binutils-gdb/gdb/nat/aarch64-scalable-linux-ptrace.c

1130 lines
34 KiB
C
Raw Normal View History

sme: Enable SME registers and pseudo-registers The SME (Scalable Matrix Extension) [1] exposes a new matrix register ZA with variable sizes. It also exposes a new mode called streaming mode. Similarly to SVE, the ZA register size is dictated by a vector length, but the SME vector length is called streaming vetor length. The total size for ZA in a given moment is svl x svl. In streaming mode, the SVE registers have their sizes based on svl rather than the regular vector length (vl). The feature detection is controlled by the HWCAP2_SME bit, but actual support should be validated by attempting a ptrace call for one of the new register sets: NT_ARM_ZA and NT_ARM_SSVE. Due to its large size, the ZA register is exposed as a vector of bytes, but we introduce a number of pseudo-registers that gives various different views into the ZA contents. These can be arranged in a couple categories: tiles and tile slices. Tiles are matrices the same size or smaller than ZA. Tile slices are vectors which map to ZA's rows/columns in different ways. A new dynamic target description is provided containing the ZA register, the SVG register and the SVCR register. The size of ZA, like the SVE vector registers, is based on the vector length register SVG (VG for SVE). This patch enables SME register support for gdb. [1] https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/scalable-matrix-extension-armv9-a-architecture Co-Authored-By: Ezra Sitorus <ezra.sitorus@arm.com> Reviewed-by: Thiago Jung Bauermann <thiago.bauermann@linaro.org>
2023-02-07 17:36:23 +08:00
/* Common native Linux code for the AArch64 scalable extensions: SVE and SME.
Copyright (C) 2018-2024 Free Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
#include <sys/utsname.h>
#include <sys/uio.h>
Rename common to gdbsupport This is the next patch in the ongoing series to move gdbsever to the top level. This patch just renames the "common" directory. The idea is to do this move in two parts: first rename the directory (this patch), then move the directory to the top. This approach makes the patches a bit more tractable. I chose the name "gdbsupport" for the directory. However, as this patch was largely written by sed, we could pick a new name without too much difficulty. Tested by the buildbot. gdb/ChangeLog 2019-07-09 Tom Tromey <tom@tromey.com> * contrib/ari/gdb_ari.sh: Change common to gdbsupport. * configure: Rebuild. * configure.ac: Change common to gdbsupport. * gdbsupport: Rename from common. * acinclude.m4: Change common to gdbsupport. * Makefile.in (CONFIG_SRC_SUBDIR, COMMON_SFILES) (HFILES_NO_SRCDIR, stamp-version, ALLDEPFILES): Change common to gdbsupport. * aarch64-tdep.c, ada-lang.c, ada-lang.h, agent.c, alloc.c, amd64-darwin-tdep.c, amd64-dicos-tdep.c, amd64-fbsd-nat.c, amd64-fbsd-tdep.c, amd64-linux-nat.c, amd64-linux-tdep.c, amd64-nbsd-tdep.c, amd64-obsd-tdep.c, amd64-sol2-tdep.c, amd64-tdep.c, amd64-windows-tdep.c, arch-utils.c, arch/aarch64-insn.c, arch/aarch64.c, arch/aarch64.h, arch/amd64.c, arch/amd64.h, arch/arm-get-next-pcs.c, arch/arm-linux.c, arch/arm.c, arch/i386.c, arch/i386.h, arch/ppc-linux-common.c, arch/riscv.c, arch/riscv.h, arch/tic6x.c, arm-tdep.c, auto-load.c, auxv.c, ax-gdb.c, ax-general.c, ax.h, breakpoint.c, breakpoint.h, btrace.c, btrace.h, build-id.c, build-id.h, c-lang.h, charset.c, charset.h, cli/cli-cmds.c, cli/cli-cmds.h, cli/cli-decode.c, cli/cli-dump.c, cli/cli-option.h, cli/cli-script.c, coff-pe-read.c, command.h, compile/compile-c-support.c, compile/compile-c.h, compile/compile-cplus-symbols.c, compile/compile-cplus-types.c, compile/compile-cplus.h, compile/compile-loc2c.c, compile/compile.c, completer.c, completer.h, contrib/ari/gdb_ari.sh, corefile.c, corelow.c, cp-support.c, cp-support.h, cp-valprint.c, csky-tdep.c, ctf.c, darwin-nat.c, debug.c, defs.h, disasm-selftests.c, disasm.c, disasm.h, dtrace-probe.c, dwarf-index-cache.c, dwarf-index-cache.h, dwarf-index-write.c, dwarf2-frame.c, dwarf2expr.c, dwarf2loc.c, dwarf2read.c, event-loop.c, event-top.c, exceptions.c, exec.c, extension.h, fbsd-nat.c, features/aarch64-core.c, features/aarch64-fpu.c, features/aarch64-pauth.c, features/aarch64-sve.c, features/i386/32bit-avx.c, features/i386/32bit-avx512.c, features/i386/32bit-core.c, features/i386/32bit-linux.c, features/i386/32bit-mpx.c, features/i386/32bit-pkeys.c, features/i386/32bit-segments.c, features/i386/32bit-sse.c, features/i386/64bit-avx.c, features/i386/64bit-avx512.c, features/i386/64bit-core.c, features/i386/64bit-linux.c, features/i386/64bit-mpx.c, features/i386/64bit-pkeys.c, features/i386/64bit-segments.c, features/i386/64bit-sse.c, features/i386/x32-core.c, features/riscv/32bit-cpu.c, features/riscv/32bit-csr.c, features/riscv/32bit-fpu.c, features/riscv/64bit-cpu.c, features/riscv/64bit-csr.c, features/riscv/64bit-fpu.c, features/tic6x-c6xp.c, features/tic6x-core.c, features/tic6x-gp.c, filename-seen-cache.h, findcmd.c, findvar.c, fork-child.c, gcore.c, gdb_bfd.c, gdb_bfd.h, gdb_proc_service.h, gdb_regex.c, gdb_select.h, gdb_usleep.c, gdbarch-selftests.c, gdbthread.h, gdbtypes.h, gnu-nat.c, go32-nat.c, guile/guile.c, guile/scm-ports.c, guile/scm-safe-call.c, guile/scm-type.c, i386-fbsd-nat.c, i386-fbsd-tdep.c, i386-go32-tdep.c, i386-linux-nat.c, i386-linux-tdep.c, i386-tdep.c, i387-tdep.c, ia64-libunwind-tdep.c, ia64-linux-nat.c, inf-child.c, inf-ptrace.c, infcall.c, infcall.h, infcmd.c, inferior-iter.h, inferior.c, inferior.h, inflow.c, inflow.h, infrun.c, infrun.h, inline-frame.c, language.h, linespec.c, linux-fork.c, linux-nat.c, linux-tdep.c, linux-thread-db.c, location.c, machoread.c, macrotab.h, main.c, maint.c, maint.h, memattr.c, memrange.h, mi/mi-cmd-break.h, mi/mi-cmd-env.c, mi/mi-cmd-stack.c, mi/mi-cmd-var.c, mi/mi-interp.c, mi/mi-main.c, mi/mi-parse.h, minsyms.c, mips-linux-tdep.c, namespace.h, nat/aarch64-linux-hw-point.c, nat/aarch64-linux-hw-point.h, nat/aarch64-linux.c, nat/aarch64-sve-linux-ptrace.c, nat/amd64-linux-siginfo.c, nat/fork-inferior.c, nat/linux-btrace.c, nat/linux-btrace.h, nat/linux-namespaces.c, nat/linux-nat.h, nat/linux-osdata.c, nat/linux-personality.c, nat/linux-procfs.c, nat/linux-ptrace.c, nat/linux-ptrace.h, nat/linux-waitpid.c, nat/mips-linux-watch.c, nat/mips-linux-watch.h, nat/ppc-linux.c, nat/x86-dregs.c, nat/x86-dregs.h, nat/x86-linux-dregs.c, nat/x86-linux.c, nto-procfs.c, nto-tdep.c, objfile-flags.h, objfiles.c, objfiles.h, obsd-nat.c, observable.h, osdata.c, p-valprint.c, parse.c, parser-defs.h, ppc-linux-nat.c, printcmd.c, probe.c, proc-api.c, procfs.c, producer.c, progspace.h, psymtab.h, python/py-framefilter.c, python/py-inferior.c, python/py-ref.h, python/py-type.c, python/python.c, record-btrace.c, record-full.c, record.c, record.h, regcache-dump.c, regcache.c, regcache.h, remote-fileio.c, remote-fileio.h, remote-sim.c, remote.c, riscv-tdep.c, rs6000-aix-tdep.c, rust-exp.y, s12z-tdep.c, selftest-arch.c, ser-base.c, ser-event.c, ser-pipe.c, ser-tcp.c, ser-unix.c, skip.c, solib-aix.c, solib-target.c, solib.c, source-cache.c, source.c, source.h, sparc-nat.c, spu-linux-nat.c, stack.c, stap-probe.c, symfile-add-flags.h, symfile.c, symfile.h, symtab.c, symtab.h, target-descriptions.c, target-descriptions.h, target-memory.c, target.c, target.h, target/waitstatus.c, target/waitstatus.h, thread-iter.h, thread.c, tilegx-tdep.c, top.c, top.h, tracefile-tfile.c, tracefile.c, tracepoint.c, tracepoint.h, tui/tui-io.c, ui-file.c, ui-out.h, unittests/array-view-selftests.c, unittests/child-path-selftests.c, unittests/cli-utils-selftests.c, unittests/common-utils-selftests.c, unittests/copy_bitwise-selftests.c, unittests/environ-selftests.c, unittests/format_pieces-selftests.c, unittests/function-view-selftests.c, unittests/lookup_name_info-selftests.c, unittests/memory-map-selftests.c, unittests/memrange-selftests.c, unittests/mkdir-recursive-selftests.c, unittests/observable-selftests.c, unittests/offset-type-selftests.c, unittests/optional-selftests.c, unittests/parse-connection-spec-selftests.c, unittests/ptid-selftests.c, unittests/rsp-low-selftests.c, unittests/scoped_fd-selftests.c, unittests/scoped_mmap-selftests.c, unittests/scoped_restore-selftests.c, unittests/string_view-selftests.c, unittests/style-selftests.c, unittests/tracepoint-selftests.c, unittests/unpack-selftests.c, unittests/utils-selftests.c, unittests/xml-utils-selftests.c, utils.c, utils.h, valarith.c, valops.c, valprint.c, value.c, value.h, varobj.c, varobj.h, windows-nat.c, x86-linux-nat.c, xml-support.c, xml-support.h, xml-tdesc.h, xstormy16-tdep.c, xtensa-linux-nat.c, dwarf2read.h: Change common to gdbsupport. gdb/gdbserver/ChangeLog 2019-07-09 Tom Tromey <tom@tromey.com> * configure: Rebuild. * configure.ac: Change common to gdbsupport. * acinclude.m4: Change common to gdbsupport. * Makefile.in (SFILES, OBS, GDBREPLAY_OBS, IPA_OBJS) (version-generated.c, gdbsupport/%-ipa.o, gdbsupport/%.o): Change common to gdbsupport. * ax.c, event-loop.c, fork-child.c, gdb_proc_service.h, gdbreplay.c, gdbthread.h, hostio-errno.c, hostio.c, i387-fp.c, inferiors.c, inferiors.h, linux-aarch64-tdesc-selftest.c, linux-amd64-ipa.c, linux-i386-ipa.c, linux-low.c, linux-tic6x-low.c, linux-x86-low.c, linux-x86-tdesc-selftest.c, linux-x86-tdesc.c, lynx-i386-low.c, lynx-low.c, mem-break.h, nto-x86-low.c, regcache.c, regcache.h, remote-utils.c, server.c, server.h, spu-low.c, symbol.c, target.h, tdesc.c, tdesc.h, thread-db.c, tracepoint.c, win32-i386-low.c, win32-low.c: Change common to gdbsupport.
2019-05-06 10:29:24 +08:00
#include "gdbsupport/common-defs.h"
#include "elf/external.h"
#include "elf/common.h"
#include "aarch64-scalable-linux-ptrace.h"
#include "arch/aarch64.h"
Rename common to gdbsupport This is the next patch in the ongoing series to move gdbsever to the top level. This patch just renames the "common" directory. The idea is to do this move in two parts: first rename the directory (this patch), then move the directory to the top. This approach makes the patches a bit more tractable. I chose the name "gdbsupport" for the directory. However, as this patch was largely written by sed, we could pick a new name without too much difficulty. Tested by the buildbot. gdb/ChangeLog 2019-07-09 Tom Tromey <tom@tromey.com> * contrib/ari/gdb_ari.sh: Change common to gdbsupport. * configure: Rebuild. * configure.ac: Change common to gdbsupport. * gdbsupport: Rename from common. * acinclude.m4: Change common to gdbsupport. * Makefile.in (CONFIG_SRC_SUBDIR, COMMON_SFILES) (HFILES_NO_SRCDIR, stamp-version, ALLDEPFILES): Change common to gdbsupport. * aarch64-tdep.c, ada-lang.c, ada-lang.h, agent.c, alloc.c, amd64-darwin-tdep.c, amd64-dicos-tdep.c, amd64-fbsd-nat.c, amd64-fbsd-tdep.c, amd64-linux-nat.c, amd64-linux-tdep.c, amd64-nbsd-tdep.c, amd64-obsd-tdep.c, amd64-sol2-tdep.c, amd64-tdep.c, amd64-windows-tdep.c, arch-utils.c, arch/aarch64-insn.c, arch/aarch64.c, arch/aarch64.h, arch/amd64.c, arch/amd64.h, arch/arm-get-next-pcs.c, arch/arm-linux.c, arch/arm.c, arch/i386.c, arch/i386.h, arch/ppc-linux-common.c, arch/riscv.c, arch/riscv.h, arch/tic6x.c, arm-tdep.c, auto-load.c, auxv.c, ax-gdb.c, ax-general.c, ax.h, breakpoint.c, breakpoint.h, btrace.c, btrace.h, build-id.c, build-id.h, c-lang.h, charset.c, charset.h, cli/cli-cmds.c, cli/cli-cmds.h, cli/cli-decode.c, cli/cli-dump.c, cli/cli-option.h, cli/cli-script.c, coff-pe-read.c, command.h, compile/compile-c-support.c, compile/compile-c.h, compile/compile-cplus-symbols.c, compile/compile-cplus-types.c, compile/compile-cplus.h, compile/compile-loc2c.c, compile/compile.c, completer.c, completer.h, contrib/ari/gdb_ari.sh, corefile.c, corelow.c, cp-support.c, cp-support.h, cp-valprint.c, csky-tdep.c, ctf.c, darwin-nat.c, debug.c, defs.h, disasm-selftests.c, disasm.c, disasm.h, dtrace-probe.c, dwarf-index-cache.c, dwarf-index-cache.h, dwarf-index-write.c, dwarf2-frame.c, dwarf2expr.c, dwarf2loc.c, dwarf2read.c, event-loop.c, event-top.c, exceptions.c, exec.c, extension.h, fbsd-nat.c, features/aarch64-core.c, features/aarch64-fpu.c, features/aarch64-pauth.c, features/aarch64-sve.c, features/i386/32bit-avx.c, features/i386/32bit-avx512.c, features/i386/32bit-core.c, features/i386/32bit-linux.c, features/i386/32bit-mpx.c, features/i386/32bit-pkeys.c, features/i386/32bit-segments.c, features/i386/32bit-sse.c, features/i386/64bit-avx.c, features/i386/64bit-avx512.c, features/i386/64bit-core.c, features/i386/64bit-linux.c, features/i386/64bit-mpx.c, features/i386/64bit-pkeys.c, features/i386/64bit-segments.c, features/i386/64bit-sse.c, features/i386/x32-core.c, features/riscv/32bit-cpu.c, features/riscv/32bit-csr.c, features/riscv/32bit-fpu.c, features/riscv/64bit-cpu.c, features/riscv/64bit-csr.c, features/riscv/64bit-fpu.c, features/tic6x-c6xp.c, features/tic6x-core.c, features/tic6x-gp.c, filename-seen-cache.h, findcmd.c, findvar.c, fork-child.c, gcore.c, gdb_bfd.c, gdb_bfd.h, gdb_proc_service.h, gdb_regex.c, gdb_select.h, gdb_usleep.c, gdbarch-selftests.c, gdbthread.h, gdbtypes.h, gnu-nat.c, go32-nat.c, guile/guile.c, guile/scm-ports.c, guile/scm-safe-call.c, guile/scm-type.c, i386-fbsd-nat.c, i386-fbsd-tdep.c, i386-go32-tdep.c, i386-linux-nat.c, i386-linux-tdep.c, i386-tdep.c, i387-tdep.c, ia64-libunwind-tdep.c, ia64-linux-nat.c, inf-child.c, inf-ptrace.c, infcall.c, infcall.h, infcmd.c, inferior-iter.h, inferior.c, inferior.h, inflow.c, inflow.h, infrun.c, infrun.h, inline-frame.c, language.h, linespec.c, linux-fork.c, linux-nat.c, linux-tdep.c, linux-thread-db.c, location.c, machoread.c, macrotab.h, main.c, maint.c, maint.h, memattr.c, memrange.h, mi/mi-cmd-break.h, mi/mi-cmd-env.c, mi/mi-cmd-stack.c, mi/mi-cmd-var.c, mi/mi-interp.c, mi/mi-main.c, mi/mi-parse.h, minsyms.c, mips-linux-tdep.c, namespace.h, nat/aarch64-linux-hw-point.c, nat/aarch64-linux-hw-point.h, nat/aarch64-linux.c, nat/aarch64-sve-linux-ptrace.c, nat/amd64-linux-siginfo.c, nat/fork-inferior.c, nat/linux-btrace.c, nat/linux-btrace.h, nat/linux-namespaces.c, nat/linux-nat.h, nat/linux-osdata.c, nat/linux-personality.c, nat/linux-procfs.c, nat/linux-ptrace.c, nat/linux-ptrace.h, nat/linux-waitpid.c, nat/mips-linux-watch.c, nat/mips-linux-watch.h, nat/ppc-linux.c, nat/x86-dregs.c, nat/x86-dregs.h, nat/x86-linux-dregs.c, nat/x86-linux.c, nto-procfs.c, nto-tdep.c, objfile-flags.h, objfiles.c, objfiles.h, obsd-nat.c, observable.h, osdata.c, p-valprint.c, parse.c, parser-defs.h, ppc-linux-nat.c, printcmd.c, probe.c, proc-api.c, procfs.c, producer.c, progspace.h, psymtab.h, python/py-framefilter.c, python/py-inferior.c, python/py-ref.h, python/py-type.c, python/python.c, record-btrace.c, record-full.c, record.c, record.h, regcache-dump.c, regcache.c, regcache.h, remote-fileio.c, remote-fileio.h, remote-sim.c, remote.c, riscv-tdep.c, rs6000-aix-tdep.c, rust-exp.y, s12z-tdep.c, selftest-arch.c, ser-base.c, ser-event.c, ser-pipe.c, ser-tcp.c, ser-unix.c, skip.c, solib-aix.c, solib-target.c, solib.c, source-cache.c, source.c, source.h, sparc-nat.c, spu-linux-nat.c, stack.c, stap-probe.c, symfile-add-flags.h, symfile.c, symfile.h, symtab.c, symtab.h, target-descriptions.c, target-descriptions.h, target-memory.c, target.c, target.h, target/waitstatus.c, target/waitstatus.h, thread-iter.h, thread.c, tilegx-tdep.c, top.c, top.h, tracefile-tfile.c, tracefile.c, tracepoint.c, tracepoint.h, tui/tui-io.c, ui-file.c, ui-out.h, unittests/array-view-selftests.c, unittests/child-path-selftests.c, unittests/cli-utils-selftests.c, unittests/common-utils-selftests.c, unittests/copy_bitwise-selftests.c, unittests/environ-selftests.c, unittests/format_pieces-selftests.c, unittests/function-view-selftests.c, unittests/lookup_name_info-selftests.c, unittests/memory-map-selftests.c, unittests/memrange-selftests.c, unittests/mkdir-recursive-selftests.c, unittests/observable-selftests.c, unittests/offset-type-selftests.c, unittests/optional-selftests.c, unittests/parse-connection-spec-selftests.c, unittests/ptid-selftests.c, unittests/rsp-low-selftests.c, unittests/scoped_fd-selftests.c, unittests/scoped_mmap-selftests.c, unittests/scoped_restore-selftests.c, unittests/string_view-selftests.c, unittests/style-selftests.c, unittests/tracepoint-selftests.c, unittests/unpack-selftests.c, unittests/utils-selftests.c, unittests/xml-utils-selftests.c, utils.c, utils.h, valarith.c, valops.c, valprint.c, value.c, value.h, varobj.c, varobj.h, windows-nat.c, x86-linux-nat.c, xml-support.c, xml-support.h, xml-tdesc.h, xstormy16-tdep.c, xtensa-linux-nat.c, dwarf2read.h: Change common to gdbsupport. gdb/gdbserver/ChangeLog 2019-07-09 Tom Tromey <tom@tromey.com> * configure: Rebuild. * configure.ac: Change common to gdbsupport. * acinclude.m4: Change common to gdbsupport. * Makefile.in (SFILES, OBS, GDBREPLAY_OBS, IPA_OBJS) (version-generated.c, gdbsupport/%-ipa.o, gdbsupport/%.o): Change common to gdbsupport. * ax.c, event-loop.c, fork-child.c, gdb_proc_service.h, gdbreplay.c, gdbthread.h, hostio-errno.c, hostio.c, i387-fp.c, inferiors.c, inferiors.h, linux-aarch64-tdesc-selftest.c, linux-amd64-ipa.c, linux-i386-ipa.c, linux-low.c, linux-tic6x-low.c, linux-x86-low.c, linux-x86-tdesc-selftest.c, linux-x86-tdesc.c, lynx-i386-low.c, lynx-low.c, mem-break.h, nto-x86-low.c, regcache.c, regcache.h, remote-utils.c, server.c, server.h, spu-low.c, symbol.c, target.h, tdesc.c, tdesc.h, thread-db.c, tracepoint.c, win32-i386-low.c, win32-low.c: Change common to gdbsupport.
2019-05-06 10:29:24 +08:00
#include "gdbsupport/common-regcache.h"
#include "gdbsupport/byte-vector.h"
[AArch64] SVE/FPSIMD fixup for big endian The FPSIMD dump in signal frames and ptrace FPSIMD dump in the SVE context structure follows the target endianness, whereas the SVE dumps are endianness-independent (LE). Therefore, when the system is in BE mode, we need to reverse the bytes for the FPSIMD data. Given the V registers are larger than 64-bit, I've added a way for value bytes to be set, as opposed to passing a 64-bit fixed quantity. This fits nicely with the unwinding *_got_bytes function and makes the trad-frame more flexible and capable of saving larger registers. The memory for the bytes is allocated via the frame obstack, so it gets freed after we're done inspecting the frame. gdb/ChangeLog: 2020-12-10 Luis Machado <luis.machado@linaro.org> * aarch64-linux-tdep.c (aarch64_linux_restore_vreg) New function. (aarch64_linux_sigframe_init): Call aarch64_linux_restore_vreg. * aarch64-tdep.h (V_REGISTER_SIZE): Move to ... * arch/aarch64.h: ... here. * nat/aarch64-sve-linux-ptrace.c: Include endian.h. (aarch64_maybe_swab128): New function. (aarch64_sve_regs_copy_to_reg_buf) (aarch64_sve_regs_copy_from_reg_buf): Adjust FPSIMD entries. * trad-frame.c (trad_frame_reset_saved_regs): Initialize the data field. (TF_REG_VALUE_BYTES): New enum value. (trad_frame_value_bytes_p): New function. (trad_frame_set_value_bytes): New function. (trad_frame_set_reg_value_bytes): New function. (trad_frame_get_prev_register): Handle register values saved as bytes. * trad-frame.h (trad_frame_set_reg_value_bytes): New prototype. (struct trad_frame_saved_reg) <data>: New field. (trad_frame_set_value_bytes): New prototype. (trad_frame_value_bytes_p): New prototype.
2020-03-19 00:06:05 +08:00
#include <endian.h>
sme: Enable SME registers and pseudo-registers The SME (Scalable Matrix Extension) [1] exposes a new matrix register ZA with variable sizes. It also exposes a new mode called streaming mode. Similarly to SVE, the ZA register size is dictated by a vector length, but the SME vector length is called streaming vetor length. The total size for ZA in a given moment is svl x svl. In streaming mode, the SVE registers have their sizes based on svl rather than the regular vector length (vl). The feature detection is controlled by the HWCAP2_SME bit, but actual support should be validated by attempting a ptrace call for one of the new register sets: NT_ARM_ZA and NT_ARM_SSVE. Due to its large size, the ZA register is exposed as a vector of bytes, but we introduce a number of pseudo-registers that gives various different views into the ZA contents. These can be arranged in a couple categories: tiles and tile slices. Tiles are matrices the same size or smaller than ZA. Tile slices are vectors which map to ZA's rows/columns in different ways. A new dynamic target description is provided containing the ZA register, the SVG register and the SVCR register. The size of ZA, like the SVE vector registers, is based on the vector length register SVG (VG for SVE). This patch enables SME register support for gdb. [1] https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/scalable-matrix-extension-armv9-a-architecture Co-Authored-By: Ezra Sitorus <ezra.sitorus@arm.com> Reviewed-by: Thiago Jung Bauermann <thiago.bauermann@linaro.org>
2023-02-07 17:36:23 +08:00
#include "arch/aarch64-scalable-linux.h"
/* See nat/aarch64-scalable-linux-ptrace.h. */
bool
aarch64_has_sve_state (int tid)
{
struct user_sve_header header;
if (!read_sve_header (tid, header))
return false;
if ((header.flags & SVE_PT_REGS_SVE) == 0)
return false;
if (sizeof (header) == header.size)
return false;
return true;
}
/* See nat/aarch64-scalable-linux-ptrace.h. */
bool
aarch64_has_ssve_state (int tid)
{
struct user_sve_header header;
if (!read_ssve_header (tid, header))
return false;
if ((header.flags & SVE_PT_REGS_SVE) == 0)
return false;
if (sizeof (header) == header.size)
return false;
return true;
}
/* See nat/aarch64-scalable-linux-ptrace.h. */
bool
aarch64_has_za_state (int tid)
{
struct user_za_header header;
if (!read_za_header (tid, header))
return false;
if (sizeof (header) == header.size)
return false;
return true;
}
/* See nat/aarch64-scalable-linux-ptrace.h. */
bool
read_sve_header (int tid, struct user_sve_header &header)
{
struct iovec iovec;
iovec.iov_len = sizeof (header);
iovec.iov_base = &header;
if (ptrace (PTRACE_GETREGSET, tid, NT_ARM_SVE, &iovec) < 0)
{
/* SVE is not supported. */
return false;
}
return true;
}
/* See nat/aarch64-scalable-linux-ptrace.h. */
bool
write_sve_header (int tid, const struct user_sve_header &header)
{
struct iovec iovec;
iovec.iov_len = sizeof (header);
iovec.iov_base = (void *) &header;
if (ptrace (PTRACE_SETREGSET, tid, NT_ARM_SVE, &iovec) < 0)
{
/* SVE is not supported. */
return false;
}
return true;
}
/* See nat/aarch64-scalable-linux-ptrace.h. */
bool
read_ssve_header (int tid, struct user_sve_header &header)
{
struct iovec iovec;
iovec.iov_len = sizeof (header);
iovec.iov_base = &header;
if (ptrace (PTRACE_GETREGSET, tid, NT_ARM_SSVE, &iovec) < 0)
{
/* SSVE is not supported. */
return false;
}
return true;
}
/* See nat/aarch64-scalable-linux-ptrace.h. */
bool
write_ssve_header (int tid, const struct user_sve_header &header)
{
struct iovec iovec;
iovec.iov_len = sizeof (header);
iovec.iov_base = (void *) &header;
if (ptrace (PTRACE_SETREGSET, tid, NT_ARM_SSVE, &iovec) < 0)
{
/* SSVE is not supported. */
return false;
}
return true;
}
/* See nat/aarch64-scalable-linux-ptrace.h. */
bool
read_za_header (int tid, struct user_za_header &header)
{
struct iovec iovec;
iovec.iov_len = sizeof (header);
iovec.iov_base = &header;
if (ptrace (PTRACE_GETREGSET, tid, NT_ARM_ZA, &iovec) < 0)
{
/* ZA is not supported. */
return false;
}
return true;
}
/* See nat/aarch64-scalable-linux-ptrace.h. */
bool
write_za_header (int tid, const struct user_za_header &header)
{
struct iovec iovec;
iovec.iov_len = sizeof (header);
iovec.iov_base = (void *) &header;
if (ptrace (PTRACE_SETREGSET, tid, NT_ARM_ZA, &iovec) < 0)
{
/* ZA is not supported. */
return false;
}
return true;
}
/* Given VL, the streaming vector length for SME, return true if it is valid
and false otherwise. */
static bool
aarch64_sme_vl_valid (size_t vl)
{
return (vl == 16 || vl == 32 || vl == 64 || vl == 128 || vl == 256);
}
/* Given VL, the vector length for SVE, return true if it is valid and false
otherwise. SVE_state is true when the check is for the SVE register set.
Otherwise the check is for the SSVE register set. */
static bool
aarch64_sve_vl_valid (const bool sve_state, size_t vl)
{
if (sve_state)
return sve_vl_valid (vl);
/* We have an active SSVE state, where the valid vector length values are
more restrictive. */
return aarch64_sme_vl_valid (vl);
}
Ptrace support for Aarch64 SVE Add support for reading and writing registers for Aarch64 SVE. We need to support the cases where the kernel only gives us a fpsimd structure. This occurs when there is no active SVE state in the kernel (for example, after starting a new process). Added checks to make sure the vector length has not changed whilst the process is running. gdb/ * aarch64-linux-nat.c (fetch_sveregs_from_thread): New function. (store_sveregs_to_thread): Likewise. (aarch64_linux_fetch_inferior_registers): Check for SVE. (aarch64_linux_store_inferior_registers): Likewise. * nat/aarch64-sve-linux-ptrace.c (aarch64_sve_get_sveregs): New function. (aarch64_sve_regs_copy_to_regcache): Likewise. (aarch64_sve_regs_copy_from_regcache): Likewise. * nat/aarch64-sve-linux-ptrace.h (aarch64_sve_get_sveregs): New declaration. (aarch64_sve_regs_copy_to_regcache): Likewise. (aarch64_sve_regs_copy_from_regcache): Likewise. (sve_context): Structure from Linux headers. (SVE_SIG_ZREGS_SIZE): Define from Linux headers. (SVE_SIG_ZREG_SIZE): Likewise. (SVE_SIG_PREG_SIZE): Likewise. (SVE_SIG_FFR_SIZE): Likewise. (SVE_SIG_REGS_OFFSET): Likewise. (SVE_SIG_ZREGS_OFFSET): Likewise. (SVE_SIG_ZREG_OFFSET): Likewise. (SVE_SIG_ZREGS_SIZE): Likewise. (SVE_SIG_PREGS_OFFSET): Likewise. (SVE_SIG_PREG_OFFSET): Likewise. (SVE_SIG_PREGS_SIZE): Likewise. (SVE_SIG_FFR_OFFSET): Likewise. (SVE_SIG_REGS_SIZE): Likewise. (SVE_SIG_CONTEXT_SIZE): Likewise. (SVE_PT_REGS_MASK): Likewise. (SVE_PT_REGS_FPSIMD): Likewise. (SVE_PT_REGS_SVE): Likewise. (SVE_PT_VL_INHERIT): Likewise. (SVE_PT_VL_ONEXEC): Likewise. (SVE_PT_REGS_OFFSET): Likewise. (SVE_PT_FPSIMD_OFFSET): Likewise. (SVE_PT_FPSIMD_SIZE): Likewise. (SVE_PT_SVE_ZREG_SIZE): Likewise. (SVE_PT_SVE_PREG_SIZE): Likewise. (SVE_PT_SVE_FFR_SIZE): Likewise. (SVE_PT_SVE_FPSR_SIZE): Likewise. (SVE_PT_SVE_FPCR_SIZE): Likewise. (__SVE_SIG_TO_PT): Likewise. (SVE_PT_SVE_OFFSET): Likewise. (SVE_PT_SVE_ZREGS_OFFSET): Likewise. (SVE_PT_SVE_ZREG_OFFSET): Likewise. (SVE_PT_SVE_ZREGS_SIZE): Likewise. (SVE_PT_SVE_PREGS_OFFSET): Likewise. (SVE_PT_SVE_PREG_OFFSET): Likewise. (SVE_PT_SVE_PREGS_SIZE): Likewise. (SVE_PT_SVE_FFR_OFFSET): Likewise. (SVE_PT_SVE_FPSR_OFFSET): Likewise. (SVE_PT_SVE_FPCR_OFFSET): Likewise. (SVE_PT_SVE_SIZE): Likewise. (SVE_PT_SIZE): Likewise. (HAS_SVE_STATE): New define. gdbserver/ * Makefile.in: Add aarch64-sve-linux-ptrace.c.
2018-06-15 19:21:31 +08:00
/* See nat/aarch64-scalable-linux-ptrace.h. */
uint64_t
aarch64_sve_get_vq (int tid)
{
struct iovec iovec;
struct user_sve_header header;
iovec.iov_len = sizeof (header);
iovec.iov_base = &header;
sme: Enable SME registers and pseudo-registers The SME (Scalable Matrix Extension) [1] exposes a new matrix register ZA with variable sizes. It also exposes a new mode called streaming mode. Similarly to SVE, the ZA register size is dictated by a vector length, but the SME vector length is called streaming vetor length. The total size for ZA in a given moment is svl x svl. In streaming mode, the SVE registers have their sizes based on svl rather than the regular vector length (vl). The feature detection is controlled by the HWCAP2_SME bit, but actual support should be validated by attempting a ptrace call for one of the new register sets: NT_ARM_ZA and NT_ARM_SSVE. Due to its large size, the ZA register is exposed as a vector of bytes, but we introduce a number of pseudo-registers that gives various different views into the ZA contents. These can be arranged in a couple categories: tiles and tile slices. Tiles are matrices the same size or smaller than ZA. Tile slices are vectors which map to ZA's rows/columns in different ways. A new dynamic target description is provided containing the ZA register, the SVG register and the SVCR register. The size of ZA, like the SVE vector registers, is based on the vector length register SVG (VG for SVE). This patch enables SME register support for gdb. [1] https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/scalable-matrix-extension-armv9-a-architecture Co-Authored-By: Ezra Sitorus <ezra.sitorus@arm.com> Reviewed-by: Thiago Jung Bauermann <thiago.bauermann@linaro.org>
2023-02-07 17:36:23 +08:00
/* Figure out which register set to use for the request. The vector length
for SVE can be different from the vector length for SSVE. */
bool has_sve_state = !aarch64_has_ssve_state (tid);
if (ptrace (PTRACE_GETREGSET, tid, has_sve_state? NT_ARM_SVE : NT_ARM_SSVE,
&iovec) < 0)
{
/* SVE is not supported. */
return 0;
}
sme: Enable SME registers and pseudo-registers The SME (Scalable Matrix Extension) [1] exposes a new matrix register ZA with variable sizes. It also exposes a new mode called streaming mode. Similarly to SVE, the ZA register size is dictated by a vector length, but the SME vector length is called streaming vetor length. The total size for ZA in a given moment is svl x svl. In streaming mode, the SVE registers have their sizes based on svl rather than the regular vector length (vl). The feature detection is controlled by the HWCAP2_SME bit, but actual support should be validated by attempting a ptrace call for one of the new register sets: NT_ARM_ZA and NT_ARM_SSVE. Due to its large size, the ZA register is exposed as a vector of bytes, but we introduce a number of pseudo-registers that gives various different views into the ZA contents. These can be arranged in a couple categories: tiles and tile slices. Tiles are matrices the same size or smaller than ZA. Tile slices are vectors which map to ZA's rows/columns in different ways. A new dynamic target description is provided containing the ZA register, the SVG register and the SVCR register. The size of ZA, like the SVE vector registers, is based on the vector length register SVG (VG for SVE). This patch enables SME register support for gdb. [1] https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/scalable-matrix-extension-armv9-a-architecture Co-Authored-By: Ezra Sitorus <ezra.sitorus@arm.com> Reviewed-by: Thiago Jung Bauermann <thiago.bauermann@linaro.org>
2023-02-07 17:36:23 +08:00
/* Ptrace gives the vector length in bytes. Convert it to VQ, the number of
128bit chunks in a Z register. We use VQ because 128 bits is the minimum
a Z register can increase in size. */
Ptrace support for Aarch64 SVE Add support for reading and writing registers for Aarch64 SVE. We need to support the cases where the kernel only gives us a fpsimd structure. This occurs when there is no active SVE state in the kernel (for example, after starting a new process). Added checks to make sure the vector length has not changed whilst the process is running. gdb/ * aarch64-linux-nat.c (fetch_sveregs_from_thread): New function. (store_sveregs_to_thread): Likewise. (aarch64_linux_fetch_inferior_registers): Check for SVE. (aarch64_linux_store_inferior_registers): Likewise. * nat/aarch64-sve-linux-ptrace.c (aarch64_sve_get_sveregs): New function. (aarch64_sve_regs_copy_to_regcache): Likewise. (aarch64_sve_regs_copy_from_regcache): Likewise. * nat/aarch64-sve-linux-ptrace.h (aarch64_sve_get_sveregs): New declaration. (aarch64_sve_regs_copy_to_regcache): Likewise. (aarch64_sve_regs_copy_from_regcache): Likewise. (sve_context): Structure from Linux headers. (SVE_SIG_ZREGS_SIZE): Define from Linux headers. (SVE_SIG_ZREG_SIZE): Likewise. (SVE_SIG_PREG_SIZE): Likewise. (SVE_SIG_FFR_SIZE): Likewise. (SVE_SIG_REGS_OFFSET): Likewise. (SVE_SIG_ZREGS_OFFSET): Likewise. (SVE_SIG_ZREG_OFFSET): Likewise. (SVE_SIG_ZREGS_SIZE): Likewise. (SVE_SIG_PREGS_OFFSET): Likewise. (SVE_SIG_PREG_OFFSET): Likewise. (SVE_SIG_PREGS_SIZE): Likewise. (SVE_SIG_FFR_OFFSET): Likewise. (SVE_SIG_REGS_SIZE): Likewise. (SVE_SIG_CONTEXT_SIZE): Likewise. (SVE_PT_REGS_MASK): Likewise. (SVE_PT_REGS_FPSIMD): Likewise. (SVE_PT_REGS_SVE): Likewise. (SVE_PT_VL_INHERIT): Likewise. (SVE_PT_VL_ONEXEC): Likewise. (SVE_PT_REGS_OFFSET): Likewise. (SVE_PT_FPSIMD_OFFSET): Likewise. (SVE_PT_FPSIMD_SIZE): Likewise. (SVE_PT_SVE_ZREG_SIZE): Likewise. (SVE_PT_SVE_PREG_SIZE): Likewise. (SVE_PT_SVE_FFR_SIZE): Likewise. (SVE_PT_SVE_FPSR_SIZE): Likewise. (SVE_PT_SVE_FPCR_SIZE): Likewise. (__SVE_SIG_TO_PT): Likewise. (SVE_PT_SVE_OFFSET): Likewise. (SVE_PT_SVE_ZREGS_OFFSET): Likewise. (SVE_PT_SVE_ZREG_OFFSET): Likewise. (SVE_PT_SVE_ZREGS_SIZE): Likewise. (SVE_PT_SVE_PREGS_OFFSET): Likewise. (SVE_PT_SVE_PREG_OFFSET): Likewise. (SVE_PT_SVE_PREGS_SIZE): Likewise. (SVE_PT_SVE_FFR_OFFSET): Likewise. (SVE_PT_SVE_FPSR_OFFSET): Likewise. (SVE_PT_SVE_FPCR_OFFSET): Likewise. (SVE_PT_SVE_SIZE): Likewise. (SVE_PT_SIZE): Likewise. (HAS_SVE_STATE): New define. gdbserver/ * Makefile.in: Add aarch64-sve-linux-ptrace.c.
2018-06-15 19:21:31 +08:00
uint64_t vq = sve_vq_from_vl (header.vl);
sme: Enable SME registers and pseudo-registers The SME (Scalable Matrix Extension) [1] exposes a new matrix register ZA with variable sizes. It also exposes a new mode called streaming mode. Similarly to SVE, the ZA register size is dictated by a vector length, but the SME vector length is called streaming vetor length. The total size for ZA in a given moment is svl x svl. In streaming mode, the SVE registers have their sizes based on svl rather than the regular vector length (vl). The feature detection is controlled by the HWCAP2_SME bit, but actual support should be validated by attempting a ptrace call for one of the new register sets: NT_ARM_ZA and NT_ARM_SSVE. Due to its large size, the ZA register is exposed as a vector of bytes, but we introduce a number of pseudo-registers that gives various different views into the ZA contents. These can be arranged in a couple categories: tiles and tile slices. Tiles are matrices the same size or smaller than ZA. Tile slices are vectors which map to ZA's rows/columns in different ways. A new dynamic target description is provided containing the ZA register, the SVG register and the SVCR register. The size of ZA, like the SVE vector registers, is based on the vector length register SVG (VG for SVE). This patch enables SME register support for gdb. [1] https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/scalable-matrix-extension-armv9-a-architecture Co-Authored-By: Ezra Sitorus <ezra.sitorus@arm.com> Reviewed-by: Thiago Jung Bauermann <thiago.bauermann@linaro.org>
2023-02-07 17:36:23 +08:00
if (!aarch64_sve_vl_valid (has_sve_state, header.vl))
{
warning (_("Invalid SVE state from kernel; SVE disabled."));
return 0;
}
return vq;
}
Ptrace support for Aarch64 SVE Add support for reading and writing registers for Aarch64 SVE. We need to support the cases where the kernel only gives us a fpsimd structure. This occurs when there is no active SVE state in the kernel (for example, after starting a new process). Added checks to make sure the vector length has not changed whilst the process is running. gdb/ * aarch64-linux-nat.c (fetch_sveregs_from_thread): New function. (store_sveregs_to_thread): Likewise. (aarch64_linux_fetch_inferior_registers): Check for SVE. (aarch64_linux_store_inferior_registers): Likewise. * nat/aarch64-sve-linux-ptrace.c (aarch64_sve_get_sveregs): New function. (aarch64_sve_regs_copy_to_regcache): Likewise. (aarch64_sve_regs_copy_from_regcache): Likewise. * nat/aarch64-sve-linux-ptrace.h (aarch64_sve_get_sveregs): New declaration. (aarch64_sve_regs_copy_to_regcache): Likewise. (aarch64_sve_regs_copy_from_regcache): Likewise. (sve_context): Structure from Linux headers. (SVE_SIG_ZREGS_SIZE): Define from Linux headers. (SVE_SIG_ZREG_SIZE): Likewise. (SVE_SIG_PREG_SIZE): Likewise. (SVE_SIG_FFR_SIZE): Likewise. (SVE_SIG_REGS_OFFSET): Likewise. (SVE_SIG_ZREGS_OFFSET): Likewise. (SVE_SIG_ZREG_OFFSET): Likewise. (SVE_SIG_ZREGS_SIZE): Likewise. (SVE_SIG_PREGS_OFFSET): Likewise. (SVE_SIG_PREG_OFFSET): Likewise. (SVE_SIG_PREGS_SIZE): Likewise. (SVE_SIG_FFR_OFFSET): Likewise. (SVE_SIG_REGS_SIZE): Likewise. (SVE_SIG_CONTEXT_SIZE): Likewise. (SVE_PT_REGS_MASK): Likewise. (SVE_PT_REGS_FPSIMD): Likewise. (SVE_PT_REGS_SVE): Likewise. (SVE_PT_VL_INHERIT): Likewise. (SVE_PT_VL_ONEXEC): Likewise. (SVE_PT_REGS_OFFSET): Likewise. (SVE_PT_FPSIMD_OFFSET): Likewise. (SVE_PT_FPSIMD_SIZE): Likewise. (SVE_PT_SVE_ZREG_SIZE): Likewise. (SVE_PT_SVE_PREG_SIZE): Likewise. (SVE_PT_SVE_FFR_SIZE): Likewise. (SVE_PT_SVE_FPSR_SIZE): Likewise. (SVE_PT_SVE_FPCR_SIZE): Likewise. (__SVE_SIG_TO_PT): Likewise. (SVE_PT_SVE_OFFSET): Likewise. (SVE_PT_SVE_ZREGS_OFFSET): Likewise. (SVE_PT_SVE_ZREG_OFFSET): Likewise. (SVE_PT_SVE_ZREGS_SIZE): Likewise. (SVE_PT_SVE_PREGS_OFFSET): Likewise. (SVE_PT_SVE_PREG_OFFSET): Likewise. (SVE_PT_SVE_PREGS_SIZE): Likewise. (SVE_PT_SVE_FFR_OFFSET): Likewise. (SVE_PT_SVE_FPSR_OFFSET): Likewise. (SVE_PT_SVE_FPCR_OFFSET): Likewise. (SVE_PT_SVE_SIZE): Likewise. (SVE_PT_SIZE): Likewise. (HAS_SVE_STATE): New define. gdbserver/ * Makefile.in: Add aarch64-sve-linux-ptrace.c.
2018-06-15 19:21:31 +08:00
/* See nat/aarch64-scalable-linux-ptrace.h. */
Ptrace support for Aarch64 SVE Add support for reading and writing registers for Aarch64 SVE. We need to support the cases where the kernel only gives us a fpsimd structure. This occurs when there is no active SVE state in the kernel (for example, after starting a new process). Added checks to make sure the vector length has not changed whilst the process is running. gdb/ * aarch64-linux-nat.c (fetch_sveregs_from_thread): New function. (store_sveregs_to_thread): Likewise. (aarch64_linux_fetch_inferior_registers): Check for SVE. (aarch64_linux_store_inferior_registers): Likewise. * nat/aarch64-sve-linux-ptrace.c (aarch64_sve_get_sveregs): New function. (aarch64_sve_regs_copy_to_regcache): Likewise. (aarch64_sve_regs_copy_from_regcache): Likewise. * nat/aarch64-sve-linux-ptrace.h (aarch64_sve_get_sveregs): New declaration. (aarch64_sve_regs_copy_to_regcache): Likewise. (aarch64_sve_regs_copy_from_regcache): Likewise. (sve_context): Structure from Linux headers. (SVE_SIG_ZREGS_SIZE): Define from Linux headers. (SVE_SIG_ZREG_SIZE): Likewise. (SVE_SIG_PREG_SIZE): Likewise. (SVE_SIG_FFR_SIZE): Likewise. (SVE_SIG_REGS_OFFSET): Likewise. (SVE_SIG_ZREGS_OFFSET): Likewise. (SVE_SIG_ZREG_OFFSET): Likewise. (SVE_SIG_ZREGS_SIZE): Likewise. (SVE_SIG_PREGS_OFFSET): Likewise. (SVE_SIG_PREG_OFFSET): Likewise. (SVE_SIG_PREGS_SIZE): Likewise. (SVE_SIG_FFR_OFFSET): Likewise. (SVE_SIG_REGS_SIZE): Likewise. (SVE_SIG_CONTEXT_SIZE): Likewise. (SVE_PT_REGS_MASK): Likewise. (SVE_PT_REGS_FPSIMD): Likewise. (SVE_PT_REGS_SVE): Likewise. (SVE_PT_VL_INHERIT): Likewise. (SVE_PT_VL_ONEXEC): Likewise. (SVE_PT_REGS_OFFSET): Likewise. (SVE_PT_FPSIMD_OFFSET): Likewise. (SVE_PT_FPSIMD_SIZE): Likewise. (SVE_PT_SVE_ZREG_SIZE): Likewise. (SVE_PT_SVE_PREG_SIZE): Likewise. (SVE_PT_SVE_FFR_SIZE): Likewise. (SVE_PT_SVE_FPSR_SIZE): Likewise. (SVE_PT_SVE_FPCR_SIZE): Likewise. (__SVE_SIG_TO_PT): Likewise. (SVE_PT_SVE_OFFSET): Likewise. (SVE_PT_SVE_ZREGS_OFFSET): Likewise. (SVE_PT_SVE_ZREG_OFFSET): Likewise. (SVE_PT_SVE_ZREGS_SIZE): Likewise. (SVE_PT_SVE_PREGS_OFFSET): Likewise. (SVE_PT_SVE_PREG_OFFSET): Likewise. (SVE_PT_SVE_PREGS_SIZE): Likewise. (SVE_PT_SVE_FFR_OFFSET): Likewise. (SVE_PT_SVE_FPSR_OFFSET): Likewise. (SVE_PT_SVE_FPCR_OFFSET): Likewise. (SVE_PT_SVE_SIZE): Likewise. (SVE_PT_SIZE): Likewise. (HAS_SVE_STATE): New define. gdbserver/ * Makefile.in: Add aarch64-sve-linux-ptrace.c.
2018-06-15 19:21:31 +08:00
bool
aarch64_sve_set_vq (int tid, uint64_t vq)
{
struct iovec iovec;
struct user_sve_header header;
iovec.iov_len = sizeof (header);
iovec.iov_base = &header;
sme: Enable SME registers and pseudo-registers The SME (Scalable Matrix Extension) [1] exposes a new matrix register ZA with variable sizes. It also exposes a new mode called streaming mode. Similarly to SVE, the ZA register size is dictated by a vector length, but the SME vector length is called streaming vetor length. The total size for ZA in a given moment is svl x svl. In streaming mode, the SVE registers have their sizes based on svl rather than the regular vector length (vl). The feature detection is controlled by the HWCAP2_SME bit, but actual support should be validated by attempting a ptrace call for one of the new register sets: NT_ARM_ZA and NT_ARM_SSVE. Due to its large size, the ZA register is exposed as a vector of bytes, but we introduce a number of pseudo-registers that gives various different views into the ZA contents. These can be arranged in a couple categories: tiles and tile slices. Tiles are matrices the same size or smaller than ZA. Tile slices are vectors which map to ZA's rows/columns in different ways. A new dynamic target description is provided containing the ZA register, the SVG register and the SVCR register. The size of ZA, like the SVE vector registers, is based on the vector length register SVG (VG for SVE). This patch enables SME register support for gdb. [1] https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/scalable-matrix-extension-armv9-a-architecture Co-Authored-By: Ezra Sitorus <ezra.sitorus@arm.com> Reviewed-by: Thiago Jung Bauermann <thiago.bauermann@linaro.org>
2023-02-07 17:36:23 +08:00
/* Figure out which register set to use for the request. The vector length
for SVE can be different from the vector length for SSVE. */
bool has_sve_state = !aarch64_has_ssve_state (tid);
if (ptrace (PTRACE_GETREGSET, tid, has_sve_state? NT_ARM_SVE : NT_ARM_SSVE,
&iovec) < 0)
{
sme: Enable SME registers and pseudo-registers The SME (Scalable Matrix Extension) [1] exposes a new matrix register ZA with variable sizes. It also exposes a new mode called streaming mode. Similarly to SVE, the ZA register size is dictated by a vector length, but the SME vector length is called streaming vetor length. The total size for ZA in a given moment is svl x svl. In streaming mode, the SVE registers have their sizes based on svl rather than the regular vector length (vl). The feature detection is controlled by the HWCAP2_SME bit, but actual support should be validated by attempting a ptrace call for one of the new register sets: NT_ARM_ZA and NT_ARM_SSVE. Due to its large size, the ZA register is exposed as a vector of bytes, but we introduce a number of pseudo-registers that gives various different views into the ZA contents. These can be arranged in a couple categories: tiles and tile slices. Tiles are matrices the same size or smaller than ZA. Tile slices are vectors which map to ZA's rows/columns in different ways. A new dynamic target description is provided containing the ZA register, the SVG register and the SVCR register. The size of ZA, like the SVE vector registers, is based on the vector length register SVG (VG for SVE). This patch enables SME register support for gdb. [1] https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/scalable-matrix-extension-armv9-a-architecture Co-Authored-By: Ezra Sitorus <ezra.sitorus@arm.com> Reviewed-by: Thiago Jung Bauermann <thiago.bauermann@linaro.org>
2023-02-07 17:36:23 +08:00
/* SVE/SSVE is not supported. */
return false;
}
header.vl = sve_vl_from_vq (vq);
sme: Enable SME registers and pseudo-registers The SME (Scalable Matrix Extension) [1] exposes a new matrix register ZA with variable sizes. It also exposes a new mode called streaming mode. Similarly to SVE, the ZA register size is dictated by a vector length, but the SME vector length is called streaming vetor length. The total size for ZA in a given moment is svl x svl. In streaming mode, the SVE registers have their sizes based on svl rather than the regular vector length (vl). The feature detection is controlled by the HWCAP2_SME bit, but actual support should be validated by attempting a ptrace call for one of the new register sets: NT_ARM_ZA and NT_ARM_SSVE. Due to its large size, the ZA register is exposed as a vector of bytes, but we introduce a number of pseudo-registers that gives various different views into the ZA contents. These can be arranged in a couple categories: tiles and tile slices. Tiles are matrices the same size or smaller than ZA. Tile slices are vectors which map to ZA's rows/columns in different ways. A new dynamic target description is provided containing the ZA register, the SVG register and the SVCR register. The size of ZA, like the SVE vector registers, is based on the vector length register SVG (VG for SVE). This patch enables SME register support for gdb. [1] https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/scalable-matrix-extension-armv9-a-architecture Co-Authored-By: Ezra Sitorus <ezra.sitorus@arm.com> Reviewed-by: Thiago Jung Bauermann <thiago.bauermann@linaro.org>
2023-02-07 17:36:23 +08:00
if (ptrace (PTRACE_SETREGSET, tid, has_sve_state? NT_ARM_SVE : NT_ARM_SSVE,
&iovec) < 0)
{
/* Vector length change failed. */
return false;
}
return true;
}
/* See nat/aarch64-scalable-linux-ptrace.h. */
bool
aarch64_sve_set_vq (int tid, struct reg_buffer_common *reg_buf)
{
[AArch64] When unavailable, fetch VG from ptrace. I was doing some SVE tests on system QEMU and noticed quite a few failures related to inferior function calls. Any attempt to do an inferior function call would result in the following: Unable to set VG register.: Success. This happens because, after an inferior function call, GDB attempts to restore the regcache state and updates the SVE register in order. Since the Z registers show up before the VG register, VG is still INVALID by the time the first Z register is being updated. So when executing the following code in aarch64_sve_set_vq: if (reg_buf->get_register_status (AARCH64_SVE_VG_REGNUM) != REG_VALID) return false; By returning false, we signal something is wrong, then we get to this: /* First store vector length to the thread. This is done first to ensure the ptrace buffers read from the kernel are the correct size. */ if (!aarch64_sve_set_vq (tid, regcache)) perror_with_name (_("Unable to set VG register.")); Ideally we'd always have a valid VG before attempting to set the Z registers, but in this case the ordering of registers doesn't make that possible. I considered reordering the registers to put VG before the Z registers, like the DWARF numbering, but that would break backwards compatibility with existing implementations. Also, the Z register numbering is pinned to the V registers, and adding VG before Z would create a gap for non-SVE targets, since we wouldn't be able to undefine VG for non-SVE targets. As a compromise, it seems we can safely fetch the VG register value from ptrace. The value in the kernel is likely the updated value anyway. This patch fixed all the failures i saw in the testsuite and caused no further regressions. gdb/ChangeLog: 2020-03-19 Luis Machado <luis.machado@linaro.org> * nat/aarch64-sve-linux-ptrace.c (aarch64_sve_set_vq): If vg is not valid, fetch vg value from ptrace.
2020-03-17 01:09:25 +08:00
uint64_t reg_vg = 0;
/* The VG register may not be valid if we've not collected any value yet.
This can happen, for example, if we're restoring the regcache after an
inferior function call, and the VG register comes after the Z
registers. */
if (reg_buf->get_register_status (AARCH64_SVE_VG_REGNUM) != REG_VALID)
{
/* If vg is not available yet, fetch it from ptrace. The VG value from
ptrace is likely the correct one. */
uint64_t vq = aarch64_sve_get_vq (tid);
/* If something went wrong, just bail out. */
if (vq == 0)
return false;
[AArch64] When unavailable, fetch VG from ptrace. I was doing some SVE tests on system QEMU and noticed quite a few failures related to inferior function calls. Any attempt to do an inferior function call would result in the following: Unable to set VG register.: Success. This happens because, after an inferior function call, GDB attempts to restore the regcache state and updates the SVE register in order. Since the Z registers show up before the VG register, VG is still INVALID by the time the first Z register is being updated. So when executing the following code in aarch64_sve_set_vq: if (reg_buf->get_register_status (AARCH64_SVE_VG_REGNUM) != REG_VALID) return false; By returning false, we signal something is wrong, then we get to this: /* First store vector length to the thread. This is done first to ensure the ptrace buffers read from the kernel are the correct size. */ if (!aarch64_sve_set_vq (tid, regcache)) perror_with_name (_("Unable to set VG register.")); Ideally we'd always have a valid VG before attempting to set the Z registers, but in this case the ordering of registers doesn't make that possible. I considered reordering the registers to put VG before the Z registers, like the DWARF numbering, but that would break backwards compatibility with existing implementations. Also, the Z register numbering is pinned to the V registers, and adding VG before Z would create a gap for non-SVE targets, since we wouldn't be able to undefine VG for non-SVE targets. As a compromise, it seems we can safely fetch the VG register value from ptrace. The value in the kernel is likely the updated value anyway. This patch fixed all the failures i saw in the testsuite and caused no further regressions. gdb/ChangeLog: 2020-03-19 Luis Machado <luis.machado@linaro.org> * nat/aarch64-sve-linux-ptrace.c (aarch64_sve_set_vq): If vg is not valid, fetch vg value from ptrace.
2020-03-17 01:09:25 +08:00
reg_vg = sve_vg_from_vq (vq);
}
[AArch64] When unavailable, fetch VG from ptrace. I was doing some SVE tests on system QEMU and noticed quite a few failures related to inferior function calls. Any attempt to do an inferior function call would result in the following: Unable to set VG register.: Success. This happens because, after an inferior function call, GDB attempts to restore the regcache state and updates the SVE register in order. Since the Z registers show up before the VG register, VG is still INVALID by the time the first Z register is being updated. So when executing the following code in aarch64_sve_set_vq: if (reg_buf->get_register_status (AARCH64_SVE_VG_REGNUM) != REG_VALID) return false; By returning false, we signal something is wrong, then we get to this: /* First store vector length to the thread. This is done first to ensure the ptrace buffers read from the kernel are the correct size. */ if (!aarch64_sve_set_vq (tid, regcache)) perror_with_name (_("Unable to set VG register.")); Ideally we'd always have a valid VG before attempting to set the Z registers, but in this case the ordering of registers doesn't make that possible. I considered reordering the registers to put VG before the Z registers, like the DWARF numbering, but that would break backwards compatibility with existing implementations. Also, the Z register numbering is pinned to the V registers, and adding VG before Z would create a gap for non-SVE targets, since we wouldn't be able to undefine VG for non-SVE targets. As a compromise, it seems we can safely fetch the VG register value from ptrace. The value in the kernel is likely the updated value anyway. This patch fixed all the failures i saw in the testsuite and caused no further regressions. gdb/ChangeLog: 2020-03-19 Luis Machado <luis.machado@linaro.org> * nat/aarch64-sve-linux-ptrace.c (aarch64_sve_set_vq): If vg is not valid, fetch vg value from ptrace.
2020-03-17 01:09:25 +08:00
else
reg_buf->raw_collect (AARCH64_SVE_VG_REGNUM, &reg_vg);
return aarch64_sve_set_vq (tid, sve_vq_from_vg (reg_vg));
}
/* See nat/aarch64-scalable-linux-ptrace.h. */
sme: Enable SME registers and pseudo-registers The SME (Scalable Matrix Extension) [1] exposes a new matrix register ZA with variable sizes. It also exposes a new mode called streaming mode. Similarly to SVE, the ZA register size is dictated by a vector length, but the SME vector length is called streaming vetor length. The total size for ZA in a given moment is svl x svl. In streaming mode, the SVE registers have their sizes based on svl rather than the regular vector length (vl). The feature detection is controlled by the HWCAP2_SME bit, but actual support should be validated by attempting a ptrace call for one of the new register sets: NT_ARM_ZA and NT_ARM_SSVE. Due to its large size, the ZA register is exposed as a vector of bytes, but we introduce a number of pseudo-registers that gives various different views into the ZA contents. These can be arranged in a couple categories: tiles and tile slices. Tiles are matrices the same size or smaller than ZA. Tile slices are vectors which map to ZA's rows/columns in different ways. A new dynamic target description is provided containing the ZA register, the SVG register and the SVCR register. The size of ZA, like the SVE vector registers, is based on the vector length register SVG (VG for SVE). This patch enables SME register support for gdb. [1] https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/scalable-matrix-extension-armv9-a-architecture Co-Authored-By: Ezra Sitorus <ezra.sitorus@arm.com> Reviewed-by: Thiago Jung Bauermann <thiago.bauermann@linaro.org>
2023-02-07 17:36:23 +08:00
uint64_t
aarch64_za_get_svq (int tid)
{
struct user_za_header header;
if (!read_za_header (tid, header))
return 0;
uint64_t vq = sve_vq_from_vl (header.vl);
if (!aarch64_sve_vl_valid (false, header.vl))
{
warning (_("Invalid ZA state from kernel; ZA disabled."));
return 0;
}
return vq;
}
/* See nat/aarch64-scalable-linux-ptrace.h. */
bool
aarch64_za_set_svq (int tid, uint64_t vq)
{
struct iovec iovec;
/* Read the NT_ARM_ZA header. */
struct user_za_header header;
if (!read_za_header (tid, header))
{
/* ZA is not supported. */
return false;
}
/* If the size is the correct one already, don't update it. If we do
update the streaming vector length, we will invalidate the register
state for ZA, and we do not want that. */
if (header.vl == sve_vl_from_vq (vq))
return true;
/* The streaming vector length is about to get updated. Set the new value
in the NT_ARM_ZA header and adjust the size as well. */
header.vl = sve_vl_from_vq (vq);
header.size = sizeof (struct user_za_header);
/* Update the NT_ARM_ZA register set with the new streaming vector
length. */
iovec.iov_len = sizeof (header);
iovec.iov_base = &header;
if (ptrace (PTRACE_SETREGSET, tid, NT_ARM_ZA, &iovec) < 0)
{
/* Streaming vector length change failed. */
return false;
}
/* At this point we have successfully adjusted the streaming vector length
for the NT_ARM_ZA register set, and it should have no payload
(no ZA state). */
return true;
}
/* See nat/aarch64-scalable-linux-ptrace.h. */
bool
aarch64_za_set_svq (int tid, const struct reg_buffer_common *reg_buf,
int svg_regnum)
{
uint64_t reg_svg = 0;
/* The svg register may not be valid if we've not collected any value yet.
This can happen, for example, if we're restoring the regcache after an
inferior function call, and the svg register comes after the Z
registers. */
if (reg_buf->get_register_status (svg_regnum) != REG_VALID)
{
/* If svg is not available yet, fetch it from ptrace. The svg value from
ptrace is likely the correct one. */
uint64_t svq = aarch64_za_get_svq (tid);
/* If something went wrong, just bail out. */
if (svq == 0)
return false;
reg_svg = sve_vg_from_vq (svq);
}
else
reg_buf->raw_collect (svg_regnum, &reg_svg);
return aarch64_za_set_svq (tid, sve_vq_from_vg (reg_svg));
}
/* See nat/aarch64-scalable-linux-ptrace.h. */
refactor: Simplify SVE interface to read/write registers This is a patch in preparation to upcoming patches enabling SME support. It attempts to simplify the gdb/gdbserver shared interface used to read/write SVE registers. Where the current code makes use of unique_ptr, allocating a new buffer by hand and passing a buffer around, this patch makes that code use gdb::byte_vector and passes a reference to this byte vector to the functions, allowing the functions to have ready access to the size of the buffer. It also shares a bit more code between gdb and gdbserver, in particular around handling of ptrace get/set requests for SVE. I think gdbserver could be refactored to handle register reads/writes more like gdb's native layer as opposed to letting the generic linux-low layer do the ptrace calls. This is not very flexible and assumes one size for the responses. If you have something like NT_ARM_SVE, where you can have either FPSIMD or SVE contents, it doesn't work that well. I didn't want to change that interface right now as it is a bit too much work and touches all the targets, some of which I can't easily test. Hence the reason why the buffer the generic linux-now passes down to linux-aarch64-low is unused or ignored. No user-visible changes should happen as part of this refactor other than a slightly reworded warning message. While doing the refactor, I also noticed what seems to be a mistake in checking if the register cache contains active (non-zero) SVE data. For instance, the original code did something like this in aarch64_sve_regs_copy_from_reg_buf: has_sve_state |= reg_buf->raw_compare (AARCH64_SVE_Z0_REGNUM + i reg, sizeof (__int128_t)); "reg" is a zeroed-out buffer that we compare the Z register contents past the first 128 bits. The problem here is that raw_compare returns 1 if the contents compare the same, which means has_sve_state will be true. But if we compared the Z register contents to 0, it means we *do not* have SVE state, and therefore has_sve_state should be false. The consequence of this mistake is that we convert the initial FPSIMD-formatted data we get from ptrace for the NT_ARM_SVE register set to a SVE-formatted one. In the end, this doesn't cause user-visible differences because the values of both the Z and V registers will still be the same. But the logic is not correct. I used the opportunity to fix this, and it gets tested later on by the additional SME tests. I do plan on submitting some SVE-specific tests to make sure we have a bit more coverage in GDB's testsuite. Regression-tested on aarch64-linux Ubuntu 22.04/20.04. Reviewed-by: Thiago Jung Bauermann <thiago.bauermann@linaro.org>
2023-02-07 18:08:23 +08:00
gdb::byte_vector
aarch64_fetch_sve_regset (int tid)
Ptrace support for Aarch64 SVE Add support for reading and writing registers for Aarch64 SVE. We need to support the cases where the kernel only gives us a fpsimd structure. This occurs when there is no active SVE state in the kernel (for example, after starting a new process). Added checks to make sure the vector length has not changed whilst the process is running. gdb/ * aarch64-linux-nat.c (fetch_sveregs_from_thread): New function. (store_sveregs_to_thread): Likewise. (aarch64_linux_fetch_inferior_registers): Check for SVE. (aarch64_linux_store_inferior_registers): Likewise. * nat/aarch64-sve-linux-ptrace.c (aarch64_sve_get_sveregs): New function. (aarch64_sve_regs_copy_to_regcache): Likewise. (aarch64_sve_regs_copy_from_regcache): Likewise. * nat/aarch64-sve-linux-ptrace.h (aarch64_sve_get_sveregs): New declaration. (aarch64_sve_regs_copy_to_regcache): Likewise. (aarch64_sve_regs_copy_from_regcache): Likewise. (sve_context): Structure from Linux headers. (SVE_SIG_ZREGS_SIZE): Define from Linux headers. (SVE_SIG_ZREG_SIZE): Likewise. (SVE_SIG_PREG_SIZE): Likewise. (SVE_SIG_FFR_SIZE): Likewise. (SVE_SIG_REGS_OFFSET): Likewise. (SVE_SIG_ZREGS_OFFSET): Likewise. (SVE_SIG_ZREG_OFFSET): Likewise. (SVE_SIG_ZREGS_SIZE): Likewise. (SVE_SIG_PREGS_OFFSET): Likewise. (SVE_SIG_PREG_OFFSET): Likewise. (SVE_SIG_PREGS_SIZE): Likewise. (SVE_SIG_FFR_OFFSET): Likewise. (SVE_SIG_REGS_SIZE): Likewise. (SVE_SIG_CONTEXT_SIZE): Likewise. (SVE_PT_REGS_MASK): Likewise. (SVE_PT_REGS_FPSIMD): Likewise. (SVE_PT_REGS_SVE): Likewise. (SVE_PT_VL_INHERIT): Likewise. (SVE_PT_VL_ONEXEC): Likewise. (SVE_PT_REGS_OFFSET): Likewise. (SVE_PT_FPSIMD_OFFSET): Likewise. (SVE_PT_FPSIMD_SIZE): Likewise. (SVE_PT_SVE_ZREG_SIZE): Likewise. (SVE_PT_SVE_PREG_SIZE): Likewise. (SVE_PT_SVE_FFR_SIZE): Likewise. (SVE_PT_SVE_FPSR_SIZE): Likewise. (SVE_PT_SVE_FPCR_SIZE): Likewise. (__SVE_SIG_TO_PT): Likewise. (SVE_PT_SVE_OFFSET): Likewise. (SVE_PT_SVE_ZREGS_OFFSET): Likewise. (SVE_PT_SVE_ZREG_OFFSET): Likewise. (SVE_PT_SVE_ZREGS_SIZE): Likewise. (SVE_PT_SVE_PREGS_OFFSET): Likewise. (SVE_PT_SVE_PREG_OFFSET): Likewise. (SVE_PT_SVE_PREGS_SIZE): Likewise. (SVE_PT_SVE_FFR_OFFSET): Likewise. (SVE_PT_SVE_FPSR_OFFSET): Likewise. (SVE_PT_SVE_FPCR_OFFSET): Likewise. (SVE_PT_SVE_SIZE): Likewise. (SVE_PT_SIZE): Likewise. (HAS_SVE_STATE): New define. gdbserver/ * Makefile.in: Add aarch64-sve-linux-ptrace.c.
2018-06-15 19:21:31 +08:00
{
uint64_t vq = aarch64_sve_get_vq (tid);
if (vq == 0)
sme: Enable SME registers and pseudo-registers The SME (Scalable Matrix Extension) [1] exposes a new matrix register ZA with variable sizes. It also exposes a new mode called streaming mode. Similarly to SVE, the ZA register size is dictated by a vector length, but the SME vector length is called streaming vetor length. The total size for ZA in a given moment is svl x svl. In streaming mode, the SVE registers have their sizes based on svl rather than the regular vector length (vl). The feature detection is controlled by the HWCAP2_SME bit, but actual support should be validated by attempting a ptrace call for one of the new register sets: NT_ARM_ZA and NT_ARM_SSVE. Due to its large size, the ZA register is exposed as a vector of bytes, but we introduce a number of pseudo-registers that gives various different views into the ZA contents. These can be arranged in a couple categories: tiles and tile slices. Tiles are matrices the same size or smaller than ZA. Tile slices are vectors which map to ZA's rows/columns in different ways. A new dynamic target description is provided containing the ZA register, the SVG register and the SVCR register. The size of ZA, like the SVE vector registers, is based on the vector length register SVG (VG for SVE). This patch enables SME register support for gdb. [1] https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/scalable-matrix-extension-armv9-a-architecture Co-Authored-By: Ezra Sitorus <ezra.sitorus@arm.com> Reviewed-by: Thiago Jung Bauermann <thiago.bauermann@linaro.org>
2023-02-07 17:36:23 +08:00
perror_with_name (_("Unable to fetch SVE/SSVE vector length"));
Ptrace support for Aarch64 SVE Add support for reading and writing registers for Aarch64 SVE. We need to support the cases where the kernel only gives us a fpsimd structure. This occurs when there is no active SVE state in the kernel (for example, after starting a new process). Added checks to make sure the vector length has not changed whilst the process is running. gdb/ * aarch64-linux-nat.c (fetch_sveregs_from_thread): New function. (store_sveregs_to_thread): Likewise. (aarch64_linux_fetch_inferior_registers): Check for SVE. (aarch64_linux_store_inferior_registers): Likewise. * nat/aarch64-sve-linux-ptrace.c (aarch64_sve_get_sveregs): New function. (aarch64_sve_regs_copy_to_regcache): Likewise. (aarch64_sve_regs_copy_from_regcache): Likewise. * nat/aarch64-sve-linux-ptrace.h (aarch64_sve_get_sveregs): New declaration. (aarch64_sve_regs_copy_to_regcache): Likewise. (aarch64_sve_regs_copy_from_regcache): Likewise. (sve_context): Structure from Linux headers. (SVE_SIG_ZREGS_SIZE): Define from Linux headers. (SVE_SIG_ZREG_SIZE): Likewise. (SVE_SIG_PREG_SIZE): Likewise. (SVE_SIG_FFR_SIZE): Likewise. (SVE_SIG_REGS_OFFSET): Likewise. (SVE_SIG_ZREGS_OFFSET): Likewise. (SVE_SIG_ZREG_OFFSET): Likewise. (SVE_SIG_ZREGS_SIZE): Likewise. (SVE_SIG_PREGS_OFFSET): Likewise. (SVE_SIG_PREG_OFFSET): Likewise. (SVE_SIG_PREGS_SIZE): Likewise. (SVE_SIG_FFR_OFFSET): Likewise. (SVE_SIG_REGS_SIZE): Likewise. (SVE_SIG_CONTEXT_SIZE): Likewise. (SVE_PT_REGS_MASK): Likewise. (SVE_PT_REGS_FPSIMD): Likewise. (SVE_PT_REGS_SVE): Likewise. (SVE_PT_VL_INHERIT): Likewise. (SVE_PT_VL_ONEXEC): Likewise. (SVE_PT_REGS_OFFSET): Likewise. (SVE_PT_FPSIMD_OFFSET): Likewise. (SVE_PT_FPSIMD_SIZE): Likewise. (SVE_PT_SVE_ZREG_SIZE): Likewise. (SVE_PT_SVE_PREG_SIZE): Likewise. (SVE_PT_SVE_FFR_SIZE): Likewise. (SVE_PT_SVE_FPSR_SIZE): Likewise. (SVE_PT_SVE_FPCR_SIZE): Likewise. (__SVE_SIG_TO_PT): Likewise. (SVE_PT_SVE_OFFSET): Likewise. (SVE_PT_SVE_ZREGS_OFFSET): Likewise. (SVE_PT_SVE_ZREG_OFFSET): Likewise. (SVE_PT_SVE_ZREGS_SIZE): Likewise. (SVE_PT_SVE_PREGS_OFFSET): Likewise. (SVE_PT_SVE_PREG_OFFSET): Likewise. (SVE_PT_SVE_PREGS_SIZE): Likewise. (SVE_PT_SVE_FFR_OFFSET): Likewise. (SVE_PT_SVE_FPSR_OFFSET): Likewise. (SVE_PT_SVE_FPCR_OFFSET): Likewise. (SVE_PT_SVE_SIZE): Likewise. (SVE_PT_SIZE): Likewise. (HAS_SVE_STATE): New define. gdbserver/ * Makefile.in: Add aarch64-sve-linux-ptrace.c.
2018-06-15 19:21:31 +08:00
/* A ptrace call with NT_ARM_SVE will return a header followed by either a
dump of all the SVE and FP registers, or an fpsimd structure (identical to
the one returned by NT_FPREGSET) if the kernel has not yet executed any
SVE code. Make sure we allocate enough space for a full SVE dump. */
refactor: Simplify SVE interface to read/write registers This is a patch in preparation to upcoming patches enabling SME support. It attempts to simplify the gdb/gdbserver shared interface used to read/write SVE registers. Where the current code makes use of unique_ptr, allocating a new buffer by hand and passing a buffer around, this patch makes that code use gdb::byte_vector and passes a reference to this byte vector to the functions, allowing the functions to have ready access to the size of the buffer. It also shares a bit more code between gdb and gdbserver, in particular around handling of ptrace get/set requests for SVE. I think gdbserver could be refactored to handle register reads/writes more like gdb's native layer as opposed to letting the generic linux-low layer do the ptrace calls. This is not very flexible and assumes one size for the responses. If you have something like NT_ARM_SVE, where you can have either FPSIMD or SVE contents, it doesn't work that well. I didn't want to change that interface right now as it is a bit too much work and touches all the targets, some of which I can't easily test. Hence the reason why the buffer the generic linux-now passes down to linux-aarch64-low is unused or ignored. No user-visible changes should happen as part of this refactor other than a slightly reworded warning message. While doing the refactor, I also noticed what seems to be a mistake in checking if the register cache contains active (non-zero) SVE data. For instance, the original code did something like this in aarch64_sve_regs_copy_from_reg_buf: has_sve_state |= reg_buf->raw_compare (AARCH64_SVE_Z0_REGNUM + i reg, sizeof (__int128_t)); "reg" is a zeroed-out buffer that we compare the Z register contents past the first 128 bits. The problem here is that raw_compare returns 1 if the contents compare the same, which means has_sve_state will be true. But if we compared the Z register contents to 0, it means we *do not* have SVE state, and therefore has_sve_state should be false. The consequence of this mistake is that we convert the initial FPSIMD-formatted data we get from ptrace for the NT_ARM_SVE register set to a SVE-formatted one. In the end, this doesn't cause user-visible differences because the values of both the Z and V registers will still be the same. But the logic is not correct. I used the opportunity to fix this, and it gets tested later on by the additional SME tests. I do plan on submitting some SVE-specific tests to make sure we have a bit more coverage in GDB's testsuite. Regression-tested on aarch64-linux Ubuntu 22.04/20.04. Reviewed-by: Thiago Jung Bauermann <thiago.bauermann@linaro.org>
2023-02-07 18:08:23 +08:00
gdb::byte_vector sve_state (SVE_PT_SIZE (vq, SVE_PT_REGS_SVE), 0);
struct iovec iovec;
iovec.iov_base = sve_state.data ();
iovec.iov_len = sve_state.size ();
Ptrace support for Aarch64 SVE Add support for reading and writing registers for Aarch64 SVE. We need to support the cases where the kernel only gives us a fpsimd structure. This occurs when there is no active SVE state in the kernel (for example, after starting a new process). Added checks to make sure the vector length has not changed whilst the process is running. gdb/ * aarch64-linux-nat.c (fetch_sveregs_from_thread): New function. (store_sveregs_to_thread): Likewise. (aarch64_linux_fetch_inferior_registers): Check for SVE. (aarch64_linux_store_inferior_registers): Likewise. * nat/aarch64-sve-linux-ptrace.c (aarch64_sve_get_sveregs): New function. (aarch64_sve_regs_copy_to_regcache): Likewise. (aarch64_sve_regs_copy_from_regcache): Likewise. * nat/aarch64-sve-linux-ptrace.h (aarch64_sve_get_sveregs): New declaration. (aarch64_sve_regs_copy_to_regcache): Likewise. (aarch64_sve_regs_copy_from_regcache): Likewise. (sve_context): Structure from Linux headers. (SVE_SIG_ZREGS_SIZE): Define from Linux headers. (SVE_SIG_ZREG_SIZE): Likewise. (SVE_SIG_PREG_SIZE): Likewise. (SVE_SIG_FFR_SIZE): Likewise. (SVE_SIG_REGS_OFFSET): Likewise. (SVE_SIG_ZREGS_OFFSET): Likewise. (SVE_SIG_ZREG_OFFSET): Likewise. (SVE_SIG_ZREGS_SIZE): Likewise. (SVE_SIG_PREGS_OFFSET): Likewise. (SVE_SIG_PREG_OFFSET): Likewise. (SVE_SIG_PREGS_SIZE): Likewise. (SVE_SIG_FFR_OFFSET): Likewise. (SVE_SIG_REGS_SIZE): Likewise. (SVE_SIG_CONTEXT_SIZE): Likewise. (SVE_PT_REGS_MASK): Likewise. (SVE_PT_REGS_FPSIMD): Likewise. (SVE_PT_REGS_SVE): Likewise. (SVE_PT_VL_INHERIT): Likewise. (SVE_PT_VL_ONEXEC): Likewise. (SVE_PT_REGS_OFFSET): Likewise. (SVE_PT_FPSIMD_OFFSET): Likewise. (SVE_PT_FPSIMD_SIZE): Likewise. (SVE_PT_SVE_ZREG_SIZE): Likewise. (SVE_PT_SVE_PREG_SIZE): Likewise. (SVE_PT_SVE_FFR_SIZE): Likewise. (SVE_PT_SVE_FPSR_SIZE): Likewise. (SVE_PT_SVE_FPCR_SIZE): Likewise. (__SVE_SIG_TO_PT): Likewise. (SVE_PT_SVE_OFFSET): Likewise. (SVE_PT_SVE_ZREGS_OFFSET): Likewise. (SVE_PT_SVE_ZREG_OFFSET): Likewise. (SVE_PT_SVE_ZREGS_SIZE): Likewise. (SVE_PT_SVE_PREGS_OFFSET): Likewise. (SVE_PT_SVE_PREG_OFFSET): Likewise. (SVE_PT_SVE_PREGS_SIZE): Likewise. (SVE_PT_SVE_FFR_OFFSET): Likewise. (SVE_PT_SVE_FPSR_OFFSET): Likewise. (SVE_PT_SVE_FPCR_OFFSET): Likewise. (SVE_PT_SVE_SIZE): Likewise. (SVE_PT_SIZE): Likewise. (HAS_SVE_STATE): New define. gdbserver/ * Makefile.in: Add aarch64-sve-linux-ptrace.c.
2018-06-15 19:21:31 +08:00
sme: Enable SME registers and pseudo-registers The SME (Scalable Matrix Extension) [1] exposes a new matrix register ZA with variable sizes. It also exposes a new mode called streaming mode. Similarly to SVE, the ZA register size is dictated by a vector length, but the SME vector length is called streaming vetor length. The total size for ZA in a given moment is svl x svl. In streaming mode, the SVE registers have their sizes based on svl rather than the regular vector length (vl). The feature detection is controlled by the HWCAP2_SME bit, but actual support should be validated by attempting a ptrace call for one of the new register sets: NT_ARM_ZA and NT_ARM_SSVE. Due to its large size, the ZA register is exposed as a vector of bytes, but we introduce a number of pseudo-registers that gives various different views into the ZA contents. These can be arranged in a couple categories: tiles and tile slices. Tiles are matrices the same size or smaller than ZA. Tile slices are vectors which map to ZA's rows/columns in different ways. A new dynamic target description is provided containing the ZA register, the SVG register and the SVCR register. The size of ZA, like the SVE vector registers, is based on the vector length register SVG (VG for SVE). This patch enables SME register support for gdb. [1] https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/scalable-matrix-extension-armv9-a-architecture Co-Authored-By: Ezra Sitorus <ezra.sitorus@arm.com> Reviewed-by: Thiago Jung Bauermann <thiago.bauermann@linaro.org>
2023-02-07 17:36:23 +08:00
bool has_sve_state = !aarch64_has_ssve_state (tid);
if (ptrace (PTRACE_GETREGSET, tid, has_sve_state? NT_ARM_SVE : NT_ARM_SSVE,
&iovec) < 0)
perror_with_name (_("Unable to fetch SVE/SSVE registers"));
Ptrace support for Aarch64 SVE Add support for reading and writing registers for Aarch64 SVE. We need to support the cases where the kernel only gives us a fpsimd structure. This occurs when there is no active SVE state in the kernel (for example, after starting a new process). Added checks to make sure the vector length has not changed whilst the process is running. gdb/ * aarch64-linux-nat.c (fetch_sveregs_from_thread): New function. (store_sveregs_to_thread): Likewise. (aarch64_linux_fetch_inferior_registers): Check for SVE. (aarch64_linux_store_inferior_registers): Likewise. * nat/aarch64-sve-linux-ptrace.c (aarch64_sve_get_sveregs): New function. (aarch64_sve_regs_copy_to_regcache): Likewise. (aarch64_sve_regs_copy_from_regcache): Likewise. * nat/aarch64-sve-linux-ptrace.h (aarch64_sve_get_sveregs): New declaration. (aarch64_sve_regs_copy_to_regcache): Likewise. (aarch64_sve_regs_copy_from_regcache): Likewise. (sve_context): Structure from Linux headers. (SVE_SIG_ZREGS_SIZE): Define from Linux headers. (SVE_SIG_ZREG_SIZE): Likewise. (SVE_SIG_PREG_SIZE): Likewise. (SVE_SIG_FFR_SIZE): Likewise. (SVE_SIG_REGS_OFFSET): Likewise. (SVE_SIG_ZREGS_OFFSET): Likewise. (SVE_SIG_ZREG_OFFSET): Likewise. (SVE_SIG_ZREGS_SIZE): Likewise. (SVE_SIG_PREGS_OFFSET): Likewise. (SVE_SIG_PREG_OFFSET): Likewise. (SVE_SIG_PREGS_SIZE): Likewise. (SVE_SIG_FFR_OFFSET): Likewise. (SVE_SIG_REGS_SIZE): Likewise. (SVE_SIG_CONTEXT_SIZE): Likewise. (SVE_PT_REGS_MASK): Likewise. (SVE_PT_REGS_FPSIMD): Likewise. (SVE_PT_REGS_SVE): Likewise. (SVE_PT_VL_INHERIT): Likewise. (SVE_PT_VL_ONEXEC): Likewise. (SVE_PT_REGS_OFFSET): Likewise. (SVE_PT_FPSIMD_OFFSET): Likewise. (SVE_PT_FPSIMD_SIZE): Likewise. (SVE_PT_SVE_ZREG_SIZE): Likewise. (SVE_PT_SVE_PREG_SIZE): Likewise. (SVE_PT_SVE_FFR_SIZE): Likewise. (SVE_PT_SVE_FPSR_SIZE): Likewise. (SVE_PT_SVE_FPCR_SIZE): Likewise. (__SVE_SIG_TO_PT): Likewise. (SVE_PT_SVE_OFFSET): Likewise. (SVE_PT_SVE_ZREGS_OFFSET): Likewise. (SVE_PT_SVE_ZREG_OFFSET): Likewise. (SVE_PT_SVE_ZREGS_SIZE): Likewise. (SVE_PT_SVE_PREGS_OFFSET): Likewise. (SVE_PT_SVE_PREG_OFFSET): Likewise. (SVE_PT_SVE_PREGS_SIZE): Likewise. (SVE_PT_SVE_FFR_OFFSET): Likewise. (SVE_PT_SVE_FPSR_OFFSET): Likewise. (SVE_PT_SVE_FPCR_OFFSET): Likewise. (SVE_PT_SVE_SIZE): Likewise. (SVE_PT_SIZE): Likewise. (HAS_SVE_STATE): New define. gdbserver/ * Makefile.in: Add aarch64-sve-linux-ptrace.c.
2018-06-15 19:21:31 +08:00
refactor: Simplify SVE interface to read/write registers This is a patch in preparation to upcoming patches enabling SME support. It attempts to simplify the gdb/gdbserver shared interface used to read/write SVE registers. Where the current code makes use of unique_ptr, allocating a new buffer by hand and passing a buffer around, this patch makes that code use gdb::byte_vector and passes a reference to this byte vector to the functions, allowing the functions to have ready access to the size of the buffer. It also shares a bit more code between gdb and gdbserver, in particular around handling of ptrace get/set requests for SVE. I think gdbserver could be refactored to handle register reads/writes more like gdb's native layer as opposed to letting the generic linux-low layer do the ptrace calls. This is not very flexible and assumes one size for the responses. If you have something like NT_ARM_SVE, where you can have either FPSIMD or SVE contents, it doesn't work that well. I didn't want to change that interface right now as it is a bit too much work and touches all the targets, some of which I can't easily test. Hence the reason why the buffer the generic linux-now passes down to linux-aarch64-low is unused or ignored. No user-visible changes should happen as part of this refactor other than a slightly reworded warning message. While doing the refactor, I also noticed what seems to be a mistake in checking if the register cache contains active (non-zero) SVE data. For instance, the original code did something like this in aarch64_sve_regs_copy_from_reg_buf: has_sve_state |= reg_buf->raw_compare (AARCH64_SVE_Z0_REGNUM + i reg, sizeof (__int128_t)); "reg" is a zeroed-out buffer that we compare the Z register contents past the first 128 bits. The problem here is that raw_compare returns 1 if the contents compare the same, which means has_sve_state will be true. But if we compared the Z register contents to 0, it means we *do not* have SVE state, and therefore has_sve_state should be false. The consequence of this mistake is that we convert the initial FPSIMD-formatted data we get from ptrace for the NT_ARM_SVE register set to a SVE-formatted one. In the end, this doesn't cause user-visible differences because the values of both the Z and V registers will still be the same. But the logic is not correct. I used the opportunity to fix this, and it gets tested later on by the additional SME tests. I do plan on submitting some SVE-specific tests to make sure we have a bit more coverage in GDB's testsuite. Regression-tested on aarch64-linux Ubuntu 22.04/20.04. Reviewed-by: Thiago Jung Bauermann <thiago.bauermann@linaro.org>
2023-02-07 18:08:23 +08:00
return sve_state;
}
/* See nat/aarch64-scalable-linux-ptrace.h. */
void
aarch64_store_sve_regset (int tid, const gdb::byte_vector &sve_state)
{
struct iovec iovec;
/* We need to cast from (const void *) here. */
iovec.iov_base = (void *) sve_state.data ();
iovec.iov_len = sve_state.size ();
sme: Enable SME registers and pseudo-registers The SME (Scalable Matrix Extension) [1] exposes a new matrix register ZA with variable sizes. It also exposes a new mode called streaming mode. Similarly to SVE, the ZA register size is dictated by a vector length, but the SME vector length is called streaming vetor length. The total size for ZA in a given moment is svl x svl. In streaming mode, the SVE registers have their sizes based on svl rather than the regular vector length (vl). The feature detection is controlled by the HWCAP2_SME bit, but actual support should be validated by attempting a ptrace call for one of the new register sets: NT_ARM_ZA and NT_ARM_SSVE. Due to its large size, the ZA register is exposed as a vector of bytes, but we introduce a number of pseudo-registers that gives various different views into the ZA contents. These can be arranged in a couple categories: tiles and tile slices. Tiles are matrices the same size or smaller than ZA. Tile slices are vectors which map to ZA's rows/columns in different ways. A new dynamic target description is provided containing the ZA register, the SVG register and the SVCR register. The size of ZA, like the SVE vector registers, is based on the vector length register SVG (VG for SVE). This patch enables SME register support for gdb. [1] https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/scalable-matrix-extension-armv9-a-architecture Co-Authored-By: Ezra Sitorus <ezra.sitorus@arm.com> Reviewed-by: Thiago Jung Bauermann <thiago.bauermann@linaro.org>
2023-02-07 17:36:23 +08:00
bool has_sve_state = !aarch64_has_ssve_state (tid);
if (ptrace (PTRACE_SETREGSET, tid, has_sve_state? NT_ARM_SVE : NT_ARM_SSVE,
&iovec) < 0)
perror_with_name (_("Unable to store SVE/SSVE registers"));
}
/* See nat/aarch64-scalable-linux-ptrace.h. */
gdb::byte_vector
aarch64_fetch_za_regset (int tid)
{
struct user_za_header header;
if (!read_za_header (tid, header))
error (_("Failed to read NT_ARM_ZA header."));
if (!aarch64_sme_vl_valid (header.vl))
error (_("Found invalid vector length for NT_ARM_ZA."));
struct iovec iovec;
iovec.iov_len = header.size;
gdb::byte_vector za_state (header.size);
iovec.iov_base = za_state.data ();
if (ptrace (PTRACE_GETREGSET, tid, NT_ARM_ZA, &iovec) < 0)
perror_with_name (_("Failed to fetch NT_ARM_ZA register set."));
return za_state;
}
/* See nat/aarch64-scalable-linux-ptrace.h. */
void
aarch64_store_za_regset (int tid, const gdb::byte_vector &za_state)
{
struct iovec iovec;
/* We need to cast from (const void *) here. */
iovec.iov_base = (void *) za_state.data ();
iovec.iov_len = za_state.size ();
if (ptrace (PTRACE_SETREGSET, tid, NT_ARM_ZA, &iovec) < 0)
perror_with_name (_("Failed to write to the NT_ARM_ZA register set."));
}
/* See nat/aarch64-scalable-linux-ptrace.h. */
void
aarch64_initialize_za_regset (int tid)
{
/* First fetch the NT_ARM_ZA header so we can fetch the streaming vector
length. */
struct user_za_header header;
if (!read_za_header (tid, header))
error (_("Failed to read NT_ARM_ZA header."));
/* The vector should be default-initialized to zero, and we should account
for the payload as well. */
std::vector<gdb_byte> za_new_state (ZA_PT_SIZE (sve_vq_from_vl (header.vl)));
/* Adjust the header size since we are adding the initialized ZA
payload. */
header.size = ZA_PT_SIZE (sve_vq_from_vl (header.vl));
/* Overlay the modified header onto the new ZA state. */
const gdb_byte *base = (gdb_byte *) &header;
memcpy (za_new_state.data (), base, sizeof (user_za_header));
/* Set the ptrace request up and update the NT_ARM_ZA register set. */
struct iovec iovec;
iovec.iov_len = za_new_state.size ();
iovec.iov_base = za_new_state.data ();
if (ptrace (PTRACE_SETREGSET, tid, NT_ARM_ZA, &iovec) < 0)
perror_with_name (_("Failed to initialize the NT_ARM_ZA register set."));
if (supports_zt_registers (tid))
{
/* If this target supports SME2, upon initializing ZA, we also need to
initialize the ZT registers with 0 values. Do so now. */
gdb::byte_vector zt_new_state (AARCH64_SME2_ZT0_SIZE, 0);
aarch64_store_zt_regset (tid, zt_new_state);
}
sme: Enable SME registers and pseudo-registers The SME (Scalable Matrix Extension) [1] exposes a new matrix register ZA with variable sizes. It also exposes a new mode called streaming mode. Similarly to SVE, the ZA register size is dictated by a vector length, but the SME vector length is called streaming vetor length. The total size for ZA in a given moment is svl x svl. In streaming mode, the SVE registers have their sizes based on svl rather than the regular vector length (vl). The feature detection is controlled by the HWCAP2_SME bit, but actual support should be validated by attempting a ptrace call for one of the new register sets: NT_ARM_ZA and NT_ARM_SSVE. Due to its large size, the ZA register is exposed as a vector of bytes, but we introduce a number of pseudo-registers that gives various different views into the ZA contents. These can be arranged in a couple categories: tiles and tile slices. Tiles are matrices the same size or smaller than ZA. Tile slices are vectors which map to ZA's rows/columns in different ways. A new dynamic target description is provided containing the ZA register, the SVG register and the SVCR register. The size of ZA, like the SVE vector registers, is based on the vector length register SVG (VG for SVE). This patch enables SME register support for gdb. [1] https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/scalable-matrix-extension-armv9-a-architecture Co-Authored-By: Ezra Sitorus <ezra.sitorus@arm.com> Reviewed-by: Thiago Jung Bauermann <thiago.bauermann@linaro.org>
2023-02-07 17:36:23 +08:00
/* The NT_ARM_ZA register set should now contain a zero-initialized ZA
payload. */
Ptrace support for Aarch64 SVE Add support for reading and writing registers for Aarch64 SVE. We need to support the cases where the kernel only gives us a fpsimd structure. This occurs when there is no active SVE state in the kernel (for example, after starting a new process). Added checks to make sure the vector length has not changed whilst the process is running. gdb/ * aarch64-linux-nat.c (fetch_sveregs_from_thread): New function. (store_sveregs_to_thread): Likewise. (aarch64_linux_fetch_inferior_registers): Check for SVE. (aarch64_linux_store_inferior_registers): Likewise. * nat/aarch64-sve-linux-ptrace.c (aarch64_sve_get_sveregs): New function. (aarch64_sve_regs_copy_to_regcache): Likewise. (aarch64_sve_regs_copy_from_regcache): Likewise. * nat/aarch64-sve-linux-ptrace.h (aarch64_sve_get_sveregs): New declaration. (aarch64_sve_regs_copy_to_regcache): Likewise. (aarch64_sve_regs_copy_from_regcache): Likewise. (sve_context): Structure from Linux headers. (SVE_SIG_ZREGS_SIZE): Define from Linux headers. (SVE_SIG_ZREG_SIZE): Likewise. (SVE_SIG_PREG_SIZE): Likewise. (SVE_SIG_FFR_SIZE): Likewise. (SVE_SIG_REGS_OFFSET): Likewise. (SVE_SIG_ZREGS_OFFSET): Likewise. (SVE_SIG_ZREG_OFFSET): Likewise. (SVE_SIG_ZREGS_SIZE): Likewise. (SVE_SIG_PREGS_OFFSET): Likewise. (SVE_SIG_PREG_OFFSET): Likewise. (SVE_SIG_PREGS_SIZE): Likewise. (SVE_SIG_FFR_OFFSET): Likewise. (SVE_SIG_REGS_SIZE): Likewise. (SVE_SIG_CONTEXT_SIZE): Likewise. (SVE_PT_REGS_MASK): Likewise. (SVE_PT_REGS_FPSIMD): Likewise. (SVE_PT_REGS_SVE): Likewise. (SVE_PT_VL_INHERIT): Likewise. (SVE_PT_VL_ONEXEC): Likewise. (SVE_PT_REGS_OFFSET): Likewise. (SVE_PT_FPSIMD_OFFSET): Likewise. (SVE_PT_FPSIMD_SIZE): Likewise. (SVE_PT_SVE_ZREG_SIZE): Likewise. (SVE_PT_SVE_PREG_SIZE): Likewise. (SVE_PT_SVE_FFR_SIZE): Likewise. (SVE_PT_SVE_FPSR_SIZE): Likewise. (SVE_PT_SVE_FPCR_SIZE): Likewise. (__SVE_SIG_TO_PT): Likewise. (SVE_PT_SVE_OFFSET): Likewise. (SVE_PT_SVE_ZREGS_OFFSET): Likewise. (SVE_PT_SVE_ZREG_OFFSET): Likewise. (SVE_PT_SVE_ZREGS_SIZE): Likewise. (SVE_PT_SVE_PREGS_OFFSET): Likewise. (SVE_PT_SVE_PREG_OFFSET): Likewise. (SVE_PT_SVE_PREGS_SIZE): Likewise. (SVE_PT_SVE_FFR_OFFSET): Likewise. (SVE_PT_SVE_FPSR_OFFSET): Likewise. (SVE_PT_SVE_FPCR_OFFSET): Likewise. (SVE_PT_SVE_SIZE): Likewise. (SVE_PT_SIZE): Likewise. (HAS_SVE_STATE): New define. gdbserver/ * Makefile.in: Add aarch64-sve-linux-ptrace.c.
2018-06-15 19:21:31 +08:00
}
/* See nat/aarch64-scalable-linux-ptrace.h. */
gdb::byte_vector
aarch64_fetch_zt_regset (int tid)
{
/* Read NT_ARM_ZT. This register set is only available if
the ZA bit is non-zero. */
gdb::byte_vector zt_state (AARCH64_SME2_ZT0_SIZE);
struct iovec iovec;
iovec.iov_len = AARCH64_SME2_ZT0_SIZE;
iovec.iov_base = zt_state.data ();
if (ptrace (PTRACE_GETREGSET, tid, NT_ARM_ZT, &iovec) < 0)
perror_with_name (_("Failed to fetch NT_ARM_ZT register set."));
return zt_state;
}
/* See nat/aarch64-scalable-linux-ptrace.h. */
void
aarch64_store_zt_regset (int tid, const gdb::byte_vector &zt_state)
{
gdb_assert (zt_state.size () == AARCH64_SME2_ZT0_SIZE
|| zt_state.size () == 0);
/* We need to be mindful of writing data to NT_ARM_ZT. If the ZA bit
is 0 and we write something to ZT, it will flip the ZA bit.
Right now this is taken care of by callers of this function. */
struct iovec iovec;
iovec.iov_len = zt_state.size ();
iovec.iov_base = (void *) zt_state.data ();
/* Write the contents of ZT_STATE to the NT_ARM_ZT register set. */
if (ptrace (PTRACE_SETREGSET, tid, NT_ARM_ZT, &iovec) < 0)
perror_with_name (_("Failed to write to the NT_ARM_ZT register set."));
}
/* See nat/aarch64-scalable-linux-ptrace.h. */
bool
supports_zt_registers (int tid)
{
gdb_byte zt_state[AARCH64_SME2_ZT0_SIZE];
struct iovec iovec;
iovec.iov_len = AARCH64_SME2_ZT0_SIZE;
iovec.iov_base = (void *) zt_state;
if (ptrace (PTRACE_GETREGSET, tid, NT_ARM_ZT, &iovec) < 0)
return false;
return true;
}
[AArch64] SVE/FPSIMD fixup for big endian The FPSIMD dump in signal frames and ptrace FPSIMD dump in the SVE context structure follows the target endianness, whereas the SVE dumps are endianness-independent (LE). Therefore, when the system is in BE mode, we need to reverse the bytes for the FPSIMD data. Given the V registers are larger than 64-bit, I've added a way for value bytes to be set, as opposed to passing a 64-bit fixed quantity. This fits nicely with the unwinding *_got_bytes function and makes the trad-frame more flexible and capable of saving larger registers. The memory for the bytes is allocated via the frame obstack, so it gets freed after we're done inspecting the frame. gdb/ChangeLog: 2020-12-10 Luis Machado <luis.machado@linaro.org> * aarch64-linux-tdep.c (aarch64_linux_restore_vreg) New function. (aarch64_linux_sigframe_init): Call aarch64_linux_restore_vreg. * aarch64-tdep.h (V_REGISTER_SIZE): Move to ... * arch/aarch64.h: ... here. * nat/aarch64-sve-linux-ptrace.c: Include endian.h. (aarch64_maybe_swab128): New function. (aarch64_sve_regs_copy_to_reg_buf) (aarch64_sve_regs_copy_from_reg_buf): Adjust FPSIMD entries. * trad-frame.c (trad_frame_reset_saved_regs): Initialize the data field. (TF_REG_VALUE_BYTES): New enum value. (trad_frame_value_bytes_p): New function. (trad_frame_set_value_bytes): New function. (trad_frame_set_reg_value_bytes): New function. (trad_frame_get_prev_register): Handle register values saved as bytes. * trad-frame.h (trad_frame_set_reg_value_bytes): New prototype. (struct trad_frame_saved_reg) <data>: New field. (trad_frame_set_value_bytes): New prototype. (trad_frame_value_bytes_p): New prototype.
2020-03-19 00:06:05 +08:00
/* If we are running in BE mode, byteswap the contents
of SRC to DST for SIZE bytes. Other, just copy the contents
from SRC to DST. */
static void
aarch64_maybe_swab128 (gdb_byte *dst, const gdb_byte *src, size_t size)
{
gdb_assert (src != nullptr && dst != nullptr);
gdb_assert (size > 1);
#if (__BYTE_ORDER == __BIG_ENDIAN)
for (int i = 0; i < size - 1; i++)
dst[i] = src[size - i];
#else
memcpy (dst, src, size);
#endif
}
/* See nat/aarch64-scalable-linux-ptrace.h. */
Ptrace support for Aarch64 SVE Add support for reading and writing registers for Aarch64 SVE. We need to support the cases where the kernel only gives us a fpsimd structure. This occurs when there is no active SVE state in the kernel (for example, after starting a new process). Added checks to make sure the vector length has not changed whilst the process is running. gdb/ * aarch64-linux-nat.c (fetch_sveregs_from_thread): New function. (store_sveregs_to_thread): Likewise. (aarch64_linux_fetch_inferior_registers): Check for SVE. (aarch64_linux_store_inferior_registers): Likewise. * nat/aarch64-sve-linux-ptrace.c (aarch64_sve_get_sveregs): New function. (aarch64_sve_regs_copy_to_regcache): Likewise. (aarch64_sve_regs_copy_from_regcache): Likewise. * nat/aarch64-sve-linux-ptrace.h (aarch64_sve_get_sveregs): New declaration. (aarch64_sve_regs_copy_to_regcache): Likewise. (aarch64_sve_regs_copy_from_regcache): Likewise. (sve_context): Structure from Linux headers. (SVE_SIG_ZREGS_SIZE): Define from Linux headers. (SVE_SIG_ZREG_SIZE): Likewise. (SVE_SIG_PREG_SIZE): Likewise. (SVE_SIG_FFR_SIZE): Likewise. (SVE_SIG_REGS_OFFSET): Likewise. (SVE_SIG_ZREGS_OFFSET): Likewise. (SVE_SIG_ZREG_OFFSET): Likewise. (SVE_SIG_ZREGS_SIZE): Likewise. (SVE_SIG_PREGS_OFFSET): Likewise. (SVE_SIG_PREG_OFFSET): Likewise. (SVE_SIG_PREGS_SIZE): Likewise. (SVE_SIG_FFR_OFFSET): Likewise. (SVE_SIG_REGS_SIZE): Likewise. (SVE_SIG_CONTEXT_SIZE): Likewise. (SVE_PT_REGS_MASK): Likewise. (SVE_PT_REGS_FPSIMD): Likewise. (SVE_PT_REGS_SVE): Likewise. (SVE_PT_VL_INHERIT): Likewise. (SVE_PT_VL_ONEXEC): Likewise. (SVE_PT_REGS_OFFSET): Likewise. (SVE_PT_FPSIMD_OFFSET): Likewise. (SVE_PT_FPSIMD_SIZE): Likewise. (SVE_PT_SVE_ZREG_SIZE): Likewise. (SVE_PT_SVE_PREG_SIZE): Likewise. (SVE_PT_SVE_FFR_SIZE): Likewise. (SVE_PT_SVE_FPSR_SIZE): Likewise. (SVE_PT_SVE_FPCR_SIZE): Likewise. (__SVE_SIG_TO_PT): Likewise. (SVE_PT_SVE_OFFSET): Likewise. (SVE_PT_SVE_ZREGS_OFFSET): Likewise. (SVE_PT_SVE_ZREG_OFFSET): Likewise. (SVE_PT_SVE_ZREGS_SIZE): Likewise. (SVE_PT_SVE_PREGS_OFFSET): Likewise. (SVE_PT_SVE_PREG_OFFSET): Likewise. (SVE_PT_SVE_PREGS_SIZE): Likewise. (SVE_PT_SVE_FFR_OFFSET): Likewise. (SVE_PT_SVE_FPSR_OFFSET): Likewise. (SVE_PT_SVE_FPCR_OFFSET): Likewise. (SVE_PT_SVE_SIZE): Likewise. (SVE_PT_SIZE): Likewise. (HAS_SVE_STATE): New define. gdbserver/ * Makefile.in: Add aarch64-sve-linux-ptrace.c.
2018-06-15 19:21:31 +08:00
void
refactor: Simplify SVE interface to read/write registers This is a patch in preparation to upcoming patches enabling SME support. It attempts to simplify the gdb/gdbserver shared interface used to read/write SVE registers. Where the current code makes use of unique_ptr, allocating a new buffer by hand and passing a buffer around, this patch makes that code use gdb::byte_vector and passes a reference to this byte vector to the functions, allowing the functions to have ready access to the size of the buffer. It also shares a bit more code between gdb and gdbserver, in particular around handling of ptrace get/set requests for SVE. I think gdbserver could be refactored to handle register reads/writes more like gdb's native layer as opposed to letting the generic linux-low layer do the ptrace calls. This is not very flexible and assumes one size for the responses. If you have something like NT_ARM_SVE, where you can have either FPSIMD or SVE contents, it doesn't work that well. I didn't want to change that interface right now as it is a bit too much work and touches all the targets, some of which I can't easily test. Hence the reason why the buffer the generic linux-now passes down to linux-aarch64-low is unused or ignored. No user-visible changes should happen as part of this refactor other than a slightly reworded warning message. While doing the refactor, I also noticed what seems to be a mistake in checking if the register cache contains active (non-zero) SVE data. For instance, the original code did something like this in aarch64_sve_regs_copy_from_reg_buf: has_sve_state |= reg_buf->raw_compare (AARCH64_SVE_Z0_REGNUM + i reg, sizeof (__int128_t)); "reg" is a zeroed-out buffer that we compare the Z register contents past the first 128 bits. The problem here is that raw_compare returns 1 if the contents compare the same, which means has_sve_state will be true. But if we compared the Z register contents to 0, it means we *do not* have SVE state, and therefore has_sve_state should be false. The consequence of this mistake is that we convert the initial FPSIMD-formatted data we get from ptrace for the NT_ARM_SVE register set to a SVE-formatted one. In the end, this doesn't cause user-visible differences because the values of both the Z and V registers will still be the same. But the logic is not correct. I used the opportunity to fix this, and it gets tested later on by the additional SME tests. I do plan on submitting some SVE-specific tests to make sure we have a bit more coverage in GDB's testsuite. Regression-tested on aarch64-linux Ubuntu 22.04/20.04. Reviewed-by: Thiago Jung Bauermann <thiago.bauermann@linaro.org>
2023-02-07 18:08:23 +08:00
aarch64_sve_regs_copy_to_reg_buf (int tid, struct reg_buffer_common *reg_buf)
Ptrace support for Aarch64 SVE Add support for reading and writing registers for Aarch64 SVE. We need to support the cases where the kernel only gives us a fpsimd structure. This occurs when there is no active SVE state in the kernel (for example, after starting a new process). Added checks to make sure the vector length has not changed whilst the process is running. gdb/ * aarch64-linux-nat.c (fetch_sveregs_from_thread): New function. (store_sveregs_to_thread): Likewise. (aarch64_linux_fetch_inferior_registers): Check for SVE. (aarch64_linux_store_inferior_registers): Likewise. * nat/aarch64-sve-linux-ptrace.c (aarch64_sve_get_sveregs): New function. (aarch64_sve_regs_copy_to_regcache): Likewise. (aarch64_sve_regs_copy_from_regcache): Likewise. * nat/aarch64-sve-linux-ptrace.h (aarch64_sve_get_sveregs): New declaration. (aarch64_sve_regs_copy_to_regcache): Likewise. (aarch64_sve_regs_copy_from_regcache): Likewise. (sve_context): Structure from Linux headers. (SVE_SIG_ZREGS_SIZE): Define from Linux headers. (SVE_SIG_ZREG_SIZE): Likewise. (SVE_SIG_PREG_SIZE): Likewise. (SVE_SIG_FFR_SIZE): Likewise. (SVE_SIG_REGS_OFFSET): Likewise. (SVE_SIG_ZREGS_OFFSET): Likewise. (SVE_SIG_ZREG_OFFSET): Likewise. (SVE_SIG_ZREGS_SIZE): Likewise. (SVE_SIG_PREGS_OFFSET): Likewise. (SVE_SIG_PREG_OFFSET): Likewise. (SVE_SIG_PREGS_SIZE): Likewise. (SVE_SIG_FFR_OFFSET): Likewise. (SVE_SIG_REGS_SIZE): Likewise. (SVE_SIG_CONTEXT_SIZE): Likewise. (SVE_PT_REGS_MASK): Likewise. (SVE_PT_REGS_FPSIMD): Likewise. (SVE_PT_REGS_SVE): Likewise. (SVE_PT_VL_INHERIT): Likewise. (SVE_PT_VL_ONEXEC): Likewise. (SVE_PT_REGS_OFFSET): Likewise. (SVE_PT_FPSIMD_OFFSET): Likewise. (SVE_PT_FPSIMD_SIZE): Likewise. (SVE_PT_SVE_ZREG_SIZE): Likewise. (SVE_PT_SVE_PREG_SIZE): Likewise. (SVE_PT_SVE_FFR_SIZE): Likewise. (SVE_PT_SVE_FPSR_SIZE): Likewise. (SVE_PT_SVE_FPCR_SIZE): Likewise. (__SVE_SIG_TO_PT): Likewise. (SVE_PT_SVE_OFFSET): Likewise. (SVE_PT_SVE_ZREGS_OFFSET): Likewise. (SVE_PT_SVE_ZREG_OFFSET): Likewise. (SVE_PT_SVE_ZREGS_SIZE): Likewise. (SVE_PT_SVE_PREGS_OFFSET): Likewise. (SVE_PT_SVE_PREG_OFFSET): Likewise. (SVE_PT_SVE_PREGS_SIZE): Likewise. (SVE_PT_SVE_FFR_OFFSET): Likewise. (SVE_PT_SVE_FPSR_OFFSET): Likewise. (SVE_PT_SVE_FPCR_OFFSET): Likewise. (SVE_PT_SVE_SIZE): Likewise. (SVE_PT_SIZE): Likewise. (HAS_SVE_STATE): New define. gdbserver/ * Makefile.in: Add aarch64-sve-linux-ptrace.c.
2018-06-15 19:21:31 +08:00
{
refactor: Simplify SVE interface to read/write registers This is a patch in preparation to upcoming patches enabling SME support. It attempts to simplify the gdb/gdbserver shared interface used to read/write SVE registers. Where the current code makes use of unique_ptr, allocating a new buffer by hand and passing a buffer around, this patch makes that code use gdb::byte_vector and passes a reference to this byte vector to the functions, allowing the functions to have ready access to the size of the buffer. It also shares a bit more code between gdb and gdbserver, in particular around handling of ptrace get/set requests for SVE. I think gdbserver could be refactored to handle register reads/writes more like gdb's native layer as opposed to letting the generic linux-low layer do the ptrace calls. This is not very flexible and assumes one size for the responses. If you have something like NT_ARM_SVE, where you can have either FPSIMD or SVE contents, it doesn't work that well. I didn't want to change that interface right now as it is a bit too much work and touches all the targets, some of which I can't easily test. Hence the reason why the buffer the generic linux-now passes down to linux-aarch64-low is unused or ignored. No user-visible changes should happen as part of this refactor other than a slightly reworded warning message. While doing the refactor, I also noticed what seems to be a mistake in checking if the register cache contains active (non-zero) SVE data. For instance, the original code did something like this in aarch64_sve_regs_copy_from_reg_buf: has_sve_state |= reg_buf->raw_compare (AARCH64_SVE_Z0_REGNUM + i reg, sizeof (__int128_t)); "reg" is a zeroed-out buffer that we compare the Z register contents past the first 128 bits. The problem here is that raw_compare returns 1 if the contents compare the same, which means has_sve_state will be true. But if we compared the Z register contents to 0, it means we *do not* have SVE state, and therefore has_sve_state should be false. The consequence of this mistake is that we convert the initial FPSIMD-formatted data we get from ptrace for the NT_ARM_SVE register set to a SVE-formatted one. In the end, this doesn't cause user-visible differences because the values of both the Z and V registers will still be the same. But the logic is not correct. I used the opportunity to fix this, and it gets tested later on by the additional SME tests. I do plan on submitting some SVE-specific tests to make sure we have a bit more coverage in GDB's testsuite. Regression-tested on aarch64-linux Ubuntu 22.04/20.04. Reviewed-by: Thiago Jung Bauermann <thiago.bauermann@linaro.org>
2023-02-07 18:08:23 +08:00
gdb::byte_vector sve_state = aarch64_fetch_sve_regset (tid);
gdb: change regcache interface to use array_view Change most of regcache (and base classes) to use array_view when possible, instead of raw pointers. By propagating the use of array_view further, it enables having some runtime checks to make sure the what we read from or write to regcaches has the expected length (such as the one in the `copy(array_view, array_view)` function. It also integrates well when connecting with other APIs already using gdb::array_view. Add some overloads of the methods using raw pointers to avoid having to change all call sites at once (which is both a lot of work and risky). I tried to do this change in small increments, but since many of these functions use each other, it ended up simpler to do it in one shot than having a lot of intermediary / transient changes. This change extends into gdbserver as well, because there is some part of the regcache interface that is shared. Changing the reg_buffer_common interface to use array_view caused some build failures in nat/aarch64-scalable-linux-ptrace.c. That file currently "takes advantage" of the fact that reg_buffer_common::{raw_supply,raw_collect} operates on `void *`, which IMO is dangerous. It uses raw_supply/raw_collect directly on uint64_t's, which I guess is fine because it is expected that native code will have the same endianness as the debugged process. To accomodate that, add some overloads of raw_collect and raw_supply that work on uint64_t. This file also uses raw_collect and raw_supply on `char` pointers. Change it to use `gdb_byte` pointers instead. Add overloads of raw_collect and raw_supply that work on `gdb_byte *` and make an array_view on the fly using the register's size. Those call sites could be converted to use array_view with not much work, in which case these overloads could be removed, but I didn't want to do it in this patch, to avoid starting to dig in arch-specific code. During development, I inadvertently changed reg_buffer::raw_compare's behavior to not accept an offset equal to the register size. This behavior (effectively comparing 0 bytes, returning true) change was caught by the AArch64 SME core tests. Add a selftest to make sure that this raw_compare behavior is preserved in the future. Change-Id: I9005f04114543ddff738949e12d85a31855304c2 Reviewed-By: John Baldwin <jhb@FreeBSD.org>
2023-12-02 00:27:18 +08:00
gdb_byte *base = sve_state.data ();
refactor: Simplify SVE interface to read/write registers This is a patch in preparation to upcoming patches enabling SME support. It attempts to simplify the gdb/gdbserver shared interface used to read/write SVE registers. Where the current code makes use of unique_ptr, allocating a new buffer by hand and passing a buffer around, this patch makes that code use gdb::byte_vector and passes a reference to this byte vector to the functions, allowing the functions to have ready access to the size of the buffer. It also shares a bit more code between gdb and gdbserver, in particular around handling of ptrace get/set requests for SVE. I think gdbserver could be refactored to handle register reads/writes more like gdb's native layer as opposed to letting the generic linux-low layer do the ptrace calls. This is not very flexible and assumes one size for the responses. If you have something like NT_ARM_SVE, where you can have either FPSIMD or SVE contents, it doesn't work that well. I didn't want to change that interface right now as it is a bit too much work and touches all the targets, some of which I can't easily test. Hence the reason why the buffer the generic linux-now passes down to linux-aarch64-low is unused or ignored. No user-visible changes should happen as part of this refactor other than a slightly reworded warning message. While doing the refactor, I also noticed what seems to be a mistake in checking if the register cache contains active (non-zero) SVE data. For instance, the original code did something like this in aarch64_sve_regs_copy_from_reg_buf: has_sve_state |= reg_buf->raw_compare (AARCH64_SVE_Z0_REGNUM + i reg, sizeof (__int128_t)); "reg" is a zeroed-out buffer that we compare the Z register contents past the first 128 bits. The problem here is that raw_compare returns 1 if the contents compare the same, which means has_sve_state will be true. But if we compared the Z register contents to 0, it means we *do not* have SVE state, and therefore has_sve_state should be false. The consequence of this mistake is that we convert the initial FPSIMD-formatted data we get from ptrace for the NT_ARM_SVE register set to a SVE-formatted one. In the end, this doesn't cause user-visible differences because the values of both the Z and V registers will still be the same. But the logic is not correct. I used the opportunity to fix this, and it gets tested later on by the additional SME tests. I do plan on submitting some SVE-specific tests to make sure we have a bit more coverage in GDB's testsuite. Regression-tested on aarch64-linux Ubuntu 22.04/20.04. Reviewed-by: Thiago Jung Bauermann <thiago.bauermann@linaro.org>
2023-02-07 18:08:23 +08:00
struct user_sve_header *header
= (struct user_sve_header *) sve_state.data ();
Ptrace support for Aarch64 SVE Add support for reading and writing registers for Aarch64 SVE. We need to support the cases where the kernel only gives us a fpsimd structure. This occurs when there is no active SVE state in the kernel (for example, after starting a new process). Added checks to make sure the vector length has not changed whilst the process is running. gdb/ * aarch64-linux-nat.c (fetch_sveregs_from_thread): New function. (store_sveregs_to_thread): Likewise. (aarch64_linux_fetch_inferior_registers): Check for SVE. (aarch64_linux_store_inferior_registers): Likewise. * nat/aarch64-sve-linux-ptrace.c (aarch64_sve_get_sveregs): New function. (aarch64_sve_regs_copy_to_regcache): Likewise. (aarch64_sve_regs_copy_from_regcache): Likewise. * nat/aarch64-sve-linux-ptrace.h (aarch64_sve_get_sveregs): New declaration. (aarch64_sve_regs_copy_to_regcache): Likewise. (aarch64_sve_regs_copy_from_regcache): Likewise. (sve_context): Structure from Linux headers. (SVE_SIG_ZREGS_SIZE): Define from Linux headers. (SVE_SIG_ZREG_SIZE): Likewise. (SVE_SIG_PREG_SIZE): Likewise. (SVE_SIG_FFR_SIZE): Likewise. (SVE_SIG_REGS_OFFSET): Likewise. (SVE_SIG_ZREGS_OFFSET): Likewise. (SVE_SIG_ZREG_OFFSET): Likewise. (SVE_SIG_ZREGS_SIZE): Likewise. (SVE_SIG_PREGS_OFFSET): Likewise. (SVE_SIG_PREG_OFFSET): Likewise. (SVE_SIG_PREGS_SIZE): Likewise. (SVE_SIG_FFR_OFFSET): Likewise. (SVE_SIG_REGS_SIZE): Likewise. (SVE_SIG_CONTEXT_SIZE): Likewise. (SVE_PT_REGS_MASK): Likewise. (SVE_PT_REGS_FPSIMD): Likewise. (SVE_PT_REGS_SVE): Likewise. (SVE_PT_VL_INHERIT): Likewise. (SVE_PT_VL_ONEXEC): Likewise. (SVE_PT_REGS_OFFSET): Likewise. (SVE_PT_FPSIMD_OFFSET): Likewise. (SVE_PT_FPSIMD_SIZE): Likewise. (SVE_PT_SVE_ZREG_SIZE): Likewise. (SVE_PT_SVE_PREG_SIZE): Likewise. (SVE_PT_SVE_FFR_SIZE): Likewise. (SVE_PT_SVE_FPSR_SIZE): Likewise. (SVE_PT_SVE_FPCR_SIZE): Likewise. (__SVE_SIG_TO_PT): Likewise. (SVE_PT_SVE_OFFSET): Likewise. (SVE_PT_SVE_ZREGS_OFFSET): Likewise. (SVE_PT_SVE_ZREG_OFFSET): Likewise. (SVE_PT_SVE_ZREGS_SIZE): Likewise. (SVE_PT_SVE_PREGS_OFFSET): Likewise. (SVE_PT_SVE_PREG_OFFSET): Likewise. (SVE_PT_SVE_PREGS_SIZE): Likewise. (SVE_PT_SVE_FFR_OFFSET): Likewise. (SVE_PT_SVE_FPSR_OFFSET): Likewise. (SVE_PT_SVE_FPCR_OFFSET): Likewise. (SVE_PT_SVE_SIZE): Likewise. (SVE_PT_SIZE): Likewise. (HAS_SVE_STATE): New define. gdbserver/ * Makefile.in: Add aarch64-sve-linux-ptrace.c.
2018-06-15 19:21:31 +08:00
uint64_t vq = sve_vq_from_vl (header->vl);
uint64_t vg = sve_vg_from_vl (header->vl);
Ptrace support for Aarch64 SVE Add support for reading and writing registers for Aarch64 SVE. We need to support the cases where the kernel only gives us a fpsimd structure. This occurs when there is no active SVE state in the kernel (for example, after starting a new process). Added checks to make sure the vector length has not changed whilst the process is running. gdb/ * aarch64-linux-nat.c (fetch_sveregs_from_thread): New function. (store_sveregs_to_thread): Likewise. (aarch64_linux_fetch_inferior_registers): Check for SVE. (aarch64_linux_store_inferior_registers): Likewise. * nat/aarch64-sve-linux-ptrace.c (aarch64_sve_get_sveregs): New function. (aarch64_sve_regs_copy_to_regcache): Likewise. (aarch64_sve_regs_copy_from_regcache): Likewise. * nat/aarch64-sve-linux-ptrace.h (aarch64_sve_get_sveregs): New declaration. (aarch64_sve_regs_copy_to_regcache): Likewise. (aarch64_sve_regs_copy_from_regcache): Likewise. (sve_context): Structure from Linux headers. (SVE_SIG_ZREGS_SIZE): Define from Linux headers. (SVE_SIG_ZREG_SIZE): Likewise. (SVE_SIG_PREG_SIZE): Likewise. (SVE_SIG_FFR_SIZE): Likewise. (SVE_SIG_REGS_OFFSET): Likewise. (SVE_SIG_ZREGS_OFFSET): Likewise. (SVE_SIG_ZREG_OFFSET): Likewise. (SVE_SIG_ZREGS_SIZE): Likewise. (SVE_SIG_PREGS_OFFSET): Likewise. (SVE_SIG_PREG_OFFSET): Likewise. (SVE_SIG_PREGS_SIZE): Likewise. (SVE_SIG_FFR_OFFSET): Likewise. (SVE_SIG_REGS_SIZE): Likewise. (SVE_SIG_CONTEXT_SIZE): Likewise. (SVE_PT_REGS_MASK): Likewise. (SVE_PT_REGS_FPSIMD): Likewise. (SVE_PT_REGS_SVE): Likewise. (SVE_PT_VL_INHERIT): Likewise. (SVE_PT_VL_ONEXEC): Likewise. (SVE_PT_REGS_OFFSET): Likewise. (SVE_PT_FPSIMD_OFFSET): Likewise. (SVE_PT_FPSIMD_SIZE): Likewise. (SVE_PT_SVE_ZREG_SIZE): Likewise. (SVE_PT_SVE_PREG_SIZE): Likewise. (SVE_PT_SVE_FFR_SIZE): Likewise. (SVE_PT_SVE_FPSR_SIZE): Likewise. (SVE_PT_SVE_FPCR_SIZE): Likewise. (__SVE_SIG_TO_PT): Likewise. (SVE_PT_SVE_OFFSET): Likewise. (SVE_PT_SVE_ZREGS_OFFSET): Likewise. (SVE_PT_SVE_ZREG_OFFSET): Likewise. (SVE_PT_SVE_ZREGS_SIZE): Likewise. (SVE_PT_SVE_PREGS_OFFSET): Likewise. (SVE_PT_SVE_PREG_OFFSET): Likewise. (SVE_PT_SVE_PREGS_SIZE): Likewise. (SVE_PT_SVE_FFR_OFFSET): Likewise. (SVE_PT_SVE_FPSR_OFFSET): Likewise. (SVE_PT_SVE_FPCR_OFFSET): Likewise. (SVE_PT_SVE_SIZE): Likewise. (SVE_PT_SIZE): Likewise. (HAS_SVE_STATE): New define. gdbserver/ * Makefile.in: Add aarch64-sve-linux-ptrace.c.
2018-06-15 19:21:31 +08:00
/* Sanity check the data in the header. */
if (!sve_vl_valid (header->vl)
|| SVE_PT_SIZE (vq, header->flags) != header->size)
error (_("Invalid SVE header from kernel."));
/* Update VG. Note, the registers in the regcache will already be of the
correct length. */
reg_buf->raw_supply (AARCH64_SVE_VG_REGNUM, &vg);
Ptrace support for Aarch64 SVE Add support for reading and writing registers for Aarch64 SVE. We need to support the cases where the kernel only gives us a fpsimd structure. This occurs when there is no active SVE state in the kernel (for example, after starting a new process). Added checks to make sure the vector length has not changed whilst the process is running. gdb/ * aarch64-linux-nat.c (fetch_sveregs_from_thread): New function. (store_sveregs_to_thread): Likewise. (aarch64_linux_fetch_inferior_registers): Check for SVE. (aarch64_linux_store_inferior_registers): Likewise. * nat/aarch64-sve-linux-ptrace.c (aarch64_sve_get_sveregs): New function. (aarch64_sve_regs_copy_to_regcache): Likewise. (aarch64_sve_regs_copy_from_regcache): Likewise. * nat/aarch64-sve-linux-ptrace.h (aarch64_sve_get_sveregs): New declaration. (aarch64_sve_regs_copy_to_regcache): Likewise. (aarch64_sve_regs_copy_from_regcache): Likewise. (sve_context): Structure from Linux headers. (SVE_SIG_ZREGS_SIZE): Define from Linux headers. (SVE_SIG_ZREG_SIZE): Likewise. (SVE_SIG_PREG_SIZE): Likewise. (SVE_SIG_FFR_SIZE): Likewise. (SVE_SIG_REGS_OFFSET): Likewise. (SVE_SIG_ZREGS_OFFSET): Likewise. (SVE_SIG_ZREG_OFFSET): Likewise. (SVE_SIG_ZREGS_SIZE): Likewise. (SVE_SIG_PREGS_OFFSET): Likewise. (SVE_SIG_PREG_OFFSET): Likewise. (SVE_SIG_PREGS_SIZE): Likewise. (SVE_SIG_FFR_OFFSET): Likewise. (SVE_SIG_REGS_SIZE): Likewise. (SVE_SIG_CONTEXT_SIZE): Likewise. (SVE_PT_REGS_MASK): Likewise. (SVE_PT_REGS_FPSIMD): Likewise. (SVE_PT_REGS_SVE): Likewise. (SVE_PT_VL_INHERIT): Likewise. (SVE_PT_VL_ONEXEC): Likewise. (SVE_PT_REGS_OFFSET): Likewise. (SVE_PT_FPSIMD_OFFSET): Likewise. (SVE_PT_FPSIMD_SIZE): Likewise. (SVE_PT_SVE_ZREG_SIZE): Likewise. (SVE_PT_SVE_PREG_SIZE): Likewise. (SVE_PT_SVE_FFR_SIZE): Likewise. (SVE_PT_SVE_FPSR_SIZE): Likewise. (SVE_PT_SVE_FPCR_SIZE): Likewise. (__SVE_SIG_TO_PT): Likewise. (SVE_PT_SVE_OFFSET): Likewise. (SVE_PT_SVE_ZREGS_OFFSET): Likewise. (SVE_PT_SVE_ZREG_OFFSET): Likewise. (SVE_PT_SVE_ZREGS_SIZE): Likewise. (SVE_PT_SVE_PREGS_OFFSET): Likewise. (SVE_PT_SVE_PREG_OFFSET): Likewise. (SVE_PT_SVE_PREGS_SIZE): Likewise. (SVE_PT_SVE_FFR_OFFSET): Likewise. (SVE_PT_SVE_FPSR_OFFSET): Likewise. (SVE_PT_SVE_FPCR_OFFSET): Likewise. (SVE_PT_SVE_SIZE): Likewise. (SVE_PT_SIZE): Likewise. (HAS_SVE_STATE): New define. gdbserver/ * Makefile.in: Add aarch64-sve-linux-ptrace.c.
2018-06-15 19:21:31 +08:00
if (HAS_SVE_STATE (*header))
{
/* The register dump contains a set of SVE registers. */
for (int i = 0; i < AARCH64_SVE_Z_REGS_NUM; i++)
reg_buf->raw_supply (AARCH64_SVE_Z0_REGNUM + i,
base + SVE_PT_SVE_ZREG_OFFSET (vq, i));
for (int i = 0; i < AARCH64_SVE_P_REGS_NUM; i++)
reg_buf->raw_supply (AARCH64_SVE_P0_REGNUM + i,
base + SVE_PT_SVE_PREG_OFFSET (vq, i));
reg_buf->raw_supply (AARCH64_SVE_FFR_REGNUM,
base + SVE_PT_SVE_FFR_OFFSET (vq));
reg_buf->raw_supply (AARCH64_FPSR_REGNUM,
base + SVE_PT_SVE_FPSR_OFFSET (vq));
reg_buf->raw_supply (AARCH64_FPCR_REGNUM,
base + SVE_PT_SVE_FPCR_OFFSET (vq));
}
else
{
[AArch64] SVE/FPSIMD fixup for big endian The FPSIMD dump in signal frames and ptrace FPSIMD dump in the SVE context structure follows the target endianness, whereas the SVE dumps are endianness-independent (LE). Therefore, when the system is in BE mode, we need to reverse the bytes for the FPSIMD data. Given the V registers are larger than 64-bit, I've added a way for value bytes to be set, as opposed to passing a 64-bit fixed quantity. This fits nicely with the unwinding *_got_bytes function and makes the trad-frame more flexible and capable of saving larger registers. The memory for the bytes is allocated via the frame obstack, so it gets freed after we're done inspecting the frame. gdb/ChangeLog: 2020-12-10 Luis Machado <luis.machado@linaro.org> * aarch64-linux-tdep.c (aarch64_linux_restore_vreg) New function. (aarch64_linux_sigframe_init): Call aarch64_linux_restore_vreg. * aarch64-tdep.h (V_REGISTER_SIZE): Move to ... * arch/aarch64.h: ... here. * nat/aarch64-sve-linux-ptrace.c: Include endian.h. (aarch64_maybe_swab128): New function. (aarch64_sve_regs_copy_to_reg_buf) (aarch64_sve_regs_copy_from_reg_buf): Adjust FPSIMD entries. * trad-frame.c (trad_frame_reset_saved_regs): Initialize the data field. (TF_REG_VALUE_BYTES): New enum value. (trad_frame_value_bytes_p): New function. (trad_frame_set_value_bytes): New function. (trad_frame_set_reg_value_bytes): New function. (trad_frame_get_prev_register): Handle register values saved as bytes. * trad-frame.h (trad_frame_set_reg_value_bytes): New prototype. (struct trad_frame_saved_reg) <data>: New field. (trad_frame_set_value_bytes): New prototype. (trad_frame_value_bytes_p): New prototype.
2020-03-19 00:06:05 +08:00
/* WARNING: SIMD state is laid out in memory in target-endian format,
while SVE state is laid out in an endianness-independent format (LE).
So we have a couple cases to consider:
1 - If the target is big endian, then SIMD state is big endian,
requiring a byteswap.
2 - If the target is little endian, then SIMD state is little endian,
which matches the SVE format, so no byteswap is needed. */
Ptrace support for Aarch64 SVE Add support for reading and writing registers for Aarch64 SVE. We need to support the cases where the kernel only gives us a fpsimd structure. This occurs when there is no active SVE state in the kernel (for example, after starting a new process). Added checks to make sure the vector length has not changed whilst the process is running. gdb/ * aarch64-linux-nat.c (fetch_sveregs_from_thread): New function. (store_sveregs_to_thread): Likewise. (aarch64_linux_fetch_inferior_registers): Check for SVE. (aarch64_linux_store_inferior_registers): Likewise. * nat/aarch64-sve-linux-ptrace.c (aarch64_sve_get_sveregs): New function. (aarch64_sve_regs_copy_to_regcache): Likewise. (aarch64_sve_regs_copy_from_regcache): Likewise. * nat/aarch64-sve-linux-ptrace.h (aarch64_sve_get_sveregs): New declaration. (aarch64_sve_regs_copy_to_regcache): Likewise. (aarch64_sve_regs_copy_from_regcache): Likewise. (sve_context): Structure from Linux headers. (SVE_SIG_ZREGS_SIZE): Define from Linux headers. (SVE_SIG_ZREG_SIZE): Likewise. (SVE_SIG_PREG_SIZE): Likewise. (SVE_SIG_FFR_SIZE): Likewise. (SVE_SIG_REGS_OFFSET): Likewise. (SVE_SIG_ZREGS_OFFSET): Likewise. (SVE_SIG_ZREG_OFFSET): Likewise. (SVE_SIG_ZREGS_SIZE): Likewise. (SVE_SIG_PREGS_OFFSET): Likewise. (SVE_SIG_PREG_OFFSET): Likewise. (SVE_SIG_PREGS_SIZE): Likewise. (SVE_SIG_FFR_OFFSET): Likewise. (SVE_SIG_REGS_SIZE): Likewise. (SVE_SIG_CONTEXT_SIZE): Likewise. (SVE_PT_REGS_MASK): Likewise. (SVE_PT_REGS_FPSIMD): Likewise. (SVE_PT_REGS_SVE): Likewise. (SVE_PT_VL_INHERIT): Likewise. (SVE_PT_VL_ONEXEC): Likewise. (SVE_PT_REGS_OFFSET): Likewise. (SVE_PT_FPSIMD_OFFSET): Likewise. (SVE_PT_FPSIMD_SIZE): Likewise. (SVE_PT_SVE_ZREG_SIZE): Likewise. (SVE_PT_SVE_PREG_SIZE): Likewise. (SVE_PT_SVE_FFR_SIZE): Likewise. (SVE_PT_SVE_FPSR_SIZE): Likewise. (SVE_PT_SVE_FPCR_SIZE): Likewise. (__SVE_SIG_TO_PT): Likewise. (SVE_PT_SVE_OFFSET): Likewise. (SVE_PT_SVE_ZREGS_OFFSET): Likewise. (SVE_PT_SVE_ZREG_OFFSET): Likewise. (SVE_PT_SVE_ZREGS_SIZE): Likewise. (SVE_PT_SVE_PREGS_OFFSET): Likewise. (SVE_PT_SVE_PREG_OFFSET): Likewise. (SVE_PT_SVE_PREGS_SIZE): Likewise. (SVE_PT_SVE_FFR_OFFSET): Likewise. (SVE_PT_SVE_FPSR_OFFSET): Likewise. (SVE_PT_SVE_FPCR_OFFSET): Likewise. (SVE_PT_SVE_SIZE): Likewise. (SVE_PT_SIZE): Likewise. (HAS_SVE_STATE): New define. gdbserver/ * Makefile.in: Add aarch64-sve-linux-ptrace.c.
2018-06-15 19:21:31 +08:00
/* There is no SVE state yet - the register dump contains a fpsimd
structure instead. These registers still exist in the hardware, but
the kernel has not yet initialised them, and so they will be null. */
[AArch64] SVE/FPSIMD fixup for big endian The FPSIMD dump in signal frames and ptrace FPSIMD dump in the SVE context structure follows the target endianness, whereas the SVE dumps are endianness-independent (LE). Therefore, when the system is in BE mode, we need to reverse the bytes for the FPSIMD data. Given the V registers are larger than 64-bit, I've added a way for value bytes to be set, as opposed to passing a 64-bit fixed quantity. This fits nicely with the unwinding *_got_bytes function and makes the trad-frame more flexible and capable of saving larger registers. The memory for the bytes is allocated via the frame obstack, so it gets freed after we're done inspecting the frame. gdb/ChangeLog: 2020-12-10 Luis Machado <luis.machado@linaro.org> * aarch64-linux-tdep.c (aarch64_linux_restore_vreg) New function. (aarch64_linux_sigframe_init): Call aarch64_linux_restore_vreg. * aarch64-tdep.h (V_REGISTER_SIZE): Move to ... * arch/aarch64.h: ... here. * nat/aarch64-sve-linux-ptrace.c: Include endian.h. (aarch64_maybe_swab128): New function. (aarch64_sve_regs_copy_to_reg_buf) (aarch64_sve_regs_copy_from_reg_buf): Adjust FPSIMD entries. * trad-frame.c (trad_frame_reset_saved_regs): Initialize the data field. (TF_REG_VALUE_BYTES): New enum value. (trad_frame_value_bytes_p): New function. (trad_frame_set_value_bytes): New function. (trad_frame_set_reg_value_bytes): New function. (trad_frame_get_prev_register): Handle register values saved as bytes. * trad-frame.h (trad_frame_set_reg_value_bytes): New prototype. (struct trad_frame_saved_reg) <data>: New field. (trad_frame_set_value_bytes): New prototype. (trad_frame_value_bytes_p): New prototype.
2020-03-19 00:06:05 +08:00
gdb_byte *reg = (gdb_byte *) alloca (SVE_PT_SVE_ZREG_SIZE (vq));
Ptrace support for Aarch64 SVE Add support for reading and writing registers for Aarch64 SVE. We need to support the cases where the kernel only gives us a fpsimd structure. This occurs when there is no active SVE state in the kernel (for example, after starting a new process). Added checks to make sure the vector length has not changed whilst the process is running. gdb/ * aarch64-linux-nat.c (fetch_sveregs_from_thread): New function. (store_sveregs_to_thread): Likewise. (aarch64_linux_fetch_inferior_registers): Check for SVE. (aarch64_linux_store_inferior_registers): Likewise. * nat/aarch64-sve-linux-ptrace.c (aarch64_sve_get_sveregs): New function. (aarch64_sve_regs_copy_to_regcache): Likewise. (aarch64_sve_regs_copy_from_regcache): Likewise. * nat/aarch64-sve-linux-ptrace.h (aarch64_sve_get_sveregs): New declaration. (aarch64_sve_regs_copy_to_regcache): Likewise. (aarch64_sve_regs_copy_from_regcache): Likewise. (sve_context): Structure from Linux headers. (SVE_SIG_ZREGS_SIZE): Define from Linux headers. (SVE_SIG_ZREG_SIZE): Likewise. (SVE_SIG_PREG_SIZE): Likewise. (SVE_SIG_FFR_SIZE): Likewise. (SVE_SIG_REGS_OFFSET): Likewise. (SVE_SIG_ZREGS_OFFSET): Likewise. (SVE_SIG_ZREG_OFFSET): Likewise. (SVE_SIG_ZREGS_SIZE): Likewise. (SVE_SIG_PREGS_OFFSET): Likewise. (SVE_SIG_PREG_OFFSET): Likewise. (SVE_SIG_PREGS_SIZE): Likewise. (SVE_SIG_FFR_OFFSET): Likewise. (SVE_SIG_REGS_SIZE): Likewise. (SVE_SIG_CONTEXT_SIZE): Likewise. (SVE_PT_REGS_MASK): Likewise. (SVE_PT_REGS_FPSIMD): Likewise. (SVE_PT_REGS_SVE): Likewise. (SVE_PT_VL_INHERIT): Likewise. (SVE_PT_VL_ONEXEC): Likewise. (SVE_PT_REGS_OFFSET): Likewise. (SVE_PT_FPSIMD_OFFSET): Likewise. (SVE_PT_FPSIMD_SIZE): Likewise. (SVE_PT_SVE_ZREG_SIZE): Likewise. (SVE_PT_SVE_PREG_SIZE): Likewise. (SVE_PT_SVE_FFR_SIZE): Likewise. (SVE_PT_SVE_FPSR_SIZE): Likewise. (SVE_PT_SVE_FPCR_SIZE): Likewise. (__SVE_SIG_TO_PT): Likewise. (SVE_PT_SVE_OFFSET): Likewise. (SVE_PT_SVE_ZREGS_OFFSET): Likewise. (SVE_PT_SVE_ZREG_OFFSET): Likewise. (SVE_PT_SVE_ZREGS_SIZE): Likewise. (SVE_PT_SVE_PREGS_OFFSET): Likewise. (SVE_PT_SVE_PREG_OFFSET): Likewise. (SVE_PT_SVE_PREGS_SIZE): Likewise. (SVE_PT_SVE_FFR_OFFSET): Likewise. (SVE_PT_SVE_FPSR_OFFSET): Likewise. (SVE_PT_SVE_FPCR_OFFSET): Likewise. (SVE_PT_SVE_SIZE): Likewise. (SVE_PT_SIZE): Likewise. (HAS_SVE_STATE): New define. gdbserver/ * Makefile.in: Add aarch64-sve-linux-ptrace.c.
2018-06-15 19:21:31 +08:00
struct user_fpsimd_state *fpsimd
= (struct user_fpsimd_state *)(base + SVE_PT_FPSIMD_OFFSET);
[AArch64] SVE/FPSIMD fixup for big endian The FPSIMD dump in signal frames and ptrace FPSIMD dump in the SVE context structure follows the target endianness, whereas the SVE dumps are endianness-independent (LE). Therefore, when the system is in BE mode, we need to reverse the bytes for the FPSIMD data. Given the V registers are larger than 64-bit, I've added a way for value bytes to be set, as opposed to passing a 64-bit fixed quantity. This fits nicely with the unwinding *_got_bytes function and makes the trad-frame more flexible and capable of saving larger registers. The memory for the bytes is allocated via the frame obstack, so it gets freed after we're done inspecting the frame. gdb/ChangeLog: 2020-12-10 Luis Machado <luis.machado@linaro.org> * aarch64-linux-tdep.c (aarch64_linux_restore_vreg) New function. (aarch64_linux_sigframe_init): Call aarch64_linux_restore_vreg. * aarch64-tdep.h (V_REGISTER_SIZE): Move to ... * arch/aarch64.h: ... here. * nat/aarch64-sve-linux-ptrace.c: Include endian.h. (aarch64_maybe_swab128): New function. (aarch64_sve_regs_copy_to_reg_buf) (aarch64_sve_regs_copy_from_reg_buf): Adjust FPSIMD entries. * trad-frame.c (trad_frame_reset_saved_regs): Initialize the data field. (TF_REG_VALUE_BYTES): New enum value. (trad_frame_value_bytes_p): New function. (trad_frame_set_value_bytes): New function. (trad_frame_set_reg_value_bytes): New function. (trad_frame_get_prev_register): Handle register values saved as bytes. * trad-frame.h (trad_frame_set_reg_value_bytes): New prototype. (struct trad_frame_saved_reg) <data>: New field. (trad_frame_set_value_bytes): New prototype. (trad_frame_value_bytes_p): New prototype.
2020-03-19 00:06:05 +08:00
/* Make sure we have a zeroed register buffer. We will need the zero
padding below. */
memset (reg, 0, SVE_PT_SVE_ZREG_SIZE (vq));
Ptrace support for Aarch64 SVE Add support for reading and writing registers for Aarch64 SVE. We need to support the cases where the kernel only gives us a fpsimd structure. This occurs when there is no active SVE state in the kernel (for example, after starting a new process). Added checks to make sure the vector length has not changed whilst the process is running. gdb/ * aarch64-linux-nat.c (fetch_sveregs_from_thread): New function. (store_sveregs_to_thread): Likewise. (aarch64_linux_fetch_inferior_registers): Check for SVE. (aarch64_linux_store_inferior_registers): Likewise. * nat/aarch64-sve-linux-ptrace.c (aarch64_sve_get_sveregs): New function. (aarch64_sve_regs_copy_to_regcache): Likewise. (aarch64_sve_regs_copy_from_regcache): Likewise. * nat/aarch64-sve-linux-ptrace.h (aarch64_sve_get_sveregs): New declaration. (aarch64_sve_regs_copy_to_regcache): Likewise. (aarch64_sve_regs_copy_from_regcache): Likewise. (sve_context): Structure from Linux headers. (SVE_SIG_ZREGS_SIZE): Define from Linux headers. (SVE_SIG_ZREG_SIZE): Likewise. (SVE_SIG_PREG_SIZE): Likewise. (SVE_SIG_FFR_SIZE): Likewise. (SVE_SIG_REGS_OFFSET): Likewise. (SVE_SIG_ZREGS_OFFSET): Likewise. (SVE_SIG_ZREG_OFFSET): Likewise. (SVE_SIG_ZREGS_SIZE): Likewise. (SVE_SIG_PREGS_OFFSET): Likewise. (SVE_SIG_PREG_OFFSET): Likewise. (SVE_SIG_PREGS_SIZE): Likewise. (SVE_SIG_FFR_OFFSET): Likewise. (SVE_SIG_REGS_SIZE): Likewise. (SVE_SIG_CONTEXT_SIZE): Likewise. (SVE_PT_REGS_MASK): Likewise. (SVE_PT_REGS_FPSIMD): Likewise. (SVE_PT_REGS_SVE): Likewise. (SVE_PT_VL_INHERIT): Likewise. (SVE_PT_VL_ONEXEC): Likewise. (SVE_PT_REGS_OFFSET): Likewise. (SVE_PT_FPSIMD_OFFSET): Likewise. (SVE_PT_FPSIMD_SIZE): Likewise. (SVE_PT_SVE_ZREG_SIZE): Likewise. (SVE_PT_SVE_PREG_SIZE): Likewise. (SVE_PT_SVE_FFR_SIZE): Likewise. (SVE_PT_SVE_FPSR_SIZE): Likewise. (SVE_PT_SVE_FPCR_SIZE): Likewise. (__SVE_SIG_TO_PT): Likewise. (SVE_PT_SVE_OFFSET): Likewise. (SVE_PT_SVE_ZREGS_OFFSET): Likewise. (SVE_PT_SVE_ZREG_OFFSET): Likewise. (SVE_PT_SVE_ZREGS_SIZE): Likewise. (SVE_PT_SVE_PREGS_OFFSET): Likewise. (SVE_PT_SVE_PREG_OFFSET): Likewise. (SVE_PT_SVE_PREGS_SIZE): Likewise. (SVE_PT_SVE_FFR_OFFSET): Likewise. (SVE_PT_SVE_FPSR_OFFSET): Likewise. (SVE_PT_SVE_FPCR_OFFSET): Likewise. (SVE_PT_SVE_SIZE): Likewise. (SVE_PT_SIZE): Likewise. (HAS_SVE_STATE): New define. gdbserver/ * Makefile.in: Add aarch64-sve-linux-ptrace.c.
2018-06-15 19:21:31 +08:00
/* Copy across the V registers from fpsimd structure to the Z registers,
ensuring the non overlapping state is set to null. */
for (int i = 0; i < AARCH64_SVE_Z_REGS_NUM; i++)
{
[AArch64] SVE/FPSIMD fixup for big endian The FPSIMD dump in signal frames and ptrace FPSIMD dump in the SVE context structure follows the target endianness, whereas the SVE dumps are endianness-independent (LE). Therefore, when the system is in BE mode, we need to reverse the bytes for the FPSIMD data. Given the V registers are larger than 64-bit, I've added a way for value bytes to be set, as opposed to passing a 64-bit fixed quantity. This fits nicely with the unwinding *_got_bytes function and makes the trad-frame more flexible and capable of saving larger registers. The memory for the bytes is allocated via the frame obstack, so it gets freed after we're done inspecting the frame. gdb/ChangeLog: 2020-12-10 Luis Machado <luis.machado@linaro.org> * aarch64-linux-tdep.c (aarch64_linux_restore_vreg) New function. (aarch64_linux_sigframe_init): Call aarch64_linux_restore_vreg. * aarch64-tdep.h (V_REGISTER_SIZE): Move to ... * arch/aarch64.h: ... here. * nat/aarch64-sve-linux-ptrace.c: Include endian.h. (aarch64_maybe_swab128): New function. (aarch64_sve_regs_copy_to_reg_buf) (aarch64_sve_regs_copy_from_reg_buf): Adjust FPSIMD entries. * trad-frame.c (trad_frame_reset_saved_regs): Initialize the data field. (TF_REG_VALUE_BYTES): New enum value. (trad_frame_value_bytes_p): New function. (trad_frame_set_value_bytes): New function. (trad_frame_set_reg_value_bytes): New function. (trad_frame_get_prev_register): Handle register values saved as bytes. * trad-frame.h (trad_frame_set_reg_value_bytes): New prototype. (struct trad_frame_saved_reg) <data>: New field. (trad_frame_set_value_bytes): New prototype. (trad_frame_value_bytes_p): New prototype.
2020-03-19 00:06:05 +08:00
/* Handle big endian/little endian SIMD/SVE conversion. */
aarch64_maybe_swab128 (reg, (const gdb_byte *) &fpsimd->vregs[i],
V_REGISTER_SIZE);
reg_buf->raw_supply (AARCH64_SVE_Z0_REGNUM + i, reg);
Ptrace support for Aarch64 SVE Add support for reading and writing registers for Aarch64 SVE. We need to support the cases where the kernel only gives us a fpsimd structure. This occurs when there is no active SVE state in the kernel (for example, after starting a new process). Added checks to make sure the vector length has not changed whilst the process is running. gdb/ * aarch64-linux-nat.c (fetch_sveregs_from_thread): New function. (store_sveregs_to_thread): Likewise. (aarch64_linux_fetch_inferior_registers): Check for SVE. (aarch64_linux_store_inferior_registers): Likewise. * nat/aarch64-sve-linux-ptrace.c (aarch64_sve_get_sveregs): New function. (aarch64_sve_regs_copy_to_regcache): Likewise. (aarch64_sve_regs_copy_from_regcache): Likewise. * nat/aarch64-sve-linux-ptrace.h (aarch64_sve_get_sveregs): New declaration. (aarch64_sve_regs_copy_to_regcache): Likewise. (aarch64_sve_regs_copy_from_regcache): Likewise. (sve_context): Structure from Linux headers. (SVE_SIG_ZREGS_SIZE): Define from Linux headers. (SVE_SIG_ZREG_SIZE): Likewise. (SVE_SIG_PREG_SIZE): Likewise. (SVE_SIG_FFR_SIZE): Likewise. (SVE_SIG_REGS_OFFSET): Likewise. (SVE_SIG_ZREGS_OFFSET): Likewise. (SVE_SIG_ZREG_OFFSET): Likewise. (SVE_SIG_ZREGS_SIZE): Likewise. (SVE_SIG_PREGS_OFFSET): Likewise. (SVE_SIG_PREG_OFFSET): Likewise. (SVE_SIG_PREGS_SIZE): Likewise. (SVE_SIG_FFR_OFFSET): Likewise. (SVE_SIG_REGS_SIZE): Likewise. (SVE_SIG_CONTEXT_SIZE): Likewise. (SVE_PT_REGS_MASK): Likewise. (SVE_PT_REGS_FPSIMD): Likewise. (SVE_PT_REGS_SVE): Likewise. (SVE_PT_VL_INHERIT): Likewise. (SVE_PT_VL_ONEXEC): Likewise. (SVE_PT_REGS_OFFSET): Likewise. (SVE_PT_FPSIMD_OFFSET): Likewise. (SVE_PT_FPSIMD_SIZE): Likewise. (SVE_PT_SVE_ZREG_SIZE): Likewise. (SVE_PT_SVE_PREG_SIZE): Likewise. (SVE_PT_SVE_FFR_SIZE): Likewise. (SVE_PT_SVE_FPSR_SIZE): Likewise. (SVE_PT_SVE_FPCR_SIZE): Likewise. (__SVE_SIG_TO_PT): Likewise. (SVE_PT_SVE_OFFSET): Likewise. (SVE_PT_SVE_ZREGS_OFFSET): Likewise. (SVE_PT_SVE_ZREG_OFFSET): Likewise. (SVE_PT_SVE_ZREGS_SIZE): Likewise. (SVE_PT_SVE_PREGS_OFFSET): Likewise. (SVE_PT_SVE_PREG_OFFSET): Likewise. (SVE_PT_SVE_PREGS_SIZE): Likewise. (SVE_PT_SVE_FFR_OFFSET): Likewise. (SVE_PT_SVE_FPSR_OFFSET): Likewise. (SVE_PT_SVE_FPCR_OFFSET): Likewise. (SVE_PT_SVE_SIZE): Likewise. (SVE_PT_SIZE): Likewise. (HAS_SVE_STATE): New define. gdbserver/ * Makefile.in: Add aarch64-sve-linux-ptrace.c.
2018-06-15 19:21:31 +08:00
}
gdb: change regcache interface to use array_view Change most of regcache (and base classes) to use array_view when possible, instead of raw pointers. By propagating the use of array_view further, it enables having some runtime checks to make sure the what we read from or write to regcaches has the expected length (such as the one in the `copy(array_view, array_view)` function. It also integrates well when connecting with other APIs already using gdb::array_view. Add some overloads of the methods using raw pointers to avoid having to change all call sites at once (which is both a lot of work and risky). I tried to do this change in small increments, but since many of these functions use each other, it ended up simpler to do it in one shot than having a lot of intermediary / transient changes. This change extends into gdbserver as well, because there is some part of the regcache interface that is shared. Changing the reg_buffer_common interface to use array_view caused some build failures in nat/aarch64-scalable-linux-ptrace.c. That file currently "takes advantage" of the fact that reg_buffer_common::{raw_supply,raw_collect} operates on `void *`, which IMO is dangerous. It uses raw_supply/raw_collect directly on uint64_t's, which I guess is fine because it is expected that native code will have the same endianness as the debugged process. To accomodate that, add some overloads of raw_collect and raw_supply that work on uint64_t. This file also uses raw_collect and raw_supply on `char` pointers. Change it to use `gdb_byte` pointers instead. Add overloads of raw_collect and raw_supply that work on `gdb_byte *` and make an array_view on the fly using the register's size. Those call sites could be converted to use array_view with not much work, in which case these overloads could be removed, but I didn't want to do it in this patch, to avoid starting to dig in arch-specific code. During development, I inadvertently changed reg_buffer::raw_compare's behavior to not accept an offset equal to the register size. This behavior (effectively comparing 0 bytes, returning true) change was caught by the AArch64 SME core tests. Add a selftest to make sure that this raw_compare behavior is preserved in the future. Change-Id: I9005f04114543ddff738949e12d85a31855304c2 Reviewed-By: John Baldwin <jhb@FreeBSD.org>
2023-12-02 00:27:18 +08:00
reg_buf->raw_supply (AARCH64_FPSR_REGNUM,
(const gdb_byte *) &fpsimd->fpsr);
reg_buf->raw_supply (AARCH64_FPCR_REGNUM,
(const gdb_byte *) &fpsimd->fpcr);
Ptrace support for Aarch64 SVE Add support for reading and writing registers for Aarch64 SVE. We need to support the cases where the kernel only gives us a fpsimd structure. This occurs when there is no active SVE state in the kernel (for example, after starting a new process). Added checks to make sure the vector length has not changed whilst the process is running. gdb/ * aarch64-linux-nat.c (fetch_sveregs_from_thread): New function. (store_sveregs_to_thread): Likewise. (aarch64_linux_fetch_inferior_registers): Check for SVE. (aarch64_linux_store_inferior_registers): Likewise. * nat/aarch64-sve-linux-ptrace.c (aarch64_sve_get_sveregs): New function. (aarch64_sve_regs_copy_to_regcache): Likewise. (aarch64_sve_regs_copy_from_regcache): Likewise. * nat/aarch64-sve-linux-ptrace.h (aarch64_sve_get_sveregs): New declaration. (aarch64_sve_regs_copy_to_regcache): Likewise. (aarch64_sve_regs_copy_from_regcache): Likewise. (sve_context): Structure from Linux headers. (SVE_SIG_ZREGS_SIZE): Define from Linux headers. (SVE_SIG_ZREG_SIZE): Likewise. (SVE_SIG_PREG_SIZE): Likewise. (SVE_SIG_FFR_SIZE): Likewise. (SVE_SIG_REGS_OFFSET): Likewise. (SVE_SIG_ZREGS_OFFSET): Likewise. (SVE_SIG_ZREG_OFFSET): Likewise. (SVE_SIG_ZREGS_SIZE): Likewise. (SVE_SIG_PREGS_OFFSET): Likewise. (SVE_SIG_PREG_OFFSET): Likewise. (SVE_SIG_PREGS_SIZE): Likewise. (SVE_SIG_FFR_OFFSET): Likewise. (SVE_SIG_REGS_SIZE): Likewise. (SVE_SIG_CONTEXT_SIZE): Likewise. (SVE_PT_REGS_MASK): Likewise. (SVE_PT_REGS_FPSIMD): Likewise. (SVE_PT_REGS_SVE): Likewise. (SVE_PT_VL_INHERIT): Likewise. (SVE_PT_VL_ONEXEC): Likewise. (SVE_PT_REGS_OFFSET): Likewise. (SVE_PT_FPSIMD_OFFSET): Likewise. (SVE_PT_FPSIMD_SIZE): Likewise. (SVE_PT_SVE_ZREG_SIZE): Likewise. (SVE_PT_SVE_PREG_SIZE): Likewise. (SVE_PT_SVE_FFR_SIZE): Likewise. (SVE_PT_SVE_FPSR_SIZE): Likewise. (SVE_PT_SVE_FPCR_SIZE): Likewise. (__SVE_SIG_TO_PT): Likewise. (SVE_PT_SVE_OFFSET): Likewise. (SVE_PT_SVE_ZREGS_OFFSET): Likewise. (SVE_PT_SVE_ZREG_OFFSET): Likewise. (SVE_PT_SVE_ZREGS_SIZE): Likewise. (SVE_PT_SVE_PREGS_OFFSET): Likewise. (SVE_PT_SVE_PREG_OFFSET): Likewise. (SVE_PT_SVE_PREGS_SIZE): Likewise. (SVE_PT_SVE_FFR_OFFSET): Likewise. (SVE_PT_SVE_FPSR_OFFSET): Likewise. (SVE_PT_SVE_FPCR_OFFSET): Likewise. (SVE_PT_SVE_SIZE): Likewise. (SVE_PT_SIZE): Likewise. (HAS_SVE_STATE): New define. gdbserver/ * Makefile.in: Add aarch64-sve-linux-ptrace.c.
2018-06-15 19:21:31 +08:00
/* Clear the SVE only registers. */
[AArch64] SVE/FPSIMD fixup for big endian The FPSIMD dump in signal frames and ptrace FPSIMD dump in the SVE context structure follows the target endianness, whereas the SVE dumps are endianness-independent (LE). Therefore, when the system is in BE mode, we need to reverse the bytes for the FPSIMD data. Given the V registers are larger than 64-bit, I've added a way for value bytes to be set, as opposed to passing a 64-bit fixed quantity. This fits nicely with the unwinding *_got_bytes function and makes the trad-frame more flexible and capable of saving larger registers. The memory for the bytes is allocated via the frame obstack, so it gets freed after we're done inspecting the frame. gdb/ChangeLog: 2020-12-10 Luis Machado <luis.machado@linaro.org> * aarch64-linux-tdep.c (aarch64_linux_restore_vreg) New function. (aarch64_linux_sigframe_init): Call aarch64_linux_restore_vreg. * aarch64-tdep.h (V_REGISTER_SIZE): Move to ... * arch/aarch64.h: ... here. * nat/aarch64-sve-linux-ptrace.c: Include endian.h. (aarch64_maybe_swab128): New function. (aarch64_sve_regs_copy_to_reg_buf) (aarch64_sve_regs_copy_from_reg_buf): Adjust FPSIMD entries. * trad-frame.c (trad_frame_reset_saved_regs): Initialize the data field. (TF_REG_VALUE_BYTES): New enum value. (trad_frame_value_bytes_p): New function. (trad_frame_set_value_bytes): New function. (trad_frame_set_reg_value_bytes): New function. (trad_frame_get_prev_register): Handle register values saved as bytes. * trad-frame.h (trad_frame_set_reg_value_bytes): New prototype. (struct trad_frame_saved_reg) <data>: New field. (trad_frame_set_value_bytes): New prototype. (trad_frame_value_bytes_p): New prototype.
2020-03-19 00:06:05 +08:00
memset (reg, 0, SVE_PT_SVE_ZREG_SIZE (vq));
Ptrace support for Aarch64 SVE Add support for reading and writing registers for Aarch64 SVE. We need to support the cases where the kernel only gives us a fpsimd structure. This occurs when there is no active SVE state in the kernel (for example, after starting a new process). Added checks to make sure the vector length has not changed whilst the process is running. gdb/ * aarch64-linux-nat.c (fetch_sveregs_from_thread): New function. (store_sveregs_to_thread): Likewise. (aarch64_linux_fetch_inferior_registers): Check for SVE. (aarch64_linux_store_inferior_registers): Likewise. * nat/aarch64-sve-linux-ptrace.c (aarch64_sve_get_sveregs): New function. (aarch64_sve_regs_copy_to_regcache): Likewise. (aarch64_sve_regs_copy_from_regcache): Likewise. * nat/aarch64-sve-linux-ptrace.h (aarch64_sve_get_sveregs): New declaration. (aarch64_sve_regs_copy_to_regcache): Likewise. (aarch64_sve_regs_copy_from_regcache): Likewise. (sve_context): Structure from Linux headers. (SVE_SIG_ZREGS_SIZE): Define from Linux headers. (SVE_SIG_ZREG_SIZE): Likewise. (SVE_SIG_PREG_SIZE): Likewise. (SVE_SIG_FFR_SIZE): Likewise. (SVE_SIG_REGS_OFFSET): Likewise. (SVE_SIG_ZREGS_OFFSET): Likewise. (SVE_SIG_ZREG_OFFSET): Likewise. (SVE_SIG_ZREGS_SIZE): Likewise. (SVE_SIG_PREGS_OFFSET): Likewise. (SVE_SIG_PREG_OFFSET): Likewise. (SVE_SIG_PREGS_SIZE): Likewise. (SVE_SIG_FFR_OFFSET): Likewise. (SVE_SIG_REGS_SIZE): Likewise. (SVE_SIG_CONTEXT_SIZE): Likewise. (SVE_PT_REGS_MASK): Likewise. (SVE_PT_REGS_FPSIMD): Likewise. (SVE_PT_REGS_SVE): Likewise. (SVE_PT_VL_INHERIT): Likewise. (SVE_PT_VL_ONEXEC): Likewise. (SVE_PT_REGS_OFFSET): Likewise. (SVE_PT_FPSIMD_OFFSET): Likewise. (SVE_PT_FPSIMD_SIZE): Likewise. (SVE_PT_SVE_ZREG_SIZE): Likewise. (SVE_PT_SVE_PREG_SIZE): Likewise. (SVE_PT_SVE_FFR_SIZE): Likewise. (SVE_PT_SVE_FPSR_SIZE): Likewise. (SVE_PT_SVE_FPCR_SIZE): Likewise. (__SVE_SIG_TO_PT): Likewise. (SVE_PT_SVE_OFFSET): Likewise. (SVE_PT_SVE_ZREGS_OFFSET): Likewise. (SVE_PT_SVE_ZREG_OFFSET): Likewise. (SVE_PT_SVE_ZREGS_SIZE): Likewise. (SVE_PT_SVE_PREGS_OFFSET): Likewise. (SVE_PT_SVE_PREG_OFFSET): Likewise. (SVE_PT_SVE_PREGS_SIZE): Likewise. (SVE_PT_SVE_FFR_OFFSET): Likewise. (SVE_PT_SVE_FPSR_OFFSET): Likewise. (SVE_PT_SVE_FPCR_OFFSET): Likewise. (SVE_PT_SVE_SIZE): Likewise. (SVE_PT_SIZE): Likewise. (HAS_SVE_STATE): New define. gdbserver/ * Makefile.in: Add aarch64-sve-linux-ptrace.c.
2018-06-15 19:21:31 +08:00
for (int i = 0; i < AARCH64_SVE_P_REGS_NUM; i++)
[AArch64] SVE/FPSIMD fixup for big endian The FPSIMD dump in signal frames and ptrace FPSIMD dump in the SVE context structure follows the target endianness, whereas the SVE dumps are endianness-independent (LE). Therefore, when the system is in BE mode, we need to reverse the bytes for the FPSIMD data. Given the V registers are larger than 64-bit, I've added a way for value bytes to be set, as opposed to passing a 64-bit fixed quantity. This fits nicely with the unwinding *_got_bytes function and makes the trad-frame more flexible and capable of saving larger registers. The memory for the bytes is allocated via the frame obstack, so it gets freed after we're done inspecting the frame. gdb/ChangeLog: 2020-12-10 Luis Machado <luis.machado@linaro.org> * aarch64-linux-tdep.c (aarch64_linux_restore_vreg) New function. (aarch64_linux_sigframe_init): Call aarch64_linux_restore_vreg. * aarch64-tdep.h (V_REGISTER_SIZE): Move to ... * arch/aarch64.h: ... here. * nat/aarch64-sve-linux-ptrace.c: Include endian.h. (aarch64_maybe_swab128): New function. (aarch64_sve_regs_copy_to_reg_buf) (aarch64_sve_regs_copy_from_reg_buf): Adjust FPSIMD entries. * trad-frame.c (trad_frame_reset_saved_regs): Initialize the data field. (TF_REG_VALUE_BYTES): New enum value. (trad_frame_value_bytes_p): New function. (trad_frame_set_value_bytes): New function. (trad_frame_set_reg_value_bytes): New function. (trad_frame_get_prev_register): Handle register values saved as bytes. * trad-frame.h (trad_frame_set_reg_value_bytes): New prototype. (struct trad_frame_saved_reg) <data>: New field. (trad_frame_set_value_bytes): New prototype. (trad_frame_value_bytes_p): New prototype.
2020-03-19 00:06:05 +08:00
reg_buf->raw_supply (AARCH64_SVE_P0_REGNUM + i, reg);
Ptrace support for Aarch64 SVE Add support for reading and writing registers for Aarch64 SVE. We need to support the cases where the kernel only gives us a fpsimd structure. This occurs when there is no active SVE state in the kernel (for example, after starting a new process). Added checks to make sure the vector length has not changed whilst the process is running. gdb/ * aarch64-linux-nat.c (fetch_sveregs_from_thread): New function. (store_sveregs_to_thread): Likewise. (aarch64_linux_fetch_inferior_registers): Check for SVE. (aarch64_linux_store_inferior_registers): Likewise. * nat/aarch64-sve-linux-ptrace.c (aarch64_sve_get_sveregs): New function. (aarch64_sve_regs_copy_to_regcache): Likewise. (aarch64_sve_regs_copy_from_regcache): Likewise. * nat/aarch64-sve-linux-ptrace.h (aarch64_sve_get_sveregs): New declaration. (aarch64_sve_regs_copy_to_regcache): Likewise. (aarch64_sve_regs_copy_from_regcache): Likewise. (sve_context): Structure from Linux headers. (SVE_SIG_ZREGS_SIZE): Define from Linux headers. (SVE_SIG_ZREG_SIZE): Likewise. (SVE_SIG_PREG_SIZE): Likewise. (SVE_SIG_FFR_SIZE): Likewise. (SVE_SIG_REGS_OFFSET): Likewise. (SVE_SIG_ZREGS_OFFSET): Likewise. (SVE_SIG_ZREG_OFFSET): Likewise. (SVE_SIG_ZREGS_SIZE): Likewise. (SVE_SIG_PREGS_OFFSET): Likewise. (SVE_SIG_PREG_OFFSET): Likewise. (SVE_SIG_PREGS_SIZE): Likewise. (SVE_SIG_FFR_OFFSET): Likewise. (SVE_SIG_REGS_SIZE): Likewise. (SVE_SIG_CONTEXT_SIZE): Likewise. (SVE_PT_REGS_MASK): Likewise. (SVE_PT_REGS_FPSIMD): Likewise. (SVE_PT_REGS_SVE): Likewise. (SVE_PT_VL_INHERIT): Likewise. (SVE_PT_VL_ONEXEC): Likewise. (SVE_PT_REGS_OFFSET): Likewise. (SVE_PT_FPSIMD_OFFSET): Likewise. (SVE_PT_FPSIMD_SIZE): Likewise. (SVE_PT_SVE_ZREG_SIZE): Likewise. (SVE_PT_SVE_PREG_SIZE): Likewise. (SVE_PT_SVE_FFR_SIZE): Likewise. (SVE_PT_SVE_FPSR_SIZE): Likewise. (SVE_PT_SVE_FPCR_SIZE): Likewise. (__SVE_SIG_TO_PT): Likewise. (SVE_PT_SVE_OFFSET): Likewise. (SVE_PT_SVE_ZREGS_OFFSET): Likewise. (SVE_PT_SVE_ZREG_OFFSET): Likewise. (SVE_PT_SVE_ZREGS_SIZE): Likewise. (SVE_PT_SVE_PREGS_OFFSET): Likewise. (SVE_PT_SVE_PREG_OFFSET): Likewise. (SVE_PT_SVE_PREGS_SIZE): Likewise. (SVE_PT_SVE_FFR_OFFSET): Likewise. (SVE_PT_SVE_FPSR_OFFSET): Likewise. (SVE_PT_SVE_FPCR_OFFSET): Likewise. (SVE_PT_SVE_SIZE): Likewise. (SVE_PT_SIZE): Likewise. (HAS_SVE_STATE): New define. gdbserver/ * Makefile.in: Add aarch64-sve-linux-ptrace.c.
2018-06-15 19:21:31 +08:00
[AArch64] SVE/FPSIMD fixup for big endian The FPSIMD dump in signal frames and ptrace FPSIMD dump in the SVE context structure follows the target endianness, whereas the SVE dumps are endianness-independent (LE). Therefore, when the system is in BE mode, we need to reverse the bytes for the FPSIMD data. Given the V registers are larger than 64-bit, I've added a way for value bytes to be set, as opposed to passing a 64-bit fixed quantity. This fits nicely with the unwinding *_got_bytes function and makes the trad-frame more flexible and capable of saving larger registers. The memory for the bytes is allocated via the frame obstack, so it gets freed after we're done inspecting the frame. gdb/ChangeLog: 2020-12-10 Luis Machado <luis.machado@linaro.org> * aarch64-linux-tdep.c (aarch64_linux_restore_vreg) New function. (aarch64_linux_sigframe_init): Call aarch64_linux_restore_vreg. * aarch64-tdep.h (V_REGISTER_SIZE): Move to ... * arch/aarch64.h: ... here. * nat/aarch64-sve-linux-ptrace.c: Include endian.h. (aarch64_maybe_swab128): New function. (aarch64_sve_regs_copy_to_reg_buf) (aarch64_sve_regs_copy_from_reg_buf): Adjust FPSIMD entries. * trad-frame.c (trad_frame_reset_saved_regs): Initialize the data field. (TF_REG_VALUE_BYTES): New enum value. (trad_frame_value_bytes_p): New function. (trad_frame_set_value_bytes): New function. (trad_frame_set_reg_value_bytes): New function. (trad_frame_get_prev_register): Handle register values saved as bytes. * trad-frame.h (trad_frame_set_reg_value_bytes): New prototype. (struct trad_frame_saved_reg) <data>: New field. (trad_frame_set_value_bytes): New prototype. (trad_frame_value_bytes_p): New prototype.
2020-03-19 00:06:05 +08:00
reg_buf->raw_supply (AARCH64_SVE_FFR_REGNUM, reg);
Ptrace support for Aarch64 SVE Add support for reading and writing registers for Aarch64 SVE. We need to support the cases where the kernel only gives us a fpsimd structure. This occurs when there is no active SVE state in the kernel (for example, after starting a new process). Added checks to make sure the vector length has not changed whilst the process is running. gdb/ * aarch64-linux-nat.c (fetch_sveregs_from_thread): New function. (store_sveregs_to_thread): Likewise. (aarch64_linux_fetch_inferior_registers): Check for SVE. (aarch64_linux_store_inferior_registers): Likewise. * nat/aarch64-sve-linux-ptrace.c (aarch64_sve_get_sveregs): New function. (aarch64_sve_regs_copy_to_regcache): Likewise. (aarch64_sve_regs_copy_from_regcache): Likewise. * nat/aarch64-sve-linux-ptrace.h (aarch64_sve_get_sveregs): New declaration. (aarch64_sve_regs_copy_to_regcache): Likewise. (aarch64_sve_regs_copy_from_regcache): Likewise. (sve_context): Structure from Linux headers. (SVE_SIG_ZREGS_SIZE): Define from Linux headers. (SVE_SIG_ZREG_SIZE): Likewise. (SVE_SIG_PREG_SIZE): Likewise. (SVE_SIG_FFR_SIZE): Likewise. (SVE_SIG_REGS_OFFSET): Likewise. (SVE_SIG_ZREGS_OFFSET): Likewise. (SVE_SIG_ZREG_OFFSET): Likewise. (SVE_SIG_ZREGS_SIZE): Likewise. (SVE_SIG_PREGS_OFFSET): Likewise. (SVE_SIG_PREG_OFFSET): Likewise. (SVE_SIG_PREGS_SIZE): Likewise. (SVE_SIG_FFR_OFFSET): Likewise. (SVE_SIG_REGS_SIZE): Likewise. (SVE_SIG_CONTEXT_SIZE): Likewise. (SVE_PT_REGS_MASK): Likewise. (SVE_PT_REGS_FPSIMD): Likewise. (SVE_PT_REGS_SVE): Likewise. (SVE_PT_VL_INHERIT): Likewise. (SVE_PT_VL_ONEXEC): Likewise. (SVE_PT_REGS_OFFSET): Likewise. (SVE_PT_FPSIMD_OFFSET): Likewise. (SVE_PT_FPSIMD_SIZE): Likewise. (SVE_PT_SVE_ZREG_SIZE): Likewise. (SVE_PT_SVE_PREG_SIZE): Likewise. (SVE_PT_SVE_FFR_SIZE): Likewise. (SVE_PT_SVE_FPSR_SIZE): Likewise. (SVE_PT_SVE_FPCR_SIZE): Likewise. (__SVE_SIG_TO_PT): Likewise. (SVE_PT_SVE_OFFSET): Likewise. (SVE_PT_SVE_ZREGS_OFFSET): Likewise. (SVE_PT_SVE_ZREG_OFFSET): Likewise. (SVE_PT_SVE_ZREGS_SIZE): Likewise. (SVE_PT_SVE_PREGS_OFFSET): Likewise. (SVE_PT_SVE_PREG_OFFSET): Likewise. (SVE_PT_SVE_PREGS_SIZE): Likewise. (SVE_PT_SVE_FFR_OFFSET): Likewise. (SVE_PT_SVE_FPSR_OFFSET): Likewise. (SVE_PT_SVE_FPCR_OFFSET): Likewise. (SVE_PT_SVE_SIZE): Likewise. (SVE_PT_SIZE): Likewise. (HAS_SVE_STATE): New define. gdbserver/ * Makefile.in: Add aarch64-sve-linux-ptrace.c.
2018-06-15 19:21:31 +08:00
}
refactor: Simplify SVE interface to read/write registers This is a patch in preparation to upcoming patches enabling SME support. It attempts to simplify the gdb/gdbserver shared interface used to read/write SVE registers. Where the current code makes use of unique_ptr, allocating a new buffer by hand and passing a buffer around, this patch makes that code use gdb::byte_vector and passes a reference to this byte vector to the functions, allowing the functions to have ready access to the size of the buffer. It also shares a bit more code between gdb and gdbserver, in particular around handling of ptrace get/set requests for SVE. I think gdbserver could be refactored to handle register reads/writes more like gdb's native layer as opposed to letting the generic linux-low layer do the ptrace calls. This is not very flexible and assumes one size for the responses. If you have something like NT_ARM_SVE, where you can have either FPSIMD or SVE contents, it doesn't work that well. I didn't want to change that interface right now as it is a bit too much work and touches all the targets, some of which I can't easily test. Hence the reason why the buffer the generic linux-now passes down to linux-aarch64-low is unused or ignored. No user-visible changes should happen as part of this refactor other than a slightly reworded warning message. While doing the refactor, I also noticed what seems to be a mistake in checking if the register cache contains active (non-zero) SVE data. For instance, the original code did something like this in aarch64_sve_regs_copy_from_reg_buf: has_sve_state |= reg_buf->raw_compare (AARCH64_SVE_Z0_REGNUM + i reg, sizeof (__int128_t)); "reg" is a zeroed-out buffer that we compare the Z register contents past the first 128 bits. The problem here is that raw_compare returns 1 if the contents compare the same, which means has_sve_state will be true. But if we compared the Z register contents to 0, it means we *do not* have SVE state, and therefore has_sve_state should be false. The consequence of this mistake is that we convert the initial FPSIMD-formatted data we get from ptrace for the NT_ARM_SVE register set to a SVE-formatted one. In the end, this doesn't cause user-visible differences because the values of both the Z and V registers will still be the same. But the logic is not correct. I used the opportunity to fix this, and it gets tested later on by the additional SME tests. I do plan on submitting some SVE-specific tests to make sure we have a bit more coverage in GDB's testsuite. Regression-tested on aarch64-linux Ubuntu 22.04/20.04. Reviewed-by: Thiago Jung Bauermann <thiago.bauermann@linaro.org>
2023-02-07 18:08:23 +08:00
/* At this point we have updated the register cache with the contents of
the NT_ARM_SVE register set. */
Ptrace support for Aarch64 SVE Add support for reading and writing registers for Aarch64 SVE. We need to support the cases where the kernel only gives us a fpsimd structure. This occurs when there is no active SVE state in the kernel (for example, after starting a new process). Added checks to make sure the vector length has not changed whilst the process is running. gdb/ * aarch64-linux-nat.c (fetch_sveregs_from_thread): New function. (store_sveregs_to_thread): Likewise. (aarch64_linux_fetch_inferior_registers): Check for SVE. (aarch64_linux_store_inferior_registers): Likewise. * nat/aarch64-sve-linux-ptrace.c (aarch64_sve_get_sveregs): New function. (aarch64_sve_regs_copy_to_regcache): Likewise. (aarch64_sve_regs_copy_from_regcache): Likewise. * nat/aarch64-sve-linux-ptrace.h (aarch64_sve_get_sveregs): New declaration. (aarch64_sve_regs_copy_to_regcache): Likewise. (aarch64_sve_regs_copy_from_regcache): Likewise. (sve_context): Structure from Linux headers. (SVE_SIG_ZREGS_SIZE): Define from Linux headers. (SVE_SIG_ZREG_SIZE): Likewise. (SVE_SIG_PREG_SIZE): Likewise. (SVE_SIG_FFR_SIZE): Likewise. (SVE_SIG_REGS_OFFSET): Likewise. (SVE_SIG_ZREGS_OFFSET): Likewise. (SVE_SIG_ZREG_OFFSET): Likewise. (SVE_SIG_ZREGS_SIZE): Likewise. (SVE_SIG_PREGS_OFFSET): Likewise. (SVE_SIG_PREG_OFFSET): Likewise. (SVE_SIG_PREGS_SIZE): Likewise. (SVE_SIG_FFR_OFFSET): Likewise. (SVE_SIG_REGS_SIZE): Likewise. (SVE_SIG_CONTEXT_SIZE): Likewise. (SVE_PT_REGS_MASK): Likewise. (SVE_PT_REGS_FPSIMD): Likewise. (SVE_PT_REGS_SVE): Likewise. (SVE_PT_VL_INHERIT): Likewise. (SVE_PT_VL_ONEXEC): Likewise. (SVE_PT_REGS_OFFSET): Likewise. (SVE_PT_FPSIMD_OFFSET): Likewise. (SVE_PT_FPSIMD_SIZE): Likewise. (SVE_PT_SVE_ZREG_SIZE): Likewise. (SVE_PT_SVE_PREG_SIZE): Likewise. (SVE_PT_SVE_FFR_SIZE): Likewise. (SVE_PT_SVE_FPSR_SIZE): Likewise. (SVE_PT_SVE_FPCR_SIZE): Likewise. (__SVE_SIG_TO_PT): Likewise. (SVE_PT_SVE_OFFSET): Likewise. (SVE_PT_SVE_ZREGS_OFFSET): Likewise. (SVE_PT_SVE_ZREG_OFFSET): Likewise. (SVE_PT_SVE_ZREGS_SIZE): Likewise. (SVE_PT_SVE_PREGS_OFFSET): Likewise. (SVE_PT_SVE_PREG_OFFSET): Likewise. (SVE_PT_SVE_PREGS_SIZE): Likewise. (SVE_PT_SVE_FFR_OFFSET): Likewise. (SVE_PT_SVE_FPSR_OFFSET): Likewise. (SVE_PT_SVE_FPCR_OFFSET): Likewise. (SVE_PT_SVE_SIZE): Likewise. (SVE_PT_SIZE): Likewise. (HAS_SVE_STATE): New define. gdbserver/ * Makefile.in: Add aarch64-sve-linux-ptrace.c.
2018-06-15 19:21:31 +08:00
}
/* See nat/aarch64-scalable-linux-ptrace.h. */
Ptrace support for Aarch64 SVE Add support for reading and writing registers for Aarch64 SVE. We need to support the cases where the kernel only gives us a fpsimd structure. This occurs when there is no active SVE state in the kernel (for example, after starting a new process). Added checks to make sure the vector length has not changed whilst the process is running. gdb/ * aarch64-linux-nat.c (fetch_sveregs_from_thread): New function. (store_sveregs_to_thread): Likewise. (aarch64_linux_fetch_inferior_registers): Check for SVE. (aarch64_linux_store_inferior_registers): Likewise. * nat/aarch64-sve-linux-ptrace.c (aarch64_sve_get_sveregs): New function. (aarch64_sve_regs_copy_to_regcache): Likewise. (aarch64_sve_regs_copy_from_regcache): Likewise. * nat/aarch64-sve-linux-ptrace.h (aarch64_sve_get_sveregs): New declaration. (aarch64_sve_regs_copy_to_regcache): Likewise. (aarch64_sve_regs_copy_from_regcache): Likewise. (sve_context): Structure from Linux headers. (SVE_SIG_ZREGS_SIZE): Define from Linux headers. (SVE_SIG_ZREG_SIZE): Likewise. (SVE_SIG_PREG_SIZE): Likewise. (SVE_SIG_FFR_SIZE): Likewise. (SVE_SIG_REGS_OFFSET): Likewise. (SVE_SIG_ZREGS_OFFSET): Likewise. (SVE_SIG_ZREG_OFFSET): Likewise. (SVE_SIG_ZREGS_SIZE): Likewise. (SVE_SIG_PREGS_OFFSET): Likewise. (SVE_SIG_PREG_OFFSET): Likewise. (SVE_SIG_PREGS_SIZE): Likewise. (SVE_SIG_FFR_OFFSET): Likewise. (SVE_SIG_REGS_SIZE): Likewise. (SVE_SIG_CONTEXT_SIZE): Likewise. (SVE_PT_REGS_MASK): Likewise. (SVE_PT_REGS_FPSIMD): Likewise. (SVE_PT_REGS_SVE): Likewise. (SVE_PT_VL_INHERIT): Likewise. (SVE_PT_VL_ONEXEC): Likewise. (SVE_PT_REGS_OFFSET): Likewise. (SVE_PT_FPSIMD_OFFSET): Likewise. (SVE_PT_FPSIMD_SIZE): Likewise. (SVE_PT_SVE_ZREG_SIZE): Likewise. (SVE_PT_SVE_PREG_SIZE): Likewise. (SVE_PT_SVE_FFR_SIZE): Likewise. (SVE_PT_SVE_FPSR_SIZE): Likewise. (SVE_PT_SVE_FPCR_SIZE): Likewise. (__SVE_SIG_TO_PT): Likewise. (SVE_PT_SVE_OFFSET): Likewise. (SVE_PT_SVE_ZREGS_OFFSET): Likewise. (SVE_PT_SVE_ZREG_OFFSET): Likewise. (SVE_PT_SVE_ZREGS_SIZE): Likewise. (SVE_PT_SVE_PREGS_OFFSET): Likewise. (SVE_PT_SVE_PREG_OFFSET): Likewise. (SVE_PT_SVE_PREGS_SIZE): Likewise. (SVE_PT_SVE_FFR_OFFSET): Likewise. (SVE_PT_SVE_FPSR_OFFSET): Likewise. (SVE_PT_SVE_FPCR_OFFSET): Likewise. (SVE_PT_SVE_SIZE): Likewise. (SVE_PT_SIZE): Likewise. (HAS_SVE_STATE): New define. gdbserver/ * Makefile.in: Add aarch64-sve-linux-ptrace.c.
2018-06-15 19:21:31 +08:00
void
refactor: Simplify SVE interface to read/write registers This is a patch in preparation to upcoming patches enabling SME support. It attempts to simplify the gdb/gdbserver shared interface used to read/write SVE registers. Where the current code makes use of unique_ptr, allocating a new buffer by hand and passing a buffer around, this patch makes that code use gdb::byte_vector and passes a reference to this byte vector to the functions, allowing the functions to have ready access to the size of the buffer. It also shares a bit more code between gdb and gdbserver, in particular around handling of ptrace get/set requests for SVE. I think gdbserver could be refactored to handle register reads/writes more like gdb's native layer as opposed to letting the generic linux-low layer do the ptrace calls. This is not very flexible and assumes one size for the responses. If you have something like NT_ARM_SVE, where you can have either FPSIMD or SVE contents, it doesn't work that well. I didn't want to change that interface right now as it is a bit too much work and touches all the targets, some of which I can't easily test. Hence the reason why the buffer the generic linux-now passes down to linux-aarch64-low is unused or ignored. No user-visible changes should happen as part of this refactor other than a slightly reworded warning message. While doing the refactor, I also noticed what seems to be a mistake in checking if the register cache contains active (non-zero) SVE data. For instance, the original code did something like this in aarch64_sve_regs_copy_from_reg_buf: has_sve_state |= reg_buf->raw_compare (AARCH64_SVE_Z0_REGNUM + i reg, sizeof (__int128_t)); "reg" is a zeroed-out buffer that we compare the Z register contents past the first 128 bits. The problem here is that raw_compare returns 1 if the contents compare the same, which means has_sve_state will be true. But if we compared the Z register contents to 0, it means we *do not* have SVE state, and therefore has_sve_state should be false. The consequence of this mistake is that we convert the initial FPSIMD-formatted data we get from ptrace for the NT_ARM_SVE register set to a SVE-formatted one. In the end, this doesn't cause user-visible differences because the values of both the Z and V registers will still be the same. But the logic is not correct. I used the opportunity to fix this, and it gets tested later on by the additional SME tests. I do plan on submitting some SVE-specific tests to make sure we have a bit more coverage in GDB's testsuite. Regression-tested on aarch64-linux Ubuntu 22.04/20.04. Reviewed-by: Thiago Jung Bauermann <thiago.bauermann@linaro.org>
2023-02-07 18:08:23 +08:00
aarch64_sve_regs_copy_from_reg_buf (int tid,
struct reg_buffer_common *reg_buf)
Ptrace support for Aarch64 SVE Add support for reading and writing registers for Aarch64 SVE. We need to support the cases where the kernel only gives us a fpsimd structure. This occurs when there is no active SVE state in the kernel (for example, after starting a new process). Added checks to make sure the vector length has not changed whilst the process is running. gdb/ * aarch64-linux-nat.c (fetch_sveregs_from_thread): New function. (store_sveregs_to_thread): Likewise. (aarch64_linux_fetch_inferior_registers): Check for SVE. (aarch64_linux_store_inferior_registers): Likewise. * nat/aarch64-sve-linux-ptrace.c (aarch64_sve_get_sveregs): New function. (aarch64_sve_regs_copy_to_regcache): Likewise. (aarch64_sve_regs_copy_from_regcache): Likewise. * nat/aarch64-sve-linux-ptrace.h (aarch64_sve_get_sveregs): New declaration. (aarch64_sve_regs_copy_to_regcache): Likewise. (aarch64_sve_regs_copy_from_regcache): Likewise. (sve_context): Structure from Linux headers. (SVE_SIG_ZREGS_SIZE): Define from Linux headers. (SVE_SIG_ZREG_SIZE): Likewise. (SVE_SIG_PREG_SIZE): Likewise. (SVE_SIG_FFR_SIZE): Likewise. (SVE_SIG_REGS_OFFSET): Likewise. (SVE_SIG_ZREGS_OFFSET): Likewise. (SVE_SIG_ZREG_OFFSET): Likewise. (SVE_SIG_ZREGS_SIZE): Likewise. (SVE_SIG_PREGS_OFFSET): Likewise. (SVE_SIG_PREG_OFFSET): Likewise. (SVE_SIG_PREGS_SIZE): Likewise. (SVE_SIG_FFR_OFFSET): Likewise. (SVE_SIG_REGS_SIZE): Likewise. (SVE_SIG_CONTEXT_SIZE): Likewise. (SVE_PT_REGS_MASK): Likewise. (SVE_PT_REGS_FPSIMD): Likewise. (SVE_PT_REGS_SVE): Likewise. (SVE_PT_VL_INHERIT): Likewise. (SVE_PT_VL_ONEXEC): Likewise. (SVE_PT_REGS_OFFSET): Likewise. (SVE_PT_FPSIMD_OFFSET): Likewise. (SVE_PT_FPSIMD_SIZE): Likewise. (SVE_PT_SVE_ZREG_SIZE): Likewise. (SVE_PT_SVE_PREG_SIZE): Likewise. (SVE_PT_SVE_FFR_SIZE): Likewise. (SVE_PT_SVE_FPSR_SIZE): Likewise. (SVE_PT_SVE_FPCR_SIZE): Likewise. (__SVE_SIG_TO_PT): Likewise. (SVE_PT_SVE_OFFSET): Likewise. (SVE_PT_SVE_ZREGS_OFFSET): Likewise. (SVE_PT_SVE_ZREG_OFFSET): Likewise. (SVE_PT_SVE_ZREGS_SIZE): Likewise. (SVE_PT_SVE_PREGS_OFFSET): Likewise. (SVE_PT_SVE_PREG_OFFSET): Likewise. (SVE_PT_SVE_PREGS_SIZE): Likewise. (SVE_PT_SVE_FFR_OFFSET): Likewise. (SVE_PT_SVE_FPSR_OFFSET): Likewise. (SVE_PT_SVE_FPCR_OFFSET): Likewise. (SVE_PT_SVE_SIZE): Likewise. (SVE_PT_SIZE): Likewise. (HAS_SVE_STATE): New define. gdbserver/ * Makefile.in: Add aarch64-sve-linux-ptrace.c.
2018-06-15 19:21:31 +08:00
{
refactor: Simplify SVE interface to read/write registers This is a patch in preparation to upcoming patches enabling SME support. It attempts to simplify the gdb/gdbserver shared interface used to read/write SVE registers. Where the current code makes use of unique_ptr, allocating a new buffer by hand and passing a buffer around, this patch makes that code use gdb::byte_vector and passes a reference to this byte vector to the functions, allowing the functions to have ready access to the size of the buffer. It also shares a bit more code between gdb and gdbserver, in particular around handling of ptrace get/set requests for SVE. I think gdbserver could be refactored to handle register reads/writes more like gdb's native layer as opposed to letting the generic linux-low layer do the ptrace calls. This is not very flexible and assumes one size for the responses. If you have something like NT_ARM_SVE, where you can have either FPSIMD or SVE contents, it doesn't work that well. I didn't want to change that interface right now as it is a bit too much work and touches all the targets, some of which I can't easily test. Hence the reason why the buffer the generic linux-now passes down to linux-aarch64-low is unused or ignored. No user-visible changes should happen as part of this refactor other than a slightly reworded warning message. While doing the refactor, I also noticed what seems to be a mistake in checking if the register cache contains active (non-zero) SVE data. For instance, the original code did something like this in aarch64_sve_regs_copy_from_reg_buf: has_sve_state |= reg_buf->raw_compare (AARCH64_SVE_Z0_REGNUM + i reg, sizeof (__int128_t)); "reg" is a zeroed-out buffer that we compare the Z register contents past the first 128 bits. The problem here is that raw_compare returns 1 if the contents compare the same, which means has_sve_state will be true. But if we compared the Z register contents to 0, it means we *do not* have SVE state, and therefore has_sve_state should be false. The consequence of this mistake is that we convert the initial FPSIMD-formatted data we get from ptrace for the NT_ARM_SVE register set to a SVE-formatted one. In the end, this doesn't cause user-visible differences because the values of both the Z and V registers will still be the same. But the logic is not correct. I used the opportunity to fix this, and it gets tested later on by the additional SME tests. I do plan on submitting some SVE-specific tests to make sure we have a bit more coverage in GDB's testsuite. Regression-tested on aarch64-linux Ubuntu 22.04/20.04. Reviewed-by: Thiago Jung Bauermann <thiago.bauermann@linaro.org>
2023-02-07 18:08:23 +08:00
/* First store the vector length to the thread. This is done first to
ensure the ptrace buffers read from the kernel are the correct size. */
if (!aarch64_sve_set_vq (tid, reg_buf))
perror_with_name (_("Unable to set VG register"));
/* Obtain a dump of SVE registers from ptrace. */
gdb::byte_vector sve_state = aarch64_fetch_sve_regset (tid);
struct user_sve_header *header = (struct user_sve_header *) sve_state.data ();
uint64_t vq = sve_vq_from_vl (header->vl);
Ptrace support for Aarch64 SVE Add support for reading and writing registers for Aarch64 SVE. We need to support the cases where the kernel only gives us a fpsimd structure. This occurs when there is no active SVE state in the kernel (for example, after starting a new process). Added checks to make sure the vector length has not changed whilst the process is running. gdb/ * aarch64-linux-nat.c (fetch_sveregs_from_thread): New function. (store_sveregs_to_thread): Likewise. (aarch64_linux_fetch_inferior_registers): Check for SVE. (aarch64_linux_store_inferior_registers): Likewise. * nat/aarch64-sve-linux-ptrace.c (aarch64_sve_get_sveregs): New function. (aarch64_sve_regs_copy_to_regcache): Likewise. (aarch64_sve_regs_copy_from_regcache): Likewise. * nat/aarch64-sve-linux-ptrace.h (aarch64_sve_get_sveregs): New declaration. (aarch64_sve_regs_copy_to_regcache): Likewise. (aarch64_sve_regs_copy_from_regcache): Likewise. (sve_context): Structure from Linux headers. (SVE_SIG_ZREGS_SIZE): Define from Linux headers. (SVE_SIG_ZREG_SIZE): Likewise. (SVE_SIG_PREG_SIZE): Likewise. (SVE_SIG_FFR_SIZE): Likewise. (SVE_SIG_REGS_OFFSET): Likewise. (SVE_SIG_ZREGS_OFFSET): Likewise. (SVE_SIG_ZREG_OFFSET): Likewise. (SVE_SIG_ZREGS_SIZE): Likewise. (SVE_SIG_PREGS_OFFSET): Likewise. (SVE_SIG_PREG_OFFSET): Likewise. (SVE_SIG_PREGS_SIZE): Likewise. (SVE_SIG_FFR_OFFSET): Likewise. (SVE_SIG_REGS_SIZE): Likewise. (SVE_SIG_CONTEXT_SIZE): Likewise. (SVE_PT_REGS_MASK): Likewise. (SVE_PT_REGS_FPSIMD): Likewise. (SVE_PT_REGS_SVE): Likewise. (SVE_PT_VL_INHERIT): Likewise. (SVE_PT_VL_ONEXEC): Likewise. (SVE_PT_REGS_OFFSET): Likewise. (SVE_PT_FPSIMD_OFFSET): Likewise. (SVE_PT_FPSIMD_SIZE): Likewise. (SVE_PT_SVE_ZREG_SIZE): Likewise. (SVE_PT_SVE_PREG_SIZE): Likewise. (SVE_PT_SVE_FFR_SIZE): Likewise. (SVE_PT_SVE_FPSR_SIZE): Likewise. (SVE_PT_SVE_FPCR_SIZE): Likewise. (__SVE_SIG_TO_PT): Likewise. (SVE_PT_SVE_OFFSET): Likewise. (SVE_PT_SVE_ZREGS_OFFSET): Likewise. (SVE_PT_SVE_ZREG_OFFSET): Likewise. (SVE_PT_SVE_ZREGS_SIZE): Likewise. (SVE_PT_SVE_PREGS_OFFSET): Likewise. (SVE_PT_SVE_PREG_OFFSET): Likewise. (SVE_PT_SVE_PREGS_SIZE): Likewise. (SVE_PT_SVE_FFR_OFFSET): Likewise. (SVE_PT_SVE_FPSR_OFFSET): Likewise. (SVE_PT_SVE_FPCR_OFFSET): Likewise. (SVE_PT_SVE_SIZE): Likewise. (SVE_PT_SIZE): Likewise. (HAS_SVE_STATE): New define. gdbserver/ * Makefile.in: Add aarch64-sve-linux-ptrace.c.
2018-06-15 19:21:31 +08:00
refactor: Simplify SVE interface to read/write registers This is a patch in preparation to upcoming patches enabling SME support. It attempts to simplify the gdb/gdbserver shared interface used to read/write SVE registers. Where the current code makes use of unique_ptr, allocating a new buffer by hand and passing a buffer around, this patch makes that code use gdb::byte_vector and passes a reference to this byte vector to the functions, allowing the functions to have ready access to the size of the buffer. It also shares a bit more code between gdb and gdbserver, in particular around handling of ptrace get/set requests for SVE. I think gdbserver could be refactored to handle register reads/writes more like gdb's native layer as opposed to letting the generic linux-low layer do the ptrace calls. This is not very flexible and assumes one size for the responses. If you have something like NT_ARM_SVE, where you can have either FPSIMD or SVE contents, it doesn't work that well. I didn't want to change that interface right now as it is a bit too much work and touches all the targets, some of which I can't easily test. Hence the reason why the buffer the generic linux-now passes down to linux-aarch64-low is unused or ignored. No user-visible changes should happen as part of this refactor other than a slightly reworded warning message. While doing the refactor, I also noticed what seems to be a mistake in checking if the register cache contains active (non-zero) SVE data. For instance, the original code did something like this in aarch64_sve_regs_copy_from_reg_buf: has_sve_state |= reg_buf->raw_compare (AARCH64_SVE_Z0_REGNUM + i reg, sizeof (__int128_t)); "reg" is a zeroed-out buffer that we compare the Z register contents past the first 128 bits. The problem here is that raw_compare returns 1 if the contents compare the same, which means has_sve_state will be true. But if we compared the Z register contents to 0, it means we *do not* have SVE state, and therefore has_sve_state should be false. The consequence of this mistake is that we convert the initial FPSIMD-formatted data we get from ptrace for the NT_ARM_SVE register set to a SVE-formatted one. In the end, this doesn't cause user-visible differences because the values of both the Z and V registers will still be the same. But the logic is not correct. I used the opportunity to fix this, and it gets tested later on by the additional SME tests. I do plan on submitting some SVE-specific tests to make sure we have a bit more coverage in GDB's testsuite. Regression-tested on aarch64-linux Ubuntu 22.04/20.04. Reviewed-by: Thiago Jung Bauermann <thiago.bauermann@linaro.org>
2023-02-07 18:08:23 +08:00
gdb::byte_vector new_state (SVE_PT_SIZE (32, SVE_PT_REGS_SVE), 0);
memcpy (new_state.data (), sve_state.data (), sve_state.size ());
header = (struct user_sve_header *) new_state.data ();
gdb: change regcache interface to use array_view Change most of regcache (and base classes) to use array_view when possible, instead of raw pointers. By propagating the use of array_view further, it enables having some runtime checks to make sure the what we read from or write to regcaches has the expected length (such as the one in the `copy(array_view, array_view)` function. It also integrates well when connecting with other APIs already using gdb::array_view. Add some overloads of the methods using raw pointers to avoid having to change all call sites at once (which is both a lot of work and risky). I tried to do this change in small increments, but since many of these functions use each other, it ended up simpler to do it in one shot than having a lot of intermediary / transient changes. This change extends into gdbserver as well, because there is some part of the regcache interface that is shared. Changing the reg_buffer_common interface to use array_view caused some build failures in nat/aarch64-scalable-linux-ptrace.c. That file currently "takes advantage" of the fact that reg_buffer_common::{raw_supply,raw_collect} operates on `void *`, which IMO is dangerous. It uses raw_supply/raw_collect directly on uint64_t's, which I guess is fine because it is expected that native code will have the same endianness as the debugged process. To accomodate that, add some overloads of raw_collect and raw_supply that work on uint64_t. This file also uses raw_collect and raw_supply on `char` pointers. Change it to use `gdb_byte` pointers instead. Add overloads of raw_collect and raw_supply that work on `gdb_byte *` and make an array_view on the fly using the register's size. Those call sites could be converted to use array_view with not much work, in which case these overloads could be removed, but I didn't want to do it in this patch, to avoid starting to dig in arch-specific code. During development, I inadvertently changed reg_buffer::raw_compare's behavior to not accept an offset equal to the register size. This behavior (effectively comparing 0 bytes, returning true) change was caught by the AArch64 SME core tests. Add a selftest to make sure that this raw_compare behavior is preserved in the future. Change-Id: I9005f04114543ddff738949e12d85a31855304c2 Reviewed-By: John Baldwin <jhb@FreeBSD.org>
2023-12-02 00:27:18 +08:00
gdb_byte *base = new_state.data ();
refactor: Simplify SVE interface to read/write registers This is a patch in preparation to upcoming patches enabling SME support. It attempts to simplify the gdb/gdbserver shared interface used to read/write SVE registers. Where the current code makes use of unique_ptr, allocating a new buffer by hand and passing a buffer around, this patch makes that code use gdb::byte_vector and passes a reference to this byte vector to the functions, allowing the functions to have ready access to the size of the buffer. It also shares a bit more code between gdb and gdbserver, in particular around handling of ptrace get/set requests for SVE. I think gdbserver could be refactored to handle register reads/writes more like gdb's native layer as opposed to letting the generic linux-low layer do the ptrace calls. This is not very flexible and assumes one size for the responses. If you have something like NT_ARM_SVE, where you can have either FPSIMD or SVE contents, it doesn't work that well. I didn't want to change that interface right now as it is a bit too much work and touches all the targets, some of which I can't easily test. Hence the reason why the buffer the generic linux-now passes down to linux-aarch64-low is unused or ignored. No user-visible changes should happen as part of this refactor other than a slightly reworded warning message. While doing the refactor, I also noticed what seems to be a mistake in checking if the register cache contains active (non-zero) SVE data. For instance, the original code did something like this in aarch64_sve_regs_copy_from_reg_buf: has_sve_state |= reg_buf->raw_compare (AARCH64_SVE_Z0_REGNUM + i reg, sizeof (__int128_t)); "reg" is a zeroed-out buffer that we compare the Z register contents past the first 128 bits. The problem here is that raw_compare returns 1 if the contents compare the same, which means has_sve_state will be true. But if we compared the Z register contents to 0, it means we *do not* have SVE state, and therefore has_sve_state should be false. The consequence of this mistake is that we convert the initial FPSIMD-formatted data we get from ptrace for the NT_ARM_SVE register set to a SVE-formatted one. In the end, this doesn't cause user-visible differences because the values of both the Z and V registers will still be the same. But the logic is not correct. I used the opportunity to fix this, and it gets tested later on by the additional SME tests. I do plan on submitting some SVE-specific tests to make sure we have a bit more coverage in GDB's testsuite. Regression-tested on aarch64-linux Ubuntu 22.04/20.04. Reviewed-by: Thiago Jung Bauermann <thiago.bauermann@linaro.org>
2023-02-07 18:08:23 +08:00
Ptrace support for Aarch64 SVE Add support for reading and writing registers for Aarch64 SVE. We need to support the cases where the kernel only gives us a fpsimd structure. This occurs when there is no active SVE state in the kernel (for example, after starting a new process). Added checks to make sure the vector length has not changed whilst the process is running. gdb/ * aarch64-linux-nat.c (fetch_sveregs_from_thread): New function. (store_sveregs_to_thread): Likewise. (aarch64_linux_fetch_inferior_registers): Check for SVE. (aarch64_linux_store_inferior_registers): Likewise. * nat/aarch64-sve-linux-ptrace.c (aarch64_sve_get_sveregs): New function. (aarch64_sve_regs_copy_to_regcache): Likewise. (aarch64_sve_regs_copy_from_regcache): Likewise. * nat/aarch64-sve-linux-ptrace.h (aarch64_sve_get_sveregs): New declaration. (aarch64_sve_regs_copy_to_regcache): Likewise. (aarch64_sve_regs_copy_from_regcache): Likewise. (sve_context): Structure from Linux headers. (SVE_SIG_ZREGS_SIZE): Define from Linux headers. (SVE_SIG_ZREG_SIZE): Likewise. (SVE_SIG_PREG_SIZE): Likewise. (SVE_SIG_FFR_SIZE): Likewise. (SVE_SIG_REGS_OFFSET): Likewise. (SVE_SIG_ZREGS_OFFSET): Likewise. (SVE_SIG_ZREG_OFFSET): Likewise. (SVE_SIG_ZREGS_SIZE): Likewise. (SVE_SIG_PREGS_OFFSET): Likewise. (SVE_SIG_PREG_OFFSET): Likewise. (SVE_SIG_PREGS_SIZE): Likewise. (SVE_SIG_FFR_OFFSET): Likewise. (SVE_SIG_REGS_SIZE): Likewise. (SVE_SIG_CONTEXT_SIZE): Likewise. (SVE_PT_REGS_MASK): Likewise. (SVE_PT_REGS_FPSIMD): Likewise. (SVE_PT_REGS_SVE): Likewise. (SVE_PT_VL_INHERIT): Likewise. (SVE_PT_VL_ONEXEC): Likewise. (SVE_PT_REGS_OFFSET): Likewise. (SVE_PT_FPSIMD_OFFSET): Likewise. (SVE_PT_FPSIMD_SIZE): Likewise. (SVE_PT_SVE_ZREG_SIZE): Likewise. (SVE_PT_SVE_PREG_SIZE): Likewise. (SVE_PT_SVE_FFR_SIZE): Likewise. (SVE_PT_SVE_FPSR_SIZE): Likewise. (SVE_PT_SVE_FPCR_SIZE): Likewise. (__SVE_SIG_TO_PT): Likewise. (SVE_PT_SVE_OFFSET): Likewise. (SVE_PT_SVE_ZREGS_OFFSET): Likewise. (SVE_PT_SVE_ZREG_OFFSET): Likewise. (SVE_PT_SVE_ZREGS_SIZE): Likewise. (SVE_PT_SVE_PREGS_OFFSET): Likewise. (SVE_PT_SVE_PREG_OFFSET): Likewise. (SVE_PT_SVE_PREGS_SIZE): Likewise. (SVE_PT_SVE_FFR_OFFSET): Likewise. (SVE_PT_SVE_FPSR_OFFSET): Likewise. (SVE_PT_SVE_FPCR_OFFSET): Likewise. (SVE_PT_SVE_SIZE): Likewise. (SVE_PT_SIZE): Likewise. (HAS_SVE_STATE): New define. gdbserver/ * Makefile.in: Add aarch64-sve-linux-ptrace.c.
2018-06-15 19:21:31 +08:00
/* Sanity check the data in the header. */
if (!sve_vl_valid (header->vl)
|| SVE_PT_SIZE (vq, header->flags) != header->size)
error (_("Invalid SVE header from kernel."));
if (!HAS_SVE_STATE (*header))
{
/* There is no SVE state yet - the register dump contains a fpsimd
structure instead. Where possible we want to write the reg_buf data
back to the kernel using the fpsimd structure. However, if we cannot
then we'll need to reformat the fpsimd into a full SVE structure,
resulting in the initialization of SVE state written back to the
kernel, which is why we try to avoid it. */
refactor: Simplify SVE interface to read/write registers This is a patch in preparation to upcoming patches enabling SME support. It attempts to simplify the gdb/gdbserver shared interface used to read/write SVE registers. Where the current code makes use of unique_ptr, allocating a new buffer by hand and passing a buffer around, this patch makes that code use gdb::byte_vector and passes a reference to this byte vector to the functions, allowing the functions to have ready access to the size of the buffer. It also shares a bit more code between gdb and gdbserver, in particular around handling of ptrace get/set requests for SVE. I think gdbserver could be refactored to handle register reads/writes more like gdb's native layer as opposed to letting the generic linux-low layer do the ptrace calls. This is not very flexible and assumes one size for the responses. If you have something like NT_ARM_SVE, where you can have either FPSIMD or SVE contents, it doesn't work that well. I didn't want to change that interface right now as it is a bit too much work and touches all the targets, some of which I can't easily test. Hence the reason why the buffer the generic linux-now passes down to linux-aarch64-low is unused or ignored. No user-visible changes should happen as part of this refactor other than a slightly reworded warning message. While doing the refactor, I also noticed what seems to be a mistake in checking if the register cache contains active (non-zero) SVE data. For instance, the original code did something like this in aarch64_sve_regs_copy_from_reg_buf: has_sve_state |= reg_buf->raw_compare (AARCH64_SVE_Z0_REGNUM + i reg, sizeof (__int128_t)); "reg" is a zeroed-out buffer that we compare the Z register contents past the first 128 bits. The problem here is that raw_compare returns 1 if the contents compare the same, which means has_sve_state will be true. But if we compared the Z register contents to 0, it means we *do not* have SVE state, and therefore has_sve_state should be false. The consequence of this mistake is that we convert the initial FPSIMD-formatted data we get from ptrace for the NT_ARM_SVE register set to a SVE-formatted one. In the end, this doesn't cause user-visible differences because the values of both the Z and V registers will still be the same. But the logic is not correct. I used the opportunity to fix this, and it gets tested later on by the additional SME tests. I do plan on submitting some SVE-specific tests to make sure we have a bit more coverage in GDB's testsuite. Regression-tested on aarch64-linux Ubuntu 22.04/20.04. Reviewed-by: Thiago Jung Bauermann <thiago.bauermann@linaro.org>
2023-02-07 18:08:23 +08:00
/* Buffer (using the maximum size a Z register) used to look for zeroed
out sve state. */
gdb_byte reg[256];
memset (reg, 0, sizeof (reg));
Ptrace support for Aarch64 SVE Add support for reading and writing registers for Aarch64 SVE. We need to support the cases where the kernel only gives us a fpsimd structure. This occurs when there is no active SVE state in the kernel (for example, after starting a new process). Added checks to make sure the vector length has not changed whilst the process is running. gdb/ * aarch64-linux-nat.c (fetch_sveregs_from_thread): New function. (store_sveregs_to_thread): Likewise. (aarch64_linux_fetch_inferior_registers): Check for SVE. (aarch64_linux_store_inferior_registers): Likewise. * nat/aarch64-sve-linux-ptrace.c (aarch64_sve_get_sveregs): New function. (aarch64_sve_regs_copy_to_regcache): Likewise. (aarch64_sve_regs_copy_from_regcache): Likewise. * nat/aarch64-sve-linux-ptrace.h (aarch64_sve_get_sveregs): New declaration. (aarch64_sve_regs_copy_to_regcache): Likewise. (aarch64_sve_regs_copy_from_regcache): Likewise. (sve_context): Structure from Linux headers. (SVE_SIG_ZREGS_SIZE): Define from Linux headers. (SVE_SIG_ZREG_SIZE): Likewise. (SVE_SIG_PREG_SIZE): Likewise. (SVE_SIG_FFR_SIZE): Likewise. (SVE_SIG_REGS_OFFSET): Likewise. (SVE_SIG_ZREGS_OFFSET): Likewise. (SVE_SIG_ZREG_OFFSET): Likewise. (SVE_SIG_ZREGS_SIZE): Likewise. (SVE_SIG_PREGS_OFFSET): Likewise. (SVE_SIG_PREG_OFFSET): Likewise. (SVE_SIG_PREGS_SIZE): Likewise. (SVE_SIG_FFR_OFFSET): Likewise. (SVE_SIG_REGS_SIZE): Likewise. (SVE_SIG_CONTEXT_SIZE): Likewise. (SVE_PT_REGS_MASK): Likewise. (SVE_PT_REGS_FPSIMD): Likewise. (SVE_PT_REGS_SVE): Likewise. (SVE_PT_VL_INHERIT): Likewise. (SVE_PT_VL_ONEXEC): Likewise. (SVE_PT_REGS_OFFSET): Likewise. (SVE_PT_FPSIMD_OFFSET): Likewise. (SVE_PT_FPSIMD_SIZE): Likewise. (SVE_PT_SVE_ZREG_SIZE): Likewise. (SVE_PT_SVE_PREG_SIZE): Likewise. (SVE_PT_SVE_FFR_SIZE): Likewise. (SVE_PT_SVE_FPSR_SIZE): Likewise. (SVE_PT_SVE_FPCR_SIZE): Likewise. (__SVE_SIG_TO_PT): Likewise. (SVE_PT_SVE_OFFSET): Likewise. (SVE_PT_SVE_ZREGS_OFFSET): Likewise. (SVE_PT_SVE_ZREG_OFFSET): Likewise. (SVE_PT_SVE_ZREGS_SIZE): Likewise. (SVE_PT_SVE_PREGS_OFFSET): Likewise. (SVE_PT_SVE_PREG_OFFSET): Likewise. (SVE_PT_SVE_PREGS_SIZE): Likewise. (SVE_PT_SVE_FFR_OFFSET): Likewise. (SVE_PT_SVE_FPSR_OFFSET): Likewise. (SVE_PT_SVE_FPCR_OFFSET): Likewise. (SVE_PT_SVE_SIZE): Likewise. (SVE_PT_SIZE): Likewise. (HAS_SVE_STATE): New define. gdbserver/ * Makefile.in: Add aarch64-sve-linux-ptrace.c.
2018-06-15 19:21:31 +08:00
/* Check in the reg_buf if any of the Z registers are set after the
first 128 bits, or if any of the other SVE registers are set. */
refactor: Simplify SVE interface to read/write registers This is a patch in preparation to upcoming patches enabling SME support. It attempts to simplify the gdb/gdbserver shared interface used to read/write SVE registers. Where the current code makes use of unique_ptr, allocating a new buffer by hand and passing a buffer around, this patch makes that code use gdb::byte_vector and passes a reference to this byte vector to the functions, allowing the functions to have ready access to the size of the buffer. It also shares a bit more code between gdb and gdbserver, in particular around handling of ptrace get/set requests for SVE. I think gdbserver could be refactored to handle register reads/writes more like gdb's native layer as opposed to letting the generic linux-low layer do the ptrace calls. This is not very flexible and assumes one size for the responses. If you have something like NT_ARM_SVE, where you can have either FPSIMD or SVE contents, it doesn't work that well. I didn't want to change that interface right now as it is a bit too much work and touches all the targets, some of which I can't easily test. Hence the reason why the buffer the generic linux-now passes down to linux-aarch64-low is unused or ignored. No user-visible changes should happen as part of this refactor other than a slightly reworded warning message. While doing the refactor, I also noticed what seems to be a mistake in checking if the register cache contains active (non-zero) SVE data. For instance, the original code did something like this in aarch64_sve_regs_copy_from_reg_buf: has_sve_state |= reg_buf->raw_compare (AARCH64_SVE_Z0_REGNUM + i reg, sizeof (__int128_t)); "reg" is a zeroed-out buffer that we compare the Z register contents past the first 128 bits. The problem here is that raw_compare returns 1 if the contents compare the same, which means has_sve_state will be true. But if we compared the Z register contents to 0, it means we *do not* have SVE state, and therefore has_sve_state should be false. The consequence of this mistake is that we convert the initial FPSIMD-formatted data we get from ptrace for the NT_ARM_SVE register set to a SVE-formatted one. In the end, this doesn't cause user-visible differences because the values of both the Z and V registers will still be the same. But the logic is not correct. I used the opportunity to fix this, and it gets tested later on by the additional SME tests. I do plan on submitting some SVE-specific tests to make sure we have a bit more coverage in GDB's testsuite. Regression-tested on aarch64-linux Ubuntu 22.04/20.04. Reviewed-by: Thiago Jung Bauermann <thiago.bauermann@linaro.org>
2023-02-07 18:08:23 +08:00
bool has_sve_state = false;
Ptrace support for Aarch64 SVE Add support for reading and writing registers for Aarch64 SVE. We need to support the cases where the kernel only gives us a fpsimd structure. This occurs when there is no active SVE state in the kernel (for example, after starting a new process). Added checks to make sure the vector length has not changed whilst the process is running. gdb/ * aarch64-linux-nat.c (fetch_sveregs_from_thread): New function. (store_sveregs_to_thread): Likewise. (aarch64_linux_fetch_inferior_registers): Check for SVE. (aarch64_linux_store_inferior_registers): Likewise. * nat/aarch64-sve-linux-ptrace.c (aarch64_sve_get_sveregs): New function. (aarch64_sve_regs_copy_to_regcache): Likewise. (aarch64_sve_regs_copy_from_regcache): Likewise. * nat/aarch64-sve-linux-ptrace.h (aarch64_sve_get_sveregs): New declaration. (aarch64_sve_regs_copy_to_regcache): Likewise. (aarch64_sve_regs_copy_from_regcache): Likewise. (sve_context): Structure from Linux headers. (SVE_SIG_ZREGS_SIZE): Define from Linux headers. (SVE_SIG_ZREG_SIZE): Likewise. (SVE_SIG_PREG_SIZE): Likewise. (SVE_SIG_FFR_SIZE): Likewise. (SVE_SIG_REGS_OFFSET): Likewise. (SVE_SIG_ZREGS_OFFSET): Likewise. (SVE_SIG_ZREG_OFFSET): Likewise. (SVE_SIG_ZREGS_SIZE): Likewise. (SVE_SIG_PREGS_OFFSET): Likewise. (SVE_SIG_PREG_OFFSET): Likewise. (SVE_SIG_PREGS_SIZE): Likewise. (SVE_SIG_FFR_OFFSET): Likewise. (SVE_SIG_REGS_SIZE): Likewise. (SVE_SIG_CONTEXT_SIZE): Likewise. (SVE_PT_REGS_MASK): Likewise. (SVE_PT_REGS_FPSIMD): Likewise. (SVE_PT_REGS_SVE): Likewise. (SVE_PT_VL_INHERIT): Likewise. (SVE_PT_VL_ONEXEC): Likewise. (SVE_PT_REGS_OFFSET): Likewise. (SVE_PT_FPSIMD_OFFSET): Likewise. (SVE_PT_FPSIMD_SIZE): Likewise. (SVE_PT_SVE_ZREG_SIZE): Likewise. (SVE_PT_SVE_PREG_SIZE): Likewise. (SVE_PT_SVE_FFR_SIZE): Likewise. (SVE_PT_SVE_FPSR_SIZE): Likewise. (SVE_PT_SVE_FPCR_SIZE): Likewise. (__SVE_SIG_TO_PT): Likewise. (SVE_PT_SVE_OFFSET): Likewise. (SVE_PT_SVE_ZREGS_OFFSET): Likewise. (SVE_PT_SVE_ZREG_OFFSET): Likewise. (SVE_PT_SVE_ZREGS_SIZE): Likewise. (SVE_PT_SVE_PREGS_OFFSET): Likewise. (SVE_PT_SVE_PREG_OFFSET): Likewise. (SVE_PT_SVE_PREGS_SIZE): Likewise. (SVE_PT_SVE_FFR_OFFSET): Likewise. (SVE_PT_SVE_FPSR_OFFSET): Likewise. (SVE_PT_SVE_FPCR_OFFSET): Likewise. (SVE_PT_SVE_SIZE): Likewise. (SVE_PT_SIZE): Likewise. (HAS_SVE_STATE): New define. gdbserver/ * Makefile.in: Add aarch64-sve-linux-ptrace.c.
2018-06-15 19:21:31 +08:00
for (int i = 0; i < AARCH64_SVE_Z_REGS_NUM; i++)
{
refactor: Simplify SVE interface to read/write registers This is a patch in preparation to upcoming patches enabling SME support. It attempts to simplify the gdb/gdbserver shared interface used to read/write SVE registers. Where the current code makes use of unique_ptr, allocating a new buffer by hand and passing a buffer around, this patch makes that code use gdb::byte_vector and passes a reference to this byte vector to the functions, allowing the functions to have ready access to the size of the buffer. It also shares a bit more code between gdb and gdbserver, in particular around handling of ptrace get/set requests for SVE. I think gdbserver could be refactored to handle register reads/writes more like gdb's native layer as opposed to letting the generic linux-low layer do the ptrace calls. This is not very flexible and assumes one size for the responses. If you have something like NT_ARM_SVE, where you can have either FPSIMD or SVE contents, it doesn't work that well. I didn't want to change that interface right now as it is a bit too much work and touches all the targets, some of which I can't easily test. Hence the reason why the buffer the generic linux-now passes down to linux-aarch64-low is unused or ignored. No user-visible changes should happen as part of this refactor other than a slightly reworded warning message. While doing the refactor, I also noticed what seems to be a mistake in checking if the register cache contains active (non-zero) SVE data. For instance, the original code did something like this in aarch64_sve_regs_copy_from_reg_buf: has_sve_state |= reg_buf->raw_compare (AARCH64_SVE_Z0_REGNUM + i reg, sizeof (__int128_t)); "reg" is a zeroed-out buffer that we compare the Z register contents past the first 128 bits. The problem here is that raw_compare returns 1 if the contents compare the same, which means has_sve_state will be true. But if we compared the Z register contents to 0, it means we *do not* have SVE state, and therefore has_sve_state should be false. The consequence of this mistake is that we convert the initial FPSIMD-formatted data we get from ptrace for the NT_ARM_SVE register set to a SVE-formatted one. In the end, this doesn't cause user-visible differences because the values of both the Z and V registers will still be the same. But the logic is not correct. I used the opportunity to fix this, and it gets tested later on by the additional SME tests. I do plan on submitting some SVE-specific tests to make sure we have a bit more coverage in GDB's testsuite. Regression-tested on aarch64-linux Ubuntu 22.04/20.04. Reviewed-by: Thiago Jung Bauermann <thiago.bauermann@linaro.org>
2023-02-07 18:08:23 +08:00
if (!reg_buf->raw_compare (AARCH64_SVE_Z0_REGNUM + i, reg,
V_REGISTER_SIZE))
{
has_sve_state = true;
break;
}
Ptrace support for Aarch64 SVE Add support for reading and writing registers for Aarch64 SVE. We need to support the cases where the kernel only gives us a fpsimd structure. This occurs when there is no active SVE state in the kernel (for example, after starting a new process). Added checks to make sure the vector length has not changed whilst the process is running. gdb/ * aarch64-linux-nat.c (fetch_sveregs_from_thread): New function. (store_sveregs_to_thread): Likewise. (aarch64_linux_fetch_inferior_registers): Check for SVE. (aarch64_linux_store_inferior_registers): Likewise. * nat/aarch64-sve-linux-ptrace.c (aarch64_sve_get_sveregs): New function. (aarch64_sve_regs_copy_to_regcache): Likewise. (aarch64_sve_regs_copy_from_regcache): Likewise. * nat/aarch64-sve-linux-ptrace.h (aarch64_sve_get_sveregs): New declaration. (aarch64_sve_regs_copy_to_regcache): Likewise. (aarch64_sve_regs_copy_from_regcache): Likewise. (sve_context): Structure from Linux headers. (SVE_SIG_ZREGS_SIZE): Define from Linux headers. (SVE_SIG_ZREG_SIZE): Likewise. (SVE_SIG_PREG_SIZE): Likewise. (SVE_SIG_FFR_SIZE): Likewise. (SVE_SIG_REGS_OFFSET): Likewise. (SVE_SIG_ZREGS_OFFSET): Likewise. (SVE_SIG_ZREG_OFFSET): Likewise. (SVE_SIG_ZREGS_SIZE): Likewise. (SVE_SIG_PREGS_OFFSET): Likewise. (SVE_SIG_PREG_OFFSET): Likewise. (SVE_SIG_PREGS_SIZE): Likewise. (SVE_SIG_FFR_OFFSET): Likewise. (SVE_SIG_REGS_SIZE): Likewise. (SVE_SIG_CONTEXT_SIZE): Likewise. (SVE_PT_REGS_MASK): Likewise. (SVE_PT_REGS_FPSIMD): Likewise. (SVE_PT_REGS_SVE): Likewise. (SVE_PT_VL_INHERIT): Likewise. (SVE_PT_VL_ONEXEC): Likewise. (SVE_PT_REGS_OFFSET): Likewise. (SVE_PT_FPSIMD_OFFSET): Likewise. (SVE_PT_FPSIMD_SIZE): Likewise. (SVE_PT_SVE_ZREG_SIZE): Likewise. (SVE_PT_SVE_PREG_SIZE): Likewise. (SVE_PT_SVE_FFR_SIZE): Likewise. (SVE_PT_SVE_FPSR_SIZE): Likewise. (SVE_PT_SVE_FPCR_SIZE): Likewise. (__SVE_SIG_TO_PT): Likewise. (SVE_PT_SVE_OFFSET): Likewise. (SVE_PT_SVE_ZREGS_OFFSET): Likewise. (SVE_PT_SVE_ZREG_OFFSET): Likewise. (SVE_PT_SVE_ZREGS_SIZE): Likewise. (SVE_PT_SVE_PREGS_OFFSET): Likewise. (SVE_PT_SVE_PREG_OFFSET): Likewise. (SVE_PT_SVE_PREGS_SIZE): Likewise. (SVE_PT_SVE_FFR_OFFSET): Likewise. (SVE_PT_SVE_FPSR_OFFSET): Likewise. (SVE_PT_SVE_FPCR_OFFSET): Likewise. (SVE_PT_SVE_SIZE): Likewise. (SVE_PT_SIZE): Likewise. (HAS_SVE_STATE): New define. gdbserver/ * Makefile.in: Add aarch64-sve-linux-ptrace.c.
2018-06-15 19:21:31 +08:00
}
if (!has_sve_state)
for (int i = 0; i < AARCH64_SVE_P_REGS_NUM; i++)
{
refactor: Simplify SVE interface to read/write registers This is a patch in preparation to upcoming patches enabling SME support. It attempts to simplify the gdb/gdbserver shared interface used to read/write SVE registers. Where the current code makes use of unique_ptr, allocating a new buffer by hand and passing a buffer around, this patch makes that code use gdb::byte_vector and passes a reference to this byte vector to the functions, allowing the functions to have ready access to the size of the buffer. It also shares a bit more code between gdb and gdbserver, in particular around handling of ptrace get/set requests for SVE. I think gdbserver could be refactored to handle register reads/writes more like gdb's native layer as opposed to letting the generic linux-low layer do the ptrace calls. This is not very flexible and assumes one size for the responses. If you have something like NT_ARM_SVE, where you can have either FPSIMD or SVE contents, it doesn't work that well. I didn't want to change that interface right now as it is a bit too much work and touches all the targets, some of which I can't easily test. Hence the reason why the buffer the generic linux-now passes down to linux-aarch64-low is unused or ignored. No user-visible changes should happen as part of this refactor other than a slightly reworded warning message. While doing the refactor, I also noticed what seems to be a mistake in checking if the register cache contains active (non-zero) SVE data. For instance, the original code did something like this in aarch64_sve_regs_copy_from_reg_buf: has_sve_state |= reg_buf->raw_compare (AARCH64_SVE_Z0_REGNUM + i reg, sizeof (__int128_t)); "reg" is a zeroed-out buffer that we compare the Z register contents past the first 128 bits. The problem here is that raw_compare returns 1 if the contents compare the same, which means has_sve_state will be true. But if we compared the Z register contents to 0, it means we *do not* have SVE state, and therefore has_sve_state should be false. The consequence of this mistake is that we convert the initial FPSIMD-formatted data we get from ptrace for the NT_ARM_SVE register set to a SVE-formatted one. In the end, this doesn't cause user-visible differences because the values of both the Z and V registers will still be the same. But the logic is not correct. I used the opportunity to fix this, and it gets tested later on by the additional SME tests. I do plan on submitting some SVE-specific tests to make sure we have a bit more coverage in GDB's testsuite. Regression-tested on aarch64-linux Ubuntu 22.04/20.04. Reviewed-by: Thiago Jung Bauermann <thiago.bauermann@linaro.org>
2023-02-07 18:08:23 +08:00
if (!reg_buf->raw_compare (AARCH64_SVE_P0_REGNUM + i, reg, 0))
{
has_sve_state = true;
break;
}
Ptrace support for Aarch64 SVE Add support for reading and writing registers for Aarch64 SVE. We need to support the cases where the kernel only gives us a fpsimd structure. This occurs when there is no active SVE state in the kernel (for example, after starting a new process). Added checks to make sure the vector length has not changed whilst the process is running. gdb/ * aarch64-linux-nat.c (fetch_sveregs_from_thread): New function. (store_sveregs_to_thread): Likewise. (aarch64_linux_fetch_inferior_registers): Check for SVE. (aarch64_linux_store_inferior_registers): Likewise. * nat/aarch64-sve-linux-ptrace.c (aarch64_sve_get_sveregs): New function. (aarch64_sve_regs_copy_to_regcache): Likewise. (aarch64_sve_regs_copy_from_regcache): Likewise. * nat/aarch64-sve-linux-ptrace.h (aarch64_sve_get_sveregs): New declaration. (aarch64_sve_regs_copy_to_regcache): Likewise. (aarch64_sve_regs_copy_from_regcache): Likewise. (sve_context): Structure from Linux headers. (SVE_SIG_ZREGS_SIZE): Define from Linux headers. (SVE_SIG_ZREG_SIZE): Likewise. (SVE_SIG_PREG_SIZE): Likewise. (SVE_SIG_FFR_SIZE): Likewise. (SVE_SIG_REGS_OFFSET): Likewise. (SVE_SIG_ZREGS_OFFSET): Likewise. (SVE_SIG_ZREG_OFFSET): Likewise. (SVE_SIG_ZREGS_SIZE): Likewise. (SVE_SIG_PREGS_OFFSET): Likewise. (SVE_SIG_PREG_OFFSET): Likewise. (SVE_SIG_PREGS_SIZE): Likewise. (SVE_SIG_FFR_OFFSET): Likewise. (SVE_SIG_REGS_SIZE): Likewise. (SVE_SIG_CONTEXT_SIZE): Likewise. (SVE_PT_REGS_MASK): Likewise. (SVE_PT_REGS_FPSIMD): Likewise. (SVE_PT_REGS_SVE): Likewise. (SVE_PT_VL_INHERIT): Likewise. (SVE_PT_VL_ONEXEC): Likewise. (SVE_PT_REGS_OFFSET): Likewise. (SVE_PT_FPSIMD_OFFSET): Likewise. (SVE_PT_FPSIMD_SIZE): Likewise. (SVE_PT_SVE_ZREG_SIZE): Likewise. (SVE_PT_SVE_PREG_SIZE): Likewise. (SVE_PT_SVE_FFR_SIZE): Likewise. (SVE_PT_SVE_FPSR_SIZE): Likewise. (SVE_PT_SVE_FPCR_SIZE): Likewise. (__SVE_SIG_TO_PT): Likewise. (SVE_PT_SVE_OFFSET): Likewise. (SVE_PT_SVE_ZREGS_OFFSET): Likewise. (SVE_PT_SVE_ZREG_OFFSET): Likewise. (SVE_PT_SVE_ZREGS_SIZE): Likewise. (SVE_PT_SVE_PREGS_OFFSET): Likewise. (SVE_PT_SVE_PREG_OFFSET): Likewise. (SVE_PT_SVE_PREGS_SIZE): Likewise. (SVE_PT_SVE_FFR_OFFSET): Likewise. (SVE_PT_SVE_FPSR_OFFSET): Likewise. (SVE_PT_SVE_FPCR_OFFSET): Likewise. (SVE_PT_SVE_SIZE): Likewise. (SVE_PT_SIZE): Likewise. (HAS_SVE_STATE): New define. gdbserver/ * Makefile.in: Add aarch64-sve-linux-ptrace.c.
2018-06-15 19:21:31 +08:00
}
if (!has_sve_state)
refactor: Simplify SVE interface to read/write registers This is a patch in preparation to upcoming patches enabling SME support. It attempts to simplify the gdb/gdbserver shared interface used to read/write SVE registers. Where the current code makes use of unique_ptr, allocating a new buffer by hand and passing a buffer around, this patch makes that code use gdb::byte_vector and passes a reference to this byte vector to the functions, allowing the functions to have ready access to the size of the buffer. It also shares a bit more code between gdb and gdbserver, in particular around handling of ptrace get/set requests for SVE. I think gdbserver could be refactored to handle register reads/writes more like gdb's native layer as opposed to letting the generic linux-low layer do the ptrace calls. This is not very flexible and assumes one size for the responses. If you have something like NT_ARM_SVE, where you can have either FPSIMD or SVE contents, it doesn't work that well. I didn't want to change that interface right now as it is a bit too much work and touches all the targets, some of which I can't easily test. Hence the reason why the buffer the generic linux-now passes down to linux-aarch64-low is unused or ignored. No user-visible changes should happen as part of this refactor other than a slightly reworded warning message. While doing the refactor, I also noticed what seems to be a mistake in checking if the register cache contains active (non-zero) SVE data. For instance, the original code did something like this in aarch64_sve_regs_copy_from_reg_buf: has_sve_state |= reg_buf->raw_compare (AARCH64_SVE_Z0_REGNUM + i reg, sizeof (__int128_t)); "reg" is a zeroed-out buffer that we compare the Z register contents past the first 128 bits. The problem here is that raw_compare returns 1 if the contents compare the same, which means has_sve_state will be true. But if we compared the Z register contents to 0, it means we *do not* have SVE state, and therefore has_sve_state should be false. The consequence of this mistake is that we convert the initial FPSIMD-formatted data we get from ptrace for the NT_ARM_SVE register set to a SVE-formatted one. In the end, this doesn't cause user-visible differences because the values of both the Z and V registers will still be the same. But the logic is not correct. I used the opportunity to fix this, and it gets tested later on by the additional SME tests. I do plan on submitting some SVE-specific tests to make sure we have a bit more coverage in GDB's testsuite. Regression-tested on aarch64-linux Ubuntu 22.04/20.04. Reviewed-by: Thiago Jung Bauermann <thiago.bauermann@linaro.org>
2023-02-07 18:08:23 +08:00
has_sve_state
= !reg_buf->raw_compare (AARCH64_SVE_FFR_REGNUM, reg, 0);
struct user_fpsimd_state *fpsimd
= (struct user_fpsimd_state *)(base + SVE_PT_FPSIMD_OFFSET);
Ptrace support for Aarch64 SVE Add support for reading and writing registers for Aarch64 SVE. We need to support the cases where the kernel only gives us a fpsimd structure. This occurs when there is no active SVE state in the kernel (for example, after starting a new process). Added checks to make sure the vector length has not changed whilst the process is running. gdb/ * aarch64-linux-nat.c (fetch_sveregs_from_thread): New function. (store_sveregs_to_thread): Likewise. (aarch64_linux_fetch_inferior_registers): Check for SVE. (aarch64_linux_store_inferior_registers): Likewise. * nat/aarch64-sve-linux-ptrace.c (aarch64_sve_get_sveregs): New function. (aarch64_sve_regs_copy_to_regcache): Likewise. (aarch64_sve_regs_copy_from_regcache): Likewise. * nat/aarch64-sve-linux-ptrace.h (aarch64_sve_get_sveregs): New declaration. (aarch64_sve_regs_copy_to_regcache): Likewise. (aarch64_sve_regs_copy_from_regcache): Likewise. (sve_context): Structure from Linux headers. (SVE_SIG_ZREGS_SIZE): Define from Linux headers. (SVE_SIG_ZREG_SIZE): Likewise. (SVE_SIG_PREG_SIZE): Likewise. (SVE_SIG_FFR_SIZE): Likewise. (SVE_SIG_REGS_OFFSET): Likewise. (SVE_SIG_ZREGS_OFFSET): Likewise. (SVE_SIG_ZREG_OFFSET): Likewise. (SVE_SIG_ZREGS_SIZE): Likewise. (SVE_SIG_PREGS_OFFSET): Likewise. (SVE_SIG_PREG_OFFSET): Likewise. (SVE_SIG_PREGS_SIZE): Likewise. (SVE_SIG_FFR_OFFSET): Likewise. (SVE_SIG_REGS_SIZE): Likewise. (SVE_SIG_CONTEXT_SIZE): Likewise. (SVE_PT_REGS_MASK): Likewise. (SVE_PT_REGS_FPSIMD): Likewise. (SVE_PT_REGS_SVE): Likewise. (SVE_PT_VL_INHERIT): Likewise. (SVE_PT_VL_ONEXEC): Likewise. (SVE_PT_REGS_OFFSET): Likewise. (SVE_PT_FPSIMD_OFFSET): Likewise. (SVE_PT_FPSIMD_SIZE): Likewise. (SVE_PT_SVE_ZREG_SIZE): Likewise. (SVE_PT_SVE_PREG_SIZE): Likewise. (SVE_PT_SVE_FFR_SIZE): Likewise. (SVE_PT_SVE_FPSR_SIZE): Likewise. (SVE_PT_SVE_FPCR_SIZE): Likewise. (__SVE_SIG_TO_PT): Likewise. (SVE_PT_SVE_OFFSET): Likewise. (SVE_PT_SVE_ZREGS_OFFSET): Likewise. (SVE_PT_SVE_ZREG_OFFSET): Likewise. (SVE_PT_SVE_ZREGS_SIZE): Likewise. (SVE_PT_SVE_PREGS_OFFSET): Likewise. (SVE_PT_SVE_PREG_OFFSET): Likewise. (SVE_PT_SVE_PREGS_SIZE): Likewise. (SVE_PT_SVE_FFR_OFFSET): Likewise. (SVE_PT_SVE_FPSR_OFFSET): Likewise. (SVE_PT_SVE_FPCR_OFFSET): Likewise. (SVE_PT_SVE_SIZE): Likewise. (SVE_PT_SIZE): Likewise. (HAS_SVE_STATE): New define. gdbserver/ * Makefile.in: Add aarch64-sve-linux-ptrace.c.
2018-06-15 19:21:31 +08:00
/* If no SVE state exists, then use the existing fpsimd structure to
write out state and return. */
if (!has_sve_state)
{
[AArch64] SVE/FPSIMD fixup for big endian The FPSIMD dump in signal frames and ptrace FPSIMD dump in the SVE context structure follows the target endianness, whereas the SVE dumps are endianness-independent (LE). Therefore, when the system is in BE mode, we need to reverse the bytes for the FPSIMD data. Given the V registers are larger than 64-bit, I've added a way for value bytes to be set, as opposed to passing a 64-bit fixed quantity. This fits nicely with the unwinding *_got_bytes function and makes the trad-frame more flexible and capable of saving larger registers. The memory for the bytes is allocated via the frame obstack, so it gets freed after we're done inspecting the frame. gdb/ChangeLog: 2020-12-10 Luis Machado <luis.machado@linaro.org> * aarch64-linux-tdep.c (aarch64_linux_restore_vreg) New function. (aarch64_linux_sigframe_init): Call aarch64_linux_restore_vreg. * aarch64-tdep.h (V_REGISTER_SIZE): Move to ... * arch/aarch64.h: ... here. * nat/aarch64-sve-linux-ptrace.c: Include endian.h. (aarch64_maybe_swab128): New function. (aarch64_sve_regs_copy_to_reg_buf) (aarch64_sve_regs_copy_from_reg_buf): Adjust FPSIMD entries. * trad-frame.c (trad_frame_reset_saved_regs): Initialize the data field. (TF_REG_VALUE_BYTES): New enum value. (trad_frame_value_bytes_p): New function. (trad_frame_set_value_bytes): New function. (trad_frame_set_reg_value_bytes): New function. (trad_frame_get_prev_register): Handle register values saved as bytes. * trad-frame.h (trad_frame_set_reg_value_bytes): New prototype. (struct trad_frame_saved_reg) <data>: New field. (trad_frame_set_value_bytes): New prototype. (trad_frame_value_bytes_p): New prototype.
2020-03-19 00:06:05 +08:00
/* WARNING: SIMD state is laid out in memory in target-endian format,
while SVE state is laid out in an endianness-independent format
(LE).
So we have a couple cases to consider:
1 - If the target is big endian, then SIMD state is big endian,
requiring a byteswap.
2 - If the target is little endian, then SIMD state is little
endian, which matches the SVE format, so no byteswap is needed. */
Ptrace support for Aarch64 SVE Add support for reading and writing registers for Aarch64 SVE. We need to support the cases where the kernel only gives us a fpsimd structure. This occurs when there is no active SVE state in the kernel (for example, after starting a new process). Added checks to make sure the vector length has not changed whilst the process is running. gdb/ * aarch64-linux-nat.c (fetch_sveregs_from_thread): New function. (store_sveregs_to_thread): Likewise. (aarch64_linux_fetch_inferior_registers): Check for SVE. (aarch64_linux_store_inferior_registers): Likewise. * nat/aarch64-sve-linux-ptrace.c (aarch64_sve_get_sveregs): New function. (aarch64_sve_regs_copy_to_regcache): Likewise. (aarch64_sve_regs_copy_from_regcache): Likewise. * nat/aarch64-sve-linux-ptrace.h (aarch64_sve_get_sveregs): New declaration. (aarch64_sve_regs_copy_to_regcache): Likewise. (aarch64_sve_regs_copy_from_regcache): Likewise. (sve_context): Structure from Linux headers. (SVE_SIG_ZREGS_SIZE): Define from Linux headers. (SVE_SIG_ZREG_SIZE): Likewise. (SVE_SIG_PREG_SIZE): Likewise. (SVE_SIG_FFR_SIZE): Likewise. (SVE_SIG_REGS_OFFSET): Likewise. (SVE_SIG_ZREGS_OFFSET): Likewise. (SVE_SIG_ZREG_OFFSET): Likewise. (SVE_SIG_ZREGS_SIZE): Likewise. (SVE_SIG_PREGS_OFFSET): Likewise. (SVE_SIG_PREG_OFFSET): Likewise. (SVE_SIG_PREGS_SIZE): Likewise. (SVE_SIG_FFR_OFFSET): Likewise. (SVE_SIG_REGS_SIZE): Likewise. (SVE_SIG_CONTEXT_SIZE): Likewise. (SVE_PT_REGS_MASK): Likewise. (SVE_PT_REGS_FPSIMD): Likewise. (SVE_PT_REGS_SVE): Likewise. (SVE_PT_VL_INHERIT): Likewise. (SVE_PT_VL_ONEXEC): Likewise. (SVE_PT_REGS_OFFSET): Likewise. (SVE_PT_FPSIMD_OFFSET): Likewise. (SVE_PT_FPSIMD_SIZE): Likewise. (SVE_PT_SVE_ZREG_SIZE): Likewise. (SVE_PT_SVE_PREG_SIZE): Likewise. (SVE_PT_SVE_FFR_SIZE): Likewise. (SVE_PT_SVE_FPSR_SIZE): Likewise. (SVE_PT_SVE_FPCR_SIZE): Likewise. (__SVE_SIG_TO_PT): Likewise. (SVE_PT_SVE_OFFSET): Likewise. (SVE_PT_SVE_ZREGS_OFFSET): Likewise. (SVE_PT_SVE_ZREG_OFFSET): Likewise. (SVE_PT_SVE_ZREGS_SIZE): Likewise. (SVE_PT_SVE_PREGS_OFFSET): Likewise. (SVE_PT_SVE_PREG_OFFSET): Likewise. (SVE_PT_SVE_PREGS_SIZE): Likewise. (SVE_PT_SVE_FFR_OFFSET): Likewise. (SVE_PT_SVE_FPSR_OFFSET): Likewise. (SVE_PT_SVE_FPCR_OFFSET): Likewise. (SVE_PT_SVE_SIZE): Likewise. (SVE_PT_SIZE): Likewise. (HAS_SVE_STATE): New define. gdbserver/ * Makefile.in: Add aarch64-sve-linux-ptrace.c.
2018-06-15 19:21:31 +08:00
/* The collects of the Z registers will overflow the size of a vreg.
There is enough space in the structure to allow for this, but we
cannot overflow into the next register as we might not be
collecting every register. */
for (int i = 0; i < AARCH64_SVE_Z_REGS_NUM; i++)
{
if (REG_VALID
== reg_buf->get_register_status (AARCH64_SVE_Z0_REGNUM + i))
{
[AArch64] SVE/FPSIMD fixup for big endian The FPSIMD dump in signal frames and ptrace FPSIMD dump in the SVE context structure follows the target endianness, whereas the SVE dumps are endianness-independent (LE). Therefore, when the system is in BE mode, we need to reverse the bytes for the FPSIMD data. Given the V registers are larger than 64-bit, I've added a way for value bytes to be set, as opposed to passing a 64-bit fixed quantity. This fits nicely with the unwinding *_got_bytes function and makes the trad-frame more flexible and capable of saving larger registers. The memory for the bytes is allocated via the frame obstack, so it gets freed after we're done inspecting the frame. gdb/ChangeLog: 2020-12-10 Luis Machado <luis.machado@linaro.org> * aarch64-linux-tdep.c (aarch64_linux_restore_vreg) New function. (aarch64_linux_sigframe_init): Call aarch64_linux_restore_vreg. * aarch64-tdep.h (V_REGISTER_SIZE): Move to ... * arch/aarch64.h: ... here. * nat/aarch64-sve-linux-ptrace.c: Include endian.h. (aarch64_maybe_swab128): New function. (aarch64_sve_regs_copy_to_reg_buf) (aarch64_sve_regs_copy_from_reg_buf): Adjust FPSIMD entries. * trad-frame.c (trad_frame_reset_saved_regs): Initialize the data field. (TF_REG_VALUE_BYTES): New enum value. (trad_frame_value_bytes_p): New function. (trad_frame_set_value_bytes): New function. (trad_frame_set_reg_value_bytes): New function. (trad_frame_get_prev_register): Handle register values saved as bytes. * trad-frame.h (trad_frame_set_reg_value_bytes): New prototype. (struct trad_frame_saved_reg) <data>: New field. (trad_frame_set_value_bytes): New prototype. (trad_frame_value_bytes_p): New prototype.
2020-03-19 00:06:05 +08:00
reg_buf->raw_collect (AARCH64_SVE_Z0_REGNUM + i, reg);
/* Handle big endian/little endian SIMD/SVE conversion. */
aarch64_maybe_swab128 ((gdb_byte *) &fpsimd->vregs[i], reg,
V_REGISTER_SIZE);
Ptrace support for Aarch64 SVE Add support for reading and writing registers for Aarch64 SVE. We need to support the cases where the kernel only gives us a fpsimd structure. This occurs when there is no active SVE state in the kernel (for example, after starting a new process). Added checks to make sure the vector length has not changed whilst the process is running. gdb/ * aarch64-linux-nat.c (fetch_sveregs_from_thread): New function. (store_sveregs_to_thread): Likewise. (aarch64_linux_fetch_inferior_registers): Check for SVE. (aarch64_linux_store_inferior_registers): Likewise. * nat/aarch64-sve-linux-ptrace.c (aarch64_sve_get_sveregs): New function. (aarch64_sve_regs_copy_to_regcache): Likewise. (aarch64_sve_regs_copy_from_regcache): Likewise. * nat/aarch64-sve-linux-ptrace.h (aarch64_sve_get_sveregs): New declaration. (aarch64_sve_regs_copy_to_regcache): Likewise. (aarch64_sve_regs_copy_from_regcache): Likewise. (sve_context): Structure from Linux headers. (SVE_SIG_ZREGS_SIZE): Define from Linux headers. (SVE_SIG_ZREG_SIZE): Likewise. (SVE_SIG_PREG_SIZE): Likewise. (SVE_SIG_FFR_SIZE): Likewise. (SVE_SIG_REGS_OFFSET): Likewise. (SVE_SIG_ZREGS_OFFSET): Likewise. (SVE_SIG_ZREG_OFFSET): Likewise. (SVE_SIG_ZREGS_SIZE): Likewise. (SVE_SIG_PREGS_OFFSET): Likewise. (SVE_SIG_PREG_OFFSET): Likewise. (SVE_SIG_PREGS_SIZE): Likewise. (SVE_SIG_FFR_OFFSET): Likewise. (SVE_SIG_REGS_SIZE): Likewise. (SVE_SIG_CONTEXT_SIZE): Likewise. (SVE_PT_REGS_MASK): Likewise. (SVE_PT_REGS_FPSIMD): Likewise. (SVE_PT_REGS_SVE): Likewise. (SVE_PT_VL_INHERIT): Likewise. (SVE_PT_VL_ONEXEC): Likewise. (SVE_PT_REGS_OFFSET): Likewise. (SVE_PT_FPSIMD_OFFSET): Likewise. (SVE_PT_FPSIMD_SIZE): Likewise. (SVE_PT_SVE_ZREG_SIZE): Likewise. (SVE_PT_SVE_PREG_SIZE): Likewise. (SVE_PT_SVE_FFR_SIZE): Likewise. (SVE_PT_SVE_FPSR_SIZE): Likewise. (SVE_PT_SVE_FPCR_SIZE): Likewise. (__SVE_SIG_TO_PT): Likewise. (SVE_PT_SVE_OFFSET): Likewise. (SVE_PT_SVE_ZREGS_OFFSET): Likewise. (SVE_PT_SVE_ZREG_OFFSET): Likewise. (SVE_PT_SVE_ZREGS_SIZE): Likewise. (SVE_PT_SVE_PREGS_OFFSET): Likewise. (SVE_PT_SVE_PREG_OFFSET): Likewise. (SVE_PT_SVE_PREGS_SIZE): Likewise. (SVE_PT_SVE_FFR_OFFSET): Likewise. (SVE_PT_SVE_FPSR_OFFSET): Likewise. (SVE_PT_SVE_FPCR_OFFSET): Likewise. (SVE_PT_SVE_SIZE): Likewise. (SVE_PT_SIZE): Likewise. (HAS_SVE_STATE): New define. gdbserver/ * Makefile.in: Add aarch64-sve-linux-ptrace.c.
2018-06-15 19:21:31 +08:00
}
}
if (REG_VALID == reg_buf->get_register_status (AARCH64_FPSR_REGNUM))
gdb: change regcache interface to use array_view Change most of regcache (and base classes) to use array_view when possible, instead of raw pointers. By propagating the use of array_view further, it enables having some runtime checks to make sure the what we read from or write to regcaches has the expected length (such as the one in the `copy(array_view, array_view)` function. It also integrates well when connecting with other APIs already using gdb::array_view. Add some overloads of the methods using raw pointers to avoid having to change all call sites at once (which is both a lot of work and risky). I tried to do this change in small increments, but since many of these functions use each other, it ended up simpler to do it in one shot than having a lot of intermediary / transient changes. This change extends into gdbserver as well, because there is some part of the regcache interface that is shared. Changing the reg_buffer_common interface to use array_view caused some build failures in nat/aarch64-scalable-linux-ptrace.c. That file currently "takes advantage" of the fact that reg_buffer_common::{raw_supply,raw_collect} operates on `void *`, which IMO is dangerous. It uses raw_supply/raw_collect directly on uint64_t's, which I guess is fine because it is expected that native code will have the same endianness as the debugged process. To accomodate that, add some overloads of raw_collect and raw_supply that work on uint64_t. This file also uses raw_collect and raw_supply on `char` pointers. Change it to use `gdb_byte` pointers instead. Add overloads of raw_collect and raw_supply that work on `gdb_byte *` and make an array_view on the fly using the register's size. Those call sites could be converted to use array_view with not much work, in which case these overloads could be removed, but I didn't want to do it in this patch, to avoid starting to dig in arch-specific code. During development, I inadvertently changed reg_buffer::raw_compare's behavior to not accept an offset equal to the register size. This behavior (effectively comparing 0 bytes, returning true) change was caught by the AArch64 SME core tests. Add a selftest to make sure that this raw_compare behavior is preserved in the future. Change-Id: I9005f04114543ddff738949e12d85a31855304c2 Reviewed-By: John Baldwin <jhb@FreeBSD.org>
2023-12-02 00:27:18 +08:00
reg_buf->raw_collect (AARCH64_FPSR_REGNUM,
(gdb_byte *) &fpsimd->fpsr);
Ptrace support for Aarch64 SVE Add support for reading and writing registers for Aarch64 SVE. We need to support the cases where the kernel only gives us a fpsimd structure. This occurs when there is no active SVE state in the kernel (for example, after starting a new process). Added checks to make sure the vector length has not changed whilst the process is running. gdb/ * aarch64-linux-nat.c (fetch_sveregs_from_thread): New function. (store_sveregs_to_thread): Likewise. (aarch64_linux_fetch_inferior_registers): Check for SVE. (aarch64_linux_store_inferior_registers): Likewise. * nat/aarch64-sve-linux-ptrace.c (aarch64_sve_get_sveregs): New function. (aarch64_sve_regs_copy_to_regcache): Likewise. (aarch64_sve_regs_copy_from_regcache): Likewise. * nat/aarch64-sve-linux-ptrace.h (aarch64_sve_get_sveregs): New declaration. (aarch64_sve_regs_copy_to_regcache): Likewise. (aarch64_sve_regs_copy_from_regcache): Likewise. (sve_context): Structure from Linux headers. (SVE_SIG_ZREGS_SIZE): Define from Linux headers. (SVE_SIG_ZREG_SIZE): Likewise. (SVE_SIG_PREG_SIZE): Likewise. (SVE_SIG_FFR_SIZE): Likewise. (SVE_SIG_REGS_OFFSET): Likewise. (SVE_SIG_ZREGS_OFFSET): Likewise. (SVE_SIG_ZREG_OFFSET): Likewise. (SVE_SIG_ZREGS_SIZE): Likewise. (SVE_SIG_PREGS_OFFSET): Likewise. (SVE_SIG_PREG_OFFSET): Likewise. (SVE_SIG_PREGS_SIZE): Likewise. (SVE_SIG_FFR_OFFSET): Likewise. (SVE_SIG_REGS_SIZE): Likewise. (SVE_SIG_CONTEXT_SIZE): Likewise. (SVE_PT_REGS_MASK): Likewise. (SVE_PT_REGS_FPSIMD): Likewise. (SVE_PT_REGS_SVE): Likewise. (SVE_PT_VL_INHERIT): Likewise. (SVE_PT_VL_ONEXEC): Likewise. (SVE_PT_REGS_OFFSET): Likewise. (SVE_PT_FPSIMD_OFFSET): Likewise. (SVE_PT_FPSIMD_SIZE): Likewise. (SVE_PT_SVE_ZREG_SIZE): Likewise. (SVE_PT_SVE_PREG_SIZE): Likewise. (SVE_PT_SVE_FFR_SIZE): Likewise. (SVE_PT_SVE_FPSR_SIZE): Likewise. (SVE_PT_SVE_FPCR_SIZE): Likewise. (__SVE_SIG_TO_PT): Likewise. (SVE_PT_SVE_OFFSET): Likewise. (SVE_PT_SVE_ZREGS_OFFSET): Likewise. (SVE_PT_SVE_ZREG_OFFSET): Likewise. (SVE_PT_SVE_ZREGS_SIZE): Likewise. (SVE_PT_SVE_PREGS_OFFSET): Likewise. (SVE_PT_SVE_PREG_OFFSET): Likewise. (SVE_PT_SVE_PREGS_SIZE): Likewise. (SVE_PT_SVE_FFR_OFFSET): Likewise. (SVE_PT_SVE_FPSR_OFFSET): Likewise. (SVE_PT_SVE_FPCR_OFFSET): Likewise. (SVE_PT_SVE_SIZE): Likewise. (SVE_PT_SIZE): Likewise. (HAS_SVE_STATE): New define. gdbserver/ * Makefile.in: Add aarch64-sve-linux-ptrace.c.
2018-06-15 19:21:31 +08:00
if (REG_VALID == reg_buf->get_register_status (AARCH64_FPCR_REGNUM))
gdb: change regcache interface to use array_view Change most of regcache (and base classes) to use array_view when possible, instead of raw pointers. By propagating the use of array_view further, it enables having some runtime checks to make sure the what we read from or write to regcaches has the expected length (such as the one in the `copy(array_view, array_view)` function. It also integrates well when connecting with other APIs already using gdb::array_view. Add some overloads of the methods using raw pointers to avoid having to change all call sites at once (which is both a lot of work and risky). I tried to do this change in small increments, but since many of these functions use each other, it ended up simpler to do it in one shot than having a lot of intermediary / transient changes. This change extends into gdbserver as well, because there is some part of the regcache interface that is shared. Changing the reg_buffer_common interface to use array_view caused some build failures in nat/aarch64-scalable-linux-ptrace.c. That file currently "takes advantage" of the fact that reg_buffer_common::{raw_supply,raw_collect} operates on `void *`, which IMO is dangerous. It uses raw_supply/raw_collect directly on uint64_t's, which I guess is fine because it is expected that native code will have the same endianness as the debugged process. To accomodate that, add some overloads of raw_collect and raw_supply that work on uint64_t. This file also uses raw_collect and raw_supply on `char` pointers. Change it to use `gdb_byte` pointers instead. Add overloads of raw_collect and raw_supply that work on `gdb_byte *` and make an array_view on the fly using the register's size. Those call sites could be converted to use array_view with not much work, in which case these overloads could be removed, but I didn't want to do it in this patch, to avoid starting to dig in arch-specific code. During development, I inadvertently changed reg_buffer::raw_compare's behavior to not accept an offset equal to the register size. This behavior (effectively comparing 0 bytes, returning true) change was caught by the AArch64 SME core tests. Add a selftest to make sure that this raw_compare behavior is preserved in the future. Change-Id: I9005f04114543ddff738949e12d85a31855304c2 Reviewed-By: John Baldwin <jhb@FreeBSD.org>
2023-12-02 00:27:18 +08:00
reg_buf->raw_collect (AARCH64_FPCR_REGNUM,
(gdb_byte *) &fpsimd->fpcr);
Ptrace support for Aarch64 SVE Add support for reading and writing registers for Aarch64 SVE. We need to support the cases where the kernel only gives us a fpsimd structure. This occurs when there is no active SVE state in the kernel (for example, after starting a new process). Added checks to make sure the vector length has not changed whilst the process is running. gdb/ * aarch64-linux-nat.c (fetch_sveregs_from_thread): New function. (store_sveregs_to_thread): Likewise. (aarch64_linux_fetch_inferior_registers): Check for SVE. (aarch64_linux_store_inferior_registers): Likewise. * nat/aarch64-sve-linux-ptrace.c (aarch64_sve_get_sveregs): New function. (aarch64_sve_regs_copy_to_regcache): Likewise. (aarch64_sve_regs_copy_from_regcache): Likewise. * nat/aarch64-sve-linux-ptrace.h (aarch64_sve_get_sveregs): New declaration. (aarch64_sve_regs_copy_to_regcache): Likewise. (aarch64_sve_regs_copy_from_regcache): Likewise. (sve_context): Structure from Linux headers. (SVE_SIG_ZREGS_SIZE): Define from Linux headers. (SVE_SIG_ZREG_SIZE): Likewise. (SVE_SIG_PREG_SIZE): Likewise. (SVE_SIG_FFR_SIZE): Likewise. (SVE_SIG_REGS_OFFSET): Likewise. (SVE_SIG_ZREGS_OFFSET): Likewise. (SVE_SIG_ZREG_OFFSET): Likewise. (SVE_SIG_ZREGS_SIZE): Likewise. (SVE_SIG_PREGS_OFFSET): Likewise. (SVE_SIG_PREG_OFFSET): Likewise. (SVE_SIG_PREGS_SIZE): Likewise. (SVE_SIG_FFR_OFFSET): Likewise. (SVE_SIG_REGS_SIZE): Likewise. (SVE_SIG_CONTEXT_SIZE): Likewise. (SVE_PT_REGS_MASK): Likewise. (SVE_PT_REGS_FPSIMD): Likewise. (SVE_PT_REGS_SVE): Likewise. (SVE_PT_VL_INHERIT): Likewise. (SVE_PT_VL_ONEXEC): Likewise. (SVE_PT_REGS_OFFSET): Likewise. (SVE_PT_FPSIMD_OFFSET): Likewise. (SVE_PT_FPSIMD_SIZE): Likewise. (SVE_PT_SVE_ZREG_SIZE): Likewise. (SVE_PT_SVE_PREG_SIZE): Likewise. (SVE_PT_SVE_FFR_SIZE): Likewise. (SVE_PT_SVE_FPSR_SIZE): Likewise. (SVE_PT_SVE_FPCR_SIZE): Likewise. (__SVE_SIG_TO_PT): Likewise. (SVE_PT_SVE_OFFSET): Likewise. (SVE_PT_SVE_ZREGS_OFFSET): Likewise. (SVE_PT_SVE_ZREG_OFFSET): Likewise. (SVE_PT_SVE_ZREGS_SIZE): Likewise. (SVE_PT_SVE_PREGS_OFFSET): Likewise. (SVE_PT_SVE_PREG_OFFSET): Likewise. (SVE_PT_SVE_PREGS_SIZE): Likewise. (SVE_PT_SVE_FFR_OFFSET): Likewise. (SVE_PT_SVE_FPSR_OFFSET): Likewise. (SVE_PT_SVE_FPCR_OFFSET): Likewise. (SVE_PT_SVE_SIZE): Likewise. (SVE_PT_SIZE): Likewise. (HAS_SVE_STATE): New define. gdbserver/ * Makefile.in: Add aarch64-sve-linux-ptrace.c.
2018-06-15 19:21:31 +08:00
refactor: Simplify SVE interface to read/write registers This is a patch in preparation to upcoming patches enabling SME support. It attempts to simplify the gdb/gdbserver shared interface used to read/write SVE registers. Where the current code makes use of unique_ptr, allocating a new buffer by hand and passing a buffer around, this patch makes that code use gdb::byte_vector and passes a reference to this byte vector to the functions, allowing the functions to have ready access to the size of the buffer. It also shares a bit more code between gdb and gdbserver, in particular around handling of ptrace get/set requests for SVE. I think gdbserver could be refactored to handle register reads/writes more like gdb's native layer as opposed to letting the generic linux-low layer do the ptrace calls. This is not very flexible and assumes one size for the responses. If you have something like NT_ARM_SVE, where you can have either FPSIMD or SVE contents, it doesn't work that well. I didn't want to change that interface right now as it is a bit too much work and touches all the targets, some of which I can't easily test. Hence the reason why the buffer the generic linux-now passes down to linux-aarch64-low is unused or ignored. No user-visible changes should happen as part of this refactor other than a slightly reworded warning message. While doing the refactor, I also noticed what seems to be a mistake in checking if the register cache contains active (non-zero) SVE data. For instance, the original code did something like this in aarch64_sve_regs_copy_from_reg_buf: has_sve_state |= reg_buf->raw_compare (AARCH64_SVE_Z0_REGNUM + i reg, sizeof (__int128_t)); "reg" is a zeroed-out buffer that we compare the Z register contents past the first 128 bits. The problem here is that raw_compare returns 1 if the contents compare the same, which means has_sve_state will be true. But if we compared the Z register contents to 0, it means we *do not* have SVE state, and therefore has_sve_state should be false. The consequence of this mistake is that we convert the initial FPSIMD-formatted data we get from ptrace for the NT_ARM_SVE register set to a SVE-formatted one. In the end, this doesn't cause user-visible differences because the values of both the Z and V registers will still be the same. But the logic is not correct. I used the opportunity to fix this, and it gets tested later on by the additional SME tests. I do plan on submitting some SVE-specific tests to make sure we have a bit more coverage in GDB's testsuite. Regression-tested on aarch64-linux Ubuntu 22.04/20.04. Reviewed-by: Thiago Jung Bauermann <thiago.bauermann@linaro.org>
2023-02-07 18:08:23 +08:00
/* At this point we have collected all the data from the register
cache and we are ready to update the FPSIMD register content
of the thread. */
Ptrace support for Aarch64 SVE Add support for reading and writing registers for Aarch64 SVE. We need to support the cases where the kernel only gives us a fpsimd structure. This occurs when there is no active SVE state in the kernel (for example, after starting a new process). Added checks to make sure the vector length has not changed whilst the process is running. gdb/ * aarch64-linux-nat.c (fetch_sveregs_from_thread): New function. (store_sveregs_to_thread): Likewise. (aarch64_linux_fetch_inferior_registers): Check for SVE. (aarch64_linux_store_inferior_registers): Likewise. * nat/aarch64-sve-linux-ptrace.c (aarch64_sve_get_sveregs): New function. (aarch64_sve_regs_copy_to_regcache): Likewise. (aarch64_sve_regs_copy_from_regcache): Likewise. * nat/aarch64-sve-linux-ptrace.h (aarch64_sve_get_sveregs): New declaration. (aarch64_sve_regs_copy_to_regcache): Likewise. (aarch64_sve_regs_copy_from_regcache): Likewise. (sve_context): Structure from Linux headers. (SVE_SIG_ZREGS_SIZE): Define from Linux headers. (SVE_SIG_ZREG_SIZE): Likewise. (SVE_SIG_PREG_SIZE): Likewise. (SVE_SIG_FFR_SIZE): Likewise. (SVE_SIG_REGS_OFFSET): Likewise. (SVE_SIG_ZREGS_OFFSET): Likewise. (SVE_SIG_ZREG_OFFSET): Likewise. (SVE_SIG_ZREGS_SIZE): Likewise. (SVE_SIG_PREGS_OFFSET): Likewise. (SVE_SIG_PREG_OFFSET): Likewise. (SVE_SIG_PREGS_SIZE): Likewise. (SVE_SIG_FFR_OFFSET): Likewise. (SVE_SIG_REGS_SIZE): Likewise. (SVE_SIG_CONTEXT_SIZE): Likewise. (SVE_PT_REGS_MASK): Likewise. (SVE_PT_REGS_FPSIMD): Likewise. (SVE_PT_REGS_SVE): Likewise. (SVE_PT_VL_INHERIT): Likewise. (SVE_PT_VL_ONEXEC): Likewise. (SVE_PT_REGS_OFFSET): Likewise. (SVE_PT_FPSIMD_OFFSET): Likewise. (SVE_PT_FPSIMD_SIZE): Likewise. (SVE_PT_SVE_ZREG_SIZE): Likewise. (SVE_PT_SVE_PREG_SIZE): Likewise. (SVE_PT_SVE_FFR_SIZE): Likewise. (SVE_PT_SVE_FPSR_SIZE): Likewise. (SVE_PT_SVE_FPCR_SIZE): Likewise. (__SVE_SIG_TO_PT): Likewise. (SVE_PT_SVE_OFFSET): Likewise. (SVE_PT_SVE_ZREGS_OFFSET): Likewise. (SVE_PT_SVE_ZREG_OFFSET): Likewise. (SVE_PT_SVE_ZREGS_SIZE): Likewise. (SVE_PT_SVE_PREGS_OFFSET): Likewise. (SVE_PT_SVE_PREG_OFFSET): Likewise. (SVE_PT_SVE_PREGS_SIZE): Likewise. (SVE_PT_SVE_FFR_OFFSET): Likewise. (SVE_PT_SVE_FPSR_OFFSET): Likewise. (SVE_PT_SVE_FPCR_OFFSET): Likewise. (SVE_PT_SVE_SIZE): Likewise. (SVE_PT_SIZE): Likewise. (HAS_SVE_STATE): New define. gdbserver/ * Makefile.in: Add aarch64-sve-linux-ptrace.c.
2018-06-15 19:21:31 +08:00
refactor: Simplify SVE interface to read/write registers This is a patch in preparation to upcoming patches enabling SME support. It attempts to simplify the gdb/gdbserver shared interface used to read/write SVE registers. Where the current code makes use of unique_ptr, allocating a new buffer by hand and passing a buffer around, this patch makes that code use gdb::byte_vector and passes a reference to this byte vector to the functions, allowing the functions to have ready access to the size of the buffer. It also shares a bit more code between gdb and gdbserver, in particular around handling of ptrace get/set requests for SVE. I think gdbserver could be refactored to handle register reads/writes more like gdb's native layer as opposed to letting the generic linux-low layer do the ptrace calls. This is not very flexible and assumes one size for the responses. If you have something like NT_ARM_SVE, where you can have either FPSIMD or SVE contents, it doesn't work that well. I didn't want to change that interface right now as it is a bit too much work and touches all the targets, some of which I can't easily test. Hence the reason why the buffer the generic linux-now passes down to linux-aarch64-low is unused or ignored. No user-visible changes should happen as part of this refactor other than a slightly reworded warning message. While doing the refactor, I also noticed what seems to be a mistake in checking if the register cache contains active (non-zero) SVE data. For instance, the original code did something like this in aarch64_sve_regs_copy_from_reg_buf: has_sve_state |= reg_buf->raw_compare (AARCH64_SVE_Z0_REGNUM + i reg, sizeof (__int128_t)); "reg" is a zeroed-out buffer that we compare the Z register contents past the first 128 bits. The problem here is that raw_compare returns 1 if the contents compare the same, which means has_sve_state will be true. But if we compared the Z register contents to 0, it means we *do not* have SVE state, and therefore has_sve_state should be false. The consequence of this mistake is that we convert the initial FPSIMD-formatted data we get from ptrace for the NT_ARM_SVE register set to a SVE-formatted one. In the end, this doesn't cause user-visible differences because the values of both the Z and V registers will still be the same. But the logic is not correct. I used the opportunity to fix this, and it gets tested later on by the additional SME tests. I do plan on submitting some SVE-specific tests to make sure we have a bit more coverage in GDB's testsuite. Regression-tested on aarch64-linux Ubuntu 22.04/20.04. Reviewed-by: Thiago Jung Bauermann <thiago.bauermann@linaro.org>
2023-02-07 18:08:23 +08:00
/* Fall through so we can update the thread's contents with the
FPSIMD register cache values. */
}
else
{
/* Otherwise, reformat the fpsimd structure into a full SVE set, by
expanding the V registers (working backwards so we don't splat
registers before they are copied) and using zero for everything
else.
Note that enough space for a full SVE dump was originally allocated
for base. */
header->flags |= SVE_PT_REGS_SVE;
header->size = SVE_PT_SIZE (vq, SVE_PT_REGS_SVE);
memcpy (base + SVE_PT_SVE_FPSR_OFFSET (vq), &fpsimd->fpsr,
sizeof (uint32_t));
memcpy (base + SVE_PT_SVE_FPCR_OFFSET (vq), &fpsimd->fpcr,
sizeof (uint32_t));
for (int i = AARCH64_SVE_Z_REGS_NUM - 1; i >= 0 ; i--)
{
memcpy (base + SVE_PT_SVE_ZREG_OFFSET (vq, i), &fpsimd->vregs[i],
sizeof (__int128_t));
}
Ptrace support for Aarch64 SVE Add support for reading and writing registers for Aarch64 SVE. We need to support the cases where the kernel only gives us a fpsimd structure. This occurs when there is no active SVE state in the kernel (for example, after starting a new process). Added checks to make sure the vector length has not changed whilst the process is running. gdb/ * aarch64-linux-nat.c (fetch_sveregs_from_thread): New function. (store_sveregs_to_thread): Likewise. (aarch64_linux_fetch_inferior_registers): Check for SVE. (aarch64_linux_store_inferior_registers): Likewise. * nat/aarch64-sve-linux-ptrace.c (aarch64_sve_get_sveregs): New function. (aarch64_sve_regs_copy_to_regcache): Likewise. (aarch64_sve_regs_copy_from_regcache): Likewise. * nat/aarch64-sve-linux-ptrace.h (aarch64_sve_get_sveregs): New declaration. (aarch64_sve_regs_copy_to_regcache): Likewise. (aarch64_sve_regs_copy_from_regcache): Likewise. (sve_context): Structure from Linux headers. (SVE_SIG_ZREGS_SIZE): Define from Linux headers. (SVE_SIG_ZREG_SIZE): Likewise. (SVE_SIG_PREG_SIZE): Likewise. (SVE_SIG_FFR_SIZE): Likewise. (SVE_SIG_REGS_OFFSET): Likewise. (SVE_SIG_ZREGS_OFFSET): Likewise. (SVE_SIG_ZREG_OFFSET): Likewise. (SVE_SIG_ZREGS_SIZE): Likewise. (SVE_SIG_PREGS_OFFSET): Likewise. (SVE_SIG_PREG_OFFSET): Likewise. (SVE_SIG_PREGS_SIZE): Likewise. (SVE_SIG_FFR_OFFSET): Likewise. (SVE_SIG_REGS_SIZE): Likewise. (SVE_SIG_CONTEXT_SIZE): Likewise. (SVE_PT_REGS_MASK): Likewise. (SVE_PT_REGS_FPSIMD): Likewise. (SVE_PT_REGS_SVE): Likewise. (SVE_PT_VL_INHERIT): Likewise. (SVE_PT_VL_ONEXEC): Likewise. (SVE_PT_REGS_OFFSET): Likewise. (SVE_PT_FPSIMD_OFFSET): Likewise. (SVE_PT_FPSIMD_SIZE): Likewise. (SVE_PT_SVE_ZREG_SIZE): Likewise. (SVE_PT_SVE_PREG_SIZE): Likewise. (SVE_PT_SVE_FFR_SIZE): Likewise. (SVE_PT_SVE_FPSR_SIZE): Likewise. (SVE_PT_SVE_FPCR_SIZE): Likewise. (__SVE_SIG_TO_PT): Likewise. (SVE_PT_SVE_OFFSET): Likewise. (SVE_PT_SVE_ZREGS_OFFSET): Likewise. (SVE_PT_SVE_ZREG_OFFSET): Likewise. (SVE_PT_SVE_ZREGS_SIZE): Likewise. (SVE_PT_SVE_PREGS_OFFSET): Likewise. (SVE_PT_SVE_PREG_OFFSET): Likewise. (SVE_PT_SVE_PREGS_SIZE): Likewise. (SVE_PT_SVE_FFR_OFFSET): Likewise. (SVE_PT_SVE_FPSR_OFFSET): Likewise. (SVE_PT_SVE_FPCR_OFFSET): Likewise. (SVE_PT_SVE_SIZE): Likewise. (SVE_PT_SIZE): Likewise. (HAS_SVE_STATE): New define. gdbserver/ * Makefile.in: Add aarch64-sve-linux-ptrace.c.
2018-06-15 19:21:31 +08:00
refactor: Simplify SVE interface to read/write registers This is a patch in preparation to upcoming patches enabling SME support. It attempts to simplify the gdb/gdbserver shared interface used to read/write SVE registers. Where the current code makes use of unique_ptr, allocating a new buffer by hand and passing a buffer around, this patch makes that code use gdb::byte_vector and passes a reference to this byte vector to the functions, allowing the functions to have ready access to the size of the buffer. It also shares a bit more code between gdb and gdbserver, in particular around handling of ptrace get/set requests for SVE. I think gdbserver could be refactored to handle register reads/writes more like gdb's native layer as opposed to letting the generic linux-low layer do the ptrace calls. This is not very flexible and assumes one size for the responses. If you have something like NT_ARM_SVE, where you can have either FPSIMD or SVE contents, it doesn't work that well. I didn't want to change that interface right now as it is a bit too much work and touches all the targets, some of which I can't easily test. Hence the reason why the buffer the generic linux-now passes down to linux-aarch64-low is unused or ignored. No user-visible changes should happen as part of this refactor other than a slightly reworded warning message. While doing the refactor, I also noticed what seems to be a mistake in checking if the register cache contains active (non-zero) SVE data. For instance, the original code did something like this in aarch64_sve_regs_copy_from_reg_buf: has_sve_state |= reg_buf->raw_compare (AARCH64_SVE_Z0_REGNUM + i reg, sizeof (__int128_t)); "reg" is a zeroed-out buffer that we compare the Z register contents past the first 128 bits. The problem here is that raw_compare returns 1 if the contents compare the same, which means has_sve_state will be true. But if we compared the Z register contents to 0, it means we *do not* have SVE state, and therefore has_sve_state should be false. The consequence of this mistake is that we convert the initial FPSIMD-formatted data we get from ptrace for the NT_ARM_SVE register set to a SVE-formatted one. In the end, this doesn't cause user-visible differences because the values of both the Z and V registers will still be the same. But the logic is not correct. I used the opportunity to fix this, and it gets tested later on by the additional SME tests. I do plan on submitting some SVE-specific tests to make sure we have a bit more coverage in GDB's testsuite. Regression-tested on aarch64-linux Ubuntu 22.04/20.04. Reviewed-by: Thiago Jung Bauermann <thiago.bauermann@linaro.org>
2023-02-07 18:08:23 +08:00
/* At this point we have converted the FPSIMD layout to an SVE
layout and copied the register data.
Ptrace support for Aarch64 SVE Add support for reading and writing registers for Aarch64 SVE. We need to support the cases where the kernel only gives us a fpsimd structure. This occurs when there is no active SVE state in the kernel (for example, after starting a new process). Added checks to make sure the vector length has not changed whilst the process is running. gdb/ * aarch64-linux-nat.c (fetch_sveregs_from_thread): New function. (store_sveregs_to_thread): Likewise. (aarch64_linux_fetch_inferior_registers): Check for SVE. (aarch64_linux_store_inferior_registers): Likewise. * nat/aarch64-sve-linux-ptrace.c (aarch64_sve_get_sveregs): New function. (aarch64_sve_regs_copy_to_regcache): Likewise. (aarch64_sve_regs_copy_from_regcache): Likewise. * nat/aarch64-sve-linux-ptrace.h (aarch64_sve_get_sveregs): New declaration. (aarch64_sve_regs_copy_to_regcache): Likewise. (aarch64_sve_regs_copy_from_regcache): Likewise. (sve_context): Structure from Linux headers. (SVE_SIG_ZREGS_SIZE): Define from Linux headers. (SVE_SIG_ZREG_SIZE): Likewise. (SVE_SIG_PREG_SIZE): Likewise. (SVE_SIG_FFR_SIZE): Likewise. (SVE_SIG_REGS_OFFSET): Likewise. (SVE_SIG_ZREGS_OFFSET): Likewise. (SVE_SIG_ZREG_OFFSET): Likewise. (SVE_SIG_ZREGS_SIZE): Likewise. (SVE_SIG_PREGS_OFFSET): Likewise. (SVE_SIG_PREG_OFFSET): Likewise. (SVE_SIG_PREGS_SIZE): Likewise. (SVE_SIG_FFR_OFFSET): Likewise. (SVE_SIG_REGS_SIZE): Likewise. (SVE_SIG_CONTEXT_SIZE): Likewise. (SVE_PT_REGS_MASK): Likewise. (SVE_PT_REGS_FPSIMD): Likewise. (SVE_PT_REGS_SVE): Likewise. (SVE_PT_VL_INHERIT): Likewise. (SVE_PT_VL_ONEXEC): Likewise. (SVE_PT_REGS_OFFSET): Likewise. (SVE_PT_FPSIMD_OFFSET): Likewise. (SVE_PT_FPSIMD_SIZE): Likewise. (SVE_PT_SVE_ZREG_SIZE): Likewise. (SVE_PT_SVE_PREG_SIZE): Likewise. (SVE_PT_SVE_FFR_SIZE): Likewise. (SVE_PT_SVE_FPSR_SIZE): Likewise. (SVE_PT_SVE_FPCR_SIZE): Likewise. (__SVE_SIG_TO_PT): Likewise. (SVE_PT_SVE_OFFSET): Likewise. (SVE_PT_SVE_ZREGS_OFFSET): Likewise. (SVE_PT_SVE_ZREG_OFFSET): Likewise. (SVE_PT_SVE_ZREGS_SIZE): Likewise. (SVE_PT_SVE_PREGS_OFFSET): Likewise. (SVE_PT_SVE_PREG_OFFSET): Likewise. (SVE_PT_SVE_PREGS_SIZE): Likewise. (SVE_PT_SVE_FFR_OFFSET): Likewise. (SVE_PT_SVE_FPSR_OFFSET): Likewise. (SVE_PT_SVE_FPCR_OFFSET): Likewise. (SVE_PT_SVE_SIZE): Likewise. (SVE_PT_SIZE): Likewise. (HAS_SVE_STATE): New define. gdbserver/ * Makefile.in: Add aarch64-sve-linux-ptrace.c.
2018-06-15 19:21:31 +08:00
refactor: Simplify SVE interface to read/write registers This is a patch in preparation to upcoming patches enabling SME support. It attempts to simplify the gdb/gdbserver shared interface used to read/write SVE registers. Where the current code makes use of unique_ptr, allocating a new buffer by hand and passing a buffer around, this patch makes that code use gdb::byte_vector and passes a reference to this byte vector to the functions, allowing the functions to have ready access to the size of the buffer. It also shares a bit more code between gdb and gdbserver, in particular around handling of ptrace get/set requests for SVE. I think gdbserver could be refactored to handle register reads/writes more like gdb's native layer as opposed to letting the generic linux-low layer do the ptrace calls. This is not very flexible and assumes one size for the responses. If you have something like NT_ARM_SVE, where you can have either FPSIMD or SVE contents, it doesn't work that well. I didn't want to change that interface right now as it is a bit too much work and touches all the targets, some of which I can't easily test. Hence the reason why the buffer the generic linux-now passes down to linux-aarch64-low is unused or ignored. No user-visible changes should happen as part of this refactor other than a slightly reworded warning message. While doing the refactor, I also noticed what seems to be a mistake in checking if the register cache contains active (non-zero) SVE data. For instance, the original code did something like this in aarch64_sve_regs_copy_from_reg_buf: has_sve_state |= reg_buf->raw_compare (AARCH64_SVE_Z0_REGNUM + i reg, sizeof (__int128_t)); "reg" is a zeroed-out buffer that we compare the Z register contents past the first 128 bits. The problem here is that raw_compare returns 1 if the contents compare the same, which means has_sve_state will be true. But if we compared the Z register contents to 0, it means we *do not* have SVE state, and therefore has_sve_state should be false. The consequence of this mistake is that we convert the initial FPSIMD-formatted data we get from ptrace for the NT_ARM_SVE register set to a SVE-formatted one. In the end, this doesn't cause user-visible differences because the values of both the Z and V registers will still be the same. But the logic is not correct. I used the opportunity to fix this, and it gets tested later on by the additional SME tests. I do plan on submitting some SVE-specific tests to make sure we have a bit more coverage in GDB's testsuite. Regression-tested on aarch64-linux Ubuntu 22.04/20.04. Reviewed-by: Thiago Jung Bauermann <thiago.bauermann@linaro.org>
2023-02-07 18:08:23 +08:00
Fall through so we can update the thread's contents with the SVE
register cache values. */
Ptrace support for Aarch64 SVE Add support for reading and writing registers for Aarch64 SVE. We need to support the cases where the kernel only gives us a fpsimd structure. This occurs when there is no active SVE state in the kernel (for example, after starting a new process). Added checks to make sure the vector length has not changed whilst the process is running. gdb/ * aarch64-linux-nat.c (fetch_sveregs_from_thread): New function. (store_sveregs_to_thread): Likewise. (aarch64_linux_fetch_inferior_registers): Check for SVE. (aarch64_linux_store_inferior_registers): Likewise. * nat/aarch64-sve-linux-ptrace.c (aarch64_sve_get_sveregs): New function. (aarch64_sve_regs_copy_to_regcache): Likewise. (aarch64_sve_regs_copy_from_regcache): Likewise. * nat/aarch64-sve-linux-ptrace.h (aarch64_sve_get_sveregs): New declaration. (aarch64_sve_regs_copy_to_regcache): Likewise. (aarch64_sve_regs_copy_from_regcache): Likewise. (sve_context): Structure from Linux headers. (SVE_SIG_ZREGS_SIZE): Define from Linux headers. (SVE_SIG_ZREG_SIZE): Likewise. (SVE_SIG_PREG_SIZE): Likewise. (SVE_SIG_FFR_SIZE): Likewise. (SVE_SIG_REGS_OFFSET): Likewise. (SVE_SIG_ZREGS_OFFSET): Likewise. (SVE_SIG_ZREG_OFFSET): Likewise. (SVE_SIG_ZREGS_SIZE): Likewise. (SVE_SIG_PREGS_OFFSET): Likewise. (SVE_SIG_PREG_OFFSET): Likewise. (SVE_SIG_PREGS_SIZE): Likewise. (SVE_SIG_FFR_OFFSET): Likewise. (SVE_SIG_REGS_SIZE): Likewise. (SVE_SIG_CONTEXT_SIZE): Likewise. (SVE_PT_REGS_MASK): Likewise. (SVE_PT_REGS_FPSIMD): Likewise. (SVE_PT_REGS_SVE): Likewise. (SVE_PT_VL_INHERIT): Likewise. (SVE_PT_VL_ONEXEC): Likewise. (SVE_PT_REGS_OFFSET): Likewise. (SVE_PT_FPSIMD_OFFSET): Likewise. (SVE_PT_FPSIMD_SIZE): Likewise. (SVE_PT_SVE_ZREG_SIZE): Likewise. (SVE_PT_SVE_PREG_SIZE): Likewise. (SVE_PT_SVE_FFR_SIZE): Likewise. (SVE_PT_SVE_FPSR_SIZE): Likewise. (SVE_PT_SVE_FPCR_SIZE): Likewise. (__SVE_SIG_TO_PT): Likewise. (SVE_PT_SVE_OFFSET): Likewise. (SVE_PT_SVE_ZREGS_OFFSET): Likewise. (SVE_PT_SVE_ZREG_OFFSET): Likewise. (SVE_PT_SVE_ZREGS_SIZE): Likewise. (SVE_PT_SVE_PREGS_OFFSET): Likewise. (SVE_PT_SVE_PREG_OFFSET): Likewise. (SVE_PT_SVE_PREGS_SIZE): Likewise. (SVE_PT_SVE_FFR_OFFSET): Likewise. (SVE_PT_SVE_FPSR_OFFSET): Likewise. (SVE_PT_SVE_FPCR_OFFSET): Likewise. (SVE_PT_SVE_SIZE): Likewise. (SVE_PT_SIZE): Likewise. (HAS_SVE_STATE): New define. gdbserver/ * Makefile.in: Add aarch64-sve-linux-ptrace.c.
2018-06-15 19:21:31 +08:00
}
}
refactor: Simplify SVE interface to read/write registers This is a patch in preparation to upcoming patches enabling SME support. It attempts to simplify the gdb/gdbserver shared interface used to read/write SVE registers. Where the current code makes use of unique_ptr, allocating a new buffer by hand and passing a buffer around, this patch makes that code use gdb::byte_vector and passes a reference to this byte vector to the functions, allowing the functions to have ready access to the size of the buffer. It also shares a bit more code between gdb and gdbserver, in particular around handling of ptrace get/set requests for SVE. I think gdbserver could be refactored to handle register reads/writes more like gdb's native layer as opposed to letting the generic linux-low layer do the ptrace calls. This is not very flexible and assumes one size for the responses. If you have something like NT_ARM_SVE, where you can have either FPSIMD or SVE contents, it doesn't work that well. I didn't want to change that interface right now as it is a bit too much work and touches all the targets, some of which I can't easily test. Hence the reason why the buffer the generic linux-now passes down to linux-aarch64-low is unused or ignored. No user-visible changes should happen as part of this refactor other than a slightly reworded warning message. While doing the refactor, I also noticed what seems to be a mistake in checking if the register cache contains active (non-zero) SVE data. For instance, the original code did something like this in aarch64_sve_regs_copy_from_reg_buf: has_sve_state |= reg_buf->raw_compare (AARCH64_SVE_Z0_REGNUM + i reg, sizeof (__int128_t)); "reg" is a zeroed-out buffer that we compare the Z register contents past the first 128 bits. The problem here is that raw_compare returns 1 if the contents compare the same, which means has_sve_state will be true. But if we compared the Z register contents to 0, it means we *do not* have SVE state, and therefore has_sve_state should be false. The consequence of this mistake is that we convert the initial FPSIMD-formatted data we get from ptrace for the NT_ARM_SVE register set to a SVE-formatted one. In the end, this doesn't cause user-visible differences because the values of both the Z and V registers will still be the same. But the logic is not correct. I used the opportunity to fix this, and it gets tested later on by the additional SME tests. I do plan on submitting some SVE-specific tests to make sure we have a bit more coverage in GDB's testsuite. Regression-tested on aarch64-linux Ubuntu 22.04/20.04. Reviewed-by: Thiago Jung Bauermann <thiago.bauermann@linaro.org>
2023-02-07 18:08:23 +08:00
else
{
/* We already have SVE state for this thread, so we just need to update
the values of the registers. */
for (int i = 0; i < AARCH64_SVE_Z_REGS_NUM; i++)
if (REG_VALID == reg_buf->get_register_status (AARCH64_SVE_Z0_REGNUM
+ i))
reg_buf->raw_collect (AARCH64_SVE_Z0_REGNUM + i,
base + SVE_PT_SVE_ZREG_OFFSET (vq, i));
Ptrace support for Aarch64 SVE Add support for reading and writing registers for Aarch64 SVE. We need to support the cases where the kernel only gives us a fpsimd structure. This occurs when there is no active SVE state in the kernel (for example, after starting a new process). Added checks to make sure the vector length has not changed whilst the process is running. gdb/ * aarch64-linux-nat.c (fetch_sveregs_from_thread): New function. (store_sveregs_to_thread): Likewise. (aarch64_linux_fetch_inferior_registers): Check for SVE. (aarch64_linux_store_inferior_registers): Likewise. * nat/aarch64-sve-linux-ptrace.c (aarch64_sve_get_sveregs): New function. (aarch64_sve_regs_copy_to_regcache): Likewise. (aarch64_sve_regs_copy_from_regcache): Likewise. * nat/aarch64-sve-linux-ptrace.h (aarch64_sve_get_sveregs): New declaration. (aarch64_sve_regs_copy_to_regcache): Likewise. (aarch64_sve_regs_copy_from_regcache): Likewise. (sve_context): Structure from Linux headers. (SVE_SIG_ZREGS_SIZE): Define from Linux headers. (SVE_SIG_ZREG_SIZE): Likewise. (SVE_SIG_PREG_SIZE): Likewise. (SVE_SIG_FFR_SIZE): Likewise. (SVE_SIG_REGS_OFFSET): Likewise. (SVE_SIG_ZREGS_OFFSET): Likewise. (SVE_SIG_ZREG_OFFSET): Likewise. (SVE_SIG_ZREGS_SIZE): Likewise. (SVE_SIG_PREGS_OFFSET): Likewise. (SVE_SIG_PREG_OFFSET): Likewise. (SVE_SIG_PREGS_SIZE): Likewise. (SVE_SIG_FFR_OFFSET): Likewise. (SVE_SIG_REGS_SIZE): Likewise. (SVE_SIG_CONTEXT_SIZE): Likewise. (SVE_PT_REGS_MASK): Likewise. (SVE_PT_REGS_FPSIMD): Likewise. (SVE_PT_REGS_SVE): Likewise. (SVE_PT_VL_INHERIT): Likewise. (SVE_PT_VL_ONEXEC): Likewise. (SVE_PT_REGS_OFFSET): Likewise. (SVE_PT_FPSIMD_OFFSET): Likewise. (SVE_PT_FPSIMD_SIZE): Likewise. (SVE_PT_SVE_ZREG_SIZE): Likewise. (SVE_PT_SVE_PREG_SIZE): Likewise. (SVE_PT_SVE_FFR_SIZE): Likewise. (SVE_PT_SVE_FPSR_SIZE): Likewise. (SVE_PT_SVE_FPCR_SIZE): Likewise. (__SVE_SIG_TO_PT): Likewise. (SVE_PT_SVE_OFFSET): Likewise. (SVE_PT_SVE_ZREGS_OFFSET): Likewise. (SVE_PT_SVE_ZREG_OFFSET): Likewise. (SVE_PT_SVE_ZREGS_SIZE): Likewise. (SVE_PT_SVE_PREGS_OFFSET): Likewise. (SVE_PT_SVE_PREG_OFFSET): Likewise. (SVE_PT_SVE_PREGS_SIZE): Likewise. (SVE_PT_SVE_FFR_OFFSET): Likewise. (SVE_PT_SVE_FPSR_OFFSET): Likewise. (SVE_PT_SVE_FPCR_OFFSET): Likewise. (SVE_PT_SVE_SIZE): Likewise. (SVE_PT_SIZE): Likewise. (HAS_SVE_STATE): New define. gdbserver/ * Makefile.in: Add aarch64-sve-linux-ptrace.c.
2018-06-15 19:21:31 +08:00
refactor: Simplify SVE interface to read/write registers This is a patch in preparation to upcoming patches enabling SME support. It attempts to simplify the gdb/gdbserver shared interface used to read/write SVE registers. Where the current code makes use of unique_ptr, allocating a new buffer by hand and passing a buffer around, this patch makes that code use gdb::byte_vector and passes a reference to this byte vector to the functions, allowing the functions to have ready access to the size of the buffer. It also shares a bit more code between gdb and gdbserver, in particular around handling of ptrace get/set requests for SVE. I think gdbserver could be refactored to handle register reads/writes more like gdb's native layer as opposed to letting the generic linux-low layer do the ptrace calls. This is not very flexible and assumes one size for the responses. If you have something like NT_ARM_SVE, where you can have either FPSIMD or SVE contents, it doesn't work that well. I didn't want to change that interface right now as it is a bit too much work and touches all the targets, some of which I can't easily test. Hence the reason why the buffer the generic linux-now passes down to linux-aarch64-low is unused or ignored. No user-visible changes should happen as part of this refactor other than a slightly reworded warning message. While doing the refactor, I also noticed what seems to be a mistake in checking if the register cache contains active (non-zero) SVE data. For instance, the original code did something like this in aarch64_sve_regs_copy_from_reg_buf: has_sve_state |= reg_buf->raw_compare (AARCH64_SVE_Z0_REGNUM + i reg, sizeof (__int128_t)); "reg" is a zeroed-out buffer that we compare the Z register contents past the first 128 bits. The problem here is that raw_compare returns 1 if the contents compare the same, which means has_sve_state will be true. But if we compared the Z register contents to 0, it means we *do not* have SVE state, and therefore has_sve_state should be false. The consequence of this mistake is that we convert the initial FPSIMD-formatted data we get from ptrace for the NT_ARM_SVE register set to a SVE-formatted one. In the end, this doesn't cause user-visible differences because the values of both the Z and V registers will still be the same. But the logic is not correct. I used the opportunity to fix this, and it gets tested later on by the additional SME tests. I do plan on submitting some SVE-specific tests to make sure we have a bit more coverage in GDB's testsuite. Regression-tested on aarch64-linux Ubuntu 22.04/20.04. Reviewed-by: Thiago Jung Bauermann <thiago.bauermann@linaro.org>
2023-02-07 18:08:23 +08:00
for (int i = 0; i < AARCH64_SVE_P_REGS_NUM; i++)
if (REG_VALID == reg_buf->get_register_status (AARCH64_SVE_P0_REGNUM
+ i))
reg_buf->raw_collect (AARCH64_SVE_P0_REGNUM + i,
base + SVE_PT_SVE_PREG_OFFSET (vq, i));
if (REG_VALID == reg_buf->get_register_status (AARCH64_SVE_FFR_REGNUM))
reg_buf->raw_collect (AARCH64_SVE_FFR_REGNUM,
base + SVE_PT_SVE_FFR_OFFSET (vq));
if (REG_VALID == reg_buf->get_register_status (AARCH64_FPSR_REGNUM))
reg_buf->raw_collect (AARCH64_FPSR_REGNUM,
base + SVE_PT_SVE_FPSR_OFFSET (vq));
if (REG_VALID == reg_buf->get_register_status (AARCH64_FPCR_REGNUM))
reg_buf->raw_collect (AARCH64_FPCR_REGNUM,
base + SVE_PT_SVE_FPCR_OFFSET (vq));
}
Ptrace support for Aarch64 SVE Add support for reading and writing registers for Aarch64 SVE. We need to support the cases where the kernel only gives us a fpsimd structure. This occurs when there is no active SVE state in the kernel (for example, after starting a new process). Added checks to make sure the vector length has not changed whilst the process is running. gdb/ * aarch64-linux-nat.c (fetch_sveregs_from_thread): New function. (store_sveregs_to_thread): Likewise. (aarch64_linux_fetch_inferior_registers): Check for SVE. (aarch64_linux_store_inferior_registers): Likewise. * nat/aarch64-sve-linux-ptrace.c (aarch64_sve_get_sveregs): New function. (aarch64_sve_regs_copy_to_regcache): Likewise. (aarch64_sve_regs_copy_from_regcache): Likewise. * nat/aarch64-sve-linux-ptrace.h (aarch64_sve_get_sveregs): New declaration. (aarch64_sve_regs_copy_to_regcache): Likewise. (aarch64_sve_regs_copy_from_regcache): Likewise. (sve_context): Structure from Linux headers. (SVE_SIG_ZREGS_SIZE): Define from Linux headers. (SVE_SIG_ZREG_SIZE): Likewise. (SVE_SIG_PREG_SIZE): Likewise. (SVE_SIG_FFR_SIZE): Likewise. (SVE_SIG_REGS_OFFSET): Likewise. (SVE_SIG_ZREGS_OFFSET): Likewise. (SVE_SIG_ZREG_OFFSET): Likewise. (SVE_SIG_ZREGS_SIZE): Likewise. (SVE_SIG_PREGS_OFFSET): Likewise. (SVE_SIG_PREG_OFFSET): Likewise. (SVE_SIG_PREGS_SIZE): Likewise. (SVE_SIG_FFR_OFFSET): Likewise. (SVE_SIG_REGS_SIZE): Likewise. (SVE_SIG_CONTEXT_SIZE): Likewise. (SVE_PT_REGS_MASK): Likewise. (SVE_PT_REGS_FPSIMD): Likewise. (SVE_PT_REGS_SVE): Likewise. (SVE_PT_VL_INHERIT): Likewise. (SVE_PT_VL_ONEXEC): Likewise. (SVE_PT_REGS_OFFSET): Likewise. (SVE_PT_FPSIMD_OFFSET): Likewise. (SVE_PT_FPSIMD_SIZE): Likewise. (SVE_PT_SVE_ZREG_SIZE): Likewise. (SVE_PT_SVE_PREG_SIZE): Likewise. (SVE_PT_SVE_FFR_SIZE): Likewise. (SVE_PT_SVE_FPSR_SIZE): Likewise. (SVE_PT_SVE_FPCR_SIZE): Likewise. (__SVE_SIG_TO_PT): Likewise. (SVE_PT_SVE_OFFSET): Likewise. (SVE_PT_SVE_ZREGS_OFFSET): Likewise. (SVE_PT_SVE_ZREG_OFFSET): Likewise. (SVE_PT_SVE_ZREGS_SIZE): Likewise. (SVE_PT_SVE_PREGS_OFFSET): Likewise. (SVE_PT_SVE_PREG_OFFSET): Likewise. (SVE_PT_SVE_PREGS_SIZE): Likewise. (SVE_PT_SVE_FFR_OFFSET): Likewise. (SVE_PT_SVE_FPSR_OFFSET): Likewise. (SVE_PT_SVE_FPCR_OFFSET): Likewise. (SVE_PT_SVE_SIZE): Likewise. (SVE_PT_SIZE): Likewise. (HAS_SVE_STATE): New define. gdbserver/ * Makefile.in: Add aarch64-sve-linux-ptrace.c.
2018-06-15 19:21:31 +08:00
refactor: Simplify SVE interface to read/write registers This is a patch in preparation to upcoming patches enabling SME support. It attempts to simplify the gdb/gdbserver shared interface used to read/write SVE registers. Where the current code makes use of unique_ptr, allocating a new buffer by hand and passing a buffer around, this patch makes that code use gdb::byte_vector and passes a reference to this byte vector to the functions, allowing the functions to have ready access to the size of the buffer. It also shares a bit more code between gdb and gdbserver, in particular around handling of ptrace get/set requests for SVE. I think gdbserver could be refactored to handle register reads/writes more like gdb's native layer as opposed to letting the generic linux-low layer do the ptrace calls. This is not very flexible and assumes one size for the responses. If you have something like NT_ARM_SVE, where you can have either FPSIMD or SVE contents, it doesn't work that well. I didn't want to change that interface right now as it is a bit too much work and touches all the targets, some of which I can't easily test. Hence the reason why the buffer the generic linux-now passes down to linux-aarch64-low is unused or ignored. No user-visible changes should happen as part of this refactor other than a slightly reworded warning message. While doing the refactor, I also noticed what seems to be a mistake in checking if the register cache contains active (non-zero) SVE data. For instance, the original code did something like this in aarch64_sve_regs_copy_from_reg_buf: has_sve_state |= reg_buf->raw_compare (AARCH64_SVE_Z0_REGNUM + i reg, sizeof (__int128_t)); "reg" is a zeroed-out buffer that we compare the Z register contents past the first 128 bits. The problem here is that raw_compare returns 1 if the contents compare the same, which means has_sve_state will be true. But if we compared the Z register contents to 0, it means we *do not* have SVE state, and therefore has_sve_state should be false. The consequence of this mistake is that we convert the initial FPSIMD-formatted data we get from ptrace for the NT_ARM_SVE register set to a SVE-formatted one. In the end, this doesn't cause user-visible differences because the values of both the Z and V registers will still be the same. But the logic is not correct. I used the opportunity to fix this, and it gets tested later on by the additional SME tests. I do plan on submitting some SVE-specific tests to make sure we have a bit more coverage in GDB's testsuite. Regression-tested on aarch64-linux Ubuntu 22.04/20.04. Reviewed-by: Thiago Jung Bauermann <thiago.bauermann@linaro.org>
2023-02-07 18:08:23 +08:00
/* At this point we have collected all the data from the register cache and
we are ready to update the SVE/FPSIMD register contents of the thread.
Ptrace support for Aarch64 SVE Add support for reading and writing registers for Aarch64 SVE. We need to support the cases where the kernel only gives us a fpsimd structure. This occurs when there is no active SVE state in the kernel (for example, after starting a new process). Added checks to make sure the vector length has not changed whilst the process is running. gdb/ * aarch64-linux-nat.c (fetch_sveregs_from_thread): New function. (store_sveregs_to_thread): Likewise. (aarch64_linux_fetch_inferior_registers): Check for SVE. (aarch64_linux_store_inferior_registers): Likewise. * nat/aarch64-sve-linux-ptrace.c (aarch64_sve_get_sveregs): New function. (aarch64_sve_regs_copy_to_regcache): Likewise. (aarch64_sve_regs_copy_from_regcache): Likewise. * nat/aarch64-sve-linux-ptrace.h (aarch64_sve_get_sveregs): New declaration. (aarch64_sve_regs_copy_to_regcache): Likewise. (aarch64_sve_regs_copy_from_regcache): Likewise. (sve_context): Structure from Linux headers. (SVE_SIG_ZREGS_SIZE): Define from Linux headers. (SVE_SIG_ZREG_SIZE): Likewise. (SVE_SIG_PREG_SIZE): Likewise. (SVE_SIG_FFR_SIZE): Likewise. (SVE_SIG_REGS_OFFSET): Likewise. (SVE_SIG_ZREGS_OFFSET): Likewise. (SVE_SIG_ZREG_OFFSET): Likewise. (SVE_SIG_ZREGS_SIZE): Likewise. (SVE_SIG_PREGS_OFFSET): Likewise. (SVE_SIG_PREG_OFFSET): Likewise. (SVE_SIG_PREGS_SIZE): Likewise. (SVE_SIG_FFR_OFFSET): Likewise. (SVE_SIG_REGS_SIZE): Likewise. (SVE_SIG_CONTEXT_SIZE): Likewise. (SVE_PT_REGS_MASK): Likewise. (SVE_PT_REGS_FPSIMD): Likewise. (SVE_PT_REGS_SVE): Likewise. (SVE_PT_VL_INHERIT): Likewise. (SVE_PT_VL_ONEXEC): Likewise. (SVE_PT_REGS_OFFSET): Likewise. (SVE_PT_FPSIMD_OFFSET): Likewise. (SVE_PT_FPSIMD_SIZE): Likewise. (SVE_PT_SVE_ZREG_SIZE): Likewise. (SVE_PT_SVE_PREG_SIZE): Likewise. (SVE_PT_SVE_FFR_SIZE): Likewise. (SVE_PT_SVE_FPSR_SIZE): Likewise. (SVE_PT_SVE_FPCR_SIZE): Likewise. (__SVE_SIG_TO_PT): Likewise. (SVE_PT_SVE_OFFSET): Likewise. (SVE_PT_SVE_ZREGS_OFFSET): Likewise. (SVE_PT_SVE_ZREG_OFFSET): Likewise. (SVE_PT_SVE_ZREGS_SIZE): Likewise. (SVE_PT_SVE_PREGS_OFFSET): Likewise. (SVE_PT_SVE_PREG_OFFSET): Likewise. (SVE_PT_SVE_PREGS_SIZE): Likewise. (SVE_PT_SVE_FFR_OFFSET): Likewise. (SVE_PT_SVE_FPSR_OFFSET): Likewise. (SVE_PT_SVE_FPCR_OFFSET): Likewise. (SVE_PT_SVE_SIZE): Likewise. (SVE_PT_SIZE): Likewise. (HAS_SVE_STATE): New define. gdbserver/ * Makefile.in: Add aarch64-sve-linux-ptrace.c.
2018-06-15 19:21:31 +08:00
refactor: Simplify SVE interface to read/write registers This is a patch in preparation to upcoming patches enabling SME support. It attempts to simplify the gdb/gdbserver shared interface used to read/write SVE registers. Where the current code makes use of unique_ptr, allocating a new buffer by hand and passing a buffer around, this patch makes that code use gdb::byte_vector and passes a reference to this byte vector to the functions, allowing the functions to have ready access to the size of the buffer. It also shares a bit more code between gdb and gdbserver, in particular around handling of ptrace get/set requests for SVE. I think gdbserver could be refactored to handle register reads/writes more like gdb's native layer as opposed to letting the generic linux-low layer do the ptrace calls. This is not very flexible and assumes one size for the responses. If you have something like NT_ARM_SVE, where you can have either FPSIMD or SVE contents, it doesn't work that well. I didn't want to change that interface right now as it is a bit too much work and touches all the targets, some of which I can't easily test. Hence the reason why the buffer the generic linux-now passes down to linux-aarch64-low is unused or ignored. No user-visible changes should happen as part of this refactor other than a slightly reworded warning message. While doing the refactor, I also noticed what seems to be a mistake in checking if the register cache contains active (non-zero) SVE data. For instance, the original code did something like this in aarch64_sve_regs_copy_from_reg_buf: has_sve_state |= reg_buf->raw_compare (AARCH64_SVE_Z0_REGNUM + i reg, sizeof (__int128_t)); "reg" is a zeroed-out buffer that we compare the Z register contents past the first 128 bits. The problem here is that raw_compare returns 1 if the contents compare the same, which means has_sve_state will be true. But if we compared the Z register contents to 0, it means we *do not* have SVE state, and therefore has_sve_state should be false. The consequence of this mistake is that we convert the initial FPSIMD-formatted data we get from ptrace for the NT_ARM_SVE register set to a SVE-formatted one. In the end, this doesn't cause user-visible differences because the values of both the Z and V registers will still be the same. But the logic is not correct. I used the opportunity to fix this, and it gets tested later on by the additional SME tests. I do plan on submitting some SVE-specific tests to make sure we have a bit more coverage in GDB's testsuite. Regression-tested on aarch64-linux Ubuntu 22.04/20.04. Reviewed-by: Thiago Jung Bauermann <thiago.bauermann@linaro.org>
2023-02-07 18:08:23 +08:00
sve_state should contain all the data in the correct format, ready to be
passed on to ptrace. */
aarch64_store_sve_regset (tid, new_state);
Ptrace support for Aarch64 SVE Add support for reading and writing registers for Aarch64 SVE. We need to support the cases where the kernel only gives us a fpsimd structure. This occurs when there is no active SVE state in the kernel (for example, after starting a new process). Added checks to make sure the vector length has not changed whilst the process is running. gdb/ * aarch64-linux-nat.c (fetch_sveregs_from_thread): New function. (store_sveregs_to_thread): Likewise. (aarch64_linux_fetch_inferior_registers): Check for SVE. (aarch64_linux_store_inferior_registers): Likewise. * nat/aarch64-sve-linux-ptrace.c (aarch64_sve_get_sveregs): New function. (aarch64_sve_regs_copy_to_regcache): Likewise. (aarch64_sve_regs_copy_from_regcache): Likewise. * nat/aarch64-sve-linux-ptrace.h (aarch64_sve_get_sveregs): New declaration. (aarch64_sve_regs_copy_to_regcache): Likewise. (aarch64_sve_regs_copy_from_regcache): Likewise. (sve_context): Structure from Linux headers. (SVE_SIG_ZREGS_SIZE): Define from Linux headers. (SVE_SIG_ZREG_SIZE): Likewise. (SVE_SIG_PREG_SIZE): Likewise. (SVE_SIG_FFR_SIZE): Likewise. (SVE_SIG_REGS_OFFSET): Likewise. (SVE_SIG_ZREGS_OFFSET): Likewise. (SVE_SIG_ZREG_OFFSET): Likewise. (SVE_SIG_ZREGS_SIZE): Likewise. (SVE_SIG_PREGS_OFFSET): Likewise. (SVE_SIG_PREG_OFFSET): Likewise. (SVE_SIG_PREGS_SIZE): Likewise. (SVE_SIG_FFR_OFFSET): Likewise. (SVE_SIG_REGS_SIZE): Likewise. (SVE_SIG_CONTEXT_SIZE): Likewise. (SVE_PT_REGS_MASK): Likewise. (SVE_PT_REGS_FPSIMD): Likewise. (SVE_PT_REGS_SVE): Likewise. (SVE_PT_VL_INHERIT): Likewise. (SVE_PT_VL_ONEXEC): Likewise. (SVE_PT_REGS_OFFSET): Likewise. (SVE_PT_FPSIMD_OFFSET): Likewise. (SVE_PT_FPSIMD_SIZE): Likewise. (SVE_PT_SVE_ZREG_SIZE): Likewise. (SVE_PT_SVE_PREG_SIZE): Likewise. (SVE_PT_SVE_FFR_SIZE): Likewise. (SVE_PT_SVE_FPSR_SIZE): Likewise. (SVE_PT_SVE_FPCR_SIZE): Likewise. (__SVE_SIG_TO_PT): Likewise. (SVE_PT_SVE_OFFSET): Likewise. (SVE_PT_SVE_ZREGS_OFFSET): Likewise. (SVE_PT_SVE_ZREG_OFFSET): Likewise. (SVE_PT_SVE_ZREGS_SIZE): Likewise. (SVE_PT_SVE_PREGS_OFFSET): Likewise. (SVE_PT_SVE_PREG_OFFSET): Likewise. (SVE_PT_SVE_PREGS_SIZE): Likewise. (SVE_PT_SVE_FFR_OFFSET): Likewise. (SVE_PT_SVE_FPSR_OFFSET): Likewise. (SVE_PT_SVE_FPCR_OFFSET): Likewise. (SVE_PT_SVE_SIZE): Likewise. (SVE_PT_SIZE): Likewise. (HAS_SVE_STATE): New define. gdbserver/ * Makefile.in: Add aarch64-sve-linux-ptrace.c.
2018-06-15 19:21:31 +08:00
}
sme: Enable SME registers and pseudo-registers The SME (Scalable Matrix Extension) [1] exposes a new matrix register ZA with variable sizes. It also exposes a new mode called streaming mode. Similarly to SVE, the ZA register size is dictated by a vector length, but the SME vector length is called streaming vetor length. The total size for ZA in a given moment is svl x svl. In streaming mode, the SVE registers have their sizes based on svl rather than the regular vector length (vl). The feature detection is controlled by the HWCAP2_SME bit, but actual support should be validated by attempting a ptrace call for one of the new register sets: NT_ARM_ZA and NT_ARM_SSVE. Due to its large size, the ZA register is exposed as a vector of bytes, but we introduce a number of pseudo-registers that gives various different views into the ZA contents. These can be arranged in a couple categories: tiles and tile slices. Tiles are matrices the same size or smaller than ZA. Tile slices are vectors which map to ZA's rows/columns in different ways. A new dynamic target description is provided containing the ZA register, the SVG register and the SVCR register. The size of ZA, like the SVE vector registers, is based on the vector length register SVG (VG for SVE). This patch enables SME register support for gdb. [1] https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/scalable-matrix-extension-armv9-a-architecture Co-Authored-By: Ezra Sitorus <ezra.sitorus@arm.com> Reviewed-by: Thiago Jung Bauermann <thiago.bauermann@linaro.org>
2023-02-07 17:36:23 +08:00
/* See nat/aarch64-scalable-linux-ptrace.h. */
void
aarch64_za_regs_copy_to_reg_buf (int tid, struct reg_buffer_common *reg_buf,
int za_regnum, int svg_regnum,
int svcr_regnum)
{
/* Fetch the current ZA state from the thread. */
gdb::byte_vector za_state = aarch64_fetch_za_regset (tid);
/* Sanity check. */
gdb_assert (!za_state.empty ());
gdb: change regcache interface to use array_view Change most of regcache (and base classes) to use array_view when possible, instead of raw pointers. By propagating the use of array_view further, it enables having some runtime checks to make sure the what we read from or write to regcaches has the expected length (such as the one in the `copy(array_view, array_view)` function. It also integrates well when connecting with other APIs already using gdb::array_view. Add some overloads of the methods using raw pointers to avoid having to change all call sites at once (which is both a lot of work and risky). I tried to do this change in small increments, but since many of these functions use each other, it ended up simpler to do it in one shot than having a lot of intermediary / transient changes. This change extends into gdbserver as well, because there is some part of the regcache interface that is shared. Changing the reg_buffer_common interface to use array_view caused some build failures in nat/aarch64-scalable-linux-ptrace.c. That file currently "takes advantage" of the fact that reg_buffer_common::{raw_supply,raw_collect} operates on `void *`, which IMO is dangerous. It uses raw_supply/raw_collect directly on uint64_t's, which I guess is fine because it is expected that native code will have the same endianness as the debugged process. To accomodate that, add some overloads of raw_collect and raw_supply that work on uint64_t. This file also uses raw_collect and raw_supply on `char` pointers. Change it to use `gdb_byte` pointers instead. Add overloads of raw_collect and raw_supply that work on `gdb_byte *` and make an array_view on the fly using the register's size. Those call sites could be converted to use array_view with not much work, in which case these overloads could be removed, but I didn't want to do it in this patch, to avoid starting to dig in arch-specific code. During development, I inadvertently changed reg_buffer::raw_compare's behavior to not accept an offset equal to the register size. This behavior (effectively comparing 0 bytes, returning true) change was caught by the AArch64 SME core tests. Add a selftest to make sure that this raw_compare behavior is preserved in the future. Change-Id: I9005f04114543ddff738949e12d85a31855304c2 Reviewed-By: John Baldwin <jhb@FreeBSD.org>
2023-12-02 00:27:18 +08:00
gdb_byte *base = za_state.data ();
sme: Enable SME registers and pseudo-registers The SME (Scalable Matrix Extension) [1] exposes a new matrix register ZA with variable sizes. It also exposes a new mode called streaming mode. Similarly to SVE, the ZA register size is dictated by a vector length, but the SME vector length is called streaming vetor length. The total size for ZA in a given moment is svl x svl. In streaming mode, the SVE registers have their sizes based on svl rather than the regular vector length (vl). The feature detection is controlled by the HWCAP2_SME bit, but actual support should be validated by attempting a ptrace call for one of the new register sets: NT_ARM_ZA and NT_ARM_SSVE. Due to its large size, the ZA register is exposed as a vector of bytes, but we introduce a number of pseudo-registers that gives various different views into the ZA contents. These can be arranged in a couple categories: tiles and tile slices. Tiles are matrices the same size or smaller than ZA. Tile slices are vectors which map to ZA's rows/columns in different ways. A new dynamic target description is provided containing the ZA register, the SVG register and the SVCR register. The size of ZA, like the SVE vector registers, is based on the vector length register SVG (VG for SVE). This patch enables SME register support for gdb. [1] https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/scalable-matrix-extension-armv9-a-architecture Co-Authored-By: Ezra Sitorus <ezra.sitorus@arm.com> Reviewed-by: Thiago Jung Bauermann <thiago.bauermann@linaro.org>
2023-02-07 17:36:23 +08:00
struct user_za_header *header = (struct user_za_header *) base;
/* If we have ZA state, read it. Otherwise, make the contents of ZA
in the register cache all zeroes. This is how we present the ZA
state when it is not initialized. */
uint64_t svcr_value = 0;
if (aarch64_has_za_state (tid))
{
/* Sanity check the data in the header. */
if (!sve_vl_valid (header->vl)
|| ZA_PT_SIZE (sve_vq_from_vl (header->vl)) != header->size)
{
error (_("Found invalid streaming vector length in NT_ARM_ZA"
" register set"));
}
reg_buf->raw_supply (za_regnum, base + ZA_PT_ZA_OFFSET);
svcr_value |= SVCR_ZA_BIT;
}
else
{
size_t za_bytes = header->vl * header->vl;
gdb_byte za_zeroed[za_bytes];
memset (za_zeroed, 0, za_bytes);
reg_buf->raw_supply (za_regnum, za_zeroed);
}
/* Handle the svg and svcr registers separately. We need to calculate
their values manually, as the Linux Kernel doesn't expose those
explicitly. */
svcr_value |= aarch64_has_ssve_state (tid)? SVCR_SM_BIT : 0;
uint64_t svg_value = sve_vg_from_vl (header->vl);
/* Update the contents of svg and svcr registers. */
reg_buf->raw_supply (svg_regnum, &svg_value);
reg_buf->raw_supply (svcr_regnum, &svcr_value);
/* The register buffer should now contain the updated copy of the NT_ARM_ZA
state. */
}
/* See nat/aarch64-scalable-linux-ptrace.h. */
void
aarch64_za_regs_copy_from_reg_buf (int tid,
struct reg_buffer_common *reg_buf,
int za_regnum, int svg_regnum,
int svcr_regnum)
{
/* REG_BUF contains the updated ZA state. We need to extract that state
and write it to the thread TID. */
/* First check if there is a change to the streaming vector length. Two
outcomes are possible here:
1 - The streaming vector length in the register cache differs from the
one currently on the thread state. This means that we will need to
update the NT_ARM_ZA register set to reflect the new streaming vector
length.
2 - The streaming vector length in the register cache is the same as in
the thread state. This means we do not need to update the NT_ARM_ZA
register set for a new streaming vector length, and we only need to
deal with changes to za, svg and svcr.
None of the two possibilities above imply that the ZA state actually
exists. They only determine what needs to be done with any ZA content
based on the state of the streaming vector length. */
/* First fetch the NT_ARM_ZA header so we can fetch the streaming vector
length. */
struct user_za_header header;
if (!read_za_header (tid, header))
error (_("Failed to read NT_ARM_ZA header."));
/* Fetch the current streaming vector length. */
uint64_t old_svg = sve_vg_from_vl (header.vl);
/* Fetch the (potentially) new streaming vector length. */
uint64_t new_svg;
reg_buf->raw_collect (svg_regnum, &new_svg);
/* Did the streaming vector length change? */
bool svg_changed = new_svg != old_svg;
/* First store the streaming vector length to the thread. This is done
first to ensure the ptrace buffers read from the kernel are the correct
size. If the streaming vector length is the same as the current one, it
won't be updated. */
if (!aarch64_za_set_svq (tid, reg_buf, svg_regnum))
error (_("Unable to set svg register"));
bool has_za_state = aarch64_has_za_state (tid);
size_t za_bytes = sve_vl_from_vg (old_svg) * sve_vl_from_vg (old_svg);
gdb_byte za_zeroed[za_bytes];
memset (za_zeroed, 0, za_bytes);
/* If the streaming vector length changed, zero out the contents of ZA in
the register cache. Otherwise, we will need to update the ZA contents
in the thread with the ZA contents from the register cache, and they will
differ in size. */
if (svg_changed)
reg_buf->raw_supply (za_regnum, za_zeroed);
/* When we update svg, we don't automatically initialize the ZA buffer. If
we have no ZA state and the ZA register contents in the register cache are
zero, just return and leave the ZA register cache contents as zero. */
if (!has_za_state
&& reg_buf->raw_compare (za_regnum, za_zeroed, 0))
{
/* No ZA state in the thread or in the register cache. This was likely
just an adjustment of the streaming vector length. Let this fall
through and update svcr and svg in the register cache. */
}
else
{
/* If there is no ZA state but the register cache contains ZA data, we
need to initialize the ZA data through ptrace. First we initialize
all the bytes of ZA to zero. */
if (!has_za_state
&& !reg_buf->raw_compare (za_regnum, za_zeroed, 0))
aarch64_initialize_za_regset (tid);
/* From this point onwards, it is assumed we have a ZA payload in
the NT_ARM_ZA register set for this thread, and we need to update
such state based on the contents of the register cache. */
/* Fetch the current ZA state from the thread. */
gdb::byte_vector za_state = aarch64_fetch_za_regset (tid);
gdb: change regcache interface to use array_view Change most of regcache (and base classes) to use array_view when possible, instead of raw pointers. By propagating the use of array_view further, it enables having some runtime checks to make sure the what we read from or write to regcaches has the expected length (such as the one in the `copy(array_view, array_view)` function. It also integrates well when connecting with other APIs already using gdb::array_view. Add some overloads of the methods using raw pointers to avoid having to change all call sites at once (which is both a lot of work and risky). I tried to do this change in small increments, but since many of these functions use each other, it ended up simpler to do it in one shot than having a lot of intermediary / transient changes. This change extends into gdbserver as well, because there is some part of the regcache interface that is shared. Changing the reg_buffer_common interface to use array_view caused some build failures in nat/aarch64-scalable-linux-ptrace.c. That file currently "takes advantage" of the fact that reg_buffer_common::{raw_supply,raw_collect} operates on `void *`, which IMO is dangerous. It uses raw_supply/raw_collect directly on uint64_t's, which I guess is fine because it is expected that native code will have the same endianness as the debugged process. To accomodate that, add some overloads of raw_collect and raw_supply that work on uint64_t. This file also uses raw_collect and raw_supply on `char` pointers. Change it to use `gdb_byte` pointers instead. Add overloads of raw_collect and raw_supply that work on `gdb_byte *` and make an array_view on the fly using the register's size. Those call sites could be converted to use array_view with not much work, in which case these overloads could be removed, but I didn't want to do it in this patch, to avoid starting to dig in arch-specific code. During development, I inadvertently changed reg_buffer::raw_compare's behavior to not accept an offset equal to the register size. This behavior (effectively comparing 0 bytes, returning true) change was caught by the AArch64 SME core tests. Add a selftest to make sure that this raw_compare behavior is preserved in the future. Change-Id: I9005f04114543ddff738949e12d85a31855304c2 Reviewed-By: John Baldwin <jhb@FreeBSD.org>
2023-12-02 00:27:18 +08:00
gdb_byte *base = za_state.data ();
sme: Enable SME registers and pseudo-registers The SME (Scalable Matrix Extension) [1] exposes a new matrix register ZA with variable sizes. It also exposes a new mode called streaming mode. Similarly to SVE, the ZA register size is dictated by a vector length, but the SME vector length is called streaming vetor length. The total size for ZA in a given moment is svl x svl. In streaming mode, the SVE registers have their sizes based on svl rather than the regular vector length (vl). The feature detection is controlled by the HWCAP2_SME bit, but actual support should be validated by attempting a ptrace call for one of the new register sets: NT_ARM_ZA and NT_ARM_SSVE. Due to its large size, the ZA register is exposed as a vector of bytes, but we introduce a number of pseudo-registers that gives various different views into the ZA contents. These can be arranged in a couple categories: tiles and tile slices. Tiles are matrices the same size or smaller than ZA. Tile slices are vectors which map to ZA's rows/columns in different ways. A new dynamic target description is provided containing the ZA register, the SVG register and the SVCR register. The size of ZA, like the SVE vector registers, is based on the vector length register SVG (VG for SVE). This patch enables SME register support for gdb. [1] https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/scalable-matrix-extension-armv9-a-architecture Co-Authored-By: Ezra Sitorus <ezra.sitorus@arm.com> Reviewed-by: Thiago Jung Bauermann <thiago.bauermann@linaro.org>
2023-02-07 17:36:23 +08:00
struct user_za_header *za_header = (struct user_za_header *) base;
uint64_t svq = sve_vq_from_vl (za_header->vl);
/* Sanity check the data in the header. */
if (!sve_vl_valid (za_header->vl)
|| ZA_PT_SIZE (svq) != za_header->size)
error (_("Invalid vector length or payload size when reading ZA."));
/* Overwrite the ZA state contained in the thread with the ZA state from
the register cache. */
if (REG_VALID == reg_buf->get_register_status (za_regnum))
reg_buf->raw_collect (za_regnum, base + ZA_PT_ZA_OFFSET);
/* Write back the ZA state to the thread's NT_ARM_ZA register set. */
aarch64_store_za_regset (tid, za_state);
}
/* Update svcr and svg accordingly. */
uint64_t svcr_value = 0;
svcr_value |= aarch64_has_ssve_state (tid)? SVCR_SM_BIT : 0;
svcr_value |= aarch64_has_za_state (tid)? SVCR_ZA_BIT : 0;
reg_buf->raw_supply (svcr_regnum, &svcr_value);
/* At this point we have written the data contained in the register cache to
the thread's NT_ARM_ZA register set. */
}
/* See nat/aarch64-scalable-linux-ptrace.h. */
void
aarch64_zt_regs_copy_to_reg_buf (int tid, struct reg_buffer_common *reg_buf,
int zt_regnum)
{
/* If we have ZA state, read the ZT state. Otherwise, make the contents of
ZT in the register cache all zeroes. This is how we present the ZT
state when it is not initialized (ZA not active). */
if (aarch64_has_za_state (tid))
{
/* Fetch the current ZT state from the thread. */
gdb::byte_vector zt_state = aarch64_fetch_zt_regset (tid);
/* Sanity check. */
gdb_assert (!zt_state.empty ());
/* Copy the ZT data to the register buffer. */
reg_buf->raw_supply (zt_regnum, zt_state.data ());
}
else
{
/* Zero out ZT. */
gdb::byte_vector zt_zeroed (AARCH64_SME2_ZT0_SIZE, 0);
reg_buf->raw_supply (zt_regnum, zt_zeroed.data ());
}
/* The register buffer should now contain the updated copy of the NT_ARM_ZT
state. */
}
/* See nat/aarch64-scalable-linux-ptrace.h. */
void
aarch64_zt_regs_copy_from_reg_buf (int tid,
struct reg_buffer_common *reg_buf,
int zt_regnum)
{
/* Do we have a valid ZA state? */
bool valid_za = aarch64_has_za_state (tid);
/* Is the register buffer contents for ZT all zeroes? */
gdb::byte_vector zt_bytes (AARCH64_SME2_ZT0_SIZE, 0);
bool zt_is_all_zeroes
= reg_buf->raw_compare (zt_regnum, zt_bytes.data (), 0);
/* If ZA state is valid or if we have non-zero data for ZT in the register
buffer, we will invoke ptrace to write the ZT state. Otherwise we don't
have to do anything here. */
if (valid_za || !zt_is_all_zeroes)
{
if (!valid_za)
{
/* ZA state is not valid. That means we need to initialize the ZA
state prior to writing the ZT state. */
aarch64_initialize_za_regset (tid);
}
/* Extract the ZT data from the register buffer. */
reg_buf->raw_collect (zt_regnum, zt_bytes.data ());
/* Write the ZT data to thread TID. */
aarch64_store_zt_regset (tid, zt_bytes);
}
/* At this point we have (potentially) written the data contained in the
register cache to the thread's NT_ARM_ZT register set. */
}