binutils-gdb/sim/aarch64/decode.h

375 lines
9.5 KiB
C
Raw Normal View History

/* decode.h -- Prototypes for AArch64 simulator decoder functions.
Copyright (C) 2015-2021 Free Software Foundation, Inc.
Contributed by Red Hat.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
#ifndef _DECODE_H
#define _DECODE_H
#include <sys/types.h>
#include "cpustate.h"
/* Codes used in conditional instructions
These are passed to conditional operations to identify which
condition to test for. */
typedef enum CondCode
{
EQ = 0x0, /* meaning Z == 1 */
NE = 0x1, /* meaning Z == 0 */
HS = 0x2, /* meaning C == 1 */
CS = HS,
LO = 0x3, /* meaning C == 0 */
CC = LO,
MI = 0x4, /* meaning N == 1 */
PL = 0x5, /* meaning N == 0 */
VS = 0x6, /* meaning V == 1 */
VC = 0x7, /* meaning V == 0 */
HI = 0x8, /* meaning C == 1 && Z == 0 */
LS = 0x9, /* meaning !(C == 1 && Z == 0) */
GE = 0xa, /* meaning N == V */
LT = 0xb, /* meaning N != V */
GT = 0xc, /* meaning Z == 0 && N == V */
LE = 0xd, /* meaning !(Z == 0 && N == V) */
AL = 0xe, /* meaning ANY */
NV = 0xf /* ditto */
} CondCode;
/* Certain addressing modes for load require pre or post writeback of
the computed address to a base register. */
typedef enum WriteBack
{
Post = 0,
Pre = 1,
NoWriteBack = -1
} WriteBack;
/* Certain addressing modes for load require an offset to
be optionally scaled so the decode needs to pass that
through to the execute routine. */
typedef enum Scaling
{
Unscaled = 0,
Scaled = 1,
NoScaling = -1
} Scaling;
/* When we do have to scale we do so by shifting using
log(bytes in data element - 1) as the shift count.
so we don't have to scale offsets when loading
bytes. */
typedef enum ScaleShift
{
ScaleShift16 = 1,
ScaleShift32 = 2,
ScaleShift64 = 3,
ScaleShift128 = 4
} ScaleShift;
/* One of the addressing modes for load requires a 32-bit register
value to be either zero- or sign-extended for these instructions
UXTW or SXTW should be passed.
Arithmetic register data processing operations can optionally
extend a portion of the second register value for these
instructions the value supplied must identify the portion of the
register which is to be zero- or sign-exended. */
typedef enum Extension
{
UXTB = 0,
UXTH = 1,
UXTW = 2,
UXTX = 3,
SXTB = 4,
SXTH = 5,
SXTW = 6,
SXTX = 7,
NoExtension = -1
} Extension;
/* Arithmetic and logical register data processing operations
optionally perform a shift on the second register value. */
typedef enum Shift
{
LSL = 0,
LSR = 1,
ASR = 2,
ROR = 3
} Shift;
/* Bit twiddling helpers for instruction decode. */
/* 32 bit mask with bits [hi,...,lo] set. */
static inline uint32_t
mask32 (int hi, int lo)
{
int nbits = (hi + 1) - lo;
return ((1 << nbits) - 1) << lo;
}
/* 64 bit mask with bits [hi,...,lo] set. */
static inline uint64_t
mask64 (int hi, int lo)
{
int nbits = (hi + 1) - lo;
return ((1L << nbits) - 1) << lo;
}
/* Pick bits [hi,...,lo] from val. */
static inline uint32_t
pick32 (uint32_t val, int hi, int lo)
{
return val & mask32 (hi, lo);
}
/* Pick bits [hi,...,lo] from val. */
static inline uint64_t
pick64 (uint64_t val, int hi, int lo)
{
return val & mask64 (hi, lo);
}
/* Pick bits [hi,...,lo] from val and shift to [(hi-(newlo - lo)),newlo]. */
static inline uint32_t
pickshift32 (uint32_t val, int hi, int lo, int newlo)
{
uint32_t bits = pick32 (val, hi, lo);
if (lo < newlo)
return bits << (newlo - lo);
return bits >> (lo - newlo);
}
/* Mask [hi,lo] and shift down to start at bit 0. */
static inline uint32_t
pickbits32 (uint32_t val, int hi, int lo)
{
return pick32 (val, hi, lo) >> lo;
}
/* Mask [hi,lo] and shift down to start at bit 0. */
static inline uint64_t
pickbits64 (uint64_t val, int hi, int lo)
{
return pick64 (val, hi, lo) >> lo;
}
static inline uint32_t
uimm (uint32_t val, int hi, int lo)
{
return pickbits32 (val, hi, lo);
}
static inline int32_t
simm32 (uint32_t val, int hi, int lo)
{
union
{
uint32_t u;
int32_t n;
} x;
x.u = val << (31 - hi);
return x.n >> (31 - hi + lo);
}
static inline int64_t
simm64 (uint64_t val, int hi, int lo)
{
union
{
uint64_t u;
int64_t n;
} x;
x.u = val << (63 - hi);
return x.n >> (63 - hi + lo);
}
/* Operation decode.
Bits [28,24] are the primary dispatch vector. */
static inline uint32_t
dispatchGroup (uint32_t val)
{
return pickshift32 (val, 28, 25, 0);
}
/* The 16 possible values for bits [28,25] identified by tags which
map them to the 5 main instruction groups LDST, DPREG, ADVSIMD,
BREXSYS and DPIMM.
An extra group PSEUDO is included in one of the unallocated ranges
for simulator-specific pseudo-instructions. */
enum DispatchGroup
{
GROUP_PSEUDO_0000,
GROUP_UNALLOC_0001,
GROUP_UNALLOC_0010,
GROUP_UNALLOC_0011,
GROUP_LDST_0100,
GROUP_DPREG_0101,
GROUP_LDST_0110,
GROUP_ADVSIMD_0111,
GROUP_DPIMM_1000,
GROUP_DPIMM_1001,
GROUP_BREXSYS_1010,
GROUP_BREXSYS_1011,
GROUP_LDST_1100,
GROUP_DPREG_1101,
GROUP_LDST_1110,
GROUP_ADVSIMD_1111
};
/* Bits [31, 29] of a Pseudo are the secondary dispatch vector. */
static inline uint32_t
dispatchPseudo (uint32_t val)
{
return pickshift32 (val, 31, 29, 0);
}
/* The 8 possible values for bits [31,29] in a Pseudo Instruction.
Bits [28,25] are always 0000. */
enum DispatchPseudo
{
PSEUDO_UNALLOC_000, /* Unallocated. */
PSEUDO_UNALLOC_001, /* Ditto. */
PSEUDO_UNALLOC_010, /* Ditto. */
PSEUDO_UNALLOC_011, /* Ditto. */
PSEUDO_UNALLOC_100, /* Ditto. */
PSEUDO_UNALLOC_101, /* Ditto. */
PSEUDO_CALLOUT_110, /* CALLOUT -- bits [24,0] identify call/ret sig. */
PSEUDO_HALT_111 /* HALT -- bits [24, 0] identify halt code. */
};
/* Bits [25, 23] of a DPImm are the secondary dispatch vector. */
static inline uint32_t
dispatchDPImm (uint32_t instr)
{
return pickshift32 (instr, 25, 23, 0);
}
/* The 8 possible values for bits [25,23] in a Data Processing Immediate
Instruction. Bits [28,25] are always 100_. */
enum DispatchDPImm
{
DPIMM_PCADR_000, /* PC-rel-addressing. */
DPIMM_PCADR_001, /* Ditto. */
DPIMM_ADDSUB_010, /* Add/Subtract (immediate). */
DPIMM_ADDSUB_011, /* Ditto. */
DPIMM_LOG_100, /* Logical (immediate). */
DPIMM_MOV_101, /* Move Wide (immediate). */
DPIMM_BITF_110, /* Bitfield. */
DPIMM_EXTR_111 /* Extract. */
};
/* Bits [29,28:26] of a LS are the secondary dispatch vector. */
static inline uint32_t
dispatchLS (uint32_t instr)
{
return ( pickshift32 (instr, 29, 28, 1)
| pickshift32 (instr, 26, 26, 0));
}
/* The 8 possible values for bits [29,28:26] in a Load/Store
Instruction. Bits [28,25] are always _1_0. */
enum DispatchLS
{
LS_EXCL_000, /* Load/store exclusive (includes some unallocated). */
LS_ADVSIMD_001, /* AdvSIMD load/store (various -- includes some unallocated). */
LS_LIT_010, /* Load register literal (includes some unallocated). */
LS_LIT_011, /* Ditto. */
LS_PAIR_100, /* Load/store register pair (various). */
LS_PAIR_101, /* Ditto. */
LS_OTHER_110, /* Other load/store formats. */
LS_OTHER_111 /* Ditto. */
};
/* Bits [28:24:21] of a DPReg are the secondary dispatch vector. */
static inline uint32_t
dispatchDPReg (uint32_t instr)
{
return ( pickshift32 (instr, 28, 28, 2)
| pickshift32 (instr, 24, 24, 1)
| pickshift32 (instr, 21, 21, 0));
}
/* The 8 possible values for bits [28:24:21] in a Data Processing
Register Instruction. Bits [28,25] are always _101. */
enum DispatchDPReg
{
DPREG_LOG_000, /* Logical (shifted register). */
DPREG_LOG_001, /* Ditto. */
DPREG_ADDSHF_010, /* Add/subtract (shifted register). */
DPREG_ADDEXT_011, /* Add/subtract (extended register). */
DPREG_ADDCOND_100, /* Add/subtract (with carry) AND
Cond compare/select AND
Data Processing (1/2 source). */
DPREG_UNALLOC_101, /* Unallocated. */
DPREG_3SRC_110, /* Data Processing (3 source). */
DPREG_3SRC_111 /* Data Processing (3 source). */
};
/* bits [31,29] of a BrExSys are the secondary dispatch vector. */
static inline uint32_t
dispatchBrExSys (uint32_t instr)
{
return pickbits32 (instr, 31, 29);
}
/* The 8 possible values for bits [31,29] in a Branch/Exception/System
Instruction. Bits [28,25] are always 101_. */
enum DispatchBr
{
BR_IMM_000, /* Unconditional branch (immediate). */
BR_IMMCMP_001, /* Compare & branch (immediate) AND
Test & branch (immediate). */
BR_IMMCOND_010, /* Conditional branch (immediate) AND Unallocated. */
BR_UNALLOC_011, /* Unallocated. */
BR_IMM_100, /* Unconditional branch (immediate). */
BR_IMMCMP_101, /* Compare & branch (immediate) AND
Test & branch (immediate). */
BR_REG_110, /* Unconditional branch (register) AND System AND
Excn gen AND Unallocated. */
BR_UNALLOC_111 /* Unallocated. */
};
/* TODO still need to provide secondary decode and dispatch for
AdvSIMD Insructions with instr[28,25] = 0111 or 1111. */
#endif /* _DECODE_H */