binutils-gdb/gdb/remote-hms.c

1632 lines
33 KiB
C
Raw Normal View History

/* Remote debugging interface for Hitachi HMS Monitor Version 1.0
Copyright 1992, 1993, 1994 Free Software Foundation, Inc.
Contributed by Cygnus Support. Written by Steve Chamberlain
(sac@cygnus.com).
1992-01-28 11:33:04 +08:00
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
#include "defs.h"
#include "inferior.h"
#include "wait.h"
#include "value.h"
#include <string.h>
1992-01-28 11:33:04 +08:00
#include <ctype.h>
#include <fcntl.h>
#include <signal.h>
#include <setjmp.h>
#include <errno.h>
#include "terminal.h"
#include "target.h"
#include "gdbcore.h"
1993-05-01 08:51:23 +08:00
#include "serial.h"
1992-01-28 11:33:04 +08:00
/* External data declarations */
extern int stop_soon_quietly; /* for wait_for_inferior */
1992-01-28 11:33:04 +08:00
/* Forward data declarations */
extern struct target_ops hms_ops; /* Forward declaration */
1992-01-28 11:33:04 +08:00
/* Forward function declarations */
static void hms_fetch_registers ();
static int hms_store_registers ();
1992-01-28 11:33:04 +08:00
static void hms_close ();
static int hms_clear_breakpoints ();
1992-01-28 11:33:04 +08:00
extern struct target_ops hms_ops;
static void hms_drain ();
static void add_commands ();
static void remove_commands ();
1992-01-28 11:33:04 +08:00
static int quiet = 1; /* FIXME - can be removed after Dec '94 */
1993-05-01 08:51:23 +08:00
serial_t desc;
/***********************************************************************/
/* Caching stuff stolen from remote-nindy.c */
/* The data cache records all the data read from the remote machine
since the last time it stopped.
Each cache block holds LINE_SIZE bytes of data
starting at a multiple-of-LINE_SIZE address. */
#define LINE_SIZE_POWER 4
#define LINE_SIZE (1<<LINE_SIZE_POWER) /* eg 1<<3 == 8 */
#define LINE_SIZE_MASK ((LINE_SIZE-1)) /* eg 7*2+1= 111*/
#define DCACHE_SIZE 64 /* Number of cache blocks */
#define XFORM(x) ((x&LINE_SIZE_MASK)>>2)
struct dcache_block
{
struct dcache_block *next, *last;
unsigned int addr; /* Address for which data is recorded. */
int data[LINE_SIZE / sizeof (int)];
};
struct dcache_block dcache_free, dcache_valid;
/* Free all the data cache blocks, thus discarding all cached data. */
static
void
dcache_flush ()
{
register struct dcache_block *db;
while ((db = dcache_valid.next) != &dcache_valid)
{
remque (db);
insque (db, &dcache_free);
}
}
/*
* If addr is present in the dcache, return the address of the block
* containing it.
*/
static
struct dcache_block *
dcache_hit (addr)
unsigned int addr;
{
register struct dcache_block *db;
if (addr & 3)
abort ();
/* Search all cache blocks for one that is at this address. */
db = dcache_valid.next;
while (db != &dcache_valid)
{
if ((addr & ~LINE_SIZE_MASK) == db->addr)
return db;
db = db->next;
}
return NULL;
}
/* Return the int data at address ADDR in dcache block DC. */
static
int
dcache_value (db, addr)
struct dcache_block *db;
unsigned int addr;
{
if (addr & 3)
abort ();
return (db->data[XFORM (addr)]);
}
/* Get a free cache block, put or keep it on the valid list,
and return its address. The caller should store into the block
the address and data that it describes, then remque it from the
free list and insert it into the valid list. This procedure
prevents errors from creeping in if a ninMemGet is interrupted
(which used to put garbage blocks in the valid list...). */
static
struct dcache_block *
dcache_alloc ()
{
register struct dcache_block *db;
if ((db = dcache_free.next) == &dcache_free)
{
/* If we can't get one from the free list, take last valid and put
it on the free list. */
db = dcache_valid.last;
remque (db);
insque (db, &dcache_free);
}
remque (db);
insque (db, &dcache_valid);
return (db);
}
/* Return the contents of the word at address ADDR in the remote machine,
using the data cache. */
static
int
dcache_fetch (addr)
CORE_ADDR addr;
{
register struct dcache_block *db;
db = dcache_hit (addr);
if (db == 0)
{
db = dcache_alloc ();
immediate_quit++;
hms_read_inferior_memory (addr & ~LINE_SIZE_MASK, (unsigned char *) db->data, LINE_SIZE);
immediate_quit--;
db->addr = addr & ~LINE_SIZE_MASK;
remque (db); /* Off the free list */
insque (db, &dcache_valid); /* On the valid list */
}
return (dcache_value (db, addr));
}
/* Write the word at ADDR both in the data cache and in the remote machine. */
static void
dcache_poke (addr, data)
CORE_ADDR addr;
int data;
{
register struct dcache_block *db;
/* First make sure the word is IN the cache. DB is its cache block. */
db = dcache_hit (addr);
if (db == 0)
{
db = dcache_alloc ();
immediate_quit++;
hms_write_inferior_memory (addr & ~LINE_SIZE_MASK, (unsigned char *) db->data, LINE_SIZE);
immediate_quit--;
db->addr = addr & ~LINE_SIZE_MASK;
remque (db); /* Off the free list */
insque (db, &dcache_valid); /* On the valid list */
}
/* Modify the word in the cache. */
db->data[XFORM (addr)] = data;
/* Send the changed word. */
immediate_quit++;
hms_write_inferior_memory (addr, (unsigned char *) &data, 4);
immediate_quit--;
}
/* The cache itself. */
struct dcache_block the_cache[DCACHE_SIZE];
/* Initialize the data cache. */
static void
dcache_init ()
{
register i;
register struct dcache_block *db;
db = the_cache;
dcache_free.next = dcache_free.last = &dcache_free;
dcache_valid.next = dcache_valid.last = &dcache_valid;
for (i = 0; i < DCACHE_SIZE; i++, db++)
insque (db, &dcache_free);
}
1992-01-28 11:33:04 +08:00
/***********************************************************************
* I/O stuff stolen from remote-eb.c
***********************************************************************/
static int timeout = 2;
1992-01-28 11:33:04 +08:00
static const char *dev_name;
1992-01-28 11:33:04 +08:00
/* Descriptor for I/O to remote machine. Initialize it to -1 so that
hms_open knows that we don't have a file open when the program
starts. */
static int before = 0xdead;
static int is_open = 0;
static int after = 0xdead;
1993-05-01 08:51:23 +08:00
int
check_open ()
1992-01-28 11:33:04 +08:00
{
if (before != 0xdead
|| after != 0xdead)
printf("OUTCH! \n");
if (!is_open)
{
error ("remote device not open");
}
1992-01-28 11:33:04 +08:00
}
#define ON 1
#define OFF 0
/* Read a character from the remote system, doing all the fancy
timeout stuff. */
static int
readchar ()
1992-01-28 11:33:04 +08:00
{
int buf;
1993-05-01 08:51:23 +08:00
buf = SERIAL_READCHAR (desc, timeout);
1993-05-01 08:51:23 +08:00
if (buf == SERIAL_TIMEOUT)
{
hms_write (".\r\n", 3);
error ("Timeout reading from remote system.");
}
if (buf == SERIAL_ERROR)
{
error ("Serial port error!");
}
if (!quiet || remote_debug)
printf_unfiltered ("%c", buf);
return buf & 0x7f;
1992-01-28 11:33:04 +08:00
}
static void flush()
{
while (1)
{
int b = SERIAL_READCHAR (desc, 0);
if (b == SERIAL_TIMEOUT)
return;
}
}
1992-01-28 11:33:04 +08:00
static int
readchar_nofail ()
1992-01-28 11:33:04 +08:00
{
int buf;
1993-05-01 08:51:23 +08:00
buf = SERIAL_READCHAR (desc, timeout);
if (buf == SERIAL_TIMEOUT)
buf = 0;
if (!quiet || remote_debug)
printf_unfiltered ("%c", buf);
1992-01-28 11:33:04 +08:00
return buf & 0x7f;
1992-01-28 11:33:04 +08:00
}
/* Keep discarding input from the remote system, until STRING is found.
1992-01-28 11:33:04 +08:00
Let the user break out immediately. */
static void
expect (string)
char *string;
{
char *p = string;
char c;
1992-01-28 11:33:04 +08:00
immediate_quit = 1;
while (1)
{
c = readchar();
if (c == *p)
1992-01-28 11:33:04 +08:00
{
p++;
if (*p == '\0')
{
immediate_quit = 0;
return;
}
}
else
{
p = string;
if (c == *p)
p++;
}
1992-01-28 11:33:04 +08:00
}
}
/* Keep discarding input until we see the hms prompt.
The convention for dealing with the prompt is that you
o give your command
o *then* wait for the prompt.
Thus the last thing that a procedure does with the serial line
will be an expect_prompt(). Exception: hms_resume does not
wait for the prompt, because the terminal is being handed over
to the inferior. However, the next thing which happens after that
is a hms_wait which does wait for the prompt.
Note that this includes abnormal exit, e.g. error(). This is
necessary to prevent getting into states from which we can't
recover. */
static void
expect_prompt ()
{
expect ("HMS>");
}
/* Get a hex digit from the remote system & return its value.
If ignore_space is nonzero, ignore spaces (not newline, tab, etc). */
static int
get_hex_digit (ignore_space)
int ignore_space;
{
int ch;
1992-01-28 11:33:04 +08:00
while (1)
{
ch = readchar ();
if (ch >= '0' && ch <= '9')
return ch - '0';
else if (ch >= 'A' && ch <= 'F')
return ch - 'A' + 10;
else if (ch >= 'a' && ch <= 'f')
return ch - 'a' + 10;
else if (ch == ' ' && ignore_space)
;
else
{
expect_prompt ();
error ("Invalid hex digit from remote system.");
}
}
}
/* Get a byte from hms_desc and put it in *BYT. Accept any number
leading spaces. */
static void
get_hex_byte (byt)
char *byt;
{
int val;
val = get_hex_digit (1) << 4;
val |= get_hex_digit (0);
*byt = val;
}
/* Read a 32-bit hex word from the hms, preceded by a space */
static long
get_hex_word ()
1992-01-28 11:33:04 +08:00
{
long val;
int j;
1992-01-28 11:33:04 +08:00
val = 0;
for (j = 0; j < 8; j++)
val = (val << 4) + get_hex_digit (j == 0);
1992-01-28 11:33:04 +08:00
return val;
}
/* Called when SIGALRM signal sent due to alarm() timeout. */
1992-01-28 11:33:04 +08:00
/* Number of SIGTRAPs we need to simulate. That is, the next
NEED_ARTIFICIAL_TRAP calls to hms_wait should just return
SIGTRAP without actually waiting for anything. */
static int need_artificial_trap = 0;
void
hms_kill (arg, from_tty)
char *arg;
int from_tty;
1992-01-28 11:33:04 +08:00
{
}
1992-01-28 11:33:04 +08:00
/*
* Download a file specified in 'args', to the hms.
1992-01-28 11:33:04 +08:00
*/
static void
hms_load (args, fromtty)
char *args;
int fromtty;
1992-01-28 11:33:04 +08:00
{
bfd *abfd;
1992-01-28 11:33:04 +08:00
asection *s;
int n;
char buffer[1024];
check_open ();
dcache_flush ();
inferior_pid = 0;
abfd = bfd_openr (args, gnutarget);
if (!abfd)
{
printf_filtered ("Unable to open file %s\n", args);
return;
}
1992-01-28 11:33:04 +08:00
if (bfd_check_format (abfd, bfd_object) == 0)
{
printf_filtered ("File is not an object file\n");
return;
}
1992-01-28 11:33:04 +08:00
s = abfd->sections;
while (s != (asection *) NULL)
1992-01-28 11:33:04 +08:00
{
if (s->flags & SEC_LOAD)
{
int i;
1992-01-28 11:33:04 +08:00
#define DELTA 1024
char *buffer = xmalloc (DELTA);
printf_filtered ("%s\t: 0x%4x .. 0x%4x ", s->name, s->vma, s->vma + s->_raw_size);
for (i = 0; i < s->_raw_size; i += DELTA)
{
int delta = DELTA;
if (delta > s->_raw_size - i)
delta = s->_raw_size - i;
bfd_get_section_contents (abfd, s, buffer, i, delta);
hms_write_inferior_memory (s->vma + i, buffer, delta);
printf_filtered ("*");
gdb_flush (gdb_stdout);
}
printf_filtered ("\n");
free (buffer);
}
s = s->next;
1992-01-28 11:33:04 +08:00
}
sprintf (buffer, "r PC=%x", abfd->start_address);
hms_write_cr (buffer);
expect_prompt ();
/* Turn off all breakpoints */
hms_write_cr ("b -");
expect_prompt ();
1992-01-28 11:33:04 +08:00
}
/* This is called not only when we first attach, but also when the
user types "run" after having attached. */
void
hms_create_inferior (execfile, args, env)
char *execfile;
char *args;
char **env;
{
int entry_pt;
char buffer[100];
1992-01-28 11:33:04 +08:00
if (args && *args)
error ("Can't pass arguments to remote hms process.");
1992-01-28 11:33:04 +08:00
if (execfile == 0 || exec_bfd == 0)
error ("No exec file specified");
1992-01-28 11:33:04 +08:00
entry_pt = (int) bfd_get_start_address (exec_bfd);
check_open ();
hms_kill (NULL, NULL);
hms_clear_breakpoints ();
init_wait_for_inferior ();
hms_write_cr ("");
expect_prompt ();
1992-01-28 11:33:04 +08:00
insert_breakpoints (); /* Needed to get correct instruction in cache */
proceed (entry_pt, TARGET_SIGNAL_DEFAULT, 0);
1992-01-28 11:33:04 +08:00
}
/* Open a connection to a remote debugger.
NAME is the filename used for communication, then a space,
then the baud rate.
*/
static char *
find_end_of_word (s)
char *s;
1992-01-28 11:33:04 +08:00
{
while (*s && !isspace (*s))
s++;
1992-01-28 11:33:04 +08:00
return s;
}
static char *
get_word (p)
char **p;
1992-01-28 11:33:04 +08:00
{
char *s = *p;
char *word;
1992-01-28 11:33:04 +08:00
char *copy;
size_t len;
while (isspace (*s))
s++;
1992-01-28 11:33:04 +08:00
word = s;
len = 0;
while (*s && !isspace (*s))
{
s++;
len++;
}
copy = xmalloc (len + 1);
memcpy (copy, word, len);
1992-01-28 11:33:04 +08:00
copy[len] = 0;
*p = s;
return copy;
}
static int baudrate = 9600;
static int
is_baudrate_right ()
{
int ok;
/* Put this port into NORMAL mode, send the 'normal' character */
hms_write ("\001", 1); /* Control A */
hms_write ("\r\n", 2); /* Cr */
while (1)
{
1993-05-01 08:51:23 +08:00
ok = SERIAL_READCHAR (desc, timeout);
if (ok < 0)
break;
}
hms_write ("r", 1);
if (readchar_nofail () == 'r')
return 1;
/* Not the right baudrate, or the board's not on */
return 0;
}
static void
set_rate ()
{
1993-05-01 08:51:23 +08:00
if (!SERIAL_SETBAUDRATE (desc, baudrate))
error ("Can't set baudrate");
}
1992-01-28 11:33:04 +08:00
static void
hms_open (name, from_tty)
char *name;
int from_tty;
{
unsigned int prl;
char *p;
if (name == 0)
{
name = "";
}
if (is_open)
hms_close (0);
1993-05-01 08:51:23 +08:00
dev_name = strdup (name);
if (!(desc = SERIAL_OPEN (dev_name)))
perror_with_name ((char *) dev_name);
1993-05-01 08:51:23 +08:00
SERIAL_RAW (desc);
is_open = 1;
push_target (&hms_ops);
dcache_init ();
1992-01-28 11:33:04 +08:00
/* Hello? Are you there? */
SERIAL_WRITE (desc, "\r\n", 2);
1992-01-28 11:33:04 +08:00
expect_prompt ();
/* Clear any break points */
hms_clear_breakpoints ();
1992-01-28 11:33:04 +08:00
printf_filtered ("Connected to remote board running HMS monitor.\n");
add_commands ();
/* hms_drain ();*/
1992-01-28 11:33:04 +08:00
}
/* Close out all files and local state before this target loses control. */
static void
hms_close (quitting)
int quitting;
{
/* Clear any break points */
remove_commands ();
hms_clear_breakpoints ();
sleep (1); /* Let any output make it all the way back */
1993-05-01 08:51:23 +08:00
if (is_open)
{
SERIAL_WRITE (desc, "R\r\n", 3);
1993-05-01 08:51:23 +08:00
SERIAL_CLOSE (desc);
}
is_open = 0;
1992-01-28 11:33:04 +08:00
}
/* Terminate the open connection to the remote debugger. Use this
when you want to detach and do something else with your gdb. */ void
hms_detach (args, from_tty)
1992-01-28 11:33:04 +08:00
char *args;
int from_tty;
{
if (is_open)
{
hms_clear_breakpoints ();
}
pop_target (); /* calls hms_close to do the real work
*/
1992-01-28 11:33:04 +08:00
if (from_tty)
printf_filtered ("Ending remote %s debugging\n",
target_shortname);
1992-01-28 11:33:04 +08:00
}
1992-01-28 11:33:04 +08:00
/* Tell the remote machine to resume. */
void
Sun Aug 1 22:58:18 1993 Stu Grossman (grossman at cygnus.com) * Makefile.in (CLIBS): Reorder to make Lynx ld happy. * (HFILES): New file thread.h. * (OBS): New file thread.c. * configure.in: Host config for Lynx/386. * fork-child.c (fork_inferior): Call init_thread_list(). * infrun.c (resume): Add pid to invocation of target_resume(). * (wait_for_inferior): Pay attention to pid from target_wait(). Multi-threading code now uses this to determine what to do. * inftarg.c (child_wait): Conditionalize based on CHILD_WAIT macro. Use target_pid_to_str() macro throughout when printing pid. * inferior.h (child_resume): Add pid to prototype. * hppab-nat.c hppah-nat.c infptrace.c (child_resume): Pass in pid as argument, instead of using inferior_pid. * procfs.c (procfs_resume): Pass in pid as argument. Ignored for now. Use target_pid_to_str() macro throughout for printing process id. * remote-adapt.c (adapt_resume): Pass in pid as argument. * remote-eb.c (eb_resume): Pass in pid as argument. * remote-es.c (es1800_resume): Pass in pid as argument. * remote-hms.c (hms_resume): Pass in pid as argument. * remote-mips.c (mips_resume): Pass in pid as argument. * remote-mm.c (mm_resume): Pass in pid as argument. * remote-monitor.c (monitor_resume): Pass in pid as argument. * remote-nindy.c (nindy_resume): Pass in pid as argument. * remote-sa.sparc.c (remote_resume): Pass in pid as argument. * remote-sim.c (rem_resume): Pass in pid as argument. * remote-sp64sim.c (simif_resume): Pass in pid as argument. * remote-st.c (st2000_resume): Pass in pid as argument. * remote-udi.c (udi_resume): Pass in pid as argument. * remote-vx.c (vx_resume): Pass in pid as argument. * remote-z8k.c (rem_resume): Pass in pid as argument. * remote.c (remote_resume): Pass in pid as argument. * solib.c (solid_create_inferior_hook): Pass inferior_pid to target_resume(). * target.c (normal_pid_to_str): New routine to print out process ID normally. * target.h (struct target_ops): Add pid to prototype at to_resume(). (target_resume): Add pid argument. * (target_pid_to_str): Default definition for normal type pids. * thread.c, thread.c: New modules for multi thread/process control.
1993-08-02 14:25:36 +08:00
hms_resume (pid, step, sig)
int pid, step;
enum target_signal
sig;
1992-01-28 11:33:04 +08:00
{
dcache_flush ();
if (step)
{
hms_write_cr ("s");
expect ("Step>");
/* Force the next hms_wait to return a trap. Not doing anything
about I/O from the target means that the user has to type "continue"
to see any. FIXME, this should be fixed. */
need_artificial_trap = 1;
}
1992-01-28 11:33:04 +08:00
else
{
hms_write_cr ("g");
expect ("g");
}
1992-01-28 11:33:04 +08:00
}
/* Wait until the remote machine stops, then return, storing status in
STATUS just as `wait' would. */
1992-01-28 11:33:04 +08:00
int
* breakpoint.c (breakpoint_thread_match break_command_1): Thread-specific breakpoint support. * breakpoint.h (struct breakpoint): Add thread id field. * fork-child.c (fork_inferior): Move call to init_thread_list() back a bit so that init_trace_fun can do thread functions. * hppa-tdep.c (restore_pc_queue): Add pid to call to target_wait. * hppab-nat.c (child_resume): Handle default pid. * hppah-nat.c (child_resume): Handle default pid. * i386lynx-nat.c (child_wait): New arg pid. * inflow.c (kill_command): Reset thread list. * infptrace.c (child_resume): Handle default pid. * infrun.c: Thread-specific breakpoint support. * inftarg.c (child_wait): Add pid arg. * osfsolib.c (solib_create_inferior_hook): Add pid to call to target_resume. * procfs.c: Multi-thread support. * remote-bug.c (bug_wait): Add pid arg. * remote-hms.c (hms_wait): Add pid arg. * remote-mips.c (mips_wait): Add pid arg. * remote-mon.c (monitor_wait): Add pid arg. * remote-nindy.c (nindy_wait): Add pid arg. * remote-sim.c (gdbsim_wait): Add pid arg. * remote-udi.c (udi_wait): Add pid arg. * remote-vx.c (vx_wait): Add pid arg. * remote-z8k.c (sim_wait): Add pid arg. * remote.c (remote_wait): Add pid arg. * solib.c (solib_create_inferior_hook): Add pid to call to target_resume. * target.h (struct target_ops): Add pid arg to to_wait and to_notice_signals. * thread.c (valid_thread_id): New func to validate thread #s. * (pid_to_thread_id): New func to do the obvious. * thread.h: Prototypes for above. * coff-solib.c (coff_solib_add): Use nameoffset field to locate filename.
1993-10-16 14:42:02 +08:00
hms_wait (pid, status)
int pid;
struct target_waitstatus *status;
1992-01-28 11:33:04 +08:00
{
/* Strings to look for. '?' means match any single character. Note
that with the algorithm we use, the initial character of the string
cannot recur in the string, or we will not find some cases of the
string in the input. */
static char bpt[] = "At breakpoint:";
/* It would be tempting to look for "\n[__exit + 0x8]\n" but that
requires loading symbols with "yc i" and even if we did do that we
don't know that the file has symbols. */
static char exitmsg[] = "HMS>";
1992-01-28 11:33:04 +08:00
char *bp = bpt;
char *ep = exitmsg;
/* Large enough for either sizeof (bpt) or sizeof (exitmsg) chars.
*/
1992-01-28 11:33:04 +08:00
char swallowed[50];
1992-01-28 11:33:04 +08:00
/* Current position in swallowed. */
char *swallowed_p = swallowed;
int ch;
int ch_handled;
int old_timeout = timeout;
int
old_immediate_quit = immediate_quit;
int swallowed_cr = 0;
status->kind = TARGET_WAITKIND_EXITED;
status->value.integer = 0;
1992-01-28 11:33:04 +08:00
if (need_artificial_trap != 0)
{
status->kind =
TARGET_WAITKIND_STOPPED;
status->value.sig = TARGET_SIGNAL_TRAP;
need_artificial_trap--;
return 0;
}
1992-01-28 11:33:04 +08:00
timeout = 5; /* Don't time out for a while - user program is running.
*/
immediate_quit = 1; /* Helps ability to QUIT */
while (1)
{
QUIT; /* Let user quit and leave process running */
ch_handled = 0;
ch = readchar ();
if (ch == *bp)
{
bp++;
if (*bp == '\0')
break;
ch_handled = 1;
*swallowed_p++ = ch;
}
else
{
bp = bpt;
}
if
(ch == *ep || *ep == '?')
{
ep++;
if (*ep == '\0')
break;
if (!ch_handled)
*swallowed_p++ = ch;
ch_handled =
1;
}
else
{
ep = exitmsg;
}
if (!ch_handled)
{
char *p;
/* Print out any characters which have been swallowed. */
for (p = swallowed; p < swallowed_p; ++p)
putc_unfiltered (*p);
swallowed_p = swallowed;
if ((ch != '\r' && ch != '\n') || swallowed_cr > 10)
{
putc_unfiltered (ch);
swallowed_cr = 10;
}
swallowed_cr++;
}
}
if (*bp == '\0')
{
status->kind = TARGET_WAITKIND_STOPPED;
status->value.sig = TARGET_SIGNAL_TRAP;
expect_prompt ();
}
else
{
status->kind = TARGET_WAITKIND_EXITED;
status->value.integer =
TARGET_SIGNAL_STOP;
}
1992-01-28 11:33:04 +08:00
timeout = old_timeout;
immediate_quit = old_immediate_quit;
return
0;
1992-01-28 11:33:04 +08:00
}
/* Return the name of register number REGNO in the form input and
output by hms.
1992-01-28 11:33:04 +08:00
Returns a pointer to a static buffer containing the answer. */
static char *
get_reg_name (regno)
int regno;
{
static char *rn[] =
REGISTER_NAMES;
1992-01-28 11:33:04 +08:00
return rn[regno];
}
/* Read the remote registers. */
1993-05-01 08:51:23 +08:00
static int
gethex (length, start, ok)
unsigned int length;
char *start;
int *ok;
1992-01-28 11:33:04 +08:00
{
int result = 0;
while (length--)
1992-01-28 11:33:04 +08:00
{
result <<= 4;
if (*start >= 'a' && *start <= 'f')
{
result += *start - 'a' + 10;
}
else if (*start >= 'A' &&
*start <= 'F')
{
result += *start - 'A' + 10;
}
else if
(*start >= '0' && *start <= '9')
{
result += *start - '0';
}
else
*ok = 0;
start++;
1992-01-28 11:33:04 +08:00
}
return result;
}
static int
timed_read (buf, n, timeout)
char
*buf;
1992-01-28 11:33:04 +08:00
{
int i;
char c;
1992-01-28 11:33:04 +08:00
i = 0;
while (i < n)
{
c = readchar ();
if (c == 0)
return i;
buf[i] = c;
i++;
}
return i;
1992-01-28 11:33:04 +08:00
}
hms_write (a, l)
char *a;
1992-01-28 11:33:04 +08:00
{
int i;
1993-05-01 08:51:23 +08:00
SERIAL_WRITE (desc, a, l);
if (!quiet || remote_debug)
{
printf_unfiltered ("<");
for (i = 0; i < l; i++)
{
printf_unfiltered ("%c", a[i]);
}
printf_unfiltered (">");
}
1992-01-28 11:33:04 +08:00
}
hms_write_cr (s)
char *s;
1992-01-28 11:33:04 +08:00
{
hms_write (s, strlen (s));
hms_write ("\r\n", 2);
}
#ifdef GDB_TARGET_IS_H8500
/* H8/500 monitor reg dump looks like:
HMS>r
PC:8000 SR:070C .7NZ.. CP:00 DP:00 EP:00 TP:00 BR:00
R0-R7: FF5A 0001 F4FE F500 0000 F528 F528 F4EE
HMS>
*/
supply_val (n, size, ptr, segptr)
int n;
int size;
char *ptr;
char *segptr;
{
int ok;
char raw[4];
switch (size)
{
case 2:
raw[0] = gethex (2, ptr, &ok);
raw[1] = gethex (2, ptr + 2, &ok);
supply_register (n, raw);
break;
case 1:
raw[0] = gethex (2, ptr, &ok);
supply_register (n, raw);
break;
case 4:
{
int v = gethex (4, ptr, &ok);
v |= gethex (2, segptr, &ok) << 16;
raw[0] = 0;
raw[1] = (v >> 16) & 0xff;
raw[2] = (v >> 8) & 0xff;
raw[3] = (v >> 0) & 0xff;
supply_register (n, raw);
}
}
}
static void
hms_fetch_register (dummy)
int dummy;
{
#define REGREPLY_SIZE 108
char linebuf[REGREPLY_SIZE + 1];
int i;
int s;
int gottok;
LONGEST reg[NUM_REGS];
check_open ();
do
{
hms_write_cr ("r");
expect ("r");
s = timed_read (linebuf + 1, REGREPLY_SIZE, 1);
linebuf[REGREPLY_SIZE] = 0;
gottok = 0;
if (linebuf[3] == 'P' &&
linebuf[4] == 'C' &&
linebuf[5] == ':' &&
linebuf[105] == 'H' &&
linebuf[106] == 'M' &&
linebuf[107] == 'S')
{
/*
012
r**
-------1---------2---------3---------4---------5-----
345678901234567890123456789012345678901234567890123456
PC:8000 SR:070C .7NZ.. CP:00 DP:00 EP:00 TP:00 BR:00**
---6---------7---------8---------9--------10----
789012345678901234567890123456789012345678901234
R0-R7: FF5A 0001 F4FE F500 0000 F528 F528 F4EE**
56789
HMS>
*/
gottok = 1;
supply_val (PC_REGNUM, 4, linebuf + 6, linebuf + 29);
supply_val (CCR_REGNUM, 2, linebuf + 14);
supply_val (SEG_C_REGNUM, 1, linebuf + 29);
supply_val (SEG_D_REGNUM, 1, linebuf + 35);
supply_val (SEG_E_REGNUM, 1, linebuf + 41);
supply_val (SEG_T_REGNUM, 1, linebuf + 47);
for (i = 0; i < 8; i++)
{
static int sr[8] =
{35, 35, 35, 35,
41, 41, 47, 47};
char raw[4];
char *src = linebuf + 64 + 5 * i;
char *segsrc = linebuf + sr[i];
supply_val (R0_REGNUM + i, 2, src);
supply_val (PR0_REGNUM + i, 4, src, segsrc);
}
}
if (!gottok)
{
hms_write_cr ("");
expect ("HMS>");
}
}
while (!gottok);
}
#endif
#ifdef GDB_TARGET_IS_H8300
static void
hms_fetch_register (dummy)
int dummy;
1992-01-28 11:33:04 +08:00
{
#define REGREPLY_SIZE 79
char linebuf[REGREPLY_SIZE + 1];
1992-01-28 11:33:04 +08:00
int i;
int s;
1992-01-28 11:33:04 +08:00
int gottok;
unsigned LONGEST reg[NUM_REGS];
check_open ();
do
1992-01-28 11:33:04 +08:00
{
hms_write_cr ("r");
s = timed_read (linebuf, 1, 1);
while (linebuf[0] != 'r')
s = timed_read (linebuf, 1, 1);
s = timed_read (linebuf + 1, REGREPLY_SIZE - 1, 1);
linebuf[REGREPLY_SIZE] = 0;
gottok = 0;
if (linebuf[0] == 'r' &&
linebuf[3] == 'P' &&
linebuf[4] == 'C' &&
linebuf[5] == '=' &&
linebuf[75] == 'H' &&
linebuf[76] == 'M' &&
linebuf[77] == 'S')
{
/*
1992-01-28 11:33:04 +08:00
PC=XXXX CCR=XX:XXXXXXXX R0-R7= XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX
5436789012345678901234567890123456789012345678901234567890123456789012
0 1 2 3 4 5 6
1992-01-28 11:33:04 +08:00
*/
gottok = 1;
reg[PC_REGNUM] = gethex (4, linebuf + 6, &gottok);
reg[CCR_REGNUM] = gethex (2, linebuf + 15, &gottok);
for (i = 0; i < 8; i++)
{
reg[i] = gethex (4, linebuf + 34 + 5 * i, &gottok);
}
}
1992-01-28 11:33:04 +08:00
}
while (!gottok);
for (i = 0; i < NUM_REGS; i++)
{
char swapped[2];
1992-01-28 11:33:04 +08:00
swapped[1] = reg[i];
swapped[0] = (reg[i]) >> 8;
1992-01-28 11:33:04 +08:00
supply_register (i, swapped);
}
}
#endif
1992-01-28 11:33:04 +08:00
/* Store register REGNO, or all if REGNO == -1.
Return errno value. */
static void
1992-01-28 11:33:04 +08:00
hms_store_register (regno)
int regno;
{
if (regno == -1)
{
for (regno = 0; regno < NUM_REGS; regno++)
{
hms_store_register (regno);
}
}
1992-01-28 11:33:04 +08:00
else
{
char *name = get_reg_name (regno);
char buffer[100];
/* Some regs dont really exist */
if (!(name[0] == 'p' && name[1] == 'r')
&& !(name[0] == 'c' && name[1] == 'y')
&& !(name[0] == 't' && name[1] == 'i')
&& !(name[0] == 'i' && name[1] == 'n'))
{
sprintf (buffer, "r %s=%x", name, read_register (regno));
hms_write_cr (buffer);
expect_prompt ();
}
}
}
1992-01-28 11:33:04 +08:00
/* Get ready to modify the registers array. On machines which store
individual registers, this doesn't need to do anything. On machines
which store all the registers in one fell swoop, this makes sure
that registers contains all the registers from the program being
debugged. */
void
hms_prepare_to_store ()
{
/* Do nothing, since we can store individual regs */
}
static CORE_ADDR
translate_addr (addr)
CORE_ADDR addr;
1992-01-28 11:33:04 +08:00
{
return (addr);
1992-01-28 11:33:04 +08:00
}
/* Read a word from remote address ADDR and return it.
* This goes through the data cache.
*/
int
hms_fetch_word (addr)
CORE_ADDR addr;
{
return dcache_fetch (addr);
1992-01-28 11:33:04 +08:00
}
/* Write a word WORD into remote address ADDR.
This goes through the data cache. */
void
hms_store_word (addr, word)
CORE_ADDR addr;
int word;
{
dcache_poke (addr, word);
1992-01-28 11:33:04 +08:00
}
int
hms_xfer_inferior_memory (memaddr, myaddr, len, write, target)
1992-01-28 11:33:04 +08:00
CORE_ADDR memaddr;
char *myaddr;
int len;
int write;
struct target_ops *target; /* ignored */
1992-01-28 11:33:04 +08:00
{
register int i;
1992-01-28 11:33:04 +08:00
/* Round starting address down to longword boundary. */
register CORE_ADDR addr;
1992-01-28 11:33:04 +08:00
/* Round ending address up; get number of longwords that makes. */
register int count;
1992-01-28 11:33:04 +08:00
/* Allocate buffer of that many longwords. */
register int *buffer;
1992-01-28 11:33:04 +08:00
memaddr &= 0xffff;
addr = memaddr & -sizeof (int);
count = (((memaddr + len) - addr) + sizeof (int) - 1) / sizeof (int);
1992-01-28 11:33:04 +08:00
buffer = (int *) alloca (count * sizeof (int));
1992-01-28 11:33:04 +08:00
if (write)
{
/* Fill start and end extra bytes of buffer with existing memory data. */
1992-01-28 11:33:04 +08:00
if (addr != memaddr || len < (int) sizeof (int))
{
/* Need part of initial word -- fetch it. */
buffer[0] = hms_fetch_word (addr);
}
1992-01-28 11:33:04 +08:00
if (count > 1) /* FIXME, avoid if even boundary */
{
buffer[count - 1]
= hms_fetch_word (addr + (count - 1) * sizeof (int));
}
1992-01-28 11:33:04 +08:00
/* Copy data to be written over corresponding part of buffer */
1992-01-28 11:33:04 +08:00
1993-09-02 04:37:15 +08:00
memcpy ((char *) buffer + (memaddr & (sizeof (int) - 1)), myaddr, len);
1992-01-28 11:33:04 +08:00
/* Write the entire buffer. */
1992-01-28 11:33:04 +08:00
for (i = 0; i < count; i++, addr += sizeof (int))
{
errno = 0;
hms_store_word (addr, buffer[i]);
if (errno)
{
return 0;
}
}
1992-01-28 11:33:04 +08:00
}
else
{
/* Read all the longwords */
for (i = 0; i < count; i++, addr += sizeof (int))
{
errno = 0;
buffer[i] = hms_fetch_word (addr);
if (errno)
{
return 0;
}
QUIT;
}
1992-01-28 11:33:04 +08:00
/* Copy appropriate bytes out of the buffer. */
1993-09-02 04:37:15 +08:00
memcpy (myaddr, (char *) buffer + (memaddr & (sizeof (int) - 1)), len);
}
1992-01-28 11:33:04 +08:00
return len;
}
int
hms_write_inferior_memory (memaddr, myaddr, len)
CORE_ADDR memaddr;
unsigned char *myaddr;
1992-01-28 11:33:04 +08:00
int len;
{
bfd_vma addr;
int done;
int todo;
char buffer[100];
done = 0;
hms_write_cr (".");
expect_prompt ();
while (done < len)
{
char *ptr = buffer;
int thisgo;
int idx;
thisgo = len - done;
if (thisgo > 20)
thisgo = 20;
sprintf (ptr, "M.B %4x =", memaddr + done);
ptr += 10;
for (idx = 0; idx < thisgo; idx++)
{
sprintf (ptr, "%2x ", myaddr[idx + done]);
ptr += 3;
}
hms_write_cr (buffer);
expect_prompt ();
done += thisgo;
}
1992-01-28 11:33:04 +08:00
}
void
hms_files_info ()
{
char *file = "nothing";
if (exec_bfd)
file = bfd_get_filename (exec_bfd);
if (exec_bfd)
#ifdef __GO32__
printf_filtered ("\tAttached to DOS asynctsr and running program %s\n", file);
#else
printf_filtered ("\tAttached to %s at %d baud and running program %s\n", dev_name, baudrate, file);
#endif
printf_filtered ("\ton an H8/300 processor.\n");
1992-01-28 11:33:04 +08:00
}
/* Copy LEN bytes of data from debugger memory at MYADDR
to inferior's memory at MEMADDR. Returns errno value.
* sb/sh instructions don't work on unaligned addresses, when TU=1.
1992-01-28 11:33:04 +08:00
*/
/* Read LEN bytes from inferior memory at MEMADDR. Put the result
at debugger address MYADDR. Returns errno value. */
int
hms_read_inferior_memory (memaddr, myaddr, len)
1992-01-28 11:33:04 +08:00
CORE_ADDR memaddr;
char *myaddr;
int len;
{
/* Align to nearest low 16 bits */
int i;
1992-01-28 11:33:04 +08:00
CORE_ADDR start = memaddr;
CORE_ADDR end = memaddr + len - 1;
int ok = 1;
1992-01-28 11:33:04 +08:00
/*
AAAA: XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX '................'
012345678901234567890123456789012345678901234567890123456789012345
0 1 2 3 4 5 6
*/
char buffer[66];
if (memaddr & 0xf)
abort ();
if (len != 16)
abort ();
sprintf (buffer, "m %4x %4x", start & 0xffff, end & 0xffff);
flush();
hms_write_cr (buffer);
1992-01-28 11:33:04 +08:00
/* drop the echo and newline*/
for (i = 0; i < 13; i++)
readchar ();
1992-01-28 11:33:04 +08:00
/* Grab the lines as they come out and fill the area */
/* Skip over cr */
while (1)
1992-01-28 11:33:04 +08:00
{
int p;
int i;
int addr;
size_t idx;
1992-01-28 11:33:04 +08:00
char byte[16];
buffer[0] = readchar ();
while (buffer[0] == '\r'
|| buffer[0] == '\n')
buffer[0] = readchar ();
if (buffer[0] == 'M')
break;
for (i = 1; i < 50; i++) {
buffer[i] = readchar ();
}
/* sometimes we loose characters in the ascii representation of the
data. I don't know where. So just scan for the end of line */
i = readchar();
while (i != '\n' && i != '\r')
i = readchar();
/* Now parse the line */
addr = gethex (4, buffer, &ok);
idx = 6;
for (p = 0; p < 16; p += 2)
{
byte[p] = gethex (2, buffer + idx, &ok);
byte[p + 1] = gethex (2, buffer + idx + 2, &ok);
idx += 5;
}
for (p = 0; p < 16; p++)
{
if (addr + p >= memaddr &&
addr + p < memaddr + len)
{
myaddr[(addr + p) - memaddr] = byte[p];
}
}
1992-01-28 11:33:04 +08:00
}
#ifdef GDB_TARGET_IS_H8500
expect ("ore>");
#endif
#ifdef GDB_TARGET_IS_H8300
1993-05-01 08:51:23 +08:00
expect ("emory>");
#endif
hms_write_cr (".");
expect_prompt ();
1992-01-28 11:33:04 +08:00
return len;
}
1992-01-28 11:33:04 +08:00
#define MAX_BREAKS 16
static int num_brkpts = 0;
1992-01-28 11:33:04 +08:00
static int
hms_insert_breakpoint (addr, save)
CORE_ADDR addr;
char *save; /* Throw away, let hms save instructions */
1992-01-28 11:33:04 +08:00
{
check_open ();
if (num_brkpts < MAX_BREAKS)
{
char buffer[100];
1992-01-28 11:33:04 +08:00
num_brkpts++;
sprintf (buffer, "b %x", addr & 0xffff);
hms_write_cr (buffer);
expect_prompt ();
return (0);
}
else
{
fprintf_filtered (gdb_stderr,
"Too many break points, break point not installed\n");
return (1);
}
1992-01-28 11:33:04 +08:00
}
static int
hms_remove_breakpoint (addr, save)
CORE_ADDR addr;
char *save; /* Throw away, let hms save instructions */
1992-01-28 11:33:04 +08:00
{
if (num_brkpts > 0)
{
char buffer[100];
num_brkpts--;
sprintf (buffer, "b - %x", addr & 0xffff);
hms_write_cr (buffer);
expect_prompt ();
}
return (0);
1992-01-28 11:33:04 +08:00
}
/* Clear the hmss notion of what the break points are */
static int
hms_clear_breakpoints ()
{
1992-01-28 11:33:04 +08:00
if (is_open)
{
hms_write_cr ("b -");
expect_prompt ();
}
1992-01-28 11:33:04 +08:00
num_brkpts = 0;
}
static void
hms_mourn ()
{
hms_clear_breakpoints ();
unpush_target (&hms_ops);
1992-01-28 11:33:04 +08:00
generic_mourn_inferior ();
}
/* Put a command string, in args, out to the hms. The hms is assumed to
be in raw mode, all writing/reading done through desc.
1992-01-28 11:33:04 +08:00
Ouput from the hms is placed on the users terminal until the
prompt from the hms is seen.
FIXME: Can't handle commands that take input. */
void
hms_com (args, fromtty)
char *args;
int fromtty;
1992-01-28 11:33:04 +08:00
{
check_open ();
if (!args)
return;
1992-01-28 11:33:04 +08:00
/* Clear all input so only command relative output is displayed */
hms_write_cr (args);
/* hms_write ("\030", 1);*/
expect_prompt ();
1992-01-28 11:33:04 +08:00
}
/* Define the target subroutine names */
struct target_ops hms_ops =
{
"hms", "Remote HMS monitor",
"Use the H8 evaluation board running the HMS monitor connected\n\
1992-01-28 11:33:04 +08:00
by a serial line.",
hms_open, hms_close,
0, hms_detach, hms_resume, hms_wait, /* attach */
hms_fetch_register, hms_store_register,
hms_prepare_to_store,
hms_xfer_inferior_memory,
hms_files_info,
hms_insert_breakpoint, hms_remove_breakpoint, /* Breakpoints */
0, 0, 0, 0, 0, /* Terminal handling */
hms_kill, /* FIXME, kill */
hms_load,
0, /* lookup_symbol */
hms_create_inferior, /* create_inferior */
hms_mourn, /* mourn_inferior FIXME */
0, /* can_run */
0, /* notice_signals */
process_stratum, 0, /* next */
1, 1, 1, 1, 1, /* all mem, mem, stack, regs, exec */
0, 0, /* Section pointers */
OPS_MAGIC, /* Always the last thing */
1992-01-28 11:33:04 +08:00
};
hms_quiet () /* FIXME - this routine can be removed after Dec '94 */
1992-01-28 11:33:04 +08:00
{
quiet = !quiet;
if (quiet)
printf_filtered ("Snoop disabled\n");
else
printf_filtered ("Snoop enabled\n");
printf_filtered("`snoop' is obsolete, please use `set remotedebug'.\n");
1992-01-28 11:33:04 +08:00
}
hms_device (s)
char *s;
1992-01-28 11:33:04 +08:00
{
if (s)
{
dev_name = get_word (&s);
}
1992-01-28 11:33:04 +08:00
}
static
hms_speed (s)
char *s;
1992-01-28 11:33:04 +08:00
{
check_open ();
if (s)
{
char buffer[100];
int newrate = atoi (s);
int which = 0;
1993-05-01 08:51:23 +08:00
if (SERIAL_SETBAUDRATE (desc, newrate))
error ("Can't use %d baud\n", newrate);
printf_filtered ("Checking target is in sync\n");
printf_filtered ("Sending commands to set target to %d\n",
baudrate);
sprintf (buffer, "tm %d. N 8 1", baudrate);
hms_write_cr (buffer);
}
1992-01-28 11:33:04 +08:00
}
/***********************************************************************/
static void
hms_drain (args, fromtty)
char *args;
int fromtty;
{
int c;
while (1)
{
c = SERIAL_READCHAR (desc, 1);
if (c == SERIAL_TIMEOUT)
break;
if (c == SERIAL_ERROR)
break;
if (c > ' ' && c < 127)
printf ("%c", c & 0xff);
else
printf ("<%x>", c & 0xff);
}
}
static void
add_commands ()
{
add_com ("hms_drain", class_obscure, hms_drain,
"Drain pending hms text buffers.");
}
static void
remove_commands ()
{
extern struct cmd_list_element *cmdlist;
delete_cmd ("hms-drain", &cmdlist);
}
1992-01-28 11:33:04 +08:00
void
_initialize_remote_hms ()
{
add_target (&hms_ops);
1992-01-28 11:33:04 +08:00
add_com ("hms <command>", class_obscure, hms_com,
"Send a command to the HMS monitor.");
/* FIXME - hms_quiet and `snoop' can be removed after Dec '94 */
1992-01-28 11:33:04 +08:00
add_com ("snoop", class_obscure, hms_quiet,
"Show what commands are going to the monitor (OBSOLETE - see 'set remotedebug')");
1992-01-28 11:33:04 +08:00
add_com ("device", class_obscure, hms_device,
"Set the terminal line for HMS communications");
add_com ("speed", class_obscure, hms_speed,
"Set the terminal line speed for HMS communications");
dev_name = NULL;
1992-01-28 11:33:04 +08:00
}