binutils-gdb/gdb/config/mips/tm-mips.h

499 lines
18 KiB
C
Raw Normal View History

/* Definitions to make GDB run on a mips box under 4.3bsd.
1995-01-18 03:11:06 +08:00
Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995
Free Software Foundation, Inc.
Contributed by Per Bothner (bothner@cs.wisc.edu) at U.Wisconsin
and by Alessandro Forin (af@cs.cmu.edu) at CMU..
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
1995-08-02 11:41:12 +08:00
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
#include <bfd.h>
#include "coff/sym.h" /* Needed for PDR below. */
#include "coff/symconst.h"
#if !defined (TARGET_BYTE_ORDER)
#define TARGET_BYTE_ORDER LITTLE_ENDIAN
#endif
#if !defined (GDB_TARGET_IS_MIPS64)
#define GDB_TARGET_IS_MIPS64 0
#endif
#if !defined (TARGET_MONITOR_PROMPT)
#define TARGET_MONITOR_PROMPT { '<', 'I', 'D', 'T', '>' }
#endif
/* Floating point is IEEE compliant */
#define IEEE_FLOAT
/* Some MIPS boards are provided both with and without a floating
point coprocessor. The MIPS R4650 chip has only single precision
floating point. We provide a user settable variable to tell gdb
what type of floating point to use. */
enum mips_fpu_type
{
MIPS_FPU_DOUBLE, /* Full double precision floating point. */
MIPS_FPU_SINGLE, /* Single precision floating point (R4650). */
MIPS_FPU_NONE /* No floating point. */
};
extern enum mips_fpu_type mips_fpu;
/* The name of the usual type of MIPS processor that is in the target
system. */
#define DEFAULT_MIPS_TYPE "generic"
/* Offset from address of function to start of its code.
Zero on most machines. */
#define FUNCTION_START_OFFSET 0
/* Advance PC across any function entry prologue instructions
to reach some "real" code. */
#define SKIP_PROLOGUE(pc) pc = mips_skip_prologue (pc, 0)
extern CORE_ADDR mips_skip_prologue PARAMS ((CORE_ADDR addr, int lenient));
/* Return non-zero if PC points to an instruction which will cause a step
to execute both the instruction at PC and an instruction at PC+4. */
#define STEP_SKIPS_DELAY(pc) (mips_step_skips_delay (pc))
/* Immediately after a function call, return the saved pc.
Can't always go through the frames for this because on some machines
the new frame is not set up until the new function executes
some instructions. */
#define SAVED_PC_AFTER_CALL(frame) read_register(RA_REGNUM)
/* Are we currently handling a signal */
Added Irix 5 support. * configure.in (mips-sgi-irix5*): New host and target. Use irix5 for both. * config/mips/irix5.mh, config/mips/irix5.mt, config/mips/xm-irix5.h, config/mips/nm-irix5.h, config/mips/tm-irix5.h, irix5-nat.c: New files for Irix 5 support. * mdebugread.c: New file, split out of mipsread.c. Added elfmdebug_build_psymtabs routine. Added some checks on external symbols. Changed code to keep ecoff_debug_info and ecoff_debug_swap structs in the psymtab and in global pointers rather than retrieving them from the bfd. Also changed to keep the pending list with the psymtab rather than the objfile (each psymtab for a single objfile points to the same pending list). * mipsread.c: Bulk of file moved into mdebugread.c, leaving just the sym_fns. * Makefile.in (SFILES): Added mdebugread.c. (OBS): Added mdebugread.o. (mdebugread.o): New target. * symfile.h: Declare mdebug_build_psymtabs and elfmdebug_build_psymtabs. * elfread.c (struct elfinfo): Added mdebugsect field. (elf_locate_sections): Remember location of .mdebug section. (elf_symfile_read): Call elfmdebug_build_psymtabs on .mdebug section. * infrun.c (AT_FUNCTION_START): Set to 0 if not already defined. (wait_for_inferior): Use AT_FUNCTION_START if it is defined to see if PC is at the start of a function. * mips-tdep.c (read_next_frame_reg): Use SIGFRAME_REG_SIZE, and give it a default definition. (mips_skip_prologue): Skip instructions which initialize $gp register. (in_sigtramp): New procedure, moved in from mipsread.c. * config/mips/tm-mips.h: Declare in_sigtramp.
1993-12-07 01:31:05 +08:00
extern int in_sigtramp PARAMS ((CORE_ADDR, char *));
#define IN_SIGTRAMP(pc, name) in_sigtramp(pc, name)
/* Stack grows downward. */
#define INNER_THAN <
#define BIG_ENDIAN 4321
#if TARGET_BYTE_ORDER == BIG_ENDIAN
#define BREAKPOINT {0, 0x5, 0, 0xd}
#else
#define BREAKPOINT {0xd, 0, 0x5, 0}
#endif
/* Amount PC must be decremented by after a breakpoint.
This is often the number of bytes in BREAKPOINT
but not always. */
#define DECR_PC_AFTER_BREAK 0
/* Nonzero if instruction at PC is a return instruction. "j ra" on mips. */
#define ABOUT_TO_RETURN(pc) (read_memory_integer (pc, 4) == 0x3e00008)
/* Say how long (ordinary) registers are. This is a piece of bogosity
used in push_word and a few other places; REGISTER_RAW_SIZE is the
real way to know how big a register is. */
#define REGISTER_SIZE 4
/* The size of a register. This is predefined in tm-mips64.h. We
can't use REGISTER_SIZE because that is used for various other
things. */
#ifndef MIPS_REGSIZE
#define MIPS_REGSIZE 4
#endif
/* Number of machine registers */
#define NUM_REGS 90
/* Initializer for an array of names of registers.
There should be NUM_REGS strings in this initializer. */
#define REGISTER_NAMES \
{ "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3", \
"t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7", \
"s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7", \
"t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra", \
"sr", "lo", "hi", "bad", "cause","pc", \
"f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", \
"f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15", \
"f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",\
"f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",\
"fsr", "fir", "fp", "", \
"", "", "", "", "", "", "", "", \
"", "", "", "", "", "", "", "", \
}
/* Register numbers of various important registers.
Note that some of these values are "real" register numbers,
and correspond to the general registers of the machine,
and some are "phony" register numbers which are too large
to be actual register numbers as far as the user is concerned
but do serve to get the desired values when passed to read_register. */
#define ZERO_REGNUM 0 /* read-only register, always 0 */
#define V0_REGNUM 2 /* Function integer return value */
#define A0_REGNUM 4 /* Loc of first arg during a subr call */
#define SP_REGNUM 29 /* Contains address of top of stack */
#define RA_REGNUM 31 /* Contains return address value */
#define PS_REGNUM 32 /* Contains processor status */
#define HI_REGNUM 34 /* Multiple/divide temp */
#define LO_REGNUM 33 /* ... */
#define BADVADDR_REGNUM 35 /* bad vaddr for addressing exception */
#define CAUSE_REGNUM 36 /* describes last exception */
#define PC_REGNUM 37 /* Contains program counter */
#define FP0_REGNUM 38 /* Floating point register 0 (single float) */
#define FCRCS_REGNUM 70 /* FP control/status */
#define FCRIR_REGNUM 71 /* FP implementation/revision */
#define FP_REGNUM 72 /* Pseudo register that contains true address of executing stack frame */
#define UNUSED_REGNUM 73 /* Never used, FIXME */
#define FIRST_EMBED_REGNUM 74 /* First CP0 register for embedded use */
#define PRID_REGNUM 89 /* Processor ID */
#define LAST_EMBED_REGNUM 89 /* Last one */
/* Define DO_REGISTERS_INFO() to do machine-specific formatting
of register dumps. */
#define DO_REGISTERS_INFO(_regnum, fp) mips_do_registers_info(_regnum, fp)
/* Total amount of space needed to store our copies of the machine's
register state, the array `registers'. */
#define REGISTER_BYTES (NUM_REGS*MIPS_REGSIZE)
/* Index within `registers' of the first byte of the space for
register N. */
#define REGISTER_BYTE(N) ((N) * MIPS_REGSIZE)
/* Number of bytes of storage in the actual machine representation
for register N. On mips, all regs are the same size. */
#define REGISTER_RAW_SIZE(N) MIPS_REGSIZE
/* Number of bytes of storage in the program's representation
for register N. On mips, all regs are the same size. */
#define REGISTER_VIRTUAL_SIZE(N) MIPS_REGSIZE
/* Largest value REGISTER_RAW_SIZE can have. */
#define MAX_REGISTER_RAW_SIZE 8
/* Largest value REGISTER_VIRTUAL_SIZE can have. */
#define MAX_REGISTER_VIRTUAL_SIZE 8
/* Return the GDB type object for the "standard" data type
of data in register N. */
#ifndef REGISTER_VIRTUAL_TYPE
#define REGISTER_VIRTUAL_TYPE(N) \
(((N) >= FP0_REGNUM && (N) < FP0_REGNUM+32) \
? builtin_type_float : builtin_type_int)
#endif
#if HOST_BYTE_ORDER == BIG_ENDIAN
/* All mips targets store doubles in a register pair with the least
significant register in the lower numbered register.
If the host is big endian, double register values need conversion between
memory and register formats. */
#define REGISTER_CONVERT_TO_TYPE(n, type, buffer) \
do {if ((n) >= FP0_REGNUM && (n) < FP0_REGNUM + 32 && \
TYPE_CODE(type) == TYPE_CODE_FLT && TYPE_LENGTH(type) == 8) { \
char __temp[4]; \
memcpy (__temp, ((char *)(buffer))+4, 4); \
memcpy (((char *)(buffer))+4, (buffer), 4); \
memcpy (((char *)(buffer)), __temp, 4); }} while (0)
#define REGISTER_CONVERT_FROM_TYPE(n, type, buffer) \
do {if ((n) >= FP0_REGNUM && (n) < FP0_REGNUM + 32 && \
TYPE_CODE(type) == TYPE_CODE_FLT && TYPE_LENGTH(type) == 8) { \
char __temp[4]; \
memcpy (__temp, ((char *)(buffer))+4, 4); \
memcpy (((char *)(buffer))+4, (buffer), 4); \
memcpy (((char *)(buffer)), __temp, 4); }} while (0)
#endif
/* Store the address of the place in which to copy the structure the
subroutine will return. Handled by mips_push_arguments. */
#define STORE_STRUCT_RETURN(addr, sp) /**/
/* Extract from an array REGBUF containing the (raw) register state
a function return value of type TYPE, and copy that, in virtual format,
into VALBUF. XXX floats */
#define EXTRACT_RETURN_VALUE(TYPE,REGBUF,VALBUF) \
mips_extract_return_value(TYPE, REGBUF, VALBUF)
/* Write into appropriate registers a function return value
of type TYPE, given in virtual format. */
#define STORE_RETURN_VALUE(TYPE,VALBUF) \
mips_store_return_value(TYPE, VALBUF)
/* Extract from an array REGBUF containing the (raw) register state
the address in which a function should return its structure value,
as a CORE_ADDR (or an expression that can be used as one). */
/* The address is passed in a0 upon entry to the function, but when
the function exits, the compiler has copied the value to v0. This
convention is specified by the System V ABI, so I think we can rely
on it. */
#define EXTRACT_STRUCT_VALUE_ADDRESS(REGBUF) \
(extract_address (REGBUF + REGISTER_BYTE (V0_REGNUM), \
REGISTER_RAW_SIZE (V0_REGNUM)))
/* Structures are returned by ref in extra arg0 */
#define USE_STRUCT_CONVENTION(gcc_p, type) 1
/* Describe the pointer in each stack frame to the previous stack frame
(its caller). */
/* FRAME_CHAIN takes a frame's nominal address
and produces the frame's chain-pointer. */
#define FRAME_CHAIN(thisframe) (CORE_ADDR) mips_frame_chain (thisframe)
/* Define other aspects of the stack frame. */
/* A macro that tells us whether the function invocation represented
by FI does not have a frame on the stack associated with it. If it
does not, FRAMELESS is set to 1, else 0. */
/* We handle this differently for mips, and maybe we should not */
#define FRAMELESS_FUNCTION_INVOCATION(FI, FRAMELESS) {(FRAMELESS) = 0;}
/* Saved Pc. */
#define FRAME_SAVED_PC(FRAME) (mips_frame_saved_pc(FRAME))
#define FRAME_ARGS_ADDRESS(fi) (fi)->frame
#define FRAME_LOCALS_ADDRESS(fi) (fi)->frame
/* Return number of args passed to a frame.
Can return -1, meaning no way to tell. */
#define FRAME_NUM_ARGS(num, fi) (num = mips_frame_num_args(fi))
/* Return number of bytes at start of arglist that are not really args. */
#define FRAME_ARGS_SKIP 0
/* Put here the code to store, into a struct frame_saved_regs,
the addresses of the saved registers of frame described by FRAME_INFO.
This includes special registers such as pc and fp saved in special
ways in the stack frame. sp is even more special:
the address we return for it IS the sp for the next frame. */
#define FRAME_FIND_SAVED_REGS(frame_info, frame_saved_regs) \
do { \
if ((frame_info)->saved_regs == NULL) \
mips_find_saved_regs (frame_info); \
(frame_saved_regs) = *(frame_info)->saved_regs; \
(frame_saved_regs).regs[SP_REGNUM] = (frame_info)->frame; \
} while (0)
/* Things needed for making the inferior call functions. */
/* Stack has strict alignment. However, use PUSH_ARGUMENTS
to take care of it. */
/*#define STACK_ALIGN(addr) (((addr)+3)&~3)*/
#define PUSH_ARGUMENTS(nargs, args, sp, struct_return, struct_addr) \
sp = mips_push_arguments(nargs, args, sp, struct_return, struct_addr)
/* Push an empty stack frame, to record the current PC, etc. */
#define PUSH_DUMMY_FRAME mips_push_dummy_frame()
/* Discard from the stack the innermost frame, restoring all registers. */
#define POP_FRAME mips_pop_frame()
#define MK_OP(op,rs,rt,offset) (((op)<<26)|((rs)<<21)|((rt)<<16)|(offset))
#ifndef OP_LDFPR
#define OP_LDFPR 061 /* lwc1 */
#endif
#ifndef OP_LDGPR
#define OP_LDGPR 043 /* lw */
#endif
#define CALL_DUMMY_SIZE (16*4)
#define Dest_Reg 2
#define CALL_DUMMY {\
MK_OP(0,RA_REGNUM,0,8), /* jr $ra # Fake ABOUT_TO_RETURN ...*/\
0, /* nop # ... to stop raw backtrace*/\
0x27bd0000, /* addu sp,?0 # Pseudo prologue */\
/* Start here; reload FP regs, then GP regs: */\
MK_OP(OP_LDFPR,SP_REGNUM,12,0 ), /* l[wd]c1 $f12,0(sp) */\
MK_OP(OP_LDFPR,SP_REGNUM,13, MIPS_REGSIZE), /* l[wd]c1 $f13,{4,8}(sp) */\
MK_OP(OP_LDFPR,SP_REGNUM,14,2*MIPS_REGSIZE), /* l[wd]c1 $f14,{8,16}(sp) */\
MK_OP(OP_LDFPR,SP_REGNUM,15,3*MIPS_REGSIZE), /* l[wd]c1 $f15,{12,24}(sp) */\
MK_OP(OP_LDGPR,SP_REGNUM, 4,0 ), /* l[wd] $r4,0(sp) */\
MK_OP(OP_LDGPR,SP_REGNUM, 5, MIPS_REGSIZE), /* l[wd] $r5,{4,8}(sp) */\
MK_OP(OP_LDGPR,SP_REGNUM, 6,2*MIPS_REGSIZE), /* l[wd] $r6,{8,16}(sp) */\
MK_OP(OP_LDGPR,SP_REGNUM, 7,3*MIPS_REGSIZE), /* l[wd] $r7,{12,24}(sp) */\
(017<<26)| (Dest_Reg << 16), /* lui $r31,<target upper 16 bits>*/\
MK_OP(13,Dest_Reg,Dest_Reg,0), /* ori $r31,$r31,<lower 16 bits>*/ \
(Dest_Reg<<21) | (31<<11) | 9, /* jalr $r31 */\
MK_OP(OP_LDGPR,SP_REGNUM, 7,3*MIPS_REGSIZE), /* l[wd] $r7,{12,24}(sp) */\
0x5000d, /* bpt */\
}
#define CALL_DUMMY_START_OFFSET 12
#define CALL_DUMMY_BREAKPOINT_OFFSET (CALL_DUMMY_START_OFFSET + (12 * 4))
/* Insert the specified number of args and function address
into a call sequence of the above form stored at DUMMYNAME. */
/* For big endian mips machines we need to switch the order of the
words with a floating-point value (it was already coerced to a double
by mips_push_arguments). */
#define FIX_CALL_DUMMY(dummyname, start_sp, fun, nargs, args, rettype, gcc_p) \
do \
{ \
store_unsigned_integer \
(dummyname + 11 * 4, 4, \
(extract_unsigned_integer (dummyname + 11 * 4, 4) \
| (((fun) >> 16) & 0xffff))); \
store_unsigned_integer \
(dummyname + 12 * 4, 4, \
(extract_unsigned_integer (dummyname + 12 * 4, 4) \
| ((fun) & 0xffff))); \
if (mips_fpu == MIPS_FPU_NONE) \
{ \
store_unsigned_integer (dummyname + 3 * 4, 4, \
(unsigned LONGEST) 0); \
store_unsigned_integer (dummyname + 4 * 4, 4, \
(unsigned LONGEST) 0); \
store_unsigned_integer (dummyname + 5 * 4, 4, \
(unsigned LONGEST) 0); \
store_unsigned_integer (dummyname + 6 * 4, 4, \
(unsigned LONGEST) 0); \
} \
else if (mips_fpu == MIPS_FPU_SINGLE) \
{ \
/* This isn't right. mips_push_arguments will call \
value_arg_coerce, which will convert all float arguments \
to doubles. If the function prototype is float, though, \
it will be expecting a float argument in a float \
register. */ \
store_unsigned_integer (dummyname + 4 * 4, 4, \
(unsigned LONGEST) 0); \
store_unsigned_integer (dummyname + 6 * 4, 4, \
(unsigned LONGEST) 0); \
} \
else if (TARGET_BYTE_ORDER == BIG_ENDIAN \
&& ! GDB_TARGET_IS_MIPS64) \
{ \
if (nargs > 0 \
&& TYPE_CODE (VALUE_TYPE (args[0])) == TYPE_CODE_FLT) \
{ \
if (TYPE_LENGTH (VALUE_TYPE (args[0])) > 8) \
error ("floating point value too large to pass to function");\
store_unsigned_integer \
(dummyname + 3 * 4, 4, MK_OP (OP_LDFPR, SP_REGNUM, 12, 4));\
store_unsigned_integer \
(dummyname + 4 * 4, 4, MK_OP (OP_LDFPR, SP_REGNUM, 13, 0));\
} \
if (nargs > 1 \
&& TYPE_CODE (VALUE_TYPE (args[1])) == TYPE_CODE_FLT) \
{ \
if (TYPE_LENGTH (VALUE_TYPE (args[1])) > 8) \
error ("floating point value too large to pass to function");\
store_unsigned_integer \
(dummyname + 5 * 4, 4, MK_OP (OP_LDFPR, SP_REGNUM, 14, 12));\
store_unsigned_integer \
(dummyname + 6 * 4, 4, MK_OP (OP_LDFPR, SP_REGNUM, 15, 8));\
} \
} \
} \
while (0)
/* There's a mess in stack frame creation. See comments in blockframe.c
near reference to INIT_FRAME_PC_FIRST. */
#define INIT_FRAME_PC(fromleaf, prev) /* nada */
#define INIT_FRAME_PC_FIRST(fromleaf, prev) \
(prev)->pc = ((fromleaf) ? SAVED_PC_AFTER_CALL ((prev)->next) : \
(prev)->next ? FRAME_SAVED_PC ((prev)->next) : read_pc ());
/* Special symbol found in blocks associated with routines. We can hang
mips_extra_func_info_t's off of this. */
#define MIPS_EFI_SYMBOL_NAME "__GDB_EFI_INFO__"
/* Specific information about a procedure.
This overlays the MIPS's PDR records,
mipsread.c (ab)uses this to save memory */
typedef struct mips_extra_func_info {
long numargs; /* number of args to procedure (was iopt) */
PDR pdr; /* Procedure descriptor record */
} *mips_extra_func_info_t;
#define EXTRA_FRAME_INFO \
mips_extra_func_info_t proc_desc; \
int num_args;\
struct frame_saved_regs *saved_regs;
#define INIT_EXTRA_FRAME_INFO(fromleaf, fci) init_extra_frame_info(fci)
#define PRINT_EXTRA_FRAME_INFO(fi) \
{ \
if (fi && fi->proc_desc && fi->proc_desc->pdr.framereg < NUM_REGS) \
printf_filtered (" frame pointer is at %s+%d\n", \
reg_names[fi->proc_desc->pdr.framereg], \
fi->proc_desc->pdr.frameoffset); \
}
/* It takes two values to specify a frame on the MIPS.
In fact, the *PC* is the primary value that sets up a frame. The
PC is looked up to see what function it's in; symbol information
from that function tells us which register is the frame pointer
base, and what offset from there is the "virtual frame pointer".
(This is usually an offset from SP.) On most non-MIPS machines,
the primary value is the SP, and the PC, if needed, disambiguates
multiple functions with the same SP. But on the MIPS we can't do
that since the PC is not stored in the same part of the frame every
time. This does not seem to be a very clever way to set up frames,
but there is nothing we can do about that). */
#define SETUP_ARBITRARY_FRAME(argc, argv) setup_arbitrary_frame (argc, argv)
extern struct frame_info *setup_arbitrary_frame PARAMS ((int, CORE_ADDR *));
/* Convert a dbx stab register number (from `r' declaration) to a gdb REGNUM */
#define STAB_REG_TO_REGNUM(num) ((num) < 32 ? (num) : (num)+FP0_REGNUM-38)
/* Convert a ecoff register number to a gdb REGNUM */
#define ECOFF_REG_TO_REGNUM(num) ((num) < 32 ? (num) : (num)+FP0_REGNUM-32)