binutils-gdb/gdb/xm-np1.h

100 lines
3.4 KiB
C
Raw Normal View History

1991-03-29 00:28:29 +08:00
/* Parameters for execution on a Gould NP1, for GDB, the GNU debugger.
Copyright (C) 1986, 1987, 1989 Free Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
1991-03-29 00:28:29 +08:00
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
1991-03-29 00:28:29 +08:00
This program is distributed in the hope that it will be useful,
1991-03-29 00:28:29 +08:00
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
1991-03-29 00:28:29 +08:00
#define HOST_BYTE_ORDER BIG_ENDIAN
/* Get rid of any system-imposed stack limit if possible. */
#define SET_STACK_LIMIT_HUGE
/* Address of U in kernel space */
#define KERNEL_U_ADDR 0x7fffc000
/* This is a piece of magic that is given a register number REGNO
and as BLOCKEND the address in the system of the end of the user structure
and stores in ADDR the address in the kernel or core dump
of that register. */
#define REGISTER_U_ADDR(addr, blockend, regno) { \
addr = blockend + regno * 4; \
if (regno == VE_REGNUM) addr = blockend - 9 * 4; \
if (regno == PC_REGNUM) addr = blockend - 8 * 4; \
if (regno == PS_REGNUM) addr = blockend - 7 * 4; \
if (regno == FP_REGNUM) addr = blockend - 6 * 4; \
if (regno >= V1_REGNUM) \
addr = blockend + 16 * 4 + (regno - V1_REGNUM) * VR_SIZE; \
}
/* Don't try to write the frame pointer. */
#define CANNOT_STORE_REGISTER(regno) ((regno) == FP_REGNUM)
#define MISSING_VPRINTF
/*
* No KDB support, Yet! */
/* Interface definitions for kernel debugger KDB. */
/* Map machine fault codes into signal numbers.
First subtract 0, divide by 4, then index in a table.
Faults for which the entry in this table is 0
are not handled by KDB; the program's own trap handler
gets to handle then. */
#define FAULT_CODE_ORIGIN 0
#define FAULT_CODE_UNITS 4
#define FAULT_TABLE \
{ 0, 0, 0, 0, SIGTRAP, 0, 0, 0, \
0, SIGTRAP, 0, 0, 0, 0, 0, SIGKILL, \
0, 0, 0, 0, 0, 0, 0, 0, \
SIGILL }
/* Start running with a stack stretching from BEG to END.
BEG and END should be symbols meaningful to the assembler.
This is used only for kdb. */
#define INIT_STACK(beg, end) \
{ asm (".globl end"); \
asm ("movel $ end, sp"); \
asm ("clrl fp"); }
/* Push the frame pointer register on the stack. */
#define PUSH_FRAME_PTR \
asm ("movel fp, -(sp)");
/* Copy the top-of-stack to the frame pointer register. */
#define POP_FRAME_PTR \
asm ("movl (sp), fp");
/* After KDB is entered by a fault, push all registers
that GDB thinks about (all NUM_REGS of them),
so that they appear in order of ascending GDB register number.
The fault code will be on the stack beyond the last register. */
#define PUSH_REGISTERS \
{ asm ("clrw -(sp)"); \
asm ("pea 10(sp)"); \
asm ("movem $ 0xfffe,-(sp)"); }
/* Assuming the registers (including processor status) have been
pushed on the stack in order of ascending GDB register number,
restore them and return to the address in the saved PC register. */
#define POP_REGISTERS \
{ asm ("subil $8,28(sp)"); \
asm ("movem (sp),$ 0xffff"); \
asm ("rte"); }