the reported symbol set, fixing the case where no symbols
are reported by the linker at all.
(The negative sense of the new CTF_LINK flag is intentional: the common
case, both for ld and for simple tools that want to do a ctf_link with
no ELF symbol table in sight, is probably to filter out symbols that no
linker has reported: i.e., for the simple tools, all of them.)
There's another wrinkle, though. It is quite possible for a non-linker
to add symbols to a dict via ctf_add_*_sym and then write it out via the
ctf_write APIs: perhaps it's preparing a dict for a later linker
invocation. Right now this would not lead to anything terribly
meaningful happening: ctf_serialize just assumes it was called via
ctf_link if symbols are present. So add an (internal-to-libctf) flag
that indicates that a writeout is happening via ctf_link_write, and set
it there (propagating it to child dicts as needed). ctf_serialize can
then spot when it is not being called by a linker, and arrange to always
write out an indexed, sorted symtypetab for fastest possible future
symbol lookup by name in that case. (The writeouts done by ld -r are
unsorted, because the only thing likely to use those symtabs is the
linker, which doesn't benefit from symtypetab sorting.)
Tests added for all three linking cases (ld -r, ld -shared, ld), with a
bit of testsuite framework enhancement to stop it unconditionally
linking the CTF to be checked by the lookup program with -shared, so
tests can now examine CTF linked with -r or indeed with no flags at all,
though the output filename is still foo.so even in this case.
Another test added for the non-linker case that endeavours to determine
whether the symtypetab is sorted by examining the order of entries
returned from ctf_symbol_next: nobody outside libctf should rely on
this ordering, but this test is not outside libctf :)
include/ChangeLog
2021-01-26 Nick Alcock <nick.alcock@oracle.com>
* ctf-api.h (CTF_LINK_NO_FILTER_REPORTED_SYMS): New.
ld/ChangeLog
2021-01-26 Nick Alcock <nick.alcock@oracle.com>
* ldlang.c (lang_merge_ctf): Set CTF_LINK_NO_FILTER_REPORTED_SYMS
when appropriate.
libctf/ChangeLog
2021-01-27 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.c (_libctf_nonnull_): Add parameters.
(LCTF_LINKING): New flag.
(ctf_dict_t) <ctf_link_flags>: Mention it.
* ctf-link.c (ctf_link): Keep LCTF_LINKING set across call.
(ctf_write): Likewise, including in child dictionaries.
(ctf_link_shuffle_syms): Make sure ctf_dynsyms is NULL if there
are no reported symbols.
* ctf-create.c (symtypetab_delete_nonstatic_vars): Make sure
the variable has been reported as a symbol by the linker.
(symtypetab_skippable): Mention relationship between SYMFP and the
flags.
(symtypetab_density): Adjust nonnullity. Exit early if no symbols
were reported and force-indexing is off (i.e., we are doing a
final link).
(ctf_serialize): Handle the !LCTF_LINKING case by writing out an
indexed, sorted symtypetab (and allow SYMFP to be NULL in this
case). Turn sorting off if this is a non-final link. Only delete
nonstatic vars if we are filtering symbols and the linker has
reported some.
* testsuite/libctf-regression/nonstatic-var-section-ld-r*:
New test of variable and symtypetab section population when
ld -r is used.
* testsuite/libctf-regression/nonstatic-var-section-ld-executable.lk:
Likewise, when ld of an executable is used.
* testsuite/libctf-regression/nonstatic-var-section-ld.lk:
Likewise, when ld -shared alone is used.
* testsuite/libctf-regression/nonstatic-var-section-ld*.c:
Lookup programs for the above.
* testsuite/libctf-writable/symtypetab-nonlinker-writeout.*: New
test, testing survival of symbols across ctf_write paths.
* testsuite/lib/ctf-lib.exp (run_lookup_test): New option,
nonshared, suppressing linking of the SOURCE with -shared.
2021-01-17 00:49:29 +08:00
|
|
|
/* CTF linker flags. Set on the parent output dict (the one passed to
|
|
|
|
ctf_link). Only respected when LCTF_LINKING set in ctf_flags. */
|
libctf, link: add lazy linking: clean up input members: err/warn cleanup
This rather large and intertwined pile of changes does three things:
First, it transitions from dprintf to ctf_err_warn for things the user might
care about: this one file is the major impetus for the ctf_err_warn
infrastructure, because things like file names are crucial in linker
error messages, and errno values are utterly incapable of
communicating them
Second, it stabilizes the ctf_link APIs: you can now call
ctf_link_add_ctf without a CTF argument (only a NAME), to lazily
ctf_open the file with the given NAME when needed, and close it as soon
as possible, to save memory. This is not an API change because a null
CTF argument was prohibited before now.
Since getting CTF directly from files uses ctf_open, passing in only a
NAME requires use of libctf, not libctf-nobfd. The linker's behaviour
is unchanged, as it still passes in a ctf_archive_t as before.
This also let us fix a leak: we were opening ctf_archives and their
containing ctf_files, then only closing the files and leaving the
archives open.
Third, this commit restructures the ctf_link_in_member argument used by
the CTF linking machinery and adjusts its users accordingly.
We drop two members:
- arcname, which is difficult to construct and then only used in error
messages (that were only dprintf()ed, so never seen!)
- share_mode, since we store the flags passed to ctf_link (including the
share mode) in a new ctf_file_t.ctf_link_flags to help dedup get hold
of it
We rename others whose existing names were fairly dreadful:
- done_main_member -> done_parent, using consistent terminology for .ctf
as the parent of all archive members
- main_input_fp -> in_fp_parent, likewise
- file_name -> in_file_name, likewise
We add one new member, cu_mapped.
Finally, we move the various frees of things like mapping table data to
the top-level ctf_link, since deduplicating links will want to do that
too.
include/
* ctf-api.h (ECTF_NEEDSBFD): New.
(ECTF_NERR): Adjust.
(ctf_link): Rename share_mode arg to flags.
libctf/
* Makefile.am: Set -DNOBFD=1 in libctf-nobfd, and =0 elsewhere.
* Makefile.in: Regenerated.
* ctf-impl.h (ctf_link_input_name): New.
(ctf_file_t) <ctf_link_flags>: New.
* ctf-create.c (ctf_serialize): Adjust accordingly.
* ctf-link.c: Define ctf_open as weak when PIC.
(ctf_arc_close_thunk): Remove unnecessary thunk.
(ctf_file_close_thunk): Likewise.
(ctf_link_input_name): New.
(ctf_link_input_t): New value of the ctf_file_t.ctf_link_input.
(ctf_link_input_close): Adjust accordingly.
(ctf_link_add_ctf_internal): New, split from...
(ctf_link_add_ctf): ... here. Return error if lazy loading of
CTF is not possible. Change to just call...
(ctf_link_add): ... this new function.
(ctf_link_add_cu_mapping): Transition to ctf_err_warn. Drop the
ctf_file_close_thunk.
(ctf_link_in_member_cb_arg_t) <file_name> Rename to...
<in_file_name>: ... this.
<arcname>: Drop.
<share_mode>: Likewise (migrated to ctf_link_flags).
<done_main_member>: Rename to...
<done_parent>: ... this.
<main_input_fp>: Rename to...
<in_fp_parent>: ... this.
<cu_mapped>: New.
(ctf_link_one_type): Adjuwt accordingly. Transition to
ctf_err_warn, removing a TODO.
(ctf_link_one_variable): Note a case too common to warn about.
Report in the debug stream if a cu-mapped link prevents addition
of a conflicting variable.
(ctf_link_one_input_archive_member): Adjust.
(ctf_link_lazy_open): New, open a CTF archive for linking when
needed.
(ctf_link_close_one_input_archive): New, close it again.
(ctf_link_one_input_archive): Adjust for lazy opening, member
renames, and ctf_err_warn transition. Move the
empty_link_type_mapping call to...
(ctf_link): ... here. Adjut for renamings and thunk removal.
Don't spuriously fail if some input contains no CTF data.
(ctf_link_write): ctf_err_warn transition.
* libctf.ver: Remove not-yet-stable comment.
2020-06-05 02:28:52 +08:00
|
|
|
int ctf_link_flags;
|
|
|
|
|
libctf, link: redo cu-mapping handling
Now a bunch of stuff that doesn't apply to ld or any normal use of
libctf, piled into one commit so that it's easier to ignore.
The cu-mapping machinery associates incoming compilation unit names with
outgoing names of CTF dictionaries that should correspond to them, for
non-gdb CTF consumers that would like to group multiple TUs into a
single child dict if conflicting types are found in it (the existing use
case is one kernel module, one child CTF dict, even if the kernel module
is composed of multiple CUs).
The upcoming deduplicator needs to track not only the mapping from
incoming CU name to outgoing dict name, but the inverse mapping from
outgoing dict name to incoming CU name, so it can work over every CTF
dict we might see in the output and link into it.
So rejig the ctf-link machinery to do that. Simultaneously (because
they are closely associated and were written at the same time), we add a
new CTF_LINK_EMPTY_CU_MAPPINGS flag to ctf_link, which tells the
ctf_link machinery to create empty child dicts for each outgoing CU
mapping even if no CUs that correspond to it exist in the link. This is
a bit (OK, quite a lot) of a waste of space, but some existing consumers
require it. (Nobody else should use it.)
Its value is not consecutive with existing CTF_LINK flag values because
we're about to add more flags that are conceptually closer to the
existing ones than this one is.
include/
* ctf-api.h (CTF_LINK_EMPTY_CU_MAPPINGS): New.
libctf/
* ctf-impl.h (ctf_file_t): Improve comments.
<ctf_link_cu_mapping>: Split into...
<ctf_link_in_cu_mapping>: ... this...
<ctf_link_out_cu_mapping>: ... and this.
* ctf-create.c (ctf_serialize): Adjust.
* ctf-open.c (ctf_file_close): Likewise.
* ctf-link.c (ctf_create_per_cu): Look things up in the
in_cu_mapping instead of the cu_mapping.
(ctf_link_add_cu_mapping): The deduplicating link will define
what happens if many FROMs share a TO.
(ctf_link_add_cu_mapping): Create in_cu_mapping and
out_cu_mapping. Do not create ctf_link_outputs here any more, or
create per-CU dicts here: they are already created when needed.
(ctf_link_one_variable): Log a debug message if we skip a
variable due to its type being concealed in a CU-mapped link.
(This is probably too common a case to make into a warning.)
(ctf_link): Create empty per-CU dicts if requested.
2020-06-06 00:36:16 +08:00
|
|
|
/* Allow the caller to change the name of link archive members. */
|
libctf: add CU-mapping machinery
Once the deduplicator is capable of actually detecting conflicting types
with the same name (i.e., not yet) we will place such conflicting types,
and types that depend on them, into CTF dictionaries that are the child
of the main dictionary we usually emit: currently, this will lead to the
.ctf section becoming a CTF archive rather than a single dictionary,
with the default-named archive member (_CTF_SECTION, or NULL) being the
main shared dictionary with most of the types in it.
By default, the sections are named after the compilation unit they come
from (complete path and all), with the cuname field in the CTF header
providing further evidence of the name without requiring the caller to
engage in tiresome parsing. But some callers may not wish the mapping
from input CU to output sub-dictionary to be purely CU-based.
The machinery here allows this to be freely changed, in two ways:
- callers can call ctf_link_add_cu_mapping to specify that a single
input compilation unit should have its types placed in some other CU
if they conflict: the CU will always be created, even if empty, so
the consuming program can depend on its existence. You can map
multiple input CUs to one output CU to force all their types to be
merged together: if some of *those* types conflict, the behaviour is
currently unspecified (the new deduplicator will specify it).
- callers can call ctf_link_set_memb_name_changer to provide a function
which is passed every CTF sub-dictionary name in turn (including
_CTF_SECTION) and can return a new name, or NULL if no change is
desired. The mapping from input to output names should not map two
input names to the same output name: if this happens, the two are not
merged but will result in an archive with two members with the same
name (technically valid, but it's hard to access the second
same-named member: you have to do an iteration over archive members).
This is used by the kernel's ctfarchive machinery (not yet upstream) to
encode CTF under member names like {module name}.ctf rather than
.ctf.CU, but it is anticipated that other large projects may wish to
have their own storage for CTF outside of .ctf sections and may wish to
have new naming schemes that suit their special-purpose consumers.
New in v3.
v4: check for strdup failure.
v5: fix tabdamage.
include/
* ctf-api.h (ctf_link_add_cu_mapping): New.
(ctf_link_memb_name_changer_f): New.
(ctf_link_set_memb_name_changer): New.
libctf/
* ctf-impl.h (ctf_file_t) <ctf_link_cu_mappping>: New.
<ctf_link_memb_name_changer>: Likewise.
<ctf_link_memb_name_changer_arg>: Likewise.
* ctf-create.c (ctf_update): Update accordingly.
* ctf-open.c (ctf_file_close): Likewise.
* ctf-link.c (ctf_create_per_cu): Apply the cu mapping.
(ctf_link_add_cu_mapping): New.
(ctf_link_set_memb_name_changer): Likewise.
(ctf_change_parent_name): New.
(ctf_name_list_accum_cb_arg_t) <dynames>: New, storage for names
allocated by the caller's ctf_link_memb_name_changer.
<ndynames>: Likewise.
(ctf_accumulate_archive_names): Call the ctf_link_memb_name_changer.
(ctf_link_write): Likewise (for _CTF_SECTION only): also call
ctf_change_parent_name. Free any resulting names.
2019-07-20 21:44:44 +08:00
|
|
|
ctf_link_memb_name_changer_f *ctf_link_memb_name_changer;
|
2020-06-06 01:15:26 +08:00
|
|
|
void *ctf_link_memb_name_changer_arg; /* Argument for it. */
|
|
|
|
|
|
|
|
/* Allow the caller to filter out variables they don't care about. */
|
|
|
|
ctf_link_variable_filter_f *ctf_link_variable_filter;
|
|
|
|
void *ctf_link_variable_filter_arg; /* Argument for it. */
|
|
|
|
|
libctf: properly handle ctf_add_type of forwards and self-reffing structs
The code to handle structures (and unions) that refer to themselves in
ctf_add_type is extremely dodgy. It works by looking through the list
of not-yet-committed types for a structure with the same name as the
structure in question and assuming, if it finds it, that this must be a
reference to the same type. This is a linear search that gets ever
slower as the dictionary grows, requiring you to call ctf_update at
intervals to keep performance tolerable: but if you do that, you run
into the problem that if a forward declared before the ctf_update is
changed to a structure afterwards, ctf_update explodes.
The last commit fixed most of this: this commit can use it, adding a new
ctf_add_processing hash that tracks source type IDs that are currently
being processed and uses it to avoid infinite recursion rather than the
dynamic type list: we split ctf_add_type into a ctf_add_type_internal,
so that ctf_add_type itself can become a wrapper that empties out this
being-processed hash once the entire recursive type addition is over.
Structure additions themselves avoid adding their dependent types
quite so much by checking the type mapping and avoiding re-adding types
we already know we have added.
We also add support for adding forwards to dictionaries that already
contain the thing they are a forward to: we just silently return the
original type.
v4: return existing struct/union/enum types properly, rather than using
an uninitialized variable: shrinks sizes of CTF sections back down
to roughly where they were in v1/v2 of this patch series.
v5: fix tabdamage.
libctf/
* ctf-impl.h (ctf_file_t) <ctf_add_processing>: New.
* ctf-open.c (ctf_file_close): Free it.
* ctf-create.c (ctf_serialize): Adjust.
(membcmp): When reporting a conflict due to an error, report the
error.
(ctf_add_type): Turn into a ctf_add_processing wrapper. Rename to...
(ctf_add_type_internal): ... this. Hand back types we are already
in the middle of adding immediately. Hand back structs/unions with
the same number of members immediately. Do not walk the dynamic
list. Call ctf_add_type_internal, not ctf_add_type. Handle
forwards promoted to other types and the inverse case identically.
Add structs to the mapping as soon as we intern them, before they
gain any members.
2019-08-08 01:01:08 +08:00
|
|
|
ctf_dynhash_t *ctf_add_processing; /* Types ctf_add_type is working on now. */
|
2020-06-06 01:35:46 +08:00
|
|
|
|
|
|
|
/* Atoms table for dedup string storage. All strings in the ctf_dedup_t are
|
|
|
|
stored here. Only the _alloc copy is allocated or freed: the
|
|
|
|
ctf_dedup_atoms may be pointed to some other CTF dict, to share its atoms.
|
|
|
|
We keep the atoms table outside the ctf_dedup so that atoms can be
|
|
|
|
preserved across multiple similar links, such as when doing cu-mapped
|
|
|
|
links. */
|
|
|
|
ctf_dynset_t *ctf_dedup_atoms;
|
|
|
|
ctf_dynset_t *ctf_dedup_atoms_alloc;
|
|
|
|
|
|
|
|
ctf_dedup_t ctf_dedup; /* Deduplicator state. */
|
|
|
|
|
2019-04-24 05:24:13 +08:00
|
|
|
char *ctf_tmp_typeslice; /* Storage for slicing up type names. */
|
|
|
|
size_t ctf_tmp_typeslicelen; /* Size of the typeslice. */
|
|
|
|
void *ctf_specific; /* Data for ctf_get/setspecific(). */
|
|
|
|
};
|
|
|
|
|
libctf, include, binutils, gdb, ld: rename ctf_file_t to ctf_dict_t
The naming of the ctf_file_t type in libctf is a historical curiosity.
Back in the Solaris days, CTF dictionaries were originally generated as
a separate file and then (sometimes) merged into objects: hence the
datatype was named ctf_file_t, and known as a "CTF file". Nowadays, raw
CTF is essentially never written to a file on its own, and the datatype
changed name to a "CTF dictionary" years ago. So the term "CTF file"
refers to something that is never a file! This is at best confusing.
The type has also historically been known as a 'CTF container", which is
even more confusing now that we have CTF archives which are *also* a
sort of container (they contain CTF dictionaries), but which are never
referred to as containers in the source code.
So fix this by completing the renaming, renaming ctf_file_t to
ctf_dict_t throughout, and renaming those few functions that refer to
CTF files by name (keeping compatibility aliases) to refer to dicts
instead. Old users who still refer to ctf_file_t will see (harmless)
pointer-compatibility warnings at compile time, but the ABI is unchanged
(since C doesn't mangle names, and ctf_file_t was always an opaque type)
and things will still compile fine as long as -Werror is not specified.
All references to CTF containers and CTF files in the source code are
fixed to refer to CTF dicts instead.
Further (smaller) renamings of annoyingly-named functions to come, as
part of the process of souping up queries across whole archives at once
(needed for the function info and data object sections).
binutils/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* objdump.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_ctf): Likewise. Use ctf_dict_close, not ctf_file_close.
* readelf.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_section_as_ctf): Likewise. Use ctf_dict_close, not
ctf_file_close.
gdb/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctfread.c: Change uses of ctf_file_t to ctf_dict_t.
(ctf_fp_info::~ctf_fp_info): Call ctf_dict_close, not ctf_file_close.
include/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-api.h (ctf_file_t): Rename to...
(ctf_dict_t): ... this. Keep ctf_file_t around for compatibility.
(struct ctf_file): Likewise rename to...
(struct ctf_dict): ... this.
(ctf_file_close): Rename to...
(ctf_dict_close): ... this, keeping compatibility function.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this, keeping compatibility function.
All callers adjusted.
* ctf.h: Rename references to ctf_file_t to ctf_dict_t.
(struct ctf_archive) <ctfa_nfiles>: Rename to...
<ctfa_ndicts>: ... this.
ld/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ldlang.c (ctf_output): This is a ctf_dict_t now.
(lang_ctf_errs_warnings): Rename ctf_file_t to ctf_dict_t.
(ldlang_open_ctf): Adjust comment.
(lang_merge_ctf): Use ctf_dict_close, not ctf_file_close.
* ldelfgen.h (ldelf_examine_strtab_for_ctf): Rename ctf_file_t to
ctf_dict_t. Change opaque declaration accordingly.
* ldelfgen.c (ldelf_examine_strtab_for_ctf): Adjust.
* ldemul.h (examine_strtab_for_ctf): Likewise.
(ldemul_examine_strtab_for_ctf): Likewise.
* ldeuml.c (ldemul_examine_strtab_for_ctf): Likewise.
libctf/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h: Rename ctf_file_t to ctf_dict_t: all declarations
adjusted.
(ctf_fileops): Rename to...
(ctf_dictops): ... this.
(ctf_dedup_t) <cd_id_to_file_t>: Rename to...
<cd_id_to_dict_t>: ... this.
(ctf_file_t): Fix outdated comment.
<ctf_fileops>: Rename to...
<ctf_dictops>: ... this.
(struct ctf_archive_internal) <ctfi_file>: Rename to...
<ctfi_dict>: ... this.
* ctf-archive.c: Rename ctf_file_t to ctf_dict_t.
Rename ctf_archive.ctfa_nfiles to ctfa_ndicts.
Rename ctf_file_close to ctf_dict_close. All users adjusted.
* ctf-create.c: Likewise. Refer to CTF dicts, not CTF containers.
(ctf_bundle_t) <ctb_file>: Rename to...
<ctb_dict): ... this.
* ctf-decl.c: Rename ctf_file_t to ctf_dict_t.
* ctf-dedup.c: Likewise. Rename ctf_file_close to
ctf_dict_close. Refer to CTF dicts, not CTF containers.
* ctf-dump.c: Likewise.
* ctf-error.c: Likewise.
* ctf-hash.c: Likewise.
* ctf-inlines.h: Likewise.
* ctf-labels.c: Likewise.
* ctf-link.c: Likewise.
* ctf-lookup.c: Likewise.
* ctf-open-bfd.c: Likewise.
* ctf-string.c: Likewise.
* ctf-subr.c: Likewise.
* ctf-types.c: Likewise.
* ctf-util.c: Likewise.
* ctf-open.c: Likewise.
(ctf_file_close): Rename to...
(ctf_dict_close): ...this.
(ctf_file_close): New trivial wrapper around ctf_dict_close, for
compatibility.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this.
(ctf_parent_file): New trivial wrapper around ctf_parent_dict, for
compatibility.
* libctf.ver: Add ctf_dict_close and ctf_parent_dict.
2020-11-20 21:34:04 +08:00
|
|
|
/* An abstraction over both a ctf_dict_t and a ctf_archive_t. */
|
libctf: mmappable archives
If you need to store a large number of CTF containers somewhere, this
provides a dedicated facility for doing so: an mmappable archive format
like a very simple tar or ar without all the system-dependent format
horrors or need for heavy file copying, with built-in compression of
files above a particular size threshold.
libctf automatically mmap()s uncompressed elements of these archives, or
uncompresses them, as needed. (If the platform does not support mmap(),
copying into dynamically-allocated buffers is used.)
Archive iteration operations are partitioned into raw and non-raw
forms. Raw operations pass thhe raw archive contents to the callback:
non-raw forms open each member with ctf_bufopen() and pass the resulting
ctf_file_t to the iterator instead. This lets you manipulate the raw
data in the archive, or the contents interpreted as a CTF file, as
needed.
It is not yet known whether we will store CTF archives in a linked ELF
object in one of these (akin to debugdata) or whether they'll get one
section per TU plus one parent container for types shared between them.
(In the case of ELF objects with very large numbers of TUs, an archive
of all of them would seem preferable, so we might just use an archive,
and add lzma support so you can assume that .gnu_debugdata and .ctf are
compressed using the same algorithm if both are present.)
To make usage easier, the ctf_archive_t is not the on-disk
representation but an abstraction over both ctf_file_t's and archives of
many ctf_file_t's: users see both CTF archives and raw CTF files as
ctf_archive_t's upon opening, the only difference being that a raw CTF
file has only a single "archive member", named ".ctf" (the default if a
null pointer is passed in as the name). The next commit will make use
of this facility, in addition to providing the public interface to
actually open archives. (In the future, it should be possible to have
all CTF sections in an ELF file appear as an "archive" in the same
fashion.)
This machinery is also used to allow library-internal creators of
ctf_archive_t's (such as the next commit) to stash away an ELF string
and symbol table, so that all opens of members in a given archive will
use them. This lets CTF archives exploit the ELF string and symbol
table just like raw CTF files can.
(All this leads to somewhat confusing type naming. The ctf_archive_t is
a typedef for the opaque internal type, struct ctf_archive_internal: the
non-internal "struct ctf_archive" is the on-disk structure meant for
other libraries manipulating CTF files. It is probably clearest to use
the struct name for struct ctf_archive_internal inside the program, and
the typedef names outside.)
libctf/
* ctf-archive.c: New.
* ctf-impl.h (ctf_archive_internal): New type.
(ctf_arc_open_internal): New declaration.
(ctf_arc_bufopen): Likewise.
(ctf_arc_close_internal): Likewise.
include/
* ctf.h (CTFA_MAGIC): New.
(struct ctf_archive): New.
(struct ctf_archive_modent): Likewise.
* ctf-api.h (ctf_archive_member_f): New.
(ctf_archive_raw_member_f): Likewise.
(ctf_arc_write): Likewise.
(ctf_arc_close): Likewise.
(ctf_arc_open_by_name): Likewise.
(ctf_archive_iter): Likewise.
(ctf_archive_raw_iter): Likewise.
(ctf_get_arc): Likewise.
2019-04-24 18:30:17 +08:00
|
|
|
|
|
|
|
struct ctf_archive_internal
|
|
|
|
{
|
|
|
|
int ctfi_is_archive;
|
2020-06-03 03:55:05 +08:00
|
|
|
int ctfi_unmap_on_close;
|
libctf, include, binutils, gdb, ld: rename ctf_file_t to ctf_dict_t
The naming of the ctf_file_t type in libctf is a historical curiosity.
Back in the Solaris days, CTF dictionaries were originally generated as
a separate file and then (sometimes) merged into objects: hence the
datatype was named ctf_file_t, and known as a "CTF file". Nowadays, raw
CTF is essentially never written to a file on its own, and the datatype
changed name to a "CTF dictionary" years ago. So the term "CTF file"
refers to something that is never a file! This is at best confusing.
The type has also historically been known as a 'CTF container", which is
even more confusing now that we have CTF archives which are *also* a
sort of container (they contain CTF dictionaries), but which are never
referred to as containers in the source code.
So fix this by completing the renaming, renaming ctf_file_t to
ctf_dict_t throughout, and renaming those few functions that refer to
CTF files by name (keeping compatibility aliases) to refer to dicts
instead. Old users who still refer to ctf_file_t will see (harmless)
pointer-compatibility warnings at compile time, but the ABI is unchanged
(since C doesn't mangle names, and ctf_file_t was always an opaque type)
and things will still compile fine as long as -Werror is not specified.
All references to CTF containers and CTF files in the source code are
fixed to refer to CTF dicts instead.
Further (smaller) renamings of annoyingly-named functions to come, as
part of the process of souping up queries across whole archives at once
(needed for the function info and data object sections).
binutils/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* objdump.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_ctf): Likewise. Use ctf_dict_close, not ctf_file_close.
* readelf.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_section_as_ctf): Likewise. Use ctf_dict_close, not
ctf_file_close.
gdb/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctfread.c: Change uses of ctf_file_t to ctf_dict_t.
(ctf_fp_info::~ctf_fp_info): Call ctf_dict_close, not ctf_file_close.
include/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-api.h (ctf_file_t): Rename to...
(ctf_dict_t): ... this. Keep ctf_file_t around for compatibility.
(struct ctf_file): Likewise rename to...
(struct ctf_dict): ... this.
(ctf_file_close): Rename to...
(ctf_dict_close): ... this, keeping compatibility function.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this, keeping compatibility function.
All callers adjusted.
* ctf.h: Rename references to ctf_file_t to ctf_dict_t.
(struct ctf_archive) <ctfa_nfiles>: Rename to...
<ctfa_ndicts>: ... this.
ld/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ldlang.c (ctf_output): This is a ctf_dict_t now.
(lang_ctf_errs_warnings): Rename ctf_file_t to ctf_dict_t.
(ldlang_open_ctf): Adjust comment.
(lang_merge_ctf): Use ctf_dict_close, not ctf_file_close.
* ldelfgen.h (ldelf_examine_strtab_for_ctf): Rename ctf_file_t to
ctf_dict_t. Change opaque declaration accordingly.
* ldelfgen.c (ldelf_examine_strtab_for_ctf): Adjust.
* ldemul.h (examine_strtab_for_ctf): Likewise.
(ldemul_examine_strtab_for_ctf): Likewise.
* ldeuml.c (ldemul_examine_strtab_for_ctf): Likewise.
libctf/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h: Rename ctf_file_t to ctf_dict_t: all declarations
adjusted.
(ctf_fileops): Rename to...
(ctf_dictops): ... this.
(ctf_dedup_t) <cd_id_to_file_t>: Rename to...
<cd_id_to_dict_t>: ... this.
(ctf_file_t): Fix outdated comment.
<ctf_fileops>: Rename to...
<ctf_dictops>: ... this.
(struct ctf_archive_internal) <ctfi_file>: Rename to...
<ctfi_dict>: ... this.
* ctf-archive.c: Rename ctf_file_t to ctf_dict_t.
Rename ctf_archive.ctfa_nfiles to ctfa_ndicts.
Rename ctf_file_close to ctf_dict_close. All users adjusted.
* ctf-create.c: Likewise. Refer to CTF dicts, not CTF containers.
(ctf_bundle_t) <ctb_file>: Rename to...
<ctb_dict): ... this.
* ctf-decl.c: Rename ctf_file_t to ctf_dict_t.
* ctf-dedup.c: Likewise. Rename ctf_file_close to
ctf_dict_close. Refer to CTF dicts, not CTF containers.
* ctf-dump.c: Likewise.
* ctf-error.c: Likewise.
* ctf-hash.c: Likewise.
* ctf-inlines.h: Likewise.
* ctf-labels.c: Likewise.
* ctf-link.c: Likewise.
* ctf-lookup.c: Likewise.
* ctf-open-bfd.c: Likewise.
* ctf-string.c: Likewise.
* ctf-subr.c: Likewise.
* ctf-types.c: Likewise.
* ctf-util.c: Likewise.
* ctf-open.c: Likewise.
(ctf_file_close): Rename to...
(ctf_dict_close): ...this.
(ctf_file_close): New trivial wrapper around ctf_dict_close, for
compatibility.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this.
(ctf_parent_file): New trivial wrapper around ctf_parent_dict, for
compatibility.
* libctf.ver: Add ctf_dict_close and ctf_parent_dict.
2020-11-20 21:34:04 +08:00
|
|
|
ctf_dict_t *ctfi_dict;
|
libctf: mmappable archives
If you need to store a large number of CTF containers somewhere, this
provides a dedicated facility for doing so: an mmappable archive format
like a very simple tar or ar without all the system-dependent format
horrors or need for heavy file copying, with built-in compression of
files above a particular size threshold.
libctf automatically mmap()s uncompressed elements of these archives, or
uncompresses them, as needed. (If the platform does not support mmap(),
copying into dynamically-allocated buffers is used.)
Archive iteration operations are partitioned into raw and non-raw
forms. Raw operations pass thhe raw archive contents to the callback:
non-raw forms open each member with ctf_bufopen() and pass the resulting
ctf_file_t to the iterator instead. This lets you manipulate the raw
data in the archive, or the contents interpreted as a CTF file, as
needed.
It is not yet known whether we will store CTF archives in a linked ELF
object in one of these (akin to debugdata) or whether they'll get one
section per TU plus one parent container for types shared between them.
(In the case of ELF objects with very large numbers of TUs, an archive
of all of them would seem preferable, so we might just use an archive,
and add lzma support so you can assume that .gnu_debugdata and .ctf are
compressed using the same algorithm if both are present.)
To make usage easier, the ctf_archive_t is not the on-disk
representation but an abstraction over both ctf_file_t's and archives of
many ctf_file_t's: users see both CTF archives and raw CTF files as
ctf_archive_t's upon opening, the only difference being that a raw CTF
file has only a single "archive member", named ".ctf" (the default if a
null pointer is passed in as the name). The next commit will make use
of this facility, in addition to providing the public interface to
actually open archives. (In the future, it should be possible to have
all CTF sections in an ELF file appear as an "archive" in the same
fashion.)
This machinery is also used to allow library-internal creators of
ctf_archive_t's (such as the next commit) to stash away an ELF string
and symbol table, so that all opens of members in a given archive will
use them. This lets CTF archives exploit the ELF string and symbol
table just like raw CTF files can.
(All this leads to somewhat confusing type naming. The ctf_archive_t is
a typedef for the opaque internal type, struct ctf_archive_internal: the
non-internal "struct ctf_archive" is the on-disk structure meant for
other libraries manipulating CTF files. It is probably clearest to use
the struct name for struct ctf_archive_internal inside the program, and
the typedef names outside.)
libctf/
* ctf-archive.c: New.
* ctf-impl.h (ctf_archive_internal): New type.
(ctf_arc_open_internal): New declaration.
(ctf_arc_bufopen): Likewise.
(ctf_arc_close_internal): Likewise.
include/
* ctf.h (CTFA_MAGIC): New.
(struct ctf_archive): New.
(struct ctf_archive_modent): Likewise.
* ctf-api.h (ctf_archive_member_f): New.
(ctf_archive_raw_member_f): Likewise.
(ctf_arc_write): Likewise.
(ctf_arc_close): Likewise.
(ctf_arc_open_by_name): Likewise.
(ctf_archive_iter): Likewise.
(ctf_archive_raw_iter): Likewise.
(ctf_get_arc): Likewise.
2019-04-24 18:30:17 +08:00
|
|
|
struct ctf_archive *ctfi_archive;
|
libctf, include: CTF-archive-wide symbol lookup
CTF archives may contain multiple dicts, each of which contain many
types and possibly a bunch of symtypetab entries relating to those
types: each symtypetab entry is going to appear in exactly one dict,
with the corresponding entries in the other dicts empty (either pads, or
indexed symtypetabs that do not mention that symbol). But users of
libctf usually want to get back the type associated with a symbol
without having to dig around to find out which dict that type might be
in.
This adds machinery to do that -- and since you probably want to do it
repeatedly, it adds internal caching to the ctf-archive machinery so
that iteration over archives via ctf_archive_next and repeated symbol
lookups do not have to repeatedly reopen the archive. (Iteration using
ctf_archive_iter will gain caching soon.)
Two new API functions:
ctf_dict_t *
ctf_arc_lookup_symbol (ctf_archive_t *arc, unsigned long symidx,
ctf_id_t *typep, int *errp);
This looks up the symbol with index SYMIDX in the archive ARC, returning
the dictionary in which it resides and optionally the type index as
well. Errors are returned in ERRP. The dict should be
ctf_dict_close()d when done, but is also cached inside the ctf_archive
so that the open cost is only paid once. The result of the symbol
lookup is also cached internally, so repeated lookups of the same symbol
are nearly free.
void ctf_arc_flush_caches (ctf_archive_t *arc);
Flush all the caches. Done at close time, but also available as an API
function if users want to do it by hand.
include/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-api.h (ctf_arc_lookup_symbol): New.
(ctf_arc_flush_caches): Likewise.
* ctf.h: Document new auto-ctf_import behaviour.
libctf/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h (struct ctf_archive_internal) <ctfi_dicts>: New, dicts
the archive machinery has opened and cached.
<ctfi_symdicts>: New, cache of dicts containing symbols looked up.
<ctfi_syms>: New, cache of types of symbols looked up.
* ctf-archive.c (ctf_arc_close): Free them on close.
(enosym): New, flag entry for 'symbol not present'.
(ctf_arc_import_parent): New, automatically import the parent from
".ctf" if this is a child in an archive and ".ctf" is present.
(ctf_dict_open_sections): Use it.
(ctf_archive_iter_internal): Likewise.
(ctf_cached_dict_close): New, thunk around ctf_dict_close.
(ctf_dict_open_cached): New, open and cache a dict.
(ctf_arc_flush_caches): New, flush the caches.
(ctf_arc_lookup_symbol): New, look up a symbol in (all members of)
an archive, and cache the lookup.
(ctf_archive_iter): Note the new caching behaviour.
(ctf_archive_next): Use ctf_dict_open_cached.
* libctf.ver: Add ctf_arc_lookup_symbol and ctf_arc_flush_caches.
2020-11-20 21:34:04 +08:00
|
|
|
ctf_dynhash_t *ctfi_dicts; /* Dicts we have opened and cached. */
|
libctf, include: find types of symbols by name
The existing ctf_lookup_by_symbol and ctf_arc_lookup_symbol functions
suffice to look up the types of symbols if the caller already has a
symbol number. But the caller often doesn't have one of those and only
knows the name of the symbol: also, in object files, the caller might
not have a useful symbol number in any sense (and neither does libctf:
the 'symbol number' we use in that case literally starts at 0 for the
lexicographically first-sorted symbol in the symtypetab and counts those
symbols, so it corresponds to nothing useful).
This means that even though object files have a symtypetab (generated by
the compiler or by ld -r), the only way we can look up anything in it is
to iterate over all symbols in turn with ctf_symbol_next until we find
the one we want.
This is unhelpful and pointlessly inefficient.
So add a pair of functions to look up symbols by name in a dict and in a
whole archive: ctf_lookup_by_symbol_name and ctf_arc_lookup_symbol_name.
These are identical to the existing functions except that they take
symbol names rather than symbol numbers.
To avoid insane repetition, we do some refactoring in the process, so
that both ctf_lookup_by_symbol and ctf_arc_lookup_symbol turn into thin
wrappers around internal functions that do both lookup by symbol index
and lookup by name. This massively reduces code duplication because
even the existing lookup-by-index stuff wants to use a name sometimes
(when looking up in indexed sections), and the new lookup-by-name stuff
has to turn it into an index sometimes (when looking up in non-indexed
sections): doing it this way lets us share most of that.
The actual name->index lookup is done by ctf_lookup_symbol_idx. We do
not anticipate this lookup to be as heavily used as ld.so symbol lookup
by many orders of magnitude, so using the ELF symbol hashes would
probably take more time to read them than is saved by using the hashes,
and it adds a lot of complexity. Instead, do a linear search for the
symbol name, caching all the name -> index mappings as we go, so that
future searches are likely to hit in the cache. To avoid having to
repeat this search over and over in a CTF archive when
ctf_arc_lookup_symbol_name is used, have cached archive lookups (the
sort done by ctf_arc_lookup_symbol* and the ctf_archive_next iterator)
pick out the first dict they cache in a given archive and store it in a
new ctf_archive field, ctfi_crossdict_cache. This can be used to store
cross-dictionary cached state that depends on things like the ELF symbol
table rather than the contents of any one dict. ctf_lookup_symbol_idx
then caches its name->index mappings in the dictionary named in the
crossdict cache, if any, so that ctf_lookup_symbol_idx in other dicts
in the same archive benefit from the previous linear search, and the
symtab only needs to be scanned at most once.
(Note that if you call ctf_lookup_by_symbol_name in one specific dict,
and then follow it with a ctf_arc_lookup_symbol_name, the former will
not use the crossdict cache because it's only populated by the dict
opens in ctf_arc_lookup_symbol_name. This is harmless except for a small
one-off waste of memory and time: it's only a cache, after all. We can
fix this later by using the archive caching machinery more
aggressively.)
In ctf-archive, we do similar things, turning ctf_arc_lookup_symbol into
a wrapper around a new function that does both index -> ID and name ->
ID lookups across all dicts in an archive. We add a new
ctfi_symnamedicts cache that maps symbol names to the ctf_dict_t * that
it was found in (so that linear searches for symbols don't need to be
repeated): but we also *remove* a cache, the ctfi_syms cache that was
memoizing the actual ctf_id_t returned from every call to
ctf_arc_lookup_symbol. This is pointless: all it saves is one call to
ctf_lookup_by_symbol, and that's basically an array lookup and nothing
more so isn't worth caching. (Equally, given that symbol -> index
mappings are cached by ctf_lookup_by_symbol_name, those calls are nearly
free after the first call, so there's no point caching the ctf_id_t in
that case either.)
We fix up one test that was doing manual symbol lookup to use
ctf_arc_lookup_symbol instead, and enhance it to check that the caching
layer is not totally broken: we also add a new test to do lookups in a
.o file, and another to do lookups in an archive with conflicted types
and make sure that sort of multi-dict lookup is actually working.
include/ChangeLog
2021-02-17 Nick Alcock <nick.alcock@oracle.com>
* ctf-api.h (ctf_arc_lookup_symbol_name): New.
(ctf_lookup_by_symbol_name): Likewise.
libctf/ChangeLog
2021-02-17 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h (ctf_dict_t) <ctf_symhash>: New.
<ctf_symhash_latest>: Likewise.
(struct ctf_archive_internal) <ctfi_crossdict_cache>: New.
<ctfi_symnamedicts>: New.
<ctfi_syms>: Remove.
(ctf_lookup_symbol_name): Remove.
* ctf-lookup.c (ctf_lookup_symbol_name): Propagate errors from
parent properly. Make static.
(ctf_lookup_symbol_idx): New, linear search for the symbol name,
cached in the crossdict cache's ctf_symhash (if available), or
this dict's (otherwise).
(ctf_try_lookup_indexed): Allow the symname to be passed in.
(ctf_lookup_by_symbol): Turn into a wrapper around...
(ctf_lookup_by_sym_or_name): ... this, supporting name lookup too,
using ctf_lookup_symbol_idx in non-writable dicts. Special-case
name lookup in dynamic dicts without reported symbols, which have
no symtab or dynsymidx but where name lookup should still work.
(ctf_lookup_by_symbol_name): New, another wrapper.
* ctf-archive.c (enosym): Note that this is present in
ctfi_symnamedicts too.
(ctf_arc_close): Adjust for removal of ctfi_syms. Free the
ctfi_symnamedicts.
(ctf_arc_flush_caches): Likewise.
(ctf_dict_open_cached): Memoize the first cached dict in the
crossdict cache.
(ctf_arc_lookup_symbol): Turn into a wrapper around...
(ctf_arc_lookup_sym_or_name): ... this. No longer cache
ctf_id_t lookups: just call ctf_lookup_by_symbol as needed (but
still cache the dicts those lookups succeed in). Add
lookup-by-name support, with dicts of successful lookups cached in
ctfi_symnamedicts. Refactor the caching code a bit.
(ctf_arc_lookup_symbol_name): New, another wrapper.
* ctf-open.c (ctf_dict_close): Free the ctf_symhash.
* libctf.ver (LIBCTF_1.2): New version. Add
ctf_lookup_by_symbol_name, ctf_arc_lookup_symbol_name.
* testsuite/libctf-lookup/enum-symbol.c (main): Use
ctf_arc_lookup_symbol rather than looking up the name ourselves.
Fish it out repeatedly, to make sure that symbol caching isn't
broken.
(symidx_64): Remove.
(symidx_32): Remove.
* testsuite/libctf-lookup/enum-symbol-obj.lk: Test symbol lookup
in an unlinked object file (indexed symtypetab sections only).
* testsuite/libctf-writable/symtypetab-nonlinker-writeout.c
(try_maybe_reporting): Check symbol types via
ctf_lookup_by_symbol_name as well as ctf_symbol_next.
* testsuite/libctf-lookup/conflicting-type-syms.*: New test of
lookups in a multi-dict archive.
2021-02-17 23:21:12 +08:00
|
|
|
ctf_dict_t *ctfi_crossdict_cache; /* Cross-dict caching. */
|
libctf, include: CTF-archive-wide symbol lookup
CTF archives may contain multiple dicts, each of which contain many
types and possibly a bunch of symtypetab entries relating to those
types: each symtypetab entry is going to appear in exactly one dict,
with the corresponding entries in the other dicts empty (either pads, or
indexed symtypetabs that do not mention that symbol). But users of
libctf usually want to get back the type associated with a symbol
without having to dig around to find out which dict that type might be
in.
This adds machinery to do that -- and since you probably want to do it
repeatedly, it adds internal caching to the ctf-archive machinery so
that iteration over archives via ctf_archive_next and repeated symbol
lookups do not have to repeatedly reopen the archive. (Iteration using
ctf_archive_iter will gain caching soon.)
Two new API functions:
ctf_dict_t *
ctf_arc_lookup_symbol (ctf_archive_t *arc, unsigned long symidx,
ctf_id_t *typep, int *errp);
This looks up the symbol with index SYMIDX in the archive ARC, returning
the dictionary in which it resides and optionally the type index as
well. Errors are returned in ERRP. The dict should be
ctf_dict_close()d when done, but is also cached inside the ctf_archive
so that the open cost is only paid once. The result of the symbol
lookup is also cached internally, so repeated lookups of the same symbol
are nearly free.
void ctf_arc_flush_caches (ctf_archive_t *arc);
Flush all the caches. Done at close time, but also available as an API
function if users want to do it by hand.
include/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-api.h (ctf_arc_lookup_symbol): New.
(ctf_arc_flush_caches): Likewise.
* ctf.h: Document new auto-ctf_import behaviour.
libctf/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h (struct ctf_archive_internal) <ctfi_dicts>: New, dicts
the archive machinery has opened and cached.
<ctfi_symdicts>: New, cache of dicts containing symbols looked up.
<ctfi_syms>: New, cache of types of symbols looked up.
* ctf-archive.c (ctf_arc_close): Free them on close.
(enosym): New, flag entry for 'symbol not present'.
(ctf_arc_import_parent): New, automatically import the parent from
".ctf" if this is a child in an archive and ".ctf" is present.
(ctf_dict_open_sections): Use it.
(ctf_archive_iter_internal): Likewise.
(ctf_cached_dict_close): New, thunk around ctf_dict_close.
(ctf_dict_open_cached): New, open and cache a dict.
(ctf_arc_flush_caches): New, flush the caches.
(ctf_arc_lookup_symbol): New, look up a symbol in (all members of)
an archive, and cache the lookup.
(ctf_archive_iter): Note the new caching behaviour.
(ctf_archive_next): Use ctf_dict_open_cached.
* libctf.ver: Add ctf_arc_lookup_symbol and ctf_arc_flush_caches.
2020-11-20 21:34:04 +08:00
|
|
|
ctf_dict_t **ctfi_symdicts; /* Array of index -> ctf_dict_t *. */
|
libctf, include: find types of symbols by name
The existing ctf_lookup_by_symbol and ctf_arc_lookup_symbol functions
suffice to look up the types of symbols if the caller already has a
symbol number. But the caller often doesn't have one of those and only
knows the name of the symbol: also, in object files, the caller might
not have a useful symbol number in any sense (and neither does libctf:
the 'symbol number' we use in that case literally starts at 0 for the
lexicographically first-sorted symbol in the symtypetab and counts those
symbols, so it corresponds to nothing useful).
This means that even though object files have a symtypetab (generated by
the compiler or by ld -r), the only way we can look up anything in it is
to iterate over all symbols in turn with ctf_symbol_next until we find
the one we want.
This is unhelpful and pointlessly inefficient.
So add a pair of functions to look up symbols by name in a dict and in a
whole archive: ctf_lookup_by_symbol_name and ctf_arc_lookup_symbol_name.
These are identical to the existing functions except that they take
symbol names rather than symbol numbers.
To avoid insane repetition, we do some refactoring in the process, so
that both ctf_lookup_by_symbol and ctf_arc_lookup_symbol turn into thin
wrappers around internal functions that do both lookup by symbol index
and lookup by name. This massively reduces code duplication because
even the existing lookup-by-index stuff wants to use a name sometimes
(when looking up in indexed sections), and the new lookup-by-name stuff
has to turn it into an index sometimes (when looking up in non-indexed
sections): doing it this way lets us share most of that.
The actual name->index lookup is done by ctf_lookup_symbol_idx. We do
not anticipate this lookup to be as heavily used as ld.so symbol lookup
by many orders of magnitude, so using the ELF symbol hashes would
probably take more time to read them than is saved by using the hashes,
and it adds a lot of complexity. Instead, do a linear search for the
symbol name, caching all the name -> index mappings as we go, so that
future searches are likely to hit in the cache. To avoid having to
repeat this search over and over in a CTF archive when
ctf_arc_lookup_symbol_name is used, have cached archive lookups (the
sort done by ctf_arc_lookup_symbol* and the ctf_archive_next iterator)
pick out the first dict they cache in a given archive and store it in a
new ctf_archive field, ctfi_crossdict_cache. This can be used to store
cross-dictionary cached state that depends on things like the ELF symbol
table rather than the contents of any one dict. ctf_lookup_symbol_idx
then caches its name->index mappings in the dictionary named in the
crossdict cache, if any, so that ctf_lookup_symbol_idx in other dicts
in the same archive benefit from the previous linear search, and the
symtab only needs to be scanned at most once.
(Note that if you call ctf_lookup_by_symbol_name in one specific dict,
and then follow it with a ctf_arc_lookup_symbol_name, the former will
not use the crossdict cache because it's only populated by the dict
opens in ctf_arc_lookup_symbol_name. This is harmless except for a small
one-off waste of memory and time: it's only a cache, after all. We can
fix this later by using the archive caching machinery more
aggressively.)
In ctf-archive, we do similar things, turning ctf_arc_lookup_symbol into
a wrapper around a new function that does both index -> ID and name ->
ID lookups across all dicts in an archive. We add a new
ctfi_symnamedicts cache that maps symbol names to the ctf_dict_t * that
it was found in (so that linear searches for symbols don't need to be
repeated): but we also *remove* a cache, the ctfi_syms cache that was
memoizing the actual ctf_id_t returned from every call to
ctf_arc_lookup_symbol. This is pointless: all it saves is one call to
ctf_lookup_by_symbol, and that's basically an array lookup and nothing
more so isn't worth caching. (Equally, given that symbol -> index
mappings are cached by ctf_lookup_by_symbol_name, those calls are nearly
free after the first call, so there's no point caching the ctf_id_t in
that case either.)
We fix up one test that was doing manual symbol lookup to use
ctf_arc_lookup_symbol instead, and enhance it to check that the caching
layer is not totally broken: we also add a new test to do lookups in a
.o file, and another to do lookups in an archive with conflicted types
and make sure that sort of multi-dict lookup is actually working.
include/ChangeLog
2021-02-17 Nick Alcock <nick.alcock@oracle.com>
* ctf-api.h (ctf_arc_lookup_symbol_name): New.
(ctf_lookup_by_symbol_name): Likewise.
libctf/ChangeLog
2021-02-17 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h (ctf_dict_t) <ctf_symhash>: New.
<ctf_symhash_latest>: Likewise.
(struct ctf_archive_internal) <ctfi_crossdict_cache>: New.
<ctfi_symnamedicts>: New.
<ctfi_syms>: Remove.
(ctf_lookup_symbol_name): Remove.
* ctf-lookup.c (ctf_lookup_symbol_name): Propagate errors from
parent properly. Make static.
(ctf_lookup_symbol_idx): New, linear search for the symbol name,
cached in the crossdict cache's ctf_symhash (if available), or
this dict's (otherwise).
(ctf_try_lookup_indexed): Allow the symname to be passed in.
(ctf_lookup_by_symbol): Turn into a wrapper around...
(ctf_lookup_by_sym_or_name): ... this, supporting name lookup too,
using ctf_lookup_symbol_idx in non-writable dicts. Special-case
name lookup in dynamic dicts without reported symbols, which have
no symtab or dynsymidx but where name lookup should still work.
(ctf_lookup_by_symbol_name): New, another wrapper.
* ctf-archive.c (enosym): Note that this is present in
ctfi_symnamedicts too.
(ctf_arc_close): Adjust for removal of ctfi_syms. Free the
ctfi_symnamedicts.
(ctf_arc_flush_caches): Likewise.
(ctf_dict_open_cached): Memoize the first cached dict in the
crossdict cache.
(ctf_arc_lookup_symbol): Turn into a wrapper around...
(ctf_arc_lookup_sym_or_name): ... this. No longer cache
ctf_id_t lookups: just call ctf_lookup_by_symbol as needed (but
still cache the dicts those lookups succeed in). Add
lookup-by-name support, with dicts of successful lookups cached in
ctfi_symnamedicts. Refactor the caching code a bit.
(ctf_arc_lookup_symbol_name): New, another wrapper.
* ctf-open.c (ctf_dict_close): Free the ctf_symhash.
* libctf.ver (LIBCTF_1.2): New version. Add
ctf_lookup_by_symbol_name, ctf_arc_lookup_symbol_name.
* testsuite/libctf-lookup/enum-symbol.c (main): Use
ctf_arc_lookup_symbol rather than looking up the name ourselves.
Fish it out repeatedly, to make sure that symbol caching isn't
broken.
(symidx_64): Remove.
(symidx_32): Remove.
* testsuite/libctf-lookup/enum-symbol-obj.lk: Test symbol lookup
in an unlinked object file (indexed symtypetab sections only).
* testsuite/libctf-writable/symtypetab-nonlinker-writeout.c
(try_maybe_reporting): Check symbol types via
ctf_lookup_by_symbol_name as well as ctf_symbol_next.
* testsuite/libctf-lookup/conflicting-type-syms.*: New test of
lookups in a multi-dict archive.
2021-02-17 23:21:12 +08:00
|
|
|
ctf_dynhash_t *ctfi_symnamedicts; /* Hash of name -> ctf_dict_t *. */
|
libctf: mmappable archives
If you need to store a large number of CTF containers somewhere, this
provides a dedicated facility for doing so: an mmappable archive format
like a very simple tar or ar without all the system-dependent format
horrors or need for heavy file copying, with built-in compression of
files above a particular size threshold.
libctf automatically mmap()s uncompressed elements of these archives, or
uncompresses them, as needed. (If the platform does not support mmap(),
copying into dynamically-allocated buffers is used.)
Archive iteration operations are partitioned into raw and non-raw
forms. Raw operations pass thhe raw archive contents to the callback:
non-raw forms open each member with ctf_bufopen() and pass the resulting
ctf_file_t to the iterator instead. This lets you manipulate the raw
data in the archive, or the contents interpreted as a CTF file, as
needed.
It is not yet known whether we will store CTF archives in a linked ELF
object in one of these (akin to debugdata) or whether they'll get one
section per TU plus one parent container for types shared between them.
(In the case of ELF objects with very large numbers of TUs, an archive
of all of them would seem preferable, so we might just use an archive,
and add lzma support so you can assume that .gnu_debugdata and .ctf are
compressed using the same algorithm if both are present.)
To make usage easier, the ctf_archive_t is not the on-disk
representation but an abstraction over both ctf_file_t's and archives of
many ctf_file_t's: users see both CTF archives and raw CTF files as
ctf_archive_t's upon opening, the only difference being that a raw CTF
file has only a single "archive member", named ".ctf" (the default if a
null pointer is passed in as the name). The next commit will make use
of this facility, in addition to providing the public interface to
actually open archives. (In the future, it should be possible to have
all CTF sections in an ELF file appear as an "archive" in the same
fashion.)
This machinery is also used to allow library-internal creators of
ctf_archive_t's (such as the next commit) to stash away an ELF string
and symbol table, so that all opens of members in a given archive will
use them. This lets CTF archives exploit the ELF string and symbol
table just like raw CTF files can.
(All this leads to somewhat confusing type naming. The ctf_archive_t is
a typedef for the opaque internal type, struct ctf_archive_internal: the
non-internal "struct ctf_archive" is the on-disk structure meant for
other libraries manipulating CTF files. It is probably clearest to use
the struct name for struct ctf_archive_internal inside the program, and
the typedef names outside.)
libctf/
* ctf-archive.c: New.
* ctf-impl.h (ctf_archive_internal): New type.
(ctf_arc_open_internal): New declaration.
(ctf_arc_bufopen): Likewise.
(ctf_arc_close_internal): Likewise.
include/
* ctf.h (CTFA_MAGIC): New.
(struct ctf_archive): New.
(struct ctf_archive_modent): Likewise.
* ctf-api.h (ctf_archive_member_f): New.
(ctf_archive_raw_member_f): Likewise.
(ctf_arc_write): Likewise.
(ctf_arc_close): Likewise.
(ctf_arc_open_by_name): Likewise.
(ctf_archive_iter): Likewise.
(ctf_archive_raw_iter): Likewise.
(ctf_get_arc): Likewise.
2019-04-24 18:30:17 +08:00
|
|
|
ctf_sect_t ctfi_symsect;
|
libctf, include: support foreign-endianness symtabs with CTF
The CTF symbol lookup machinery added recently has one deficit: it
assumes the symtab is in the machine's native endianness. This is
always true when the linker is writing out symtabs (because cross
linkers byteswap symbols only after libctf has been called on them), but
may be untrue in the cross case when the linker or another tool
(objdump, etc) is reading them.
Unfortunately the easy way to model this to the caller, as an endianness
field in the ctf_sect_t, is precluded because doing so would change the
size of the ctf_sect_t, which would be an ABI break. So, instead, allow
the endianness of the symtab to be set after open time, by calling one
of the two new API functions ctf_symsect_endianness (for ctf_dict_t's)
or ctf_arc_symsect_endianness (for entire ctf_archive_t's). libctf
calls these functions automatically for objects opened via any of the
BFD-aware mechanisms (ctf_bfdopen, ctf_bfdopen_ctfsect, ctf_fdopen,
ctf_open, or ctf_arc_open), but the various mechanisms that just take
raw ctf_sect_t's will assume the symtab is in native endianness and need
a later call to ctf_*symsect_endianness to adjust it if needed. (This
call is basically free if the endianness is actually native: it only
costs anything if the symtab endianness was previously guessed wrong,
and there is a symtab, and we are using it directly rather than using
symtab indexing.)
Obviously, calling ctf_lookup_by_symbol or ctf_symbol_next before the
symtab endianness is correctly set will probably give wrong answers --
but you can set it at any time as long as it is before then.
include/ChangeLog
2020-11-23 Nick Alcock <nick.alcock@oracle.com>
* ctf-api.h: Style nit: remove () on function names in comments.
(ctf_sect_t): Mention endianness concerns.
(ctf_symsect_endianness): New declaration.
(ctf_arc_symsect_endianness): Likewise.
libctf/ChangeLog
2020-11-23 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h (ctf_dict_t) <ctf_symtab_little_endian>: New.
(struct ctf_archive_internal) <ctfi_symsect_little_endian>: Likewise.
* ctf-create.c (ctf_serialize): Adjust for new field.
* ctf-open.c (init_symtab): Note the semantics of repeated calls.
(ctf_symsect_endianness): New.
(ctf_bufopen_internal): Set ctf_symtab_little_endian suitably for
the native endianness.
(_Static_assert): Moved...
(swap_thing): ... with this...
* swap.h: ... to here.
* ctf-util.c (ctf_elf32_to_link_sym): Use it, byteswapping the
Elf32_Sym if the ctf_symtab_little_endian demands it.
(ctf_elf64_to_link_sym): Likewise swap the Elf64_Sym if needed.
* ctf-archive.c (ctf_arc_symsect_endianness): New, set the
endianness of the symtab used by the dicts in an archive.
(ctf_archive_iter_internal): Initialize to unknown (assumed native,
do not call ctf_symsect_endianness).
(ctf_dict_open_by_offset): Call ctf_symsect_endianness if need be.
(ctf_dict_open_internal): Propagate the endianness down.
(ctf_dict_open_sections): Likewise.
* ctf-open-bfd.c (ctf_bfdopen_ctfsect): Get the endianness from the
struct bfd and pass it down to the archive.
* libctf.ver: Add ctf_symsect_endianness and
ctf_arc_symsect_endianness.
2020-11-24 05:17:44 +08:00
|
|
|
int ctfi_symsect_little_endian; /* -1 for unknown / do not set. */
|
libctf: mmappable archives
If you need to store a large number of CTF containers somewhere, this
provides a dedicated facility for doing so: an mmappable archive format
like a very simple tar or ar without all the system-dependent format
horrors or need for heavy file copying, with built-in compression of
files above a particular size threshold.
libctf automatically mmap()s uncompressed elements of these archives, or
uncompresses them, as needed. (If the platform does not support mmap(),
copying into dynamically-allocated buffers is used.)
Archive iteration operations are partitioned into raw and non-raw
forms. Raw operations pass thhe raw archive contents to the callback:
non-raw forms open each member with ctf_bufopen() and pass the resulting
ctf_file_t to the iterator instead. This lets you manipulate the raw
data in the archive, or the contents interpreted as a CTF file, as
needed.
It is not yet known whether we will store CTF archives in a linked ELF
object in one of these (akin to debugdata) or whether they'll get one
section per TU plus one parent container for types shared between them.
(In the case of ELF objects with very large numbers of TUs, an archive
of all of them would seem preferable, so we might just use an archive,
and add lzma support so you can assume that .gnu_debugdata and .ctf are
compressed using the same algorithm if both are present.)
To make usage easier, the ctf_archive_t is not the on-disk
representation but an abstraction over both ctf_file_t's and archives of
many ctf_file_t's: users see both CTF archives and raw CTF files as
ctf_archive_t's upon opening, the only difference being that a raw CTF
file has only a single "archive member", named ".ctf" (the default if a
null pointer is passed in as the name). The next commit will make use
of this facility, in addition to providing the public interface to
actually open archives. (In the future, it should be possible to have
all CTF sections in an ELF file appear as an "archive" in the same
fashion.)
This machinery is also used to allow library-internal creators of
ctf_archive_t's (such as the next commit) to stash away an ELF string
and symbol table, so that all opens of members in a given archive will
use them. This lets CTF archives exploit the ELF string and symbol
table just like raw CTF files can.
(All this leads to somewhat confusing type naming. The ctf_archive_t is
a typedef for the opaque internal type, struct ctf_archive_internal: the
non-internal "struct ctf_archive" is the on-disk structure meant for
other libraries manipulating CTF files. It is probably clearest to use
the struct name for struct ctf_archive_internal inside the program, and
the typedef names outside.)
libctf/
* ctf-archive.c: New.
* ctf-impl.h (ctf_archive_internal): New type.
(ctf_arc_open_internal): New declaration.
(ctf_arc_bufopen): Likewise.
(ctf_arc_close_internal): Likewise.
include/
* ctf.h (CTFA_MAGIC): New.
(struct ctf_archive): New.
(struct ctf_archive_modent): Likewise.
* ctf-api.h (ctf_archive_member_f): New.
(ctf_archive_raw_member_f): Likewise.
(ctf_arc_write): Likewise.
(ctf_arc_close): Likewise.
(ctf_arc_open_by_name): Likewise.
(ctf_archive_iter): Likewise.
(ctf_archive_raw_iter): Likewise.
(ctf_get_arc): Likewise.
2019-04-24 18:30:17 +08:00
|
|
|
ctf_sect_t ctfi_strsect;
|
libctf, binutils: support CTF archives like objdump
objdump and readelf have one major CTF-related behavioural difference:
objdump can read .ctf sections that contain CTF archives and extract and
dump their members, while readelf cannot. Since the linker often emits
CTF archives, this means that readelf intermittently and (from the
user's perspective) randomly fails to read CTF in files that ld emits,
with a confusing error message wrongly claiming that the CTF content is
corrupt. This is purely because the archive-opening code in libctf was
needlessly tangled up with the BFD code, so readelf couldn't use it.
Here, we disentangle it, moving ctf_new_archive_internal from
ctf-open-bfd.c into ctf-archive.c and merging it with the helper
function in ctf-archive.c it was already using. We add a new public API
function ctf_arc_bufopen, that looks very like ctf_bufopen but returns
an archive given suitable section data rather than a ctf_file_t: the
archive is a ctf_archive_t, so it can be called on raw CTF dictionaries
(with no archive present) and will return a single-member synthetic
"archive".
There is a tiny lifetime tweak here: before now, the archive code could
assume that the symbol section in the ctf_archive_internal wrapper
structure was always owned by BFD if it was present and should always be
freed: now, the caller can pass one in via ctf_arc_bufopen, wihch has
the usual lifetime rules for such sections (caller frees): so we add an
extra field to track whether this is an internal call from ctf-open-bfd,
in which case we still free the symbol section.
include/
* ctf-api.h (ctf_arc_bufopen): New.
libctf/
* ctf-impl.h (ctf_new_archive_internal): Declare.
(ctf_arc_bufopen): Remove.
(ctf_archive_internal) <ctfi_free_symsect>: New.
* ctf-archive.c (ctf_arc_close): Use it.
(ctf_arc_bufopen): Fuse into...
(ctf_new_archive_internal): ... this, moved across from...
* ctf-open-bfd.c: ... here.
(ctf_bfdopen_ctfsect): Use ctf_arc_bufopen.
* libctf.ver: Add it.
binutils/
* readelf.c (dump_section_as_ctf): Support .ctf archives using
ctf_arc_bufopen. Automatically load the .ctf member of such
archives as the parent of all other members, unless specifically
overridden via --ctf-parent. Split out dumping code into...
(dump_ctf_archive_member): ... here, as in objdump, and call
it once per archive member.
(dump_ctf_indent_lines): Code style fix.
2019-12-13 20:01:12 +08:00
|
|
|
int ctfi_free_symsect;
|
libctf, open: fix opening CTF in binaries with no symtab
This is a perfectly possible case, and half of ctf_bfdopen_ctfsect
handled it fine. The other half hit a divide by zero or two before we
got that far, and had no code path to load the strtab from anywhere
in the absence of a symtab to point at it in any case.
So, as a fallback, if there is no symtab, try loading ".strtab"
explicitly by name, like we used to before we started looking for the
strtab the symtab used.
Of course, such a strtab is not kept hold of by BFD, so this means we
have to bring back the code to possibly explicitly free the strtab that
we read in.
libctf/
* ctf-impl.h (struct ctf_archive_internal) <ctfi_free_strsect>
New.
* ctf-open-bfd.c (ctf_bfdopen_ctfsect): Explicitly open a strtab
if the input has no symtab, rather than dividing by
zero. Arrange to free it later via ctfi_free_ctfsect.
* ctf-archive.c (ctf_new_archive_internal): Do not
ctfi_free_strsect by default.
(ctf_arc_close): Possibly free it here.
2020-06-09 17:27:57 +08:00
|
|
|
int ctfi_free_strsect;
|
libctf: mmappable archives
If you need to store a large number of CTF containers somewhere, this
provides a dedicated facility for doing so: an mmappable archive format
like a very simple tar or ar without all the system-dependent format
horrors or need for heavy file copying, with built-in compression of
files above a particular size threshold.
libctf automatically mmap()s uncompressed elements of these archives, or
uncompresses them, as needed. (If the platform does not support mmap(),
copying into dynamically-allocated buffers is used.)
Archive iteration operations are partitioned into raw and non-raw
forms. Raw operations pass thhe raw archive contents to the callback:
non-raw forms open each member with ctf_bufopen() and pass the resulting
ctf_file_t to the iterator instead. This lets you manipulate the raw
data in the archive, or the contents interpreted as a CTF file, as
needed.
It is not yet known whether we will store CTF archives in a linked ELF
object in one of these (akin to debugdata) or whether they'll get one
section per TU plus one parent container for types shared between them.
(In the case of ELF objects with very large numbers of TUs, an archive
of all of them would seem preferable, so we might just use an archive,
and add lzma support so you can assume that .gnu_debugdata and .ctf are
compressed using the same algorithm if both are present.)
To make usage easier, the ctf_archive_t is not the on-disk
representation but an abstraction over both ctf_file_t's and archives of
many ctf_file_t's: users see both CTF archives and raw CTF files as
ctf_archive_t's upon opening, the only difference being that a raw CTF
file has only a single "archive member", named ".ctf" (the default if a
null pointer is passed in as the name). The next commit will make use
of this facility, in addition to providing the public interface to
actually open archives. (In the future, it should be possible to have
all CTF sections in an ELF file appear as an "archive" in the same
fashion.)
This machinery is also used to allow library-internal creators of
ctf_archive_t's (such as the next commit) to stash away an ELF string
and symbol table, so that all opens of members in a given archive will
use them. This lets CTF archives exploit the ELF string and symbol
table just like raw CTF files can.
(All this leads to somewhat confusing type naming. The ctf_archive_t is
a typedef for the opaque internal type, struct ctf_archive_internal: the
non-internal "struct ctf_archive" is the on-disk structure meant for
other libraries manipulating CTF files. It is probably clearest to use
the struct name for struct ctf_archive_internal inside the program, and
the typedef names outside.)
libctf/
* ctf-archive.c: New.
* ctf-impl.h (ctf_archive_internal): New type.
(ctf_arc_open_internal): New declaration.
(ctf_arc_bufopen): Likewise.
(ctf_arc_close_internal): Likewise.
include/
* ctf.h (CTFA_MAGIC): New.
(struct ctf_archive): New.
(struct ctf_archive_modent): Likewise.
* ctf-api.h (ctf_archive_member_f): New.
(ctf_archive_raw_member_f): Likewise.
(ctf_arc_write): Likewise.
(ctf_arc_close): Likewise.
(ctf_arc_open_by_name): Likewise.
(ctf_archive_iter): Likewise.
(ctf_archive_raw_iter): Likewise.
(ctf_get_arc): Likewise.
2019-04-24 18:30:17 +08:00
|
|
|
void *ctfi_data;
|
libctf, include: CTF-archive-wide symbol lookup
CTF archives may contain multiple dicts, each of which contain many
types and possibly a bunch of symtypetab entries relating to those
types: each symtypetab entry is going to appear in exactly one dict,
with the corresponding entries in the other dicts empty (either pads, or
indexed symtypetabs that do not mention that symbol). But users of
libctf usually want to get back the type associated with a symbol
without having to dig around to find out which dict that type might be
in.
This adds machinery to do that -- and since you probably want to do it
repeatedly, it adds internal caching to the ctf-archive machinery so
that iteration over archives via ctf_archive_next and repeated symbol
lookups do not have to repeatedly reopen the archive. (Iteration using
ctf_archive_iter will gain caching soon.)
Two new API functions:
ctf_dict_t *
ctf_arc_lookup_symbol (ctf_archive_t *arc, unsigned long symidx,
ctf_id_t *typep, int *errp);
This looks up the symbol with index SYMIDX in the archive ARC, returning
the dictionary in which it resides and optionally the type index as
well. Errors are returned in ERRP. The dict should be
ctf_dict_close()d when done, but is also cached inside the ctf_archive
so that the open cost is only paid once. The result of the symbol
lookup is also cached internally, so repeated lookups of the same symbol
are nearly free.
void ctf_arc_flush_caches (ctf_archive_t *arc);
Flush all the caches. Done at close time, but also available as an API
function if users want to do it by hand.
include/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-api.h (ctf_arc_lookup_symbol): New.
(ctf_arc_flush_caches): Likewise.
* ctf.h: Document new auto-ctf_import behaviour.
libctf/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h (struct ctf_archive_internal) <ctfi_dicts>: New, dicts
the archive machinery has opened and cached.
<ctfi_symdicts>: New, cache of dicts containing symbols looked up.
<ctfi_syms>: New, cache of types of symbols looked up.
* ctf-archive.c (ctf_arc_close): Free them on close.
(enosym): New, flag entry for 'symbol not present'.
(ctf_arc_import_parent): New, automatically import the parent from
".ctf" if this is a child in an archive and ".ctf" is present.
(ctf_dict_open_sections): Use it.
(ctf_archive_iter_internal): Likewise.
(ctf_cached_dict_close): New, thunk around ctf_dict_close.
(ctf_dict_open_cached): New, open and cache a dict.
(ctf_arc_flush_caches): New, flush the caches.
(ctf_arc_lookup_symbol): New, look up a symbol in (all members of)
an archive, and cache the lookup.
(ctf_archive_iter): Note the new caching behaviour.
(ctf_archive_next): Use ctf_dict_open_cached.
* libctf.ver: Add ctf_arc_lookup_symbol and ctf_arc_flush_caches.
2020-11-20 21:34:04 +08:00
|
|
|
bfd *ctfi_abfd; /* Optional source of section data. */
|
libctf: ELF file opening via BFD
These functions let you open an ELF file with a customarily-named CTF
section in it, automatically opening the CTF file or archive and
associating the symbol and string tables in the ELF file with the CTF
container, so that you can look up the types of symbols in the ELF file
via ctf_lookup_by_symbol(), and so that strings can be shared between
the ELF file and CTF container, to save space.
It uses BFD machinery to do so. This has now been lightly tested and
seems to work. In particular, if you already have a bfd you can pass
it in to ctf_bfdopen(), and if you want a bfd made for you you can
call ctf_open() or ctf_fdopen(), optionally specifying a target (or
try once without a target and then again with one if you get
ECTF_BFD_AMBIGUOUS back).
We use a forward declaration for the struct bfd in ctf-api.h, so that
ctf-api.h users are not required to pull in <bfd.h>. (This is mostly
for the sake of readelf.)
libctf/
* ctf-open-bfd.c: New file.
* ctf-open.c (ctf_close): New.
* ctf-impl.h: Include bfd.h.
(ctf_file): New members ctf_data_mmapped, ctf_data_mmapped_len.
(ctf_archive_internal): New members ctfi_abfd, ctfi_data,
ctfi_bfd_close.
(ctf_bfdopen_ctfsect): New declaration.
(_CTF_SECTION): likewise.
include/
* ctf-api.h (struct bfd): New forward.
(ctf_fdopen): New.
(ctf_bfdopen): Likewise.
(ctf_open): Likewise.
(ctf_arc_open): Likewise.
2019-04-24 17:46:39 +08:00
|
|
|
void (*ctfi_bfd_close) (struct ctf_archive_internal *);
|
libctf: mmappable archives
If you need to store a large number of CTF containers somewhere, this
provides a dedicated facility for doing so: an mmappable archive format
like a very simple tar or ar without all the system-dependent format
horrors or need for heavy file copying, with built-in compression of
files above a particular size threshold.
libctf automatically mmap()s uncompressed elements of these archives, or
uncompresses them, as needed. (If the platform does not support mmap(),
copying into dynamically-allocated buffers is used.)
Archive iteration operations are partitioned into raw and non-raw
forms. Raw operations pass thhe raw archive contents to the callback:
non-raw forms open each member with ctf_bufopen() and pass the resulting
ctf_file_t to the iterator instead. This lets you manipulate the raw
data in the archive, or the contents interpreted as a CTF file, as
needed.
It is not yet known whether we will store CTF archives in a linked ELF
object in one of these (akin to debugdata) or whether they'll get one
section per TU plus one parent container for types shared between them.
(In the case of ELF objects with very large numbers of TUs, an archive
of all of them would seem preferable, so we might just use an archive,
and add lzma support so you can assume that .gnu_debugdata and .ctf are
compressed using the same algorithm if both are present.)
To make usage easier, the ctf_archive_t is not the on-disk
representation but an abstraction over both ctf_file_t's and archives of
many ctf_file_t's: users see both CTF archives and raw CTF files as
ctf_archive_t's upon opening, the only difference being that a raw CTF
file has only a single "archive member", named ".ctf" (the default if a
null pointer is passed in as the name). The next commit will make use
of this facility, in addition to providing the public interface to
actually open archives. (In the future, it should be possible to have
all CTF sections in an ELF file appear as an "archive" in the same
fashion.)
This machinery is also used to allow library-internal creators of
ctf_archive_t's (such as the next commit) to stash away an ELF string
and symbol table, so that all opens of members in a given archive will
use them. This lets CTF archives exploit the ELF string and symbol
table just like raw CTF files can.
(All this leads to somewhat confusing type naming. The ctf_archive_t is
a typedef for the opaque internal type, struct ctf_archive_internal: the
non-internal "struct ctf_archive" is the on-disk structure meant for
other libraries manipulating CTF files. It is probably clearest to use
the struct name for struct ctf_archive_internal inside the program, and
the typedef names outside.)
libctf/
* ctf-archive.c: New.
* ctf-impl.h (ctf_archive_internal): New type.
(ctf_arc_open_internal): New declaration.
(ctf_arc_bufopen): Likewise.
(ctf_arc_close_internal): Likewise.
include/
* ctf.h (CTFA_MAGIC): New.
(struct ctf_archive): New.
(struct ctf_archive_modent): Likewise.
* ctf-api.h (ctf_archive_member_f): New.
(ctf_archive_raw_member_f): Likewise.
(ctf_arc_write): Likewise.
(ctf_arc_close): Likewise.
(ctf_arc_open_by_name): Likewise.
(ctf_archive_iter): Likewise.
(ctf_archive_raw_iter): Likewise.
(ctf_get_arc): Likewise.
2019-04-24 18:30:17 +08:00
|
|
|
};
|
|
|
|
|
libctf, next: introduce new class of easier-to-use iterators
The libctf machinery currently only provides one way to iterate over its
data structures: ctf_*_iter functions that take a callback and an arg
and repeatedly call it.
This *works*, but if you are doing a lot of iteration it is really quite
inconvenient: you have to package up your local variables into
structures over and over again and spawn lots of little functions even
if it would be clearer in a single run of code. Look at ctf-string.c
for an extreme example of how unreadable this can get, with
three-line-long functions proliferating wildly.
The deduplicator takes this to the Nth level. It iterates over a whole
bunch of things: if we'd had to use _iter-class iterators for all of
them there would be twenty additional functions in the deduplicator
alone, for no other reason than that the iterator API requires it.
Let's do something better. strtok_r gives us half the design: generators
in a number of other languages give us the other half.
The *_next API allows you to iterate over CTF-like entities in a single
function using a normal while loop. e.g. here we are iterating over all
the types in a dict:
ctf_next_t *i = NULL;
int *hidden;
ctf_id_t id;
while ((id = ctf_type_next (fp, &i, &hidden, 1)) != CTF_ERR)
{
/* do something with 'hidden' and 'id' */
}
if (ctf_errno (fp) != ECTF_NEXT_END)
/* iteration error */
Here we are walking through the members of a struct with CTF ID
'struct_type':
ctf_next_t *i = NULL;
ssize_t offset;
const char *name;
ctf_id_t membtype;
while ((offset = ctf_member_next (fp, struct_type, &i, &name,
&membtype)) >= 0
{
/* do something with offset, name, and membtype */
}
if (ctf_errno (fp) != ECTF_NEXT_END)
/* iteration error */
Like every other while loop, this means you have access to all the local
variables outside the loop while inside it, with no need to tiresomely
package things up in structures, move the body of the loop into a
separate function, etc, as you would with an iterator taking a callback.
ctf_*_next allocates 'i' for you on first entry (when it must be NULL),
and frees and NULLs it and returns a _next-dependent flag value when the
iteration is over: the fp errno is set to ECTF_NEXT_END when the
iteartion ends normally. If you want to exit early, call
ctf_next_destroy on the iterator. You can copy iterators using
ctf_next_copy, which copies their current iteration position so you can
remember loop positions and go back to them later (or ctf_next_destroy
them if you don't need them after all).
Each _next function returns an always-likely-to-be-useful property of
the thing being iterated over, and takes pointers to parameters for the
others: with very few exceptions all those parameters can be NULLs if
you're not interested in them, so e.g. you can iterate over only the
offsets of members of a structure this way:
while ((offset = ctf_member_next (fp, struct_id, &i, NULL, NULL)) >= 0)
If you pass an iterator in use by one iteration function to another one,
you get the new error ECTF_NEXT_WRONGFUN back; if you try to change
ctf_file_t in mid-iteration, you get ECTF_NEXT_WRONGFP back.
Internally the ctf_next_t remembers the iteration function in use,
various sizes and increments useful for almost all iterations, then
uses unions to overlap the actual entities being iterated over to keep
ctf_next_t size down.
Iterators available in the public API so far (all tested in actual use
in the deduplicator):
/* Iterate over the members of a STRUCT or UNION, returning each member's
offset and optionally name and member type in turn. On end-of-iteration,
returns -1. */
ssize_t
ctf_member_next (ctf_file_t *fp, ctf_id_t type, ctf_next_t **it,
const char **name, ctf_id_t *membtype);
/* Iterate over the members of an enum TYPE, returning each enumerand's
NAME or NULL at end of iteration or error, and optionally passing
back the enumerand's integer VALue. */
const char *
ctf_enum_next (ctf_file_t *fp, ctf_id_t type, ctf_next_t **it,
int *val);
/* Iterate over every type in the given CTF container (not including
parents), optionally including non-user-visible types, returning
each type ID and optionally the hidden flag in turn. Returns CTF_ERR
on end of iteration or error. */
ctf_id_t
ctf_type_next (ctf_file_t *fp, ctf_next_t **it, int *flag,
int want_hidden);
/* Iterate over every variable in the given CTF container, in arbitrary
order, returning the name and type of each variable in turn. The
NAME argument is not optional. Returns CTF_ERR on end of iteration
or error. */
ctf_id_t
ctf_variable_next (ctf_file_t *fp, ctf_next_t **it, const char **name);
/* Iterate over all CTF files in an archive, returning each dict in turn as a
ctf_file_t, and NULL on error or end of iteration. It is the caller's
responsibility to close it. Parent dicts may be skipped. Regardless of
whether they are skipped or not, the caller must ctf_import the parent if
need be. */
ctf_file_t *
ctf_archive_next (const ctf_archive_t *wrapper, ctf_next_t **it,
const char **name, int skip_parent, int *errp);
ctf_label_next is prototyped but not implemented yet.
include/
* ctf-api.h (ECTF_NEXT_END): New error.
(ECTF_NEXT_WRONGFUN): Likewise.
(ECTF_NEXT_WRONGFP): Likewise.
(ECTF_NERR): Adjust.
(ctf_next_t): New.
(ctf_next_create): New prototype.
(ctf_next_destroy): Likewise.
(ctf_next_copy): Likewise.
(ctf_member_next): Likewise.
(ctf_enum_next): Likewise.
(ctf_type_next): Likewise.
(ctf_label_next): Likewise.
(ctf_variable_next): Likewise.
libctf/
* ctf-impl.h (ctf_next): New.
(ctf_get_dict): New prototype.
* ctf-lookup.c (ctf_get_dict): New, split out of...
(ctf_lookup_by_id): ... here.
* ctf-util.c (ctf_next_create): New.
(ctf_next_destroy): New.
(ctf_next_copy): New.
* ctf-types.c (includes): Add <assert.h>.
(ctf_member_next): New.
(ctf_enum_next): New.
(ctf_type_iter): Document the lack of iteration over parent
types.
(ctf_type_next): New.
(ctf_variable_next): New.
* ctf-archive.c (ctf_archive_next): New.
* libctf.ver: Add new public functions.
2020-06-03 22:13:24 +08:00
|
|
|
/* Iterator state for the *_next() functions. */
|
|
|
|
|
2020-06-03 23:36:18 +08:00
|
|
|
/* A single hash key/value pair. */
|
|
|
|
typedef struct ctf_next_hkv
|
|
|
|
{
|
|
|
|
void *hkv_key;
|
|
|
|
void *hkv_value;
|
|
|
|
} ctf_next_hkv_t;
|
|
|
|
|
libctf, next: introduce new class of easier-to-use iterators
The libctf machinery currently only provides one way to iterate over its
data structures: ctf_*_iter functions that take a callback and an arg
and repeatedly call it.
This *works*, but if you are doing a lot of iteration it is really quite
inconvenient: you have to package up your local variables into
structures over and over again and spawn lots of little functions even
if it would be clearer in a single run of code. Look at ctf-string.c
for an extreme example of how unreadable this can get, with
three-line-long functions proliferating wildly.
The deduplicator takes this to the Nth level. It iterates over a whole
bunch of things: if we'd had to use _iter-class iterators for all of
them there would be twenty additional functions in the deduplicator
alone, for no other reason than that the iterator API requires it.
Let's do something better. strtok_r gives us half the design: generators
in a number of other languages give us the other half.
The *_next API allows you to iterate over CTF-like entities in a single
function using a normal while loop. e.g. here we are iterating over all
the types in a dict:
ctf_next_t *i = NULL;
int *hidden;
ctf_id_t id;
while ((id = ctf_type_next (fp, &i, &hidden, 1)) != CTF_ERR)
{
/* do something with 'hidden' and 'id' */
}
if (ctf_errno (fp) != ECTF_NEXT_END)
/* iteration error */
Here we are walking through the members of a struct with CTF ID
'struct_type':
ctf_next_t *i = NULL;
ssize_t offset;
const char *name;
ctf_id_t membtype;
while ((offset = ctf_member_next (fp, struct_type, &i, &name,
&membtype)) >= 0
{
/* do something with offset, name, and membtype */
}
if (ctf_errno (fp) != ECTF_NEXT_END)
/* iteration error */
Like every other while loop, this means you have access to all the local
variables outside the loop while inside it, with no need to tiresomely
package things up in structures, move the body of the loop into a
separate function, etc, as you would with an iterator taking a callback.
ctf_*_next allocates 'i' for you on first entry (when it must be NULL),
and frees and NULLs it and returns a _next-dependent flag value when the
iteration is over: the fp errno is set to ECTF_NEXT_END when the
iteartion ends normally. If you want to exit early, call
ctf_next_destroy on the iterator. You can copy iterators using
ctf_next_copy, which copies their current iteration position so you can
remember loop positions and go back to them later (or ctf_next_destroy
them if you don't need them after all).
Each _next function returns an always-likely-to-be-useful property of
the thing being iterated over, and takes pointers to parameters for the
others: with very few exceptions all those parameters can be NULLs if
you're not interested in them, so e.g. you can iterate over only the
offsets of members of a structure this way:
while ((offset = ctf_member_next (fp, struct_id, &i, NULL, NULL)) >= 0)
If you pass an iterator in use by one iteration function to another one,
you get the new error ECTF_NEXT_WRONGFUN back; if you try to change
ctf_file_t in mid-iteration, you get ECTF_NEXT_WRONGFP back.
Internally the ctf_next_t remembers the iteration function in use,
various sizes and increments useful for almost all iterations, then
uses unions to overlap the actual entities being iterated over to keep
ctf_next_t size down.
Iterators available in the public API so far (all tested in actual use
in the deduplicator):
/* Iterate over the members of a STRUCT or UNION, returning each member's
offset and optionally name and member type in turn. On end-of-iteration,
returns -1. */
ssize_t
ctf_member_next (ctf_file_t *fp, ctf_id_t type, ctf_next_t **it,
const char **name, ctf_id_t *membtype);
/* Iterate over the members of an enum TYPE, returning each enumerand's
NAME or NULL at end of iteration or error, and optionally passing
back the enumerand's integer VALue. */
const char *
ctf_enum_next (ctf_file_t *fp, ctf_id_t type, ctf_next_t **it,
int *val);
/* Iterate over every type in the given CTF container (not including
parents), optionally including non-user-visible types, returning
each type ID and optionally the hidden flag in turn. Returns CTF_ERR
on end of iteration or error. */
ctf_id_t
ctf_type_next (ctf_file_t *fp, ctf_next_t **it, int *flag,
int want_hidden);
/* Iterate over every variable in the given CTF container, in arbitrary
order, returning the name and type of each variable in turn. The
NAME argument is not optional. Returns CTF_ERR on end of iteration
or error. */
ctf_id_t
ctf_variable_next (ctf_file_t *fp, ctf_next_t **it, const char **name);
/* Iterate over all CTF files in an archive, returning each dict in turn as a
ctf_file_t, and NULL on error or end of iteration. It is the caller's
responsibility to close it. Parent dicts may be skipped. Regardless of
whether they are skipped or not, the caller must ctf_import the parent if
need be. */
ctf_file_t *
ctf_archive_next (const ctf_archive_t *wrapper, ctf_next_t **it,
const char **name, int skip_parent, int *errp);
ctf_label_next is prototyped but not implemented yet.
include/
* ctf-api.h (ECTF_NEXT_END): New error.
(ECTF_NEXT_WRONGFUN): Likewise.
(ECTF_NEXT_WRONGFP): Likewise.
(ECTF_NERR): Adjust.
(ctf_next_t): New.
(ctf_next_create): New prototype.
(ctf_next_destroy): Likewise.
(ctf_next_copy): Likewise.
(ctf_member_next): Likewise.
(ctf_enum_next): Likewise.
(ctf_type_next): Likewise.
(ctf_label_next): Likewise.
(ctf_variable_next): Likewise.
libctf/
* ctf-impl.h (ctf_next): New.
(ctf_get_dict): New prototype.
* ctf-lookup.c (ctf_get_dict): New, split out of...
(ctf_lookup_by_id): ... here.
* ctf-util.c (ctf_next_create): New.
(ctf_next_destroy): New.
(ctf_next_copy): New.
* ctf-types.c (includes): Add <assert.h>.
(ctf_member_next): New.
(ctf_enum_next): New.
(ctf_type_iter): Document the lack of iteration over parent
types.
(ctf_type_next): New.
(ctf_variable_next): New.
* ctf-archive.c (ctf_archive_next): New.
* libctf.ver: Add new public functions.
2020-06-03 22:13:24 +08:00
|
|
|
struct ctf_next
|
|
|
|
{
|
|
|
|
void (*ctn_iter_fun) (void);
|
|
|
|
ctf_id_t ctn_type;
|
|
|
|
ssize_t ctn_size;
|
|
|
|
ssize_t ctn_increment;
|
2021-03-18 20:37:52 +08:00
|
|
|
const ctf_type_t *ctn_tp;
|
libctf, next: introduce new class of easier-to-use iterators
The libctf machinery currently only provides one way to iterate over its
data structures: ctf_*_iter functions that take a callback and an arg
and repeatedly call it.
This *works*, but if you are doing a lot of iteration it is really quite
inconvenient: you have to package up your local variables into
structures over and over again and spawn lots of little functions even
if it would be clearer in a single run of code. Look at ctf-string.c
for an extreme example of how unreadable this can get, with
three-line-long functions proliferating wildly.
The deduplicator takes this to the Nth level. It iterates over a whole
bunch of things: if we'd had to use _iter-class iterators for all of
them there would be twenty additional functions in the deduplicator
alone, for no other reason than that the iterator API requires it.
Let's do something better. strtok_r gives us half the design: generators
in a number of other languages give us the other half.
The *_next API allows you to iterate over CTF-like entities in a single
function using a normal while loop. e.g. here we are iterating over all
the types in a dict:
ctf_next_t *i = NULL;
int *hidden;
ctf_id_t id;
while ((id = ctf_type_next (fp, &i, &hidden, 1)) != CTF_ERR)
{
/* do something with 'hidden' and 'id' */
}
if (ctf_errno (fp) != ECTF_NEXT_END)
/* iteration error */
Here we are walking through the members of a struct with CTF ID
'struct_type':
ctf_next_t *i = NULL;
ssize_t offset;
const char *name;
ctf_id_t membtype;
while ((offset = ctf_member_next (fp, struct_type, &i, &name,
&membtype)) >= 0
{
/* do something with offset, name, and membtype */
}
if (ctf_errno (fp) != ECTF_NEXT_END)
/* iteration error */
Like every other while loop, this means you have access to all the local
variables outside the loop while inside it, with no need to tiresomely
package things up in structures, move the body of the loop into a
separate function, etc, as you would with an iterator taking a callback.
ctf_*_next allocates 'i' for you on first entry (when it must be NULL),
and frees and NULLs it and returns a _next-dependent flag value when the
iteration is over: the fp errno is set to ECTF_NEXT_END when the
iteartion ends normally. If you want to exit early, call
ctf_next_destroy on the iterator. You can copy iterators using
ctf_next_copy, which copies their current iteration position so you can
remember loop positions and go back to them later (or ctf_next_destroy
them if you don't need them after all).
Each _next function returns an always-likely-to-be-useful property of
the thing being iterated over, and takes pointers to parameters for the
others: with very few exceptions all those parameters can be NULLs if
you're not interested in them, so e.g. you can iterate over only the
offsets of members of a structure this way:
while ((offset = ctf_member_next (fp, struct_id, &i, NULL, NULL)) >= 0)
If you pass an iterator in use by one iteration function to another one,
you get the new error ECTF_NEXT_WRONGFUN back; if you try to change
ctf_file_t in mid-iteration, you get ECTF_NEXT_WRONGFP back.
Internally the ctf_next_t remembers the iteration function in use,
various sizes and increments useful for almost all iterations, then
uses unions to overlap the actual entities being iterated over to keep
ctf_next_t size down.
Iterators available in the public API so far (all tested in actual use
in the deduplicator):
/* Iterate over the members of a STRUCT or UNION, returning each member's
offset and optionally name and member type in turn. On end-of-iteration,
returns -1. */
ssize_t
ctf_member_next (ctf_file_t *fp, ctf_id_t type, ctf_next_t **it,
const char **name, ctf_id_t *membtype);
/* Iterate over the members of an enum TYPE, returning each enumerand's
NAME or NULL at end of iteration or error, and optionally passing
back the enumerand's integer VALue. */
const char *
ctf_enum_next (ctf_file_t *fp, ctf_id_t type, ctf_next_t **it,
int *val);
/* Iterate over every type in the given CTF container (not including
parents), optionally including non-user-visible types, returning
each type ID and optionally the hidden flag in turn. Returns CTF_ERR
on end of iteration or error. */
ctf_id_t
ctf_type_next (ctf_file_t *fp, ctf_next_t **it, int *flag,
int want_hidden);
/* Iterate over every variable in the given CTF container, in arbitrary
order, returning the name and type of each variable in turn. The
NAME argument is not optional. Returns CTF_ERR on end of iteration
or error. */
ctf_id_t
ctf_variable_next (ctf_file_t *fp, ctf_next_t **it, const char **name);
/* Iterate over all CTF files in an archive, returning each dict in turn as a
ctf_file_t, and NULL on error or end of iteration. It is the caller's
responsibility to close it. Parent dicts may be skipped. Regardless of
whether they are skipped or not, the caller must ctf_import the parent if
need be. */
ctf_file_t *
ctf_archive_next (const ctf_archive_t *wrapper, ctf_next_t **it,
const char **name, int skip_parent, int *errp);
ctf_label_next is prototyped but not implemented yet.
include/
* ctf-api.h (ECTF_NEXT_END): New error.
(ECTF_NEXT_WRONGFUN): Likewise.
(ECTF_NEXT_WRONGFP): Likewise.
(ECTF_NERR): Adjust.
(ctf_next_t): New.
(ctf_next_create): New prototype.
(ctf_next_destroy): Likewise.
(ctf_next_copy): Likewise.
(ctf_member_next): Likewise.
(ctf_enum_next): Likewise.
(ctf_type_next): Likewise.
(ctf_label_next): Likewise.
(ctf_variable_next): Likewise.
libctf/
* ctf-impl.h (ctf_next): New.
(ctf_get_dict): New prototype.
* ctf-lookup.c (ctf_get_dict): New, split out of...
(ctf_lookup_by_id): ... here.
* ctf-util.c (ctf_next_create): New.
(ctf_next_destroy): New.
(ctf_next_copy): New.
* ctf-types.c (includes): Add <assert.h>.
(ctf_member_next): New.
(ctf_enum_next): New.
(ctf_type_iter): Document the lack of iteration over parent
types.
(ctf_type_next): New.
(ctf_variable_next): New.
* ctf-archive.c (ctf_archive_next): New.
* libctf.ver: Add new public functions.
2020-06-03 22:13:24 +08:00
|
|
|
uint32_t ctn_n;
|
libctf, include: support unnamed structure members better
libctf has no intrinsic support for the GCC unnamed structure member
extension. This principally means that you can't look up named members
inside unnamed struct or union members via ctf_member_info: you have to
tiresomely find out the type ID of the unnamed members via iteration,
then look in each of these.
This is ridiculous. Fix it by extending ctf_member_info so that it
recurses into unnamed members for you: this is still unambiguous because
GCC won't let you create ambiguously-named members even in the presence
of this extension.
For consistency, and because the release hasn't happened and we can
still do this, break the ctf_member_next API and add flags: we specify
one flag, CTF_MN_RECURSE, which if set causes ctf_member_next to
automatically recurse into unnamed members for you, returning not only
the members themselves but all their contained members, so that you can
use ctf_member_next to identify every member that it would be valid to
call ctf_member_info with.
New lookup tests are added for all of this.
include/ChangeLog
2021-01-05 Nick Alcock <nick.alcock@oracle.com>
* ctf-api.h (CTF_MN_RECURSE): New.
(ctf_member_next): Add flags argument.
libctf/ChangeLog
2021-01-05 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h (struct ctf_next) <u.ctn_next>: Move to...
<ctn_next>: ... here.
* ctf-util.c (ctf_next_destroy): Unconditionally destroy it.
* ctf-lookup.c (ctf_symbol_next): Adjust accordingly.
* ctf-types.c (ctf_member_iter): Reimplement in terms of...
(ctf_member_next): ... this. Support recursive unnamed member
iteration (off by default).
(ctf_member_info): Look up members in unnamed sub-structs.
* ctf-dedup.c (ctf_dedup_rhash_type): Adjust ctf_member_next call.
(ctf_dedup_emit_struct_members): Likewise.
* testsuite/libctf-lookup/struct-iteration-ctf.c: Test empty unnamed
members, and a normal member after the end.
* testsuite/libctf-lookup/struct-iteration.c: Verify that
ctf_member_count is consistent with the number of successful returns
from a non-recursive ctf_member_next.
* testsuite/libctf-lookup/struct-iteration-*: New, test iteration
over struct members.
* testsuite/libctf-lookup/struct-lookup.c: New test.
* testsuite/libctf-lookup/struct-lookup.lk: New test.
2021-01-05 21:25:56 +08:00
|
|
|
|
|
|
|
/* Some iterators contain other iterators, in addition to their other
|
|
|
|
state. */
|
|
|
|
ctf_next_t *ctn_next;
|
|
|
|
|
libctf, include, binutils, gdb, ld: rename ctf_file_t to ctf_dict_t
The naming of the ctf_file_t type in libctf is a historical curiosity.
Back in the Solaris days, CTF dictionaries were originally generated as
a separate file and then (sometimes) merged into objects: hence the
datatype was named ctf_file_t, and known as a "CTF file". Nowadays, raw
CTF is essentially never written to a file on its own, and the datatype
changed name to a "CTF dictionary" years ago. So the term "CTF file"
refers to something that is never a file! This is at best confusing.
The type has also historically been known as a 'CTF container", which is
even more confusing now that we have CTF archives which are *also* a
sort of container (they contain CTF dictionaries), but which are never
referred to as containers in the source code.
So fix this by completing the renaming, renaming ctf_file_t to
ctf_dict_t throughout, and renaming those few functions that refer to
CTF files by name (keeping compatibility aliases) to refer to dicts
instead. Old users who still refer to ctf_file_t will see (harmless)
pointer-compatibility warnings at compile time, but the ABI is unchanged
(since C doesn't mangle names, and ctf_file_t was always an opaque type)
and things will still compile fine as long as -Werror is not specified.
All references to CTF containers and CTF files in the source code are
fixed to refer to CTF dicts instead.
Further (smaller) renamings of annoyingly-named functions to come, as
part of the process of souping up queries across whole archives at once
(needed for the function info and data object sections).
binutils/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* objdump.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_ctf): Likewise. Use ctf_dict_close, not ctf_file_close.
* readelf.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_section_as_ctf): Likewise. Use ctf_dict_close, not
ctf_file_close.
gdb/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctfread.c: Change uses of ctf_file_t to ctf_dict_t.
(ctf_fp_info::~ctf_fp_info): Call ctf_dict_close, not ctf_file_close.
include/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-api.h (ctf_file_t): Rename to...
(ctf_dict_t): ... this. Keep ctf_file_t around for compatibility.
(struct ctf_file): Likewise rename to...
(struct ctf_dict): ... this.
(ctf_file_close): Rename to...
(ctf_dict_close): ... this, keeping compatibility function.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this, keeping compatibility function.
All callers adjusted.
* ctf.h: Rename references to ctf_file_t to ctf_dict_t.
(struct ctf_archive) <ctfa_nfiles>: Rename to...
<ctfa_ndicts>: ... this.
ld/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ldlang.c (ctf_output): This is a ctf_dict_t now.
(lang_ctf_errs_warnings): Rename ctf_file_t to ctf_dict_t.
(ldlang_open_ctf): Adjust comment.
(lang_merge_ctf): Use ctf_dict_close, not ctf_file_close.
* ldelfgen.h (ldelf_examine_strtab_for_ctf): Rename ctf_file_t to
ctf_dict_t. Change opaque declaration accordingly.
* ldelfgen.c (ldelf_examine_strtab_for_ctf): Adjust.
* ldemul.h (examine_strtab_for_ctf): Likewise.
(ldemul_examine_strtab_for_ctf): Likewise.
* ldeuml.c (ldemul_examine_strtab_for_ctf): Likewise.
libctf/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h: Rename ctf_file_t to ctf_dict_t: all declarations
adjusted.
(ctf_fileops): Rename to...
(ctf_dictops): ... this.
(ctf_dedup_t) <cd_id_to_file_t>: Rename to...
<cd_id_to_dict_t>: ... this.
(ctf_file_t): Fix outdated comment.
<ctf_fileops>: Rename to...
<ctf_dictops>: ... this.
(struct ctf_archive_internal) <ctfi_file>: Rename to...
<ctfi_dict>: ... this.
* ctf-archive.c: Rename ctf_file_t to ctf_dict_t.
Rename ctf_archive.ctfa_nfiles to ctfa_ndicts.
Rename ctf_file_close to ctf_dict_close. All users adjusted.
* ctf-create.c: Likewise. Refer to CTF dicts, not CTF containers.
(ctf_bundle_t) <ctb_file>: Rename to...
<ctb_dict): ... this.
* ctf-decl.c: Rename ctf_file_t to ctf_dict_t.
* ctf-dedup.c: Likewise. Rename ctf_file_close to
ctf_dict_close. Refer to CTF dicts, not CTF containers.
* ctf-dump.c: Likewise.
* ctf-error.c: Likewise.
* ctf-hash.c: Likewise.
* ctf-inlines.h: Likewise.
* ctf-labels.c: Likewise.
* ctf-link.c: Likewise.
* ctf-lookup.c: Likewise.
* ctf-open-bfd.c: Likewise.
* ctf-string.c: Likewise.
* ctf-subr.c: Likewise.
* ctf-types.c: Likewise.
* ctf-util.c: Likewise.
* ctf-open.c: Likewise.
(ctf_file_close): Rename to...
(ctf_dict_close): ...this.
(ctf_file_close): New trivial wrapper around ctf_dict_close, for
compatibility.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this.
(ctf_parent_file): New trivial wrapper around ctf_parent_dict, for
compatibility.
* libctf.ver: Add ctf_dict_close and ctf_parent_dict.
2020-11-20 21:34:04 +08:00
|
|
|
/* We can save space on this side of things by noting that a dictionary is
|
libctf, next: introduce new class of easier-to-use iterators
The libctf machinery currently only provides one way to iterate over its
data structures: ctf_*_iter functions that take a callback and an arg
and repeatedly call it.
This *works*, but if you are doing a lot of iteration it is really quite
inconvenient: you have to package up your local variables into
structures over and over again and spawn lots of little functions even
if it would be clearer in a single run of code. Look at ctf-string.c
for an extreme example of how unreadable this can get, with
three-line-long functions proliferating wildly.
The deduplicator takes this to the Nth level. It iterates over a whole
bunch of things: if we'd had to use _iter-class iterators for all of
them there would be twenty additional functions in the deduplicator
alone, for no other reason than that the iterator API requires it.
Let's do something better. strtok_r gives us half the design: generators
in a number of other languages give us the other half.
The *_next API allows you to iterate over CTF-like entities in a single
function using a normal while loop. e.g. here we are iterating over all
the types in a dict:
ctf_next_t *i = NULL;
int *hidden;
ctf_id_t id;
while ((id = ctf_type_next (fp, &i, &hidden, 1)) != CTF_ERR)
{
/* do something with 'hidden' and 'id' */
}
if (ctf_errno (fp) != ECTF_NEXT_END)
/* iteration error */
Here we are walking through the members of a struct with CTF ID
'struct_type':
ctf_next_t *i = NULL;
ssize_t offset;
const char *name;
ctf_id_t membtype;
while ((offset = ctf_member_next (fp, struct_type, &i, &name,
&membtype)) >= 0
{
/* do something with offset, name, and membtype */
}
if (ctf_errno (fp) != ECTF_NEXT_END)
/* iteration error */
Like every other while loop, this means you have access to all the local
variables outside the loop while inside it, with no need to tiresomely
package things up in structures, move the body of the loop into a
separate function, etc, as you would with an iterator taking a callback.
ctf_*_next allocates 'i' for you on first entry (when it must be NULL),
and frees and NULLs it and returns a _next-dependent flag value when the
iteration is over: the fp errno is set to ECTF_NEXT_END when the
iteartion ends normally. If you want to exit early, call
ctf_next_destroy on the iterator. You can copy iterators using
ctf_next_copy, which copies their current iteration position so you can
remember loop positions and go back to them later (or ctf_next_destroy
them if you don't need them after all).
Each _next function returns an always-likely-to-be-useful property of
the thing being iterated over, and takes pointers to parameters for the
others: with very few exceptions all those parameters can be NULLs if
you're not interested in them, so e.g. you can iterate over only the
offsets of members of a structure this way:
while ((offset = ctf_member_next (fp, struct_id, &i, NULL, NULL)) >= 0)
If you pass an iterator in use by one iteration function to another one,
you get the new error ECTF_NEXT_WRONGFUN back; if you try to change
ctf_file_t in mid-iteration, you get ECTF_NEXT_WRONGFP back.
Internally the ctf_next_t remembers the iteration function in use,
various sizes and increments useful for almost all iterations, then
uses unions to overlap the actual entities being iterated over to keep
ctf_next_t size down.
Iterators available in the public API so far (all tested in actual use
in the deduplicator):
/* Iterate over the members of a STRUCT or UNION, returning each member's
offset and optionally name and member type in turn. On end-of-iteration,
returns -1. */
ssize_t
ctf_member_next (ctf_file_t *fp, ctf_id_t type, ctf_next_t **it,
const char **name, ctf_id_t *membtype);
/* Iterate over the members of an enum TYPE, returning each enumerand's
NAME or NULL at end of iteration or error, and optionally passing
back the enumerand's integer VALue. */
const char *
ctf_enum_next (ctf_file_t *fp, ctf_id_t type, ctf_next_t **it,
int *val);
/* Iterate over every type in the given CTF container (not including
parents), optionally including non-user-visible types, returning
each type ID and optionally the hidden flag in turn. Returns CTF_ERR
on end of iteration or error. */
ctf_id_t
ctf_type_next (ctf_file_t *fp, ctf_next_t **it, int *flag,
int want_hidden);
/* Iterate over every variable in the given CTF container, in arbitrary
order, returning the name and type of each variable in turn. The
NAME argument is not optional. Returns CTF_ERR on end of iteration
or error. */
ctf_id_t
ctf_variable_next (ctf_file_t *fp, ctf_next_t **it, const char **name);
/* Iterate over all CTF files in an archive, returning each dict in turn as a
ctf_file_t, and NULL on error or end of iteration. It is the caller's
responsibility to close it. Parent dicts may be skipped. Regardless of
whether they are skipped or not, the caller must ctf_import the parent if
need be. */
ctf_file_t *
ctf_archive_next (const ctf_archive_t *wrapper, ctf_next_t **it,
const char **name, int skip_parent, int *errp);
ctf_label_next is prototyped but not implemented yet.
include/
* ctf-api.h (ECTF_NEXT_END): New error.
(ECTF_NEXT_WRONGFUN): Likewise.
(ECTF_NEXT_WRONGFP): Likewise.
(ECTF_NERR): Adjust.
(ctf_next_t): New.
(ctf_next_create): New prototype.
(ctf_next_destroy): Likewise.
(ctf_next_copy): Likewise.
(ctf_member_next): Likewise.
(ctf_enum_next): Likewise.
(ctf_type_next): Likewise.
(ctf_label_next): Likewise.
(ctf_variable_next): Likewise.
libctf/
* ctf-impl.h (ctf_next): New.
(ctf_get_dict): New prototype.
* ctf-lookup.c (ctf_get_dict): New, split out of...
(ctf_lookup_by_id): ... here.
* ctf-util.c (ctf_next_create): New.
(ctf_next_destroy): New.
(ctf_next_copy): New.
* ctf-types.c (includes): Add <assert.h>.
(ctf_member_next): New.
(ctf_enum_next): New.
(ctf_type_iter): Document the lack of iteration over parent
types.
(ctf_type_next): New.
(ctf_variable_next): New.
* ctf-archive.c (ctf_archive_next): New.
* libctf.ver: Add new public functions.
2020-06-03 22:13:24 +08:00
|
|
|
either dynamic or not, as a whole, and a given iterator can only iterate
|
|
|
|
over one kind of thing at once: so we can overlap the DTD and non-DTD
|
libctf, include: support unnamed structure members better
libctf has no intrinsic support for the GCC unnamed structure member
extension. This principally means that you can't look up named members
inside unnamed struct or union members via ctf_member_info: you have to
tiresomely find out the type ID of the unnamed members via iteration,
then look in each of these.
This is ridiculous. Fix it by extending ctf_member_info so that it
recurses into unnamed members for you: this is still unambiguous because
GCC won't let you create ambiguously-named members even in the presence
of this extension.
For consistency, and because the release hasn't happened and we can
still do this, break the ctf_member_next API and add flags: we specify
one flag, CTF_MN_RECURSE, which if set causes ctf_member_next to
automatically recurse into unnamed members for you, returning not only
the members themselves but all their contained members, so that you can
use ctf_member_next to identify every member that it would be valid to
call ctf_member_info with.
New lookup tests are added for all of this.
include/ChangeLog
2021-01-05 Nick Alcock <nick.alcock@oracle.com>
* ctf-api.h (CTF_MN_RECURSE): New.
(ctf_member_next): Add flags argument.
libctf/ChangeLog
2021-01-05 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h (struct ctf_next) <u.ctn_next>: Move to...
<ctn_next>: ... here.
* ctf-util.c (ctf_next_destroy): Unconditionally destroy it.
* ctf-lookup.c (ctf_symbol_next): Adjust accordingly.
* ctf-types.c (ctf_member_iter): Reimplement in terms of...
(ctf_member_next): ... this. Support recursive unnamed member
iteration (off by default).
(ctf_member_info): Look up members in unnamed sub-structs.
* ctf-dedup.c (ctf_dedup_rhash_type): Adjust ctf_member_next call.
(ctf_dedup_emit_struct_members): Likewise.
* testsuite/libctf-lookup/struct-iteration-ctf.c: Test empty unnamed
members, and a normal member after the end.
* testsuite/libctf-lookup/struct-iteration.c: Verify that
ctf_member_count is consistent with the number of successful returns
from a non-recursive ctf_member_next.
* testsuite/libctf-lookup/struct-iteration-*: New, test iteration
over struct members.
* testsuite/libctf-lookup/struct-lookup.c: New test.
* testsuite/libctf-lookup/struct-lookup.lk: New test.
2021-01-05 21:25:56 +08:00
|
|
|
members, and the structure, variable and enum members, etc. */
|
libctf, next: introduce new class of easier-to-use iterators
The libctf machinery currently only provides one way to iterate over its
data structures: ctf_*_iter functions that take a callback and an arg
and repeatedly call it.
This *works*, but if you are doing a lot of iteration it is really quite
inconvenient: you have to package up your local variables into
structures over and over again and spawn lots of little functions even
if it would be clearer in a single run of code. Look at ctf-string.c
for an extreme example of how unreadable this can get, with
three-line-long functions proliferating wildly.
The deduplicator takes this to the Nth level. It iterates over a whole
bunch of things: if we'd had to use _iter-class iterators for all of
them there would be twenty additional functions in the deduplicator
alone, for no other reason than that the iterator API requires it.
Let's do something better. strtok_r gives us half the design: generators
in a number of other languages give us the other half.
The *_next API allows you to iterate over CTF-like entities in a single
function using a normal while loop. e.g. here we are iterating over all
the types in a dict:
ctf_next_t *i = NULL;
int *hidden;
ctf_id_t id;
while ((id = ctf_type_next (fp, &i, &hidden, 1)) != CTF_ERR)
{
/* do something with 'hidden' and 'id' */
}
if (ctf_errno (fp) != ECTF_NEXT_END)
/* iteration error */
Here we are walking through the members of a struct with CTF ID
'struct_type':
ctf_next_t *i = NULL;
ssize_t offset;
const char *name;
ctf_id_t membtype;
while ((offset = ctf_member_next (fp, struct_type, &i, &name,
&membtype)) >= 0
{
/* do something with offset, name, and membtype */
}
if (ctf_errno (fp) != ECTF_NEXT_END)
/* iteration error */
Like every other while loop, this means you have access to all the local
variables outside the loop while inside it, with no need to tiresomely
package things up in structures, move the body of the loop into a
separate function, etc, as you would with an iterator taking a callback.
ctf_*_next allocates 'i' for you on first entry (when it must be NULL),
and frees and NULLs it and returns a _next-dependent flag value when the
iteration is over: the fp errno is set to ECTF_NEXT_END when the
iteartion ends normally. If you want to exit early, call
ctf_next_destroy on the iterator. You can copy iterators using
ctf_next_copy, which copies their current iteration position so you can
remember loop positions and go back to them later (or ctf_next_destroy
them if you don't need them after all).
Each _next function returns an always-likely-to-be-useful property of
the thing being iterated over, and takes pointers to parameters for the
others: with very few exceptions all those parameters can be NULLs if
you're not interested in them, so e.g. you can iterate over only the
offsets of members of a structure this way:
while ((offset = ctf_member_next (fp, struct_id, &i, NULL, NULL)) >= 0)
If you pass an iterator in use by one iteration function to another one,
you get the new error ECTF_NEXT_WRONGFUN back; if you try to change
ctf_file_t in mid-iteration, you get ECTF_NEXT_WRONGFP back.
Internally the ctf_next_t remembers the iteration function in use,
various sizes and increments useful for almost all iterations, then
uses unions to overlap the actual entities being iterated over to keep
ctf_next_t size down.
Iterators available in the public API so far (all tested in actual use
in the deduplicator):
/* Iterate over the members of a STRUCT or UNION, returning each member's
offset and optionally name and member type in turn. On end-of-iteration,
returns -1. */
ssize_t
ctf_member_next (ctf_file_t *fp, ctf_id_t type, ctf_next_t **it,
const char **name, ctf_id_t *membtype);
/* Iterate over the members of an enum TYPE, returning each enumerand's
NAME or NULL at end of iteration or error, and optionally passing
back the enumerand's integer VALue. */
const char *
ctf_enum_next (ctf_file_t *fp, ctf_id_t type, ctf_next_t **it,
int *val);
/* Iterate over every type in the given CTF container (not including
parents), optionally including non-user-visible types, returning
each type ID and optionally the hidden flag in turn. Returns CTF_ERR
on end of iteration or error. */
ctf_id_t
ctf_type_next (ctf_file_t *fp, ctf_next_t **it, int *flag,
int want_hidden);
/* Iterate over every variable in the given CTF container, in arbitrary
order, returning the name and type of each variable in turn. The
NAME argument is not optional. Returns CTF_ERR on end of iteration
or error. */
ctf_id_t
ctf_variable_next (ctf_file_t *fp, ctf_next_t **it, const char **name);
/* Iterate over all CTF files in an archive, returning each dict in turn as a
ctf_file_t, and NULL on error or end of iteration. It is the caller's
responsibility to close it. Parent dicts may be skipped. Regardless of
whether they are skipped or not, the caller must ctf_import the parent if
need be. */
ctf_file_t *
ctf_archive_next (const ctf_archive_t *wrapper, ctf_next_t **it,
const char **name, int skip_parent, int *errp);
ctf_label_next is prototyped but not implemented yet.
include/
* ctf-api.h (ECTF_NEXT_END): New error.
(ECTF_NEXT_WRONGFUN): Likewise.
(ECTF_NEXT_WRONGFP): Likewise.
(ECTF_NERR): Adjust.
(ctf_next_t): New.
(ctf_next_create): New prototype.
(ctf_next_destroy): Likewise.
(ctf_next_copy): Likewise.
(ctf_member_next): Likewise.
(ctf_enum_next): Likewise.
(ctf_type_next): Likewise.
(ctf_label_next): Likewise.
(ctf_variable_next): Likewise.
libctf/
* ctf-impl.h (ctf_next): New.
(ctf_get_dict): New prototype.
* ctf-lookup.c (ctf_get_dict): New, split out of...
(ctf_lookup_by_id): ... here.
* ctf-util.c (ctf_next_create): New.
(ctf_next_destroy): New.
(ctf_next_copy): New.
* ctf-types.c (includes): Add <assert.h>.
(ctf_member_next): New.
(ctf_enum_next): New.
(ctf_type_iter): Document the lack of iteration over parent
types.
(ctf_type_next): New.
(ctf_variable_next): New.
* ctf-archive.c (ctf_archive_next): New.
* libctf.ver: Add new public functions.
2020-06-03 22:13:24 +08:00
|
|
|
union
|
|
|
|
{
|
2021-03-18 20:37:52 +08:00
|
|
|
unsigned char *ctn_vlen;
|
libctf, next: introduce new class of easier-to-use iterators
The libctf machinery currently only provides one way to iterate over its
data structures: ctf_*_iter functions that take a callback and an arg
and repeatedly call it.
This *works*, but if you are doing a lot of iteration it is really quite
inconvenient: you have to package up your local variables into
structures over and over again and spawn lots of little functions even
if it would be clearer in a single run of code. Look at ctf-string.c
for an extreme example of how unreadable this can get, with
three-line-long functions proliferating wildly.
The deduplicator takes this to the Nth level. It iterates over a whole
bunch of things: if we'd had to use _iter-class iterators for all of
them there would be twenty additional functions in the deduplicator
alone, for no other reason than that the iterator API requires it.
Let's do something better. strtok_r gives us half the design: generators
in a number of other languages give us the other half.
The *_next API allows you to iterate over CTF-like entities in a single
function using a normal while loop. e.g. here we are iterating over all
the types in a dict:
ctf_next_t *i = NULL;
int *hidden;
ctf_id_t id;
while ((id = ctf_type_next (fp, &i, &hidden, 1)) != CTF_ERR)
{
/* do something with 'hidden' and 'id' */
}
if (ctf_errno (fp) != ECTF_NEXT_END)
/* iteration error */
Here we are walking through the members of a struct with CTF ID
'struct_type':
ctf_next_t *i = NULL;
ssize_t offset;
const char *name;
ctf_id_t membtype;
while ((offset = ctf_member_next (fp, struct_type, &i, &name,
&membtype)) >= 0
{
/* do something with offset, name, and membtype */
}
if (ctf_errno (fp) != ECTF_NEXT_END)
/* iteration error */
Like every other while loop, this means you have access to all the local
variables outside the loop while inside it, with no need to tiresomely
package things up in structures, move the body of the loop into a
separate function, etc, as you would with an iterator taking a callback.
ctf_*_next allocates 'i' for you on first entry (when it must be NULL),
and frees and NULLs it and returns a _next-dependent flag value when the
iteration is over: the fp errno is set to ECTF_NEXT_END when the
iteartion ends normally. If you want to exit early, call
ctf_next_destroy on the iterator. You can copy iterators using
ctf_next_copy, which copies their current iteration position so you can
remember loop positions and go back to them later (or ctf_next_destroy
them if you don't need them after all).
Each _next function returns an always-likely-to-be-useful property of
the thing being iterated over, and takes pointers to parameters for the
others: with very few exceptions all those parameters can be NULLs if
you're not interested in them, so e.g. you can iterate over only the
offsets of members of a structure this way:
while ((offset = ctf_member_next (fp, struct_id, &i, NULL, NULL)) >= 0)
If you pass an iterator in use by one iteration function to another one,
you get the new error ECTF_NEXT_WRONGFUN back; if you try to change
ctf_file_t in mid-iteration, you get ECTF_NEXT_WRONGFP back.
Internally the ctf_next_t remembers the iteration function in use,
various sizes and increments useful for almost all iterations, then
uses unions to overlap the actual entities being iterated over to keep
ctf_next_t size down.
Iterators available in the public API so far (all tested in actual use
in the deduplicator):
/* Iterate over the members of a STRUCT or UNION, returning each member's
offset and optionally name and member type in turn. On end-of-iteration,
returns -1. */
ssize_t
ctf_member_next (ctf_file_t *fp, ctf_id_t type, ctf_next_t **it,
const char **name, ctf_id_t *membtype);
/* Iterate over the members of an enum TYPE, returning each enumerand's
NAME or NULL at end of iteration or error, and optionally passing
back the enumerand's integer VALue. */
const char *
ctf_enum_next (ctf_file_t *fp, ctf_id_t type, ctf_next_t **it,
int *val);
/* Iterate over every type in the given CTF container (not including
parents), optionally including non-user-visible types, returning
each type ID and optionally the hidden flag in turn. Returns CTF_ERR
on end of iteration or error. */
ctf_id_t
ctf_type_next (ctf_file_t *fp, ctf_next_t **it, int *flag,
int want_hidden);
/* Iterate over every variable in the given CTF container, in arbitrary
order, returning the name and type of each variable in turn. The
NAME argument is not optional. Returns CTF_ERR on end of iteration
or error. */
ctf_id_t
ctf_variable_next (ctf_file_t *fp, ctf_next_t **it, const char **name);
/* Iterate over all CTF files in an archive, returning each dict in turn as a
ctf_file_t, and NULL on error or end of iteration. It is the caller's
responsibility to close it. Parent dicts may be skipped. Regardless of
whether they are skipped or not, the caller must ctf_import the parent if
need be. */
ctf_file_t *
ctf_archive_next (const ctf_archive_t *wrapper, ctf_next_t **it,
const char **name, int skip_parent, int *errp);
ctf_label_next is prototyped but not implemented yet.
include/
* ctf-api.h (ECTF_NEXT_END): New error.
(ECTF_NEXT_WRONGFUN): Likewise.
(ECTF_NEXT_WRONGFP): Likewise.
(ECTF_NERR): Adjust.
(ctf_next_t): New.
(ctf_next_create): New prototype.
(ctf_next_destroy): Likewise.
(ctf_next_copy): Likewise.
(ctf_member_next): Likewise.
(ctf_enum_next): Likewise.
(ctf_type_next): Likewise.
(ctf_label_next): Likewise.
(ctf_variable_next): Likewise.
libctf/
* ctf-impl.h (ctf_next): New.
(ctf_get_dict): New prototype.
* ctf-lookup.c (ctf_get_dict): New, split out of...
(ctf_lookup_by_id): ... here.
* ctf-util.c (ctf_next_create): New.
(ctf_next_destroy): New.
(ctf_next_copy): New.
* ctf-types.c (includes): Add <assert.h>.
(ctf_member_next): New.
(ctf_enum_next): New.
(ctf_type_iter): Document the lack of iteration over parent
types.
(ctf_type_next): New.
(ctf_variable_next): New.
* ctf-archive.c (ctf_archive_next): New.
* libctf.ver: Add new public functions.
2020-06-03 22:13:24 +08:00
|
|
|
const ctf_enum_t *ctn_en;
|
|
|
|
const ctf_dvdef_t *ctn_dvd;
|
2020-06-03 23:36:18 +08:00
|
|
|
ctf_next_hkv_t *ctn_sorted_hkv;
|
|
|
|
void **ctn_hash_slot;
|
libctf, next: introduce new class of easier-to-use iterators
The libctf machinery currently only provides one way to iterate over its
data structures: ctf_*_iter functions that take a callback and an arg
and repeatedly call it.
This *works*, but if you are doing a lot of iteration it is really quite
inconvenient: you have to package up your local variables into
structures over and over again and spawn lots of little functions even
if it would be clearer in a single run of code. Look at ctf-string.c
for an extreme example of how unreadable this can get, with
three-line-long functions proliferating wildly.
The deduplicator takes this to the Nth level. It iterates over a whole
bunch of things: if we'd had to use _iter-class iterators for all of
them there would be twenty additional functions in the deduplicator
alone, for no other reason than that the iterator API requires it.
Let's do something better. strtok_r gives us half the design: generators
in a number of other languages give us the other half.
The *_next API allows you to iterate over CTF-like entities in a single
function using a normal while loop. e.g. here we are iterating over all
the types in a dict:
ctf_next_t *i = NULL;
int *hidden;
ctf_id_t id;
while ((id = ctf_type_next (fp, &i, &hidden, 1)) != CTF_ERR)
{
/* do something with 'hidden' and 'id' */
}
if (ctf_errno (fp) != ECTF_NEXT_END)
/* iteration error */
Here we are walking through the members of a struct with CTF ID
'struct_type':
ctf_next_t *i = NULL;
ssize_t offset;
const char *name;
ctf_id_t membtype;
while ((offset = ctf_member_next (fp, struct_type, &i, &name,
&membtype)) >= 0
{
/* do something with offset, name, and membtype */
}
if (ctf_errno (fp) != ECTF_NEXT_END)
/* iteration error */
Like every other while loop, this means you have access to all the local
variables outside the loop while inside it, with no need to tiresomely
package things up in structures, move the body of the loop into a
separate function, etc, as you would with an iterator taking a callback.
ctf_*_next allocates 'i' for you on first entry (when it must be NULL),
and frees and NULLs it and returns a _next-dependent flag value when the
iteration is over: the fp errno is set to ECTF_NEXT_END when the
iteartion ends normally. If you want to exit early, call
ctf_next_destroy on the iterator. You can copy iterators using
ctf_next_copy, which copies their current iteration position so you can
remember loop positions and go back to them later (or ctf_next_destroy
them if you don't need them after all).
Each _next function returns an always-likely-to-be-useful property of
the thing being iterated over, and takes pointers to parameters for the
others: with very few exceptions all those parameters can be NULLs if
you're not interested in them, so e.g. you can iterate over only the
offsets of members of a structure this way:
while ((offset = ctf_member_next (fp, struct_id, &i, NULL, NULL)) >= 0)
If you pass an iterator in use by one iteration function to another one,
you get the new error ECTF_NEXT_WRONGFUN back; if you try to change
ctf_file_t in mid-iteration, you get ECTF_NEXT_WRONGFP back.
Internally the ctf_next_t remembers the iteration function in use,
various sizes and increments useful for almost all iterations, then
uses unions to overlap the actual entities being iterated over to keep
ctf_next_t size down.
Iterators available in the public API so far (all tested in actual use
in the deduplicator):
/* Iterate over the members of a STRUCT or UNION, returning each member's
offset and optionally name and member type in turn. On end-of-iteration,
returns -1. */
ssize_t
ctf_member_next (ctf_file_t *fp, ctf_id_t type, ctf_next_t **it,
const char **name, ctf_id_t *membtype);
/* Iterate over the members of an enum TYPE, returning each enumerand's
NAME or NULL at end of iteration or error, and optionally passing
back the enumerand's integer VALue. */
const char *
ctf_enum_next (ctf_file_t *fp, ctf_id_t type, ctf_next_t **it,
int *val);
/* Iterate over every type in the given CTF container (not including
parents), optionally including non-user-visible types, returning
each type ID and optionally the hidden flag in turn. Returns CTF_ERR
on end of iteration or error. */
ctf_id_t
ctf_type_next (ctf_file_t *fp, ctf_next_t **it, int *flag,
int want_hidden);
/* Iterate over every variable in the given CTF container, in arbitrary
order, returning the name and type of each variable in turn. The
NAME argument is not optional. Returns CTF_ERR on end of iteration
or error. */
ctf_id_t
ctf_variable_next (ctf_file_t *fp, ctf_next_t **it, const char **name);
/* Iterate over all CTF files in an archive, returning each dict in turn as a
ctf_file_t, and NULL on error or end of iteration. It is the caller's
responsibility to close it. Parent dicts may be skipped. Regardless of
whether they are skipped or not, the caller must ctf_import the parent if
need be. */
ctf_file_t *
ctf_archive_next (const ctf_archive_t *wrapper, ctf_next_t **it,
const char **name, int skip_parent, int *errp);
ctf_label_next is prototyped but not implemented yet.
include/
* ctf-api.h (ECTF_NEXT_END): New error.
(ECTF_NEXT_WRONGFUN): Likewise.
(ECTF_NEXT_WRONGFP): Likewise.
(ECTF_NERR): Adjust.
(ctf_next_t): New.
(ctf_next_create): New prototype.
(ctf_next_destroy): Likewise.
(ctf_next_copy): Likewise.
(ctf_member_next): Likewise.
(ctf_enum_next): Likewise.
(ctf_type_next): Likewise.
(ctf_label_next): Likewise.
(ctf_variable_next): Likewise.
libctf/
* ctf-impl.h (ctf_next): New.
(ctf_get_dict): New prototype.
* ctf-lookup.c (ctf_get_dict): New, split out of...
(ctf_lookup_by_id): ... here.
* ctf-util.c (ctf_next_create): New.
(ctf_next_destroy): New.
(ctf_next_copy): New.
* ctf-types.c (includes): Add <assert.h>.
(ctf_member_next): New.
(ctf_enum_next): New.
(ctf_type_iter): Document the lack of iteration over parent
types.
(ctf_type_next): New.
(ctf_variable_next): New.
* ctf-archive.c (ctf_archive_next): New.
* libctf.ver: Add new public functions.
2020-06-03 22:13:24 +08:00
|
|
|
} u;
|
libctf, include: support unnamed structure members better
libctf has no intrinsic support for the GCC unnamed structure member
extension. This principally means that you can't look up named members
inside unnamed struct or union members via ctf_member_info: you have to
tiresomely find out the type ID of the unnamed members via iteration,
then look in each of these.
This is ridiculous. Fix it by extending ctf_member_info so that it
recurses into unnamed members for you: this is still unambiguous because
GCC won't let you create ambiguously-named members even in the presence
of this extension.
For consistency, and because the release hasn't happened and we can
still do this, break the ctf_member_next API and add flags: we specify
one flag, CTF_MN_RECURSE, which if set causes ctf_member_next to
automatically recurse into unnamed members for you, returning not only
the members themselves but all their contained members, so that you can
use ctf_member_next to identify every member that it would be valid to
call ctf_member_info with.
New lookup tests are added for all of this.
include/ChangeLog
2021-01-05 Nick Alcock <nick.alcock@oracle.com>
* ctf-api.h (CTF_MN_RECURSE): New.
(ctf_member_next): Add flags argument.
libctf/ChangeLog
2021-01-05 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h (struct ctf_next) <u.ctn_next>: Move to...
<ctn_next>: ... here.
* ctf-util.c (ctf_next_destroy): Unconditionally destroy it.
* ctf-lookup.c (ctf_symbol_next): Adjust accordingly.
* ctf-types.c (ctf_member_iter): Reimplement in terms of...
(ctf_member_next): ... this. Support recursive unnamed member
iteration (off by default).
(ctf_member_info): Look up members in unnamed sub-structs.
* ctf-dedup.c (ctf_dedup_rhash_type): Adjust ctf_member_next call.
(ctf_dedup_emit_struct_members): Likewise.
* testsuite/libctf-lookup/struct-iteration-ctf.c: Test empty unnamed
members, and a normal member after the end.
* testsuite/libctf-lookup/struct-iteration.c: Verify that
ctf_member_count is consistent with the number of successful returns
from a non-recursive ctf_member_next.
* testsuite/libctf-lookup/struct-iteration-*: New, test iteration
over struct members.
* testsuite/libctf-lookup/struct-lookup.c: New test.
* testsuite/libctf-lookup/struct-lookup.lk: New test.
2021-01-05 21:25:56 +08:00
|
|
|
|
libctf, include, binutils, gdb, ld: rename ctf_file_t to ctf_dict_t
The naming of the ctf_file_t type in libctf is a historical curiosity.
Back in the Solaris days, CTF dictionaries were originally generated as
a separate file and then (sometimes) merged into objects: hence the
datatype was named ctf_file_t, and known as a "CTF file". Nowadays, raw
CTF is essentially never written to a file on its own, and the datatype
changed name to a "CTF dictionary" years ago. So the term "CTF file"
refers to something that is never a file! This is at best confusing.
The type has also historically been known as a 'CTF container", which is
even more confusing now that we have CTF archives which are *also* a
sort of container (they contain CTF dictionaries), but which are never
referred to as containers in the source code.
So fix this by completing the renaming, renaming ctf_file_t to
ctf_dict_t throughout, and renaming those few functions that refer to
CTF files by name (keeping compatibility aliases) to refer to dicts
instead. Old users who still refer to ctf_file_t will see (harmless)
pointer-compatibility warnings at compile time, but the ABI is unchanged
(since C doesn't mangle names, and ctf_file_t was always an opaque type)
and things will still compile fine as long as -Werror is not specified.
All references to CTF containers and CTF files in the source code are
fixed to refer to CTF dicts instead.
Further (smaller) renamings of annoyingly-named functions to come, as
part of the process of souping up queries across whole archives at once
(needed for the function info and data object sections).
binutils/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* objdump.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_ctf): Likewise. Use ctf_dict_close, not ctf_file_close.
* readelf.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_section_as_ctf): Likewise. Use ctf_dict_close, not
ctf_file_close.
gdb/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctfread.c: Change uses of ctf_file_t to ctf_dict_t.
(ctf_fp_info::~ctf_fp_info): Call ctf_dict_close, not ctf_file_close.
include/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-api.h (ctf_file_t): Rename to...
(ctf_dict_t): ... this. Keep ctf_file_t around for compatibility.
(struct ctf_file): Likewise rename to...
(struct ctf_dict): ... this.
(ctf_file_close): Rename to...
(ctf_dict_close): ... this, keeping compatibility function.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this, keeping compatibility function.
All callers adjusted.
* ctf.h: Rename references to ctf_file_t to ctf_dict_t.
(struct ctf_archive) <ctfa_nfiles>: Rename to...
<ctfa_ndicts>: ... this.
ld/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ldlang.c (ctf_output): This is a ctf_dict_t now.
(lang_ctf_errs_warnings): Rename ctf_file_t to ctf_dict_t.
(ldlang_open_ctf): Adjust comment.
(lang_merge_ctf): Use ctf_dict_close, not ctf_file_close.
* ldelfgen.h (ldelf_examine_strtab_for_ctf): Rename ctf_file_t to
ctf_dict_t. Change opaque declaration accordingly.
* ldelfgen.c (ldelf_examine_strtab_for_ctf): Adjust.
* ldemul.h (examine_strtab_for_ctf): Likewise.
(ldemul_examine_strtab_for_ctf): Likewise.
* ldeuml.c (ldemul_examine_strtab_for_ctf): Likewise.
libctf/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h: Rename ctf_file_t to ctf_dict_t: all declarations
adjusted.
(ctf_fileops): Rename to...
(ctf_dictops): ... this.
(ctf_dedup_t) <cd_id_to_file_t>: Rename to...
<cd_id_to_dict_t>: ... this.
(ctf_file_t): Fix outdated comment.
<ctf_fileops>: Rename to...
<ctf_dictops>: ... this.
(struct ctf_archive_internal) <ctfi_file>: Rename to...
<ctfi_dict>: ... this.
* ctf-archive.c: Rename ctf_file_t to ctf_dict_t.
Rename ctf_archive.ctfa_nfiles to ctfa_ndicts.
Rename ctf_file_close to ctf_dict_close. All users adjusted.
* ctf-create.c: Likewise. Refer to CTF dicts, not CTF containers.
(ctf_bundle_t) <ctb_file>: Rename to...
<ctb_dict): ... this.
* ctf-decl.c: Rename ctf_file_t to ctf_dict_t.
* ctf-dedup.c: Likewise. Rename ctf_file_close to
ctf_dict_close. Refer to CTF dicts, not CTF containers.
* ctf-dump.c: Likewise.
* ctf-error.c: Likewise.
* ctf-hash.c: Likewise.
* ctf-inlines.h: Likewise.
* ctf-labels.c: Likewise.
* ctf-link.c: Likewise.
* ctf-lookup.c: Likewise.
* ctf-open-bfd.c: Likewise.
* ctf-string.c: Likewise.
* ctf-subr.c: Likewise.
* ctf-types.c: Likewise.
* ctf-util.c: Likewise.
* ctf-open.c: Likewise.
(ctf_file_close): Rename to...
(ctf_dict_close): ...this.
(ctf_file_close): New trivial wrapper around ctf_dict_close, for
compatibility.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this.
(ctf_parent_file): New trivial wrapper around ctf_parent_dict, for
compatibility.
* libctf.ver: Add ctf_dict_close and ctf_parent_dict.
2020-11-20 21:34:04 +08:00
|
|
|
/* This union is of various sorts of dict we can iterate over:
|
2020-06-03 23:36:18 +08:00
|
|
|
currently dictionaries and archives, dynhashes, and dynsets. */
|
libctf, next: introduce new class of easier-to-use iterators
The libctf machinery currently only provides one way to iterate over its
data structures: ctf_*_iter functions that take a callback and an arg
and repeatedly call it.
This *works*, but if you are doing a lot of iteration it is really quite
inconvenient: you have to package up your local variables into
structures over and over again and spawn lots of little functions even
if it would be clearer in a single run of code. Look at ctf-string.c
for an extreme example of how unreadable this can get, with
three-line-long functions proliferating wildly.
The deduplicator takes this to the Nth level. It iterates over a whole
bunch of things: if we'd had to use _iter-class iterators for all of
them there would be twenty additional functions in the deduplicator
alone, for no other reason than that the iterator API requires it.
Let's do something better. strtok_r gives us half the design: generators
in a number of other languages give us the other half.
The *_next API allows you to iterate over CTF-like entities in a single
function using a normal while loop. e.g. here we are iterating over all
the types in a dict:
ctf_next_t *i = NULL;
int *hidden;
ctf_id_t id;
while ((id = ctf_type_next (fp, &i, &hidden, 1)) != CTF_ERR)
{
/* do something with 'hidden' and 'id' */
}
if (ctf_errno (fp) != ECTF_NEXT_END)
/* iteration error */
Here we are walking through the members of a struct with CTF ID
'struct_type':
ctf_next_t *i = NULL;
ssize_t offset;
const char *name;
ctf_id_t membtype;
while ((offset = ctf_member_next (fp, struct_type, &i, &name,
&membtype)) >= 0
{
/* do something with offset, name, and membtype */
}
if (ctf_errno (fp) != ECTF_NEXT_END)
/* iteration error */
Like every other while loop, this means you have access to all the local
variables outside the loop while inside it, with no need to tiresomely
package things up in structures, move the body of the loop into a
separate function, etc, as you would with an iterator taking a callback.
ctf_*_next allocates 'i' for you on first entry (when it must be NULL),
and frees and NULLs it and returns a _next-dependent flag value when the
iteration is over: the fp errno is set to ECTF_NEXT_END when the
iteartion ends normally. If you want to exit early, call
ctf_next_destroy on the iterator. You can copy iterators using
ctf_next_copy, which copies their current iteration position so you can
remember loop positions and go back to them later (or ctf_next_destroy
them if you don't need them after all).
Each _next function returns an always-likely-to-be-useful property of
the thing being iterated over, and takes pointers to parameters for the
others: with very few exceptions all those parameters can be NULLs if
you're not interested in them, so e.g. you can iterate over only the
offsets of members of a structure this way:
while ((offset = ctf_member_next (fp, struct_id, &i, NULL, NULL)) >= 0)
If you pass an iterator in use by one iteration function to another one,
you get the new error ECTF_NEXT_WRONGFUN back; if you try to change
ctf_file_t in mid-iteration, you get ECTF_NEXT_WRONGFP back.
Internally the ctf_next_t remembers the iteration function in use,
various sizes and increments useful for almost all iterations, then
uses unions to overlap the actual entities being iterated over to keep
ctf_next_t size down.
Iterators available in the public API so far (all tested in actual use
in the deduplicator):
/* Iterate over the members of a STRUCT or UNION, returning each member's
offset and optionally name and member type in turn. On end-of-iteration,
returns -1. */
ssize_t
ctf_member_next (ctf_file_t *fp, ctf_id_t type, ctf_next_t **it,
const char **name, ctf_id_t *membtype);
/* Iterate over the members of an enum TYPE, returning each enumerand's
NAME or NULL at end of iteration or error, and optionally passing
back the enumerand's integer VALue. */
const char *
ctf_enum_next (ctf_file_t *fp, ctf_id_t type, ctf_next_t **it,
int *val);
/* Iterate over every type in the given CTF container (not including
parents), optionally including non-user-visible types, returning
each type ID and optionally the hidden flag in turn. Returns CTF_ERR
on end of iteration or error. */
ctf_id_t
ctf_type_next (ctf_file_t *fp, ctf_next_t **it, int *flag,
int want_hidden);
/* Iterate over every variable in the given CTF container, in arbitrary
order, returning the name and type of each variable in turn. The
NAME argument is not optional. Returns CTF_ERR on end of iteration
or error. */
ctf_id_t
ctf_variable_next (ctf_file_t *fp, ctf_next_t **it, const char **name);
/* Iterate over all CTF files in an archive, returning each dict in turn as a
ctf_file_t, and NULL on error or end of iteration. It is the caller's
responsibility to close it. Parent dicts may be skipped. Regardless of
whether they are skipped or not, the caller must ctf_import the parent if
need be. */
ctf_file_t *
ctf_archive_next (const ctf_archive_t *wrapper, ctf_next_t **it,
const char **name, int skip_parent, int *errp);
ctf_label_next is prototyped but not implemented yet.
include/
* ctf-api.h (ECTF_NEXT_END): New error.
(ECTF_NEXT_WRONGFUN): Likewise.
(ECTF_NEXT_WRONGFP): Likewise.
(ECTF_NERR): Adjust.
(ctf_next_t): New.
(ctf_next_create): New prototype.
(ctf_next_destroy): Likewise.
(ctf_next_copy): Likewise.
(ctf_member_next): Likewise.
(ctf_enum_next): Likewise.
(ctf_type_next): Likewise.
(ctf_label_next): Likewise.
(ctf_variable_next): Likewise.
libctf/
* ctf-impl.h (ctf_next): New.
(ctf_get_dict): New prototype.
* ctf-lookup.c (ctf_get_dict): New, split out of...
(ctf_lookup_by_id): ... here.
* ctf-util.c (ctf_next_create): New.
(ctf_next_destroy): New.
(ctf_next_copy): New.
* ctf-types.c (includes): Add <assert.h>.
(ctf_member_next): New.
(ctf_enum_next): New.
(ctf_type_iter): Document the lack of iteration over parent
types.
(ctf_type_next): New.
(ctf_variable_next): New.
* ctf-archive.c (ctf_archive_next): New.
* libctf.ver: Add new public functions.
2020-06-03 22:13:24 +08:00
|
|
|
union
|
|
|
|
{
|
libctf, include, binutils, gdb, ld: rename ctf_file_t to ctf_dict_t
The naming of the ctf_file_t type in libctf is a historical curiosity.
Back in the Solaris days, CTF dictionaries were originally generated as
a separate file and then (sometimes) merged into objects: hence the
datatype was named ctf_file_t, and known as a "CTF file". Nowadays, raw
CTF is essentially never written to a file on its own, and the datatype
changed name to a "CTF dictionary" years ago. So the term "CTF file"
refers to something that is never a file! This is at best confusing.
The type has also historically been known as a 'CTF container", which is
even more confusing now that we have CTF archives which are *also* a
sort of container (they contain CTF dictionaries), but which are never
referred to as containers in the source code.
So fix this by completing the renaming, renaming ctf_file_t to
ctf_dict_t throughout, and renaming those few functions that refer to
CTF files by name (keeping compatibility aliases) to refer to dicts
instead. Old users who still refer to ctf_file_t will see (harmless)
pointer-compatibility warnings at compile time, but the ABI is unchanged
(since C doesn't mangle names, and ctf_file_t was always an opaque type)
and things will still compile fine as long as -Werror is not specified.
All references to CTF containers and CTF files in the source code are
fixed to refer to CTF dicts instead.
Further (smaller) renamings of annoyingly-named functions to come, as
part of the process of souping up queries across whole archives at once
(needed for the function info and data object sections).
binutils/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* objdump.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_ctf): Likewise. Use ctf_dict_close, not ctf_file_close.
* readelf.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_section_as_ctf): Likewise. Use ctf_dict_close, not
ctf_file_close.
gdb/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctfread.c: Change uses of ctf_file_t to ctf_dict_t.
(ctf_fp_info::~ctf_fp_info): Call ctf_dict_close, not ctf_file_close.
include/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-api.h (ctf_file_t): Rename to...
(ctf_dict_t): ... this. Keep ctf_file_t around for compatibility.
(struct ctf_file): Likewise rename to...
(struct ctf_dict): ... this.
(ctf_file_close): Rename to...
(ctf_dict_close): ... this, keeping compatibility function.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this, keeping compatibility function.
All callers adjusted.
* ctf.h: Rename references to ctf_file_t to ctf_dict_t.
(struct ctf_archive) <ctfa_nfiles>: Rename to...
<ctfa_ndicts>: ... this.
ld/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ldlang.c (ctf_output): This is a ctf_dict_t now.
(lang_ctf_errs_warnings): Rename ctf_file_t to ctf_dict_t.
(ldlang_open_ctf): Adjust comment.
(lang_merge_ctf): Use ctf_dict_close, not ctf_file_close.
* ldelfgen.h (ldelf_examine_strtab_for_ctf): Rename ctf_file_t to
ctf_dict_t. Change opaque declaration accordingly.
* ldelfgen.c (ldelf_examine_strtab_for_ctf): Adjust.
* ldemul.h (examine_strtab_for_ctf): Likewise.
(ldemul_examine_strtab_for_ctf): Likewise.
* ldeuml.c (ldemul_examine_strtab_for_ctf): Likewise.
libctf/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h: Rename ctf_file_t to ctf_dict_t: all declarations
adjusted.
(ctf_fileops): Rename to...
(ctf_dictops): ... this.
(ctf_dedup_t) <cd_id_to_file_t>: Rename to...
<cd_id_to_dict_t>: ... this.
(ctf_file_t): Fix outdated comment.
<ctf_fileops>: Rename to...
<ctf_dictops>: ... this.
(struct ctf_archive_internal) <ctfi_file>: Rename to...
<ctfi_dict>: ... this.
* ctf-archive.c: Rename ctf_file_t to ctf_dict_t.
Rename ctf_archive.ctfa_nfiles to ctfa_ndicts.
Rename ctf_file_close to ctf_dict_close. All users adjusted.
* ctf-create.c: Likewise. Refer to CTF dicts, not CTF containers.
(ctf_bundle_t) <ctb_file>: Rename to...
<ctb_dict): ... this.
* ctf-decl.c: Rename ctf_file_t to ctf_dict_t.
* ctf-dedup.c: Likewise. Rename ctf_file_close to
ctf_dict_close. Refer to CTF dicts, not CTF containers.
* ctf-dump.c: Likewise.
* ctf-error.c: Likewise.
* ctf-hash.c: Likewise.
* ctf-inlines.h: Likewise.
* ctf-labels.c: Likewise.
* ctf-link.c: Likewise.
* ctf-lookup.c: Likewise.
* ctf-open-bfd.c: Likewise.
* ctf-string.c: Likewise.
* ctf-subr.c: Likewise.
* ctf-types.c: Likewise.
* ctf-util.c: Likewise.
* ctf-open.c: Likewise.
(ctf_file_close): Rename to...
(ctf_dict_close): ...this.
(ctf_file_close): New trivial wrapper around ctf_dict_close, for
compatibility.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this.
(ctf_parent_file): New trivial wrapper around ctf_parent_dict, for
compatibility.
* libctf.ver: Add ctf_dict_close and ctf_parent_dict.
2020-11-20 21:34:04 +08:00
|
|
|
const ctf_dict_t *ctn_fp;
|
libctf, next: introduce new class of easier-to-use iterators
The libctf machinery currently only provides one way to iterate over its
data structures: ctf_*_iter functions that take a callback and an arg
and repeatedly call it.
This *works*, but if you are doing a lot of iteration it is really quite
inconvenient: you have to package up your local variables into
structures over and over again and spawn lots of little functions even
if it would be clearer in a single run of code. Look at ctf-string.c
for an extreme example of how unreadable this can get, with
three-line-long functions proliferating wildly.
The deduplicator takes this to the Nth level. It iterates over a whole
bunch of things: if we'd had to use _iter-class iterators for all of
them there would be twenty additional functions in the deduplicator
alone, for no other reason than that the iterator API requires it.
Let's do something better. strtok_r gives us half the design: generators
in a number of other languages give us the other half.
The *_next API allows you to iterate over CTF-like entities in a single
function using a normal while loop. e.g. here we are iterating over all
the types in a dict:
ctf_next_t *i = NULL;
int *hidden;
ctf_id_t id;
while ((id = ctf_type_next (fp, &i, &hidden, 1)) != CTF_ERR)
{
/* do something with 'hidden' and 'id' */
}
if (ctf_errno (fp) != ECTF_NEXT_END)
/* iteration error */
Here we are walking through the members of a struct with CTF ID
'struct_type':
ctf_next_t *i = NULL;
ssize_t offset;
const char *name;
ctf_id_t membtype;
while ((offset = ctf_member_next (fp, struct_type, &i, &name,
&membtype)) >= 0
{
/* do something with offset, name, and membtype */
}
if (ctf_errno (fp) != ECTF_NEXT_END)
/* iteration error */
Like every other while loop, this means you have access to all the local
variables outside the loop while inside it, with no need to tiresomely
package things up in structures, move the body of the loop into a
separate function, etc, as you would with an iterator taking a callback.
ctf_*_next allocates 'i' for you on first entry (when it must be NULL),
and frees and NULLs it and returns a _next-dependent flag value when the
iteration is over: the fp errno is set to ECTF_NEXT_END when the
iteartion ends normally. If you want to exit early, call
ctf_next_destroy on the iterator. You can copy iterators using
ctf_next_copy, which copies their current iteration position so you can
remember loop positions and go back to them later (or ctf_next_destroy
them if you don't need them after all).
Each _next function returns an always-likely-to-be-useful property of
the thing being iterated over, and takes pointers to parameters for the
others: with very few exceptions all those parameters can be NULLs if
you're not interested in them, so e.g. you can iterate over only the
offsets of members of a structure this way:
while ((offset = ctf_member_next (fp, struct_id, &i, NULL, NULL)) >= 0)
If you pass an iterator in use by one iteration function to another one,
you get the new error ECTF_NEXT_WRONGFUN back; if you try to change
ctf_file_t in mid-iteration, you get ECTF_NEXT_WRONGFP back.
Internally the ctf_next_t remembers the iteration function in use,
various sizes and increments useful for almost all iterations, then
uses unions to overlap the actual entities being iterated over to keep
ctf_next_t size down.
Iterators available in the public API so far (all tested in actual use
in the deduplicator):
/* Iterate over the members of a STRUCT or UNION, returning each member's
offset and optionally name and member type in turn. On end-of-iteration,
returns -1. */
ssize_t
ctf_member_next (ctf_file_t *fp, ctf_id_t type, ctf_next_t **it,
const char **name, ctf_id_t *membtype);
/* Iterate over the members of an enum TYPE, returning each enumerand's
NAME or NULL at end of iteration or error, and optionally passing
back the enumerand's integer VALue. */
const char *
ctf_enum_next (ctf_file_t *fp, ctf_id_t type, ctf_next_t **it,
int *val);
/* Iterate over every type in the given CTF container (not including
parents), optionally including non-user-visible types, returning
each type ID and optionally the hidden flag in turn. Returns CTF_ERR
on end of iteration or error. */
ctf_id_t
ctf_type_next (ctf_file_t *fp, ctf_next_t **it, int *flag,
int want_hidden);
/* Iterate over every variable in the given CTF container, in arbitrary
order, returning the name and type of each variable in turn. The
NAME argument is not optional. Returns CTF_ERR on end of iteration
or error. */
ctf_id_t
ctf_variable_next (ctf_file_t *fp, ctf_next_t **it, const char **name);
/* Iterate over all CTF files in an archive, returning each dict in turn as a
ctf_file_t, and NULL on error or end of iteration. It is the caller's
responsibility to close it. Parent dicts may be skipped. Regardless of
whether they are skipped or not, the caller must ctf_import the parent if
need be. */
ctf_file_t *
ctf_archive_next (const ctf_archive_t *wrapper, ctf_next_t **it,
const char **name, int skip_parent, int *errp);
ctf_label_next is prototyped but not implemented yet.
include/
* ctf-api.h (ECTF_NEXT_END): New error.
(ECTF_NEXT_WRONGFUN): Likewise.
(ECTF_NEXT_WRONGFP): Likewise.
(ECTF_NERR): Adjust.
(ctf_next_t): New.
(ctf_next_create): New prototype.
(ctf_next_destroy): Likewise.
(ctf_next_copy): Likewise.
(ctf_member_next): Likewise.
(ctf_enum_next): Likewise.
(ctf_type_next): Likewise.
(ctf_label_next): Likewise.
(ctf_variable_next): Likewise.
libctf/
* ctf-impl.h (ctf_next): New.
(ctf_get_dict): New prototype.
* ctf-lookup.c (ctf_get_dict): New, split out of...
(ctf_lookup_by_id): ... here.
* ctf-util.c (ctf_next_create): New.
(ctf_next_destroy): New.
(ctf_next_copy): New.
* ctf-types.c (includes): Add <assert.h>.
(ctf_member_next): New.
(ctf_enum_next): New.
(ctf_type_iter): Document the lack of iteration over parent
types.
(ctf_type_next): New.
(ctf_variable_next): New.
* ctf-archive.c (ctf_archive_next): New.
* libctf.ver: Add new public functions.
2020-06-03 22:13:24 +08:00
|
|
|
const ctf_archive_t *ctn_arc;
|
2020-06-03 23:36:18 +08:00
|
|
|
const ctf_dynhash_t *ctn_h;
|
|
|
|
const ctf_dynset_t *ctn_s;
|
libctf, next: introduce new class of easier-to-use iterators
The libctf machinery currently only provides one way to iterate over its
data structures: ctf_*_iter functions that take a callback and an arg
and repeatedly call it.
This *works*, but if you are doing a lot of iteration it is really quite
inconvenient: you have to package up your local variables into
structures over and over again and spawn lots of little functions even
if it would be clearer in a single run of code. Look at ctf-string.c
for an extreme example of how unreadable this can get, with
three-line-long functions proliferating wildly.
The deduplicator takes this to the Nth level. It iterates over a whole
bunch of things: if we'd had to use _iter-class iterators for all of
them there would be twenty additional functions in the deduplicator
alone, for no other reason than that the iterator API requires it.
Let's do something better. strtok_r gives us half the design: generators
in a number of other languages give us the other half.
The *_next API allows you to iterate over CTF-like entities in a single
function using a normal while loop. e.g. here we are iterating over all
the types in a dict:
ctf_next_t *i = NULL;
int *hidden;
ctf_id_t id;
while ((id = ctf_type_next (fp, &i, &hidden, 1)) != CTF_ERR)
{
/* do something with 'hidden' and 'id' */
}
if (ctf_errno (fp) != ECTF_NEXT_END)
/* iteration error */
Here we are walking through the members of a struct with CTF ID
'struct_type':
ctf_next_t *i = NULL;
ssize_t offset;
const char *name;
ctf_id_t membtype;
while ((offset = ctf_member_next (fp, struct_type, &i, &name,
&membtype)) >= 0
{
/* do something with offset, name, and membtype */
}
if (ctf_errno (fp) != ECTF_NEXT_END)
/* iteration error */
Like every other while loop, this means you have access to all the local
variables outside the loop while inside it, with no need to tiresomely
package things up in structures, move the body of the loop into a
separate function, etc, as you would with an iterator taking a callback.
ctf_*_next allocates 'i' for you on first entry (when it must be NULL),
and frees and NULLs it and returns a _next-dependent flag value when the
iteration is over: the fp errno is set to ECTF_NEXT_END when the
iteartion ends normally. If you want to exit early, call
ctf_next_destroy on the iterator. You can copy iterators using
ctf_next_copy, which copies their current iteration position so you can
remember loop positions and go back to them later (or ctf_next_destroy
them if you don't need them after all).
Each _next function returns an always-likely-to-be-useful property of
the thing being iterated over, and takes pointers to parameters for the
others: with very few exceptions all those parameters can be NULLs if
you're not interested in them, so e.g. you can iterate over only the
offsets of members of a structure this way:
while ((offset = ctf_member_next (fp, struct_id, &i, NULL, NULL)) >= 0)
If you pass an iterator in use by one iteration function to another one,
you get the new error ECTF_NEXT_WRONGFUN back; if you try to change
ctf_file_t in mid-iteration, you get ECTF_NEXT_WRONGFP back.
Internally the ctf_next_t remembers the iteration function in use,
various sizes and increments useful for almost all iterations, then
uses unions to overlap the actual entities being iterated over to keep
ctf_next_t size down.
Iterators available in the public API so far (all tested in actual use
in the deduplicator):
/* Iterate over the members of a STRUCT or UNION, returning each member's
offset and optionally name and member type in turn. On end-of-iteration,
returns -1. */
ssize_t
ctf_member_next (ctf_file_t *fp, ctf_id_t type, ctf_next_t **it,
const char **name, ctf_id_t *membtype);
/* Iterate over the members of an enum TYPE, returning each enumerand's
NAME or NULL at end of iteration or error, and optionally passing
back the enumerand's integer VALue. */
const char *
ctf_enum_next (ctf_file_t *fp, ctf_id_t type, ctf_next_t **it,
int *val);
/* Iterate over every type in the given CTF container (not including
parents), optionally including non-user-visible types, returning
each type ID and optionally the hidden flag in turn. Returns CTF_ERR
on end of iteration or error. */
ctf_id_t
ctf_type_next (ctf_file_t *fp, ctf_next_t **it, int *flag,
int want_hidden);
/* Iterate over every variable in the given CTF container, in arbitrary
order, returning the name and type of each variable in turn. The
NAME argument is not optional. Returns CTF_ERR on end of iteration
or error. */
ctf_id_t
ctf_variable_next (ctf_file_t *fp, ctf_next_t **it, const char **name);
/* Iterate over all CTF files in an archive, returning each dict in turn as a
ctf_file_t, and NULL on error or end of iteration. It is the caller's
responsibility to close it. Parent dicts may be skipped. Regardless of
whether they are skipped or not, the caller must ctf_import the parent if
need be. */
ctf_file_t *
ctf_archive_next (const ctf_archive_t *wrapper, ctf_next_t **it,
const char **name, int skip_parent, int *errp);
ctf_label_next is prototyped but not implemented yet.
include/
* ctf-api.h (ECTF_NEXT_END): New error.
(ECTF_NEXT_WRONGFUN): Likewise.
(ECTF_NEXT_WRONGFP): Likewise.
(ECTF_NERR): Adjust.
(ctf_next_t): New.
(ctf_next_create): New prototype.
(ctf_next_destroy): Likewise.
(ctf_next_copy): Likewise.
(ctf_member_next): Likewise.
(ctf_enum_next): Likewise.
(ctf_type_next): Likewise.
(ctf_label_next): Likewise.
(ctf_variable_next): Likewise.
libctf/
* ctf-impl.h (ctf_next): New.
(ctf_get_dict): New prototype.
* ctf-lookup.c (ctf_get_dict): New, split out of...
(ctf_lookup_by_id): ... here.
* ctf-util.c (ctf_next_create): New.
(ctf_next_destroy): New.
(ctf_next_copy): New.
* ctf-types.c (includes): Add <assert.h>.
(ctf_member_next): New.
(ctf_enum_next): New.
(ctf_type_iter): Document the lack of iteration over parent
types.
(ctf_type_next): New.
(ctf_variable_next): New.
* ctf-archive.c (ctf_archive_next): New.
* libctf.ver: Add new public functions.
2020-06-03 22:13:24 +08:00
|
|
|
} cu;
|
|
|
|
};
|
|
|
|
|
2019-04-24 05:24:13 +08:00
|
|
|
/* Return x rounded up to an alignment boundary.
|
|
|
|
eg, P2ROUNDUP(0x1234, 0x100) == 0x1300 (0x13*align)
|
|
|
|
eg, P2ROUNDUP(0x5600, 0x100) == 0x5600 (0x56*align) */
|
|
|
|
#define P2ROUNDUP(x, align) (-(-(x) & -(align)))
|
|
|
|
|
|
|
|
/* * If an offs is not aligned already then round it up and align it. */
|
|
|
|
#define LCTF_ALIGN_OFFS(offs, align) ((offs + (align - 1)) & ~(align - 1))
|
|
|
|
|
|
|
|
#define LCTF_TYPE_ISPARENT(fp, id) ((id) <= fp->ctf_parmax)
|
|
|
|
#define LCTF_TYPE_ISCHILD(fp, id) ((id) > fp->ctf_parmax)
|
|
|
|
#define LCTF_TYPE_TO_INDEX(fp, id) ((id) & (fp->ctf_parmax))
|
|
|
|
#define LCTF_INDEX_TO_TYPE(fp, id, child) (child ? ((id) | (fp->ctf_parmax+1)) : \
|
|
|
|
(id))
|
|
|
|
|
|
|
|
#define LCTF_INDEX_TO_TYPEPTR(fp, i) \
|
libctf: avoid the need to ever use ctf_update
The method of operation of libctf when the dictionary is writable has
before now been that types that are added land in the dynamic type
section, which is a linked list and hash of IDs -> dynamic type
definitions (and, recently a hash of names): the DTDs are a bit of CTF
representing the ctf_type_t and ad hoc C structures representing the
vlen. Historically, libctf was unable to do anything with these types,
not even look them up by ID, let alone by name: if you wanted to do that
say if you were adding a type that depended on one you just added) you
called ctf_update, which serializes all the DTDs into a CTF file and
reopens it, copying its guts over the fp it's called with. The
ctf_updated types are then frozen in amber and unchangeable: all lookups
will return the types in the static portion in preference to the dynamic
portion, and we will refuse to re-add things that already exist in the
static portion (and, of late, in the dynamic portion too). The libctf
machinery remembers the boundary between static and dynamic types and
looks in the right portion for each type. Lots of things still don't
quite work with dynamic types (e.g. getting their size), but enough
works to do a bunch of additions and then a ctf_update, most of the
time.
Except it doesn't, because ctf_add_type finds it necessary to walk the
full dynamic type definition list looking for types with matching names,
so it gets slower and slower with every type you add: fixing this
requires calling ctf_update periodically for no other reason than to
avoid massively slowing things down.
This is all clunky and very slow but kind of works, until you consider
that it is in fact possible and indeed necessary to modify one sort of
type after it has been added: forwards. These are necessarily promoted
to structs, unions or enums, and when they do so *their type ID does not
change*. So all of a sudden we are changing types that already exist in
the static portion. ctf_update gets massively confused by this and
allocates space enough for the forward (with no members), but then emits
the new dynamic type (with all the members) into it. You get an
assertion failure after that, if you're lucky, or a coredump.
So this commit rejigs things a bit and arranges to exclusively use the
dynamic type definitions in writable dictionaries, and the static type
definitions in readable dictionaries: we don't at any time have a mixture
of static and dynamic types, and you don't need to call ctf_update to
make things "appear". The ctf_dtbyname hash I introduced a few months
ago, which maps things like "struct foo" to DTDs, is removed, replaced
instead by a change of type of the four dictionaries which track names.
Rather than just being (unresizable) ctf_hash_t's populated only at
ctf_bufopen time, they are now a ctf_names_t structure, which is a pair
of ctf_hash_t and ctf_dynhash_t, with the ctf_hash_t portion being used
in readonly dictionaries, and the ctf_dynhash_t being used in writable
ones. The decision as to which to use is centralized in the new
functions ctf_lookup_by_rawname (which takes a type kind) and
ctf_lookup_by_rawhash, which it calls (which takes a ctf_names_t *.)
This change lets us switch from using static to dynamic name hashes on
the fly across the entirety of libctf without complexifying anything: in
fact, because we now centralize the knowledge about how to map from type
kind to name hash, it actually simplifies things and lets us throw out
quite a lot of now-unnecessary complexity, from ctf_dtnyname (replaced
by the dynamic half of the name tables), through to ctf_dtnextid (now
that a dictionary's static portion is never referenced if the dictionary
is writable, we can just use ctf_typemax to indicate the maximum type:
dynamic or non-dynamic does not matter, and we no longer need to track
the boundary between the types). You can now ctf_rollback() as far as
you like, even past a ctf_update or for that matter a full writeout; all
the iteration functions work just as well on writable as on read-only
dictionaries; ctf_add_type no longer needs expensive duplicated code to
run over the dynamic types hunting for ones it might be interested in;
and the linker no longer needs a hack to call ctf_update so that calling
ctf_add_type is not impossibly expensive.
There is still a bit more complexity: some new code paths in ctf-types.c
need to know how to extract information from dynamic types. This
complexity will go away again in a few months when libctf acquires a
proper intermediate representation.
You can still call ctf_update if you like (it's public API, after all),
but its only effect now is to set the point to which ctf_discard rolls
back.
Obviously *something* still needs to serialize the CTF file before
writeout, and this job is done by ctf_serialize, which does everything
ctf_update used to except set the counter used by ctf_discard. It is
automatically called by the various functions that do CTF writeout:
nobody else ever needs to call it.
With this in place, forwards that are promoted to non-forwards no longer
crash the link, even if it happens tens of thousands of types later.
v5: fix tabdamage.
libctf/
* ctf-impl.h (ctf_names_t): New.
(ctf_lookup_t) <ctf_hash>: Now a ctf_names_t, not a ctf_hash_t.
(ctf_file_t) <ctf_structs>: Likewise.
<ctf_unions>: Likewise.
<ctf_enums>: Likewise.
<ctf_names>: Likewise.
<ctf_lookups>: Improve comment.
<ctf_ptrtab_len>: New.
<ctf_prov_strtab>: New.
<ctf_str_prov_offset>: New.
<ctf_dtbyname>: Remove, redundant to the names hashes.
<ctf_dtnextid>: Remove, redundant to ctf_typemax.
(ctf_dtdef_t) <dtd_name>: Remove.
<dtd_data>: Note that the ctt_name is now populated.
(ctf_str_atom_t) <csa_offset>: This is now the strtab
offset for internal strings too.
<csa_external_offset>: New, the external strtab offset.
(CTF_INDEX_TO_TYPEPTR): Handle the LCTF_RDWR case.
(ctf_name_table): New declaration.
(ctf_lookup_by_rawname): Likewise.
(ctf_lookup_by_rawhash): Likewise.
(ctf_set_ctl_hashes): Likewise.
(ctf_serialize): Likewise.
(ctf_dtd_insert): Adjust.
(ctf_simple_open_internal): Likewise.
(ctf_bufopen_internal): Likewise.
(ctf_list_empty_p): Likewise.
(ctf_str_remove_ref): Likewise.
(ctf_str_add): Returns uint32_t now.
(ctf_str_add_ref): Likewise.
(ctf_str_add_external): Now returns a boolean (int).
* ctf-string.c (ctf_strraw_explicit): Check the ctf_prov_strtab
for strings in the appropriate range.
(ctf_str_create_atoms): Create the ctf_prov_strtab. Detect OOM
when adding the null string to the new strtab.
(ctf_str_free_atoms): Destroy the ctf_prov_strtab.
(ctf_str_add_ref_internal): Add make_provisional argument. If
make_provisional, populate the offset and fill in the
ctf_prov_strtab accordingly.
(ctf_str_add): Return the offset, not the string.
(ctf_str_add_ref): Likewise.
(ctf_str_add_external): Return a success integer.
(ctf_str_remove_ref): New, remove a single ref.
(ctf_str_count_strtab): Do not count the initial null string's
length or the existence or length of any unreferenced internal
atoms.
(ctf_str_populate_sorttab): Skip atoms with no refs.
(ctf_str_write_strtab): Populate the nullstr earlier. Add one
to the cts_len for the null string, since it is no longer done
in ctf_str_count_strtab. Adjust for csa_external_offset rename.
Populate the csa_offset for both internal and external cases.
Flush the ctf_prov_strtab afterwards, and reset the
ctf_str_prov_offset.
* ctf-create.c (ctf_grow_ptrtab): New.
(ctf_create): Call it. Initialize new fields rather than old
ones. Tell ctf_bufopen_internal that this is a writable dictionary.
Set the ctl hashes and data model.
(ctf_update): Rename to...
(ctf_serialize): ... this. Leave a compatibility function behind.
Tell ctf_simple_open_internal that this is a writable dictionary.
Pass the new fields along from the old dictionary. Drop
ctf_dtnextid and ctf_dtbyname. Use ctf_strraw, not dtd_name.
Do not zero out the DTD's ctt_name.
(ctf_prefixed_name): Rename to...
(ctf_name_table): ... this. No longer return a prefixed name: return
the applicable name table instead.
(ctf_dtd_insert): Use it, and use the right name table. Pass in the
kind we're adding. Migrate away from dtd_name.
(ctf_dtd_delete): Adjust similarly. Remove the ref to the
deleted ctt_name.
(ctf_dtd_lookup_type_by_name): Remove.
(ctf_dynamic_type): Always return NULL on read-only dictionaries.
No longer check ctf_dtnextid: check ctf_typemax instead.
(ctf_snapshot): No longer use ctf_dtnextid: use ctf_typemax instead.
(ctf_rollback): Likewise. No longer fail with ECTF_OVERROLLBACK. Use
ctf_name_table and the right name table, and migrate away from
dtd_name as in ctf_dtd_delete.
(ctf_add_generic): Pass in the kind explicitly and pass it to
ctf_dtd_insert. Use ctf_typemax, not ctf_dtnextid. Migrate away
from dtd_name to using ctf_str_add_ref to populate the ctt_name.
Grow the ptrtab if needed.
(ctf_add_encoded): Pass in the kind.
(ctf_add_slice): Likewise.
(ctf_add_array): Likewise.
(ctf_add_function): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_reftype): Likewise. Initialize the ctf_ptrtab, checking
ctt_name rather than dtd_name.
(ctf_add_struct_sized): Pass in the kind. Use
ctf_lookup_by_rawname, not ctf_hash_lookup_type /
ctf_dtd_lookup_type_by_name.
(ctf_add_union_sized): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_type): Likewise.
(ctf_compress_write): Call ctf_serialize: adjust for ctf_size not
being initialized until after the call.
(ctf_write_mem): Likewise.
(ctf_write): Likewise.
* ctf-archive.c (arc_write_one_ctf): Likewise.
* ctf-lookup.c (ctf_lookup_by_name): Use ctf_lookuup_by_rawhash, not
ctf_hash_lookup_type.
(ctf_lookup_by_id): No longer check the readonly types if the
dictionary is writable.
* ctf-open.c (init_types): Assert that this dictionary is not
writable. Adjust to use the new name hashes, ctf_name_table,
and ctf_ptrtab_len. GNU style fix for the final ptrtab scan.
(ctf_bufopen_internal): New 'writable' parameter. Flip on LCTF_RDWR
if set. Drop out early when dictionary is writable. Split the
ctf_lookups initialization into...
(ctf_set_cth_hashes): ... this new function.
(ctf_simple_open_internal): Adjust. New 'writable' parameter.
(ctf_simple_open): Adjust accordingly.
(ctf_bufopen): Likewise.
(ctf_file_close): Destroy the appropriate name hashes. No longer
destroy ctf_dtbyname, which is gone.
(ctf_getdatasect): Remove spurious "extern".
* ctf-types.c (ctf_lookup_by_rawname): New, look up types in the
specified name table, given a kind.
(ctf_lookup_by_rawhash): Likewise, given a ctf_names_t *.
(ctf_member_iter): Add support for iterating over the
dynamic type list.
(ctf_enum_iter): Likewise.
(ctf_variable_iter): Likewise.
(ctf_type_rvisit): Likewise.
(ctf_member_info): Add support for types in the dynamic type list.
(ctf_enum_name): Likewise.
(ctf_enum_value): Likewise.
(ctf_func_type_info): Likewise.
(ctf_func_type_args): Likewise.
* ctf-link.c (ctf_accumulate_archive_names): No longer call
ctf_update.
(ctf_link_write): Likewise.
(ctf_link_intern_extern_string): Adjust for new
ctf_str_add_external return value.
(ctf_link_add_strtab): Likewise.
* ctf-util.c (ctf_list_empty_p): New.
2019-08-08 00:55:09 +08:00
|
|
|
((fp->ctf_flags & LCTF_RDWR) ? \
|
|
|
|
&(ctf_dtd_lookup (fp, LCTF_INDEX_TO_TYPE \
|
|
|
|
(fp, i, fp->ctf_flags & LCTF_CHILD))->dtd_data) : \
|
|
|
|
(ctf_type_t *)((uintptr_t)(fp)->ctf_buf + (fp)->ctf_txlate[(i)]))
|
2019-04-24 05:24:13 +08:00
|
|
|
|
libctf, include, binutils, gdb, ld: rename ctf_file_t to ctf_dict_t
The naming of the ctf_file_t type in libctf is a historical curiosity.
Back in the Solaris days, CTF dictionaries were originally generated as
a separate file and then (sometimes) merged into objects: hence the
datatype was named ctf_file_t, and known as a "CTF file". Nowadays, raw
CTF is essentially never written to a file on its own, and the datatype
changed name to a "CTF dictionary" years ago. So the term "CTF file"
refers to something that is never a file! This is at best confusing.
The type has also historically been known as a 'CTF container", which is
even more confusing now that we have CTF archives which are *also* a
sort of container (they contain CTF dictionaries), but which are never
referred to as containers in the source code.
So fix this by completing the renaming, renaming ctf_file_t to
ctf_dict_t throughout, and renaming those few functions that refer to
CTF files by name (keeping compatibility aliases) to refer to dicts
instead. Old users who still refer to ctf_file_t will see (harmless)
pointer-compatibility warnings at compile time, but the ABI is unchanged
(since C doesn't mangle names, and ctf_file_t was always an opaque type)
and things will still compile fine as long as -Werror is not specified.
All references to CTF containers and CTF files in the source code are
fixed to refer to CTF dicts instead.
Further (smaller) renamings of annoyingly-named functions to come, as
part of the process of souping up queries across whole archives at once
(needed for the function info and data object sections).
binutils/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* objdump.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_ctf): Likewise. Use ctf_dict_close, not ctf_file_close.
* readelf.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_section_as_ctf): Likewise. Use ctf_dict_close, not
ctf_file_close.
gdb/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctfread.c: Change uses of ctf_file_t to ctf_dict_t.
(ctf_fp_info::~ctf_fp_info): Call ctf_dict_close, not ctf_file_close.
include/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-api.h (ctf_file_t): Rename to...
(ctf_dict_t): ... this. Keep ctf_file_t around for compatibility.
(struct ctf_file): Likewise rename to...
(struct ctf_dict): ... this.
(ctf_file_close): Rename to...
(ctf_dict_close): ... this, keeping compatibility function.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this, keeping compatibility function.
All callers adjusted.
* ctf.h: Rename references to ctf_file_t to ctf_dict_t.
(struct ctf_archive) <ctfa_nfiles>: Rename to...
<ctfa_ndicts>: ... this.
ld/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ldlang.c (ctf_output): This is a ctf_dict_t now.
(lang_ctf_errs_warnings): Rename ctf_file_t to ctf_dict_t.
(ldlang_open_ctf): Adjust comment.
(lang_merge_ctf): Use ctf_dict_close, not ctf_file_close.
* ldelfgen.h (ldelf_examine_strtab_for_ctf): Rename ctf_file_t to
ctf_dict_t. Change opaque declaration accordingly.
* ldelfgen.c (ldelf_examine_strtab_for_ctf): Adjust.
* ldemul.h (examine_strtab_for_ctf): Likewise.
(ldemul_examine_strtab_for_ctf): Likewise.
* ldeuml.c (ldemul_examine_strtab_for_ctf): Likewise.
libctf/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h: Rename ctf_file_t to ctf_dict_t: all declarations
adjusted.
(ctf_fileops): Rename to...
(ctf_dictops): ... this.
(ctf_dedup_t) <cd_id_to_file_t>: Rename to...
<cd_id_to_dict_t>: ... this.
(ctf_file_t): Fix outdated comment.
<ctf_fileops>: Rename to...
<ctf_dictops>: ... this.
(struct ctf_archive_internal) <ctfi_file>: Rename to...
<ctfi_dict>: ... this.
* ctf-archive.c: Rename ctf_file_t to ctf_dict_t.
Rename ctf_archive.ctfa_nfiles to ctfa_ndicts.
Rename ctf_file_close to ctf_dict_close. All users adjusted.
* ctf-create.c: Likewise. Refer to CTF dicts, not CTF containers.
(ctf_bundle_t) <ctb_file>: Rename to...
<ctb_dict): ... this.
* ctf-decl.c: Rename ctf_file_t to ctf_dict_t.
* ctf-dedup.c: Likewise. Rename ctf_file_close to
ctf_dict_close. Refer to CTF dicts, not CTF containers.
* ctf-dump.c: Likewise.
* ctf-error.c: Likewise.
* ctf-hash.c: Likewise.
* ctf-inlines.h: Likewise.
* ctf-labels.c: Likewise.
* ctf-link.c: Likewise.
* ctf-lookup.c: Likewise.
* ctf-open-bfd.c: Likewise.
* ctf-string.c: Likewise.
* ctf-subr.c: Likewise.
* ctf-types.c: Likewise.
* ctf-util.c: Likewise.
* ctf-open.c: Likewise.
(ctf_file_close): Rename to...
(ctf_dict_close): ...this.
(ctf_file_close): New trivial wrapper around ctf_dict_close, for
compatibility.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this.
(ctf_parent_file): New trivial wrapper around ctf_parent_dict, for
compatibility.
* libctf.ver: Add ctf_dict_close and ctf_parent_dict.
2020-11-20 21:34:04 +08:00
|
|
|
#define LCTF_INFO_KIND(fp, info) ((fp)->ctf_dictops->ctfo_get_kind(info))
|
|
|
|
#define LCTF_INFO_ISROOT(fp, info) ((fp)->ctf_dictops->ctfo_get_root(info))
|
|
|
|
#define LCTF_INFO_VLEN(fp, info) ((fp)->ctf_dictops->ctfo_get_vlen(info))
|
2019-04-24 05:24:13 +08:00
|
|
|
#define LCTF_VBYTES(fp, kind, size, vlen) \
|
libctf, include, binutils, gdb, ld: rename ctf_file_t to ctf_dict_t
The naming of the ctf_file_t type in libctf is a historical curiosity.
Back in the Solaris days, CTF dictionaries were originally generated as
a separate file and then (sometimes) merged into objects: hence the
datatype was named ctf_file_t, and known as a "CTF file". Nowadays, raw
CTF is essentially never written to a file on its own, and the datatype
changed name to a "CTF dictionary" years ago. So the term "CTF file"
refers to something that is never a file! This is at best confusing.
The type has also historically been known as a 'CTF container", which is
even more confusing now that we have CTF archives which are *also* a
sort of container (they contain CTF dictionaries), but which are never
referred to as containers in the source code.
So fix this by completing the renaming, renaming ctf_file_t to
ctf_dict_t throughout, and renaming those few functions that refer to
CTF files by name (keeping compatibility aliases) to refer to dicts
instead. Old users who still refer to ctf_file_t will see (harmless)
pointer-compatibility warnings at compile time, but the ABI is unchanged
(since C doesn't mangle names, and ctf_file_t was always an opaque type)
and things will still compile fine as long as -Werror is not specified.
All references to CTF containers and CTF files in the source code are
fixed to refer to CTF dicts instead.
Further (smaller) renamings of annoyingly-named functions to come, as
part of the process of souping up queries across whole archives at once
(needed for the function info and data object sections).
binutils/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* objdump.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_ctf): Likewise. Use ctf_dict_close, not ctf_file_close.
* readelf.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_section_as_ctf): Likewise. Use ctf_dict_close, not
ctf_file_close.
gdb/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctfread.c: Change uses of ctf_file_t to ctf_dict_t.
(ctf_fp_info::~ctf_fp_info): Call ctf_dict_close, not ctf_file_close.
include/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-api.h (ctf_file_t): Rename to...
(ctf_dict_t): ... this. Keep ctf_file_t around for compatibility.
(struct ctf_file): Likewise rename to...
(struct ctf_dict): ... this.
(ctf_file_close): Rename to...
(ctf_dict_close): ... this, keeping compatibility function.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this, keeping compatibility function.
All callers adjusted.
* ctf.h: Rename references to ctf_file_t to ctf_dict_t.
(struct ctf_archive) <ctfa_nfiles>: Rename to...
<ctfa_ndicts>: ... this.
ld/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ldlang.c (ctf_output): This is a ctf_dict_t now.
(lang_ctf_errs_warnings): Rename ctf_file_t to ctf_dict_t.
(ldlang_open_ctf): Adjust comment.
(lang_merge_ctf): Use ctf_dict_close, not ctf_file_close.
* ldelfgen.h (ldelf_examine_strtab_for_ctf): Rename ctf_file_t to
ctf_dict_t. Change opaque declaration accordingly.
* ldelfgen.c (ldelf_examine_strtab_for_ctf): Adjust.
* ldemul.h (examine_strtab_for_ctf): Likewise.
(ldemul_examine_strtab_for_ctf): Likewise.
* ldeuml.c (ldemul_examine_strtab_for_ctf): Likewise.
libctf/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h: Rename ctf_file_t to ctf_dict_t: all declarations
adjusted.
(ctf_fileops): Rename to...
(ctf_dictops): ... this.
(ctf_dedup_t) <cd_id_to_file_t>: Rename to...
<cd_id_to_dict_t>: ... this.
(ctf_file_t): Fix outdated comment.
<ctf_fileops>: Rename to...
<ctf_dictops>: ... this.
(struct ctf_archive_internal) <ctfi_file>: Rename to...
<ctfi_dict>: ... this.
* ctf-archive.c: Rename ctf_file_t to ctf_dict_t.
Rename ctf_archive.ctfa_nfiles to ctfa_ndicts.
Rename ctf_file_close to ctf_dict_close. All users adjusted.
* ctf-create.c: Likewise. Refer to CTF dicts, not CTF containers.
(ctf_bundle_t) <ctb_file>: Rename to...
<ctb_dict): ... this.
* ctf-decl.c: Rename ctf_file_t to ctf_dict_t.
* ctf-dedup.c: Likewise. Rename ctf_file_close to
ctf_dict_close. Refer to CTF dicts, not CTF containers.
* ctf-dump.c: Likewise.
* ctf-error.c: Likewise.
* ctf-hash.c: Likewise.
* ctf-inlines.h: Likewise.
* ctf-labels.c: Likewise.
* ctf-link.c: Likewise.
* ctf-lookup.c: Likewise.
* ctf-open-bfd.c: Likewise.
* ctf-string.c: Likewise.
* ctf-subr.c: Likewise.
* ctf-types.c: Likewise.
* ctf-util.c: Likewise.
* ctf-open.c: Likewise.
(ctf_file_close): Rename to...
(ctf_dict_close): ...this.
(ctf_file_close): New trivial wrapper around ctf_dict_close, for
compatibility.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this.
(ctf_parent_file): New trivial wrapper around ctf_parent_dict, for
compatibility.
* libctf.ver: Add ctf_dict_close and ctf_parent_dict.
2020-11-20 21:34:04 +08:00
|
|
|
((fp)->ctf_dictops->ctfo_get_vbytes(fp, kind, size, vlen))
|
2019-04-24 05:24:13 +08:00
|
|
|
|
libctf: symbol type linking support
This adds facilities to write out the function info and data object
sections, which efficiently map from entries in the symbol table to
types. The write-side code is entirely new: the read-side code was
merely significantly changed and support for indexed tables added
(pointed to by the no-longer-unused cth_objtidxoff and cth_funcidxoff
header fields).
With this in place, you can use ctf_lookup_by_symbol to look up the
types of symbols of function and object type (and, as before, you can
use ctf_lookup_variable to look up types of file-scope variables not
present in the symbol table, as long as you know their name: but
variables that are also data objects are now found in the data object
section instead.)
(Compatible) file format change:
The CTF spec has always said that the function info section looks much
like the CTF_K_FUNCTIONs in the type section: an info word (including an
argument count) followed by a return type and N argument types. This
format is suboptimal: it means function symbols cannot be deduplicated
and it causes a lot of ugly code duplication in libctf. But
conveniently the compiler has never emitted this! Because it has always
emitted a rather different format that libctf has never accepted, we can
be sure that there are no instances of this function info section in the
wild, and can freely change its format without compatibility concerns or
a file format version bump. (And since it has never been emitted in any
code that generated any older file format version, either, we need keep
no code to read the format as specified at all!)
So the function info section is now specified as an array of uint32_t,
exactly like the object data section: each entry is a type ID in the
type section which must be of kind CTF_K_FUNCTION, the prototype of
this function.
This allows function types to be deduplicated and also correctly encodes
the fact that all functions declared in C really are types available to
the program: so they should be stored in the type section like all other
types. (In format v4, we will be able to represent the types of static
functions as well, but that really does require a file format change.)
We introduce a new header flag, CTF_F_NEWFUNCINFO, which is set if the
new function info format is in use. A sufficiently new compiler will
always set this flag. New libctf will always set this flag: old libctf
will refuse to open any CTF dicts that have this flag set. If the flag
is not set on a dict being read in, new libctf will disregard the
function info section. Format v4 will remove this flag (or, rather, the
flag has no meaning there and the bit position may be recycled for some
other purpose).
New API:
Symbol addition:
ctf_add_func_sym: Add a symbol with a given name and type. The
type must be of kind CTF_K_FUNCTION (a function
pointer). Internally this adds a name -> type
mapping to the ctf_funchash in the ctf_dict.
ctf_add_objt_sym: Add a symbol with a given name and type. The type
kind can be anything, including function pointers.
This adds to ctf_objthash.
These both treat symbols as name -> type mappings: the linker associates
symbol names with symbol indexes via the ctf_link_shuffle_syms callback,
which sets up the ctf_dynsyms/ctf_dynsymidx/ctf_dynsymmax fields in the
ctf_dict. Repeated relinks can add more symbols.
Variables that are also exposed as symbols are removed from the variable
section at serialization time.
CTF symbol type sections which have enough pads, defined by
CTF_INDEX_PAD_THRESHOLD (whether because they are in dicts with symbols
where most types are unknown, or in archive where most types are defined
in some child or parent dict, not in this specific dict) are sorted by
name rather than symidx and accompanied by an index which associates
each symbol type entry with a name: the existing ctf_lookup_by_symbol
will map symbol indexes to symbol names and look the names up in the
index automatically. (This is currently ELF-symbol-table-dependent, but
there is almost nothing specific to ELF in here and we can add support
for other symbol table formats easily).
The compiler also uses index sections to communicate the contents of
object file symbol tables without relying on any specific ordering of
symbols: it doesn't need to sort them, and libctf will detect an
unsorted index section via the absence of the new CTF_F_IDXSORTED header
flag, and sort it if needed.
Iteration:
ctf_symbol_next: Iterator which returns the types and names of symbols
one by one, either for function or data symbols.
This does not require any sorting: the ctf_link machinery uses it to
pull in all the compiler-provided symbols cheaply, but it is not
restricted to that use.
(Compatible) changes in API:
ctf_lookup_by_symbol: can now be called for object and function
symbols: never returns ECTF_NOTDATA (which is
now not thrown by anything, but is kept for
compatibility and because it is a plausible
error that we might start throwing again at some
later date).
Internally we also have changes to the ctf-string functionality so that
"external" strings (those where we track a string -> offset mapping, but
only write out an offset) can be consulted via the usual means
(ctf_strptr) before the strtab is written out. This is important
because ctf_link_add_linker_symbol can now be handed symbols named via
strtab offsets, and ctf_link_shuffle_syms must figure out their actual
names by looking in the external symtab we have just been fed by the
ctf_link_add_strtab callback, long before that strtab is written out.
include/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-api.h (ctf_symbol_next): New.
(ctf_add_objt_sym): Likewise.
(ctf_add_func_sym): Likewise.
* ctf.h: Document new function info section format.
(CTF_F_NEWFUNCINFO): New.
(CTF_F_IDXSORTED): New.
(CTF_F_MAX): Adjust accordingly.
libctf/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h (CTF_INDEX_PAD_THRESHOLD): New.
(_libctf_nonnull_): Likewise.
(ctf_in_flight_dynsym_t): New.
(ctf_dict_t) <ctf_funcidx_names>: Likewise.
<ctf_objtidx_names>: Likewise.
<ctf_nfuncidx>: Likewise.
<ctf_nobjtidx>: Likewise.
<ctf_funcidx_sxlate>: Likewise.
<ctf_objtidx_sxlate>: Likewise.
<ctf_objthash>: Likewise.
<ctf_funchash>: Likewise.
<ctf_dynsyms>: Likewise.
<ctf_dynsymidx>: Likewise.
<ctf_dynsymmax>: Likewise.
<ctf_in_flight_dynsym>: Likewise.
(struct ctf_next) <u.ctn_next>: Likewise.
(ctf_symtab_skippable): New prototype.
(ctf_add_funcobjt_sym): Likewise.
(ctf_dynhash_sort_by_name): Likewise.
(ctf_sym_to_elf64): Rename to...
(ctf_elf32_to_link_sym): ... this, and...
(ctf_elf64_to_link_sym): ... this.
* ctf-open.c (init_symtab): Check for lack of CTF_F_NEWFUNCINFO
flag, and presence of index sections. Refactor out
ctf_symtab_skippable and ctf_elf*_to_link_sym, and use them. Use
ctf_link_sym_t, not Elf64_Sym. Skip initializing objt or func
sxlate sections if corresponding index section is present. Adjust
for new func info section format.
(ctf_bufopen_internal): Add ctf_err_warn to corrupt-file error
handling. Report incorrect-length index sections. Always do an
init_symtab, even if there is no symtab section (there may be index
sections still).
(flip_objts): Adjust comment: func and objt sections are actually
identical in structure now, no need to caveat.
(ctf_dict_close): Free newly-added data structures.
* ctf-create.c (ctf_create): Initialize them.
(ctf_symtab_skippable): New, refactored out of
init_symtab, with st_nameidx_set check added.
(ctf_add_funcobjt_sym): New, add a function or object symbol to the
ctf_objthash or ctf_funchash, by name.
(ctf_add_objt_sym): Call it.
(ctf_add_func_sym): Likewise.
(symtypetab_delete_nonstatic_vars): New, delete vars also present as
data objects.
(CTF_SYMTYPETAB_EMIT_FUNCTION): New flag to symtypetab emitters:
this is a function emission, not a data object emission.
(CTF_SYMTYPETAB_EMIT_PAD): New flag to symtypetab emitters: emit
pads for symbols with no type (only set for unindexed sections).
(CTF_SYMTYPETAB_FORCE_INDEXED): New flag to symtypetab emitters:
always emit indexed.
(symtypetab_density): New, figure out section sizes.
(emit_symtypetab): New, emit a symtypetab.
(emit_symtypetab_index): New, emit a symtypetab index.
(ctf_serialize): Call them, emitting suitably sorted symtypetab
sections and indexes. Set suitable header flags. Copy over new
fields.
* ctf-hash.c (ctf_dynhash_sort_by_name): New, used to impose an
order on symtypetab index sections.
* ctf-link.c (ctf_add_type_mapping): Delete erroneous comment
relating to code that was never committed.
(ctf_link_one_variable): Improve variable name.
(check_sym): New, symtypetab analogue of check_variable.
(ctf_link_deduplicating_one_symtypetab): New.
(ctf_link_deduplicating_syms): Likewise.
(ctf_link_deduplicating): Call them.
(ctf_link_deduplicating_per_cu): Note that we don't call them in
this case (yet).
(ctf_link_add_strtab): Set the error on the fp correctly.
(ctf_link_add_linker_symbol): New (no longer a do-nothing stub), add
a linker symbol to the in-flight list.
(ctf_link_shuffle_syms): New (no longer a do-nothing stub), turn the
in-flight list into a mapping we can use, now its names are
resolvable in the external strtab.
* ctf-string.c (ctf_str_rollback_atom): Don't roll back atoms with
external strtab offsets.
(ctf_str_rollback): Adjust comment.
(ctf_str_write_strtab): Migrate ctf_syn_ext_strtab population from
writeout time...
(ctf_str_add_external): ... to string addition time.
* ctf-lookup.c (ctf_lookup_var_key_t): Rename to...
(ctf_lookup_idx_key_t): ... this, now we use it for syms too.
<clik_names>: New member, a name table.
(ctf_lookup_var): Adjust accordingly.
(ctf_lookup_variable): Likewise.
(ctf_lookup_by_id): Shuffle further up in the file.
(ctf_symidx_sort_arg_cb): New, callback for...
(sort_symidx_by_name): ... this new function to sort a symidx
found to be unsorted (likely originating from the compiler).
(ctf_symidx_sort): New, sort a symidx.
(ctf_lookup_symbol_name): Support dynamic symbols with indexes
provided by the linker. Use ctf_link_sym_t, not Elf64_Sym.
Check the parent if a child lookup fails.
(ctf_lookup_by_symbol): Likewise. Work for function symbols too.
(ctf_symbol_next): New, iterate over symbols with types (without
sorting).
(ctf_lookup_idx_name): New, bsearch for symbol names in indexes.
(ctf_try_lookup_indexed): New, attempt an indexed lookup.
(ctf_func_info): Reimplement in terms of ctf_lookup_by_symbol.
(ctf_func_args): Likewise.
(ctf_get_dict): Move...
* ctf-types.c (ctf_get_dict): ... here.
* ctf-util.c (ctf_sym_to_elf64): Re-express as...
(ctf_elf64_to_link_sym): ... this. Add new st_symidx field, and
st_nameidx_set (always 0, so st_nameidx can be ignored). Look in
the ELF strtab for names.
(ctf_elf32_to_link_sym): Likewise, for Elf32_Sym.
(ctf_next_destroy): Destroy ctf_next_t.u.ctn_next if need be.
* libctf.ver: Add ctf_symbol_next, ctf_add_objt_sym and
ctf_add_func_sym.
2020-11-20 21:34:04 +08:00
|
|
|
#define LCTF_CHILD 0x0001 /* CTF dict is a child. */
|
|
|
|
#define LCTF_RDWR 0x0002 /* CTF dict is writable. */
|
|
|
|
#define LCTF_DIRTY 0x0004 /* CTF dict has been modified. */
|
libctf, ld: fix symtypetab and var section population under ld -r
The variable section in a CTF dict is meant to contain the types of
variables that do not appear in the symbol table (mostly file-scope
static declarations). We implement this by having the compiler emit
all potential data symbols into both sections, then delete those
symbols from the variable section that correspond to data symbols the
linker has reported.
Unfortunately, the check for this in ctf_serialize is wrong: rather than
checking the set of linker-reported symbols, we check the set of names
in the data object symtypetab section: if the linker has reported no
symbols at all (usually if ld -r has been run, or if a non-linker
program that does not use symbol tables is calling ctf_link) this will
include every single symbol, emptying the variable section completely.
Worse, when ld -r is in use, we want to force writeout of every
symtypetab entry on the inputs, in an indexed section, whether or not
the linker has reported them, since this isn't a final link yet and the
symbol table is not finalized (and may grow more symbols than the linker
has yet reported). But the check for this is flawed too: we were
relying on ctf_link_shuffle_syms not having been called if no symbols
exist, but that function is *always* called by ld even when ld -r is in
use: ctf_link_add_linker_symbol is the one that's not called when there
are no symbols.
We clearly need to rethink this. Using the emptiness of the set of
reported symbols as a test for ld -r is just ugly: the linker already
knows if ld -r is underway and can just tell us. So add a new linker
flag CTF_LINK_NO_FILTER_REPORTED_SYMS that is set to stop the linker
filtering the symbols in the symtypetab sections using the set that the
linker has reported: use the presence or absence of this flag to
determine whether to emit unindexed symtabs: we only remove entries from
the variable section when filtering symbols, and we only remove them if
they are in the reported symbol set, fixing the case where no symbols
are reported by the linker at all.
(The negative sense of the new CTF_LINK flag is intentional: the common
case, both for ld and for simple tools that want to do a ctf_link with
no ELF symbol table in sight, is probably to filter out symbols that no
linker has reported: i.e., for the simple tools, all of them.)
There's another wrinkle, though. It is quite possible for a non-linker
to add symbols to a dict via ctf_add_*_sym and then write it out via the
ctf_write APIs: perhaps it's preparing a dict for a later linker
invocation. Right now this would not lead to anything terribly
meaningful happening: ctf_serialize just assumes it was called via
ctf_link if symbols are present. So add an (internal-to-libctf) flag
that indicates that a writeout is happening via ctf_link_write, and set
it there (propagating it to child dicts as needed). ctf_serialize can
then spot when it is not being called by a linker, and arrange to always
write out an indexed, sorted symtypetab for fastest possible future
symbol lookup by name in that case. (The writeouts done by ld -r are
unsorted, because the only thing likely to use those symtabs is the
linker, which doesn't benefit from symtypetab sorting.)
Tests added for all three linking cases (ld -r, ld -shared, ld), with a
bit of testsuite framework enhancement to stop it unconditionally
linking the CTF to be checked by the lookup program with -shared, so
tests can now examine CTF linked with -r or indeed with no flags at all,
though the output filename is still foo.so even in this case.
Another test added for the non-linker case that endeavours to determine
whether the symtypetab is sorted by examining the order of entries
returned from ctf_symbol_next: nobody outside libctf should rely on
this ordering, but this test is not outside libctf :)
include/ChangeLog
2021-01-26 Nick Alcock <nick.alcock@oracle.com>
* ctf-api.h (CTF_LINK_NO_FILTER_REPORTED_SYMS): New.
ld/ChangeLog
2021-01-26 Nick Alcock <nick.alcock@oracle.com>
* ldlang.c (lang_merge_ctf): Set CTF_LINK_NO_FILTER_REPORTED_SYMS
when appropriate.
libctf/ChangeLog
2021-01-27 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.c (_libctf_nonnull_): Add parameters.
(LCTF_LINKING): New flag.
(ctf_dict_t) <ctf_link_flags>: Mention it.
* ctf-link.c (ctf_link): Keep LCTF_LINKING set across call.
(ctf_write): Likewise, including in child dictionaries.
(ctf_link_shuffle_syms): Make sure ctf_dynsyms is NULL if there
are no reported symbols.
* ctf-create.c (symtypetab_delete_nonstatic_vars): Make sure
the variable has been reported as a symbol by the linker.
(symtypetab_skippable): Mention relationship between SYMFP and the
flags.
(symtypetab_density): Adjust nonnullity. Exit early if no symbols
were reported and force-indexing is off (i.e., we are doing a
final link).
(ctf_serialize): Handle the !LCTF_LINKING case by writing out an
indexed, sorted symtypetab (and allow SYMFP to be NULL in this
case). Turn sorting off if this is a non-final link. Only delete
nonstatic vars if we are filtering symbols and the linker has
reported some.
* testsuite/libctf-regression/nonstatic-var-section-ld-r*:
New test of variable and symtypetab section population when
ld -r is used.
* testsuite/libctf-regression/nonstatic-var-section-ld-executable.lk:
Likewise, when ld of an executable is used.
* testsuite/libctf-regression/nonstatic-var-section-ld.lk:
Likewise, when ld -shared alone is used.
* testsuite/libctf-regression/nonstatic-var-section-ld*.c:
Lookup programs for the above.
* testsuite/libctf-writable/symtypetab-nonlinker-writeout.*: New
test, testing survival of symbols across ctf_write paths.
* testsuite/lib/ctf-lib.exp (run_lookup_test): New option,
nonshared, suppressing linking of the SOURCE with -shared.
2021-01-17 00:49:29 +08:00
|
|
|
#define LCTF_LINKING 0x0008 /* CTF link is underway: respect ctf_link_flags. */
|
2019-04-24 05:24:13 +08:00
|
|
|
|
libctf, include, binutils, gdb, ld: rename ctf_file_t to ctf_dict_t
The naming of the ctf_file_t type in libctf is a historical curiosity.
Back in the Solaris days, CTF dictionaries were originally generated as
a separate file and then (sometimes) merged into objects: hence the
datatype was named ctf_file_t, and known as a "CTF file". Nowadays, raw
CTF is essentially never written to a file on its own, and the datatype
changed name to a "CTF dictionary" years ago. So the term "CTF file"
refers to something that is never a file! This is at best confusing.
The type has also historically been known as a 'CTF container", which is
even more confusing now that we have CTF archives which are *also* a
sort of container (they contain CTF dictionaries), but which are never
referred to as containers in the source code.
So fix this by completing the renaming, renaming ctf_file_t to
ctf_dict_t throughout, and renaming those few functions that refer to
CTF files by name (keeping compatibility aliases) to refer to dicts
instead. Old users who still refer to ctf_file_t will see (harmless)
pointer-compatibility warnings at compile time, but the ABI is unchanged
(since C doesn't mangle names, and ctf_file_t was always an opaque type)
and things will still compile fine as long as -Werror is not specified.
All references to CTF containers and CTF files in the source code are
fixed to refer to CTF dicts instead.
Further (smaller) renamings of annoyingly-named functions to come, as
part of the process of souping up queries across whole archives at once
(needed for the function info and data object sections).
binutils/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* objdump.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_ctf): Likewise. Use ctf_dict_close, not ctf_file_close.
* readelf.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_section_as_ctf): Likewise. Use ctf_dict_close, not
ctf_file_close.
gdb/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctfread.c: Change uses of ctf_file_t to ctf_dict_t.
(ctf_fp_info::~ctf_fp_info): Call ctf_dict_close, not ctf_file_close.
include/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-api.h (ctf_file_t): Rename to...
(ctf_dict_t): ... this. Keep ctf_file_t around for compatibility.
(struct ctf_file): Likewise rename to...
(struct ctf_dict): ... this.
(ctf_file_close): Rename to...
(ctf_dict_close): ... this, keeping compatibility function.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this, keeping compatibility function.
All callers adjusted.
* ctf.h: Rename references to ctf_file_t to ctf_dict_t.
(struct ctf_archive) <ctfa_nfiles>: Rename to...
<ctfa_ndicts>: ... this.
ld/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ldlang.c (ctf_output): This is a ctf_dict_t now.
(lang_ctf_errs_warnings): Rename ctf_file_t to ctf_dict_t.
(ldlang_open_ctf): Adjust comment.
(lang_merge_ctf): Use ctf_dict_close, not ctf_file_close.
* ldelfgen.h (ldelf_examine_strtab_for_ctf): Rename ctf_file_t to
ctf_dict_t. Change opaque declaration accordingly.
* ldelfgen.c (ldelf_examine_strtab_for_ctf): Adjust.
* ldemul.h (examine_strtab_for_ctf): Likewise.
(ldemul_examine_strtab_for_ctf): Likewise.
* ldeuml.c (ldemul_examine_strtab_for_ctf): Likewise.
libctf/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h: Rename ctf_file_t to ctf_dict_t: all declarations
adjusted.
(ctf_fileops): Rename to...
(ctf_dictops): ... this.
(ctf_dedup_t) <cd_id_to_file_t>: Rename to...
<cd_id_to_dict_t>: ... this.
(ctf_file_t): Fix outdated comment.
<ctf_fileops>: Rename to...
<ctf_dictops>: ... this.
(struct ctf_archive_internal) <ctfi_file>: Rename to...
<ctfi_dict>: ... this.
* ctf-archive.c: Rename ctf_file_t to ctf_dict_t.
Rename ctf_archive.ctfa_nfiles to ctfa_ndicts.
Rename ctf_file_close to ctf_dict_close. All users adjusted.
* ctf-create.c: Likewise. Refer to CTF dicts, not CTF containers.
(ctf_bundle_t) <ctb_file>: Rename to...
<ctb_dict): ... this.
* ctf-decl.c: Rename ctf_file_t to ctf_dict_t.
* ctf-dedup.c: Likewise. Rename ctf_file_close to
ctf_dict_close. Refer to CTF dicts, not CTF containers.
* ctf-dump.c: Likewise.
* ctf-error.c: Likewise.
* ctf-hash.c: Likewise.
* ctf-inlines.h: Likewise.
* ctf-labels.c: Likewise.
* ctf-link.c: Likewise.
* ctf-lookup.c: Likewise.
* ctf-open-bfd.c: Likewise.
* ctf-string.c: Likewise.
* ctf-subr.c: Likewise.
* ctf-types.c: Likewise.
* ctf-util.c: Likewise.
* ctf-open.c: Likewise.
(ctf_file_close): Rename to...
(ctf_dict_close): ...this.
(ctf_file_close): New trivial wrapper around ctf_dict_close, for
compatibility.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this.
(ctf_parent_file): New trivial wrapper around ctf_parent_dict, for
compatibility.
* libctf.ver: Add ctf_dict_close and ctf_parent_dict.
2020-11-20 21:34:04 +08:00
|
|
|
extern ctf_names_t *ctf_name_table (ctf_dict_t *, int);
|
|
|
|
extern const ctf_type_t *ctf_lookup_by_id (ctf_dict_t **, ctf_id_t);
|
|
|
|
extern ctf_id_t ctf_lookup_by_rawname (ctf_dict_t *, int, const char *);
|
|
|
|
extern ctf_id_t ctf_lookup_by_rawhash (ctf_dict_t *, ctf_names_t *, const char *);
|
|
|
|
extern void ctf_set_ctl_hashes (ctf_dict_t *);
|
2019-04-24 05:24:13 +08:00
|
|
|
|
libctf: symbol type linking support
This adds facilities to write out the function info and data object
sections, which efficiently map from entries in the symbol table to
types. The write-side code is entirely new: the read-side code was
merely significantly changed and support for indexed tables added
(pointed to by the no-longer-unused cth_objtidxoff and cth_funcidxoff
header fields).
With this in place, you can use ctf_lookup_by_symbol to look up the
types of symbols of function and object type (and, as before, you can
use ctf_lookup_variable to look up types of file-scope variables not
present in the symbol table, as long as you know their name: but
variables that are also data objects are now found in the data object
section instead.)
(Compatible) file format change:
The CTF spec has always said that the function info section looks much
like the CTF_K_FUNCTIONs in the type section: an info word (including an
argument count) followed by a return type and N argument types. This
format is suboptimal: it means function symbols cannot be deduplicated
and it causes a lot of ugly code duplication in libctf. But
conveniently the compiler has never emitted this! Because it has always
emitted a rather different format that libctf has never accepted, we can
be sure that there are no instances of this function info section in the
wild, and can freely change its format without compatibility concerns or
a file format version bump. (And since it has never been emitted in any
code that generated any older file format version, either, we need keep
no code to read the format as specified at all!)
So the function info section is now specified as an array of uint32_t,
exactly like the object data section: each entry is a type ID in the
type section which must be of kind CTF_K_FUNCTION, the prototype of
this function.
This allows function types to be deduplicated and also correctly encodes
the fact that all functions declared in C really are types available to
the program: so they should be stored in the type section like all other
types. (In format v4, we will be able to represent the types of static
functions as well, but that really does require a file format change.)
We introduce a new header flag, CTF_F_NEWFUNCINFO, which is set if the
new function info format is in use. A sufficiently new compiler will
always set this flag. New libctf will always set this flag: old libctf
will refuse to open any CTF dicts that have this flag set. If the flag
is not set on a dict being read in, new libctf will disregard the
function info section. Format v4 will remove this flag (or, rather, the
flag has no meaning there and the bit position may be recycled for some
other purpose).
New API:
Symbol addition:
ctf_add_func_sym: Add a symbol with a given name and type. The
type must be of kind CTF_K_FUNCTION (a function
pointer). Internally this adds a name -> type
mapping to the ctf_funchash in the ctf_dict.
ctf_add_objt_sym: Add a symbol with a given name and type. The type
kind can be anything, including function pointers.
This adds to ctf_objthash.
These both treat symbols as name -> type mappings: the linker associates
symbol names with symbol indexes via the ctf_link_shuffle_syms callback,
which sets up the ctf_dynsyms/ctf_dynsymidx/ctf_dynsymmax fields in the
ctf_dict. Repeated relinks can add more symbols.
Variables that are also exposed as symbols are removed from the variable
section at serialization time.
CTF symbol type sections which have enough pads, defined by
CTF_INDEX_PAD_THRESHOLD (whether because they are in dicts with symbols
where most types are unknown, or in archive where most types are defined
in some child or parent dict, not in this specific dict) are sorted by
name rather than symidx and accompanied by an index which associates
each symbol type entry with a name: the existing ctf_lookup_by_symbol
will map symbol indexes to symbol names and look the names up in the
index automatically. (This is currently ELF-symbol-table-dependent, but
there is almost nothing specific to ELF in here and we can add support
for other symbol table formats easily).
The compiler also uses index sections to communicate the contents of
object file symbol tables without relying on any specific ordering of
symbols: it doesn't need to sort them, and libctf will detect an
unsorted index section via the absence of the new CTF_F_IDXSORTED header
flag, and sort it if needed.
Iteration:
ctf_symbol_next: Iterator which returns the types and names of symbols
one by one, either for function or data symbols.
This does not require any sorting: the ctf_link machinery uses it to
pull in all the compiler-provided symbols cheaply, but it is not
restricted to that use.
(Compatible) changes in API:
ctf_lookup_by_symbol: can now be called for object and function
symbols: never returns ECTF_NOTDATA (which is
now not thrown by anything, but is kept for
compatibility and because it is a plausible
error that we might start throwing again at some
later date).
Internally we also have changes to the ctf-string functionality so that
"external" strings (those where we track a string -> offset mapping, but
only write out an offset) can be consulted via the usual means
(ctf_strptr) before the strtab is written out. This is important
because ctf_link_add_linker_symbol can now be handed symbols named via
strtab offsets, and ctf_link_shuffle_syms must figure out their actual
names by looking in the external symtab we have just been fed by the
ctf_link_add_strtab callback, long before that strtab is written out.
include/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-api.h (ctf_symbol_next): New.
(ctf_add_objt_sym): Likewise.
(ctf_add_func_sym): Likewise.
* ctf.h: Document new function info section format.
(CTF_F_NEWFUNCINFO): New.
(CTF_F_IDXSORTED): New.
(CTF_F_MAX): Adjust accordingly.
libctf/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h (CTF_INDEX_PAD_THRESHOLD): New.
(_libctf_nonnull_): Likewise.
(ctf_in_flight_dynsym_t): New.
(ctf_dict_t) <ctf_funcidx_names>: Likewise.
<ctf_objtidx_names>: Likewise.
<ctf_nfuncidx>: Likewise.
<ctf_nobjtidx>: Likewise.
<ctf_funcidx_sxlate>: Likewise.
<ctf_objtidx_sxlate>: Likewise.
<ctf_objthash>: Likewise.
<ctf_funchash>: Likewise.
<ctf_dynsyms>: Likewise.
<ctf_dynsymidx>: Likewise.
<ctf_dynsymmax>: Likewise.
<ctf_in_flight_dynsym>: Likewise.
(struct ctf_next) <u.ctn_next>: Likewise.
(ctf_symtab_skippable): New prototype.
(ctf_add_funcobjt_sym): Likewise.
(ctf_dynhash_sort_by_name): Likewise.
(ctf_sym_to_elf64): Rename to...
(ctf_elf32_to_link_sym): ... this, and...
(ctf_elf64_to_link_sym): ... this.
* ctf-open.c (init_symtab): Check for lack of CTF_F_NEWFUNCINFO
flag, and presence of index sections. Refactor out
ctf_symtab_skippable and ctf_elf*_to_link_sym, and use them. Use
ctf_link_sym_t, not Elf64_Sym. Skip initializing objt or func
sxlate sections if corresponding index section is present. Adjust
for new func info section format.
(ctf_bufopen_internal): Add ctf_err_warn to corrupt-file error
handling. Report incorrect-length index sections. Always do an
init_symtab, even if there is no symtab section (there may be index
sections still).
(flip_objts): Adjust comment: func and objt sections are actually
identical in structure now, no need to caveat.
(ctf_dict_close): Free newly-added data structures.
* ctf-create.c (ctf_create): Initialize them.
(ctf_symtab_skippable): New, refactored out of
init_symtab, with st_nameidx_set check added.
(ctf_add_funcobjt_sym): New, add a function or object symbol to the
ctf_objthash or ctf_funchash, by name.
(ctf_add_objt_sym): Call it.
(ctf_add_func_sym): Likewise.
(symtypetab_delete_nonstatic_vars): New, delete vars also present as
data objects.
(CTF_SYMTYPETAB_EMIT_FUNCTION): New flag to symtypetab emitters:
this is a function emission, not a data object emission.
(CTF_SYMTYPETAB_EMIT_PAD): New flag to symtypetab emitters: emit
pads for symbols with no type (only set for unindexed sections).
(CTF_SYMTYPETAB_FORCE_INDEXED): New flag to symtypetab emitters:
always emit indexed.
(symtypetab_density): New, figure out section sizes.
(emit_symtypetab): New, emit a symtypetab.
(emit_symtypetab_index): New, emit a symtypetab index.
(ctf_serialize): Call them, emitting suitably sorted symtypetab
sections and indexes. Set suitable header flags. Copy over new
fields.
* ctf-hash.c (ctf_dynhash_sort_by_name): New, used to impose an
order on symtypetab index sections.
* ctf-link.c (ctf_add_type_mapping): Delete erroneous comment
relating to code that was never committed.
(ctf_link_one_variable): Improve variable name.
(check_sym): New, symtypetab analogue of check_variable.
(ctf_link_deduplicating_one_symtypetab): New.
(ctf_link_deduplicating_syms): Likewise.
(ctf_link_deduplicating): Call them.
(ctf_link_deduplicating_per_cu): Note that we don't call them in
this case (yet).
(ctf_link_add_strtab): Set the error on the fp correctly.
(ctf_link_add_linker_symbol): New (no longer a do-nothing stub), add
a linker symbol to the in-flight list.
(ctf_link_shuffle_syms): New (no longer a do-nothing stub), turn the
in-flight list into a mapping we can use, now its names are
resolvable in the external strtab.
* ctf-string.c (ctf_str_rollback_atom): Don't roll back atoms with
external strtab offsets.
(ctf_str_rollback): Adjust comment.
(ctf_str_write_strtab): Migrate ctf_syn_ext_strtab population from
writeout time...
(ctf_str_add_external): ... to string addition time.
* ctf-lookup.c (ctf_lookup_var_key_t): Rename to...
(ctf_lookup_idx_key_t): ... this, now we use it for syms too.
<clik_names>: New member, a name table.
(ctf_lookup_var): Adjust accordingly.
(ctf_lookup_variable): Likewise.
(ctf_lookup_by_id): Shuffle further up in the file.
(ctf_symidx_sort_arg_cb): New, callback for...
(sort_symidx_by_name): ... this new function to sort a symidx
found to be unsorted (likely originating from the compiler).
(ctf_symidx_sort): New, sort a symidx.
(ctf_lookup_symbol_name): Support dynamic symbols with indexes
provided by the linker. Use ctf_link_sym_t, not Elf64_Sym.
Check the parent if a child lookup fails.
(ctf_lookup_by_symbol): Likewise. Work for function symbols too.
(ctf_symbol_next): New, iterate over symbols with types (without
sorting).
(ctf_lookup_idx_name): New, bsearch for symbol names in indexes.
(ctf_try_lookup_indexed): New, attempt an indexed lookup.
(ctf_func_info): Reimplement in terms of ctf_lookup_by_symbol.
(ctf_func_args): Likewise.
(ctf_get_dict): Move...
* ctf-types.c (ctf_get_dict): ... here.
* ctf-util.c (ctf_sym_to_elf64): Re-express as...
(ctf_elf64_to_link_sym): ... this. Add new st_symidx field, and
st_nameidx_set (always 0, so st_nameidx can be ignored). Look in
the ELF strtab for names.
(ctf_elf32_to_link_sym): Likewise, for Elf32_Sym.
(ctf_next_destroy): Destroy ctf_next_t.u.ctn_next if need be.
* libctf.ver: Add ctf_symbol_next, ctf_add_objt_sym and
ctf_add_func_sym.
2020-11-20 21:34:04 +08:00
|
|
|
extern int ctf_symtab_skippable (ctf_link_sym_t *sym);
|
|
|
|
extern int ctf_add_funcobjt_sym (ctf_dict_t *, int is_function,
|
|
|
|
const char *, ctf_id_t);
|
|
|
|
|
libctf, include, binutils, gdb, ld: rename ctf_file_t to ctf_dict_t
The naming of the ctf_file_t type in libctf is a historical curiosity.
Back in the Solaris days, CTF dictionaries were originally generated as
a separate file and then (sometimes) merged into objects: hence the
datatype was named ctf_file_t, and known as a "CTF file". Nowadays, raw
CTF is essentially never written to a file on its own, and the datatype
changed name to a "CTF dictionary" years ago. So the term "CTF file"
refers to something that is never a file! This is at best confusing.
The type has also historically been known as a 'CTF container", which is
even more confusing now that we have CTF archives which are *also* a
sort of container (they contain CTF dictionaries), but which are never
referred to as containers in the source code.
So fix this by completing the renaming, renaming ctf_file_t to
ctf_dict_t throughout, and renaming those few functions that refer to
CTF files by name (keeping compatibility aliases) to refer to dicts
instead. Old users who still refer to ctf_file_t will see (harmless)
pointer-compatibility warnings at compile time, but the ABI is unchanged
(since C doesn't mangle names, and ctf_file_t was always an opaque type)
and things will still compile fine as long as -Werror is not specified.
All references to CTF containers and CTF files in the source code are
fixed to refer to CTF dicts instead.
Further (smaller) renamings of annoyingly-named functions to come, as
part of the process of souping up queries across whole archives at once
(needed for the function info and data object sections).
binutils/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* objdump.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_ctf): Likewise. Use ctf_dict_close, not ctf_file_close.
* readelf.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_section_as_ctf): Likewise. Use ctf_dict_close, not
ctf_file_close.
gdb/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctfread.c: Change uses of ctf_file_t to ctf_dict_t.
(ctf_fp_info::~ctf_fp_info): Call ctf_dict_close, not ctf_file_close.
include/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-api.h (ctf_file_t): Rename to...
(ctf_dict_t): ... this. Keep ctf_file_t around for compatibility.
(struct ctf_file): Likewise rename to...
(struct ctf_dict): ... this.
(ctf_file_close): Rename to...
(ctf_dict_close): ... this, keeping compatibility function.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this, keeping compatibility function.
All callers adjusted.
* ctf.h: Rename references to ctf_file_t to ctf_dict_t.
(struct ctf_archive) <ctfa_nfiles>: Rename to...
<ctfa_ndicts>: ... this.
ld/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ldlang.c (ctf_output): This is a ctf_dict_t now.
(lang_ctf_errs_warnings): Rename ctf_file_t to ctf_dict_t.
(ldlang_open_ctf): Adjust comment.
(lang_merge_ctf): Use ctf_dict_close, not ctf_file_close.
* ldelfgen.h (ldelf_examine_strtab_for_ctf): Rename ctf_file_t to
ctf_dict_t. Change opaque declaration accordingly.
* ldelfgen.c (ldelf_examine_strtab_for_ctf): Adjust.
* ldemul.h (examine_strtab_for_ctf): Likewise.
(ldemul_examine_strtab_for_ctf): Likewise.
* ldeuml.c (ldemul_examine_strtab_for_ctf): Likewise.
libctf/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h: Rename ctf_file_t to ctf_dict_t: all declarations
adjusted.
(ctf_fileops): Rename to...
(ctf_dictops): ... this.
(ctf_dedup_t) <cd_id_to_file_t>: Rename to...
<cd_id_to_dict_t>: ... this.
(ctf_file_t): Fix outdated comment.
<ctf_fileops>: Rename to...
<ctf_dictops>: ... this.
(struct ctf_archive_internal) <ctfi_file>: Rename to...
<ctfi_dict>: ... this.
* ctf-archive.c: Rename ctf_file_t to ctf_dict_t.
Rename ctf_archive.ctfa_nfiles to ctfa_ndicts.
Rename ctf_file_close to ctf_dict_close. All users adjusted.
* ctf-create.c: Likewise. Refer to CTF dicts, not CTF containers.
(ctf_bundle_t) <ctb_file>: Rename to...
<ctb_dict): ... this.
* ctf-decl.c: Rename ctf_file_t to ctf_dict_t.
* ctf-dedup.c: Likewise. Rename ctf_file_close to
ctf_dict_close. Refer to CTF dicts, not CTF containers.
* ctf-dump.c: Likewise.
* ctf-error.c: Likewise.
* ctf-hash.c: Likewise.
* ctf-inlines.h: Likewise.
* ctf-labels.c: Likewise.
* ctf-link.c: Likewise.
* ctf-lookup.c: Likewise.
* ctf-open-bfd.c: Likewise.
* ctf-string.c: Likewise.
* ctf-subr.c: Likewise.
* ctf-types.c: Likewise.
* ctf-util.c: Likewise.
* ctf-open.c: Likewise.
(ctf_file_close): Rename to...
(ctf_dict_close): ...this.
(ctf_file_close): New trivial wrapper around ctf_dict_close, for
compatibility.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this.
(ctf_parent_file): New trivial wrapper around ctf_parent_dict, for
compatibility.
* libctf.ver: Add ctf_dict_close and ctf_parent_dict.
2020-11-20 21:34:04 +08:00
|
|
|
extern ctf_dict_t *ctf_get_dict (ctf_dict_t *fp, ctf_id_t type);
|
libctf, next: introduce new class of easier-to-use iterators
The libctf machinery currently only provides one way to iterate over its
data structures: ctf_*_iter functions that take a callback and an arg
and repeatedly call it.
This *works*, but if you are doing a lot of iteration it is really quite
inconvenient: you have to package up your local variables into
structures over and over again and spawn lots of little functions even
if it would be clearer in a single run of code. Look at ctf-string.c
for an extreme example of how unreadable this can get, with
three-line-long functions proliferating wildly.
The deduplicator takes this to the Nth level. It iterates over a whole
bunch of things: if we'd had to use _iter-class iterators for all of
them there would be twenty additional functions in the deduplicator
alone, for no other reason than that the iterator API requires it.
Let's do something better. strtok_r gives us half the design: generators
in a number of other languages give us the other half.
The *_next API allows you to iterate over CTF-like entities in a single
function using a normal while loop. e.g. here we are iterating over all
the types in a dict:
ctf_next_t *i = NULL;
int *hidden;
ctf_id_t id;
while ((id = ctf_type_next (fp, &i, &hidden, 1)) != CTF_ERR)
{
/* do something with 'hidden' and 'id' */
}
if (ctf_errno (fp) != ECTF_NEXT_END)
/* iteration error */
Here we are walking through the members of a struct with CTF ID
'struct_type':
ctf_next_t *i = NULL;
ssize_t offset;
const char *name;
ctf_id_t membtype;
while ((offset = ctf_member_next (fp, struct_type, &i, &name,
&membtype)) >= 0
{
/* do something with offset, name, and membtype */
}
if (ctf_errno (fp) != ECTF_NEXT_END)
/* iteration error */
Like every other while loop, this means you have access to all the local
variables outside the loop while inside it, with no need to tiresomely
package things up in structures, move the body of the loop into a
separate function, etc, as you would with an iterator taking a callback.
ctf_*_next allocates 'i' for you on first entry (when it must be NULL),
and frees and NULLs it and returns a _next-dependent flag value when the
iteration is over: the fp errno is set to ECTF_NEXT_END when the
iteartion ends normally. If you want to exit early, call
ctf_next_destroy on the iterator. You can copy iterators using
ctf_next_copy, which copies their current iteration position so you can
remember loop positions and go back to them later (or ctf_next_destroy
them if you don't need them after all).
Each _next function returns an always-likely-to-be-useful property of
the thing being iterated over, and takes pointers to parameters for the
others: with very few exceptions all those parameters can be NULLs if
you're not interested in them, so e.g. you can iterate over only the
offsets of members of a structure this way:
while ((offset = ctf_member_next (fp, struct_id, &i, NULL, NULL)) >= 0)
If you pass an iterator in use by one iteration function to another one,
you get the new error ECTF_NEXT_WRONGFUN back; if you try to change
ctf_file_t in mid-iteration, you get ECTF_NEXT_WRONGFP back.
Internally the ctf_next_t remembers the iteration function in use,
various sizes and increments useful for almost all iterations, then
uses unions to overlap the actual entities being iterated over to keep
ctf_next_t size down.
Iterators available in the public API so far (all tested in actual use
in the deduplicator):
/* Iterate over the members of a STRUCT or UNION, returning each member's
offset and optionally name and member type in turn. On end-of-iteration,
returns -1. */
ssize_t
ctf_member_next (ctf_file_t *fp, ctf_id_t type, ctf_next_t **it,
const char **name, ctf_id_t *membtype);
/* Iterate over the members of an enum TYPE, returning each enumerand's
NAME or NULL at end of iteration or error, and optionally passing
back the enumerand's integer VALue. */
const char *
ctf_enum_next (ctf_file_t *fp, ctf_id_t type, ctf_next_t **it,
int *val);
/* Iterate over every type in the given CTF container (not including
parents), optionally including non-user-visible types, returning
each type ID and optionally the hidden flag in turn. Returns CTF_ERR
on end of iteration or error. */
ctf_id_t
ctf_type_next (ctf_file_t *fp, ctf_next_t **it, int *flag,
int want_hidden);
/* Iterate over every variable in the given CTF container, in arbitrary
order, returning the name and type of each variable in turn. The
NAME argument is not optional. Returns CTF_ERR on end of iteration
or error. */
ctf_id_t
ctf_variable_next (ctf_file_t *fp, ctf_next_t **it, const char **name);
/* Iterate over all CTF files in an archive, returning each dict in turn as a
ctf_file_t, and NULL on error or end of iteration. It is the caller's
responsibility to close it. Parent dicts may be skipped. Regardless of
whether they are skipped or not, the caller must ctf_import the parent if
need be. */
ctf_file_t *
ctf_archive_next (const ctf_archive_t *wrapper, ctf_next_t **it,
const char **name, int skip_parent, int *errp);
ctf_label_next is prototyped but not implemented yet.
include/
* ctf-api.h (ECTF_NEXT_END): New error.
(ECTF_NEXT_WRONGFUN): Likewise.
(ECTF_NEXT_WRONGFP): Likewise.
(ECTF_NERR): Adjust.
(ctf_next_t): New.
(ctf_next_create): New prototype.
(ctf_next_destroy): Likewise.
(ctf_next_copy): Likewise.
(ctf_member_next): Likewise.
(ctf_enum_next): Likewise.
(ctf_type_next): Likewise.
(ctf_label_next): Likewise.
(ctf_variable_next): Likewise.
libctf/
* ctf-impl.h (ctf_next): New.
(ctf_get_dict): New prototype.
* ctf-lookup.c (ctf_get_dict): New, split out of...
(ctf_lookup_by_id): ... here.
* ctf-util.c (ctf_next_create): New.
(ctf_next_destroy): New.
(ctf_next_copy): New.
* ctf-types.c (includes): Add <assert.h>.
(ctf_member_next): New.
(ctf_enum_next): New.
(ctf_type_iter): Document the lack of iteration over parent
types.
(ctf_type_next): New.
(ctf_variable_next): New.
* ctf-archive.c (ctf_archive_next): New.
* libctf.ver: Add new public functions.
2020-06-03 22:13:24 +08:00
|
|
|
|
2019-04-24 05:12:16 +08:00
|
|
|
typedef unsigned int (*ctf_hash_fun) (const void *ptr);
|
|
|
|
extern unsigned int ctf_hash_integer (const void *ptr);
|
|
|
|
extern unsigned int ctf_hash_string (const void *ptr);
|
2020-06-05 00:21:10 +08:00
|
|
|
extern unsigned int ctf_hash_type_key (const void *ptr);
|
2020-06-06 01:35:46 +08:00
|
|
|
extern unsigned int ctf_hash_type_id_key (const void *ptr);
|
2019-04-24 05:12:16 +08:00
|
|
|
|
|
|
|
typedef int (*ctf_hash_eq_fun) (const void *, const void *);
|
|
|
|
extern int ctf_hash_eq_integer (const void *, const void *);
|
|
|
|
extern int ctf_hash_eq_string (const void *, const void *);
|
2020-06-05 00:21:10 +08:00
|
|
|
extern int ctf_hash_eq_type_key (const void *, const void *);
|
2020-06-06 01:35:46 +08:00
|
|
|
extern int ctf_hash_eq_type_id_key (const void *, const void *);
|
2019-04-24 05:12:16 +08:00
|
|
|
|
|
|
|
typedef void (*ctf_hash_free_fun) (void *);
|
|
|
|
|
2019-06-27 20:30:22 +08:00
|
|
|
typedef void (*ctf_hash_iter_f) (void *key, void *value, void *arg);
|
|
|
|
typedef int (*ctf_hash_iter_remove_f) (void *key, void *value, void *arg);
|
2020-06-03 04:31:45 +08:00
|
|
|
typedef int (*ctf_hash_iter_find_f) (void *key, void *value, void *arg);
|
2020-06-03 23:36:18 +08:00
|
|
|
typedef int (*ctf_hash_sort_f) (const ctf_next_hkv_t *, const ctf_next_hkv_t *,
|
|
|
|
void *arg);
|
2019-06-27 20:30:22 +08:00
|
|
|
|
2019-04-24 05:12:16 +08:00
|
|
|
extern ctf_hash_t *ctf_hash_create (unsigned long, ctf_hash_fun, ctf_hash_eq_fun);
|
libctf, include, binutils, gdb, ld: rename ctf_file_t to ctf_dict_t
The naming of the ctf_file_t type in libctf is a historical curiosity.
Back in the Solaris days, CTF dictionaries were originally generated as
a separate file and then (sometimes) merged into objects: hence the
datatype was named ctf_file_t, and known as a "CTF file". Nowadays, raw
CTF is essentially never written to a file on its own, and the datatype
changed name to a "CTF dictionary" years ago. So the term "CTF file"
refers to something that is never a file! This is at best confusing.
The type has also historically been known as a 'CTF container", which is
even more confusing now that we have CTF archives which are *also* a
sort of container (they contain CTF dictionaries), but which are never
referred to as containers in the source code.
So fix this by completing the renaming, renaming ctf_file_t to
ctf_dict_t throughout, and renaming those few functions that refer to
CTF files by name (keeping compatibility aliases) to refer to dicts
instead. Old users who still refer to ctf_file_t will see (harmless)
pointer-compatibility warnings at compile time, but the ABI is unchanged
(since C doesn't mangle names, and ctf_file_t was always an opaque type)
and things will still compile fine as long as -Werror is not specified.
All references to CTF containers and CTF files in the source code are
fixed to refer to CTF dicts instead.
Further (smaller) renamings of annoyingly-named functions to come, as
part of the process of souping up queries across whole archives at once
(needed for the function info and data object sections).
binutils/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* objdump.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_ctf): Likewise. Use ctf_dict_close, not ctf_file_close.
* readelf.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_section_as_ctf): Likewise. Use ctf_dict_close, not
ctf_file_close.
gdb/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctfread.c: Change uses of ctf_file_t to ctf_dict_t.
(ctf_fp_info::~ctf_fp_info): Call ctf_dict_close, not ctf_file_close.
include/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-api.h (ctf_file_t): Rename to...
(ctf_dict_t): ... this. Keep ctf_file_t around for compatibility.
(struct ctf_file): Likewise rename to...
(struct ctf_dict): ... this.
(ctf_file_close): Rename to...
(ctf_dict_close): ... this, keeping compatibility function.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this, keeping compatibility function.
All callers adjusted.
* ctf.h: Rename references to ctf_file_t to ctf_dict_t.
(struct ctf_archive) <ctfa_nfiles>: Rename to...
<ctfa_ndicts>: ... this.
ld/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ldlang.c (ctf_output): This is a ctf_dict_t now.
(lang_ctf_errs_warnings): Rename ctf_file_t to ctf_dict_t.
(ldlang_open_ctf): Adjust comment.
(lang_merge_ctf): Use ctf_dict_close, not ctf_file_close.
* ldelfgen.h (ldelf_examine_strtab_for_ctf): Rename ctf_file_t to
ctf_dict_t. Change opaque declaration accordingly.
* ldelfgen.c (ldelf_examine_strtab_for_ctf): Adjust.
* ldemul.h (examine_strtab_for_ctf): Likewise.
(ldemul_examine_strtab_for_ctf): Likewise.
* ldeuml.c (ldemul_examine_strtab_for_ctf): Likewise.
libctf/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h: Rename ctf_file_t to ctf_dict_t: all declarations
adjusted.
(ctf_fileops): Rename to...
(ctf_dictops): ... this.
(ctf_dedup_t) <cd_id_to_file_t>: Rename to...
<cd_id_to_dict_t>: ... this.
(ctf_file_t): Fix outdated comment.
<ctf_fileops>: Rename to...
<ctf_dictops>: ... this.
(struct ctf_archive_internal) <ctfi_file>: Rename to...
<ctfi_dict>: ... this.
* ctf-archive.c: Rename ctf_file_t to ctf_dict_t.
Rename ctf_archive.ctfa_nfiles to ctfa_ndicts.
Rename ctf_file_close to ctf_dict_close. All users adjusted.
* ctf-create.c: Likewise. Refer to CTF dicts, not CTF containers.
(ctf_bundle_t) <ctb_file>: Rename to...
<ctb_dict): ... this.
* ctf-decl.c: Rename ctf_file_t to ctf_dict_t.
* ctf-dedup.c: Likewise. Rename ctf_file_close to
ctf_dict_close. Refer to CTF dicts, not CTF containers.
* ctf-dump.c: Likewise.
* ctf-error.c: Likewise.
* ctf-hash.c: Likewise.
* ctf-inlines.h: Likewise.
* ctf-labels.c: Likewise.
* ctf-link.c: Likewise.
* ctf-lookup.c: Likewise.
* ctf-open-bfd.c: Likewise.
* ctf-string.c: Likewise.
* ctf-subr.c: Likewise.
* ctf-types.c: Likewise.
* ctf-util.c: Likewise.
* ctf-open.c: Likewise.
(ctf_file_close): Rename to...
(ctf_dict_close): ...this.
(ctf_file_close): New trivial wrapper around ctf_dict_close, for
compatibility.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this.
(ctf_parent_file): New trivial wrapper around ctf_parent_dict, for
compatibility.
* libctf.ver: Add ctf_dict_close and ctf_parent_dict.
2020-11-20 21:34:04 +08:00
|
|
|
extern int ctf_hash_insert_type (ctf_hash_t *, ctf_dict_t *, uint32_t, uint32_t);
|
|
|
|
extern int ctf_hash_define_type (ctf_hash_t *, ctf_dict_t *, uint32_t, uint32_t);
|
|
|
|
extern ctf_id_t ctf_hash_lookup_type (ctf_hash_t *, ctf_dict_t *, const char *);
|
2019-04-24 05:12:16 +08:00
|
|
|
extern uint32_t ctf_hash_size (const ctf_hash_t *);
|
|
|
|
extern void ctf_hash_destroy (ctf_hash_t *);
|
|
|
|
|
|
|
|
extern ctf_dynhash_t *ctf_dynhash_create (ctf_hash_fun, ctf_hash_eq_fun,
|
|
|
|
ctf_hash_free_fun, ctf_hash_free_fun);
|
|
|
|
extern int ctf_dynhash_insert (ctf_dynhash_t *, void *, void *);
|
|
|
|
extern void ctf_dynhash_remove (ctf_dynhash_t *, const void *);
|
2020-06-03 04:31:45 +08:00
|
|
|
extern size_t ctf_dynhash_elements (ctf_dynhash_t *);
|
2019-07-14 04:31:26 +08:00
|
|
|
extern void ctf_dynhash_empty (ctf_dynhash_t *);
|
2019-04-24 05:12:16 +08:00
|
|
|
extern void *ctf_dynhash_lookup (ctf_dynhash_t *, const void *);
|
2020-06-03 04:31:45 +08:00
|
|
|
extern int ctf_dynhash_lookup_kv (ctf_dynhash_t *, const void *key,
|
|
|
|
const void **orig_key, void **value);
|
2019-04-24 05:12:16 +08:00
|
|
|
extern void ctf_dynhash_destroy (ctf_dynhash_t *);
|
2019-06-27 20:30:22 +08:00
|
|
|
extern void ctf_dynhash_iter (ctf_dynhash_t *, ctf_hash_iter_f, void *);
|
|
|
|
extern void ctf_dynhash_iter_remove (ctf_dynhash_t *, ctf_hash_iter_remove_f,
|
|
|
|
void *);
|
2020-06-03 04:31:45 +08:00
|
|
|
extern void *ctf_dynhash_iter_find (ctf_dynhash_t *, ctf_hash_iter_find_f,
|
|
|
|
void *);
|
libctf: symbol type linking support
This adds facilities to write out the function info and data object
sections, which efficiently map from entries in the symbol table to
types. The write-side code is entirely new: the read-side code was
merely significantly changed and support for indexed tables added
(pointed to by the no-longer-unused cth_objtidxoff and cth_funcidxoff
header fields).
With this in place, you can use ctf_lookup_by_symbol to look up the
types of symbols of function and object type (and, as before, you can
use ctf_lookup_variable to look up types of file-scope variables not
present in the symbol table, as long as you know their name: but
variables that are also data objects are now found in the data object
section instead.)
(Compatible) file format change:
The CTF spec has always said that the function info section looks much
like the CTF_K_FUNCTIONs in the type section: an info word (including an
argument count) followed by a return type and N argument types. This
format is suboptimal: it means function symbols cannot be deduplicated
and it causes a lot of ugly code duplication in libctf. But
conveniently the compiler has never emitted this! Because it has always
emitted a rather different format that libctf has never accepted, we can
be sure that there are no instances of this function info section in the
wild, and can freely change its format without compatibility concerns or
a file format version bump. (And since it has never been emitted in any
code that generated any older file format version, either, we need keep
no code to read the format as specified at all!)
So the function info section is now specified as an array of uint32_t,
exactly like the object data section: each entry is a type ID in the
type section which must be of kind CTF_K_FUNCTION, the prototype of
this function.
This allows function types to be deduplicated and also correctly encodes
the fact that all functions declared in C really are types available to
the program: so they should be stored in the type section like all other
types. (In format v4, we will be able to represent the types of static
functions as well, but that really does require a file format change.)
We introduce a new header flag, CTF_F_NEWFUNCINFO, which is set if the
new function info format is in use. A sufficiently new compiler will
always set this flag. New libctf will always set this flag: old libctf
will refuse to open any CTF dicts that have this flag set. If the flag
is not set on a dict being read in, new libctf will disregard the
function info section. Format v4 will remove this flag (or, rather, the
flag has no meaning there and the bit position may be recycled for some
other purpose).
New API:
Symbol addition:
ctf_add_func_sym: Add a symbol with a given name and type. The
type must be of kind CTF_K_FUNCTION (a function
pointer). Internally this adds a name -> type
mapping to the ctf_funchash in the ctf_dict.
ctf_add_objt_sym: Add a symbol with a given name and type. The type
kind can be anything, including function pointers.
This adds to ctf_objthash.
These both treat symbols as name -> type mappings: the linker associates
symbol names with symbol indexes via the ctf_link_shuffle_syms callback,
which sets up the ctf_dynsyms/ctf_dynsymidx/ctf_dynsymmax fields in the
ctf_dict. Repeated relinks can add more symbols.
Variables that are also exposed as symbols are removed from the variable
section at serialization time.
CTF symbol type sections which have enough pads, defined by
CTF_INDEX_PAD_THRESHOLD (whether because they are in dicts with symbols
where most types are unknown, or in archive where most types are defined
in some child or parent dict, not in this specific dict) are sorted by
name rather than symidx and accompanied by an index which associates
each symbol type entry with a name: the existing ctf_lookup_by_symbol
will map symbol indexes to symbol names and look the names up in the
index automatically. (This is currently ELF-symbol-table-dependent, but
there is almost nothing specific to ELF in here and we can add support
for other symbol table formats easily).
The compiler also uses index sections to communicate the contents of
object file symbol tables without relying on any specific ordering of
symbols: it doesn't need to sort them, and libctf will detect an
unsorted index section via the absence of the new CTF_F_IDXSORTED header
flag, and sort it if needed.
Iteration:
ctf_symbol_next: Iterator which returns the types and names of symbols
one by one, either for function or data symbols.
This does not require any sorting: the ctf_link machinery uses it to
pull in all the compiler-provided symbols cheaply, but it is not
restricted to that use.
(Compatible) changes in API:
ctf_lookup_by_symbol: can now be called for object and function
symbols: never returns ECTF_NOTDATA (which is
now not thrown by anything, but is kept for
compatibility and because it is a plausible
error that we might start throwing again at some
later date).
Internally we also have changes to the ctf-string functionality so that
"external" strings (those where we track a string -> offset mapping, but
only write out an offset) can be consulted via the usual means
(ctf_strptr) before the strtab is written out. This is important
because ctf_link_add_linker_symbol can now be handed symbols named via
strtab offsets, and ctf_link_shuffle_syms must figure out their actual
names by looking in the external symtab we have just been fed by the
ctf_link_add_strtab callback, long before that strtab is written out.
include/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-api.h (ctf_symbol_next): New.
(ctf_add_objt_sym): Likewise.
(ctf_add_func_sym): Likewise.
* ctf.h: Document new function info section format.
(CTF_F_NEWFUNCINFO): New.
(CTF_F_IDXSORTED): New.
(CTF_F_MAX): Adjust accordingly.
libctf/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h (CTF_INDEX_PAD_THRESHOLD): New.
(_libctf_nonnull_): Likewise.
(ctf_in_flight_dynsym_t): New.
(ctf_dict_t) <ctf_funcidx_names>: Likewise.
<ctf_objtidx_names>: Likewise.
<ctf_nfuncidx>: Likewise.
<ctf_nobjtidx>: Likewise.
<ctf_funcidx_sxlate>: Likewise.
<ctf_objtidx_sxlate>: Likewise.
<ctf_objthash>: Likewise.
<ctf_funchash>: Likewise.
<ctf_dynsyms>: Likewise.
<ctf_dynsymidx>: Likewise.
<ctf_dynsymmax>: Likewise.
<ctf_in_flight_dynsym>: Likewise.
(struct ctf_next) <u.ctn_next>: Likewise.
(ctf_symtab_skippable): New prototype.
(ctf_add_funcobjt_sym): Likewise.
(ctf_dynhash_sort_by_name): Likewise.
(ctf_sym_to_elf64): Rename to...
(ctf_elf32_to_link_sym): ... this, and...
(ctf_elf64_to_link_sym): ... this.
* ctf-open.c (init_symtab): Check for lack of CTF_F_NEWFUNCINFO
flag, and presence of index sections. Refactor out
ctf_symtab_skippable and ctf_elf*_to_link_sym, and use them. Use
ctf_link_sym_t, not Elf64_Sym. Skip initializing objt or func
sxlate sections if corresponding index section is present. Adjust
for new func info section format.
(ctf_bufopen_internal): Add ctf_err_warn to corrupt-file error
handling. Report incorrect-length index sections. Always do an
init_symtab, even if there is no symtab section (there may be index
sections still).
(flip_objts): Adjust comment: func and objt sections are actually
identical in structure now, no need to caveat.
(ctf_dict_close): Free newly-added data structures.
* ctf-create.c (ctf_create): Initialize them.
(ctf_symtab_skippable): New, refactored out of
init_symtab, with st_nameidx_set check added.
(ctf_add_funcobjt_sym): New, add a function or object symbol to the
ctf_objthash or ctf_funchash, by name.
(ctf_add_objt_sym): Call it.
(ctf_add_func_sym): Likewise.
(symtypetab_delete_nonstatic_vars): New, delete vars also present as
data objects.
(CTF_SYMTYPETAB_EMIT_FUNCTION): New flag to symtypetab emitters:
this is a function emission, not a data object emission.
(CTF_SYMTYPETAB_EMIT_PAD): New flag to symtypetab emitters: emit
pads for symbols with no type (only set for unindexed sections).
(CTF_SYMTYPETAB_FORCE_INDEXED): New flag to symtypetab emitters:
always emit indexed.
(symtypetab_density): New, figure out section sizes.
(emit_symtypetab): New, emit a symtypetab.
(emit_symtypetab_index): New, emit a symtypetab index.
(ctf_serialize): Call them, emitting suitably sorted symtypetab
sections and indexes. Set suitable header flags. Copy over new
fields.
* ctf-hash.c (ctf_dynhash_sort_by_name): New, used to impose an
order on symtypetab index sections.
* ctf-link.c (ctf_add_type_mapping): Delete erroneous comment
relating to code that was never committed.
(ctf_link_one_variable): Improve variable name.
(check_sym): New, symtypetab analogue of check_variable.
(ctf_link_deduplicating_one_symtypetab): New.
(ctf_link_deduplicating_syms): Likewise.
(ctf_link_deduplicating): Call them.
(ctf_link_deduplicating_per_cu): Note that we don't call them in
this case (yet).
(ctf_link_add_strtab): Set the error on the fp correctly.
(ctf_link_add_linker_symbol): New (no longer a do-nothing stub), add
a linker symbol to the in-flight list.
(ctf_link_shuffle_syms): New (no longer a do-nothing stub), turn the
in-flight list into a mapping we can use, now its names are
resolvable in the external strtab.
* ctf-string.c (ctf_str_rollback_atom): Don't roll back atoms with
external strtab offsets.
(ctf_str_rollback): Adjust comment.
(ctf_str_write_strtab): Migrate ctf_syn_ext_strtab population from
writeout time...
(ctf_str_add_external): ... to string addition time.
* ctf-lookup.c (ctf_lookup_var_key_t): Rename to...
(ctf_lookup_idx_key_t): ... this, now we use it for syms too.
<clik_names>: New member, a name table.
(ctf_lookup_var): Adjust accordingly.
(ctf_lookup_variable): Likewise.
(ctf_lookup_by_id): Shuffle further up in the file.
(ctf_symidx_sort_arg_cb): New, callback for...
(sort_symidx_by_name): ... this new function to sort a symidx
found to be unsorted (likely originating from the compiler).
(ctf_symidx_sort): New, sort a symidx.
(ctf_lookup_symbol_name): Support dynamic symbols with indexes
provided by the linker. Use ctf_link_sym_t, not Elf64_Sym.
Check the parent if a child lookup fails.
(ctf_lookup_by_symbol): Likewise. Work for function symbols too.
(ctf_symbol_next): New, iterate over symbols with types (without
sorting).
(ctf_lookup_idx_name): New, bsearch for symbol names in indexes.
(ctf_try_lookup_indexed): New, attempt an indexed lookup.
(ctf_func_info): Reimplement in terms of ctf_lookup_by_symbol.
(ctf_func_args): Likewise.
(ctf_get_dict): Move...
* ctf-types.c (ctf_get_dict): ... here.
* ctf-util.c (ctf_sym_to_elf64): Re-express as...
(ctf_elf64_to_link_sym): ... this. Add new st_symidx field, and
st_nameidx_set (always 0, so st_nameidx can be ignored). Look in
the ELF strtab for names.
(ctf_elf32_to_link_sym): Likewise, for Elf32_Sym.
(ctf_next_destroy): Destroy ctf_next_t.u.ctn_next if need be.
* libctf.ver: Add ctf_symbol_next, ctf_add_objt_sym and
ctf_add_func_sym.
2020-11-20 21:34:04 +08:00
|
|
|
extern int ctf_dynhash_sort_by_name (const ctf_next_hkv_t *,
|
|
|
|
const ctf_next_hkv_t *,
|
|
|
|
void * _libctf_unused_);
|
2020-06-03 23:36:18 +08:00
|
|
|
extern int ctf_dynhash_next (ctf_dynhash_t *, ctf_next_t **,
|
|
|
|
void **key, void **value);
|
|
|
|
extern int ctf_dynhash_next_sorted (ctf_dynhash_t *, ctf_next_t **,
|
|
|
|
void **key, void **value, ctf_hash_sort_f,
|
|
|
|
void *);
|
2019-04-24 05:12:16 +08:00
|
|
|
|
libctf, hash: introduce the ctf_dynset
There are many places in the deduplicator which use hashtables as tiny
sets: keys with no value (and usually, but not always, no freeing
function) often with only one or a few members. For each of these, even
after the last change to not store the freeing functions, we are storing
a little malloced block for each item just to track the key/value pair,
and a little malloced block for the hash table itself just to track the
freeing function because we can't use libiberty hashtab's freeing
function because we are using that to free the little malloced per-item
block.
If we only have a key, we don't need any of that: we can ditch the
per-malloced block because we don't have a value, and we can ditch the
per-hashtab structure because we don't need to independently track the
freeing functions since libiberty hashtab is doing it for us. That
means we don't need an owner field in the (now nonexistent) item block
either.
Roughly speaking, this datatype saves about 25% in time and 20% in peak
memory usage for normal links, even fairly big ones. So this might seem
redundant, but it's really worth it.
Instead of a _lookup function, a dynset has two distinct functions:
ctf_dynset_exists, which returns true or false and an optional pointer
to the set member, and ctf_dynhash_lookup_any, which is used if all
members of the set are expected to be equivalent and we just want *any*
member and we don't care which one.
There is no iterator in this set of functions, not because we don't
iterate over dynset members -- we do, a lot -- but because the iterator
here is a member of an entirely new family of much more convenient
iteration functions, introduced in the next commit.
libctf/
* ctf-hash.c (ctf_dynset_eq_string): New.
(ctf_dynset_create): New.
(DYNSET_EMPTY_ENTRY_REPLACEMENT): New.
(DYNSET_DELETED_ENTRY_REPLACEMENT): New.
(key_to_internal): New.
(internal_to_key): New.
(ctf_dynset_insert): New.
(ctf_dynset_remove): New.
(ctf_dynset_destroy): New.
(ctf_dynset_lookup): New.
(ctf_dynset_exists): New.
(ctf_dynset_lookup_any): New.
(ctf_hash_insert_type): Coding style.
(ctf_hash_define_type): Likewise.
* ctf-impl.h (ctf_dynset_t): New.
(ctf_dynset_eq_string): New.
(ctf_dynset_create): New.
(ctf_dynset_insert): New.
(ctf_dynset_remove): New.
(ctf_dynset_destroy): New.
(ctf_dynset_lookup): New.
(ctf_dynset_exists): New.
(ctf_dynset_lookup_any): New.
* ctf-inlines.h (ctf_dynset_cinsert): New.
2020-06-03 05:26:38 +08:00
|
|
|
extern ctf_dynset_t *ctf_dynset_create (htab_hash, htab_eq, ctf_hash_free_fun);
|
|
|
|
extern int ctf_dynset_insert (ctf_dynset_t *, void *);
|
|
|
|
extern void ctf_dynset_remove (ctf_dynset_t *, const void *);
|
|
|
|
extern void ctf_dynset_destroy (ctf_dynset_t *);
|
|
|
|
extern void *ctf_dynset_lookup (ctf_dynset_t *, const void *);
|
libctf: do not corrupt strings across ctf_serialize
The preceding change revealed a new bug: the string table is sorted for
better compression, so repeated serialization with type (or member)
additions in the middle can move strings around. But every
serialization flushes the set of refs (the memory locations that are
automatically updated with a final string offset when the strtab is
updated), so if we are not to have string offsets go stale, we must do
all ref additions within the serialization code (which walks the
complete set of types and symbols anyway). Unfortunately, we were adding
one ref in another place: the type name in the dynamic type definitions,
which has a ref added to it by ctf_add_generic.
So adding a type, serializing (via, say, one of the ctf_write
functions), adding another type with a name that sorts earlier, and
serializing again will corrupt the name of the first type because it no
longer had a ref pointing to its dtd entry's name when its string offset
was shifted later in the strtab to mae way for the other type.
To ensure that we don't miss strings, we also maintain a set of *pending
refs* that will be added later (during serialization), and remove
entries from that set when the ref is finally added. We always use
ctf_str_add_pending outside ctf-serialize.c, ensure that ctf_serialize
adds all strtab offsets as refs (even those in the dtds) on every
serialization, and mandate that no refs are live on entry to
ctf_serialize and that all pending refs are gone before strtab
finalization. (Of necessity ctf_serialize has to traverse all strtab
offsets in the dtds in order to serialize them, so adding them as refs
at the same time is easy.)
(Note that we still can't erase unused atoms when we roll back, though
we can erase unused refs: members and enums are still not removed by
rollbacks and might reference strings added after the snapshot.)
libctf/ChangeLog
2021-03-18 Nick Alcock <nick.alcock@oracle.com>
* ctf-hash.c (ctf_dynset_elements): New.
* ctf-impl.h (ctf_dynset_elements): Declare it.
(ctf_str_add_pending): Likewise.
(ctf_dict_t) <ctf_str_pending_ref>: New, set of refs that must be
added during serialization.
* ctf-string.c (ctf_str_create_atoms): Initialize it.
(CTF_STR_ADD_REF): New flag.
(CTF_STR_MAKE_PROVISIONAL): Likewise.
(CTF_STR_PENDING_REF): Likewise.
(ctf_str_add_ref_internal): Take a flags word rather than int
params. Populate, and clear out, ctf_str_pending_ref.
(ctf_str_add): Adjust accordingly.
(ctf_str_add_external): Likewise.
(ctf_str_add_pending): New.
(ctf_str_remove_ref): Also remove the potential ref if it is a
pending ref.
* ctf-serialize.c (ctf_serialize): Prohibit addition of strings
with ctf_str_add_ref before serialization. Ensure that the
ctf_str_pending_ref set is empty before strtab finalization.
(ctf_emit_type_sect): Add a ref to the ctt_name.
* ctf-create.c (ctf_add_generic): Add the ctt_name as a pending
ref.
* testsuite/libctf-writable/reserialize-strtab-corruption.*: New test.
2021-03-18 20:37:52 +08:00
|
|
|
extern size_t ctf_dynset_elements (ctf_dynset_t *);
|
libctf, hash: introduce the ctf_dynset
There are many places in the deduplicator which use hashtables as tiny
sets: keys with no value (and usually, but not always, no freeing
function) often with only one or a few members. For each of these, even
after the last change to not store the freeing functions, we are storing
a little malloced block for each item just to track the key/value pair,
and a little malloced block for the hash table itself just to track the
freeing function because we can't use libiberty hashtab's freeing
function because we are using that to free the little malloced per-item
block.
If we only have a key, we don't need any of that: we can ditch the
per-malloced block because we don't have a value, and we can ditch the
per-hashtab structure because we don't need to independently track the
freeing functions since libiberty hashtab is doing it for us. That
means we don't need an owner field in the (now nonexistent) item block
either.
Roughly speaking, this datatype saves about 25% in time and 20% in peak
memory usage for normal links, even fairly big ones. So this might seem
redundant, but it's really worth it.
Instead of a _lookup function, a dynset has two distinct functions:
ctf_dynset_exists, which returns true or false and an optional pointer
to the set member, and ctf_dynhash_lookup_any, which is used if all
members of the set are expected to be equivalent and we just want *any*
member and we don't care which one.
There is no iterator in this set of functions, not because we don't
iterate over dynset members -- we do, a lot -- but because the iterator
here is a member of an entirely new family of much more convenient
iteration functions, introduced in the next commit.
libctf/
* ctf-hash.c (ctf_dynset_eq_string): New.
(ctf_dynset_create): New.
(DYNSET_EMPTY_ENTRY_REPLACEMENT): New.
(DYNSET_DELETED_ENTRY_REPLACEMENT): New.
(key_to_internal): New.
(internal_to_key): New.
(ctf_dynset_insert): New.
(ctf_dynset_remove): New.
(ctf_dynset_destroy): New.
(ctf_dynset_lookup): New.
(ctf_dynset_exists): New.
(ctf_dynset_lookup_any): New.
(ctf_hash_insert_type): Coding style.
(ctf_hash_define_type): Likewise.
* ctf-impl.h (ctf_dynset_t): New.
(ctf_dynset_eq_string): New.
(ctf_dynset_create): New.
(ctf_dynset_insert): New.
(ctf_dynset_remove): New.
(ctf_dynset_destroy): New.
(ctf_dynset_lookup): New.
(ctf_dynset_exists): New.
(ctf_dynset_lookup_any): New.
* ctf-inlines.h (ctf_dynset_cinsert): New.
2020-06-03 05:26:38 +08:00
|
|
|
extern int ctf_dynset_exists (ctf_dynset_t *, const void *key,
|
|
|
|
const void **orig_key);
|
2020-06-03 23:36:18 +08:00
|
|
|
extern int ctf_dynset_next (ctf_dynset_t *, ctf_next_t **, void **key);
|
libctf, hash: introduce the ctf_dynset
There are many places in the deduplicator which use hashtables as tiny
sets: keys with no value (and usually, but not always, no freeing
function) often with only one or a few members. For each of these, even
after the last change to not store the freeing functions, we are storing
a little malloced block for each item just to track the key/value pair,
and a little malloced block for the hash table itself just to track the
freeing function because we can't use libiberty hashtab's freeing
function because we are using that to free the little malloced per-item
block.
If we only have a key, we don't need any of that: we can ditch the
per-malloced block because we don't have a value, and we can ditch the
per-hashtab structure because we don't need to independently track the
freeing functions since libiberty hashtab is doing it for us. That
means we don't need an owner field in the (now nonexistent) item block
either.
Roughly speaking, this datatype saves about 25% in time and 20% in peak
memory usage for normal links, even fairly big ones. So this might seem
redundant, but it's really worth it.
Instead of a _lookup function, a dynset has two distinct functions:
ctf_dynset_exists, which returns true or false and an optional pointer
to the set member, and ctf_dynhash_lookup_any, which is used if all
members of the set are expected to be equivalent and we just want *any*
member and we don't care which one.
There is no iterator in this set of functions, not because we don't
iterate over dynset members -- we do, a lot -- but because the iterator
here is a member of an entirely new family of much more convenient
iteration functions, introduced in the next commit.
libctf/
* ctf-hash.c (ctf_dynset_eq_string): New.
(ctf_dynset_create): New.
(DYNSET_EMPTY_ENTRY_REPLACEMENT): New.
(DYNSET_DELETED_ENTRY_REPLACEMENT): New.
(key_to_internal): New.
(internal_to_key): New.
(ctf_dynset_insert): New.
(ctf_dynset_remove): New.
(ctf_dynset_destroy): New.
(ctf_dynset_lookup): New.
(ctf_dynset_exists): New.
(ctf_dynset_lookup_any): New.
(ctf_hash_insert_type): Coding style.
(ctf_hash_define_type): Likewise.
* ctf-impl.h (ctf_dynset_t): New.
(ctf_dynset_eq_string): New.
(ctf_dynset_create): New.
(ctf_dynset_insert): New.
(ctf_dynset_remove): New.
(ctf_dynset_destroy): New.
(ctf_dynset_lookup): New.
(ctf_dynset_exists): New.
(ctf_dynset_lookup_any): New.
* ctf-inlines.h (ctf_dynset_cinsert): New.
2020-06-03 05:26:38 +08:00
|
|
|
extern void *ctf_dynset_lookup_any (ctf_dynset_t *);
|
|
|
|
|
2020-06-06 04:10:37 +08:00
|
|
|
extern void ctf_sha1_init (ctf_sha1_t *);
|
|
|
|
extern void ctf_sha1_add (ctf_sha1_t *, const void *, size_t);
|
|
|
|
extern char *ctf_sha1_fini (ctf_sha1_t *, char *);
|
|
|
|
|
2019-04-24 04:45:30 +08:00
|
|
|
#define ctf_list_prev(elem) ((void *)(((ctf_list_t *)(elem))->l_prev))
|
|
|
|
#define ctf_list_next(elem) ((void *)(((ctf_list_t *)(elem))->l_next))
|
|
|
|
|
|
|
|
extern void ctf_list_append (ctf_list_t *, void *);
|
|
|
|
extern void ctf_list_prepend (ctf_list_t *, void *);
|
|
|
|
extern void ctf_list_delete (ctf_list_t *, void *);
|
libctf, link: tie in the deduplicating linker
This fairly intricate commit connects up the CTF linker machinery (which
operates in terms of ctf_archive_t's on ctf_link_inputs ->
ctf_link_outputs) to the deduplicator (which operates in terms of arrays
of ctf_file_t's, all the archives exploded).
The nondeduplicating linker is retained, but is not called unless the
CTF_LINK_NONDEDUP flag is passed in (which ld never does), or the
environment variable LD_NO_CTF_DEDUP is set. Eventually, once we have
confidence in the much-more-complex deduplicating linker, I hope the
nondeduplicating linker can be removed.
In brief, what this does is traverses each input archive in
ctf_link_inputs, opening every member (if not already open) and tying
child dicts to their parents, shoving them into an array and
constructing a corresponding parents array that tells the deduplicator
which dict is the parent of which child. We then call ctf_dedup and
ctf_dedup_emit with that array of inputs, taking the outputs that result
and putting them into ctf_link_outputs where the rest of the CTF linker
expects to find them, then linking in the variables just as is done by
the nondeduplicating linker.
It also implements much of the CU-mapping side of things. The problem
CU-mapping introduces is that if you map many input CUs into one output,
this is saying that you want many translation units to produce at most
one child dict if conflicting types are found in any of them. This
means you can suddenly have multiple distinct types with the same name
in the same dict, which libctf cannot really represent because it's not
something you can do with C translation units.
The deduplicator machinery already committed does as best it can with
these, hiding types with conflicting names rather than making child
dicts out of them: but we still need to call it. This is done similarly
to the main link, taking the inputs (one CU output at a time),
deduplicating them, taking the output and making it an input to the
final link. Two (significant) optimizations are done: we share atoms
tables between all these links and the final link (so e.g. all type hash
values are shared, all decorated type names, etc); and any CU-mapped
links with only one input (and no child dicts) doesn't need to do
anything other than renaming the CU: the CU-mapped link phase can be
skipped for it. Put together, large CU-mapped links can save 50% of
their memory usage and about as much time (and the memory usage for
CU-mapped links is significant, because all those output CUs have to
have all their types stored in memory all at once).
include/
* ctf-api.h (CTF_LINK_NONDEDUP): New, turn off the
deduplicator.
libctf/
* ctf-impl.h (ctf_list_splice): New.
* ctf-util.h (ctf_list_splice): Likewise.
* ctf-link.c (link_sort_inputs_cb_arg_t): Likewise.
(ctf_link_sort_inputs): Likewise.
(ctf_link_deduplicating_count_inputs): Likewise.
(ctf_link_deduplicating_open_inputs): Likewise.
(ctf_link_deduplicating_close_inputs): Likewise.
(ctf_link_deduplicating_variables): Likewise.
(ctf_link_deduplicating_per_cu): Likewise.
(ctf_link_deduplicating): Likewise.
(ctf_link): Call it.
2020-06-06 05:57:06 +08:00
|
|
|
extern void ctf_list_splice (ctf_list_t *, ctf_list_t *);
|
libctf: avoid the need to ever use ctf_update
The method of operation of libctf when the dictionary is writable has
before now been that types that are added land in the dynamic type
section, which is a linked list and hash of IDs -> dynamic type
definitions (and, recently a hash of names): the DTDs are a bit of CTF
representing the ctf_type_t and ad hoc C structures representing the
vlen. Historically, libctf was unable to do anything with these types,
not even look them up by ID, let alone by name: if you wanted to do that
say if you were adding a type that depended on one you just added) you
called ctf_update, which serializes all the DTDs into a CTF file and
reopens it, copying its guts over the fp it's called with. The
ctf_updated types are then frozen in amber and unchangeable: all lookups
will return the types in the static portion in preference to the dynamic
portion, and we will refuse to re-add things that already exist in the
static portion (and, of late, in the dynamic portion too). The libctf
machinery remembers the boundary between static and dynamic types and
looks in the right portion for each type. Lots of things still don't
quite work with dynamic types (e.g. getting their size), but enough
works to do a bunch of additions and then a ctf_update, most of the
time.
Except it doesn't, because ctf_add_type finds it necessary to walk the
full dynamic type definition list looking for types with matching names,
so it gets slower and slower with every type you add: fixing this
requires calling ctf_update periodically for no other reason than to
avoid massively slowing things down.
This is all clunky and very slow but kind of works, until you consider
that it is in fact possible and indeed necessary to modify one sort of
type after it has been added: forwards. These are necessarily promoted
to structs, unions or enums, and when they do so *their type ID does not
change*. So all of a sudden we are changing types that already exist in
the static portion. ctf_update gets massively confused by this and
allocates space enough for the forward (with no members), but then emits
the new dynamic type (with all the members) into it. You get an
assertion failure after that, if you're lucky, or a coredump.
So this commit rejigs things a bit and arranges to exclusively use the
dynamic type definitions in writable dictionaries, and the static type
definitions in readable dictionaries: we don't at any time have a mixture
of static and dynamic types, and you don't need to call ctf_update to
make things "appear". The ctf_dtbyname hash I introduced a few months
ago, which maps things like "struct foo" to DTDs, is removed, replaced
instead by a change of type of the four dictionaries which track names.
Rather than just being (unresizable) ctf_hash_t's populated only at
ctf_bufopen time, they are now a ctf_names_t structure, which is a pair
of ctf_hash_t and ctf_dynhash_t, with the ctf_hash_t portion being used
in readonly dictionaries, and the ctf_dynhash_t being used in writable
ones. The decision as to which to use is centralized in the new
functions ctf_lookup_by_rawname (which takes a type kind) and
ctf_lookup_by_rawhash, which it calls (which takes a ctf_names_t *.)
This change lets us switch from using static to dynamic name hashes on
the fly across the entirety of libctf without complexifying anything: in
fact, because we now centralize the knowledge about how to map from type
kind to name hash, it actually simplifies things and lets us throw out
quite a lot of now-unnecessary complexity, from ctf_dtnyname (replaced
by the dynamic half of the name tables), through to ctf_dtnextid (now
that a dictionary's static portion is never referenced if the dictionary
is writable, we can just use ctf_typemax to indicate the maximum type:
dynamic or non-dynamic does not matter, and we no longer need to track
the boundary between the types). You can now ctf_rollback() as far as
you like, even past a ctf_update or for that matter a full writeout; all
the iteration functions work just as well on writable as on read-only
dictionaries; ctf_add_type no longer needs expensive duplicated code to
run over the dynamic types hunting for ones it might be interested in;
and the linker no longer needs a hack to call ctf_update so that calling
ctf_add_type is not impossibly expensive.
There is still a bit more complexity: some new code paths in ctf-types.c
need to know how to extract information from dynamic types. This
complexity will go away again in a few months when libctf acquires a
proper intermediate representation.
You can still call ctf_update if you like (it's public API, after all),
but its only effect now is to set the point to which ctf_discard rolls
back.
Obviously *something* still needs to serialize the CTF file before
writeout, and this job is done by ctf_serialize, which does everything
ctf_update used to except set the counter used by ctf_discard. It is
automatically called by the various functions that do CTF writeout:
nobody else ever needs to call it.
With this in place, forwards that are promoted to non-forwards no longer
crash the link, even if it happens tens of thousands of types later.
v5: fix tabdamage.
libctf/
* ctf-impl.h (ctf_names_t): New.
(ctf_lookup_t) <ctf_hash>: Now a ctf_names_t, not a ctf_hash_t.
(ctf_file_t) <ctf_structs>: Likewise.
<ctf_unions>: Likewise.
<ctf_enums>: Likewise.
<ctf_names>: Likewise.
<ctf_lookups>: Improve comment.
<ctf_ptrtab_len>: New.
<ctf_prov_strtab>: New.
<ctf_str_prov_offset>: New.
<ctf_dtbyname>: Remove, redundant to the names hashes.
<ctf_dtnextid>: Remove, redundant to ctf_typemax.
(ctf_dtdef_t) <dtd_name>: Remove.
<dtd_data>: Note that the ctt_name is now populated.
(ctf_str_atom_t) <csa_offset>: This is now the strtab
offset for internal strings too.
<csa_external_offset>: New, the external strtab offset.
(CTF_INDEX_TO_TYPEPTR): Handle the LCTF_RDWR case.
(ctf_name_table): New declaration.
(ctf_lookup_by_rawname): Likewise.
(ctf_lookup_by_rawhash): Likewise.
(ctf_set_ctl_hashes): Likewise.
(ctf_serialize): Likewise.
(ctf_dtd_insert): Adjust.
(ctf_simple_open_internal): Likewise.
(ctf_bufopen_internal): Likewise.
(ctf_list_empty_p): Likewise.
(ctf_str_remove_ref): Likewise.
(ctf_str_add): Returns uint32_t now.
(ctf_str_add_ref): Likewise.
(ctf_str_add_external): Now returns a boolean (int).
* ctf-string.c (ctf_strraw_explicit): Check the ctf_prov_strtab
for strings in the appropriate range.
(ctf_str_create_atoms): Create the ctf_prov_strtab. Detect OOM
when adding the null string to the new strtab.
(ctf_str_free_atoms): Destroy the ctf_prov_strtab.
(ctf_str_add_ref_internal): Add make_provisional argument. If
make_provisional, populate the offset and fill in the
ctf_prov_strtab accordingly.
(ctf_str_add): Return the offset, not the string.
(ctf_str_add_ref): Likewise.
(ctf_str_add_external): Return a success integer.
(ctf_str_remove_ref): New, remove a single ref.
(ctf_str_count_strtab): Do not count the initial null string's
length or the existence or length of any unreferenced internal
atoms.
(ctf_str_populate_sorttab): Skip atoms with no refs.
(ctf_str_write_strtab): Populate the nullstr earlier. Add one
to the cts_len for the null string, since it is no longer done
in ctf_str_count_strtab. Adjust for csa_external_offset rename.
Populate the csa_offset for both internal and external cases.
Flush the ctf_prov_strtab afterwards, and reset the
ctf_str_prov_offset.
* ctf-create.c (ctf_grow_ptrtab): New.
(ctf_create): Call it. Initialize new fields rather than old
ones. Tell ctf_bufopen_internal that this is a writable dictionary.
Set the ctl hashes and data model.
(ctf_update): Rename to...
(ctf_serialize): ... this. Leave a compatibility function behind.
Tell ctf_simple_open_internal that this is a writable dictionary.
Pass the new fields along from the old dictionary. Drop
ctf_dtnextid and ctf_dtbyname. Use ctf_strraw, not dtd_name.
Do not zero out the DTD's ctt_name.
(ctf_prefixed_name): Rename to...
(ctf_name_table): ... this. No longer return a prefixed name: return
the applicable name table instead.
(ctf_dtd_insert): Use it, and use the right name table. Pass in the
kind we're adding. Migrate away from dtd_name.
(ctf_dtd_delete): Adjust similarly. Remove the ref to the
deleted ctt_name.
(ctf_dtd_lookup_type_by_name): Remove.
(ctf_dynamic_type): Always return NULL on read-only dictionaries.
No longer check ctf_dtnextid: check ctf_typemax instead.
(ctf_snapshot): No longer use ctf_dtnextid: use ctf_typemax instead.
(ctf_rollback): Likewise. No longer fail with ECTF_OVERROLLBACK. Use
ctf_name_table and the right name table, and migrate away from
dtd_name as in ctf_dtd_delete.
(ctf_add_generic): Pass in the kind explicitly and pass it to
ctf_dtd_insert. Use ctf_typemax, not ctf_dtnextid. Migrate away
from dtd_name to using ctf_str_add_ref to populate the ctt_name.
Grow the ptrtab if needed.
(ctf_add_encoded): Pass in the kind.
(ctf_add_slice): Likewise.
(ctf_add_array): Likewise.
(ctf_add_function): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_reftype): Likewise. Initialize the ctf_ptrtab, checking
ctt_name rather than dtd_name.
(ctf_add_struct_sized): Pass in the kind. Use
ctf_lookup_by_rawname, not ctf_hash_lookup_type /
ctf_dtd_lookup_type_by_name.
(ctf_add_union_sized): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_type): Likewise.
(ctf_compress_write): Call ctf_serialize: adjust for ctf_size not
being initialized until after the call.
(ctf_write_mem): Likewise.
(ctf_write): Likewise.
* ctf-archive.c (arc_write_one_ctf): Likewise.
* ctf-lookup.c (ctf_lookup_by_name): Use ctf_lookuup_by_rawhash, not
ctf_hash_lookup_type.
(ctf_lookup_by_id): No longer check the readonly types if the
dictionary is writable.
* ctf-open.c (init_types): Assert that this dictionary is not
writable. Adjust to use the new name hashes, ctf_name_table,
and ctf_ptrtab_len. GNU style fix for the final ptrtab scan.
(ctf_bufopen_internal): New 'writable' parameter. Flip on LCTF_RDWR
if set. Drop out early when dictionary is writable. Split the
ctf_lookups initialization into...
(ctf_set_cth_hashes): ... this new function.
(ctf_simple_open_internal): Adjust. New 'writable' parameter.
(ctf_simple_open): Adjust accordingly.
(ctf_bufopen): Likewise.
(ctf_file_close): Destroy the appropriate name hashes. No longer
destroy ctf_dtbyname, which is gone.
(ctf_getdatasect): Remove spurious "extern".
* ctf-types.c (ctf_lookup_by_rawname): New, look up types in the
specified name table, given a kind.
(ctf_lookup_by_rawhash): Likewise, given a ctf_names_t *.
(ctf_member_iter): Add support for iterating over the
dynamic type list.
(ctf_enum_iter): Likewise.
(ctf_variable_iter): Likewise.
(ctf_type_rvisit): Likewise.
(ctf_member_info): Add support for types in the dynamic type list.
(ctf_enum_name): Likewise.
(ctf_enum_value): Likewise.
(ctf_func_type_info): Likewise.
(ctf_func_type_args): Likewise.
* ctf-link.c (ctf_accumulate_archive_names): No longer call
ctf_update.
(ctf_link_write): Likewise.
(ctf_link_intern_extern_string): Adjust for new
ctf_str_add_external return value.
(ctf_link_add_strtab): Likewise.
* ctf-util.c (ctf_list_empty_p): New.
2019-08-08 00:55:09 +08:00
|
|
|
extern int ctf_list_empty_p (ctf_list_t *lp);
|
2019-04-24 04:45:30 +08:00
|
|
|
|
libctf, include, binutils, gdb, ld: rename ctf_file_t to ctf_dict_t
The naming of the ctf_file_t type in libctf is a historical curiosity.
Back in the Solaris days, CTF dictionaries were originally generated as
a separate file and then (sometimes) merged into objects: hence the
datatype was named ctf_file_t, and known as a "CTF file". Nowadays, raw
CTF is essentially never written to a file on its own, and the datatype
changed name to a "CTF dictionary" years ago. So the term "CTF file"
refers to something that is never a file! This is at best confusing.
The type has also historically been known as a 'CTF container", which is
even more confusing now that we have CTF archives which are *also* a
sort of container (they contain CTF dictionaries), but which are never
referred to as containers in the source code.
So fix this by completing the renaming, renaming ctf_file_t to
ctf_dict_t throughout, and renaming those few functions that refer to
CTF files by name (keeping compatibility aliases) to refer to dicts
instead. Old users who still refer to ctf_file_t will see (harmless)
pointer-compatibility warnings at compile time, but the ABI is unchanged
(since C doesn't mangle names, and ctf_file_t was always an opaque type)
and things will still compile fine as long as -Werror is not specified.
All references to CTF containers and CTF files in the source code are
fixed to refer to CTF dicts instead.
Further (smaller) renamings of annoyingly-named functions to come, as
part of the process of souping up queries across whole archives at once
(needed for the function info and data object sections).
binutils/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* objdump.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_ctf): Likewise. Use ctf_dict_close, not ctf_file_close.
* readelf.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_section_as_ctf): Likewise. Use ctf_dict_close, not
ctf_file_close.
gdb/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctfread.c: Change uses of ctf_file_t to ctf_dict_t.
(ctf_fp_info::~ctf_fp_info): Call ctf_dict_close, not ctf_file_close.
include/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-api.h (ctf_file_t): Rename to...
(ctf_dict_t): ... this. Keep ctf_file_t around for compatibility.
(struct ctf_file): Likewise rename to...
(struct ctf_dict): ... this.
(ctf_file_close): Rename to...
(ctf_dict_close): ... this, keeping compatibility function.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this, keeping compatibility function.
All callers adjusted.
* ctf.h: Rename references to ctf_file_t to ctf_dict_t.
(struct ctf_archive) <ctfa_nfiles>: Rename to...
<ctfa_ndicts>: ... this.
ld/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ldlang.c (ctf_output): This is a ctf_dict_t now.
(lang_ctf_errs_warnings): Rename ctf_file_t to ctf_dict_t.
(ldlang_open_ctf): Adjust comment.
(lang_merge_ctf): Use ctf_dict_close, not ctf_file_close.
* ldelfgen.h (ldelf_examine_strtab_for_ctf): Rename ctf_file_t to
ctf_dict_t. Change opaque declaration accordingly.
* ldelfgen.c (ldelf_examine_strtab_for_ctf): Adjust.
* ldemul.h (examine_strtab_for_ctf): Likewise.
(ldemul_examine_strtab_for_ctf): Likewise.
* ldeuml.c (ldemul_examine_strtab_for_ctf): Likewise.
libctf/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h: Rename ctf_file_t to ctf_dict_t: all declarations
adjusted.
(ctf_fileops): Rename to...
(ctf_dictops): ... this.
(ctf_dedup_t) <cd_id_to_file_t>: Rename to...
<cd_id_to_dict_t>: ... this.
(ctf_file_t): Fix outdated comment.
<ctf_fileops>: Rename to...
<ctf_dictops>: ... this.
(struct ctf_archive_internal) <ctfi_file>: Rename to...
<ctfi_dict>: ... this.
* ctf-archive.c: Rename ctf_file_t to ctf_dict_t.
Rename ctf_archive.ctfa_nfiles to ctfa_ndicts.
Rename ctf_file_close to ctf_dict_close. All users adjusted.
* ctf-create.c: Likewise. Refer to CTF dicts, not CTF containers.
(ctf_bundle_t) <ctb_file>: Rename to...
<ctb_dict): ... this.
* ctf-decl.c: Rename ctf_file_t to ctf_dict_t.
* ctf-dedup.c: Likewise. Rename ctf_file_close to
ctf_dict_close. Refer to CTF dicts, not CTF containers.
* ctf-dump.c: Likewise.
* ctf-error.c: Likewise.
* ctf-hash.c: Likewise.
* ctf-inlines.h: Likewise.
* ctf-labels.c: Likewise.
* ctf-link.c: Likewise.
* ctf-lookup.c: Likewise.
* ctf-open-bfd.c: Likewise.
* ctf-string.c: Likewise.
* ctf-subr.c: Likewise.
* ctf-types.c: Likewise.
* ctf-util.c: Likewise.
* ctf-open.c: Likewise.
(ctf_file_close): Rename to...
(ctf_dict_close): ...this.
(ctf_file_close): New trivial wrapper around ctf_dict_close, for
compatibility.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this.
(ctf_parent_file): New trivial wrapper around ctf_parent_dict, for
compatibility.
* libctf.ver: Add ctf_dict_close and ctf_parent_dict.
2020-11-20 21:34:04 +08:00
|
|
|
extern int ctf_dtd_insert (ctf_dict_t *, ctf_dtdef_t *, int flag, int kind);
|
|
|
|
extern void ctf_dtd_delete (ctf_dict_t *, ctf_dtdef_t *);
|
|
|
|
extern ctf_dtdef_t *ctf_dtd_lookup (const ctf_dict_t *, ctf_id_t);
|
|
|
|
extern ctf_dtdef_t *ctf_dynamic_type (const ctf_dict_t *, ctf_id_t);
|
2019-04-24 05:24:13 +08:00
|
|
|
|
libctf, include, binutils, gdb, ld: rename ctf_file_t to ctf_dict_t
The naming of the ctf_file_t type in libctf is a historical curiosity.
Back in the Solaris days, CTF dictionaries were originally generated as
a separate file and then (sometimes) merged into objects: hence the
datatype was named ctf_file_t, and known as a "CTF file". Nowadays, raw
CTF is essentially never written to a file on its own, and the datatype
changed name to a "CTF dictionary" years ago. So the term "CTF file"
refers to something that is never a file! This is at best confusing.
The type has also historically been known as a 'CTF container", which is
even more confusing now that we have CTF archives which are *also* a
sort of container (they contain CTF dictionaries), but which are never
referred to as containers in the source code.
So fix this by completing the renaming, renaming ctf_file_t to
ctf_dict_t throughout, and renaming those few functions that refer to
CTF files by name (keeping compatibility aliases) to refer to dicts
instead. Old users who still refer to ctf_file_t will see (harmless)
pointer-compatibility warnings at compile time, but the ABI is unchanged
(since C doesn't mangle names, and ctf_file_t was always an opaque type)
and things will still compile fine as long as -Werror is not specified.
All references to CTF containers and CTF files in the source code are
fixed to refer to CTF dicts instead.
Further (smaller) renamings of annoyingly-named functions to come, as
part of the process of souping up queries across whole archives at once
(needed for the function info and data object sections).
binutils/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* objdump.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_ctf): Likewise. Use ctf_dict_close, not ctf_file_close.
* readelf.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_section_as_ctf): Likewise. Use ctf_dict_close, not
ctf_file_close.
gdb/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctfread.c: Change uses of ctf_file_t to ctf_dict_t.
(ctf_fp_info::~ctf_fp_info): Call ctf_dict_close, not ctf_file_close.
include/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-api.h (ctf_file_t): Rename to...
(ctf_dict_t): ... this. Keep ctf_file_t around for compatibility.
(struct ctf_file): Likewise rename to...
(struct ctf_dict): ... this.
(ctf_file_close): Rename to...
(ctf_dict_close): ... this, keeping compatibility function.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this, keeping compatibility function.
All callers adjusted.
* ctf.h: Rename references to ctf_file_t to ctf_dict_t.
(struct ctf_archive) <ctfa_nfiles>: Rename to...
<ctfa_ndicts>: ... this.
ld/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ldlang.c (ctf_output): This is a ctf_dict_t now.
(lang_ctf_errs_warnings): Rename ctf_file_t to ctf_dict_t.
(ldlang_open_ctf): Adjust comment.
(lang_merge_ctf): Use ctf_dict_close, not ctf_file_close.
* ldelfgen.h (ldelf_examine_strtab_for_ctf): Rename ctf_file_t to
ctf_dict_t. Change opaque declaration accordingly.
* ldelfgen.c (ldelf_examine_strtab_for_ctf): Adjust.
* ldemul.h (examine_strtab_for_ctf): Likewise.
(ldemul_examine_strtab_for_ctf): Likewise.
* ldeuml.c (ldemul_examine_strtab_for_ctf): Likewise.
libctf/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h: Rename ctf_file_t to ctf_dict_t: all declarations
adjusted.
(ctf_fileops): Rename to...
(ctf_dictops): ... this.
(ctf_dedup_t) <cd_id_to_file_t>: Rename to...
<cd_id_to_dict_t>: ... this.
(ctf_file_t): Fix outdated comment.
<ctf_fileops>: Rename to...
<ctf_dictops>: ... this.
(struct ctf_archive_internal) <ctfi_file>: Rename to...
<ctfi_dict>: ... this.
* ctf-archive.c: Rename ctf_file_t to ctf_dict_t.
Rename ctf_archive.ctfa_nfiles to ctfa_ndicts.
Rename ctf_file_close to ctf_dict_close. All users adjusted.
* ctf-create.c: Likewise. Refer to CTF dicts, not CTF containers.
(ctf_bundle_t) <ctb_file>: Rename to...
<ctb_dict): ... this.
* ctf-decl.c: Rename ctf_file_t to ctf_dict_t.
* ctf-dedup.c: Likewise. Rename ctf_file_close to
ctf_dict_close. Refer to CTF dicts, not CTF containers.
* ctf-dump.c: Likewise.
* ctf-error.c: Likewise.
* ctf-hash.c: Likewise.
* ctf-inlines.h: Likewise.
* ctf-labels.c: Likewise.
* ctf-link.c: Likewise.
* ctf-lookup.c: Likewise.
* ctf-open-bfd.c: Likewise.
* ctf-string.c: Likewise.
* ctf-subr.c: Likewise.
* ctf-types.c: Likewise.
* ctf-util.c: Likewise.
* ctf-open.c: Likewise.
(ctf_file_close): Rename to...
(ctf_dict_close): ...this.
(ctf_file_close): New trivial wrapper around ctf_dict_close, for
compatibility.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this.
(ctf_parent_file): New trivial wrapper around ctf_parent_dict, for
compatibility.
* libctf.ver: Add ctf_dict_close and ctf_parent_dict.
2020-11-20 21:34:04 +08:00
|
|
|
extern int ctf_dvd_insert (ctf_dict_t *, ctf_dvdef_t *);
|
|
|
|
extern void ctf_dvd_delete (ctf_dict_t *, ctf_dvdef_t *);
|
|
|
|
extern ctf_dvdef_t *ctf_dvd_lookup (const ctf_dict_t *, const char *);
|
2019-04-24 05:24:13 +08:00
|
|
|
|
libctf, include, binutils, gdb, ld: rename ctf_file_t to ctf_dict_t
The naming of the ctf_file_t type in libctf is a historical curiosity.
Back in the Solaris days, CTF dictionaries were originally generated as
a separate file and then (sometimes) merged into objects: hence the
datatype was named ctf_file_t, and known as a "CTF file". Nowadays, raw
CTF is essentially never written to a file on its own, and the datatype
changed name to a "CTF dictionary" years ago. So the term "CTF file"
refers to something that is never a file! This is at best confusing.
The type has also historically been known as a 'CTF container", which is
even more confusing now that we have CTF archives which are *also* a
sort of container (they contain CTF dictionaries), but which are never
referred to as containers in the source code.
So fix this by completing the renaming, renaming ctf_file_t to
ctf_dict_t throughout, and renaming those few functions that refer to
CTF files by name (keeping compatibility aliases) to refer to dicts
instead. Old users who still refer to ctf_file_t will see (harmless)
pointer-compatibility warnings at compile time, but the ABI is unchanged
(since C doesn't mangle names, and ctf_file_t was always an opaque type)
and things will still compile fine as long as -Werror is not specified.
All references to CTF containers and CTF files in the source code are
fixed to refer to CTF dicts instead.
Further (smaller) renamings of annoyingly-named functions to come, as
part of the process of souping up queries across whole archives at once
(needed for the function info and data object sections).
binutils/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* objdump.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_ctf): Likewise. Use ctf_dict_close, not ctf_file_close.
* readelf.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_section_as_ctf): Likewise. Use ctf_dict_close, not
ctf_file_close.
gdb/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctfread.c: Change uses of ctf_file_t to ctf_dict_t.
(ctf_fp_info::~ctf_fp_info): Call ctf_dict_close, not ctf_file_close.
include/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-api.h (ctf_file_t): Rename to...
(ctf_dict_t): ... this. Keep ctf_file_t around for compatibility.
(struct ctf_file): Likewise rename to...
(struct ctf_dict): ... this.
(ctf_file_close): Rename to...
(ctf_dict_close): ... this, keeping compatibility function.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this, keeping compatibility function.
All callers adjusted.
* ctf.h: Rename references to ctf_file_t to ctf_dict_t.
(struct ctf_archive) <ctfa_nfiles>: Rename to...
<ctfa_ndicts>: ... this.
ld/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ldlang.c (ctf_output): This is a ctf_dict_t now.
(lang_ctf_errs_warnings): Rename ctf_file_t to ctf_dict_t.
(ldlang_open_ctf): Adjust comment.
(lang_merge_ctf): Use ctf_dict_close, not ctf_file_close.
* ldelfgen.h (ldelf_examine_strtab_for_ctf): Rename ctf_file_t to
ctf_dict_t. Change opaque declaration accordingly.
* ldelfgen.c (ldelf_examine_strtab_for_ctf): Adjust.
* ldemul.h (examine_strtab_for_ctf): Likewise.
(ldemul_examine_strtab_for_ctf): Likewise.
* ldeuml.c (ldemul_examine_strtab_for_ctf): Likewise.
libctf/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h: Rename ctf_file_t to ctf_dict_t: all declarations
adjusted.
(ctf_fileops): Rename to...
(ctf_dictops): ... this.
(ctf_dedup_t) <cd_id_to_file_t>: Rename to...
<cd_id_to_dict_t>: ... this.
(ctf_file_t): Fix outdated comment.
<ctf_fileops>: Rename to...
<ctf_dictops>: ... this.
(struct ctf_archive_internal) <ctfi_file>: Rename to...
<ctfi_dict>: ... this.
* ctf-archive.c: Rename ctf_file_t to ctf_dict_t.
Rename ctf_archive.ctfa_nfiles to ctfa_ndicts.
Rename ctf_file_close to ctf_dict_close. All users adjusted.
* ctf-create.c: Likewise. Refer to CTF dicts, not CTF containers.
(ctf_bundle_t) <ctb_file>: Rename to...
<ctb_dict): ... this.
* ctf-decl.c: Rename ctf_file_t to ctf_dict_t.
* ctf-dedup.c: Likewise. Rename ctf_file_close to
ctf_dict_close. Refer to CTF dicts, not CTF containers.
* ctf-dump.c: Likewise.
* ctf-error.c: Likewise.
* ctf-hash.c: Likewise.
* ctf-inlines.h: Likewise.
* ctf-labels.c: Likewise.
* ctf-link.c: Likewise.
* ctf-lookup.c: Likewise.
* ctf-open-bfd.c: Likewise.
* ctf-string.c: Likewise.
* ctf-subr.c: Likewise.
* ctf-types.c: Likewise.
* ctf-util.c: Likewise.
* ctf-open.c: Likewise.
(ctf_file_close): Rename to...
(ctf_dict_close): ...this.
(ctf_file_close): New trivial wrapper around ctf_dict_close, for
compatibility.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this.
(ctf_parent_file): New trivial wrapper around ctf_parent_dict, for
compatibility.
* libctf.ver: Add ctf_dict_close and ctf_parent_dict.
2020-11-20 21:34:04 +08:00
|
|
|
extern ctf_id_t ctf_add_encoded (ctf_dict_t *, uint32_t, const char *,
|
2020-06-06 01:35:46 +08:00
|
|
|
const ctf_encoding_t *, uint32_t kind);
|
libctf, include, binutils, gdb, ld: rename ctf_file_t to ctf_dict_t
The naming of the ctf_file_t type in libctf is a historical curiosity.
Back in the Solaris days, CTF dictionaries were originally generated as
a separate file and then (sometimes) merged into objects: hence the
datatype was named ctf_file_t, and known as a "CTF file". Nowadays, raw
CTF is essentially never written to a file on its own, and the datatype
changed name to a "CTF dictionary" years ago. So the term "CTF file"
refers to something that is never a file! This is at best confusing.
The type has also historically been known as a 'CTF container", which is
even more confusing now that we have CTF archives which are *also* a
sort of container (they contain CTF dictionaries), but which are never
referred to as containers in the source code.
So fix this by completing the renaming, renaming ctf_file_t to
ctf_dict_t throughout, and renaming those few functions that refer to
CTF files by name (keeping compatibility aliases) to refer to dicts
instead. Old users who still refer to ctf_file_t will see (harmless)
pointer-compatibility warnings at compile time, but the ABI is unchanged
(since C doesn't mangle names, and ctf_file_t was always an opaque type)
and things will still compile fine as long as -Werror is not specified.
All references to CTF containers and CTF files in the source code are
fixed to refer to CTF dicts instead.
Further (smaller) renamings of annoyingly-named functions to come, as
part of the process of souping up queries across whole archives at once
(needed for the function info and data object sections).
binutils/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* objdump.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_ctf): Likewise. Use ctf_dict_close, not ctf_file_close.
* readelf.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_section_as_ctf): Likewise. Use ctf_dict_close, not
ctf_file_close.
gdb/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctfread.c: Change uses of ctf_file_t to ctf_dict_t.
(ctf_fp_info::~ctf_fp_info): Call ctf_dict_close, not ctf_file_close.
include/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-api.h (ctf_file_t): Rename to...
(ctf_dict_t): ... this. Keep ctf_file_t around for compatibility.
(struct ctf_file): Likewise rename to...
(struct ctf_dict): ... this.
(ctf_file_close): Rename to...
(ctf_dict_close): ... this, keeping compatibility function.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this, keeping compatibility function.
All callers adjusted.
* ctf.h: Rename references to ctf_file_t to ctf_dict_t.
(struct ctf_archive) <ctfa_nfiles>: Rename to...
<ctfa_ndicts>: ... this.
ld/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ldlang.c (ctf_output): This is a ctf_dict_t now.
(lang_ctf_errs_warnings): Rename ctf_file_t to ctf_dict_t.
(ldlang_open_ctf): Adjust comment.
(lang_merge_ctf): Use ctf_dict_close, not ctf_file_close.
* ldelfgen.h (ldelf_examine_strtab_for_ctf): Rename ctf_file_t to
ctf_dict_t. Change opaque declaration accordingly.
* ldelfgen.c (ldelf_examine_strtab_for_ctf): Adjust.
* ldemul.h (examine_strtab_for_ctf): Likewise.
(ldemul_examine_strtab_for_ctf): Likewise.
* ldeuml.c (ldemul_examine_strtab_for_ctf): Likewise.
libctf/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h: Rename ctf_file_t to ctf_dict_t: all declarations
adjusted.
(ctf_fileops): Rename to...
(ctf_dictops): ... this.
(ctf_dedup_t) <cd_id_to_file_t>: Rename to...
<cd_id_to_dict_t>: ... this.
(ctf_file_t): Fix outdated comment.
<ctf_fileops>: Rename to...
<ctf_dictops>: ... this.
(struct ctf_archive_internal) <ctfi_file>: Rename to...
<ctfi_dict>: ... this.
* ctf-archive.c: Rename ctf_file_t to ctf_dict_t.
Rename ctf_archive.ctfa_nfiles to ctfa_ndicts.
Rename ctf_file_close to ctf_dict_close. All users adjusted.
* ctf-create.c: Likewise. Refer to CTF dicts, not CTF containers.
(ctf_bundle_t) <ctb_file>: Rename to...
<ctb_dict): ... this.
* ctf-decl.c: Rename ctf_file_t to ctf_dict_t.
* ctf-dedup.c: Likewise. Rename ctf_file_close to
ctf_dict_close. Refer to CTF dicts, not CTF containers.
* ctf-dump.c: Likewise.
* ctf-error.c: Likewise.
* ctf-hash.c: Likewise.
* ctf-inlines.h: Likewise.
* ctf-labels.c: Likewise.
* ctf-link.c: Likewise.
* ctf-lookup.c: Likewise.
* ctf-open-bfd.c: Likewise.
* ctf-string.c: Likewise.
* ctf-subr.c: Likewise.
* ctf-types.c: Likewise.
* ctf-util.c: Likewise.
* ctf-open.c: Likewise.
(ctf_file_close): Rename to...
(ctf_dict_close): ...this.
(ctf_file_close): New trivial wrapper around ctf_dict_close, for
compatibility.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this.
(ctf_parent_file): New trivial wrapper around ctf_parent_dict, for
compatibility.
* libctf.ver: Add ctf_dict_close and ctf_parent_dict.
2020-11-20 21:34:04 +08:00
|
|
|
extern ctf_id_t ctf_add_reftype (ctf_dict_t *, uint32_t, ctf_id_t,
|
2020-06-06 01:35:46 +08:00
|
|
|
uint32_t kind);
|
|
|
|
|
libctf, include, binutils, gdb, ld: rename ctf_file_t to ctf_dict_t
The naming of the ctf_file_t type in libctf is a historical curiosity.
Back in the Solaris days, CTF dictionaries were originally generated as
a separate file and then (sometimes) merged into objects: hence the
datatype was named ctf_file_t, and known as a "CTF file". Nowadays, raw
CTF is essentially never written to a file on its own, and the datatype
changed name to a "CTF dictionary" years ago. So the term "CTF file"
refers to something that is never a file! This is at best confusing.
The type has also historically been known as a 'CTF container", which is
even more confusing now that we have CTF archives which are *also* a
sort of container (they contain CTF dictionaries), but which are never
referred to as containers in the source code.
So fix this by completing the renaming, renaming ctf_file_t to
ctf_dict_t throughout, and renaming those few functions that refer to
CTF files by name (keeping compatibility aliases) to refer to dicts
instead. Old users who still refer to ctf_file_t will see (harmless)
pointer-compatibility warnings at compile time, but the ABI is unchanged
(since C doesn't mangle names, and ctf_file_t was always an opaque type)
and things will still compile fine as long as -Werror is not specified.
All references to CTF containers and CTF files in the source code are
fixed to refer to CTF dicts instead.
Further (smaller) renamings of annoyingly-named functions to come, as
part of the process of souping up queries across whole archives at once
(needed for the function info and data object sections).
binutils/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* objdump.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_ctf): Likewise. Use ctf_dict_close, not ctf_file_close.
* readelf.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_section_as_ctf): Likewise. Use ctf_dict_close, not
ctf_file_close.
gdb/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctfread.c: Change uses of ctf_file_t to ctf_dict_t.
(ctf_fp_info::~ctf_fp_info): Call ctf_dict_close, not ctf_file_close.
include/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-api.h (ctf_file_t): Rename to...
(ctf_dict_t): ... this. Keep ctf_file_t around for compatibility.
(struct ctf_file): Likewise rename to...
(struct ctf_dict): ... this.
(ctf_file_close): Rename to...
(ctf_dict_close): ... this, keeping compatibility function.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this, keeping compatibility function.
All callers adjusted.
* ctf.h: Rename references to ctf_file_t to ctf_dict_t.
(struct ctf_archive) <ctfa_nfiles>: Rename to...
<ctfa_ndicts>: ... this.
ld/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ldlang.c (ctf_output): This is a ctf_dict_t now.
(lang_ctf_errs_warnings): Rename ctf_file_t to ctf_dict_t.
(ldlang_open_ctf): Adjust comment.
(lang_merge_ctf): Use ctf_dict_close, not ctf_file_close.
* ldelfgen.h (ldelf_examine_strtab_for_ctf): Rename ctf_file_t to
ctf_dict_t. Change opaque declaration accordingly.
* ldelfgen.c (ldelf_examine_strtab_for_ctf): Adjust.
* ldemul.h (examine_strtab_for_ctf): Likewise.
(ldemul_examine_strtab_for_ctf): Likewise.
* ldeuml.c (ldemul_examine_strtab_for_ctf): Likewise.
libctf/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h: Rename ctf_file_t to ctf_dict_t: all declarations
adjusted.
(ctf_fileops): Rename to...
(ctf_dictops): ... this.
(ctf_dedup_t) <cd_id_to_file_t>: Rename to...
<cd_id_to_dict_t>: ... this.
(ctf_file_t): Fix outdated comment.
<ctf_fileops>: Rename to...
<ctf_dictops>: ... this.
(struct ctf_archive_internal) <ctfi_file>: Rename to...
<ctfi_dict>: ... this.
* ctf-archive.c: Rename ctf_file_t to ctf_dict_t.
Rename ctf_archive.ctfa_nfiles to ctfa_ndicts.
Rename ctf_file_close to ctf_dict_close. All users adjusted.
* ctf-create.c: Likewise. Refer to CTF dicts, not CTF containers.
(ctf_bundle_t) <ctb_file>: Rename to...
<ctb_dict): ... this.
* ctf-decl.c: Rename ctf_file_t to ctf_dict_t.
* ctf-dedup.c: Likewise. Rename ctf_file_close to
ctf_dict_close. Refer to CTF dicts, not CTF containers.
* ctf-dump.c: Likewise.
* ctf-error.c: Likewise.
* ctf-hash.c: Likewise.
* ctf-inlines.h: Likewise.
* ctf-labels.c: Likewise.
* ctf-link.c: Likewise.
* ctf-lookup.c: Likewise.
* ctf-open-bfd.c: Likewise.
* ctf-string.c: Likewise.
* ctf-subr.c: Likewise.
* ctf-types.c: Likewise.
* ctf-util.c: Likewise.
* ctf-open.c: Likewise.
(ctf_file_close): Rename to...
(ctf_dict_close): ...this.
(ctf_file_close): New trivial wrapper around ctf_dict_close, for
compatibility.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this.
(ctf_parent_file): New trivial wrapper around ctf_parent_dict, for
compatibility.
* libctf.ver: Add ctf_dict_close and ctf_parent_dict.
2020-11-20 21:34:04 +08:00
|
|
|
extern int ctf_dedup_atoms_init (ctf_dict_t *);
|
|
|
|
extern int ctf_dedup (ctf_dict_t *, ctf_dict_t **, uint32_t ninputs,
|
2020-06-06 01:35:46 +08:00
|
|
|
uint32_t *parents, int cu_mapped);
|
libctf, include, binutils, gdb, ld: rename ctf_file_t to ctf_dict_t
The naming of the ctf_file_t type in libctf is a historical curiosity.
Back in the Solaris days, CTF dictionaries were originally generated as
a separate file and then (sometimes) merged into objects: hence the
datatype was named ctf_file_t, and known as a "CTF file". Nowadays, raw
CTF is essentially never written to a file on its own, and the datatype
changed name to a "CTF dictionary" years ago. So the term "CTF file"
refers to something that is never a file! This is at best confusing.
The type has also historically been known as a 'CTF container", which is
even more confusing now that we have CTF archives which are *also* a
sort of container (they contain CTF dictionaries), but which are never
referred to as containers in the source code.
So fix this by completing the renaming, renaming ctf_file_t to
ctf_dict_t throughout, and renaming those few functions that refer to
CTF files by name (keeping compatibility aliases) to refer to dicts
instead. Old users who still refer to ctf_file_t will see (harmless)
pointer-compatibility warnings at compile time, but the ABI is unchanged
(since C doesn't mangle names, and ctf_file_t was always an opaque type)
and things will still compile fine as long as -Werror is not specified.
All references to CTF containers and CTF files in the source code are
fixed to refer to CTF dicts instead.
Further (smaller) renamings of annoyingly-named functions to come, as
part of the process of souping up queries across whole archives at once
(needed for the function info and data object sections).
binutils/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* objdump.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_ctf): Likewise. Use ctf_dict_close, not ctf_file_close.
* readelf.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_section_as_ctf): Likewise. Use ctf_dict_close, not
ctf_file_close.
gdb/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctfread.c: Change uses of ctf_file_t to ctf_dict_t.
(ctf_fp_info::~ctf_fp_info): Call ctf_dict_close, not ctf_file_close.
include/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-api.h (ctf_file_t): Rename to...
(ctf_dict_t): ... this. Keep ctf_file_t around for compatibility.
(struct ctf_file): Likewise rename to...
(struct ctf_dict): ... this.
(ctf_file_close): Rename to...
(ctf_dict_close): ... this, keeping compatibility function.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this, keeping compatibility function.
All callers adjusted.
* ctf.h: Rename references to ctf_file_t to ctf_dict_t.
(struct ctf_archive) <ctfa_nfiles>: Rename to...
<ctfa_ndicts>: ... this.
ld/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ldlang.c (ctf_output): This is a ctf_dict_t now.
(lang_ctf_errs_warnings): Rename ctf_file_t to ctf_dict_t.
(ldlang_open_ctf): Adjust comment.
(lang_merge_ctf): Use ctf_dict_close, not ctf_file_close.
* ldelfgen.h (ldelf_examine_strtab_for_ctf): Rename ctf_file_t to
ctf_dict_t. Change opaque declaration accordingly.
* ldelfgen.c (ldelf_examine_strtab_for_ctf): Adjust.
* ldemul.h (examine_strtab_for_ctf): Likewise.
(ldemul_examine_strtab_for_ctf): Likewise.
* ldeuml.c (ldemul_examine_strtab_for_ctf): Likewise.
libctf/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h: Rename ctf_file_t to ctf_dict_t: all declarations
adjusted.
(ctf_fileops): Rename to...
(ctf_dictops): ... this.
(ctf_dedup_t) <cd_id_to_file_t>: Rename to...
<cd_id_to_dict_t>: ... this.
(ctf_file_t): Fix outdated comment.
<ctf_fileops>: Rename to...
<ctf_dictops>: ... this.
(struct ctf_archive_internal) <ctfi_file>: Rename to...
<ctfi_dict>: ... this.
* ctf-archive.c: Rename ctf_file_t to ctf_dict_t.
Rename ctf_archive.ctfa_nfiles to ctfa_ndicts.
Rename ctf_file_close to ctf_dict_close. All users adjusted.
* ctf-create.c: Likewise. Refer to CTF dicts, not CTF containers.
(ctf_bundle_t) <ctb_file>: Rename to...
<ctb_dict): ... this.
* ctf-decl.c: Rename ctf_file_t to ctf_dict_t.
* ctf-dedup.c: Likewise. Rename ctf_file_close to
ctf_dict_close. Refer to CTF dicts, not CTF containers.
* ctf-dump.c: Likewise.
* ctf-error.c: Likewise.
* ctf-hash.c: Likewise.
* ctf-inlines.h: Likewise.
* ctf-labels.c: Likewise.
* ctf-link.c: Likewise.
* ctf-lookup.c: Likewise.
* ctf-open-bfd.c: Likewise.
* ctf-string.c: Likewise.
* ctf-subr.c: Likewise.
* ctf-types.c: Likewise.
* ctf-util.c: Likewise.
* ctf-open.c: Likewise.
(ctf_file_close): Rename to...
(ctf_dict_close): ...this.
(ctf_file_close): New trivial wrapper around ctf_dict_close, for
compatibility.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this.
(ctf_parent_file): New trivial wrapper around ctf_parent_dict, for
compatibility.
* libctf.ver: Add ctf_dict_close and ctf_parent_dict.
2020-11-20 21:34:04 +08:00
|
|
|
extern void ctf_dedup_fini (ctf_dict_t *, ctf_dict_t **, uint32_t);
|
|
|
|
extern ctf_dict_t **ctf_dedup_emit (ctf_dict_t *, ctf_dict_t **,
|
2020-06-06 01:35:46 +08:00
|
|
|
uint32_t ninputs, uint32_t *parents,
|
|
|
|
uint32_t *noutputs, int cu_mapped);
|
libctf: add a deduplicator-specific type mapping table
When CTF linking is done, the linker has to track the association
between types in the inputs and types in the outputs. The deduplicator
does this via the cd_output_emission_hashes, which maps from hashes of
types (valid in both the input and output) to the IDs of types in the
specific dict in which the cd_emission_hashes is held. However, the
nondeduplicating linker and ctf_add_type used a different mechanism, a
dedicated hashtab stored in the ctf_link_type_mapping, populated via
ctf_add_type_mapping and queried via the ctf_type_mapping function. To
allow the same functions to be used for variable and symbol population
in both the deduplicating and nondeduplicating linker, the deduplicator
carefully transferred all its input->output mappings into this hashtab
before returning.
This is *expensive*. The number of entries in this hashtab scales as the
number of input types, and unlike the hashing machinery the type mapping
machinery (the only other thing which scales that way) has not been much
optimized.
Now the nondeduplicating linker is gone, we can throw this out, move
the existing type mapping machinery to ctf-create.c and dedicate it to
ctf_add_type alone, and add a new function ctf_dedup_type_mapping which
uses the deduplicator's built-in knowledge of type mappings directly,
without requiring an expensive repopulation phase.
This speeds up a test link of nouveau.ko (a good worst-case candidate
with a lot of types in each of a lot of input files) from 9.11s to 7.15s
in my testing, a speedup of over 20%.
libctf/ChangeLog
2021-03-02 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h (ctf_dict_t) <ctf_link_type_mapping>: No longer used
by the nondeduplicating linker.
(ctf_add_type_mapping): Removed, now static.
(ctf_type_mapping): Likewise.
(ctf_dedup_type_mapping): New.
(ctf_dedup_t) <cd_input_nums>: New.
* ctf-dedup.c (ctf_dedup_init): Populate it.
(ctf_dedup_fini): Free it again. Emphasise that this has to be
the last thing called.
(ctf_dedup): Populate it.
(ctf_dedup_populate_type_mapping): Removed.
(ctf_dedup_populate_type_mappings): Likewise.
(ctf_dedup_emit): No longer call it. No longer call
ctf_dedup_fini either.
(ctf_dedup_type_mapping): New.
* ctf-link.c (ctf_unnamed_cuname): New.
(ctf_create_per_cu): Arguments must be non-null now.
(ctf_in_member_cb_arg): Removed.
(ctf_link): No longer populate it. No longer discard the
mapping table.
(ctf_link_deduplicating_one_symtypetab): Use
ctf_dedup_type_mapping, not ctf_type_mapping. Use
ctf_unnamed_cuname.
(ctf_link_one_variable): Likewise. Pass in args individually: no
longer a ctf_variable_iter callback.
(empty_link_type_mapping): Removed.
(ctf_link_deduplicating_variables): Use ctf_variable_next, not
ctf_variable_iter. No longer pack arguments to
ctf_link_one_variable into a struct.
(ctf_link_deduplicating_per_cu): Call ctf_dedup_fini once
all link phases are done.
(ctf_link_deduplicating): Likewise.
(ctf_link_intern_extern_string): Improve comment.
(ctf_add_type_mapping): Migrate...
(ctf_type_mapping): ... these functions...
* ctf-create.c (ctf_add_type_mapping): ... here...
(ctf_type_mapping): ... and make static, for the sole use of
ctf_add_type.
2021-03-02 23:10:05 +08:00
|
|
|
extern ctf_id_t ctf_dedup_type_mapping (ctf_dict_t *fp, ctf_dict_t *src_fp,
|
|
|
|
ctf_id_t src_type);
|
2020-06-06 01:35:46 +08:00
|
|
|
|
2019-04-24 18:03:37 +08:00
|
|
|
extern void ctf_decl_init (ctf_decl_t *);
|
|
|
|
extern void ctf_decl_fini (ctf_decl_t *);
|
libctf, include, binutils, gdb, ld: rename ctf_file_t to ctf_dict_t
The naming of the ctf_file_t type in libctf is a historical curiosity.
Back in the Solaris days, CTF dictionaries were originally generated as
a separate file and then (sometimes) merged into objects: hence the
datatype was named ctf_file_t, and known as a "CTF file". Nowadays, raw
CTF is essentially never written to a file on its own, and the datatype
changed name to a "CTF dictionary" years ago. So the term "CTF file"
refers to something that is never a file! This is at best confusing.
The type has also historically been known as a 'CTF container", which is
even more confusing now that we have CTF archives which are *also* a
sort of container (they contain CTF dictionaries), but which are never
referred to as containers in the source code.
So fix this by completing the renaming, renaming ctf_file_t to
ctf_dict_t throughout, and renaming those few functions that refer to
CTF files by name (keeping compatibility aliases) to refer to dicts
instead. Old users who still refer to ctf_file_t will see (harmless)
pointer-compatibility warnings at compile time, but the ABI is unchanged
(since C doesn't mangle names, and ctf_file_t was always an opaque type)
and things will still compile fine as long as -Werror is not specified.
All references to CTF containers and CTF files in the source code are
fixed to refer to CTF dicts instead.
Further (smaller) renamings of annoyingly-named functions to come, as
part of the process of souping up queries across whole archives at once
(needed for the function info and data object sections).
binutils/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* objdump.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_ctf): Likewise. Use ctf_dict_close, not ctf_file_close.
* readelf.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_section_as_ctf): Likewise. Use ctf_dict_close, not
ctf_file_close.
gdb/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctfread.c: Change uses of ctf_file_t to ctf_dict_t.
(ctf_fp_info::~ctf_fp_info): Call ctf_dict_close, not ctf_file_close.
include/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-api.h (ctf_file_t): Rename to...
(ctf_dict_t): ... this. Keep ctf_file_t around for compatibility.
(struct ctf_file): Likewise rename to...
(struct ctf_dict): ... this.
(ctf_file_close): Rename to...
(ctf_dict_close): ... this, keeping compatibility function.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this, keeping compatibility function.
All callers adjusted.
* ctf.h: Rename references to ctf_file_t to ctf_dict_t.
(struct ctf_archive) <ctfa_nfiles>: Rename to...
<ctfa_ndicts>: ... this.
ld/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ldlang.c (ctf_output): This is a ctf_dict_t now.
(lang_ctf_errs_warnings): Rename ctf_file_t to ctf_dict_t.
(ldlang_open_ctf): Adjust comment.
(lang_merge_ctf): Use ctf_dict_close, not ctf_file_close.
* ldelfgen.h (ldelf_examine_strtab_for_ctf): Rename ctf_file_t to
ctf_dict_t. Change opaque declaration accordingly.
* ldelfgen.c (ldelf_examine_strtab_for_ctf): Adjust.
* ldemul.h (examine_strtab_for_ctf): Likewise.
(ldemul_examine_strtab_for_ctf): Likewise.
* ldeuml.c (ldemul_examine_strtab_for_ctf): Likewise.
libctf/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h: Rename ctf_file_t to ctf_dict_t: all declarations
adjusted.
(ctf_fileops): Rename to...
(ctf_dictops): ... this.
(ctf_dedup_t) <cd_id_to_file_t>: Rename to...
<cd_id_to_dict_t>: ... this.
(ctf_file_t): Fix outdated comment.
<ctf_fileops>: Rename to...
<ctf_dictops>: ... this.
(struct ctf_archive_internal) <ctfi_file>: Rename to...
<ctfi_dict>: ... this.
* ctf-archive.c: Rename ctf_file_t to ctf_dict_t.
Rename ctf_archive.ctfa_nfiles to ctfa_ndicts.
Rename ctf_file_close to ctf_dict_close. All users adjusted.
* ctf-create.c: Likewise. Refer to CTF dicts, not CTF containers.
(ctf_bundle_t) <ctb_file>: Rename to...
<ctb_dict): ... this.
* ctf-decl.c: Rename ctf_file_t to ctf_dict_t.
* ctf-dedup.c: Likewise. Rename ctf_file_close to
ctf_dict_close. Refer to CTF dicts, not CTF containers.
* ctf-dump.c: Likewise.
* ctf-error.c: Likewise.
* ctf-hash.c: Likewise.
* ctf-inlines.h: Likewise.
* ctf-labels.c: Likewise.
* ctf-link.c: Likewise.
* ctf-lookup.c: Likewise.
* ctf-open-bfd.c: Likewise.
* ctf-string.c: Likewise.
* ctf-subr.c: Likewise.
* ctf-types.c: Likewise.
* ctf-util.c: Likewise.
* ctf-open.c: Likewise.
(ctf_file_close): Rename to...
(ctf_dict_close): ...this.
(ctf_file_close): New trivial wrapper around ctf_dict_close, for
compatibility.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this.
(ctf_parent_file): New trivial wrapper around ctf_parent_dict, for
compatibility.
* libctf.ver: Add ctf_dict_close and ctf_parent_dict.
2020-11-20 21:34:04 +08:00
|
|
|
extern void ctf_decl_push (ctf_decl_t *, ctf_dict_t *, ctf_id_t);
|
2019-04-24 18:03:37 +08:00
|
|
|
|
|
|
|
_libctf_printflike_ (2, 3)
|
|
|
|
extern void ctf_decl_sprintf (ctf_decl_t *, const char *, ...);
|
|
|
|
extern char *ctf_decl_buf (ctf_decl_t *cd);
|
|
|
|
|
libctf, include, binutils, gdb, ld: rename ctf_file_t to ctf_dict_t
The naming of the ctf_file_t type in libctf is a historical curiosity.
Back in the Solaris days, CTF dictionaries were originally generated as
a separate file and then (sometimes) merged into objects: hence the
datatype was named ctf_file_t, and known as a "CTF file". Nowadays, raw
CTF is essentially never written to a file on its own, and the datatype
changed name to a "CTF dictionary" years ago. So the term "CTF file"
refers to something that is never a file! This is at best confusing.
The type has also historically been known as a 'CTF container", which is
even more confusing now that we have CTF archives which are *also* a
sort of container (they contain CTF dictionaries), but which are never
referred to as containers in the source code.
So fix this by completing the renaming, renaming ctf_file_t to
ctf_dict_t throughout, and renaming those few functions that refer to
CTF files by name (keeping compatibility aliases) to refer to dicts
instead. Old users who still refer to ctf_file_t will see (harmless)
pointer-compatibility warnings at compile time, but the ABI is unchanged
(since C doesn't mangle names, and ctf_file_t was always an opaque type)
and things will still compile fine as long as -Werror is not specified.
All references to CTF containers and CTF files in the source code are
fixed to refer to CTF dicts instead.
Further (smaller) renamings of annoyingly-named functions to come, as
part of the process of souping up queries across whole archives at once
(needed for the function info and data object sections).
binutils/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* objdump.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_ctf): Likewise. Use ctf_dict_close, not ctf_file_close.
* readelf.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_section_as_ctf): Likewise. Use ctf_dict_close, not
ctf_file_close.
gdb/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctfread.c: Change uses of ctf_file_t to ctf_dict_t.
(ctf_fp_info::~ctf_fp_info): Call ctf_dict_close, not ctf_file_close.
include/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-api.h (ctf_file_t): Rename to...
(ctf_dict_t): ... this. Keep ctf_file_t around for compatibility.
(struct ctf_file): Likewise rename to...
(struct ctf_dict): ... this.
(ctf_file_close): Rename to...
(ctf_dict_close): ... this, keeping compatibility function.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this, keeping compatibility function.
All callers adjusted.
* ctf.h: Rename references to ctf_file_t to ctf_dict_t.
(struct ctf_archive) <ctfa_nfiles>: Rename to...
<ctfa_ndicts>: ... this.
ld/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ldlang.c (ctf_output): This is a ctf_dict_t now.
(lang_ctf_errs_warnings): Rename ctf_file_t to ctf_dict_t.
(ldlang_open_ctf): Adjust comment.
(lang_merge_ctf): Use ctf_dict_close, not ctf_file_close.
* ldelfgen.h (ldelf_examine_strtab_for_ctf): Rename ctf_file_t to
ctf_dict_t. Change opaque declaration accordingly.
* ldelfgen.c (ldelf_examine_strtab_for_ctf): Adjust.
* ldemul.h (examine_strtab_for_ctf): Likewise.
(ldemul_examine_strtab_for_ctf): Likewise.
* ldeuml.c (ldemul_examine_strtab_for_ctf): Likewise.
libctf/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h: Rename ctf_file_t to ctf_dict_t: all declarations
adjusted.
(ctf_fileops): Rename to...
(ctf_dictops): ... this.
(ctf_dedup_t) <cd_id_to_file_t>: Rename to...
<cd_id_to_dict_t>: ... this.
(ctf_file_t): Fix outdated comment.
<ctf_fileops>: Rename to...
<ctf_dictops>: ... this.
(struct ctf_archive_internal) <ctfi_file>: Rename to...
<ctfi_dict>: ... this.
* ctf-archive.c: Rename ctf_file_t to ctf_dict_t.
Rename ctf_archive.ctfa_nfiles to ctfa_ndicts.
Rename ctf_file_close to ctf_dict_close. All users adjusted.
* ctf-create.c: Likewise. Refer to CTF dicts, not CTF containers.
(ctf_bundle_t) <ctb_file>: Rename to...
<ctb_dict): ... this.
* ctf-decl.c: Rename ctf_file_t to ctf_dict_t.
* ctf-dedup.c: Likewise. Rename ctf_file_close to
ctf_dict_close. Refer to CTF dicts, not CTF containers.
* ctf-dump.c: Likewise.
* ctf-error.c: Likewise.
* ctf-hash.c: Likewise.
* ctf-inlines.h: Likewise.
* ctf-labels.c: Likewise.
* ctf-link.c: Likewise.
* ctf-lookup.c: Likewise.
* ctf-open-bfd.c: Likewise.
* ctf-string.c: Likewise.
* ctf-subr.c: Likewise.
* ctf-types.c: Likewise.
* ctf-util.c: Likewise.
* ctf-open.c: Likewise.
(ctf_file_close): Rename to...
(ctf_dict_close): ...this.
(ctf_file_close): New trivial wrapper around ctf_dict_close, for
compatibility.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this.
(ctf_parent_file): New trivial wrapper around ctf_parent_dict, for
compatibility.
* libctf.ver: Add ctf_dict_close and ctf_parent_dict.
2020-11-20 21:34:04 +08:00
|
|
|
extern const char *ctf_strptr (ctf_dict_t *, uint32_t);
|
|
|
|
extern const char *ctf_strraw (ctf_dict_t *, uint32_t);
|
|
|
|
extern const char *ctf_strraw_explicit (ctf_dict_t *, uint32_t,
|
libctf: support getting strings from the ELF strtab
The CTF file format has always supported "external strtabs", which
internally are strtab offsets with their MSB on: such refs
get their strings from the strtab passed in at CTF file open time:
this is usually intended to be the ELF strtab, and that's what this
implementation is meant to support, though in theory the external
strtab could come from anywhere.
This commit adds support for these external strings in the ctf-string.c
strtab tracking layer. It's quite easy: we just add a field csa_offset
to the atoms table that tracks all strings: this field tracks the offset
of the string in the ELF strtab (with its MSB already on, courtesy of a
new macro CTF_SET_STID), and adds a new function that sets the
csa_offset to the specified offset (plus MSB). Then we just need to
avoid writing out strings to the internal strtab if they have csa_offset
set, and note that the internal strtab is shorter than it might
otherwise be.
(We could in theory save a little more time here by eschewing sorting
such strings, since we never actually write the strings out anywhere,
but that would mean storing them separately and it's just not worth the
complexity cost until profiling shows it's worth doing.)
We also have to go through a bit of extra effort at variable-sorting
time. This was previously using direct references to the internal
strtab: it couldn't use ctf_strptr or ctf_strraw because the new strtab
is not yet ready to put in its usual field (in a ctf_file_t that hasn't
even been allocated yet at this stage): but now we're using the external
strtab, this will no longer do because it'll be looking things up in the
wrong strtab, with disastrous results. Instead, pass the new internal
strtab in to a new ctf_strraw_explicit function which is just like
ctf_strraw except you can specify a ne winternal strtab to use.
But even now that it is using a new internal strtab, this is not quite
enough: it can't look up strings in the external strtab because ld
hasn't written it out yet, and when it does will write it straight to
disk. Instead, when we write the internal strtab, note all the offset
-> string mappings that we have noted belong in the *external* strtab to
a new "synthetic external strtab" dynhash, ctf_syn_ext_strtab, and look
in there at ctf_strraw time if it is set. This uses minimal extra
memory (because only strings in the external strtab that we actually use
are stored, and even those come straight out of the atoms table), but
let both variable sorting and name interning when ctf_bufopen is next
called work fine. (This also means that we don't need to filter out
spurious ECTF_STRTAB warnings from ctf_bufopen but can pass them back to
the caller, once we wrap ctf_bufopen so that we have a new internal
variant of ctf_bufopen etc that we can pass the synthetic external
strtab to. That error has been filtered out since the days of Solaris
libctf, which didn't try to handle the problem of getting external
strtabs right at construction time at all.)
v3: add the synthetic strtab and all associated machinery.
v5: fix tabdamage.
include/
* ctf.h (CTF_SET_STID): New.
libctf/
* ctf-impl.h (ctf_str_atom_t) <csa_offset>: New field.
(ctf_file_t) <ctf_syn_ext_strtab>: Likewise.
(ctf_str_add_ref): Name the last arg.
(ctf_str_add_external) New.
(ctf_str_add_strraw_explicit): Likewise.
(ctf_simple_open_internal): Likewise.
(ctf_bufopen_internal): Likewise.
* ctf-string.c (ctf_strraw_explicit): Split from...
(ctf_strraw): ... here, with new support for ctf_syn_ext_strtab.
(ctf_str_add_ref_internal): Return the atom, not the
string.
(ctf_str_add): Adjust accordingly.
(ctf_str_add_ref): Likewise. Move up in the file.
(ctf_str_add_external): New: update the csa_offset.
(ctf_str_count_strtab): Only account for strings with no csa_offset
in the internal strtab length.
(ctf_str_write_strtab): If the csa_offset is set, update the
string's refs without writing the string out, and update the
ctf_syn_ext_strtab. Make OOM handling less ugly.
* ctf-create.c (struct ctf_sort_var_arg_cb): New.
(ctf_update): Handle failure to populate the strtab. Pass in the
new ctf_sort_var arg. Adjust for ctf_syn_ext_strtab addition.
Call ctf_simple_open_internal, not ctf_simple_open.
(ctf_sort_var): Call ctf_strraw_explicit rather than looking up
strings by hand.
* ctf-hash.c (ctf_hash_insert_type): Likewise (but using
ctf_strraw). Adjust to diagnose ECTF_STRTAB nonetheless.
* ctf-open.c (init_types): No longer filter out ECTF_STRTAB.
(ctf_file_close): Destroy the ctf_syn_ext_strtab.
(ctf_simple_open): Rename to, and reimplement as a wrapper around...
(ctf_simple_open_internal): ... this new function, which calls
ctf_bufopen_internal.
(ctf_bufopen): Rename to, and reimplement as a wrapper around...
(ctf_bufopen_internal): ... this new function, which sets
ctf_syn_ext_strtab.
2019-07-14 03:33:01 +08:00
|
|
|
ctf_strs_t *);
|
libctf, include, binutils, gdb, ld: rename ctf_file_t to ctf_dict_t
The naming of the ctf_file_t type in libctf is a historical curiosity.
Back in the Solaris days, CTF dictionaries were originally generated as
a separate file and then (sometimes) merged into objects: hence the
datatype was named ctf_file_t, and known as a "CTF file". Nowadays, raw
CTF is essentially never written to a file on its own, and the datatype
changed name to a "CTF dictionary" years ago. So the term "CTF file"
refers to something that is never a file! This is at best confusing.
The type has also historically been known as a 'CTF container", which is
even more confusing now that we have CTF archives which are *also* a
sort of container (they contain CTF dictionaries), but which are never
referred to as containers in the source code.
So fix this by completing the renaming, renaming ctf_file_t to
ctf_dict_t throughout, and renaming those few functions that refer to
CTF files by name (keeping compatibility aliases) to refer to dicts
instead. Old users who still refer to ctf_file_t will see (harmless)
pointer-compatibility warnings at compile time, but the ABI is unchanged
(since C doesn't mangle names, and ctf_file_t was always an opaque type)
and things will still compile fine as long as -Werror is not specified.
All references to CTF containers and CTF files in the source code are
fixed to refer to CTF dicts instead.
Further (smaller) renamings of annoyingly-named functions to come, as
part of the process of souping up queries across whole archives at once
(needed for the function info and data object sections).
binutils/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* objdump.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_ctf): Likewise. Use ctf_dict_close, not ctf_file_close.
* readelf.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_section_as_ctf): Likewise. Use ctf_dict_close, not
ctf_file_close.
gdb/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctfread.c: Change uses of ctf_file_t to ctf_dict_t.
(ctf_fp_info::~ctf_fp_info): Call ctf_dict_close, not ctf_file_close.
include/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-api.h (ctf_file_t): Rename to...
(ctf_dict_t): ... this. Keep ctf_file_t around for compatibility.
(struct ctf_file): Likewise rename to...
(struct ctf_dict): ... this.
(ctf_file_close): Rename to...
(ctf_dict_close): ... this, keeping compatibility function.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this, keeping compatibility function.
All callers adjusted.
* ctf.h: Rename references to ctf_file_t to ctf_dict_t.
(struct ctf_archive) <ctfa_nfiles>: Rename to...
<ctfa_ndicts>: ... this.
ld/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ldlang.c (ctf_output): This is a ctf_dict_t now.
(lang_ctf_errs_warnings): Rename ctf_file_t to ctf_dict_t.
(ldlang_open_ctf): Adjust comment.
(lang_merge_ctf): Use ctf_dict_close, not ctf_file_close.
* ldelfgen.h (ldelf_examine_strtab_for_ctf): Rename ctf_file_t to
ctf_dict_t. Change opaque declaration accordingly.
* ldelfgen.c (ldelf_examine_strtab_for_ctf): Adjust.
* ldemul.h (examine_strtab_for_ctf): Likewise.
(ldemul_examine_strtab_for_ctf): Likewise.
* ldeuml.c (ldemul_examine_strtab_for_ctf): Likewise.
libctf/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h: Rename ctf_file_t to ctf_dict_t: all declarations
adjusted.
(ctf_fileops): Rename to...
(ctf_dictops): ... this.
(ctf_dedup_t) <cd_id_to_file_t>: Rename to...
<cd_id_to_dict_t>: ... this.
(ctf_file_t): Fix outdated comment.
<ctf_fileops>: Rename to...
<ctf_dictops>: ... this.
(struct ctf_archive_internal) <ctfi_file>: Rename to...
<ctfi_dict>: ... this.
* ctf-archive.c: Rename ctf_file_t to ctf_dict_t.
Rename ctf_archive.ctfa_nfiles to ctfa_ndicts.
Rename ctf_file_close to ctf_dict_close. All users adjusted.
* ctf-create.c: Likewise. Refer to CTF dicts, not CTF containers.
(ctf_bundle_t) <ctb_file>: Rename to...
<ctb_dict): ... this.
* ctf-decl.c: Rename ctf_file_t to ctf_dict_t.
* ctf-dedup.c: Likewise. Rename ctf_file_close to
ctf_dict_close. Refer to CTF dicts, not CTF containers.
* ctf-dump.c: Likewise.
* ctf-error.c: Likewise.
* ctf-hash.c: Likewise.
* ctf-inlines.h: Likewise.
* ctf-labels.c: Likewise.
* ctf-link.c: Likewise.
* ctf-lookup.c: Likewise.
* ctf-open-bfd.c: Likewise.
* ctf-string.c: Likewise.
* ctf-subr.c: Likewise.
* ctf-types.c: Likewise.
* ctf-util.c: Likewise.
* ctf-open.c: Likewise.
(ctf_file_close): Rename to...
(ctf_dict_close): ...this.
(ctf_file_close): New trivial wrapper around ctf_dict_close, for
compatibility.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this.
(ctf_parent_file): New trivial wrapper around ctf_parent_dict, for
compatibility.
* libctf.ver: Add ctf_dict_close and ctf_parent_dict.
2020-11-20 21:34:04 +08:00
|
|
|
extern int ctf_str_create_atoms (ctf_dict_t *);
|
|
|
|
extern void ctf_str_free_atoms (ctf_dict_t *);
|
|
|
|
extern uint32_t ctf_str_add (ctf_dict_t *, const char *);
|
|
|
|
extern uint32_t ctf_str_add_ref (ctf_dict_t *, const char *, uint32_t *ref);
|
libctf: do not corrupt strings across ctf_serialize
The preceding change revealed a new bug: the string table is sorted for
better compression, so repeated serialization with type (or member)
additions in the middle can move strings around. But every
serialization flushes the set of refs (the memory locations that are
automatically updated with a final string offset when the strtab is
updated), so if we are not to have string offsets go stale, we must do
all ref additions within the serialization code (which walks the
complete set of types and symbols anyway). Unfortunately, we were adding
one ref in another place: the type name in the dynamic type definitions,
which has a ref added to it by ctf_add_generic.
So adding a type, serializing (via, say, one of the ctf_write
functions), adding another type with a name that sorts earlier, and
serializing again will corrupt the name of the first type because it no
longer had a ref pointing to its dtd entry's name when its string offset
was shifted later in the strtab to mae way for the other type.
To ensure that we don't miss strings, we also maintain a set of *pending
refs* that will be added later (during serialization), and remove
entries from that set when the ref is finally added. We always use
ctf_str_add_pending outside ctf-serialize.c, ensure that ctf_serialize
adds all strtab offsets as refs (even those in the dtds) on every
serialization, and mandate that no refs are live on entry to
ctf_serialize and that all pending refs are gone before strtab
finalization. (Of necessity ctf_serialize has to traverse all strtab
offsets in the dtds in order to serialize them, so adding them as refs
at the same time is easy.)
(Note that we still can't erase unused atoms when we roll back, though
we can erase unused refs: members and enums are still not removed by
rollbacks and might reference strings added after the snapshot.)
libctf/ChangeLog
2021-03-18 Nick Alcock <nick.alcock@oracle.com>
* ctf-hash.c (ctf_dynset_elements): New.
* ctf-impl.h (ctf_dynset_elements): Declare it.
(ctf_str_add_pending): Likewise.
(ctf_dict_t) <ctf_str_pending_ref>: New, set of refs that must be
added during serialization.
* ctf-string.c (ctf_str_create_atoms): Initialize it.
(CTF_STR_ADD_REF): New flag.
(CTF_STR_MAKE_PROVISIONAL): Likewise.
(CTF_STR_PENDING_REF): Likewise.
(ctf_str_add_ref_internal): Take a flags word rather than int
params. Populate, and clear out, ctf_str_pending_ref.
(ctf_str_add): Adjust accordingly.
(ctf_str_add_external): Likewise.
(ctf_str_add_pending): New.
(ctf_str_remove_ref): Also remove the potential ref if it is a
pending ref.
* ctf-serialize.c (ctf_serialize): Prohibit addition of strings
with ctf_str_add_ref before serialization. Ensure that the
ctf_str_pending_ref set is empty before strtab finalization.
(ctf_emit_type_sect): Add a ref to the ctt_name.
* ctf-create.c (ctf_add_generic): Add the ctt_name as a pending
ref.
* testsuite/libctf-writable/reserialize-strtab-corruption.*: New test.
2021-03-18 20:37:52 +08:00
|
|
|
extern uint32_t ctf_str_add_pending (ctf_dict_t *, const char *, uint32_t *);
|
2021-03-18 20:37:52 +08:00
|
|
|
extern int ctf_str_move_pending (ctf_dict_t *, uint32_t *, ptrdiff_t);
|
libctf, include, binutils, gdb, ld: rename ctf_file_t to ctf_dict_t
The naming of the ctf_file_t type in libctf is a historical curiosity.
Back in the Solaris days, CTF dictionaries were originally generated as
a separate file and then (sometimes) merged into objects: hence the
datatype was named ctf_file_t, and known as a "CTF file". Nowadays, raw
CTF is essentially never written to a file on its own, and the datatype
changed name to a "CTF dictionary" years ago. So the term "CTF file"
refers to something that is never a file! This is at best confusing.
The type has also historically been known as a 'CTF container", which is
even more confusing now that we have CTF archives which are *also* a
sort of container (they contain CTF dictionaries), but which are never
referred to as containers in the source code.
So fix this by completing the renaming, renaming ctf_file_t to
ctf_dict_t throughout, and renaming those few functions that refer to
CTF files by name (keeping compatibility aliases) to refer to dicts
instead. Old users who still refer to ctf_file_t will see (harmless)
pointer-compatibility warnings at compile time, but the ABI is unchanged
(since C doesn't mangle names, and ctf_file_t was always an opaque type)
and things will still compile fine as long as -Werror is not specified.
All references to CTF containers and CTF files in the source code are
fixed to refer to CTF dicts instead.
Further (smaller) renamings of annoyingly-named functions to come, as
part of the process of souping up queries across whole archives at once
(needed for the function info and data object sections).
binutils/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* objdump.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_ctf): Likewise. Use ctf_dict_close, not ctf_file_close.
* readelf.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_section_as_ctf): Likewise. Use ctf_dict_close, not
ctf_file_close.
gdb/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctfread.c: Change uses of ctf_file_t to ctf_dict_t.
(ctf_fp_info::~ctf_fp_info): Call ctf_dict_close, not ctf_file_close.
include/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-api.h (ctf_file_t): Rename to...
(ctf_dict_t): ... this. Keep ctf_file_t around for compatibility.
(struct ctf_file): Likewise rename to...
(struct ctf_dict): ... this.
(ctf_file_close): Rename to...
(ctf_dict_close): ... this, keeping compatibility function.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this, keeping compatibility function.
All callers adjusted.
* ctf.h: Rename references to ctf_file_t to ctf_dict_t.
(struct ctf_archive) <ctfa_nfiles>: Rename to...
<ctfa_ndicts>: ... this.
ld/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ldlang.c (ctf_output): This is a ctf_dict_t now.
(lang_ctf_errs_warnings): Rename ctf_file_t to ctf_dict_t.
(ldlang_open_ctf): Adjust comment.
(lang_merge_ctf): Use ctf_dict_close, not ctf_file_close.
* ldelfgen.h (ldelf_examine_strtab_for_ctf): Rename ctf_file_t to
ctf_dict_t. Change opaque declaration accordingly.
* ldelfgen.c (ldelf_examine_strtab_for_ctf): Adjust.
* ldemul.h (examine_strtab_for_ctf): Likewise.
(ldemul_examine_strtab_for_ctf): Likewise.
* ldeuml.c (ldemul_examine_strtab_for_ctf): Likewise.
libctf/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h: Rename ctf_file_t to ctf_dict_t: all declarations
adjusted.
(ctf_fileops): Rename to...
(ctf_dictops): ... this.
(ctf_dedup_t) <cd_id_to_file_t>: Rename to...
<cd_id_to_dict_t>: ... this.
(ctf_file_t): Fix outdated comment.
<ctf_fileops>: Rename to...
<ctf_dictops>: ... this.
(struct ctf_archive_internal) <ctfi_file>: Rename to...
<ctfi_dict>: ... this.
* ctf-archive.c: Rename ctf_file_t to ctf_dict_t.
Rename ctf_archive.ctfa_nfiles to ctfa_ndicts.
Rename ctf_file_close to ctf_dict_close. All users adjusted.
* ctf-create.c: Likewise. Refer to CTF dicts, not CTF containers.
(ctf_bundle_t) <ctb_file>: Rename to...
<ctb_dict): ... this.
* ctf-decl.c: Rename ctf_file_t to ctf_dict_t.
* ctf-dedup.c: Likewise. Rename ctf_file_close to
ctf_dict_close. Refer to CTF dicts, not CTF containers.
* ctf-dump.c: Likewise.
* ctf-error.c: Likewise.
* ctf-hash.c: Likewise.
* ctf-inlines.h: Likewise.
* ctf-labels.c: Likewise.
* ctf-link.c: Likewise.
* ctf-lookup.c: Likewise.
* ctf-open-bfd.c: Likewise.
* ctf-string.c: Likewise.
* ctf-subr.c: Likewise.
* ctf-types.c: Likewise.
* ctf-util.c: Likewise.
* ctf-open.c: Likewise.
(ctf_file_close): Rename to...
(ctf_dict_close): ...this.
(ctf_file_close): New trivial wrapper around ctf_dict_close, for
compatibility.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this.
(ctf_parent_file): New trivial wrapper around ctf_parent_dict, for
compatibility.
* libctf.ver: Add ctf_dict_close and ctf_parent_dict.
2020-11-20 21:34:04 +08:00
|
|
|
extern int ctf_str_add_external (ctf_dict_t *, const char *, uint32_t offset);
|
|
|
|
extern void ctf_str_remove_ref (ctf_dict_t *, const char *, uint32_t *ref);
|
|
|
|
extern void ctf_str_rollback (ctf_dict_t *, ctf_snapshot_id_t);
|
|
|
|
extern void ctf_str_purge_refs (ctf_dict_t *);
|
|
|
|
extern ctf_strs_writable_t ctf_str_write_strtab (ctf_dict_t *);
|
2019-04-24 04:45:30 +08:00
|
|
|
|
2020-06-03 03:55:05 +08:00
|
|
|
extern struct ctf_archive_internal *
|
|
|
|
ctf_new_archive_internal (int is_archive, int unmap_on_close,
|
libctf, include, binutils, gdb, ld: rename ctf_file_t to ctf_dict_t
The naming of the ctf_file_t type in libctf is a historical curiosity.
Back in the Solaris days, CTF dictionaries were originally generated as
a separate file and then (sometimes) merged into objects: hence the
datatype was named ctf_file_t, and known as a "CTF file". Nowadays, raw
CTF is essentially never written to a file on its own, and the datatype
changed name to a "CTF dictionary" years ago. So the term "CTF file"
refers to something that is never a file! This is at best confusing.
The type has also historically been known as a 'CTF container", which is
even more confusing now that we have CTF archives which are *also* a
sort of container (they contain CTF dictionaries), but which are never
referred to as containers in the source code.
So fix this by completing the renaming, renaming ctf_file_t to
ctf_dict_t throughout, and renaming those few functions that refer to
CTF files by name (keeping compatibility aliases) to refer to dicts
instead. Old users who still refer to ctf_file_t will see (harmless)
pointer-compatibility warnings at compile time, but the ABI is unchanged
(since C doesn't mangle names, and ctf_file_t was always an opaque type)
and things will still compile fine as long as -Werror is not specified.
All references to CTF containers and CTF files in the source code are
fixed to refer to CTF dicts instead.
Further (smaller) renamings of annoyingly-named functions to come, as
part of the process of souping up queries across whole archives at once
(needed for the function info and data object sections).
binutils/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* objdump.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_ctf): Likewise. Use ctf_dict_close, not ctf_file_close.
* readelf.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_section_as_ctf): Likewise. Use ctf_dict_close, not
ctf_file_close.
gdb/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctfread.c: Change uses of ctf_file_t to ctf_dict_t.
(ctf_fp_info::~ctf_fp_info): Call ctf_dict_close, not ctf_file_close.
include/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-api.h (ctf_file_t): Rename to...
(ctf_dict_t): ... this. Keep ctf_file_t around for compatibility.
(struct ctf_file): Likewise rename to...
(struct ctf_dict): ... this.
(ctf_file_close): Rename to...
(ctf_dict_close): ... this, keeping compatibility function.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this, keeping compatibility function.
All callers adjusted.
* ctf.h: Rename references to ctf_file_t to ctf_dict_t.
(struct ctf_archive) <ctfa_nfiles>: Rename to...
<ctfa_ndicts>: ... this.
ld/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ldlang.c (ctf_output): This is a ctf_dict_t now.
(lang_ctf_errs_warnings): Rename ctf_file_t to ctf_dict_t.
(ldlang_open_ctf): Adjust comment.
(lang_merge_ctf): Use ctf_dict_close, not ctf_file_close.
* ldelfgen.h (ldelf_examine_strtab_for_ctf): Rename ctf_file_t to
ctf_dict_t. Change opaque declaration accordingly.
* ldelfgen.c (ldelf_examine_strtab_for_ctf): Adjust.
* ldemul.h (examine_strtab_for_ctf): Likewise.
(ldemul_examine_strtab_for_ctf): Likewise.
* ldeuml.c (ldemul_examine_strtab_for_ctf): Likewise.
libctf/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h: Rename ctf_file_t to ctf_dict_t: all declarations
adjusted.
(ctf_fileops): Rename to...
(ctf_dictops): ... this.
(ctf_dedup_t) <cd_id_to_file_t>: Rename to...
<cd_id_to_dict_t>: ... this.
(ctf_file_t): Fix outdated comment.
<ctf_fileops>: Rename to...
<ctf_dictops>: ... this.
(struct ctf_archive_internal) <ctfi_file>: Rename to...
<ctfi_dict>: ... this.
* ctf-archive.c: Rename ctf_file_t to ctf_dict_t.
Rename ctf_archive.ctfa_nfiles to ctfa_ndicts.
Rename ctf_file_close to ctf_dict_close. All users adjusted.
* ctf-create.c: Likewise. Refer to CTF dicts, not CTF containers.
(ctf_bundle_t) <ctb_file>: Rename to...
<ctb_dict): ... this.
* ctf-decl.c: Rename ctf_file_t to ctf_dict_t.
* ctf-dedup.c: Likewise. Rename ctf_file_close to
ctf_dict_close. Refer to CTF dicts, not CTF containers.
* ctf-dump.c: Likewise.
* ctf-error.c: Likewise.
* ctf-hash.c: Likewise.
* ctf-inlines.h: Likewise.
* ctf-labels.c: Likewise.
* ctf-link.c: Likewise.
* ctf-lookup.c: Likewise.
* ctf-open-bfd.c: Likewise.
* ctf-string.c: Likewise.
* ctf-subr.c: Likewise.
* ctf-types.c: Likewise.
* ctf-util.c: Likewise.
* ctf-open.c: Likewise.
(ctf_file_close): Rename to...
(ctf_dict_close): ...this.
(ctf_file_close): New trivial wrapper around ctf_dict_close, for
compatibility.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this.
(ctf_parent_file): New trivial wrapper around ctf_parent_dict, for
compatibility.
* libctf.ver: Add ctf_dict_close and ctf_parent_dict.
2020-11-20 21:34:04 +08:00
|
|
|
struct ctf_archive *, ctf_dict_t *,
|
2020-06-03 03:55:05 +08:00
|
|
|
const ctf_sect_t *symsect,
|
|
|
|
const ctf_sect_t *strsect, int *errp);
|
libctf: mmappable archives
If you need to store a large number of CTF containers somewhere, this
provides a dedicated facility for doing so: an mmappable archive format
like a very simple tar or ar without all the system-dependent format
horrors or need for heavy file copying, with built-in compression of
files above a particular size threshold.
libctf automatically mmap()s uncompressed elements of these archives, or
uncompresses them, as needed. (If the platform does not support mmap(),
copying into dynamically-allocated buffers is used.)
Archive iteration operations are partitioned into raw and non-raw
forms. Raw operations pass thhe raw archive contents to the callback:
non-raw forms open each member with ctf_bufopen() and pass the resulting
ctf_file_t to the iterator instead. This lets you manipulate the raw
data in the archive, or the contents interpreted as a CTF file, as
needed.
It is not yet known whether we will store CTF archives in a linked ELF
object in one of these (akin to debugdata) or whether they'll get one
section per TU plus one parent container for types shared between them.
(In the case of ELF objects with very large numbers of TUs, an archive
of all of them would seem preferable, so we might just use an archive,
and add lzma support so you can assume that .gnu_debugdata and .ctf are
compressed using the same algorithm if both are present.)
To make usage easier, the ctf_archive_t is not the on-disk
representation but an abstraction over both ctf_file_t's and archives of
many ctf_file_t's: users see both CTF archives and raw CTF files as
ctf_archive_t's upon opening, the only difference being that a raw CTF
file has only a single "archive member", named ".ctf" (the default if a
null pointer is passed in as the name). The next commit will make use
of this facility, in addition to providing the public interface to
actually open archives. (In the future, it should be possible to have
all CTF sections in an ELF file appear as an "archive" in the same
fashion.)
This machinery is also used to allow library-internal creators of
ctf_archive_t's (such as the next commit) to stash away an ELF string
and symbol table, so that all opens of members in a given archive will
use them. This lets CTF archives exploit the ELF string and symbol
table just like raw CTF files can.
(All this leads to somewhat confusing type naming. The ctf_archive_t is
a typedef for the opaque internal type, struct ctf_archive_internal: the
non-internal "struct ctf_archive" is the on-disk structure meant for
other libraries manipulating CTF files. It is probably clearest to use
the struct name for struct ctf_archive_internal inside the program, and
the typedef names outside.)
libctf/
* ctf-archive.c: New.
* ctf-impl.h (ctf_archive_internal): New type.
(ctf_arc_open_internal): New declaration.
(ctf_arc_bufopen): Likewise.
(ctf_arc_close_internal): Likewise.
include/
* ctf.h (CTFA_MAGIC): New.
(struct ctf_archive): New.
(struct ctf_archive_modent): Likewise.
* ctf-api.h (ctf_archive_member_f): New.
(ctf_archive_raw_member_f): Likewise.
(ctf_arc_write): Likewise.
(ctf_arc_close): Likewise.
(ctf_arc_open_by_name): Likewise.
(ctf_archive_iter): Likewise.
(ctf_archive_raw_iter): Likewise.
(ctf_get_arc): Likewise.
2019-04-24 18:30:17 +08:00
|
|
|
extern struct ctf_archive *ctf_arc_open_internal (const char *, int *);
|
|
|
|
extern void ctf_arc_close_internal (struct ctf_archive *);
|
bfd, include, ld, binutils, libctf: CTF should use the dynstr/sym
This is embarrassing.
The whole point of CTF is that it remains intact even after a binary is
stripped, providing a compact mapping from symbols to types for
everything in the externally-visible interface of an ELF object: it has
connections to the symbol table for that purpose, and to the string
table to avoid duplicating symbol names. So it's a shame that the hooks
I implemented last year served to hook it up to the .symtab and .strtab,
which obviously disappear on strip, leaving any accompanying the CTF
dict containing references to strings (and, soon, symbols) which don't
exist any more because their containing strtab has been vaporized. The
original Solaris design used .dynsym and .dynstr (well, actually,
.ldynsym, which has more symbols) which do not disappear. So should we.
Thankfully the work we did before serves as guide rails, and adjusting
things to use the .dynstr and .dynsym was fast and easy. The only
annoyance is that the dynsym is assembled inside elflink.c in a fairly
piecemeal fashion, so that the easiest way to get the symbols out was to
hook in before every call to swap_symbol_out (we also leave in a hook in
front of symbol additions to the .symtab because it seems plausible that
we might want to hook them in future too: for now that hook is unused).
We adjust things so that rather than being offered a whole hash table of
symbols at once, libctf is now given symbols one at a time, with st_name
indexes already resolved and pointing at their final .dynstr offsets:
it's now up to libctf to resolve these to names as needed using the
strtab info we pass it separately.
Some bits might be contentious. The ctf_new_dynstr callback takes an
elf_internal_sym, and this remains an elf_internal_sym right down
through the generic emulation layers into ldelfgen. This is no worse
than the elf_sym_strtab we used to pass down, but in the future when we
gain non-ELF CTF symtab support we might want to lower the
elf_internal_sym to some other representation (perhaps a
ctf_link_symbol) in bfd or in ldlang_ctf_new_dynsym. We rename the
'apply_strsym' hooks to 'acquire_strings' instead, becuse they no longer
have anything to do with symbols.
There are some API changes to pieces of API which are technically public
but actually totally unused by anything and/or unused by anything but ld
so they can change freely: the ctf_link_symbol gains new fields to allow
symbol names to be given as strtab offsets as well as strings, and a
symidx so that the symbol index can be passed in. ctf_link_shuffle_syms
loses its callback parameter: the idea now is that linkers call the new
ctf_link_add_linker_symbol for every symbol in .dynsym, feed in all the
strtab entries with ctf_link_add_strtab, and then a call to
ctf_link_shuffle_syms will apply both and arrange to use them to reorder
the CTF symtab at CTF serialization time (which is coming in the next
commit).
Inside libctf we have a new preamble flag CTF_F_DYNSTR which is always
set in v3-format CTF dicts from this commit forwards: CTF dicts without
this flag are associated with .strtab like they used to be, so that old
dicts' external strings don't turn to garbage when loaded by new libctf.
Dicts with this flag are associated with .dynstr and .dynsym instead.
(The flag is not the next in sequence because this commit was written
quite late: the missing flags will be filled in by the next commit.)
Tests forthcoming in a later commit in this series.
bfd/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* elflink.c (elf_finalize_dynstr): Call examine_strtab after
dynstr finalization.
(elf_link_swap_symbols_out): Don't call it here. Call
ctf_new_symbol before swap_symbol_out.
(elf_link_output_extsym): Call ctf_new_dynsym before
swap_symbol_out.
(bfd_elf_final_link): Likewise.
* elf.c (swap_out_syms): Pass in bfd_link_info. Call
ctf_new_symbol before swap_symbol_out.
(_bfd_elf_compute_section_file_positions): Adjust.
binutils/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* readelf.c (dump_section_as_ctf): Use .dynsym and .dynstr, not
.symtab and .strtab.
include/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* bfdlink.h (struct elf_sym_strtab): Replace with...
(struct elf_internal_sym): ... this.
(struct bfd_link_callbacks) <examine_strtab>: Take only a
symstrtab argument.
<ctf_new_symbol>: New.
<ctf_new_dynsym>: Likewise.
* ctf-api.h (struct ctf_link_sym) <st_symidx>: New.
<st_nameidx>: Likewise.
<st_nameidx_set>: Likewise.
(ctf_link_iter_symbol_f): Removed.
(ctf_link_shuffle_syms): Remove most parameters, just takes a
ctf_dict_t now.
(ctf_link_add_linker_symbol): New, split from
ctf_link_shuffle_syms.
* ctf.h (CTF_F_DYNSTR): New.
(CTF_F_MAX): Adjust.
ld/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ldelfgen.c (struct ctf_strsym_iter_cb_arg): Rename to...
(struct ctf_strtab_iter_cb_arg): ... this, changing fields:
<syms>: Remove.
<symcount>: Remove.
<symstrtab>: Rename to...
<strtab>: ... this.
(ldelf_ctf_strtab_iter_cb): Adjust.
(ldelf_ctf_symbols_iter_cb): Remove.
(ldelf_new_dynsym_for_ctf): New, tell libctf about a single
symbol.
(ldelf_examine_strtab_for_ctf): Rename to...
(ldelf_acquire_strings_for_ctf): ... this, only doing the strtab
portion and not symbols.
* ldelfgen.h: Adjust declarations accordingly.
* ldemul.c (ldemul_examine_strtab_for_ctf): Rename to...
(ldemul_acquire_strings_for_ctf): ... this.
(ldemul_new_dynsym_for_ctf): New.
* ldemul.h: Adjust declarations accordingly.
* ldlang.c (ldlang_ctf_apply_strsym): Rename to...
(ldlang_ctf_acquire_strings): ... this.
(ldlang_ctf_new_dynsym): New.
(lang_write_ctf): Call ldemul_new_dynsym_for_ctf with NULL to do
the actual symbol shuffle.
* ldlang.h (struct elf_strtab_hash): Adjust accordingly.
* ldmain.c (bfd_link_callbacks): Wire up new/renamed callbacks.
libctf/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-link.c (ctf_link_shuffle_syms): Adjust.
(ctf_link_add_linker_symbol): New, unimplemented stub.
* libctf.ver: Add it.
* ctf-create.c (ctf_serialize): Set CTF_F_DYNSTR on newly-serialized
dicts.
* ctf-open-bfd.c (ctf_bfdopen_ctfsect): Check for the flag: open the
symtab/strtab if not present, dynsym/dynstr otherwise.
* ctf-archive.c (ctf_arc_bufpreamble): New, get the preamble from
some arbitrary member of a CTF archive.
* ctf-impl.h (ctf_arc_bufpreamble): Declare it.
2020-11-20 21:34:04 +08:00
|
|
|
extern const ctf_preamble_t *ctf_arc_bufpreamble (const ctf_sect_t *);
|
2019-04-24 04:45:30 +08:00
|
|
|
extern void *ctf_set_open_errno (int *, int);
|
libctf, include, binutils, gdb, ld: rename ctf_file_t to ctf_dict_t
The naming of the ctf_file_t type in libctf is a historical curiosity.
Back in the Solaris days, CTF dictionaries were originally generated as
a separate file and then (sometimes) merged into objects: hence the
datatype was named ctf_file_t, and known as a "CTF file". Nowadays, raw
CTF is essentially never written to a file on its own, and the datatype
changed name to a "CTF dictionary" years ago. So the term "CTF file"
refers to something that is never a file! This is at best confusing.
The type has also historically been known as a 'CTF container", which is
even more confusing now that we have CTF archives which are *also* a
sort of container (they contain CTF dictionaries), but which are never
referred to as containers in the source code.
So fix this by completing the renaming, renaming ctf_file_t to
ctf_dict_t throughout, and renaming those few functions that refer to
CTF files by name (keeping compatibility aliases) to refer to dicts
instead. Old users who still refer to ctf_file_t will see (harmless)
pointer-compatibility warnings at compile time, but the ABI is unchanged
(since C doesn't mangle names, and ctf_file_t was always an opaque type)
and things will still compile fine as long as -Werror is not specified.
All references to CTF containers and CTF files in the source code are
fixed to refer to CTF dicts instead.
Further (smaller) renamings of annoyingly-named functions to come, as
part of the process of souping up queries across whole archives at once
(needed for the function info and data object sections).
binutils/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* objdump.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_ctf): Likewise. Use ctf_dict_close, not ctf_file_close.
* readelf.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_section_as_ctf): Likewise. Use ctf_dict_close, not
ctf_file_close.
gdb/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctfread.c: Change uses of ctf_file_t to ctf_dict_t.
(ctf_fp_info::~ctf_fp_info): Call ctf_dict_close, not ctf_file_close.
include/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-api.h (ctf_file_t): Rename to...
(ctf_dict_t): ... this. Keep ctf_file_t around for compatibility.
(struct ctf_file): Likewise rename to...
(struct ctf_dict): ... this.
(ctf_file_close): Rename to...
(ctf_dict_close): ... this, keeping compatibility function.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this, keeping compatibility function.
All callers adjusted.
* ctf.h: Rename references to ctf_file_t to ctf_dict_t.
(struct ctf_archive) <ctfa_nfiles>: Rename to...
<ctfa_ndicts>: ... this.
ld/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ldlang.c (ctf_output): This is a ctf_dict_t now.
(lang_ctf_errs_warnings): Rename ctf_file_t to ctf_dict_t.
(ldlang_open_ctf): Adjust comment.
(lang_merge_ctf): Use ctf_dict_close, not ctf_file_close.
* ldelfgen.h (ldelf_examine_strtab_for_ctf): Rename ctf_file_t to
ctf_dict_t. Change opaque declaration accordingly.
* ldelfgen.c (ldelf_examine_strtab_for_ctf): Adjust.
* ldemul.h (examine_strtab_for_ctf): Likewise.
(ldemul_examine_strtab_for_ctf): Likewise.
* ldeuml.c (ldemul_examine_strtab_for_ctf): Likewise.
libctf/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h: Rename ctf_file_t to ctf_dict_t: all declarations
adjusted.
(ctf_fileops): Rename to...
(ctf_dictops): ... this.
(ctf_dedup_t) <cd_id_to_file_t>: Rename to...
<cd_id_to_dict_t>: ... this.
(ctf_file_t): Fix outdated comment.
<ctf_fileops>: Rename to...
<ctf_dictops>: ... this.
(struct ctf_archive_internal) <ctfi_file>: Rename to...
<ctfi_dict>: ... this.
* ctf-archive.c: Rename ctf_file_t to ctf_dict_t.
Rename ctf_archive.ctfa_nfiles to ctfa_ndicts.
Rename ctf_file_close to ctf_dict_close. All users adjusted.
* ctf-create.c: Likewise. Refer to CTF dicts, not CTF containers.
(ctf_bundle_t) <ctb_file>: Rename to...
<ctb_dict): ... this.
* ctf-decl.c: Rename ctf_file_t to ctf_dict_t.
* ctf-dedup.c: Likewise. Rename ctf_file_close to
ctf_dict_close. Refer to CTF dicts, not CTF containers.
* ctf-dump.c: Likewise.
* ctf-error.c: Likewise.
* ctf-hash.c: Likewise.
* ctf-inlines.h: Likewise.
* ctf-labels.c: Likewise.
* ctf-link.c: Likewise.
* ctf-lookup.c: Likewise.
* ctf-open-bfd.c: Likewise.
* ctf-string.c: Likewise.
* ctf-subr.c: Likewise.
* ctf-types.c: Likewise.
* ctf-util.c: Likewise.
* ctf-open.c: Likewise.
(ctf_file_close): Rename to...
(ctf_dict_close): ...this.
(ctf_file_close): New trivial wrapper around ctf_dict_close, for
compatibility.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this.
(ctf_parent_file): New trivial wrapper around ctf_parent_dict, for
compatibility.
* libctf.ver: Add ctf_dict_close and ctf_parent_dict.
2020-11-20 21:34:04 +08:00
|
|
|
extern unsigned long ctf_set_errno (ctf_dict_t *, int);
|
2019-04-24 04:45:30 +08:00
|
|
|
|
libctf, include, binutils, gdb, ld: rename ctf_file_t to ctf_dict_t
The naming of the ctf_file_t type in libctf is a historical curiosity.
Back in the Solaris days, CTF dictionaries were originally generated as
a separate file and then (sometimes) merged into objects: hence the
datatype was named ctf_file_t, and known as a "CTF file". Nowadays, raw
CTF is essentially never written to a file on its own, and the datatype
changed name to a "CTF dictionary" years ago. So the term "CTF file"
refers to something that is never a file! This is at best confusing.
The type has also historically been known as a 'CTF container", which is
even more confusing now that we have CTF archives which are *also* a
sort of container (they contain CTF dictionaries), but which are never
referred to as containers in the source code.
So fix this by completing the renaming, renaming ctf_file_t to
ctf_dict_t throughout, and renaming those few functions that refer to
CTF files by name (keeping compatibility aliases) to refer to dicts
instead. Old users who still refer to ctf_file_t will see (harmless)
pointer-compatibility warnings at compile time, but the ABI is unchanged
(since C doesn't mangle names, and ctf_file_t was always an opaque type)
and things will still compile fine as long as -Werror is not specified.
All references to CTF containers and CTF files in the source code are
fixed to refer to CTF dicts instead.
Further (smaller) renamings of annoyingly-named functions to come, as
part of the process of souping up queries across whole archives at once
(needed for the function info and data object sections).
binutils/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* objdump.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_ctf): Likewise. Use ctf_dict_close, not ctf_file_close.
* readelf.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_section_as_ctf): Likewise. Use ctf_dict_close, not
ctf_file_close.
gdb/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctfread.c: Change uses of ctf_file_t to ctf_dict_t.
(ctf_fp_info::~ctf_fp_info): Call ctf_dict_close, not ctf_file_close.
include/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-api.h (ctf_file_t): Rename to...
(ctf_dict_t): ... this. Keep ctf_file_t around for compatibility.
(struct ctf_file): Likewise rename to...
(struct ctf_dict): ... this.
(ctf_file_close): Rename to...
(ctf_dict_close): ... this, keeping compatibility function.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this, keeping compatibility function.
All callers adjusted.
* ctf.h: Rename references to ctf_file_t to ctf_dict_t.
(struct ctf_archive) <ctfa_nfiles>: Rename to...
<ctfa_ndicts>: ... this.
ld/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ldlang.c (ctf_output): This is a ctf_dict_t now.
(lang_ctf_errs_warnings): Rename ctf_file_t to ctf_dict_t.
(ldlang_open_ctf): Adjust comment.
(lang_merge_ctf): Use ctf_dict_close, not ctf_file_close.
* ldelfgen.h (ldelf_examine_strtab_for_ctf): Rename ctf_file_t to
ctf_dict_t. Change opaque declaration accordingly.
* ldelfgen.c (ldelf_examine_strtab_for_ctf): Adjust.
* ldemul.h (examine_strtab_for_ctf): Likewise.
(ldemul_examine_strtab_for_ctf): Likewise.
* ldeuml.c (ldemul_examine_strtab_for_ctf): Likewise.
libctf/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h: Rename ctf_file_t to ctf_dict_t: all declarations
adjusted.
(ctf_fileops): Rename to...
(ctf_dictops): ... this.
(ctf_dedup_t) <cd_id_to_file_t>: Rename to...
<cd_id_to_dict_t>: ... this.
(ctf_file_t): Fix outdated comment.
<ctf_fileops>: Rename to...
<ctf_dictops>: ... this.
(struct ctf_archive_internal) <ctfi_file>: Rename to...
<ctfi_dict>: ... this.
* ctf-archive.c: Rename ctf_file_t to ctf_dict_t.
Rename ctf_archive.ctfa_nfiles to ctfa_ndicts.
Rename ctf_file_close to ctf_dict_close. All users adjusted.
* ctf-create.c: Likewise. Refer to CTF dicts, not CTF containers.
(ctf_bundle_t) <ctb_file>: Rename to...
<ctb_dict): ... this.
* ctf-decl.c: Rename ctf_file_t to ctf_dict_t.
* ctf-dedup.c: Likewise. Rename ctf_file_close to
ctf_dict_close. Refer to CTF dicts, not CTF containers.
* ctf-dump.c: Likewise.
* ctf-error.c: Likewise.
* ctf-hash.c: Likewise.
* ctf-inlines.h: Likewise.
* ctf-labels.c: Likewise.
* ctf-link.c: Likewise.
* ctf-lookup.c: Likewise.
* ctf-open-bfd.c: Likewise.
* ctf-string.c: Likewise.
* ctf-subr.c: Likewise.
* ctf-types.c: Likewise.
* ctf-util.c: Likewise.
* ctf-open.c: Likewise.
(ctf_file_close): Rename to...
(ctf_dict_close): ...this.
(ctf_file_close): New trivial wrapper around ctf_dict_close, for
compatibility.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this.
(ctf_parent_file): New trivial wrapper around ctf_parent_dict, for
compatibility.
* libctf.ver: Add ctf_dict_close and ctf_parent_dict.
2020-11-20 21:34:04 +08:00
|
|
|
extern ctf_dict_t *ctf_simple_open_internal (const char *, size_t, const char *,
|
libctf: support getting strings from the ELF strtab
The CTF file format has always supported "external strtabs", which
internally are strtab offsets with their MSB on: such refs
get their strings from the strtab passed in at CTF file open time:
this is usually intended to be the ELF strtab, and that's what this
implementation is meant to support, though in theory the external
strtab could come from anywhere.
This commit adds support for these external strings in the ctf-string.c
strtab tracking layer. It's quite easy: we just add a field csa_offset
to the atoms table that tracks all strings: this field tracks the offset
of the string in the ELF strtab (with its MSB already on, courtesy of a
new macro CTF_SET_STID), and adds a new function that sets the
csa_offset to the specified offset (plus MSB). Then we just need to
avoid writing out strings to the internal strtab if they have csa_offset
set, and note that the internal strtab is shorter than it might
otherwise be.
(We could in theory save a little more time here by eschewing sorting
such strings, since we never actually write the strings out anywhere,
but that would mean storing them separately and it's just not worth the
complexity cost until profiling shows it's worth doing.)
We also have to go through a bit of extra effort at variable-sorting
time. This was previously using direct references to the internal
strtab: it couldn't use ctf_strptr or ctf_strraw because the new strtab
is not yet ready to put in its usual field (in a ctf_file_t that hasn't
even been allocated yet at this stage): but now we're using the external
strtab, this will no longer do because it'll be looking things up in the
wrong strtab, with disastrous results. Instead, pass the new internal
strtab in to a new ctf_strraw_explicit function which is just like
ctf_strraw except you can specify a ne winternal strtab to use.
But even now that it is using a new internal strtab, this is not quite
enough: it can't look up strings in the external strtab because ld
hasn't written it out yet, and when it does will write it straight to
disk. Instead, when we write the internal strtab, note all the offset
-> string mappings that we have noted belong in the *external* strtab to
a new "synthetic external strtab" dynhash, ctf_syn_ext_strtab, and look
in there at ctf_strraw time if it is set. This uses minimal extra
memory (because only strings in the external strtab that we actually use
are stored, and even those come straight out of the atoms table), but
let both variable sorting and name interning when ctf_bufopen is next
called work fine. (This also means that we don't need to filter out
spurious ECTF_STRTAB warnings from ctf_bufopen but can pass them back to
the caller, once we wrap ctf_bufopen so that we have a new internal
variant of ctf_bufopen etc that we can pass the synthetic external
strtab to. That error has been filtered out since the days of Solaris
libctf, which didn't try to handle the problem of getting external
strtabs right at construction time at all.)
v3: add the synthetic strtab and all associated machinery.
v5: fix tabdamage.
include/
* ctf.h (CTF_SET_STID): New.
libctf/
* ctf-impl.h (ctf_str_atom_t) <csa_offset>: New field.
(ctf_file_t) <ctf_syn_ext_strtab>: Likewise.
(ctf_str_add_ref): Name the last arg.
(ctf_str_add_external) New.
(ctf_str_add_strraw_explicit): Likewise.
(ctf_simple_open_internal): Likewise.
(ctf_bufopen_internal): Likewise.
* ctf-string.c (ctf_strraw_explicit): Split from...
(ctf_strraw): ... here, with new support for ctf_syn_ext_strtab.
(ctf_str_add_ref_internal): Return the atom, not the
string.
(ctf_str_add): Adjust accordingly.
(ctf_str_add_ref): Likewise. Move up in the file.
(ctf_str_add_external): New: update the csa_offset.
(ctf_str_count_strtab): Only account for strings with no csa_offset
in the internal strtab length.
(ctf_str_write_strtab): If the csa_offset is set, update the
string's refs without writing the string out, and update the
ctf_syn_ext_strtab. Make OOM handling less ugly.
* ctf-create.c (struct ctf_sort_var_arg_cb): New.
(ctf_update): Handle failure to populate the strtab. Pass in the
new ctf_sort_var arg. Adjust for ctf_syn_ext_strtab addition.
Call ctf_simple_open_internal, not ctf_simple_open.
(ctf_sort_var): Call ctf_strraw_explicit rather than looking up
strings by hand.
* ctf-hash.c (ctf_hash_insert_type): Likewise (but using
ctf_strraw). Adjust to diagnose ECTF_STRTAB nonetheless.
* ctf-open.c (init_types): No longer filter out ECTF_STRTAB.
(ctf_file_close): Destroy the ctf_syn_ext_strtab.
(ctf_simple_open): Rename to, and reimplement as a wrapper around...
(ctf_simple_open_internal): ... this new function, which calls
ctf_bufopen_internal.
(ctf_bufopen): Rename to, and reimplement as a wrapper around...
(ctf_bufopen_internal): ... this new function, which sets
ctf_syn_ext_strtab.
2019-07-14 03:33:01 +08:00
|
|
|
size_t, size_t,
|
|
|
|
const char *, size_t,
|
libctf: avoid the need to ever use ctf_update
The method of operation of libctf when the dictionary is writable has
before now been that types that are added land in the dynamic type
section, which is a linked list and hash of IDs -> dynamic type
definitions (and, recently a hash of names): the DTDs are a bit of CTF
representing the ctf_type_t and ad hoc C structures representing the
vlen. Historically, libctf was unable to do anything with these types,
not even look them up by ID, let alone by name: if you wanted to do that
say if you were adding a type that depended on one you just added) you
called ctf_update, which serializes all the DTDs into a CTF file and
reopens it, copying its guts over the fp it's called with. The
ctf_updated types are then frozen in amber and unchangeable: all lookups
will return the types in the static portion in preference to the dynamic
portion, and we will refuse to re-add things that already exist in the
static portion (and, of late, in the dynamic portion too). The libctf
machinery remembers the boundary between static and dynamic types and
looks in the right portion for each type. Lots of things still don't
quite work with dynamic types (e.g. getting their size), but enough
works to do a bunch of additions and then a ctf_update, most of the
time.
Except it doesn't, because ctf_add_type finds it necessary to walk the
full dynamic type definition list looking for types with matching names,
so it gets slower and slower with every type you add: fixing this
requires calling ctf_update periodically for no other reason than to
avoid massively slowing things down.
This is all clunky and very slow but kind of works, until you consider
that it is in fact possible and indeed necessary to modify one sort of
type after it has been added: forwards. These are necessarily promoted
to structs, unions or enums, and when they do so *their type ID does not
change*. So all of a sudden we are changing types that already exist in
the static portion. ctf_update gets massively confused by this and
allocates space enough for the forward (with no members), but then emits
the new dynamic type (with all the members) into it. You get an
assertion failure after that, if you're lucky, or a coredump.
So this commit rejigs things a bit and arranges to exclusively use the
dynamic type definitions in writable dictionaries, and the static type
definitions in readable dictionaries: we don't at any time have a mixture
of static and dynamic types, and you don't need to call ctf_update to
make things "appear". The ctf_dtbyname hash I introduced a few months
ago, which maps things like "struct foo" to DTDs, is removed, replaced
instead by a change of type of the four dictionaries which track names.
Rather than just being (unresizable) ctf_hash_t's populated only at
ctf_bufopen time, they are now a ctf_names_t structure, which is a pair
of ctf_hash_t and ctf_dynhash_t, with the ctf_hash_t portion being used
in readonly dictionaries, and the ctf_dynhash_t being used in writable
ones. The decision as to which to use is centralized in the new
functions ctf_lookup_by_rawname (which takes a type kind) and
ctf_lookup_by_rawhash, which it calls (which takes a ctf_names_t *.)
This change lets us switch from using static to dynamic name hashes on
the fly across the entirety of libctf without complexifying anything: in
fact, because we now centralize the knowledge about how to map from type
kind to name hash, it actually simplifies things and lets us throw out
quite a lot of now-unnecessary complexity, from ctf_dtnyname (replaced
by the dynamic half of the name tables), through to ctf_dtnextid (now
that a dictionary's static portion is never referenced if the dictionary
is writable, we can just use ctf_typemax to indicate the maximum type:
dynamic or non-dynamic does not matter, and we no longer need to track
the boundary between the types). You can now ctf_rollback() as far as
you like, even past a ctf_update or for that matter a full writeout; all
the iteration functions work just as well on writable as on read-only
dictionaries; ctf_add_type no longer needs expensive duplicated code to
run over the dynamic types hunting for ones it might be interested in;
and the linker no longer needs a hack to call ctf_update so that calling
ctf_add_type is not impossibly expensive.
There is still a bit more complexity: some new code paths in ctf-types.c
need to know how to extract information from dynamic types. This
complexity will go away again in a few months when libctf acquires a
proper intermediate representation.
You can still call ctf_update if you like (it's public API, after all),
but its only effect now is to set the point to which ctf_discard rolls
back.
Obviously *something* still needs to serialize the CTF file before
writeout, and this job is done by ctf_serialize, which does everything
ctf_update used to except set the counter used by ctf_discard. It is
automatically called by the various functions that do CTF writeout:
nobody else ever needs to call it.
With this in place, forwards that are promoted to non-forwards no longer
crash the link, even if it happens tens of thousands of types later.
v5: fix tabdamage.
libctf/
* ctf-impl.h (ctf_names_t): New.
(ctf_lookup_t) <ctf_hash>: Now a ctf_names_t, not a ctf_hash_t.
(ctf_file_t) <ctf_structs>: Likewise.
<ctf_unions>: Likewise.
<ctf_enums>: Likewise.
<ctf_names>: Likewise.
<ctf_lookups>: Improve comment.
<ctf_ptrtab_len>: New.
<ctf_prov_strtab>: New.
<ctf_str_prov_offset>: New.
<ctf_dtbyname>: Remove, redundant to the names hashes.
<ctf_dtnextid>: Remove, redundant to ctf_typemax.
(ctf_dtdef_t) <dtd_name>: Remove.
<dtd_data>: Note that the ctt_name is now populated.
(ctf_str_atom_t) <csa_offset>: This is now the strtab
offset for internal strings too.
<csa_external_offset>: New, the external strtab offset.
(CTF_INDEX_TO_TYPEPTR): Handle the LCTF_RDWR case.
(ctf_name_table): New declaration.
(ctf_lookup_by_rawname): Likewise.
(ctf_lookup_by_rawhash): Likewise.
(ctf_set_ctl_hashes): Likewise.
(ctf_serialize): Likewise.
(ctf_dtd_insert): Adjust.
(ctf_simple_open_internal): Likewise.
(ctf_bufopen_internal): Likewise.
(ctf_list_empty_p): Likewise.
(ctf_str_remove_ref): Likewise.
(ctf_str_add): Returns uint32_t now.
(ctf_str_add_ref): Likewise.
(ctf_str_add_external): Now returns a boolean (int).
* ctf-string.c (ctf_strraw_explicit): Check the ctf_prov_strtab
for strings in the appropriate range.
(ctf_str_create_atoms): Create the ctf_prov_strtab. Detect OOM
when adding the null string to the new strtab.
(ctf_str_free_atoms): Destroy the ctf_prov_strtab.
(ctf_str_add_ref_internal): Add make_provisional argument. If
make_provisional, populate the offset and fill in the
ctf_prov_strtab accordingly.
(ctf_str_add): Return the offset, not the string.
(ctf_str_add_ref): Likewise.
(ctf_str_add_external): Return a success integer.
(ctf_str_remove_ref): New, remove a single ref.
(ctf_str_count_strtab): Do not count the initial null string's
length or the existence or length of any unreferenced internal
atoms.
(ctf_str_populate_sorttab): Skip atoms with no refs.
(ctf_str_write_strtab): Populate the nullstr earlier. Add one
to the cts_len for the null string, since it is no longer done
in ctf_str_count_strtab. Adjust for csa_external_offset rename.
Populate the csa_offset for both internal and external cases.
Flush the ctf_prov_strtab afterwards, and reset the
ctf_str_prov_offset.
* ctf-create.c (ctf_grow_ptrtab): New.
(ctf_create): Call it. Initialize new fields rather than old
ones. Tell ctf_bufopen_internal that this is a writable dictionary.
Set the ctl hashes and data model.
(ctf_update): Rename to...
(ctf_serialize): ... this. Leave a compatibility function behind.
Tell ctf_simple_open_internal that this is a writable dictionary.
Pass the new fields along from the old dictionary. Drop
ctf_dtnextid and ctf_dtbyname. Use ctf_strraw, not dtd_name.
Do not zero out the DTD's ctt_name.
(ctf_prefixed_name): Rename to...
(ctf_name_table): ... this. No longer return a prefixed name: return
the applicable name table instead.
(ctf_dtd_insert): Use it, and use the right name table. Pass in the
kind we're adding. Migrate away from dtd_name.
(ctf_dtd_delete): Adjust similarly. Remove the ref to the
deleted ctt_name.
(ctf_dtd_lookup_type_by_name): Remove.
(ctf_dynamic_type): Always return NULL on read-only dictionaries.
No longer check ctf_dtnextid: check ctf_typemax instead.
(ctf_snapshot): No longer use ctf_dtnextid: use ctf_typemax instead.
(ctf_rollback): Likewise. No longer fail with ECTF_OVERROLLBACK. Use
ctf_name_table and the right name table, and migrate away from
dtd_name as in ctf_dtd_delete.
(ctf_add_generic): Pass in the kind explicitly and pass it to
ctf_dtd_insert. Use ctf_typemax, not ctf_dtnextid. Migrate away
from dtd_name to using ctf_str_add_ref to populate the ctt_name.
Grow the ptrtab if needed.
(ctf_add_encoded): Pass in the kind.
(ctf_add_slice): Likewise.
(ctf_add_array): Likewise.
(ctf_add_function): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_reftype): Likewise. Initialize the ctf_ptrtab, checking
ctt_name rather than dtd_name.
(ctf_add_struct_sized): Pass in the kind. Use
ctf_lookup_by_rawname, not ctf_hash_lookup_type /
ctf_dtd_lookup_type_by_name.
(ctf_add_union_sized): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_type): Likewise.
(ctf_compress_write): Call ctf_serialize: adjust for ctf_size not
being initialized until after the call.
(ctf_write_mem): Likewise.
(ctf_write): Likewise.
* ctf-archive.c (arc_write_one_ctf): Likewise.
* ctf-lookup.c (ctf_lookup_by_name): Use ctf_lookuup_by_rawhash, not
ctf_hash_lookup_type.
(ctf_lookup_by_id): No longer check the readonly types if the
dictionary is writable.
* ctf-open.c (init_types): Assert that this dictionary is not
writable. Adjust to use the new name hashes, ctf_name_table,
and ctf_ptrtab_len. GNU style fix for the final ptrtab scan.
(ctf_bufopen_internal): New 'writable' parameter. Flip on LCTF_RDWR
if set. Drop out early when dictionary is writable. Split the
ctf_lookups initialization into...
(ctf_set_cth_hashes): ... this new function.
(ctf_simple_open_internal): Adjust. New 'writable' parameter.
(ctf_simple_open): Adjust accordingly.
(ctf_bufopen): Likewise.
(ctf_file_close): Destroy the appropriate name hashes. No longer
destroy ctf_dtbyname, which is gone.
(ctf_getdatasect): Remove spurious "extern".
* ctf-types.c (ctf_lookup_by_rawname): New, look up types in the
specified name table, given a kind.
(ctf_lookup_by_rawhash): Likewise, given a ctf_names_t *.
(ctf_member_iter): Add support for iterating over the
dynamic type list.
(ctf_enum_iter): Likewise.
(ctf_variable_iter): Likewise.
(ctf_type_rvisit): Likewise.
(ctf_member_info): Add support for types in the dynamic type list.
(ctf_enum_name): Likewise.
(ctf_enum_value): Likewise.
(ctf_func_type_info): Likewise.
(ctf_func_type_args): Likewise.
* ctf-link.c (ctf_accumulate_archive_names): No longer call
ctf_update.
(ctf_link_write): Likewise.
(ctf_link_intern_extern_string): Adjust for new
ctf_str_add_external return value.
(ctf_link_add_strtab): Likewise.
* ctf-util.c (ctf_list_empty_p): New.
2019-08-08 00:55:09 +08:00
|
|
|
ctf_dynhash_t *, int, int *);
|
libctf, include, binutils, gdb, ld: rename ctf_file_t to ctf_dict_t
The naming of the ctf_file_t type in libctf is a historical curiosity.
Back in the Solaris days, CTF dictionaries were originally generated as
a separate file and then (sometimes) merged into objects: hence the
datatype was named ctf_file_t, and known as a "CTF file". Nowadays, raw
CTF is essentially never written to a file on its own, and the datatype
changed name to a "CTF dictionary" years ago. So the term "CTF file"
refers to something that is never a file! This is at best confusing.
The type has also historically been known as a 'CTF container", which is
even more confusing now that we have CTF archives which are *also* a
sort of container (they contain CTF dictionaries), but which are never
referred to as containers in the source code.
So fix this by completing the renaming, renaming ctf_file_t to
ctf_dict_t throughout, and renaming those few functions that refer to
CTF files by name (keeping compatibility aliases) to refer to dicts
instead. Old users who still refer to ctf_file_t will see (harmless)
pointer-compatibility warnings at compile time, but the ABI is unchanged
(since C doesn't mangle names, and ctf_file_t was always an opaque type)
and things will still compile fine as long as -Werror is not specified.
All references to CTF containers and CTF files in the source code are
fixed to refer to CTF dicts instead.
Further (smaller) renamings of annoyingly-named functions to come, as
part of the process of souping up queries across whole archives at once
(needed for the function info and data object sections).
binutils/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* objdump.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_ctf): Likewise. Use ctf_dict_close, not ctf_file_close.
* readelf.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_section_as_ctf): Likewise. Use ctf_dict_close, not
ctf_file_close.
gdb/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctfread.c: Change uses of ctf_file_t to ctf_dict_t.
(ctf_fp_info::~ctf_fp_info): Call ctf_dict_close, not ctf_file_close.
include/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-api.h (ctf_file_t): Rename to...
(ctf_dict_t): ... this. Keep ctf_file_t around for compatibility.
(struct ctf_file): Likewise rename to...
(struct ctf_dict): ... this.
(ctf_file_close): Rename to...
(ctf_dict_close): ... this, keeping compatibility function.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this, keeping compatibility function.
All callers adjusted.
* ctf.h: Rename references to ctf_file_t to ctf_dict_t.
(struct ctf_archive) <ctfa_nfiles>: Rename to...
<ctfa_ndicts>: ... this.
ld/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ldlang.c (ctf_output): This is a ctf_dict_t now.
(lang_ctf_errs_warnings): Rename ctf_file_t to ctf_dict_t.
(ldlang_open_ctf): Adjust comment.
(lang_merge_ctf): Use ctf_dict_close, not ctf_file_close.
* ldelfgen.h (ldelf_examine_strtab_for_ctf): Rename ctf_file_t to
ctf_dict_t. Change opaque declaration accordingly.
* ldelfgen.c (ldelf_examine_strtab_for_ctf): Adjust.
* ldemul.h (examine_strtab_for_ctf): Likewise.
(ldemul_examine_strtab_for_ctf): Likewise.
* ldeuml.c (ldemul_examine_strtab_for_ctf): Likewise.
libctf/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h: Rename ctf_file_t to ctf_dict_t: all declarations
adjusted.
(ctf_fileops): Rename to...
(ctf_dictops): ... this.
(ctf_dedup_t) <cd_id_to_file_t>: Rename to...
<cd_id_to_dict_t>: ... this.
(ctf_file_t): Fix outdated comment.
<ctf_fileops>: Rename to...
<ctf_dictops>: ... this.
(struct ctf_archive_internal) <ctfi_file>: Rename to...
<ctfi_dict>: ... this.
* ctf-archive.c: Rename ctf_file_t to ctf_dict_t.
Rename ctf_archive.ctfa_nfiles to ctfa_ndicts.
Rename ctf_file_close to ctf_dict_close. All users adjusted.
* ctf-create.c: Likewise. Refer to CTF dicts, not CTF containers.
(ctf_bundle_t) <ctb_file>: Rename to...
<ctb_dict): ... this.
* ctf-decl.c: Rename ctf_file_t to ctf_dict_t.
* ctf-dedup.c: Likewise. Rename ctf_file_close to
ctf_dict_close. Refer to CTF dicts, not CTF containers.
* ctf-dump.c: Likewise.
* ctf-error.c: Likewise.
* ctf-hash.c: Likewise.
* ctf-inlines.h: Likewise.
* ctf-labels.c: Likewise.
* ctf-link.c: Likewise.
* ctf-lookup.c: Likewise.
* ctf-open-bfd.c: Likewise.
* ctf-string.c: Likewise.
* ctf-subr.c: Likewise.
* ctf-types.c: Likewise.
* ctf-util.c: Likewise.
* ctf-open.c: Likewise.
(ctf_file_close): Rename to...
(ctf_dict_close): ...this.
(ctf_file_close): New trivial wrapper around ctf_dict_close, for
compatibility.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this.
(ctf_parent_file): New trivial wrapper around ctf_parent_dict, for
compatibility.
* libctf.ver: Add ctf_dict_close and ctf_parent_dict.
2020-11-20 21:34:04 +08:00
|
|
|
extern ctf_dict_t *ctf_bufopen_internal (const ctf_sect_t *, const ctf_sect_t *,
|
libctf: support getting strings from the ELF strtab
The CTF file format has always supported "external strtabs", which
internally are strtab offsets with their MSB on: such refs
get their strings from the strtab passed in at CTF file open time:
this is usually intended to be the ELF strtab, and that's what this
implementation is meant to support, though in theory the external
strtab could come from anywhere.
This commit adds support for these external strings in the ctf-string.c
strtab tracking layer. It's quite easy: we just add a field csa_offset
to the atoms table that tracks all strings: this field tracks the offset
of the string in the ELF strtab (with its MSB already on, courtesy of a
new macro CTF_SET_STID), and adds a new function that sets the
csa_offset to the specified offset (plus MSB). Then we just need to
avoid writing out strings to the internal strtab if they have csa_offset
set, and note that the internal strtab is shorter than it might
otherwise be.
(We could in theory save a little more time here by eschewing sorting
such strings, since we never actually write the strings out anywhere,
but that would mean storing them separately and it's just not worth the
complexity cost until profiling shows it's worth doing.)
We also have to go through a bit of extra effort at variable-sorting
time. This was previously using direct references to the internal
strtab: it couldn't use ctf_strptr or ctf_strraw because the new strtab
is not yet ready to put in its usual field (in a ctf_file_t that hasn't
even been allocated yet at this stage): but now we're using the external
strtab, this will no longer do because it'll be looking things up in the
wrong strtab, with disastrous results. Instead, pass the new internal
strtab in to a new ctf_strraw_explicit function which is just like
ctf_strraw except you can specify a ne winternal strtab to use.
But even now that it is using a new internal strtab, this is not quite
enough: it can't look up strings in the external strtab because ld
hasn't written it out yet, and when it does will write it straight to
disk. Instead, when we write the internal strtab, note all the offset
-> string mappings that we have noted belong in the *external* strtab to
a new "synthetic external strtab" dynhash, ctf_syn_ext_strtab, and look
in there at ctf_strraw time if it is set. This uses minimal extra
memory (because only strings in the external strtab that we actually use
are stored, and even those come straight out of the atoms table), but
let both variable sorting and name interning when ctf_bufopen is next
called work fine. (This also means that we don't need to filter out
spurious ECTF_STRTAB warnings from ctf_bufopen but can pass them back to
the caller, once we wrap ctf_bufopen so that we have a new internal
variant of ctf_bufopen etc that we can pass the synthetic external
strtab to. That error has been filtered out since the days of Solaris
libctf, which didn't try to handle the problem of getting external
strtabs right at construction time at all.)
v3: add the synthetic strtab and all associated machinery.
v5: fix tabdamage.
include/
* ctf.h (CTF_SET_STID): New.
libctf/
* ctf-impl.h (ctf_str_atom_t) <csa_offset>: New field.
(ctf_file_t) <ctf_syn_ext_strtab>: Likewise.
(ctf_str_add_ref): Name the last arg.
(ctf_str_add_external) New.
(ctf_str_add_strraw_explicit): Likewise.
(ctf_simple_open_internal): Likewise.
(ctf_bufopen_internal): Likewise.
* ctf-string.c (ctf_strraw_explicit): Split from...
(ctf_strraw): ... here, with new support for ctf_syn_ext_strtab.
(ctf_str_add_ref_internal): Return the atom, not the
string.
(ctf_str_add): Adjust accordingly.
(ctf_str_add_ref): Likewise. Move up in the file.
(ctf_str_add_external): New: update the csa_offset.
(ctf_str_count_strtab): Only account for strings with no csa_offset
in the internal strtab length.
(ctf_str_write_strtab): If the csa_offset is set, update the
string's refs without writing the string out, and update the
ctf_syn_ext_strtab. Make OOM handling less ugly.
* ctf-create.c (struct ctf_sort_var_arg_cb): New.
(ctf_update): Handle failure to populate the strtab. Pass in the
new ctf_sort_var arg. Adjust for ctf_syn_ext_strtab addition.
Call ctf_simple_open_internal, not ctf_simple_open.
(ctf_sort_var): Call ctf_strraw_explicit rather than looking up
strings by hand.
* ctf-hash.c (ctf_hash_insert_type): Likewise (but using
ctf_strraw). Adjust to diagnose ECTF_STRTAB nonetheless.
* ctf-open.c (init_types): No longer filter out ECTF_STRTAB.
(ctf_file_close): Destroy the ctf_syn_ext_strtab.
(ctf_simple_open): Rename to, and reimplement as a wrapper around...
(ctf_simple_open_internal): ... this new function, which calls
ctf_bufopen_internal.
(ctf_bufopen): Rename to, and reimplement as a wrapper around...
(ctf_bufopen_internal): ... this new function, which sets
ctf_syn_ext_strtab.
2019-07-14 03:33:01 +08:00
|
|
|
const ctf_sect_t *, ctf_dynhash_t *,
|
libctf: avoid the need to ever use ctf_update
The method of operation of libctf when the dictionary is writable has
before now been that types that are added land in the dynamic type
section, which is a linked list and hash of IDs -> dynamic type
definitions (and, recently a hash of names): the DTDs are a bit of CTF
representing the ctf_type_t and ad hoc C structures representing the
vlen. Historically, libctf was unable to do anything with these types,
not even look them up by ID, let alone by name: if you wanted to do that
say if you were adding a type that depended on one you just added) you
called ctf_update, which serializes all the DTDs into a CTF file and
reopens it, copying its guts over the fp it's called with. The
ctf_updated types are then frozen in amber and unchangeable: all lookups
will return the types in the static portion in preference to the dynamic
portion, and we will refuse to re-add things that already exist in the
static portion (and, of late, in the dynamic portion too). The libctf
machinery remembers the boundary between static and dynamic types and
looks in the right portion for each type. Lots of things still don't
quite work with dynamic types (e.g. getting their size), but enough
works to do a bunch of additions and then a ctf_update, most of the
time.
Except it doesn't, because ctf_add_type finds it necessary to walk the
full dynamic type definition list looking for types with matching names,
so it gets slower and slower with every type you add: fixing this
requires calling ctf_update periodically for no other reason than to
avoid massively slowing things down.
This is all clunky and very slow but kind of works, until you consider
that it is in fact possible and indeed necessary to modify one sort of
type after it has been added: forwards. These are necessarily promoted
to structs, unions or enums, and when they do so *their type ID does not
change*. So all of a sudden we are changing types that already exist in
the static portion. ctf_update gets massively confused by this and
allocates space enough for the forward (with no members), but then emits
the new dynamic type (with all the members) into it. You get an
assertion failure after that, if you're lucky, or a coredump.
So this commit rejigs things a bit and arranges to exclusively use the
dynamic type definitions in writable dictionaries, and the static type
definitions in readable dictionaries: we don't at any time have a mixture
of static and dynamic types, and you don't need to call ctf_update to
make things "appear". The ctf_dtbyname hash I introduced a few months
ago, which maps things like "struct foo" to DTDs, is removed, replaced
instead by a change of type of the four dictionaries which track names.
Rather than just being (unresizable) ctf_hash_t's populated only at
ctf_bufopen time, they are now a ctf_names_t structure, which is a pair
of ctf_hash_t and ctf_dynhash_t, with the ctf_hash_t portion being used
in readonly dictionaries, and the ctf_dynhash_t being used in writable
ones. The decision as to which to use is centralized in the new
functions ctf_lookup_by_rawname (which takes a type kind) and
ctf_lookup_by_rawhash, which it calls (which takes a ctf_names_t *.)
This change lets us switch from using static to dynamic name hashes on
the fly across the entirety of libctf without complexifying anything: in
fact, because we now centralize the knowledge about how to map from type
kind to name hash, it actually simplifies things and lets us throw out
quite a lot of now-unnecessary complexity, from ctf_dtnyname (replaced
by the dynamic half of the name tables), through to ctf_dtnextid (now
that a dictionary's static portion is never referenced if the dictionary
is writable, we can just use ctf_typemax to indicate the maximum type:
dynamic or non-dynamic does not matter, and we no longer need to track
the boundary between the types). You can now ctf_rollback() as far as
you like, even past a ctf_update or for that matter a full writeout; all
the iteration functions work just as well on writable as on read-only
dictionaries; ctf_add_type no longer needs expensive duplicated code to
run over the dynamic types hunting for ones it might be interested in;
and the linker no longer needs a hack to call ctf_update so that calling
ctf_add_type is not impossibly expensive.
There is still a bit more complexity: some new code paths in ctf-types.c
need to know how to extract information from dynamic types. This
complexity will go away again in a few months when libctf acquires a
proper intermediate representation.
You can still call ctf_update if you like (it's public API, after all),
but its only effect now is to set the point to which ctf_discard rolls
back.
Obviously *something* still needs to serialize the CTF file before
writeout, and this job is done by ctf_serialize, which does everything
ctf_update used to except set the counter used by ctf_discard. It is
automatically called by the various functions that do CTF writeout:
nobody else ever needs to call it.
With this in place, forwards that are promoted to non-forwards no longer
crash the link, even if it happens tens of thousands of types later.
v5: fix tabdamage.
libctf/
* ctf-impl.h (ctf_names_t): New.
(ctf_lookup_t) <ctf_hash>: Now a ctf_names_t, not a ctf_hash_t.
(ctf_file_t) <ctf_structs>: Likewise.
<ctf_unions>: Likewise.
<ctf_enums>: Likewise.
<ctf_names>: Likewise.
<ctf_lookups>: Improve comment.
<ctf_ptrtab_len>: New.
<ctf_prov_strtab>: New.
<ctf_str_prov_offset>: New.
<ctf_dtbyname>: Remove, redundant to the names hashes.
<ctf_dtnextid>: Remove, redundant to ctf_typemax.
(ctf_dtdef_t) <dtd_name>: Remove.
<dtd_data>: Note that the ctt_name is now populated.
(ctf_str_atom_t) <csa_offset>: This is now the strtab
offset for internal strings too.
<csa_external_offset>: New, the external strtab offset.
(CTF_INDEX_TO_TYPEPTR): Handle the LCTF_RDWR case.
(ctf_name_table): New declaration.
(ctf_lookup_by_rawname): Likewise.
(ctf_lookup_by_rawhash): Likewise.
(ctf_set_ctl_hashes): Likewise.
(ctf_serialize): Likewise.
(ctf_dtd_insert): Adjust.
(ctf_simple_open_internal): Likewise.
(ctf_bufopen_internal): Likewise.
(ctf_list_empty_p): Likewise.
(ctf_str_remove_ref): Likewise.
(ctf_str_add): Returns uint32_t now.
(ctf_str_add_ref): Likewise.
(ctf_str_add_external): Now returns a boolean (int).
* ctf-string.c (ctf_strraw_explicit): Check the ctf_prov_strtab
for strings in the appropriate range.
(ctf_str_create_atoms): Create the ctf_prov_strtab. Detect OOM
when adding the null string to the new strtab.
(ctf_str_free_atoms): Destroy the ctf_prov_strtab.
(ctf_str_add_ref_internal): Add make_provisional argument. If
make_provisional, populate the offset and fill in the
ctf_prov_strtab accordingly.
(ctf_str_add): Return the offset, not the string.
(ctf_str_add_ref): Likewise.
(ctf_str_add_external): Return a success integer.
(ctf_str_remove_ref): New, remove a single ref.
(ctf_str_count_strtab): Do not count the initial null string's
length or the existence or length of any unreferenced internal
atoms.
(ctf_str_populate_sorttab): Skip atoms with no refs.
(ctf_str_write_strtab): Populate the nullstr earlier. Add one
to the cts_len for the null string, since it is no longer done
in ctf_str_count_strtab. Adjust for csa_external_offset rename.
Populate the csa_offset for both internal and external cases.
Flush the ctf_prov_strtab afterwards, and reset the
ctf_str_prov_offset.
* ctf-create.c (ctf_grow_ptrtab): New.
(ctf_create): Call it. Initialize new fields rather than old
ones. Tell ctf_bufopen_internal that this is a writable dictionary.
Set the ctl hashes and data model.
(ctf_update): Rename to...
(ctf_serialize): ... this. Leave a compatibility function behind.
Tell ctf_simple_open_internal that this is a writable dictionary.
Pass the new fields along from the old dictionary. Drop
ctf_dtnextid and ctf_dtbyname. Use ctf_strraw, not dtd_name.
Do not zero out the DTD's ctt_name.
(ctf_prefixed_name): Rename to...
(ctf_name_table): ... this. No longer return a prefixed name: return
the applicable name table instead.
(ctf_dtd_insert): Use it, and use the right name table. Pass in the
kind we're adding. Migrate away from dtd_name.
(ctf_dtd_delete): Adjust similarly. Remove the ref to the
deleted ctt_name.
(ctf_dtd_lookup_type_by_name): Remove.
(ctf_dynamic_type): Always return NULL on read-only dictionaries.
No longer check ctf_dtnextid: check ctf_typemax instead.
(ctf_snapshot): No longer use ctf_dtnextid: use ctf_typemax instead.
(ctf_rollback): Likewise. No longer fail with ECTF_OVERROLLBACK. Use
ctf_name_table and the right name table, and migrate away from
dtd_name as in ctf_dtd_delete.
(ctf_add_generic): Pass in the kind explicitly and pass it to
ctf_dtd_insert. Use ctf_typemax, not ctf_dtnextid. Migrate away
from dtd_name to using ctf_str_add_ref to populate the ctt_name.
Grow the ptrtab if needed.
(ctf_add_encoded): Pass in the kind.
(ctf_add_slice): Likewise.
(ctf_add_array): Likewise.
(ctf_add_function): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_reftype): Likewise. Initialize the ctf_ptrtab, checking
ctt_name rather than dtd_name.
(ctf_add_struct_sized): Pass in the kind. Use
ctf_lookup_by_rawname, not ctf_hash_lookup_type /
ctf_dtd_lookup_type_by_name.
(ctf_add_union_sized): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_type): Likewise.
(ctf_compress_write): Call ctf_serialize: adjust for ctf_size not
being initialized until after the call.
(ctf_write_mem): Likewise.
(ctf_write): Likewise.
* ctf-archive.c (arc_write_one_ctf): Likewise.
* ctf-lookup.c (ctf_lookup_by_name): Use ctf_lookuup_by_rawhash, not
ctf_hash_lookup_type.
(ctf_lookup_by_id): No longer check the readonly types if the
dictionary is writable.
* ctf-open.c (init_types): Assert that this dictionary is not
writable. Adjust to use the new name hashes, ctf_name_table,
and ctf_ptrtab_len. GNU style fix for the final ptrtab scan.
(ctf_bufopen_internal): New 'writable' parameter. Flip on LCTF_RDWR
if set. Drop out early when dictionary is writable. Split the
ctf_lookups initialization into...
(ctf_set_cth_hashes): ... this new function.
(ctf_simple_open_internal): Adjust. New 'writable' parameter.
(ctf_simple_open): Adjust accordingly.
(ctf_bufopen): Likewise.
(ctf_file_close): Destroy the appropriate name hashes. No longer
destroy ctf_dtbyname, which is gone.
(ctf_getdatasect): Remove spurious "extern".
* ctf-types.c (ctf_lookup_by_rawname): New, look up types in the
specified name table, given a kind.
(ctf_lookup_by_rawhash): Likewise, given a ctf_names_t *.
(ctf_member_iter): Add support for iterating over the
dynamic type list.
(ctf_enum_iter): Likewise.
(ctf_variable_iter): Likewise.
(ctf_type_rvisit): Likewise.
(ctf_member_info): Add support for types in the dynamic type list.
(ctf_enum_name): Likewise.
(ctf_enum_value): Likewise.
(ctf_func_type_info): Likewise.
(ctf_func_type_args): Likewise.
* ctf-link.c (ctf_accumulate_archive_names): No longer call
ctf_update.
(ctf_link_write): Likewise.
(ctf_link_intern_extern_string): Adjust for new
ctf_str_add_external return value.
(ctf_link_add_strtab): Likewise.
* ctf-util.c (ctf_list_empty_p): New.
2019-08-08 00:55:09 +08:00
|
|
|
int, int *);
|
libctf, include, binutils, gdb, ld: rename ctf_file_t to ctf_dict_t
The naming of the ctf_file_t type in libctf is a historical curiosity.
Back in the Solaris days, CTF dictionaries were originally generated as
a separate file and then (sometimes) merged into objects: hence the
datatype was named ctf_file_t, and known as a "CTF file". Nowadays, raw
CTF is essentially never written to a file on its own, and the datatype
changed name to a "CTF dictionary" years ago. So the term "CTF file"
refers to something that is never a file! This is at best confusing.
The type has also historically been known as a 'CTF container", which is
even more confusing now that we have CTF archives which are *also* a
sort of container (they contain CTF dictionaries), but which are never
referred to as containers in the source code.
So fix this by completing the renaming, renaming ctf_file_t to
ctf_dict_t throughout, and renaming those few functions that refer to
CTF files by name (keeping compatibility aliases) to refer to dicts
instead. Old users who still refer to ctf_file_t will see (harmless)
pointer-compatibility warnings at compile time, but the ABI is unchanged
(since C doesn't mangle names, and ctf_file_t was always an opaque type)
and things will still compile fine as long as -Werror is not specified.
All references to CTF containers and CTF files in the source code are
fixed to refer to CTF dicts instead.
Further (smaller) renamings of annoyingly-named functions to come, as
part of the process of souping up queries across whole archives at once
(needed for the function info and data object sections).
binutils/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* objdump.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_ctf): Likewise. Use ctf_dict_close, not ctf_file_close.
* readelf.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_section_as_ctf): Likewise. Use ctf_dict_close, not
ctf_file_close.
gdb/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctfread.c: Change uses of ctf_file_t to ctf_dict_t.
(ctf_fp_info::~ctf_fp_info): Call ctf_dict_close, not ctf_file_close.
include/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-api.h (ctf_file_t): Rename to...
(ctf_dict_t): ... this. Keep ctf_file_t around for compatibility.
(struct ctf_file): Likewise rename to...
(struct ctf_dict): ... this.
(ctf_file_close): Rename to...
(ctf_dict_close): ... this, keeping compatibility function.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this, keeping compatibility function.
All callers adjusted.
* ctf.h: Rename references to ctf_file_t to ctf_dict_t.
(struct ctf_archive) <ctfa_nfiles>: Rename to...
<ctfa_ndicts>: ... this.
ld/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ldlang.c (ctf_output): This is a ctf_dict_t now.
(lang_ctf_errs_warnings): Rename ctf_file_t to ctf_dict_t.
(ldlang_open_ctf): Adjust comment.
(lang_merge_ctf): Use ctf_dict_close, not ctf_file_close.
* ldelfgen.h (ldelf_examine_strtab_for_ctf): Rename ctf_file_t to
ctf_dict_t. Change opaque declaration accordingly.
* ldelfgen.c (ldelf_examine_strtab_for_ctf): Adjust.
* ldemul.h (examine_strtab_for_ctf): Likewise.
(ldemul_examine_strtab_for_ctf): Likewise.
* ldeuml.c (ldemul_examine_strtab_for_ctf): Likewise.
libctf/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h: Rename ctf_file_t to ctf_dict_t: all declarations
adjusted.
(ctf_fileops): Rename to...
(ctf_dictops): ... this.
(ctf_dedup_t) <cd_id_to_file_t>: Rename to...
<cd_id_to_dict_t>: ... this.
(ctf_file_t): Fix outdated comment.
<ctf_fileops>: Rename to...
<ctf_dictops>: ... this.
(struct ctf_archive_internal) <ctfi_file>: Rename to...
<ctfi_dict>: ... this.
* ctf-archive.c: Rename ctf_file_t to ctf_dict_t.
Rename ctf_archive.ctfa_nfiles to ctfa_ndicts.
Rename ctf_file_close to ctf_dict_close. All users adjusted.
* ctf-create.c: Likewise. Refer to CTF dicts, not CTF containers.
(ctf_bundle_t) <ctb_file>: Rename to...
<ctb_dict): ... this.
* ctf-decl.c: Rename ctf_file_t to ctf_dict_t.
* ctf-dedup.c: Likewise. Rename ctf_file_close to
ctf_dict_close. Refer to CTF dicts, not CTF containers.
* ctf-dump.c: Likewise.
* ctf-error.c: Likewise.
* ctf-hash.c: Likewise.
* ctf-inlines.h: Likewise.
* ctf-labels.c: Likewise.
* ctf-link.c: Likewise.
* ctf-lookup.c: Likewise.
* ctf-open-bfd.c: Likewise.
* ctf-string.c: Likewise.
* ctf-subr.c: Likewise.
* ctf-types.c: Likewise.
* ctf-util.c: Likewise.
* ctf-open.c: Likewise.
(ctf_file_close): Rename to...
(ctf_dict_close): ...this.
(ctf_file_close): New trivial wrapper around ctf_dict_close, for
compatibility.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this.
(ctf_parent_file): New trivial wrapper around ctf_parent_dict, for
compatibility.
* libctf.ver: Add ctf_dict_close and ctf_parent_dict.
2020-11-20 21:34:04 +08:00
|
|
|
extern int ctf_import_unref (ctf_dict_t *fp, ctf_dict_t *pfp);
|
|
|
|
extern int ctf_serialize (ctf_dict_t *);
|
libctf: support getting strings from the ELF strtab
The CTF file format has always supported "external strtabs", which
internally are strtab offsets with their MSB on: such refs
get their strings from the strtab passed in at CTF file open time:
this is usually intended to be the ELF strtab, and that's what this
implementation is meant to support, though in theory the external
strtab could come from anywhere.
This commit adds support for these external strings in the ctf-string.c
strtab tracking layer. It's quite easy: we just add a field csa_offset
to the atoms table that tracks all strings: this field tracks the offset
of the string in the ELF strtab (with its MSB already on, courtesy of a
new macro CTF_SET_STID), and adds a new function that sets the
csa_offset to the specified offset (plus MSB). Then we just need to
avoid writing out strings to the internal strtab if they have csa_offset
set, and note that the internal strtab is shorter than it might
otherwise be.
(We could in theory save a little more time here by eschewing sorting
such strings, since we never actually write the strings out anywhere,
but that would mean storing them separately and it's just not worth the
complexity cost until profiling shows it's worth doing.)
We also have to go through a bit of extra effort at variable-sorting
time. This was previously using direct references to the internal
strtab: it couldn't use ctf_strptr or ctf_strraw because the new strtab
is not yet ready to put in its usual field (in a ctf_file_t that hasn't
even been allocated yet at this stage): but now we're using the external
strtab, this will no longer do because it'll be looking things up in the
wrong strtab, with disastrous results. Instead, pass the new internal
strtab in to a new ctf_strraw_explicit function which is just like
ctf_strraw except you can specify a ne winternal strtab to use.
But even now that it is using a new internal strtab, this is not quite
enough: it can't look up strings in the external strtab because ld
hasn't written it out yet, and when it does will write it straight to
disk. Instead, when we write the internal strtab, note all the offset
-> string mappings that we have noted belong in the *external* strtab to
a new "synthetic external strtab" dynhash, ctf_syn_ext_strtab, and look
in there at ctf_strraw time if it is set. This uses minimal extra
memory (because only strings in the external strtab that we actually use
are stored, and even those come straight out of the atoms table), but
let both variable sorting and name interning when ctf_bufopen is next
called work fine. (This also means that we don't need to filter out
spurious ECTF_STRTAB warnings from ctf_bufopen but can pass them back to
the caller, once we wrap ctf_bufopen so that we have a new internal
variant of ctf_bufopen etc that we can pass the synthetic external
strtab to. That error has been filtered out since the days of Solaris
libctf, which didn't try to handle the problem of getting external
strtabs right at construction time at all.)
v3: add the synthetic strtab and all associated machinery.
v5: fix tabdamage.
include/
* ctf.h (CTF_SET_STID): New.
libctf/
* ctf-impl.h (ctf_str_atom_t) <csa_offset>: New field.
(ctf_file_t) <ctf_syn_ext_strtab>: Likewise.
(ctf_str_add_ref): Name the last arg.
(ctf_str_add_external) New.
(ctf_str_add_strraw_explicit): Likewise.
(ctf_simple_open_internal): Likewise.
(ctf_bufopen_internal): Likewise.
* ctf-string.c (ctf_strraw_explicit): Split from...
(ctf_strraw): ... here, with new support for ctf_syn_ext_strtab.
(ctf_str_add_ref_internal): Return the atom, not the
string.
(ctf_str_add): Adjust accordingly.
(ctf_str_add_ref): Likewise. Move up in the file.
(ctf_str_add_external): New: update the csa_offset.
(ctf_str_count_strtab): Only account for strings with no csa_offset
in the internal strtab length.
(ctf_str_write_strtab): If the csa_offset is set, update the
string's refs without writing the string out, and update the
ctf_syn_ext_strtab. Make OOM handling less ugly.
* ctf-create.c (struct ctf_sort_var_arg_cb): New.
(ctf_update): Handle failure to populate the strtab. Pass in the
new ctf_sort_var arg. Adjust for ctf_syn_ext_strtab addition.
Call ctf_simple_open_internal, not ctf_simple_open.
(ctf_sort_var): Call ctf_strraw_explicit rather than looking up
strings by hand.
* ctf-hash.c (ctf_hash_insert_type): Likewise (but using
ctf_strraw). Adjust to diagnose ECTF_STRTAB nonetheless.
* ctf-open.c (init_types): No longer filter out ECTF_STRTAB.
(ctf_file_close): Destroy the ctf_syn_ext_strtab.
(ctf_simple_open): Rename to, and reimplement as a wrapper around...
(ctf_simple_open_internal): ... this new function, which calls
ctf_bufopen_internal.
(ctf_bufopen): Rename to, and reimplement as a wrapper around...
(ctf_bufopen_internal): ... this new function, which sets
ctf_syn_ext_strtab.
2019-07-14 03:33:01 +08:00
|
|
|
|
2019-04-24 01:55:27 +08:00
|
|
|
_libctf_malloc_
|
|
|
|
extern void *ctf_mmap (size_t length, size_t offset, int fd);
|
|
|
|
extern void ctf_munmap (void *, size_t);
|
|
|
|
extern ssize_t ctf_pread (int fd, void *buf, ssize_t count, off_t offset);
|
|
|
|
|
libctf, include, binutils, gdb, ld: rename ctf_file_t to ctf_dict_t
The naming of the ctf_file_t type in libctf is a historical curiosity.
Back in the Solaris days, CTF dictionaries were originally generated as
a separate file and then (sometimes) merged into objects: hence the
datatype was named ctf_file_t, and known as a "CTF file". Nowadays, raw
CTF is essentially never written to a file on its own, and the datatype
changed name to a "CTF dictionary" years ago. So the term "CTF file"
refers to something that is never a file! This is at best confusing.
The type has also historically been known as a 'CTF container", which is
even more confusing now that we have CTF archives which are *also* a
sort of container (they contain CTF dictionaries), but which are never
referred to as containers in the source code.
So fix this by completing the renaming, renaming ctf_file_t to
ctf_dict_t throughout, and renaming those few functions that refer to
CTF files by name (keeping compatibility aliases) to refer to dicts
instead. Old users who still refer to ctf_file_t will see (harmless)
pointer-compatibility warnings at compile time, but the ABI is unchanged
(since C doesn't mangle names, and ctf_file_t was always an opaque type)
and things will still compile fine as long as -Werror is not specified.
All references to CTF containers and CTF files in the source code are
fixed to refer to CTF dicts instead.
Further (smaller) renamings of annoyingly-named functions to come, as
part of the process of souping up queries across whole archives at once
(needed for the function info and data object sections).
binutils/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* objdump.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_ctf): Likewise. Use ctf_dict_close, not ctf_file_close.
* readelf.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_section_as_ctf): Likewise. Use ctf_dict_close, not
ctf_file_close.
gdb/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctfread.c: Change uses of ctf_file_t to ctf_dict_t.
(ctf_fp_info::~ctf_fp_info): Call ctf_dict_close, not ctf_file_close.
include/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-api.h (ctf_file_t): Rename to...
(ctf_dict_t): ... this. Keep ctf_file_t around for compatibility.
(struct ctf_file): Likewise rename to...
(struct ctf_dict): ... this.
(ctf_file_close): Rename to...
(ctf_dict_close): ... this, keeping compatibility function.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this, keeping compatibility function.
All callers adjusted.
* ctf.h: Rename references to ctf_file_t to ctf_dict_t.
(struct ctf_archive) <ctfa_nfiles>: Rename to...
<ctfa_ndicts>: ... this.
ld/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ldlang.c (ctf_output): This is a ctf_dict_t now.
(lang_ctf_errs_warnings): Rename ctf_file_t to ctf_dict_t.
(ldlang_open_ctf): Adjust comment.
(lang_merge_ctf): Use ctf_dict_close, not ctf_file_close.
* ldelfgen.h (ldelf_examine_strtab_for_ctf): Rename ctf_file_t to
ctf_dict_t. Change opaque declaration accordingly.
* ldelfgen.c (ldelf_examine_strtab_for_ctf): Adjust.
* ldemul.h (examine_strtab_for_ctf): Likewise.
(ldemul_examine_strtab_for_ctf): Likewise.
* ldeuml.c (ldemul_examine_strtab_for_ctf): Likewise.
libctf/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h: Rename ctf_file_t to ctf_dict_t: all declarations
adjusted.
(ctf_fileops): Rename to...
(ctf_dictops): ... this.
(ctf_dedup_t) <cd_id_to_file_t>: Rename to...
<cd_id_to_dict_t>: ... this.
(ctf_file_t): Fix outdated comment.
<ctf_fileops>: Rename to...
<ctf_dictops>: ... this.
(struct ctf_archive_internal) <ctfi_file>: Rename to...
<ctfi_dict>: ... this.
* ctf-archive.c: Rename ctf_file_t to ctf_dict_t.
Rename ctf_archive.ctfa_nfiles to ctfa_ndicts.
Rename ctf_file_close to ctf_dict_close. All users adjusted.
* ctf-create.c: Likewise. Refer to CTF dicts, not CTF containers.
(ctf_bundle_t) <ctb_file>: Rename to...
<ctb_dict): ... this.
* ctf-decl.c: Rename ctf_file_t to ctf_dict_t.
* ctf-dedup.c: Likewise. Rename ctf_file_close to
ctf_dict_close. Refer to CTF dicts, not CTF containers.
* ctf-dump.c: Likewise.
* ctf-error.c: Likewise.
* ctf-hash.c: Likewise.
* ctf-inlines.h: Likewise.
* ctf-labels.c: Likewise.
* ctf-link.c: Likewise.
* ctf-lookup.c: Likewise.
* ctf-open-bfd.c: Likewise.
* ctf-string.c: Likewise.
* ctf-subr.c: Likewise.
* ctf-types.c: Likewise.
* ctf-util.c: Likewise.
* ctf-open.c: Likewise.
(ctf_file_close): Rename to...
(ctf_dict_close): ...this.
(ctf_file_close): New trivial wrapper around ctf_dict_close, for
compatibility.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this.
(ctf_parent_file): New trivial wrapper around ctf_parent_dict, for
compatibility.
* libctf.ver: Add ctf_dict_close and ctf_parent_dict.
2020-11-20 21:34:04 +08:00
|
|
|
extern void *ctf_realloc (ctf_dict_t *, void *, size_t);
|
2019-04-24 04:45:30 +08:00
|
|
|
extern char *ctf_str_append (char *, const char *);
|
2019-09-17 13:57:00 +08:00
|
|
|
extern char *ctf_str_append_noerr (char *, const char *);
|
2019-04-24 04:45:30 +08:00
|
|
|
|
libctf, include, binutils, gdb, ld: rename ctf_file_t to ctf_dict_t
The naming of the ctf_file_t type in libctf is a historical curiosity.
Back in the Solaris days, CTF dictionaries were originally generated as
a separate file and then (sometimes) merged into objects: hence the
datatype was named ctf_file_t, and known as a "CTF file". Nowadays, raw
CTF is essentially never written to a file on its own, and the datatype
changed name to a "CTF dictionary" years ago. So the term "CTF file"
refers to something that is never a file! This is at best confusing.
The type has also historically been known as a 'CTF container", which is
even more confusing now that we have CTF archives which are *also* a
sort of container (they contain CTF dictionaries), but which are never
referred to as containers in the source code.
So fix this by completing the renaming, renaming ctf_file_t to
ctf_dict_t throughout, and renaming those few functions that refer to
CTF files by name (keeping compatibility aliases) to refer to dicts
instead. Old users who still refer to ctf_file_t will see (harmless)
pointer-compatibility warnings at compile time, but the ABI is unchanged
(since C doesn't mangle names, and ctf_file_t was always an opaque type)
and things will still compile fine as long as -Werror is not specified.
All references to CTF containers and CTF files in the source code are
fixed to refer to CTF dicts instead.
Further (smaller) renamings of annoyingly-named functions to come, as
part of the process of souping up queries across whole archives at once
(needed for the function info and data object sections).
binutils/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* objdump.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_ctf): Likewise. Use ctf_dict_close, not ctf_file_close.
* readelf.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_section_as_ctf): Likewise. Use ctf_dict_close, not
ctf_file_close.
gdb/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctfread.c: Change uses of ctf_file_t to ctf_dict_t.
(ctf_fp_info::~ctf_fp_info): Call ctf_dict_close, not ctf_file_close.
include/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-api.h (ctf_file_t): Rename to...
(ctf_dict_t): ... this. Keep ctf_file_t around for compatibility.
(struct ctf_file): Likewise rename to...
(struct ctf_dict): ... this.
(ctf_file_close): Rename to...
(ctf_dict_close): ... this, keeping compatibility function.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this, keeping compatibility function.
All callers adjusted.
* ctf.h: Rename references to ctf_file_t to ctf_dict_t.
(struct ctf_archive) <ctfa_nfiles>: Rename to...
<ctfa_ndicts>: ... this.
ld/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ldlang.c (ctf_output): This is a ctf_dict_t now.
(lang_ctf_errs_warnings): Rename ctf_file_t to ctf_dict_t.
(ldlang_open_ctf): Adjust comment.
(lang_merge_ctf): Use ctf_dict_close, not ctf_file_close.
* ldelfgen.h (ldelf_examine_strtab_for_ctf): Rename ctf_file_t to
ctf_dict_t. Change opaque declaration accordingly.
* ldelfgen.c (ldelf_examine_strtab_for_ctf): Adjust.
* ldemul.h (examine_strtab_for_ctf): Likewise.
(ldemul_examine_strtab_for_ctf): Likewise.
* ldeuml.c (ldemul_examine_strtab_for_ctf): Likewise.
libctf/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h: Rename ctf_file_t to ctf_dict_t: all declarations
adjusted.
(ctf_fileops): Rename to...
(ctf_dictops): ... this.
(ctf_dedup_t) <cd_id_to_file_t>: Rename to...
<cd_id_to_dict_t>: ... this.
(ctf_file_t): Fix outdated comment.
<ctf_fileops>: Rename to...
<ctf_dictops>: ... this.
(struct ctf_archive_internal) <ctfi_file>: Rename to...
<ctfi_dict>: ... this.
* ctf-archive.c: Rename ctf_file_t to ctf_dict_t.
Rename ctf_archive.ctfa_nfiles to ctfa_ndicts.
Rename ctf_file_close to ctf_dict_close. All users adjusted.
* ctf-create.c: Likewise. Refer to CTF dicts, not CTF containers.
(ctf_bundle_t) <ctb_file>: Rename to...
<ctb_dict): ... this.
* ctf-decl.c: Rename ctf_file_t to ctf_dict_t.
* ctf-dedup.c: Likewise. Rename ctf_file_close to
ctf_dict_close. Refer to CTF dicts, not CTF containers.
* ctf-dump.c: Likewise.
* ctf-error.c: Likewise.
* ctf-hash.c: Likewise.
* ctf-inlines.h: Likewise.
* ctf-labels.c: Likewise.
* ctf-link.c: Likewise.
* ctf-lookup.c: Likewise.
* ctf-open-bfd.c: Likewise.
* ctf-string.c: Likewise.
* ctf-subr.c: Likewise.
* ctf-types.c: Likewise.
* ctf-util.c: Likewise.
* ctf-open.c: Likewise.
(ctf_file_close): Rename to...
(ctf_dict_close): ...this.
(ctf_file_close): New trivial wrapper around ctf_dict_close, for
compatibility.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this.
(ctf_parent_file): New trivial wrapper around ctf_parent_dict, for
compatibility.
* libctf.ver: Add ctf_dict_close and ctf_parent_dict.
2020-11-20 21:34:04 +08:00
|
|
|
extern ctf_id_t ctf_type_resolve_unsliced (ctf_dict_t *, ctf_id_t);
|
|
|
|
extern int ctf_type_kind_unsliced (ctf_dict_t *, ctf_id_t);
|
2019-04-24 05:24:13 +08:00
|
|
|
|
2019-04-24 01:55:27 +08:00
|
|
|
_libctf_printflike_ (1, 2)
|
|
|
|
extern void ctf_dprintf (const char *, ...);
|
|
|
|
extern void libctf_init_debug (void);
|
|
|
|
|
libctf, binutils, include, ld: gettextize and improve error handling
This commit follows on from the earlier commit "libctf, ld, binutils:
add textual error/warning reporting for libctf" and converts every error
in libctf that was reported using ctf_dprintf to use ctf_err_warn
instead, gettextizing them in the process, using N_() where necessary to
avoid doing gettext calls unless an error message is actually generated,
and rephrasing some error messages for ease of translation.
This requires a slight change in the ctf_errwarning_next API: this API
is public but has not been in a release yet, so can still change freely.
The problem is that many errors are emitted at open time (whether
opening of a CTF dict, or opening of a CTF archive): the former of these
throws away its incompletely-initialized ctf_file_t rather than return
it, and the latter has no ctf_file_t at all. So errors and warnings
emitted at open time cannot be stored in the ctf_file_t, and have to go
elsewhere.
We put them in a static local in ctf-subr.c (which is not very
thread-safe: a later commit will improve things here): ctf_err_warn with
a NULL fp adds to this list, and the public interface
ctf_errwarning_next with a NULL fp retrieves from it.
We need a slight exception from the usual iterator rules in this case:
with a NULL fp, there is nowhere to store the ECTF_NEXT_END "error"
which signifies the end of iteration, so we add a new err parameter to
ctf_errwarning_next which is used to report such iteration-related
errors. (If an fp is provided -- i.e., if not reporting open errors --
this is optional, but even if it's optional it's still an API change.
This is actually useful from a usability POV as well, since
ctf_errwarning_next is usually called when there's been an error, so
overwriting the error code with ECTF_NEXT_END is not very helpful!
So, unusually, ctf_errwarning_next now uses the passed fp for its
error code *only* if no errp pointer is passed in, and leaves it
untouched otherwise.)
ld, objdump and readelf are adapted to call ctf_errwarning_next with a
NULL fp to report open errors where appropriate.
The ctf_err_warn API also has to change, gaining a new error-number
parameter which is used to add the error message corresponding to that
error number into the debug stream when LIBCTF_DEBUG is enabled:
changing this API is easy at this point since we are already touching
all existing calls to gettextize them. We need this because the debug
stream should contain the errno's message, but the error reported in the
error/warning stream should *not*, because the caller will probably
report it themselves at failure time regardless, and reporting it in
every error message that leads up to it leads to a ridiculous chattering
on failure, which is likely to end up as ridiculous chattering on stderr
(trimmed a bit):
CTF error: `ld/testsuite/ld-ctf/A.c (0): lookup failure for type 3: flags 1: The parent CTF dictionary is unavailable'
CTF error: `ld/testsuite/ld-ctf/A.c (0): struct/union member type hashing error during type hashing for type 80000001, kind 6: The parent CTF dictionary is unavailable'
CTF error: `deduplicating link variable emission failed for ld/testsuite/ld-ctf/A.c: The parent CTF dictionary is unavailable'
ld/.libs/lt-ld-new: warning: CTF linking failed; output will have no CTF section: `The parent CTF dictionary is unavailable'
We only need to be told that the parent CTF dictionary is unavailable
*once*, not over and over again!
errmsgs are still emitted on warning generation, because warnings do not
usually lead to a failure propagated up to the caller and reported
there.
Debug-stream messages are not translated. If translation is turned on,
there will be a mixture of English and translated messages in the debug
stream, but rather that than burden the translators with debug-only
output.
binutils/ChangeLog
2020-08-27 Nick Alcock <nick.alcock@oracle.com>
* objdump.c (dump_ctf_archive_member): Move error-
reporting...
(dump_ctf_errs): ... into this separate function.
(dump_ctf): Call it on open errors.
* readelf.c (dump_ctf_archive_member): Move error-
reporting...
(dump_ctf_errs): ... into this separate function. Support
calls with NULL fp. Adjust for new err parameter to
ctf_errwarning_next.
(dump_section_as_ctf): Call it on open errors.
include/ChangeLog
2020-08-27 Nick Alcock <nick.alcock@oracle.com>
* ctf-api.h (ctf_errwarning_next): New err parameter.
ld/ChangeLog
2020-08-27 Nick Alcock <nick.alcock@oracle.com>
* ldlang.c (lang_ctf_errs_warnings): Support calls with NULL fp.
Adjust for new err parameter to ctf_errwarning_next. Only
check for assertion failures when fp is non-NULL.
(ldlang_open_ctf): Call it on open errors.
* testsuite/ld-ctf/ctf.exp: Always use the C locale to avoid
breaking the diags tests.
libctf/ChangeLog
2020-08-27 Nick Alcock <nick.alcock@oracle.com>
* ctf-subr.c (open_errors): New list.
(ctf_err_warn): Calls with NULL fp append to open_errors. Add err
parameter, and use it to decorate the debug stream with errmsgs.
(ctf_err_warn_to_open): Splice errors from a CTF dict into the
open_errors.
(ctf_errwarning_next): Calls with NULL fp report from open_errors.
New err param to report iteration errors (including end-of-iteration)
when fp is NULL.
(ctf_assert_fail_internal): Adjust ctf_err_warn call for new err
parameter: gettextize.
* ctf-impl.h (ctfo_get_vbytes): Add ctf_file_t parameter.
(LCTF_VBYTES): Adjust.
(ctf_err_warn_to_open): New.
(ctf_err_warn): Adjust.
(ctf_bundle): Used in only one place: move...
* ctf-create.c: ... here.
(enumcmp): Use ctf_err_warn, not ctf_dprintf, passing the err number
down as needed. Don't emit the errmsg. Gettextize.
(membcmp): Likewise.
(ctf_add_type_internal): Likewise.
(ctf_write_mem): Likewise.
(ctf_compress_write): Likewise. Report errors writing the header or
body.
(ctf_write): Likewise.
* ctf-archive.c (ctf_arc_write_fd): Use ctf_err_warn, not
ctf_dprintf, and gettextize, as above.
(ctf_arc_write): Likewise.
(ctf_arc_bufopen): Likewise.
(ctf_arc_open_internal): Likewise.
* ctf-labels.c (ctf_label_iter): Likewise.
* ctf-open-bfd.c (ctf_bfdclose): Likewise.
(ctf_bfdopen): Likewise.
(ctf_bfdopen_ctfsect): Likewise.
(ctf_fdopen): Likewise.
* ctf-string.c (ctf_str_write_strtab): Likewise.
* ctf-types.c (ctf_type_resolve): Likewise.
* ctf-open.c (get_vbytes_common): Likewise. Pass down the ctf dict.
(get_vbytes_v1): Pass down the ctf dict.
(get_vbytes_v2): Likewise.
(flip_ctf): Likewise.
(flip_types): Likewise. Use ctf_err_warn, not ctf_dprintf, and
gettextize, as above.
(upgrade_types_v1): Adjust calls.
(init_types): Use ctf_err_warn, not ctf_dprintf, as above.
(ctf_bufopen_internal): Likewise. Adjust calls. Transplant errors
emitted into individual dicts into the open errors if this turns
out to be a failed open in the end.
* ctf-dump.c (ctf_dump_format_type): Adjust ctf_err_warn for new err
argument. Gettextize. Don't emit the errmsg.
(ctf_dump_funcs): Likewise. Collapse err label into its only case.
(ctf_dump_type): Likewise.
* ctf-link.c (ctf_create_per_cu): Adjust ctf_err_warn for new err
argument. Gettextize. Don't emit the errmsg.
(ctf_link_one_type): Likewise.
(ctf_link_lazy_open): Likewise.
(ctf_link_one_input_archive): Likewise.
(ctf_link_deduplicating_count_inputs): Likewise.
(ctf_link_deduplicating_open_inputs): Likewise.
(ctf_link_deduplicating_close_inputs): Likewise.
(ctf_link_deduplicating): Likewise.
(ctf_link): Likewise.
(ctf_link_deduplicating_per_cu): Likewise. Add some missed
ctf_set_errnos to obscure error cases.
* ctf-dedup.c (ctf_dedup_rhash_type): Adjust ctf_err_warn for new
err argument. Gettextize. Don't emit the errmsg.
(ctf_dedup_populate_mappings): Likewise.
(ctf_dedup_detect_name_ambiguity): Likewise.
(ctf_dedup_init): Likewise.
(ctf_dedup_multiple_input_dicts): Likewise.
(ctf_dedup_conflictify_unshared): Likewise.
(ctf_dedup): Likewise.
(ctf_dedup_rwalk_one_output_mapping): Likewise.
(ctf_dedup_id_to_target): Likewise.
(ctf_dedup_emit_type): Likewise.
(ctf_dedup_emit_struct_members): Likewise.
(ctf_dedup_populate_type_mapping): Likewise.
(ctf_dedup_populate_type_mappings): Likewise.
(ctf_dedup_emit): Likewise.
(ctf_dedup_hash_type): Likewise. Fix a bit of messed-up error
status setting.
(ctf_dedup_rwalk_one_output_mapping): Likewise. Don't hide
unknown-type-kind messages (which signify file corruption).
2020-07-27 23:45:15 +08:00
|
|
|
_libctf_printflike_ (4, 5)
|
libctf, include, binutils, gdb, ld: rename ctf_file_t to ctf_dict_t
The naming of the ctf_file_t type in libctf is a historical curiosity.
Back in the Solaris days, CTF dictionaries were originally generated as
a separate file and then (sometimes) merged into objects: hence the
datatype was named ctf_file_t, and known as a "CTF file". Nowadays, raw
CTF is essentially never written to a file on its own, and the datatype
changed name to a "CTF dictionary" years ago. So the term "CTF file"
refers to something that is never a file! This is at best confusing.
The type has also historically been known as a 'CTF container", which is
even more confusing now that we have CTF archives which are *also* a
sort of container (they contain CTF dictionaries), but which are never
referred to as containers in the source code.
So fix this by completing the renaming, renaming ctf_file_t to
ctf_dict_t throughout, and renaming those few functions that refer to
CTF files by name (keeping compatibility aliases) to refer to dicts
instead. Old users who still refer to ctf_file_t will see (harmless)
pointer-compatibility warnings at compile time, but the ABI is unchanged
(since C doesn't mangle names, and ctf_file_t was always an opaque type)
and things will still compile fine as long as -Werror is not specified.
All references to CTF containers and CTF files in the source code are
fixed to refer to CTF dicts instead.
Further (smaller) renamings of annoyingly-named functions to come, as
part of the process of souping up queries across whole archives at once
(needed for the function info and data object sections).
binutils/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* objdump.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_ctf): Likewise. Use ctf_dict_close, not ctf_file_close.
* readelf.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_section_as_ctf): Likewise. Use ctf_dict_close, not
ctf_file_close.
gdb/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctfread.c: Change uses of ctf_file_t to ctf_dict_t.
(ctf_fp_info::~ctf_fp_info): Call ctf_dict_close, not ctf_file_close.
include/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-api.h (ctf_file_t): Rename to...
(ctf_dict_t): ... this. Keep ctf_file_t around for compatibility.
(struct ctf_file): Likewise rename to...
(struct ctf_dict): ... this.
(ctf_file_close): Rename to...
(ctf_dict_close): ... this, keeping compatibility function.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this, keeping compatibility function.
All callers adjusted.
* ctf.h: Rename references to ctf_file_t to ctf_dict_t.
(struct ctf_archive) <ctfa_nfiles>: Rename to...
<ctfa_ndicts>: ... this.
ld/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ldlang.c (ctf_output): This is a ctf_dict_t now.
(lang_ctf_errs_warnings): Rename ctf_file_t to ctf_dict_t.
(ldlang_open_ctf): Adjust comment.
(lang_merge_ctf): Use ctf_dict_close, not ctf_file_close.
* ldelfgen.h (ldelf_examine_strtab_for_ctf): Rename ctf_file_t to
ctf_dict_t. Change opaque declaration accordingly.
* ldelfgen.c (ldelf_examine_strtab_for_ctf): Adjust.
* ldemul.h (examine_strtab_for_ctf): Likewise.
(ldemul_examine_strtab_for_ctf): Likewise.
* ldeuml.c (ldemul_examine_strtab_for_ctf): Likewise.
libctf/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h: Rename ctf_file_t to ctf_dict_t: all declarations
adjusted.
(ctf_fileops): Rename to...
(ctf_dictops): ... this.
(ctf_dedup_t) <cd_id_to_file_t>: Rename to...
<cd_id_to_dict_t>: ... this.
(ctf_file_t): Fix outdated comment.
<ctf_fileops>: Rename to...
<ctf_dictops>: ... this.
(struct ctf_archive_internal) <ctfi_file>: Rename to...
<ctfi_dict>: ... this.
* ctf-archive.c: Rename ctf_file_t to ctf_dict_t.
Rename ctf_archive.ctfa_nfiles to ctfa_ndicts.
Rename ctf_file_close to ctf_dict_close. All users adjusted.
* ctf-create.c: Likewise. Refer to CTF dicts, not CTF containers.
(ctf_bundle_t) <ctb_file>: Rename to...
<ctb_dict): ... this.
* ctf-decl.c: Rename ctf_file_t to ctf_dict_t.
* ctf-dedup.c: Likewise. Rename ctf_file_close to
ctf_dict_close. Refer to CTF dicts, not CTF containers.
* ctf-dump.c: Likewise.
* ctf-error.c: Likewise.
* ctf-hash.c: Likewise.
* ctf-inlines.h: Likewise.
* ctf-labels.c: Likewise.
* ctf-link.c: Likewise.
* ctf-lookup.c: Likewise.
* ctf-open-bfd.c: Likewise.
* ctf-string.c: Likewise.
* ctf-subr.c: Likewise.
* ctf-types.c: Likewise.
* ctf-util.c: Likewise.
* ctf-open.c: Likewise.
(ctf_file_close): Rename to...
(ctf_dict_close): ...this.
(ctf_file_close): New trivial wrapper around ctf_dict_close, for
compatibility.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this.
(ctf_parent_file): New trivial wrapper around ctf_parent_dict, for
compatibility.
* libctf.ver: Add ctf_dict_close and ctf_parent_dict.
2020-11-20 21:34:04 +08:00
|
|
|
extern void ctf_err_warn (ctf_dict_t *, int is_warning, int err,
|
libctf, binutils, include, ld: gettextize and improve error handling
This commit follows on from the earlier commit "libctf, ld, binutils:
add textual error/warning reporting for libctf" and converts every error
in libctf that was reported using ctf_dprintf to use ctf_err_warn
instead, gettextizing them in the process, using N_() where necessary to
avoid doing gettext calls unless an error message is actually generated,
and rephrasing some error messages for ease of translation.
This requires a slight change in the ctf_errwarning_next API: this API
is public but has not been in a release yet, so can still change freely.
The problem is that many errors are emitted at open time (whether
opening of a CTF dict, or opening of a CTF archive): the former of these
throws away its incompletely-initialized ctf_file_t rather than return
it, and the latter has no ctf_file_t at all. So errors and warnings
emitted at open time cannot be stored in the ctf_file_t, and have to go
elsewhere.
We put them in a static local in ctf-subr.c (which is not very
thread-safe: a later commit will improve things here): ctf_err_warn with
a NULL fp adds to this list, and the public interface
ctf_errwarning_next with a NULL fp retrieves from it.
We need a slight exception from the usual iterator rules in this case:
with a NULL fp, there is nowhere to store the ECTF_NEXT_END "error"
which signifies the end of iteration, so we add a new err parameter to
ctf_errwarning_next which is used to report such iteration-related
errors. (If an fp is provided -- i.e., if not reporting open errors --
this is optional, but even if it's optional it's still an API change.
This is actually useful from a usability POV as well, since
ctf_errwarning_next is usually called when there's been an error, so
overwriting the error code with ECTF_NEXT_END is not very helpful!
So, unusually, ctf_errwarning_next now uses the passed fp for its
error code *only* if no errp pointer is passed in, and leaves it
untouched otherwise.)
ld, objdump and readelf are adapted to call ctf_errwarning_next with a
NULL fp to report open errors where appropriate.
The ctf_err_warn API also has to change, gaining a new error-number
parameter which is used to add the error message corresponding to that
error number into the debug stream when LIBCTF_DEBUG is enabled:
changing this API is easy at this point since we are already touching
all existing calls to gettextize them. We need this because the debug
stream should contain the errno's message, but the error reported in the
error/warning stream should *not*, because the caller will probably
report it themselves at failure time regardless, and reporting it in
every error message that leads up to it leads to a ridiculous chattering
on failure, which is likely to end up as ridiculous chattering on stderr
(trimmed a bit):
CTF error: `ld/testsuite/ld-ctf/A.c (0): lookup failure for type 3: flags 1: The parent CTF dictionary is unavailable'
CTF error: `ld/testsuite/ld-ctf/A.c (0): struct/union member type hashing error during type hashing for type 80000001, kind 6: The parent CTF dictionary is unavailable'
CTF error: `deduplicating link variable emission failed for ld/testsuite/ld-ctf/A.c: The parent CTF dictionary is unavailable'
ld/.libs/lt-ld-new: warning: CTF linking failed; output will have no CTF section: `The parent CTF dictionary is unavailable'
We only need to be told that the parent CTF dictionary is unavailable
*once*, not over and over again!
errmsgs are still emitted on warning generation, because warnings do not
usually lead to a failure propagated up to the caller and reported
there.
Debug-stream messages are not translated. If translation is turned on,
there will be a mixture of English and translated messages in the debug
stream, but rather that than burden the translators with debug-only
output.
binutils/ChangeLog
2020-08-27 Nick Alcock <nick.alcock@oracle.com>
* objdump.c (dump_ctf_archive_member): Move error-
reporting...
(dump_ctf_errs): ... into this separate function.
(dump_ctf): Call it on open errors.
* readelf.c (dump_ctf_archive_member): Move error-
reporting...
(dump_ctf_errs): ... into this separate function. Support
calls with NULL fp. Adjust for new err parameter to
ctf_errwarning_next.
(dump_section_as_ctf): Call it on open errors.
include/ChangeLog
2020-08-27 Nick Alcock <nick.alcock@oracle.com>
* ctf-api.h (ctf_errwarning_next): New err parameter.
ld/ChangeLog
2020-08-27 Nick Alcock <nick.alcock@oracle.com>
* ldlang.c (lang_ctf_errs_warnings): Support calls with NULL fp.
Adjust for new err parameter to ctf_errwarning_next. Only
check for assertion failures when fp is non-NULL.
(ldlang_open_ctf): Call it on open errors.
* testsuite/ld-ctf/ctf.exp: Always use the C locale to avoid
breaking the diags tests.
libctf/ChangeLog
2020-08-27 Nick Alcock <nick.alcock@oracle.com>
* ctf-subr.c (open_errors): New list.
(ctf_err_warn): Calls with NULL fp append to open_errors. Add err
parameter, and use it to decorate the debug stream with errmsgs.
(ctf_err_warn_to_open): Splice errors from a CTF dict into the
open_errors.
(ctf_errwarning_next): Calls with NULL fp report from open_errors.
New err param to report iteration errors (including end-of-iteration)
when fp is NULL.
(ctf_assert_fail_internal): Adjust ctf_err_warn call for new err
parameter: gettextize.
* ctf-impl.h (ctfo_get_vbytes): Add ctf_file_t parameter.
(LCTF_VBYTES): Adjust.
(ctf_err_warn_to_open): New.
(ctf_err_warn): Adjust.
(ctf_bundle): Used in only one place: move...
* ctf-create.c: ... here.
(enumcmp): Use ctf_err_warn, not ctf_dprintf, passing the err number
down as needed. Don't emit the errmsg. Gettextize.
(membcmp): Likewise.
(ctf_add_type_internal): Likewise.
(ctf_write_mem): Likewise.
(ctf_compress_write): Likewise. Report errors writing the header or
body.
(ctf_write): Likewise.
* ctf-archive.c (ctf_arc_write_fd): Use ctf_err_warn, not
ctf_dprintf, and gettextize, as above.
(ctf_arc_write): Likewise.
(ctf_arc_bufopen): Likewise.
(ctf_arc_open_internal): Likewise.
* ctf-labels.c (ctf_label_iter): Likewise.
* ctf-open-bfd.c (ctf_bfdclose): Likewise.
(ctf_bfdopen): Likewise.
(ctf_bfdopen_ctfsect): Likewise.
(ctf_fdopen): Likewise.
* ctf-string.c (ctf_str_write_strtab): Likewise.
* ctf-types.c (ctf_type_resolve): Likewise.
* ctf-open.c (get_vbytes_common): Likewise. Pass down the ctf dict.
(get_vbytes_v1): Pass down the ctf dict.
(get_vbytes_v2): Likewise.
(flip_ctf): Likewise.
(flip_types): Likewise. Use ctf_err_warn, not ctf_dprintf, and
gettextize, as above.
(upgrade_types_v1): Adjust calls.
(init_types): Use ctf_err_warn, not ctf_dprintf, as above.
(ctf_bufopen_internal): Likewise. Adjust calls. Transplant errors
emitted into individual dicts into the open errors if this turns
out to be a failed open in the end.
* ctf-dump.c (ctf_dump_format_type): Adjust ctf_err_warn for new err
argument. Gettextize. Don't emit the errmsg.
(ctf_dump_funcs): Likewise. Collapse err label into its only case.
(ctf_dump_type): Likewise.
* ctf-link.c (ctf_create_per_cu): Adjust ctf_err_warn for new err
argument. Gettextize. Don't emit the errmsg.
(ctf_link_one_type): Likewise.
(ctf_link_lazy_open): Likewise.
(ctf_link_one_input_archive): Likewise.
(ctf_link_deduplicating_count_inputs): Likewise.
(ctf_link_deduplicating_open_inputs): Likewise.
(ctf_link_deduplicating_close_inputs): Likewise.
(ctf_link_deduplicating): Likewise.
(ctf_link): Likewise.
(ctf_link_deduplicating_per_cu): Likewise. Add some missed
ctf_set_errnos to obscure error cases.
* ctf-dedup.c (ctf_dedup_rhash_type): Adjust ctf_err_warn for new
err argument. Gettextize. Don't emit the errmsg.
(ctf_dedup_populate_mappings): Likewise.
(ctf_dedup_detect_name_ambiguity): Likewise.
(ctf_dedup_init): Likewise.
(ctf_dedup_multiple_input_dicts): Likewise.
(ctf_dedup_conflictify_unshared): Likewise.
(ctf_dedup): Likewise.
(ctf_dedup_rwalk_one_output_mapping): Likewise.
(ctf_dedup_id_to_target): Likewise.
(ctf_dedup_emit_type): Likewise.
(ctf_dedup_emit_struct_members): Likewise.
(ctf_dedup_populate_type_mapping): Likewise.
(ctf_dedup_populate_type_mappings): Likewise.
(ctf_dedup_emit): Likewise.
(ctf_dedup_hash_type): Likewise. Fix a bit of messed-up error
status setting.
(ctf_dedup_rwalk_one_output_mapping): Likewise. Don't hide
unknown-type-kind messages (which signify file corruption).
2020-07-27 23:45:15 +08:00
|
|
|
const char *, ...);
|
libctf, include, binutils, gdb, ld: rename ctf_file_t to ctf_dict_t
The naming of the ctf_file_t type in libctf is a historical curiosity.
Back in the Solaris days, CTF dictionaries were originally generated as
a separate file and then (sometimes) merged into objects: hence the
datatype was named ctf_file_t, and known as a "CTF file". Nowadays, raw
CTF is essentially never written to a file on its own, and the datatype
changed name to a "CTF dictionary" years ago. So the term "CTF file"
refers to something that is never a file! This is at best confusing.
The type has also historically been known as a 'CTF container", which is
even more confusing now that we have CTF archives which are *also* a
sort of container (they contain CTF dictionaries), but which are never
referred to as containers in the source code.
So fix this by completing the renaming, renaming ctf_file_t to
ctf_dict_t throughout, and renaming those few functions that refer to
CTF files by name (keeping compatibility aliases) to refer to dicts
instead. Old users who still refer to ctf_file_t will see (harmless)
pointer-compatibility warnings at compile time, but the ABI is unchanged
(since C doesn't mangle names, and ctf_file_t was always an opaque type)
and things will still compile fine as long as -Werror is not specified.
All references to CTF containers and CTF files in the source code are
fixed to refer to CTF dicts instead.
Further (smaller) renamings of annoyingly-named functions to come, as
part of the process of souping up queries across whole archives at once
(needed for the function info and data object sections).
binutils/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* objdump.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_ctf): Likewise. Use ctf_dict_close, not ctf_file_close.
* readelf.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_section_as_ctf): Likewise. Use ctf_dict_close, not
ctf_file_close.
gdb/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctfread.c: Change uses of ctf_file_t to ctf_dict_t.
(ctf_fp_info::~ctf_fp_info): Call ctf_dict_close, not ctf_file_close.
include/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-api.h (ctf_file_t): Rename to...
(ctf_dict_t): ... this. Keep ctf_file_t around for compatibility.
(struct ctf_file): Likewise rename to...
(struct ctf_dict): ... this.
(ctf_file_close): Rename to...
(ctf_dict_close): ... this, keeping compatibility function.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this, keeping compatibility function.
All callers adjusted.
* ctf.h: Rename references to ctf_file_t to ctf_dict_t.
(struct ctf_archive) <ctfa_nfiles>: Rename to...
<ctfa_ndicts>: ... this.
ld/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ldlang.c (ctf_output): This is a ctf_dict_t now.
(lang_ctf_errs_warnings): Rename ctf_file_t to ctf_dict_t.
(ldlang_open_ctf): Adjust comment.
(lang_merge_ctf): Use ctf_dict_close, not ctf_file_close.
* ldelfgen.h (ldelf_examine_strtab_for_ctf): Rename ctf_file_t to
ctf_dict_t. Change opaque declaration accordingly.
* ldelfgen.c (ldelf_examine_strtab_for_ctf): Adjust.
* ldemul.h (examine_strtab_for_ctf): Likewise.
(ldemul_examine_strtab_for_ctf): Likewise.
* ldeuml.c (ldemul_examine_strtab_for_ctf): Likewise.
libctf/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h: Rename ctf_file_t to ctf_dict_t: all declarations
adjusted.
(ctf_fileops): Rename to...
(ctf_dictops): ... this.
(ctf_dedup_t) <cd_id_to_file_t>: Rename to...
<cd_id_to_dict_t>: ... this.
(ctf_file_t): Fix outdated comment.
<ctf_fileops>: Rename to...
<ctf_dictops>: ... this.
(struct ctf_archive_internal) <ctfi_file>: Rename to...
<ctfi_dict>: ... this.
* ctf-archive.c: Rename ctf_file_t to ctf_dict_t.
Rename ctf_archive.ctfa_nfiles to ctfa_ndicts.
Rename ctf_file_close to ctf_dict_close. All users adjusted.
* ctf-create.c: Likewise. Refer to CTF dicts, not CTF containers.
(ctf_bundle_t) <ctb_file>: Rename to...
<ctb_dict): ... this.
* ctf-decl.c: Rename ctf_file_t to ctf_dict_t.
* ctf-dedup.c: Likewise. Rename ctf_file_close to
ctf_dict_close. Refer to CTF dicts, not CTF containers.
* ctf-dump.c: Likewise.
* ctf-error.c: Likewise.
* ctf-hash.c: Likewise.
* ctf-inlines.h: Likewise.
* ctf-labels.c: Likewise.
* ctf-link.c: Likewise.
* ctf-lookup.c: Likewise.
* ctf-open-bfd.c: Likewise.
* ctf-string.c: Likewise.
* ctf-subr.c: Likewise.
* ctf-types.c: Likewise.
* ctf-util.c: Likewise.
* ctf-open.c: Likewise.
(ctf_file_close): Rename to...
(ctf_dict_close): ...this.
(ctf_file_close): New trivial wrapper around ctf_dict_close, for
compatibility.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this.
(ctf_parent_file): New trivial wrapper around ctf_parent_dict, for
compatibility.
* libctf.ver: Add ctf_dict_close and ctf_parent_dict.
2020-11-20 21:34:04 +08:00
|
|
|
extern void ctf_err_warn_to_open (ctf_dict_t *);
|
|
|
|
extern void ctf_assert_fail_internal (ctf_dict_t *, const char *,
|
libctf, ld, binutils: add textual error/warning reporting for libctf
This commit adds a long-missing piece of infrastructure to libctf: the
ability to report errors and warnings using all the power of printf,
rather than being restricted to one errno value. Internally, libctf
calls ctf_err_warn() to add errors and warnings to a list: a new
iterator ctf_errwarning_next() then consumes this list one by one and
hands it to the caller, which can free it. New errors and warnings are
added until the list is consumed by the caller or the ctf_file_t is
closed, so you can dump them at intervals. The caller can of course
choose to print only those warnings it wants. (I am not sure whether we
want objdump, readelf or ld to print warnings or not: right now I'm
printing them, but maybe we only want to print errors? This entirely
depends on whether warnings are voluminous things describing e.g. the
inability to emit single types because of name clashes or something.
There are no users of this infrastructure yet, so it's hard to say.)
There is no internationalization here yet, but this at least adds a
place where internationalization can be added, to one of
ctf_errwarning_next or ctf_err_warn.
We also provide a new ctf_assert() function which uses this
infrastructure to provide non-fatal assertion failures while emitting an
assert-like string to the caller: to save space and avoid needlessly
duplicating unchanging strings, the assertion test is inlined but the
print-things-out failure case is not. All assertions in libctf will be
converted to use this machinery in future commits and propagate
assertion-failure errors up, so that the linker in particular cannot be
killed by libctf assertion failures when it could perfectly well just
print warnings and drop the CTF section.
include/
* ctf-api.h (ECTF_INTERNAL): Adjust error text.
(ctf_errwarning_next): New.
libctf/
* ctf-impl.h (ctf_assert): New.
(ctf_err_warning_t): Likewise.
(ctf_file_t) <ctf_errs_warnings>: Likewise.
(ctf_err_warn): New prototype.
(ctf_assert_fail_internal): Likewise.
* ctf-inlines.h (ctf_assert_internal): Likewise.
* ctf-open.c (ctf_file_close): Free ctf_errs_warnings.
* ctf-create.c (ctf_serialize): Copy it on serialization.
* ctf-subr.c (ctf_err_warn): New, add an error/warning.
(ctf_errwarning_next): New iterator, free and pass back
errors/warnings in succession.
* libctf.ver (ctf_errwarning_next): Add.
ld/
* ldlang.c (lang_ctf_errs_warnings): New, print CTF errors
and warnings. Assert when libctf asserts.
(lang_merge_ctf): Call it.
(land_write_ctf): Likewise.
binutils/
* objdump.c (ctf_archive_member): Print CTF errors and warnings.
* readelf.c (dump_ctf_archive_member): Likewise.
2020-06-04 22:07:54 +08:00
|
|
|
size_t, const char *);
|
libctf, include, binutils, gdb, ld: rename ctf_file_t to ctf_dict_t
The naming of the ctf_file_t type in libctf is a historical curiosity.
Back in the Solaris days, CTF dictionaries were originally generated as
a separate file and then (sometimes) merged into objects: hence the
datatype was named ctf_file_t, and known as a "CTF file". Nowadays, raw
CTF is essentially never written to a file on its own, and the datatype
changed name to a "CTF dictionary" years ago. So the term "CTF file"
refers to something that is never a file! This is at best confusing.
The type has also historically been known as a 'CTF container", which is
even more confusing now that we have CTF archives which are *also* a
sort of container (they contain CTF dictionaries), but which are never
referred to as containers in the source code.
So fix this by completing the renaming, renaming ctf_file_t to
ctf_dict_t throughout, and renaming those few functions that refer to
CTF files by name (keeping compatibility aliases) to refer to dicts
instead. Old users who still refer to ctf_file_t will see (harmless)
pointer-compatibility warnings at compile time, but the ABI is unchanged
(since C doesn't mangle names, and ctf_file_t was always an opaque type)
and things will still compile fine as long as -Werror is not specified.
All references to CTF containers and CTF files in the source code are
fixed to refer to CTF dicts instead.
Further (smaller) renamings of annoyingly-named functions to come, as
part of the process of souping up queries across whole archives at once
(needed for the function info and data object sections).
binutils/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* objdump.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_ctf): Likewise. Use ctf_dict_close, not ctf_file_close.
* readelf.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_section_as_ctf): Likewise. Use ctf_dict_close, not
ctf_file_close.
gdb/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctfread.c: Change uses of ctf_file_t to ctf_dict_t.
(ctf_fp_info::~ctf_fp_info): Call ctf_dict_close, not ctf_file_close.
include/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-api.h (ctf_file_t): Rename to...
(ctf_dict_t): ... this. Keep ctf_file_t around for compatibility.
(struct ctf_file): Likewise rename to...
(struct ctf_dict): ... this.
(ctf_file_close): Rename to...
(ctf_dict_close): ... this, keeping compatibility function.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this, keeping compatibility function.
All callers adjusted.
* ctf.h: Rename references to ctf_file_t to ctf_dict_t.
(struct ctf_archive) <ctfa_nfiles>: Rename to...
<ctfa_ndicts>: ... this.
ld/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ldlang.c (ctf_output): This is a ctf_dict_t now.
(lang_ctf_errs_warnings): Rename ctf_file_t to ctf_dict_t.
(ldlang_open_ctf): Adjust comment.
(lang_merge_ctf): Use ctf_dict_close, not ctf_file_close.
* ldelfgen.h (ldelf_examine_strtab_for_ctf): Rename ctf_file_t to
ctf_dict_t. Change opaque declaration accordingly.
* ldelfgen.c (ldelf_examine_strtab_for_ctf): Adjust.
* ldemul.h (examine_strtab_for_ctf): Likewise.
(ldemul_examine_strtab_for_ctf): Likewise.
* ldeuml.c (ldemul_examine_strtab_for_ctf): Likewise.
libctf/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h: Rename ctf_file_t to ctf_dict_t: all declarations
adjusted.
(ctf_fileops): Rename to...
(ctf_dictops): ... this.
(ctf_dedup_t) <cd_id_to_file_t>: Rename to...
<cd_id_to_dict_t>: ... this.
(ctf_file_t): Fix outdated comment.
<ctf_fileops>: Rename to...
<ctf_dictops>: ... this.
(struct ctf_archive_internal) <ctfi_file>: Rename to...
<ctfi_dict>: ... this.
* ctf-archive.c: Rename ctf_file_t to ctf_dict_t.
Rename ctf_archive.ctfa_nfiles to ctfa_ndicts.
Rename ctf_file_close to ctf_dict_close. All users adjusted.
* ctf-create.c: Likewise. Refer to CTF dicts, not CTF containers.
(ctf_bundle_t) <ctb_file>: Rename to...
<ctb_dict): ... this.
* ctf-decl.c: Rename ctf_file_t to ctf_dict_t.
* ctf-dedup.c: Likewise. Rename ctf_file_close to
ctf_dict_close. Refer to CTF dicts, not CTF containers.
* ctf-dump.c: Likewise.
* ctf-error.c: Likewise.
* ctf-hash.c: Likewise.
* ctf-inlines.h: Likewise.
* ctf-labels.c: Likewise.
* ctf-link.c: Likewise.
* ctf-lookup.c: Likewise.
* ctf-open-bfd.c: Likewise.
* ctf-string.c: Likewise.
* ctf-subr.c: Likewise.
* ctf-types.c: Likewise.
* ctf-util.c: Likewise.
* ctf-open.c: Likewise.
(ctf_file_close): Rename to...
(ctf_dict_close): ...this.
(ctf_file_close): New trivial wrapper around ctf_dict_close, for
compatibility.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this.
(ctf_parent_file): New trivial wrapper around ctf_parent_dict, for
compatibility.
* libctf.ver: Add ctf_dict_close and ctf_parent_dict.
2020-11-20 21:34:04 +08:00
|
|
|
extern const char *ctf_link_input_name (ctf_dict_t *);
|
libctf, ld, binutils: add textual error/warning reporting for libctf
This commit adds a long-missing piece of infrastructure to libctf: the
ability to report errors and warnings using all the power of printf,
rather than being restricted to one errno value. Internally, libctf
calls ctf_err_warn() to add errors and warnings to a list: a new
iterator ctf_errwarning_next() then consumes this list one by one and
hands it to the caller, which can free it. New errors and warnings are
added until the list is consumed by the caller or the ctf_file_t is
closed, so you can dump them at intervals. The caller can of course
choose to print only those warnings it wants. (I am not sure whether we
want objdump, readelf or ld to print warnings or not: right now I'm
printing them, but maybe we only want to print errors? This entirely
depends on whether warnings are voluminous things describing e.g. the
inability to emit single types because of name clashes or something.
There are no users of this infrastructure yet, so it's hard to say.)
There is no internationalization here yet, but this at least adds a
place where internationalization can be added, to one of
ctf_errwarning_next or ctf_err_warn.
We also provide a new ctf_assert() function which uses this
infrastructure to provide non-fatal assertion failures while emitting an
assert-like string to the caller: to save space and avoid needlessly
duplicating unchanging strings, the assertion test is inlined but the
print-things-out failure case is not. All assertions in libctf will be
converted to use this machinery in future commits and propagate
assertion-failure errors up, so that the linker in particular cannot be
killed by libctf assertion failures when it could perfectly well just
print warnings and drop the CTF section.
include/
* ctf-api.h (ECTF_INTERNAL): Adjust error text.
(ctf_errwarning_next): New.
libctf/
* ctf-impl.h (ctf_assert): New.
(ctf_err_warning_t): Likewise.
(ctf_file_t) <ctf_errs_warnings>: Likewise.
(ctf_err_warn): New prototype.
(ctf_assert_fail_internal): Likewise.
* ctf-inlines.h (ctf_assert_internal): Likewise.
* ctf-open.c (ctf_file_close): Free ctf_errs_warnings.
* ctf-create.c (ctf_serialize): Copy it on serialization.
* ctf-subr.c (ctf_err_warn): New, add an error/warning.
(ctf_errwarning_next): New iterator, free and pass back
errors/warnings in succession.
* libctf.ver (ctf_errwarning_next): Add.
ld/
* ldlang.c (lang_ctf_errs_warnings): New, print CTF errors
and warnings. Assert when libctf asserts.
(lang_merge_ctf): Call it.
(land_write_ctf): Likewise.
binutils/
* objdump.c (ctf_archive_member): Print CTF errors and warnings.
* readelf.c (dump_ctf_archive_member): Likewise.
2020-06-04 22:07:54 +08:00
|
|
|
|
libctf: symbol type linking support
This adds facilities to write out the function info and data object
sections, which efficiently map from entries in the symbol table to
types. The write-side code is entirely new: the read-side code was
merely significantly changed and support for indexed tables added
(pointed to by the no-longer-unused cth_objtidxoff and cth_funcidxoff
header fields).
With this in place, you can use ctf_lookup_by_symbol to look up the
types of symbols of function and object type (and, as before, you can
use ctf_lookup_variable to look up types of file-scope variables not
present in the symbol table, as long as you know their name: but
variables that are also data objects are now found in the data object
section instead.)
(Compatible) file format change:
The CTF spec has always said that the function info section looks much
like the CTF_K_FUNCTIONs in the type section: an info word (including an
argument count) followed by a return type and N argument types. This
format is suboptimal: it means function symbols cannot be deduplicated
and it causes a lot of ugly code duplication in libctf. But
conveniently the compiler has never emitted this! Because it has always
emitted a rather different format that libctf has never accepted, we can
be sure that there are no instances of this function info section in the
wild, and can freely change its format without compatibility concerns or
a file format version bump. (And since it has never been emitted in any
code that generated any older file format version, either, we need keep
no code to read the format as specified at all!)
So the function info section is now specified as an array of uint32_t,
exactly like the object data section: each entry is a type ID in the
type section which must be of kind CTF_K_FUNCTION, the prototype of
this function.
This allows function types to be deduplicated and also correctly encodes
the fact that all functions declared in C really are types available to
the program: so they should be stored in the type section like all other
types. (In format v4, we will be able to represent the types of static
functions as well, but that really does require a file format change.)
We introduce a new header flag, CTF_F_NEWFUNCINFO, which is set if the
new function info format is in use. A sufficiently new compiler will
always set this flag. New libctf will always set this flag: old libctf
will refuse to open any CTF dicts that have this flag set. If the flag
is not set on a dict being read in, new libctf will disregard the
function info section. Format v4 will remove this flag (or, rather, the
flag has no meaning there and the bit position may be recycled for some
other purpose).
New API:
Symbol addition:
ctf_add_func_sym: Add a symbol with a given name and type. The
type must be of kind CTF_K_FUNCTION (a function
pointer). Internally this adds a name -> type
mapping to the ctf_funchash in the ctf_dict.
ctf_add_objt_sym: Add a symbol with a given name and type. The type
kind can be anything, including function pointers.
This adds to ctf_objthash.
These both treat symbols as name -> type mappings: the linker associates
symbol names with symbol indexes via the ctf_link_shuffle_syms callback,
which sets up the ctf_dynsyms/ctf_dynsymidx/ctf_dynsymmax fields in the
ctf_dict. Repeated relinks can add more symbols.
Variables that are also exposed as symbols are removed from the variable
section at serialization time.
CTF symbol type sections which have enough pads, defined by
CTF_INDEX_PAD_THRESHOLD (whether because they are in dicts with symbols
where most types are unknown, or in archive where most types are defined
in some child or parent dict, not in this specific dict) are sorted by
name rather than symidx and accompanied by an index which associates
each symbol type entry with a name: the existing ctf_lookup_by_symbol
will map symbol indexes to symbol names and look the names up in the
index automatically. (This is currently ELF-symbol-table-dependent, but
there is almost nothing specific to ELF in here and we can add support
for other symbol table formats easily).
The compiler also uses index sections to communicate the contents of
object file symbol tables without relying on any specific ordering of
symbols: it doesn't need to sort them, and libctf will detect an
unsorted index section via the absence of the new CTF_F_IDXSORTED header
flag, and sort it if needed.
Iteration:
ctf_symbol_next: Iterator which returns the types and names of symbols
one by one, either for function or data symbols.
This does not require any sorting: the ctf_link machinery uses it to
pull in all the compiler-provided symbols cheaply, but it is not
restricted to that use.
(Compatible) changes in API:
ctf_lookup_by_symbol: can now be called for object and function
symbols: never returns ECTF_NOTDATA (which is
now not thrown by anything, but is kept for
compatibility and because it is a plausible
error that we might start throwing again at some
later date).
Internally we also have changes to the ctf-string functionality so that
"external" strings (those where we track a string -> offset mapping, but
only write out an offset) can be consulted via the usual means
(ctf_strptr) before the strtab is written out. This is important
because ctf_link_add_linker_symbol can now be handed symbols named via
strtab offsets, and ctf_link_shuffle_syms must figure out their actual
names by looking in the external symtab we have just been fed by the
ctf_link_add_strtab callback, long before that strtab is written out.
include/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-api.h (ctf_symbol_next): New.
(ctf_add_objt_sym): Likewise.
(ctf_add_func_sym): Likewise.
* ctf.h: Document new function info section format.
(CTF_F_NEWFUNCINFO): New.
(CTF_F_IDXSORTED): New.
(CTF_F_MAX): Adjust accordingly.
libctf/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h (CTF_INDEX_PAD_THRESHOLD): New.
(_libctf_nonnull_): Likewise.
(ctf_in_flight_dynsym_t): New.
(ctf_dict_t) <ctf_funcidx_names>: Likewise.
<ctf_objtidx_names>: Likewise.
<ctf_nfuncidx>: Likewise.
<ctf_nobjtidx>: Likewise.
<ctf_funcidx_sxlate>: Likewise.
<ctf_objtidx_sxlate>: Likewise.
<ctf_objthash>: Likewise.
<ctf_funchash>: Likewise.
<ctf_dynsyms>: Likewise.
<ctf_dynsymidx>: Likewise.
<ctf_dynsymmax>: Likewise.
<ctf_in_flight_dynsym>: Likewise.
(struct ctf_next) <u.ctn_next>: Likewise.
(ctf_symtab_skippable): New prototype.
(ctf_add_funcobjt_sym): Likewise.
(ctf_dynhash_sort_by_name): Likewise.
(ctf_sym_to_elf64): Rename to...
(ctf_elf32_to_link_sym): ... this, and...
(ctf_elf64_to_link_sym): ... this.
* ctf-open.c (init_symtab): Check for lack of CTF_F_NEWFUNCINFO
flag, and presence of index sections. Refactor out
ctf_symtab_skippable and ctf_elf*_to_link_sym, and use them. Use
ctf_link_sym_t, not Elf64_Sym. Skip initializing objt or func
sxlate sections if corresponding index section is present. Adjust
for new func info section format.
(ctf_bufopen_internal): Add ctf_err_warn to corrupt-file error
handling. Report incorrect-length index sections. Always do an
init_symtab, even if there is no symtab section (there may be index
sections still).
(flip_objts): Adjust comment: func and objt sections are actually
identical in structure now, no need to caveat.
(ctf_dict_close): Free newly-added data structures.
* ctf-create.c (ctf_create): Initialize them.
(ctf_symtab_skippable): New, refactored out of
init_symtab, with st_nameidx_set check added.
(ctf_add_funcobjt_sym): New, add a function or object symbol to the
ctf_objthash or ctf_funchash, by name.
(ctf_add_objt_sym): Call it.
(ctf_add_func_sym): Likewise.
(symtypetab_delete_nonstatic_vars): New, delete vars also present as
data objects.
(CTF_SYMTYPETAB_EMIT_FUNCTION): New flag to symtypetab emitters:
this is a function emission, not a data object emission.
(CTF_SYMTYPETAB_EMIT_PAD): New flag to symtypetab emitters: emit
pads for symbols with no type (only set for unindexed sections).
(CTF_SYMTYPETAB_FORCE_INDEXED): New flag to symtypetab emitters:
always emit indexed.
(symtypetab_density): New, figure out section sizes.
(emit_symtypetab): New, emit a symtypetab.
(emit_symtypetab_index): New, emit a symtypetab index.
(ctf_serialize): Call them, emitting suitably sorted symtypetab
sections and indexes. Set suitable header flags. Copy over new
fields.
* ctf-hash.c (ctf_dynhash_sort_by_name): New, used to impose an
order on symtypetab index sections.
* ctf-link.c (ctf_add_type_mapping): Delete erroneous comment
relating to code that was never committed.
(ctf_link_one_variable): Improve variable name.
(check_sym): New, symtypetab analogue of check_variable.
(ctf_link_deduplicating_one_symtypetab): New.
(ctf_link_deduplicating_syms): Likewise.
(ctf_link_deduplicating): Call them.
(ctf_link_deduplicating_per_cu): Note that we don't call them in
this case (yet).
(ctf_link_add_strtab): Set the error on the fp correctly.
(ctf_link_add_linker_symbol): New (no longer a do-nothing stub), add
a linker symbol to the in-flight list.
(ctf_link_shuffle_syms): New (no longer a do-nothing stub), turn the
in-flight list into a mapping we can use, now its names are
resolvable in the external strtab.
* ctf-string.c (ctf_str_rollback_atom): Don't roll back atoms with
external strtab offsets.
(ctf_str_rollback): Adjust comment.
(ctf_str_write_strtab): Migrate ctf_syn_ext_strtab population from
writeout time...
(ctf_str_add_external): ... to string addition time.
* ctf-lookup.c (ctf_lookup_var_key_t): Rename to...
(ctf_lookup_idx_key_t): ... this, now we use it for syms too.
<clik_names>: New member, a name table.
(ctf_lookup_var): Adjust accordingly.
(ctf_lookup_variable): Likewise.
(ctf_lookup_by_id): Shuffle further up in the file.
(ctf_symidx_sort_arg_cb): New, callback for...
(sort_symidx_by_name): ... this new function to sort a symidx
found to be unsorted (likely originating from the compiler).
(ctf_symidx_sort): New, sort a symidx.
(ctf_lookup_symbol_name): Support dynamic symbols with indexes
provided by the linker. Use ctf_link_sym_t, not Elf64_Sym.
Check the parent if a child lookup fails.
(ctf_lookup_by_symbol): Likewise. Work for function symbols too.
(ctf_symbol_next): New, iterate over symbols with types (without
sorting).
(ctf_lookup_idx_name): New, bsearch for symbol names in indexes.
(ctf_try_lookup_indexed): New, attempt an indexed lookup.
(ctf_func_info): Reimplement in terms of ctf_lookup_by_symbol.
(ctf_func_args): Likewise.
(ctf_get_dict): Move...
* ctf-types.c (ctf_get_dict): ... here.
* ctf-util.c (ctf_sym_to_elf64): Re-express as...
(ctf_elf64_to_link_sym): ... this. Add new st_symidx field, and
st_nameidx_set (always 0, so st_nameidx can be ignored). Look in
the ELF strtab for names.
(ctf_elf32_to_link_sym): Likewise, for Elf32_Sym.
(ctf_next_destroy): Destroy ctf_next_t.u.ctn_next if need be.
* libctf.ver: Add ctf_symbol_next, ctf_add_objt_sym and
ctf_add_func_sym.
2020-11-20 21:34:04 +08:00
|
|
|
extern ctf_link_sym_t *ctf_elf32_to_link_sym (ctf_dict_t *fp, ctf_link_sym_t *dst,
|
|
|
|
const Elf32_Sym *src, uint32_t symidx);
|
|
|
|
extern ctf_link_sym_t *ctf_elf64_to_link_sym (ctf_dict_t *fp, ctf_link_sym_t *dst,
|
|
|
|
const Elf64_Sym *src, uint32_t symidx);
|
2019-04-24 04:45:30 +08:00
|
|
|
|
2019-04-24 05:24:13 +08:00
|
|
|
/* Variables, all underscore-prepended. */
|
|
|
|
|
libctf: ELF file opening via BFD
These functions let you open an ELF file with a customarily-named CTF
section in it, automatically opening the CTF file or archive and
associating the symbol and string tables in the ELF file with the CTF
container, so that you can look up the types of symbols in the ELF file
via ctf_lookup_by_symbol(), and so that strings can be shared between
the ELF file and CTF container, to save space.
It uses BFD machinery to do so. This has now been lightly tested and
seems to work. In particular, if you already have a bfd you can pass
it in to ctf_bfdopen(), and if you want a bfd made for you you can
call ctf_open() or ctf_fdopen(), optionally specifying a target (or
try once without a target and then again with one if you get
ECTF_BFD_AMBIGUOUS back).
We use a forward declaration for the struct bfd in ctf-api.h, so that
ctf-api.h users are not required to pull in <bfd.h>. (This is mostly
for the sake of readelf.)
libctf/
* ctf-open-bfd.c: New file.
* ctf-open.c (ctf_close): New.
* ctf-impl.h: Include bfd.h.
(ctf_file): New members ctf_data_mmapped, ctf_data_mmapped_len.
(ctf_archive_internal): New members ctfi_abfd, ctfi_data,
ctfi_bfd_close.
(ctf_bfdopen_ctfsect): New declaration.
(_CTF_SECTION): likewise.
include/
* ctf-api.h (struct bfd): New forward.
(ctf_fdopen): New.
(ctf_bfdopen): Likewise.
(ctf_open): Likewise.
(ctf_arc_open): Likewise.
2019-04-24 17:46:39 +08:00
|
|
|
extern const char _CTF_SECTION[]; /* name of CTF ELF section */
|
2019-04-24 05:24:13 +08:00
|
|
|
extern const char _CTF_NULLSTR[]; /* empty string */
|
|
|
|
|
2019-04-24 18:26:42 +08:00
|
|
|
extern int _libctf_version; /* library client version */
|
2019-04-24 01:55:27 +08:00
|
|
|
extern int _libctf_debug; /* debugging messages enabled */
|
|
|
|
|
2020-06-03 04:31:45 +08:00
|
|
|
#include "ctf-inlines.h"
|
|
|
|
|
2019-04-24 01:55:27 +08:00
|
|
|
#ifdef __cplusplus
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#endif /* _CTF_IMPL_H */
|