binutils-gdb/gold/dwp.cc

2077 lines
59 KiB
C++
Raw Normal View History

// dwp.cc -- DWARF packaging utility
// Copyright 2012 Free Software Foundation, Inc.
// Written by Cary Coutant <ccoutant@google.com>.
// This file is part of dwp, the DWARF packaging utility.
// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
// MA 02110-1301, USA.
#include "dwp.h"
#include <cstdarg>
#include <cstddef>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cerrno>
#include <vector>
#include <algorithm>
#include "getopt.h"
#include "libiberty.h"
#include "elfcpp.h"
#include "elfcpp_file.h"
#include "dirsearch.h"
#include "fileread.h"
#include "object.h"
#include "compressed_output.h"
#include "stringpool.h"
#include "dwarf_reader.h"
static void
usage() ATTRIBUTE_NORETURN;
namespace gold {
class Dwp_output_file;
// An input file.
// This class may represent either a .dwo file or a .dwp file
// produced by an earlier run.
template <int size, bool big_endian>
class Sized_relobj_dwo;
class Dwo_file
{
public:
Dwo_file(const char* name)
: name_(name), obj_(NULL), input_file_(NULL), is_compressed_(),
str_offset_map_()
{ }
~Dwo_file();
// Read the input file and send its contents to OUTPUT_FILE.
void
read(Dwp_output_file* output_file);
private:
// Types for mapping input string offsets to output string offsets.
typedef std::pair<section_offset_type, section_offset_type>
Str_offset_map_entry;
typedef std::vector<Str_offset_map_entry> Str_offset_map;
// A less-than comparison routine for Str_offset_map.
struct Offset_compare
{
bool
operator()(const Str_offset_map_entry& i1,
const Str_offset_map_entry& i2) const
{ return i1.first < i2.first; }
};
// Create a Sized_relobj_dwo of the given size and endianness,
// and record the target info. P is a pointer to the ELF header
// in memory.
Relobj*
make_object(int size, bool big_endian, const unsigned char* p,
Input_file* input_file, Dwp_output_file* output_file);
template <int size, bool big_endian>
Relobj*
sized_make_object(const unsigned char* p, Input_file* input_file,
Dwp_output_file* output_file);
// Return the number of sections in the input object file.
unsigned int
shnum() const
{ return this->obj_->shnum(); }
// Return section type.
unsigned int
section_type(unsigned int shndx)
{ return this->obj_->section_type(shndx); }
// Get the name of a section.
std::string
section_name(unsigned int shndx)
{ return this->obj_->section_name(shndx); }
// Return a view of the contents of a section, decompressed if necessary.
// Set *PLEN to the size. Set *IS_NEW to true if the contents need to be
// deleted by the caller.
const unsigned char*
section_contents(unsigned int shndx, section_size_type* plen, bool* is_new)
{ return this->obj_->decompressed_section_contents(shndx, plen, is_new); }
// Read the .debug_cu_index section of a .dwp file,
// and process the CU sets.
void
read_compunit_index(unsigned int, Dwp_output_file*);
template <bool big_endian>
void
sized_read_compunit_index(unsigned int, Dwp_output_file*);
// Read the .debug_tu_index section of a .dwp file,
// and process the TU sets.
void
read_typeunit_index(unsigned int, Dwp_output_file*);
template <bool big_endian>
void
sized_read_typeunit_index(unsigned int, Dwp_output_file*);
// Merge the input string table section into the output file.
void
add_strings(Dwp_output_file*, unsigned int);
// Copy a section from the input file to the output file.
unsigned int
copy_section(Dwp_output_file* output_file, unsigned int shndx,
const char* section_name, bool is_str_offsets);
// Remap the string offsets in the .debug_str_offsets.dwo section.
const unsigned char*
remap_str_offsets(const unsigned char* contents, section_size_type len);
template <bool big_endian>
const unsigned char*
sized_remap_str_offsets(const unsigned char* contents, section_size_type len);
// Remap a single string offsets from an offset in the input string table
// to an offset in the output string table.
unsigned int
remap_str_offset(section_offset_type val);
// Add a set of .debug_info and related sections to OUTPUT_FILE.
void
add_cu_set(Dwp_output_file* output_file,
uint64_t dwo_id,
unsigned int debug_info,
unsigned int debug_abbrev,
unsigned int debug_line,
unsigned int debug_loc,
unsigned int debug_str_offsets,
unsigned int debug_macinfo,
unsigned int debug_macro);
// Add a set of .debug_types and related sections to OUTPUT_FILE.
void
add_tu_set(Dwp_output_file* output_file,
uint64_t type_sig,
unsigned int debug_types,
unsigned int debug_abbrev,
unsigned int debug_line,
unsigned int debug_str_offsets);
// The filename.
const char* name_;
// The ELF file, represented as a gold Relobj instance.
Relobj* obj_;
// The Input_file object.
Input_file* input_file_;
// Flags indicating which sections are compressed.
std::vector<bool> is_compressed_;
// Map input section index onto output section index.
std::vector<unsigned int> shndx_map_;
// Map input string offsets to output string offsets.
Str_offset_map str_offset_map_;
};
// An ELF input file.
// We derive from Sized_relobj so that we can use interfaces
// in libgold to access the file.
template <int size, bool big_endian>
class Sized_relobj_dwo : public Sized_relobj<size, big_endian>
{
public:
typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
typedef typename Sized_relobj<size, big_endian>::Symbols Symbols;
Sized_relobj_dwo(const char* name, Input_file* input_file,
const elfcpp::Ehdr<size, big_endian>& ehdr)
: Sized_relobj<size, big_endian>(name, input_file),
elf_file_(this, ehdr)
{ }
~Sized_relobj_dwo()
{ }
// Setup the section information.
void
setup();
protected:
// Return section type.
unsigned int
do_section_type(unsigned int shndx)
{ return this->elf_file_.section_type(shndx); }
// Get the name of a section.
std::string
do_section_name(unsigned int shndx)
{ return this->elf_file_.section_name(shndx); }
// Get the size of a section.
uint64_t
do_section_size(unsigned int shndx)
{ return this->elf_file_.section_size(shndx); }
// Return a view of the contents of a section.
const unsigned char*
do_section_contents(unsigned int, section_size_type*, bool);
// Return a view of the uncompressed contents of a section. Set *PLEN
// to the size. Set *IS_NEW to true if the contents need to be deleted
// by the caller.
const unsigned char*
do_decompressed_section_contents(unsigned int shndx,
section_size_type* plen,
bool* is_new);
// The following virtual functions are abstract in the base classes,
// but are not used here.
// Read the symbols.
void
do_read_symbols(Read_symbols_data*)
{ gold_unreachable(); }
// Lay out the input sections.
void
do_layout(Symbol_table*, Layout*, Read_symbols_data*)
{ gold_unreachable(); }
// Layout sections whose layout was deferred while waiting for
// input files from a plugin.
void
do_layout_deferred_sections(Layout*)
{ gold_unreachable(); }
// Add the symbols to the symbol table.
void
do_add_symbols(Symbol_table*, Read_symbols_data*, Layout*)
{ gold_unreachable(); }
Archive::Should_include
do_should_include_member(Symbol_table*, Layout*, Read_symbols_data*,
std::string*)
{ gold_unreachable(); }
// Iterate over global symbols, calling a visitor class V for each.
void
do_for_all_global_symbols(Read_symbols_data*,
Library_base::Symbol_visitor_base*)
{ gold_unreachable(); }
// Return section flags.
uint64_t
do_section_flags(unsigned int)
{ gold_unreachable(); }
// Return section entsize.
uint64_t
do_section_entsize(unsigned int)
{ gold_unreachable(); }
// Return section address.
uint64_t
do_section_address(unsigned int)
{ gold_unreachable(); }
// Return the section link field.
unsigned int
do_section_link(unsigned int)
{ gold_unreachable(); }
// Return the section link field.
unsigned int
do_section_info(unsigned int)
{ gold_unreachable(); }
// Return the section alignment.
uint64_t
do_section_addralign(unsigned int)
{ gold_unreachable(); }
// Return the Xindex structure to use.
Xindex*
do_initialize_xindex()
{ gold_unreachable(); }
// Get symbol counts.
void
do_get_global_symbol_counts(const Symbol_table*, size_t*, size_t*) const
{ gold_unreachable(); }
// Get global symbols.
const Symbols*
do_get_global_symbols() const
{ return NULL; }
// Return the value of a local symbol.
uint64_t
do_local_symbol_value(unsigned int, uint64_t) const
{ gold_unreachable(); }
unsigned int
do_local_plt_offset(unsigned int) const
{ gold_unreachable(); }
// Return whether local symbol SYMNDX is a TLS symbol.
bool
do_local_is_tls(unsigned int) const
{ gold_unreachable(); }
// Return the number of local symbols.
unsigned int
do_local_symbol_count() const
{ gold_unreachable(); }
// Return the number of local symbols in the output symbol table.
unsigned int
do_output_local_symbol_count() const
{ gold_unreachable(); }
// Return the file offset for local symbols in the output symbol table.
off_t
do_local_symbol_offset() const
{ gold_unreachable(); }
// Read the relocs.
void
do_read_relocs(Read_relocs_data*)
{ gold_unreachable(); }
// Process the relocs to find list of referenced sections. Used only
// during garbage collection.
void
do_gc_process_relocs(Symbol_table*, Layout*, Read_relocs_data*)
{ gold_unreachable(); }
// Scan the relocs and adjust the symbol table.
void
do_scan_relocs(Symbol_table*, Layout*, Read_relocs_data*)
{ gold_unreachable(); }
// Count the local symbols.
void
do_count_local_symbols(Stringpool_template<char>*,
Stringpool_template<char>*)
{ gold_unreachable(); }
// Finalize the local symbols.
unsigned int
do_finalize_local_symbols(unsigned int, off_t, Symbol_table*)
{ gold_unreachable(); }
// Set the offset where local dynamic symbol information will be stored.
unsigned int
do_set_local_dynsym_indexes(unsigned int)
{ gold_unreachable(); }
// Set the offset where local dynamic symbol information will be stored.
unsigned int
do_set_local_dynsym_offset(off_t)
{ gold_unreachable(); }
// Relocate the input sections and write out the local symbols.
void
do_relocate(const Symbol_table*, const Layout*, Output_file*)
{ gold_unreachable(); }
private:
// General access to the ELF file.
elfcpp::Elf_file<size, big_endian, Object> elf_file_;
};
// The output file.
// This class is responsible for collecting the debug index information
// and writing the .dwp file in ELF format.
class Dwp_output_file
{
public:
Dwp_output_file(const char* name)
: name_(name), machine_(0), size_(0), big_endian_(false), osabi_(0),
abiversion_(0), fd_(NULL), next_file_offset_(0), shnum_(1), sections_(),
shoff_(0), shstrndx_(0), have_strings_(false), stringpool_(),
shstrtab_(), cu_index_(), tu_index_(), last_type_sig_(0),
last_tu_slot_(0)
{
this->stringpool_.set_no_zero_null();
}
// Record the target info from an input file.
void
record_target_info(const char* name, int machine, int size, bool big_endian,
int osabi, int abiversion);
// Add a string to the debug strings section.
section_offset_type
add_string(const char* str, size_t len);
// Add a section to the output file, and return the new section index.
unsigned int
add_section(const char* section_name, const unsigned char* contents,
section_size_type len, int align);
// Add a set of .debug_info and related sections to the output file.
void
add_cu_set(uint64_t dwo_id, unsigned int debug_info,
unsigned int debug_abbrev, unsigned int debug_line,
unsigned int debug_loc, unsigned int debug_str_offsets,
unsigned int debug_macinfo, unsigned int debug_macro);
// Lookup a type signature and return TRUE if we have already seen it.
bool
lookup_tu(uint64_t type_sig);
// Add a set of .debug_types and related sections to the output file.
void
add_tu_set(uint64_t type_sig, unsigned int debug_types,
unsigned int debug_abbrev, unsigned int debug_line,
unsigned int debug_str_offsets);
// Finalize the file, write the string tables and index sections,
// and close the file.
void
finalize();
private:
// Sections in the output file.
struct Section
{
const char* name;
off_t offset;
section_size_type size;
int align;
};
// A set of sections for a compilation unit or type unit.
struct Cu_or_tu_set
{
uint64_t signature;
unsigned int debug_info_or_types;
unsigned int debug_abbrev;
unsigned int debug_line;
unsigned int debug_loc;
unsigned int debug_str_offsets;
unsigned int debug_macinfo;
unsigned int debug_macro;
};
// The index sections defined by the DWARF Package File Format spec.
class Dwp_index
{
public:
// Vector for the section index pool.
typedef std::vector<unsigned int> Shndx_pool;
Dwp_index()
: capacity_(0), used_(0), hash_table_(NULL), shndx_pool_()
{ }
~Dwp_index()
{ }
// Find a slot in the hash table for SIGNATURE. Return TRUE
// if the entry already exists.
bool
find_or_add(uint64_t signature, unsigned int* slotp);
// Enter a CU or TU set at the given SLOT in the hash table.
void
enter_set(unsigned int slot, const Cu_or_tu_set& set);
// Return the contents of the given SLOT in the hash table of signatures.
uint64_t
hash_table(unsigned int slot) const
{ return this->hash_table_[slot]; }
// Return the contents of the given SLOT in the parallel table of
// shndx pool indexes.
uint32_t
index_table(unsigned int slot) const
{ return this->index_table_[slot]; }
// Return the total number of slots in the hash table.
unsigned int
hash_table_total_slots() const
{ return this->capacity_; }
// Return the number of used slots in the hash table.
unsigned int
hash_table_used_slots() const
{ return this->used_; }
// Return an iterator into the shndx pool.
Shndx_pool::const_iterator
shndx_pool() const
{ return this->shndx_pool_.begin(); }
Shndx_pool::const_iterator
shndx_pool_end() const
{ return this->shndx_pool_.end(); }
// Return the number of entries in the shndx pool.
unsigned int
shndx_pool_size() const
{ return this->shndx_pool_.size(); }
private:
// Initialize the hash table.
void
initialize();
// Grow the hash table when we reach 2/3 capacity.
void
grow();
// The number of slots in the table, a power of 2 such that
// capacity > 3 * size / 2.
unsigned int capacity_;
// The current number of used slots in the hash table.
unsigned int used_;
// The storage for the hash table of signatures.
uint64_t* hash_table_;
// The storage for the parallel table of shndx pool indexes.
uint32_t* index_table_;
// The pool of section indexes.
Shndx_pool shndx_pool_;
}; // End class Dwp_output_file::Dwp_index.
// Initialize the output file.
void
initialize();
// Write the ELF header.
void
write_ehdr();
template<unsigned int size, bool big_endian>
void
sized_write_ehdr();
// Write a section header.
void
write_shdr(const char* name, unsigned int type, unsigned int flags,
uint64_t addr, off_t offset, section_size_type sect_size,
unsigned int link, unsigned int info,
unsigned int align, unsigned int ent_size);
template<unsigned int size, bool big_endian>
void
sized_write_shdr(const char* name, unsigned int type, unsigned int flags,
uint64_t addr, off_t offset, section_size_type sect_size,
unsigned int link, unsigned int info,
unsigned int align, unsigned int ent_size);
// Write a CU or TU index section.
template<bool big_endian>
void
write_index(const char* sect_name, const Dwp_index& index);
// The output filename.
const char* name_;
// ELF header parameters.
int machine_;
int size_;
int big_endian_;
int osabi_;
int abiversion_;
// The output file descriptor.
FILE* fd_;
// Next available file offset.
off_t next_file_offset_;
// The number of sections.
unsigned int shnum_;
// Section table. The first entry is shndx 1.
std::vector<Section> sections_;
// File offset of the section header table.
off_t shoff_;
// Section index of the section string table.
unsigned int shstrndx_;
// TRUE if we have added any strings to the string pool.
bool have_strings_;
// String pool for the output .debug_str.dwo section.
Stringpool stringpool_;
// String pool for the .shstrtab section.
Stringpool shstrtab_;
// The compilation unit index.
Dwp_index cu_index_;
// The type unit index.
Dwp_index tu_index_;
// Cache of the last type signature looked up.
uint64_t last_type_sig_;
// Cache of the slot index for the last type signature.
unsigned int last_tu_slot_;
};
// A specialization of Dwarf_info_reader, for reading dwo_ids and
// type signatures from DWARF CUs and TUs.
class Dwo_id_info_reader : public Dwarf_info_reader
{
public:
Dwo_id_info_reader(bool is_type_unit,
Relobj* object,
const unsigned char* symbols,
off_t symbols_size,
unsigned int shndx,
unsigned int reloc_shndx,
unsigned int reloc_type)
: Dwarf_info_reader(is_type_unit, object, symbols, symbols_size, shndx,
reloc_shndx, reloc_type),
dwo_id_found_(false), dwo_id_(0), type_sig_found_(false), type_sig_(0)
{ }
~Dwo_id_info_reader()
{ }
// Return the dwo_id from a DWARF compilation unit DIE in *DWO_ID.
bool
get_dwo_id(uint64_t* dwo_id)
{
this->parse();
if (!this->dwo_id_found_)
return false;
*dwo_id = this->dwo_id_;
return true;
}
// Return the type signature from a DWARF type unit DIE in *TYPE_SIG.
bool
get_type_sig(uint64_t* type_sig)
{
this->parse();
if (!this->type_sig_found_)
return false;
*type_sig = this->type_sig_;
return true;
}
protected:
// Visit a compilation unit.
virtual void
visit_compilation_unit(off_t cu_offset, off_t cu_length, Dwarf_die*);
// Visit a type unit.
virtual void
visit_type_unit(off_t tu_offset, off_t type_offset, uint64_t signature,
Dwarf_die*);
private:
// Visit a top-level DIE.
void
visit_top_die(Dwarf_die* die);
// TRUE if we found a dwo_id.
bool dwo_id_found_;
// The dwo_id.
uint64_t dwo_id_;
// TRUE if we found a type signature.
bool type_sig_found_;
// The type signature.
uint64_t type_sig_;
};
// Class Sized_relobj_dwo.
// Setup the section information.
template <int size, bool big_endian>
void
Sized_relobj_dwo<size, big_endian>::setup()
{
const unsigned int shnum = this->elf_file_.shnum();
this->set_shnum(shnum);
this->section_offsets().resize(shnum);
}
// Return a view of the contents of a section.
template <int size, bool big_endian>
const unsigned char*
Sized_relobj_dwo<size, big_endian>::do_section_contents(
unsigned int shndx,
section_size_type* plen,
bool cache)
{
Object::Location loc(this->elf_file_.section_contents(shndx));
*plen = convert_to_section_size_type(loc.data_size);
if (*plen == 0)
{
static const unsigned char empty[1] = { '\0' };
return empty;
}
return this->get_view(loc.file_offset, *plen, true, cache);
}
// Return a view of the uncompressed contents of a section. Set *PLEN
// to the size. Set *IS_NEW to true if the contents need to be deleted
// by the caller.
template <int size, bool big_endian>
const unsigned char*
Sized_relobj_dwo<size, big_endian>::do_decompressed_section_contents(
unsigned int shndx,
section_size_type* plen,
bool* is_new)
{
section_size_type buffer_size;
const unsigned char* buffer = this->do_section_contents(shndx, &buffer_size,
false);
std::string sect_name = this->do_section_name(shndx);
if (!is_prefix_of(".zdebug_", sect_name.c_str()))
{
*plen = buffer_size;
*is_new = false;
return buffer;
}
section_size_type uncompressed_size = get_uncompressed_size(buffer,
buffer_size);
unsigned char* uncompressed_data = new unsigned char[uncompressed_size];
if (!decompress_input_section(buffer,
buffer_size,
uncompressed_data,
uncompressed_size))
this->error(_("could not decompress section %s"),
this->section_name(shndx).c_str());
*plen = uncompressed_size;
*is_new = true;
return uncompressed_data;
}
// Class Dwo_file.
Dwo_file::~Dwo_file()
{
if (this->input_file_ != NULL)
delete this->input_file_;
if (this->obj_ != NULL)
delete this->obj_;
}
// Read the input file and send its contents to OUTPUT_FILE.
void
Dwo_file::read(Dwp_output_file* output_file)
{
// Open the input file.
this->input_file_ = new Input_file(this->name_);
Dirsearch dirpath;
int index;
if (!this->input_file_->open(dirpath, NULL, &index))
gold_fatal(_("%s: can't open"), this->name_);
// Check that it's an ELF file.
off_t filesize = this->input_file_->file().filesize();
int hdrsize = elfcpp::Elf_recognizer::max_header_size;
if (filesize < hdrsize)
hdrsize = filesize;
const unsigned char* p =
this->input_file_->file().get_view(0, 0, hdrsize, true, false);
if (!elfcpp::Elf_recognizer::is_elf_file(p, hdrsize))
gold_fatal(_("%s: not an ELF object file"), this->name_);
// Get the size, endianness, machine, etc. info from the header,
// make an appropriately-sized Relobj, and pass the target info
// to the output object.
int size;
bool big_endian;
std::string error;
if (!elfcpp::Elf_recognizer::is_valid_header(p, hdrsize, &size,
&big_endian, &error))
gold_fatal(_("%s: %s"), this->name_, error.c_str());
this->obj_ = this->make_object(size, big_endian, p, this->input_file_,
output_file);
unsigned int shnum = this->shnum();
this->is_compressed_.resize(shnum);
this->shndx_map_.resize(shnum);
typedef std::vector<unsigned int> Types_list;
Types_list debug_types;
unsigned int debug_info = 0;
unsigned int debug_abbrev = 0;
unsigned int debug_line = 0;
unsigned int debug_loc = 0;
unsigned int debug_str = 0;
unsigned int debug_str_offsets = 0;
unsigned int debug_macinfo = 0;
unsigned int debug_macro = 0;
unsigned int debug_cu_index = 0;
unsigned int debug_tu_index = 0;
// Scan the section table and look for .dwp index sections.
// (Section index 0 is a dummy section; skip it.)
for (unsigned int i = 1; i < shnum; i++)
{
if (this->section_type(i) != elfcpp::SHT_PROGBITS)
continue;
std::string sect_name = this->section_name(i);
const char* suffix = sect_name.c_str();
if (is_prefix_of(".debug_", suffix))
suffix += 7;
else if (is_prefix_of(".zdebug_", suffix))
{
this->is_compressed_[i] = true;
suffix += 8;
}
else
continue;
if (strcmp(suffix, "cu_index") == 0)
debug_cu_index = i;
else if (strcmp(suffix, "tu_index") == 0)
debug_tu_index = i;
else if (strcmp(suffix, "str.dwo") == 0)
debug_str = i;
}
// Merge the input string table into the output string table.
this->add_strings(output_file, debug_str);
// If we found any .dwp index sections, read those and add the section
// sets to the output file.
if (debug_cu_index > 0 || debug_tu_index > 0)
{
if (debug_cu_index > 0)
this->read_compunit_index(debug_cu_index, output_file);
if (debug_tu_index > 0)
this->read_typeunit_index(debug_tu_index, output_file);
return;
}
// If we found no index sections, this is a .dwo file.
// Scan the section table and collect the debug sections.
for (unsigned int i = 1; i < shnum; i++)
{
if (this->section_type(i) != elfcpp::SHT_PROGBITS)
continue;
std::string sect_name = this->section_name(i);
const char* suffix = sect_name.c_str();
if (is_prefix_of(".debug_", suffix))
suffix += 7;
else if (is_prefix_of(".zdebug_", suffix))
suffix += 8;
else
continue;
// TODO: Check for one of each section (except .debug_types).
if (strcmp(suffix, "info.dwo") == 0)
debug_info = i;
else if (strcmp(suffix, "types.dwo") == 0)
debug_types.push_back(i);
else if (strcmp(suffix, "abbrev.dwo") == 0)
debug_abbrev = i;
else if (strcmp(suffix, "line.dwo") == 0)
debug_line = i;
else if (strcmp(suffix, "loc.dwo") == 0)
debug_loc = i;
else if (strcmp(suffix, "str_offsets.dwo") == 0)
debug_str_offsets = i;
else if (strcmp(suffix, "macinfo.dwo") == 0)
debug_macinfo = i;
else if (strcmp(suffix, "macro.dwo") == 0)
debug_macro = i;
}
if (debug_info > 0)
{
// Extract the dwo_id from .debug_info.dwo section.
uint64_t dwo_id;
Dwo_id_info_reader dwarf_reader(false, this->obj_, NULL, 0, debug_info,
0, 0);
dwarf_reader.set_abbrev_shndx(debug_abbrev);
if (!dwarf_reader.get_dwo_id(&dwo_id))
gold_fatal(_("%s: .debug_info.dwo section does not have DW_AT_GNU_dwo_id "
"attribute"), this->name_);
this->add_cu_set(output_file, dwo_id, debug_info, debug_abbrev,
debug_line, debug_loc, debug_str_offsets,
debug_macinfo, debug_macro);
}
for (Types_list::const_iterator tp = debug_types.begin();
tp != debug_types.end();
++tp)
{
// Extract the type signature from .debug_types.dwo section.
uint64_t type_sig;
gold_assert(*tp > 0);
Dwo_id_info_reader dwarf_reader(true, this->obj_, NULL, 0, *tp, 0, 0);
dwarf_reader.set_abbrev_shndx(debug_abbrev);
if (!dwarf_reader.get_type_sig(&type_sig))
gold_fatal(_("%s: .debug_types.dwo section does not have type signature"),
this->name_);
this->add_tu_set(output_file, type_sig, *tp, debug_abbrev, debug_line,
debug_str_offsets);
}
}
// Create a Sized_relobj_dwo of the given size and endianness,
// and record the target info. P is a pointer to the ELF header
// in memory.
Relobj*
Dwo_file::make_object(int size, bool big_endian, const unsigned char* p,
Input_file* input_file, Dwp_output_file* output_file)
{
if (size == 32)
{
if (big_endian)
#ifdef HAVE_TARGET_32_BIG
return this->sized_make_object<32, true>(p, input_file, output_file);
#else
gold_unreachable();
#endif
else
#ifdef HAVE_TARGET_32_LITTLE
return this->sized_make_object<32, false>(p, input_file, output_file);
#else
gold_unreachable();
#endif
}
else if (size == 64)
{
if (big_endian)
#ifdef HAVE_TARGET_64_BIG
return this->sized_make_object<64, true>(p, input_file, output_file);
#else
gold_unreachable();
#endif
else
#ifdef HAVE_TARGET_64_LITTLE
return this->sized_make_object<64, false>(p, input_file, output_file);
#else
gold_unreachable();
#endif
}
else
gold_unreachable();
}
// Function template to create a Sized_relobj_dwo and record the target info.
// P is a pointer to the ELF header in memory.
template <int size, bool big_endian>
Relobj*
Dwo_file::sized_make_object(const unsigned char* p, Input_file* input_file,
Dwp_output_file* output_file)
{
elfcpp::Ehdr<size, big_endian> ehdr(p);
Sized_relobj_dwo<size, big_endian>* obj =
new Sized_relobj_dwo<size, big_endian>(this->name_, input_file, ehdr);
obj->setup();
output_file->record_target_info(
this->name_, ehdr.get_e_machine(), size, big_endian,
ehdr.get_e_ident()[elfcpp::EI_OSABI],
ehdr.get_e_ident()[elfcpp::EI_ABIVERSION]);
return obj;
}
// Read the .debug_cu_index section of a .dwp file,
// and process the CU sets.
void
Dwo_file::read_compunit_index(unsigned int shndx, Dwp_output_file* output_file)
{
if (this->obj_->is_big_endian())
this->sized_read_compunit_index<true>(shndx, output_file);
else
this->sized_read_compunit_index<false>(shndx, output_file);
}
template <bool big_endian>
void
Dwo_file::sized_read_compunit_index(unsigned int shndx,
Dwp_output_file* output_file)
{
section_size_type len;
bool is_new;
const unsigned char* contents = this->section_contents(shndx, &len, &is_new);
unsigned int version =
elfcpp::Swap_unaligned<32, big_endian>::readval(contents);
if (version != 1)
gold_fatal(_("%s: .debug_cu_index has unsupported version number %d"),
this->name_, version);
unsigned int nused =
elfcpp::Swap_unaligned<32, big_endian>::readval(contents
+ 2 * sizeof(uint32_t));
if (nused == 0)
return;
unsigned int nslots =
elfcpp::Swap_unaligned<32, big_endian>::readval(contents
+ 3 * sizeof(uint32_t));
const unsigned char* phash = contents + 4 * sizeof(uint32_t);
const unsigned char* pindex = phash + nslots * sizeof(uint64_t);
const unsigned char* shndx_pool = pindex + nslots * sizeof(uint32_t);
const unsigned char* limit = contents + len;
if (shndx_pool >= limit)
gold_fatal(_("%s: .debug_cu_index is corrupt"), this->name_);
// Loop over the slots of the hash table.
for (unsigned int i = 0; i < nslots; ++i)
{
uint64_t dwo_id =
elfcpp::Swap_unaligned<64, big_endian>::readval(phash);
if (dwo_id != 0)
{
unsigned int index =
elfcpp::Swap_unaligned<32, big_endian>::readval(pindex);
const unsigned char* shndx_list =
shndx_pool + index * sizeof(uint32_t);
// Collect the debug sections for this compilation unit set.
unsigned int debug_info = 0;
unsigned int debug_abbrev = 0;
unsigned int debug_line = 0;
unsigned int debug_loc = 0;
unsigned int debug_str_offsets = 0;
unsigned int debug_macinfo = 0;
unsigned int debug_macro = 0;
for (;;)
{
if (shndx_list >= limit)
gold_fatal(_("%s: .debug_cu_index is corrupt"),
this->name_);
unsigned int shndx =
elfcpp::Swap_unaligned<32, big_endian>::readval(shndx_list);
if (shndx == 0)
break;
if (shndx > this->shnum())
gold_fatal(_("%s: .debug_cu_index has bad shndx"),
this->name_);
std::string sect_name = this->section_name(shndx);
const char* suffix = sect_name.c_str();
if (is_prefix_of(".debug_", suffix))
suffix += 7;
else if (is_prefix_of(".zdebug_", suffix))
suffix += 8;
else
gold_fatal(_("%s: .debug_cu_index refers to "
"non-debug section"), this->name_);
if (strcmp(suffix, "info.dwo") == 0)
debug_info = shndx;
else if (strcmp(suffix, "abbrev.dwo") == 0)
debug_abbrev = shndx;
else if (strcmp(suffix, "line.dwo") == 0)
debug_line = shndx;
else if (strcmp(suffix, "loc.dwo") == 0)
debug_loc = shndx;
else if (strcmp(suffix, "str_offsets.dwo") == 0)
debug_str_offsets = shndx;
else if (strcmp(suffix, "macinfo.dwo") == 0)
debug_macinfo = shndx;
else if (strcmp(suffix, "macro.dwo") == 0)
debug_macro = shndx;
shndx_list += sizeof(uint32_t);
}
this->add_cu_set(output_file, dwo_id, debug_info, debug_abbrev,
debug_line, debug_loc, debug_str_offsets,
debug_macinfo, debug_macro);
}
phash += sizeof(uint64_t);
pindex += sizeof(uint32_t);
}
if (is_new)
delete[] contents;
}
// Read the .debug_tu_index section of a .dwp file,
// and process the TU sets.
void
Dwo_file::read_typeunit_index(unsigned int shndx, Dwp_output_file* output_file)
{
if (this->obj_->is_big_endian())
this->sized_read_typeunit_index<true>(shndx, output_file);
else
this->sized_read_typeunit_index<false>(shndx, output_file);
}
template <bool big_endian>
void
Dwo_file::sized_read_typeunit_index(unsigned int shndx,
Dwp_output_file* output_file)
{
section_size_type len;
bool is_new;
const unsigned char* contents = this->section_contents(shndx, &len, &is_new);
unsigned int version =
elfcpp::Swap_unaligned<32, big_endian>::readval(contents);
if (version != 1)
gold_fatal(_("%s: .debug_tu_index has unsupported version number %d"),
this->name_, version);
unsigned int nused =
elfcpp::Swap_unaligned<32, big_endian>::readval(contents
+ 2 * sizeof(uint32_t));
if (nused == 0)
return;
unsigned int nslots =
elfcpp::Swap_unaligned<32, big_endian>::readval(contents
+ 3 * sizeof(uint32_t));
const unsigned char* phash = contents + 4 * sizeof(uint32_t);
const unsigned char* pindex = phash + nslots * sizeof(uint64_t);
const unsigned char* shndx_pool = pindex + nslots * sizeof(uint32_t);
const unsigned char* limit = contents + len;
if (shndx_pool >= limit)
gold_fatal(_("%s: .debug_tu_index is corrupt"), this->name_);
// Loop over the slots of the hash table.
for (unsigned int i = 0; i < nslots; ++i)
{
uint64_t type_sig =
elfcpp::Swap_unaligned<64, big_endian>::readval(phash);
if (type_sig != 0)
{
unsigned int index =
elfcpp::Swap_unaligned<32, big_endian>::readval(pindex);
const unsigned char* shndx_list =
shndx_pool + index * sizeof(uint32_t);
// Collect the debug sections for this type unit set.
unsigned int debug_types = 0;
unsigned int debug_abbrev = 0;
unsigned int debug_line = 0;
unsigned int debug_str_offsets = 0;
for (;;)
{
if (shndx_list >= limit)
gold_fatal(_("%s: .debug_tu_index is corrupt"),
this->name_);
unsigned int shndx =
elfcpp::Swap_unaligned<32, big_endian>::readval(shndx_list);
if (shndx == 0)
break;
if (shndx > this->shnum())
gold_fatal(_("%s: .debug_tu_index has bad shndx"),
this->name_);
std::string sect_name = this->section_name(shndx);
const char* suffix = sect_name.c_str();
if (is_prefix_of(".debug_", suffix))
suffix += 7;
else if (is_prefix_of(".zdebug_", suffix))
suffix += 8;
else
gold_fatal(_("%s: .debug_tu_index refers to "
"non-debug section"), this->name_);
if (strcmp(suffix, "types.dwo") == 0)
debug_types = shndx;
else if (strcmp(suffix, "abbrev.dwo") == 0)
debug_abbrev = shndx;
else if (strcmp(suffix, "line.dwo") == 0)
debug_line = shndx;
else if (strcmp(suffix, "str_offsets.dwo") == 0)
debug_str_offsets = shndx;
shndx_list += sizeof(uint32_t);
}
this->add_tu_set(output_file, type_sig, debug_types, debug_abbrev,
debug_line, debug_str_offsets);
}
phash += sizeof(uint64_t);
pindex += sizeof(uint32_t);
}
if (is_new)
delete[] contents;
}
// Merge the input string table section into the output file.
void
Dwo_file::add_strings(Dwp_output_file* output_file, unsigned int debug_str)
{
section_size_type len;
bool is_new;
const unsigned char* pdata = this->section_contents(debug_str, &len, &is_new);
const char* p = reinterpret_cast<const char*>(pdata);
const char* pend = p + len;
// Check that the last string is null terminated.
if (pend[-1] != '\0')
gold_fatal(_("%s: last entry in string section '%s' "
"is not null terminated"),
this->name_,
this->section_name(debug_str).c_str());
// Count the number of strings in the section, and size the map.
size_t count = 0;
for (const char* pt = p; pt < pend; pt += strlen(pt) + 1)
++count;
this->str_offset_map_.reserve(count + 1);
// Add the strings to the output string table, and record the new offsets
// in the map.
section_offset_type i = 0;
section_offset_type new_offset;
while (p < pend)
{
size_t len = strlen(p);
new_offset = output_file->add_string(p, len);
this->str_offset_map_.push_back(std::make_pair(i, new_offset));
p += len + 1;
i += len + 1;
}
new_offset = 0;
this->str_offset_map_.push_back(std::make_pair(i, new_offset));
if (is_new)
delete[] pdata;
}
// Copy a section from the input file to the output file.
// If IS_STR_OFFSETS is true, remap the string offsets for the
// output string table.
unsigned int
Dwo_file::copy_section(Dwp_output_file* output_file, unsigned int shndx,
const char* section_name, bool is_str_offsets)
{
// Some sections may be referenced from more than one set.
// Don't copy a section more than once.
if (this->shndx_map_[shndx] > 0)
return this->shndx_map_[shndx];
section_size_type len;
bool is_new;
const unsigned char* contents = this->section_contents(shndx, &len, &is_new);
if (is_str_offsets)
{
const unsigned char* remapped = this->remap_str_offsets(contents, len);
if (is_new)
delete[] contents;
contents = remapped;
is_new = true;
}
this->shndx_map_[shndx] = output_file->add_section(section_name, contents,
len, 1);
if (is_new)
delete[] contents;
return this->shndx_map_[shndx];
}
// Remap the
const unsigned char*
Dwo_file::remap_str_offsets(const unsigned char* contents,
section_size_type len)
{
if ((len & 3) != 0)
gold_fatal(_("%s: .debug_str_offsets.dwo section size not a multiple of 4"),
this->name_);
if (this->obj_->is_big_endian())
return this->sized_remap_str_offsets<true>(contents, len);
else
return this->sized_remap_str_offsets<false>(contents, len);
}
template <bool big_endian>
const unsigned char*
Dwo_file::sized_remap_str_offsets(const unsigned char* contents,
section_size_type len)
{
unsigned char* remapped = new unsigned char[len];
const unsigned char* p = contents;
unsigned char* q = remapped;
while (len > 0)
{
unsigned int val = elfcpp::Swap_unaligned<32, big_endian>::readval(p);
val = this->remap_str_offset(val);
elfcpp::Swap_unaligned<32, big_endian>::writeval(q, val);
len -= 4;
p += 4;
q += 4;
}
return remapped;
}
unsigned int
Dwo_file::remap_str_offset(section_offset_type val)
{
Str_offset_map_entry entry;
entry.first = val;
Str_offset_map::const_iterator p =
std::lower_bound(this->str_offset_map_.begin(),
this->str_offset_map_.end(),
entry, Offset_compare());
if (p == this->str_offset_map_.end() || p->first > val)
{
if (p == this->str_offset_map_.begin())
return 0;
--p;
gold_assert(p->first <= val);
}
return p->second + (val - p->first);
}
// Add a set of .debug_info and related sections to OUTPUT_FILE.
void
Dwo_file::add_cu_set(Dwp_output_file* output_file,
uint64_t dwo_id,
unsigned int debug_info,
unsigned int debug_abbrev,
unsigned int debug_line,
unsigned int debug_loc,
unsigned int debug_str_offsets,
unsigned int debug_macinfo,
unsigned int debug_macro)
{
if (debug_info == 0)
gold_fatal(_("%s: no .debug_info.dwo section found"), this->name_);
if (debug_abbrev == 0)
gold_fatal(_("%s: no .debug_abbrev.dwo section found"), this->name_);
debug_abbrev = this->copy_section(output_file, debug_abbrev,
".debug_abbrev.dwo", false);
if (debug_line > 0)
debug_line = this->copy_section(output_file, debug_line,
".debug_line.dwo", false);
if (debug_loc > 0)
debug_loc = this->copy_section(output_file, debug_loc, ".debug_loc.dwo",
false);
if (debug_macinfo > 0)
debug_macinfo = this->copy_section(output_file, debug_macinfo,
".debug_macinfo.dwo", false);
if (debug_macro > 0)
debug_macro = this->copy_section(output_file, debug_macro,
".debug_macro.dwo", false);
if (debug_str_offsets > 0)
debug_str_offsets = this->copy_section(output_file, debug_str_offsets,
".debug_str_offsets.dwo", true);
debug_info = this->copy_section(output_file, debug_info, ".debug_info.dwo",
false);
output_file->add_cu_set(dwo_id, debug_info, debug_abbrev, debug_line,
debug_loc, debug_str_offsets, debug_macinfo,
debug_macro);
}
// Add a set of .debug_types and related sections to OUTPUT_FILE.
void
Dwo_file::add_tu_set(Dwp_output_file* output_file,
uint64_t type_sig,
unsigned int debug_types,
unsigned int debug_abbrev,
unsigned int debug_line,
unsigned int debug_str_offsets)
{
if (debug_types == 0)
gold_fatal(_("%s: no .debug_types.dwo section found"), this->name_);
if (debug_abbrev == 0)
gold_fatal(_("%s: no .debug_abbrev.dwo section found"), this->name_);
// Ignore duplicate type signatures.
if (output_file->lookup_tu(type_sig))
return;
debug_abbrev = this->copy_section(output_file, debug_abbrev,
".debug_abbrev.dwo", false);
if (debug_line > 0)
debug_line = this->copy_section(output_file, debug_line,
".debug_line.dwo", false);
if (debug_str_offsets > 0)
debug_str_offsets = this->copy_section(output_file, debug_str_offsets,
".debug_str_offsets.dwo", true);
debug_types = this->copy_section(output_file, debug_types,
".debug_types.dwo", false);
output_file->add_tu_set(type_sig, debug_types, debug_abbrev, debug_line,
debug_str_offsets);
}
// Class Dwp_output_file.
// Record the target info from an input file. On first call, we
// set the ELF header values for the output file. On subsequent
// calls, we just verify that the values match.
void
Dwp_output_file::record_target_info(const char*, int machine,
int size, bool big_endian,
int osabi, int abiversion)
{
// TODO: Check the values on subsequent calls.
if (this->size_ > 0)
return;
this->machine_ = machine;
this->size_ = size;
this->big_endian_ = big_endian;
this->osabi_ = osabi;
this->abiversion_ = abiversion;
if (size == 32)
this->next_file_offset_ = elfcpp::Elf_sizes<32>::ehdr_size;
else if (size == 64)
this->next_file_offset_ = elfcpp::Elf_sizes<64>::ehdr_size;
else
gold_unreachable();
this->fd_ = ::fopen(this->name_, "wb");
if (this->fd_ == NULL)
gold_fatal(_("%s: %s"), this->name_, strerror(errno));
// Write zeroes for the ELF header initially. We'll write
// the actual header during finalize().
static const char buf[elfcpp::Elf_sizes<64>::ehdr_size] = { 0 };
if (::fwrite(buf, 1, this->next_file_offset_, this->fd_)
< (size_t) this->next_file_offset_)
gold_fatal(_("%s: %s"), this->name_, strerror(errno));
}
// Add a string to the debug strings section.
section_offset_type
Dwp_output_file::add_string(const char* str, size_t len)
{
Stringpool::Key key;
this->stringpool_.add_with_length(str, len, true, &key);
this->have_strings_ = true;
// We aren't supposed to call get_offset() until after
// calling set_string_offsets(), but the offsets will
// not change unless optimizing the string pool.
return this->stringpool_.get_offset_from_key(key);
}
// Align the file offset to the given boundary.
static inline off_t
align_offset(off_t off, int align)
{
return (off + align - 1) & ~(align - 1);
}
// Add a section to the output file, and return the new section index.
unsigned int
Dwp_output_file::add_section(const char* section_name,
const unsigned char* contents,
section_size_type len,
int align)
{
off_t file_offset = this->next_file_offset_;
gold_assert(this->size_ > 0 && file_offset > 0);
file_offset = align_offset(file_offset, align);
::fseek(this->fd_, file_offset, SEEK_SET);
if (::fwrite(contents, 1, len, this->fd_) < len)
gold_fatal(_("%s: error writing section '%s'"), this->name_, section_name);
section_name = this->shstrtab_.add_with_length(section_name,
strlen(section_name),
false, NULL);
Section sect = { section_name, file_offset, len, align };
this->sections_.push_back(sect);
this->next_file_offset_ = file_offset + len;
return this->shnum_++;
}
// Add a set of .debug_info and related sections to the output file.
void
Dwp_output_file::add_cu_set(uint64_t dwo_id,
unsigned int debug_info,
unsigned int debug_abbrev,
unsigned int debug_line,
unsigned int debug_loc,
unsigned int debug_str_offsets,
unsigned int debug_macinfo,
unsigned int debug_macro)
{
Cu_or_tu_set cu_set = { dwo_id, debug_info, debug_abbrev, debug_line,
debug_loc, debug_str_offsets, debug_macinfo,
debug_macro };
unsigned int slot;
this->cu_index_.find_or_add(dwo_id, &slot);
this->cu_index_.enter_set(slot, cu_set);
}
// Lookup a type signature and return TRUE if we have already seen it.
bool
Dwp_output_file::lookup_tu(uint64_t type_sig)
{
this->last_type_sig_ = type_sig;
return this->tu_index_.find_or_add(type_sig, &this->last_tu_slot_);
}
// Add a set of .debug_types and related sections to the output file.
void
Dwp_output_file::add_tu_set(uint64_t type_sig,
unsigned int debug_types,
unsigned int debug_abbrev,
unsigned int debug_line,
unsigned int debug_str_offsets)
{
Cu_or_tu_set tu_set = { type_sig, debug_types, debug_abbrev, debug_line,
0, debug_str_offsets, 0, 0 };
unsigned int slot;
if (type_sig == this->last_type_sig_)
slot = this->last_tu_slot_;
else
this->tu_index_.find_or_add(type_sig, &slot);
this->tu_index_.enter_set(slot, tu_set);
}
// Find a slot in the hash table for SIGNATURE. Return TRUE
// if the entry already exists.
bool
Dwp_output_file::Dwp_index::find_or_add(uint64_t signature,
unsigned int* slotp)
{
if (this->capacity_ == 0)
this->initialize();
unsigned int slot =
static_cast<unsigned int>(signature) & (this->capacity_ - 1);
unsigned int secondary_hash;
uint64_t probe = this->hash_table_[slot];
if (probe != 0 && probe != signature)
{
secondary_hash = (static_cast<unsigned int>(signature >> 32)
& (this->capacity_ - 1)) | 1;
do
{
slot = (slot + secondary_hash) & (this->capacity_ - 1);
probe = this->hash_table_[slot];
} while (probe != 0 && probe != signature);
}
*slotp = slot;
return (probe != 0);
}
// Enter a CU or TU set at the given SLOT in the hash table.
void
Dwp_output_file::Dwp_index::enter_set(unsigned int slot,
const Cu_or_tu_set& set)
{
gold_assert(slot < this->capacity_);
gold_assert(set.debug_info_or_types > 0);
gold_assert(set.debug_abbrev > 0);
// Add the section indexes to the pool.
uint32_t pool_index = this->shndx_pool_.size();
this->shndx_pool_.push_back(set.debug_info_or_types);
this->shndx_pool_.push_back(set.debug_abbrev);
if (set.debug_line > 0)
this->shndx_pool_.push_back(set.debug_line);
if (set.debug_loc > 0)
this->shndx_pool_.push_back(set.debug_loc);
if (set.debug_str_offsets > 0)
this->shndx_pool_.push_back(set.debug_str_offsets);
if (set.debug_macinfo > 0)
this->shndx_pool_.push_back(set.debug_macinfo);
if (set.debug_macro > 0)
this->shndx_pool_.push_back(set.debug_macro);
this->shndx_pool_.push_back(0);
// Enter the signature and pool index into the hash table.
this->hash_table_[slot] = set.signature;
this->index_table_[slot] = pool_index;
++this->used_;
// Grow the hash table when we exceed 2/3 capacity.
if (this->used_ * 3 > this->capacity_ * 2)
this->grow();
}
// Initialize the hash table.
void
Dwp_output_file::Dwp_index::initialize()
{
this->capacity_ = 16;
this->hash_table_ = new uint64_t[this->capacity_];
memset(this->hash_table_, 0, this->capacity_ * sizeof(uint64_t));
this->index_table_ = new uint32_t[this->capacity_];
memset(this->index_table_, 0, this->capacity_ * sizeof(uint32_t));
}
// Grow the hash table when we reach 2/3 capacity.
void
Dwp_output_file::Dwp_index::grow()
{
unsigned int old_capacity = this->capacity_;
uint64_t* old_hash_table = this->hash_table_;
uint32_t* old_index_table = this->index_table_;
unsigned int old_used = this->used_;
this->capacity_ = old_capacity * 2;
this->hash_table_ = new uint64_t[this->capacity_];
memset(this->hash_table_, 0, this->capacity_ * sizeof(uint64_t));
this->index_table_ = new uint32_t[this->capacity_];
memset(this->index_table_, 0, this->capacity_ * sizeof(uint32_t));
this->used_ = 0;
for (unsigned int i = 0; i < old_capacity; ++i)
{
uint64_t signature = old_hash_table[i];
if (signature != 0)
{
unsigned int slot;
bool found = this->find_or_add(signature, &slot);
gold_assert(!found);
this->hash_table_[slot] = signature;
this->index_table_[slot] = old_index_table[i];
++this->used_;
}
}
gold_assert(this->used_ == old_used);
delete[] old_hash_table;
delete[] old_index_table;
}
// Initialize the output file.
void
Dwp_output_file::initialize()
{
// We can't initialize the output file until we've recorded the
// target info from the first input file.
gold_assert(this->size_ > 0);
}
// Finalize the file, write the string tables and index sections,
// and close the file.
void
Dwp_output_file::finalize()
{
unsigned char* buf;
// Write the debug string table.
if (this->have_strings_)
{
this->stringpool_.set_string_offsets();
section_size_type len = this->stringpool_.get_strtab_size();
buf = new unsigned char[len];
this->stringpool_.write_to_buffer(buf, len);
this->add_section(".debug_str.dwo", buf, len, 1);
delete[] buf;
}
// Write the CU and TU indexes.
if (this->big_endian_)
{
this->write_index<true>(".debug_cu_index", this->cu_index_);
this->write_index<true>(".debug_tu_index", this->tu_index_);
}
else
{
this->write_index<false>(".debug_cu_index", this->cu_index_);
this->write_index<false>(".debug_tu_index", this->tu_index_);
}
off_t file_offset = this->next_file_offset_;
// Write the section string table.
this->shstrndx_ = this->shnum_++;
const char* shstrtab_name =
this->shstrtab_.add_with_length(".shstrtab",
sizeof(".shstrtab") - 1,
false, NULL);
this->shstrtab_.set_string_offsets();
section_size_type shstrtab_len = this->shstrtab_.get_strtab_size();
buf = new unsigned char[shstrtab_len];
this->shstrtab_.write_to_buffer(buf, shstrtab_len);
off_t shstrtab_off = file_offset;
::fseek(this->fd_, file_offset, 0);
if (::fwrite(buf, 1, shstrtab_len, this->fd_) < shstrtab_len)
gold_fatal(_("%s: error writing section '.shstrtab'"), this->name_);
delete[] buf;
file_offset += shstrtab_len;
// Write the section header table. The first entry is a NULL entry.
// This is followed by the debug sections, and finally we write the
// .shstrtab section header.
file_offset = align_offset(file_offset, this->size_ == 32 ? 4 : 8);
this->shoff_ = file_offset;
::fseek(this->fd_, file_offset, 0);
section_size_type sh0_size = 0;
unsigned int sh0_link = 0;
if (this->shnum_ >= elfcpp::SHN_LORESERVE)
sh0_size = this->shnum_;
if (this->shstrndx_ >= elfcpp::SHN_LORESERVE)
sh0_link = this->shstrndx_;
this->write_shdr(NULL, 0, 0, 0, 0, sh0_size, sh0_link, 0, 0, 0);
for (unsigned int i = 0; i < this->sections_.size(); ++i)
{
Section& sect = this->sections_[i];
this->write_shdr(sect.name, elfcpp::SHT_PROGBITS, 0, 0, sect.offset,
sect.size, 0, 0, sect.align, 0);
}
this->write_shdr(shstrtab_name, elfcpp::SHT_STRTAB, 0, 0,
shstrtab_off, shstrtab_len, 0, 0, 1, 0);
// Write the ELF header.
this->write_ehdr();
// Close the file.
if (this->fd_ != NULL)
{
if (::fclose(this->fd_) != 0)
gold_fatal(_("%s: %s"), this->name_, strerror(errno));
}
this->fd_ = NULL;
}
// Write a CU or TU index section.
template<bool big_endian>
void
Dwp_output_file::write_index(const char* sect_name, const Dwp_index& index)
{
const unsigned int nslots = index.hash_table_total_slots();
const unsigned int nused = index.hash_table_used_slots();
const unsigned int npool = index.shndx_pool_size();
const section_size_type index_size = (4 * sizeof(uint32_t)
+ nslots * sizeof(uint64_t)
+ nslots * sizeof(uint32_t)
+ npool * sizeof(uint32_t));
// Allocate a buffer for the section contents.
unsigned char* buf = new unsigned char[index_size];
unsigned char* p = buf;
// Write the section header: version number, padding,
// number of used slots and total number of slots.
elfcpp::Swap_unaligned<32, big_endian>::writeval(p, 1);
p += sizeof(uint32_t);
elfcpp::Swap_unaligned<32, big_endian>::writeval(p, 0);
p += sizeof(uint32_t);
elfcpp::Swap_unaligned<32, big_endian>::writeval(p, nused);
p += sizeof(uint32_t);
elfcpp::Swap_unaligned<32, big_endian>::writeval(p, nslots);
p += sizeof(uint32_t);
// Write the hash table.
for (unsigned int i = 0; i < nslots; ++i)
{
elfcpp::Swap_unaligned<64, big_endian>::writeval(p, index.hash_table(i));
p += sizeof(uint64_t);
}
// Write the parallel index table.
for (unsigned int i = 0; i < nslots; ++i)
{
elfcpp::Swap_unaligned<32, big_endian>::writeval(p, index.index_table(i));
p += sizeof(uint32_t);
}
// Write the section index pool.
Dwp_index::Shndx_pool::const_iterator pool = index.shndx_pool();
for (unsigned int i = 0; i < npool; ++i)
{
gold_assert(pool != index.shndx_pool_end());
elfcpp::Swap_unaligned<32, big_endian>::writeval(p, *pool);
p += sizeof(uint32_t);
++pool;
}
gold_assert(p == buf + index_size);
this->add_section(sect_name, buf, index_size, sizeof(uint64_t));
delete[] buf;
}
// Write the ELF header.
void
Dwp_output_file::write_ehdr()
{
if (this->size_ == 32)
{
if (this->big_endian_)
return this->sized_write_ehdr<32, true>();
else
return this->sized_write_ehdr<32, false>();
}
else if (this->size_ == 64)
{
if (this->big_endian_)
return this->sized_write_ehdr<64, true>();
else
return this->sized_write_ehdr<64, false>();
}
else
gold_unreachable();
}
template<unsigned int size, bool big_endian>
void
Dwp_output_file::sized_write_ehdr()
{
const unsigned int ehdr_size = elfcpp::Elf_sizes<size>::ehdr_size;
unsigned char buf[ehdr_size];
elfcpp::Ehdr_write<size, big_endian> ehdr(buf);
unsigned char e_ident[elfcpp::EI_NIDENT];
memset(e_ident, 0, elfcpp::EI_NIDENT);
e_ident[elfcpp::EI_MAG0] = elfcpp::ELFMAG0;
e_ident[elfcpp::EI_MAG1] = elfcpp::ELFMAG1;
e_ident[elfcpp::EI_MAG2] = elfcpp::ELFMAG2;
e_ident[elfcpp::EI_MAG3] = elfcpp::ELFMAG3;
if (size == 32)
e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS32;
else if (size == 64)
e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS64;
else
gold_unreachable();
e_ident[elfcpp::EI_DATA] = (big_endian
? elfcpp::ELFDATA2MSB
: elfcpp::ELFDATA2LSB);
e_ident[elfcpp::EI_VERSION] = elfcpp::EV_CURRENT;
ehdr.put_e_ident(e_ident);
ehdr.put_e_type(elfcpp::ET_REL);
ehdr.put_e_machine(this->machine_);
ehdr.put_e_version(elfcpp::EV_CURRENT);
ehdr.put_e_entry(0);
ehdr.put_e_phoff(0);
ehdr.put_e_shoff(this->shoff_);
ehdr.put_e_flags(0);
ehdr.put_e_ehsize(elfcpp::Elf_sizes<size>::ehdr_size);
ehdr.put_e_phentsize(0);
ehdr.put_e_phnum(0);
ehdr.put_e_shentsize(elfcpp::Elf_sizes<size>::shdr_size);
ehdr.put_e_shnum(this->shnum_ < elfcpp::SHN_LORESERVE ? this->shnum_ : 0);
ehdr.put_e_shstrndx(this->shstrndx_ < elfcpp::SHN_LORESERVE
? this->shstrndx_
: static_cast<unsigned int>(elfcpp::SHN_XINDEX));
::fseek(this->fd_, 0, 0);
if (::fwrite(buf, 1, ehdr_size, this->fd_) < ehdr_size)
gold_fatal(_("%s: error writing ELF header"), this->name_);
}
// Write a section header.
void
Dwp_output_file::write_shdr(const char* name, unsigned int type,
unsigned int flags, uint64_t addr, off_t offset,
section_size_type sect_size, unsigned int link,
unsigned int info, unsigned int align,
unsigned int ent_size)
{
if (this->size_ == 32)
{
if (this->big_endian_)
return this->sized_write_shdr<32, true>(name, type, flags, addr,
offset, sect_size, link, info,
align, ent_size);
else
return this->sized_write_shdr<32, false>(name, type, flags, addr,
offset, sect_size, link, info,
align, ent_size);
}
else if (this->size_ == 64)
{
if (this->big_endian_)
return this->sized_write_shdr<64, true>(name, type, flags, addr,
offset, sect_size, link, info,
align, ent_size);
else
return this->sized_write_shdr<64, false>(name, type, flags, addr,
offset, sect_size, link, info,
align, ent_size);
}
else
gold_unreachable();
}
template<unsigned int size, bool big_endian>
void
Dwp_output_file::sized_write_shdr(const char* name, unsigned int type,
unsigned int flags, uint64_t addr,
off_t offset, section_size_type sect_size,
unsigned int link, unsigned int info,
unsigned int align, unsigned int ent_size)
{
const unsigned int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
unsigned char buf[shdr_size];
elfcpp::Shdr_write<size, big_endian> shdr(buf);
shdr.put_sh_name(name == NULL ? 0 : this->shstrtab_.get_offset(name));
shdr.put_sh_type(type);
shdr.put_sh_flags(flags);
shdr.put_sh_addr(addr);
shdr.put_sh_offset(offset);
shdr.put_sh_size(sect_size);
shdr.put_sh_link(link);
shdr.put_sh_info(info);
shdr.put_sh_addralign(align);
shdr.put_sh_entsize(ent_size);
if (::fwrite(buf, 1, shdr_size, this->fd_) < shdr_size)
gold_fatal(_("%s: error writing section header table"), this->name_);
}
// Class Dwo_id_info_reader.
// Visit a compilation unit.
void
Dwo_id_info_reader::visit_compilation_unit(off_t, off_t, Dwarf_die* die)
{
this->dwo_id_ = die->uint_attribute(elfcpp::DW_AT_GNU_dwo_id);
if (this->dwo_id_ != 0)
this->dwo_id_found_ = true;
}
// Visit a type unit.
void
Dwo_id_info_reader::visit_type_unit(off_t, off_t, uint64_t signature, Dwarf_die*)
{
this->type_sig_ = signature;
this->type_sig_found_ = true;
}
}; // End namespace gold
using namespace gold;
// Options.
struct option dwp_options[] =
{
{ "verbose", no_argument, NULL, 'v' },
{ "output", required_argument, NULL, 'o' },
{ NULL, 0, NULL, 0 }
};
// Print usage message and exit.
static void
usage()
{
fprintf(stderr, _("Usage: %s [options] file...\n"), program_name);
fprintf(stderr, _(" -v, --verbose Verbose output\n"));
fprintf(stderr, _(" -o FILE, --output FILE Set output dwp file name"
" (required)\n"));
exit(1);
}
// Main program.
int
main(int argc, char** argv)
{
#if defined (HAVE_SETLOCALE) && defined (HAVE_LC_MESSAGES)
setlocale(LC_MESSAGES, "");
#endif
#if defined (HAVE_SETLOCALE)
setlocale(LC_CTYPE, "");
#endif
bindtextdomain(PACKAGE, LOCALEDIR);
textdomain(PACKAGE);
program_name = argv[0];
// Initialize the global parameters, to let random code get to the
// errors object.
Errors errors(program_name);
set_parameters_errors(&errors);
// Initialize gold's global options. We don't use these in
// this program, but they need to be initialized so that
// functions we call from libgold work properly.
General_options options;
set_parameters_options(&options);
// In libiberty; expands @filename to the args in "filename".
expandargv(&argc, &argv);
// Collect file names and options.
typedef std::vector<char*> File_list;
File_list files;
const char* output_filename = NULL;
bool verbose = false;
int c;
while ((c = getopt_long(argc, argv, "vo:", dwp_options, NULL)) != -1)
{
switch (c)
{
case 'v':
verbose = true;
break;
case 'o':
output_filename = optarg;
break;
case '?':
default:
usage();
}
}
for (int i = optind; i < argc; ++i)
files.push_back(argv[i]);
if (files.empty())
gold_fatal(_("no input files"));
if (output_filename == NULL)
gold_fatal(_("no output file specified"));
Dwp_output_file output_file(output_filename);
// Process each file, adding its contents to the output file.
for (File_list::const_iterator f = files.begin(); f != files.end(); ++f)
{
if (verbose)
fprintf(stderr, "%s\n", *f);
Dwo_file dwo_file(*f);
dwo_file.read(&output_file);
}
output_file.finalize();
return EXIT_SUCCESS;
}