binutils-gdb/gdb/ia64-hpux-tdep.c

435 lines
14 KiB
C
Raw Normal View History

/* Target-dependent code for the IA-64 for GDB, the GNU debugger.
Copyright (C) 2010-2013 Free Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
#include "defs.h"
#include "ia64-tdep.h"
#include "ia64-hpux-tdep.h"
#include "osabi.h"
#include "gdbtypes.h"
#include "solib.h"
[ia64-hpux] unwinding bsp value from system call This fixes unwinding from a thread that is stopped inside a system call. This can be seen when switching to a thread that is stopped doing a pthread_cond_wait, for instance... The comments inside the code should explain what is happening in our case (the HP-UX exception in the case of system calls): Under certain circumstances (program stopped inside syscall), the offset to apply to the current BSP in order to compute the previous BSP is not the usual CFM & 0x7f. We parts in this patch: 1. Figuring out that we are stopped inside a syscal: This requires a TT_LWP_RUREGS ttrace call, which is not directly possible from ia64-tdep.c. So use defined a new TARGET_OBJECT_HPUX_UREGS object to request it from the -nat side. 2. Add a gdbarch_tdep method that allows us to change the default behavior on ia64-hpux, permitting us to have a different "size of register frame" in that one particular case. gdb/ChangeLog: * target.h (enum target_object): Add TARGET_OBJECT_HPUX_UREGS. * ia64-tdep.h (struct frame_info): forward declaration. (struct gdbarch_tdep): Add field size_of_register_frame. * ia64-tdep.c (ia64_access_reg): Use tdep->size_of_register_frame to determine the size of the register frame. (ia64_size_of_register_frame): New function. (ia64_gdbarch_init): Set tdep->size_of_register_frame. * ia64-hpux-tdep.c: Include "target.h" and "frame.h". (IA64_HPUX_UREG_REASON): New macro. (ia64_hpux_stopped_in_syscall, ia64_hpux_size_of_register_frame): New functions. (ia64_hpux_init_abi): Set tdep->size_of_register_frame. * ia64-hpux-nat.c (ia64_hpux_xfer_uregs): New function. (ia64_hpux_xfer_partial): Add handling of TARGET_OBJECT_HPUX_UREGS objects.
2011-01-14 00:24:27 +08:00
#include "target.h"
#include "frame.h"
[ia64-hpux] inferior function call support We have two stacks to deal with on ia64, when making a function call. The first is the usual stack frame, and the second is the register stack frame. On ia64-linux, the register frame is setup by adjusting the BSP register. Unfortunately for us, the HP-UX kernel does not allow the debugger to change the value of the BSP. To work around that limitation, the method I am using here is to push some assembly code on the stack. This assembly code contains, among other things, a call to the alloc insn, which sets up our frame for us. An extensive comment in ia64-hpux-tdep.c explains the entire procedure. Despite this approach, most of the code in ia64-tdep.c which sets up the function call is still applicable - and only a few things need to be done differently: For instance, instead of changing the BSP, we do nothing. We store the parameters at a different location, etc. So this patch also adjusts the inf-call code in ia64-tdep.c to make it a little more extensible: I create a new ia64_infcall_ops structure which allows an ABI to define how the few things that need to be differentiated. Another element that turned out to be necessary but is more of a detail is that the computation of the linkage pointer needs to be handled specially for symbols inside shared libraries. This is especially visible when calling malloc, which happens everytime memory needs to be allocated in inferior memory... The special treatment included again the necessity to use some routines only available on the host. So another target object TARGET_OBJECT_HPUX_SOLIB_GOT was created for that purpose. gdb/ChangeLog: * ia64-tdep.h (struct regcache): Forward declare. (struct ia64_infcall_ops): New struct type. (struct gdbarch_tdep): New fields "find_global_pointer_from_solib" and "infcall_ops". * ia64-tdep.c (ia64_find_global_pointer_from_dynamic_section): Renames ia64_find_global_pointer. (ia64_find_global_pointer, ia64_allocate_new_rse_frame) (ia64_store_argument_in_slot, ia64_set_function_addr: New function. (ia64_push_dummy_call): Adjust to use the new tdep ia64_infocall_ops methods. (ia64_infcall_ops): New static global constant. (ia64_gdbarch_init): Set tdep->infcall_ops. * ia64-hpux-nat.c (ia64_hpux_xfer_solib_got): New function. (ia64_hpux_xfer_partial): Add TARGET_OBJECT_HPUX_SOLIB_GOT handing. * ia64-hpux-tdep.c: Include "regcache.h", "gdbcore.h" and "inferior.h". (ia64_hpux_dummy_code): New static global constant. (ia64_hpux_push_dummy_code, ia64_hpux_allocate_new_rse_frame) (ia64_hpux_store_argument_in_slot, ia64_hpux_set_function_addr) (ia64_hpux_dummy_id, ia64_hpux_find_global_pointer_from_solib): New function. (ia64_hpux_infcall_ops): New static global constant. (ia64_hpux_init_abi): Install gdbarch and tdep methods needed for inferior function calls to work properly on ia64-hpux.
2011-01-14 00:24:42 +08:00
#include "regcache.h"
#include "gdbcore.h"
#include "inferior.h"
/* A sequence of instructions pushed on the stack when we want to perform
an inferior function call. The main purpose of this code is to save
the output region of the register frame belonging to the function
from which we are making the call. Normally, all registers are saved
prior to the call, but this does not include stacked registers because
they are seen by GDB as pseudo registers.
With Linux kernels, these stacked registers can be saved by simply
creating a new register frame, or in other words by moving the BSP.
But the HP/UX kernel does not allow this. So we rely on this code
instead, that makes functions calls whose only purpose is to create
new register frames.
[ia64-hpux] inferior function call support We have two stacks to deal with on ia64, when making a function call. The first is the usual stack frame, and the second is the register stack frame. On ia64-linux, the register frame is setup by adjusting the BSP register. Unfortunately for us, the HP-UX kernel does not allow the debugger to change the value of the BSP. To work around that limitation, the method I am using here is to push some assembly code on the stack. This assembly code contains, among other things, a call to the alloc insn, which sets up our frame for us. An extensive comment in ia64-hpux-tdep.c explains the entire procedure. Despite this approach, most of the code in ia64-tdep.c which sets up the function call is still applicable - and only a few things need to be done differently: For instance, instead of changing the BSP, we do nothing. We store the parameters at a different location, etc. So this patch also adjusts the inf-call code in ia64-tdep.c to make it a little more extensible: I create a new ia64_infcall_ops structure which allows an ABI to define how the few things that need to be differentiated. Another element that turned out to be necessary but is more of a detail is that the computation of the linkage pointer needs to be handled specially for symbols inside shared libraries. This is especially visible when calling malloc, which happens everytime memory needs to be allocated in inferior memory... The special treatment included again the necessity to use some routines only available on the host. So another target object TARGET_OBJECT_HPUX_SOLIB_GOT was created for that purpose. gdb/ChangeLog: * ia64-tdep.h (struct regcache): Forward declare. (struct ia64_infcall_ops): New struct type. (struct gdbarch_tdep): New fields "find_global_pointer_from_solib" and "infcall_ops". * ia64-tdep.c (ia64_find_global_pointer_from_dynamic_section): Renames ia64_find_global_pointer. (ia64_find_global_pointer, ia64_allocate_new_rse_frame) (ia64_store_argument_in_slot, ia64_set_function_addr: New function. (ia64_push_dummy_call): Adjust to use the new tdep ia64_infocall_ops methods. (ia64_infcall_ops): New static global constant. (ia64_gdbarch_init): Set tdep->infcall_ops. * ia64-hpux-nat.c (ia64_hpux_xfer_solib_got): New function. (ia64_hpux_xfer_partial): Add TARGET_OBJECT_HPUX_SOLIB_GOT handing. * ia64-hpux-tdep.c: Include "regcache.h", "gdbcore.h" and "inferior.h". (ia64_hpux_dummy_code): New static global constant. (ia64_hpux_push_dummy_code, ia64_hpux_allocate_new_rse_frame) (ia64_hpux_store_argument_in_slot, ia64_hpux_set_function_addr) (ia64_hpux_dummy_id, ia64_hpux_find_global_pointer_from_solib): New function. (ia64_hpux_infcall_ops): New static global constant. (ia64_hpux_init_abi): Install gdbarch and tdep methods needed for inferior function calls to work properly on ia64-hpux.
2011-01-14 00:24:42 +08:00
The array below is the result obtained after assembling the code
shown below. It's an array of bytes in order to make it independent
of the host endianess, in case it ends up being used on more than
one target.
start:
// Save b0 before using it (into preserved reg: r4).
mov r4 = b0
;;
br.call.dptk.few b0 = stub#
;;
// Add a nop bundle where we can insert our dummy breakpoint.
nop.m 0
nop.i 0
nop.i 0
;;
stub:
// Alloc a new register stack frame. Here, we set the size
// of all regions to zero. Eventually, GDB will manually
// change the instruction to set the size of the local region
// to match size of the output region of the function from
// which we are making the function call. This is to protect
// the value of the output registers of the function from
// which we are making the call.
alloc r6 = ar.pfs, 0, 0, 0, 0
// Save b0 before using it again (into preserved reg: r5).
mov r5 = b0
;;
// Now that we have protected the entire output region of the
// register stack frame, we can call our function that will
// setup the arguments, and call our target function.
br.call.dptk.few b0 = call_dummy#
;;
// Restore b0, ar.pfs, and return
mov b0 = r5
mov.i ar.pfs = r6
;;
br.ret.dptk.few b0
;;
call_dummy:
// Alloc a new frame, with 2 local registers, and 8 output registers
// (8 output registers for the maximum of 8 slots passed by register).
alloc r32 = ar.pfs, 2, 0, 8, 0
// Save b0 before using it to call our target function.
mov r33 = b0
// Load the argument values placed by GDB inside r14-r21 in their
// proper registers.
or r34 = r14, r0
or r35 = r15, r0
or r36 = r16, r0
or r37 = r17, r0
or r38 = r18, r0
or r39 = r19, r0
or r40 = r20, r0
or r41 = r21, r0
;;
// actual call
br.call.dptk.few b0 = b1
;;
mov.i ar.pfs=r32
mov b0=r33
;;
br.ret.dptk.few b0
;;
*/
static const gdb_byte ia64_hpux_dummy_code[] =
{
0x02, 0x00, 0x00, 0x00, 0x01, 0x00, 0x40, 0x00,
0x00, 0x62, 0x00, 0x00, 0x00, 0x00, 0x04, 0x00,
0x1d, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00,
0x00, 0x02, 0x00, 0x00, 0x20, 0x00, 0x00, 0x52,
0x01, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00,
0x00, 0x02, 0x00, 0x00, 0x00, 0x00, 0x04, 0x00,
0x02, 0x30, 0x00, 0x00, 0x80, 0x05, 0x50, 0x00,
0x00, 0x62, 0x00, 0x00, 0x00, 0x00, 0x04, 0x00,
0x1d, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00,
0x00, 0x02, 0x00, 0x00, 0x30, 0x00, 0x00, 0x52,
0x01, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x28,
0x04, 0x80, 0x03, 0x00, 0x60, 0x00, 0xaa, 0x00,
0x1d, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00,
0x00, 0x02, 0x00, 0x80, 0x00, 0x00, 0x84, 0x02,
0x00, 0x00, 0x29, 0x04, 0x80, 0x05, 0x10, 0x02,
0x00, 0x62, 0x00, 0x40, 0xe4, 0x00, 0x38, 0x80,
0x00, 0x18, 0x3d, 0x00, 0x0e, 0x20, 0x40, 0x82,
0x00, 0x1c, 0x40, 0xa0, 0x14, 0x01, 0x38, 0x80,
0x00, 0x30, 0x49, 0x00, 0x0e, 0x20, 0x70, 0x9a,
0x00, 0x1c, 0x40, 0x00, 0x45, 0x01, 0x38, 0x80,
0x0a, 0x48, 0x55, 0x00, 0x0e, 0x20, 0x00, 0x00,
0x00, 0x02, 0x00, 0x00, 0x00, 0x00, 0x04, 0x00,
0x1d, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00,
0x00, 0x02, 0x00, 0x00, 0x10, 0x00, 0x80, 0x12,
0x01, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00,
0x01, 0x55, 0x00, 0x00, 0x10, 0x0a, 0x00, 0x07,
0x1d, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00,
0x00, 0x02, 0x00, 0x80, 0x00, 0x00, 0x84, 0x02
};
[ia64-hpux] unwinding bsp value from system call This fixes unwinding from a thread that is stopped inside a system call. This can be seen when switching to a thread that is stopped doing a pthread_cond_wait, for instance... The comments inside the code should explain what is happening in our case (the HP-UX exception in the case of system calls): Under certain circumstances (program stopped inside syscall), the offset to apply to the current BSP in order to compute the previous BSP is not the usual CFM & 0x7f. We parts in this patch: 1. Figuring out that we are stopped inside a syscal: This requires a TT_LWP_RUREGS ttrace call, which is not directly possible from ia64-tdep.c. So use defined a new TARGET_OBJECT_HPUX_UREGS object to request it from the -nat side. 2. Add a gdbarch_tdep method that allows us to change the default behavior on ia64-hpux, permitting us to have a different "size of register frame" in that one particular case. gdb/ChangeLog: * target.h (enum target_object): Add TARGET_OBJECT_HPUX_UREGS. * ia64-tdep.h (struct frame_info): forward declaration. (struct gdbarch_tdep): Add field size_of_register_frame. * ia64-tdep.c (ia64_access_reg): Use tdep->size_of_register_frame to determine the size of the register frame. (ia64_size_of_register_frame): New function. (ia64_gdbarch_init): Set tdep->size_of_register_frame. * ia64-hpux-tdep.c: Include "target.h" and "frame.h". (IA64_HPUX_UREG_REASON): New macro. (ia64_hpux_stopped_in_syscall, ia64_hpux_size_of_register_frame): New functions. (ia64_hpux_init_abi): Set tdep->size_of_register_frame. * ia64-hpux-nat.c (ia64_hpux_xfer_uregs): New function. (ia64_hpux_xfer_partial): Add handling of TARGET_OBJECT_HPUX_UREGS objects.
2011-01-14 00:24:27 +08:00
/* The offset to be used in order to get the __reason pseudo-register
when using one of the *UREGS ttrace requests (see system header file
/usr/include/ia64/sys/uregs.h for more details).
The documentation for this pseudo-register says that a nonzero value
indicates that the thread stopped due to a fault, trap, or interrupt.
A null value indicates a stop inside a syscall. */
#define IA64_HPUX_UREG_REASON 0x00070000
/* Return nonzero if the value of the register identified by REGNUM
can be modified. */
static int
ia64_hpux_can_store_ar_register (int regnum)
{
switch (regnum)
{
case IA64_RSC_REGNUM:
case IA64_RNAT_REGNUM:
case IA64_CSD_REGNUM:
case IA64_SSD_REGNUM:
case IA64_CCV_REGNUM:
case IA64_UNAT_REGNUM:
case IA64_FPSR_REGNUM:
case IA64_PFS_REGNUM:
case IA64_LC_REGNUM:
case IA64_EC_REGNUM:
return 1;
break;
default:
return 0;
break;
}
}
/* The "cannot_store_register" target_ops method. */
static int
ia64_hpux_cannot_store_register (struct gdbarch *gdbarch, int regnum)
{
/* General registers. */
if (regnum == IA64_GR0_REGNUM)
return 1;
/* FP register. */
if (regnum == IA64_FR0_REGNUM || regnum == IA64_FR1_REGNUM)
return 1;
/* Application registers. */
if (regnum >= IA64_AR0_REGNUM && regnum <= IA64_AR0_REGNUM + 127)
return (!ia64_hpux_can_store_ar_register (regnum));
/* We can store all other registers. */
return 0;
}
[ia64-hpux] unwinding bsp value from system call This fixes unwinding from a thread that is stopped inside a system call. This can be seen when switching to a thread that is stopped doing a pthread_cond_wait, for instance... The comments inside the code should explain what is happening in our case (the HP-UX exception in the case of system calls): Under certain circumstances (program stopped inside syscall), the offset to apply to the current BSP in order to compute the previous BSP is not the usual CFM & 0x7f. We parts in this patch: 1. Figuring out that we are stopped inside a syscal: This requires a TT_LWP_RUREGS ttrace call, which is not directly possible from ia64-tdep.c. So use defined a new TARGET_OBJECT_HPUX_UREGS object to request it from the -nat side. 2. Add a gdbarch_tdep method that allows us to change the default behavior on ia64-hpux, permitting us to have a different "size of register frame" in that one particular case. gdb/ChangeLog: * target.h (enum target_object): Add TARGET_OBJECT_HPUX_UREGS. * ia64-tdep.h (struct frame_info): forward declaration. (struct gdbarch_tdep): Add field size_of_register_frame. * ia64-tdep.c (ia64_access_reg): Use tdep->size_of_register_frame to determine the size of the register frame. (ia64_size_of_register_frame): New function. (ia64_gdbarch_init): Set tdep->size_of_register_frame. * ia64-hpux-tdep.c: Include "target.h" and "frame.h". (IA64_HPUX_UREG_REASON): New macro. (ia64_hpux_stopped_in_syscall, ia64_hpux_size_of_register_frame): New functions. (ia64_hpux_init_abi): Set tdep->size_of_register_frame. * ia64-hpux-nat.c (ia64_hpux_xfer_uregs): New function. (ia64_hpux_xfer_partial): Add handling of TARGET_OBJECT_HPUX_UREGS objects.
2011-01-14 00:24:27 +08:00
/* Return nonzero if the inferior is stopped inside a system call. */
static int
ia64_hpux_stopped_in_syscall (struct gdbarch *gdbarch)
{
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
struct target_ops *ops = &current_target;
gdb_byte buf[8];
int len;
len = target_read (ops, TARGET_OBJECT_HPUX_UREGS, NULL,
buf, IA64_HPUX_UREG_REASON, sizeof (buf));
if (len == -1)
/* The target wasn't able to tell us. Assume we are not stopped
in a system call, which is the normal situation. */
return 0;
gdb_assert (len == 8);
return (extract_unsigned_integer (buf, len, byte_order) == 0);
}
/* The "size_of_register_frame" gdbarch_tdep routine for ia64-hpux. */
static int
ia64_hpux_size_of_register_frame (struct frame_info *this_frame,
ULONGEST cfm)
{
int sof;
if (frame_relative_level (this_frame) == 0
&& ia64_hpux_stopped_in_syscall (get_frame_arch (this_frame)))
/* If the inferior stopped in a system call, the base address
of the register frame is at BSP - SOL instead of BSP - SOF.
This is an HP-UX exception. */
sof = (cfm & 0x3f80) >> 7;
else
sof = (cfm & 0x7f);
return sof;
}
[ia64-hpux] inferior function call support We have two stacks to deal with on ia64, when making a function call. The first is the usual stack frame, and the second is the register stack frame. On ia64-linux, the register frame is setup by adjusting the BSP register. Unfortunately for us, the HP-UX kernel does not allow the debugger to change the value of the BSP. To work around that limitation, the method I am using here is to push some assembly code on the stack. This assembly code contains, among other things, a call to the alloc insn, which sets up our frame for us. An extensive comment in ia64-hpux-tdep.c explains the entire procedure. Despite this approach, most of the code in ia64-tdep.c which sets up the function call is still applicable - and only a few things need to be done differently: For instance, instead of changing the BSP, we do nothing. We store the parameters at a different location, etc. So this patch also adjusts the inf-call code in ia64-tdep.c to make it a little more extensible: I create a new ia64_infcall_ops structure which allows an ABI to define how the few things that need to be differentiated. Another element that turned out to be necessary but is more of a detail is that the computation of the linkage pointer needs to be handled specially for symbols inside shared libraries. This is especially visible when calling malloc, which happens everytime memory needs to be allocated in inferior memory... The special treatment included again the necessity to use some routines only available on the host. So another target object TARGET_OBJECT_HPUX_SOLIB_GOT was created for that purpose. gdb/ChangeLog: * ia64-tdep.h (struct regcache): Forward declare. (struct ia64_infcall_ops): New struct type. (struct gdbarch_tdep): New fields "find_global_pointer_from_solib" and "infcall_ops". * ia64-tdep.c (ia64_find_global_pointer_from_dynamic_section): Renames ia64_find_global_pointer. (ia64_find_global_pointer, ia64_allocate_new_rse_frame) (ia64_store_argument_in_slot, ia64_set_function_addr: New function. (ia64_push_dummy_call): Adjust to use the new tdep ia64_infocall_ops methods. (ia64_infcall_ops): New static global constant. (ia64_gdbarch_init): Set tdep->infcall_ops. * ia64-hpux-nat.c (ia64_hpux_xfer_solib_got): New function. (ia64_hpux_xfer_partial): Add TARGET_OBJECT_HPUX_SOLIB_GOT handing. * ia64-hpux-tdep.c: Include "regcache.h", "gdbcore.h" and "inferior.h". (ia64_hpux_dummy_code): New static global constant. (ia64_hpux_push_dummy_code, ia64_hpux_allocate_new_rse_frame) (ia64_hpux_store_argument_in_slot, ia64_hpux_set_function_addr) (ia64_hpux_dummy_id, ia64_hpux_find_global_pointer_from_solib): New function. (ia64_hpux_infcall_ops): New static global constant. (ia64_hpux_init_abi): Install gdbarch and tdep methods needed for inferior function calls to work properly on ia64-hpux.
2011-01-14 00:24:42 +08:00
/* Implement the push_dummy_code gdbarch method.
This function assumes that the SP is already 16-byte-aligned. */
static CORE_ADDR
ia64_hpux_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp,
CORE_ADDR funaddr, struct value **args, int nargs,
struct type *value_type, CORE_ADDR *real_pc,
CORE_ADDR *bp_addr, struct regcache *regcache)
{
ULONGEST cfm;
int sof, sol, sor, soo;
char buf[16];
regcache_cooked_read_unsigned (regcache, IA64_CFM_REGNUM, &cfm);
sof = cfm & 0x7f;
sol = (cfm >> 7) & 0x7f;
sor = (cfm >> 14) & 0xf;
soo = sof - sol - sor;
/* Reserve some space on the stack to hold the dummy code. */
sp = sp - sizeof (ia64_hpux_dummy_code);
/* Set the breakpoint address at the first instruction of the bundle
in the dummy code that has only nops. This is where the dummy code
expects us to break. */
*bp_addr = sp + 0x20;
/* Start the inferior function call from the dummy code. The dummy
code will then call our function. */
*real_pc = sp;
/* Transfer the dummy code to the inferior. */
write_memory (sp, ia64_hpux_dummy_code, sizeof (ia64_hpux_dummy_code));
/* Update the size of the local portion of the register frame allocated
by ``stub'' to match the size of the output region of the current
register frame. This allows us to save the stacked registers.
The "alloc" instruction is located at slot 0 of the bundle at +0x30.
Update the "sof" and "sol" portion of that instruction which are
respectively at bits 18-24 and 25-31 of the bundle. */
memcpy (buf, ia64_hpux_dummy_code + 0x30, sizeof (buf));
buf[2] |= ((soo & 0x3f) << 2);
buf[3] |= (soo << 1);
if (soo > 63)
buf[3] |= 1;
write_memory (sp + 0x30, buf, sizeof (buf));
/* Return the new (already properly aligned) SP. */
return sp;
}
/* The "allocate_new_rse_frame" ia64_infcall_ops routine for ia64-hpux. */
static void
ia64_hpux_allocate_new_rse_frame (struct regcache *regcache, ULONGEST bsp,
int sof)
{
/* We cannot change the value of the BSP register on HP-UX,
so we can't allocate a new RSE frame. */
}
/* The "store_argument_in_slot" ia64_infcall_ops routine for ia64-hpux. */
static void
ia64_hpux_store_argument_in_slot (struct regcache *regcache, CORE_ADDR bsp,
int slotnum, gdb_byte *buf)
{
/* The call sequence on this target expects us to place the arguments
inside r14 - r21. */
regcache_cooked_write (regcache, IA64_GR0_REGNUM + 14 + slotnum, buf);
}
/* The "set_function_addr" ia64_infcall_ops routine for ia64-hpux. */
static void
ia64_hpux_set_function_addr (struct regcache *regcache, CORE_ADDR func_addr)
{
/* The calling sequence calls the function whose address is placed
in register b1. */
regcache_cooked_write_unsigned (regcache, IA64_BR1_REGNUM, func_addr);
}
/* The ia64_infcall_ops structure for ia64-hpux. */
static const struct ia64_infcall_ops ia64_hpux_infcall_ops =
{
ia64_hpux_allocate_new_rse_frame,
ia64_hpux_store_argument_in_slot,
ia64_hpux_set_function_addr
};
/* The "dummy_id" gdbarch routine for ia64-hpux. */
static struct frame_id
ia64_hpux_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
{
CORE_ADDR sp, pc, bp_addr, bsp;
sp = get_frame_register_unsigned (this_frame, IA64_GR12_REGNUM);
/* Just double-check that the frame PC is within a certain region
of the stack that would be plausible for our dummy code (the dummy
code was pushed at SP + 16). If not, then return a null frame ID.
This is necessary in our case, because it is possible to produce
the same frame ID for a normal frame, if that frame corresponds
to the function called by our dummy code, and the function has not
modified the registers that we use to build the dummy frame ID. */
pc = get_frame_pc (this_frame);
if (pc < sp + 16 || pc >= sp + 16 + sizeof (ia64_hpux_dummy_code))
return null_frame_id;
/* The call sequence is such that the address of the dummy breakpoint
we inserted is stored in r5. */
bp_addr = get_frame_register_unsigned (this_frame, IA64_GR5_REGNUM);
bsp = get_frame_register_unsigned (this_frame, IA64_BSP_REGNUM);
return frame_id_build_special (sp, bp_addr, bsp);
}
/* Should be set to non-NULL if the ia64-hpux solib module is linked in.
This may not be the case because the shared library support code can
only be compiled on ia64-hpux. */
struct target_so_ops *ia64_hpux_so_ops = NULL;
[ia64-hpux] inferior function call support We have two stacks to deal with on ia64, when making a function call. The first is the usual stack frame, and the second is the register stack frame. On ia64-linux, the register frame is setup by adjusting the BSP register. Unfortunately for us, the HP-UX kernel does not allow the debugger to change the value of the BSP. To work around that limitation, the method I am using here is to push some assembly code on the stack. This assembly code contains, among other things, a call to the alloc insn, which sets up our frame for us. An extensive comment in ia64-hpux-tdep.c explains the entire procedure. Despite this approach, most of the code in ia64-tdep.c which sets up the function call is still applicable - and only a few things need to be done differently: For instance, instead of changing the BSP, we do nothing. We store the parameters at a different location, etc. So this patch also adjusts the inf-call code in ia64-tdep.c to make it a little more extensible: I create a new ia64_infcall_ops structure which allows an ABI to define how the few things that need to be differentiated. Another element that turned out to be necessary but is more of a detail is that the computation of the linkage pointer needs to be handled specially for symbols inside shared libraries. This is especially visible when calling malloc, which happens everytime memory needs to be allocated in inferior memory... The special treatment included again the necessity to use some routines only available on the host. So another target object TARGET_OBJECT_HPUX_SOLIB_GOT was created for that purpose. gdb/ChangeLog: * ia64-tdep.h (struct regcache): Forward declare. (struct ia64_infcall_ops): New struct type. (struct gdbarch_tdep): New fields "find_global_pointer_from_solib" and "infcall_ops". * ia64-tdep.c (ia64_find_global_pointer_from_dynamic_section): Renames ia64_find_global_pointer. (ia64_find_global_pointer, ia64_allocate_new_rse_frame) (ia64_store_argument_in_slot, ia64_set_function_addr: New function. (ia64_push_dummy_call): Adjust to use the new tdep ia64_infocall_ops methods. (ia64_infcall_ops): New static global constant. (ia64_gdbarch_init): Set tdep->infcall_ops. * ia64-hpux-nat.c (ia64_hpux_xfer_solib_got): New function. (ia64_hpux_xfer_partial): Add TARGET_OBJECT_HPUX_SOLIB_GOT handing. * ia64-hpux-tdep.c: Include "regcache.h", "gdbcore.h" and "inferior.h". (ia64_hpux_dummy_code): New static global constant. (ia64_hpux_push_dummy_code, ia64_hpux_allocate_new_rse_frame) (ia64_hpux_store_argument_in_slot, ia64_hpux_set_function_addr) (ia64_hpux_dummy_id, ia64_hpux_find_global_pointer_from_solib): New function. (ia64_hpux_infcall_ops): New static global constant. (ia64_hpux_init_abi): Install gdbarch and tdep methods needed for inferior function calls to work properly on ia64-hpux.
2011-01-14 00:24:42 +08:00
/* The "find_global_pointer_from_solib" gdbarch_tdep routine for
ia64-hpux. */
static CORE_ADDR
ia64_hpux_find_global_pointer_from_solib (struct gdbarch *gdbarch,
CORE_ADDR faddr)
{
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
struct target_ops *ops = &current_target;
gdb_byte buf[8];
LONGEST len;
len = target_read (ops, TARGET_OBJECT_HPUX_SOLIB_GOT,
paddress (gdbarch, faddr), buf, 0, sizeof (buf));
return extract_unsigned_integer (buf, len, byte_order);
}
static void
ia64_hpux_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
{
[ia64-hpux] unwinding bsp value from system call This fixes unwinding from a thread that is stopped inside a system call. This can be seen when switching to a thread that is stopped doing a pthread_cond_wait, for instance... The comments inside the code should explain what is happening in our case (the HP-UX exception in the case of system calls): Under certain circumstances (program stopped inside syscall), the offset to apply to the current BSP in order to compute the previous BSP is not the usual CFM & 0x7f. We parts in this patch: 1. Figuring out that we are stopped inside a syscal: This requires a TT_LWP_RUREGS ttrace call, which is not directly possible from ia64-tdep.c. So use defined a new TARGET_OBJECT_HPUX_UREGS object to request it from the -nat side. 2. Add a gdbarch_tdep method that allows us to change the default behavior on ia64-hpux, permitting us to have a different "size of register frame" in that one particular case. gdb/ChangeLog: * target.h (enum target_object): Add TARGET_OBJECT_HPUX_UREGS. * ia64-tdep.h (struct frame_info): forward declaration. (struct gdbarch_tdep): Add field size_of_register_frame. * ia64-tdep.c (ia64_access_reg): Use tdep->size_of_register_frame to determine the size of the register frame. (ia64_size_of_register_frame): New function. (ia64_gdbarch_init): Set tdep->size_of_register_frame. * ia64-hpux-tdep.c: Include "target.h" and "frame.h". (IA64_HPUX_UREG_REASON): New macro. (ia64_hpux_stopped_in_syscall, ia64_hpux_size_of_register_frame): New functions. (ia64_hpux_init_abi): Set tdep->size_of_register_frame. * ia64-hpux-nat.c (ia64_hpux_xfer_uregs): New function. (ia64_hpux_xfer_partial): Add handling of TARGET_OBJECT_HPUX_UREGS objects.
2011-01-14 00:24:27 +08:00
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
tdep->size_of_register_frame = ia64_hpux_size_of_register_frame;
set_gdbarch_long_double_format (gdbarch, floatformats_ia64_quad);
set_gdbarch_cannot_store_register (gdbarch, ia64_hpux_cannot_store_register);
[ia64-hpux] inferior function call support We have two stacks to deal with on ia64, when making a function call. The first is the usual stack frame, and the second is the register stack frame. On ia64-linux, the register frame is setup by adjusting the BSP register. Unfortunately for us, the HP-UX kernel does not allow the debugger to change the value of the BSP. To work around that limitation, the method I am using here is to push some assembly code on the stack. This assembly code contains, among other things, a call to the alloc insn, which sets up our frame for us. An extensive comment in ia64-hpux-tdep.c explains the entire procedure. Despite this approach, most of the code in ia64-tdep.c which sets up the function call is still applicable - and only a few things need to be done differently: For instance, instead of changing the BSP, we do nothing. We store the parameters at a different location, etc. So this patch also adjusts the inf-call code in ia64-tdep.c to make it a little more extensible: I create a new ia64_infcall_ops structure which allows an ABI to define how the few things that need to be differentiated. Another element that turned out to be necessary but is more of a detail is that the computation of the linkage pointer needs to be handled specially for symbols inside shared libraries. This is especially visible when calling malloc, which happens everytime memory needs to be allocated in inferior memory... The special treatment included again the necessity to use some routines only available on the host. So another target object TARGET_OBJECT_HPUX_SOLIB_GOT was created for that purpose. gdb/ChangeLog: * ia64-tdep.h (struct regcache): Forward declare. (struct ia64_infcall_ops): New struct type. (struct gdbarch_tdep): New fields "find_global_pointer_from_solib" and "infcall_ops". * ia64-tdep.c (ia64_find_global_pointer_from_dynamic_section): Renames ia64_find_global_pointer. (ia64_find_global_pointer, ia64_allocate_new_rse_frame) (ia64_store_argument_in_slot, ia64_set_function_addr: New function. (ia64_push_dummy_call): Adjust to use the new tdep ia64_infocall_ops methods. (ia64_infcall_ops): New static global constant. (ia64_gdbarch_init): Set tdep->infcall_ops. * ia64-hpux-nat.c (ia64_hpux_xfer_solib_got): New function. (ia64_hpux_xfer_partial): Add TARGET_OBJECT_HPUX_SOLIB_GOT handing. * ia64-hpux-tdep.c: Include "regcache.h", "gdbcore.h" and "inferior.h". (ia64_hpux_dummy_code): New static global constant. (ia64_hpux_push_dummy_code, ia64_hpux_allocate_new_rse_frame) (ia64_hpux_store_argument_in_slot, ia64_hpux_set_function_addr) (ia64_hpux_dummy_id, ia64_hpux_find_global_pointer_from_solib): New function. (ia64_hpux_infcall_ops): New static global constant. (ia64_hpux_init_abi): Install gdbarch and tdep methods needed for inferior function calls to work properly on ia64-hpux.
2011-01-14 00:24:42 +08:00
/* Inferior functions must be called from stack. */
set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
set_gdbarch_push_dummy_code (gdbarch, ia64_hpux_push_dummy_code);
tdep->infcall_ops = ia64_hpux_infcall_ops;
tdep->find_global_pointer_from_solib
= ia64_hpux_find_global_pointer_from_solib;
set_gdbarch_dummy_id (gdbarch, ia64_hpux_dummy_id);
if (ia64_hpux_so_ops)
set_solib_ops (gdbarch, ia64_hpux_so_ops);
}
/* Provide a prototype to silence -Wmissing-prototypes. */
extern initialize_file_ftype _initialize_ia64_hpux_tdep;
void
_initialize_ia64_hpux_tdep (void)
{
gdbarch_register_osabi (bfd_arch_ia64, 0, GDB_OSABI_HPUX_ELF,
ia64_hpux_init_abi);
}