binutils-gdb/gdb/nat/loongarch-hw-point.c

344 lines
8.6 KiB
C
Raw Normal View History

gdb: LoongArch: Add support for hardware watchpoint LoongArch defines hardware watchpoint functions for load/store operations. After the software configures the watchpoints for load/store, the processor hardware will monitor the access addresses of the load/store operations and trigger watchpoint exception when the watchpoint setting conditions are met. After this patch, watch/rwatch/awatch command are supported. Refer to the following document for hardware watchpoint. https://loongson.github.io/LoongArch-Documentation/LoongArch-Vol1-EN.html#control-and-status-registers-related-to-watchpoints A simple test is as follows: lihui@bogon:~$ cat test.c #include <stdio.h> int a = 0; int main() { printf("start test\n"); a = 1; printf("a = %d\n", a); printf("end test\n"); return 0; } lihui@bogon:~$ gcc -g test.c -o test without this patch: lihui@bogon:~$ gdb test ... (gdb) start ... Temporary breakpoint 1, main () at test.c:5 5 printf("start test\n"); (gdb) awatch a Target does not support this type of hardware watchpoint. ... with this patch: lihui@bogon:~$ gdb test ... (gdb) start ... Temporary breakpoint 1, main () at test.c:5 5 printf("start test\n"); (gdb) awatch a Hardware access (read/write) watchpoint 2: a (gdb) c Continuing. start test Hardware access (read/write) watchpoint 2: a Old value = 0 New value = 1 main () at test.c:7 7 printf("a = %d\n", a); (gdb) c Continuing. Hardware access (read/write) watchpoint 2: a Value = 1 0x00000001200006e0 in main () at test.c:7 7 printf("a = %d\n", a); (gdb) c Continuing. a = 1 end test [Inferior 1 (process 22250) exited normally] Signed-off-by: Hui Li <lihui@loongson.cn> Signed-off-by: Tiezhu Yang <yangtiezhu@loongson.cn>
2024-06-11 19:21:25 +08:00
/* Native-dependent code for GNU/Linux on LoongArch processors.
Copyright (C) 2024 Free Software Foundation, Inc.
Contributed by Loongson Ltd.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
#include "gdbsupport/break-common.h"
#include "gdbsupport/common-regcache.h"
#include "loongarch-hw-point.h"
#include "loongarch-linux-hw-point.h"
/* Number of hardware breakpoints/watchpoints the target supports.
They are initialized with values obtained via ptrace. */
gdb: LoongArch: Add support for hardware breakpoint LoongArch defines hardware watchpoint functions for fetch operations. After the software configures the watchpoints for fetch, the processor hardware will monitor the access addresses of the fetch operations and trigger a watchpoint exception when the watchpoint setting conditions are met. Hardware watchpoints for fetch operations is used to implement hardware breakpoint function on LoongArch. Refer to the following document for hardware breakpoint. https://loongson.github.io/LoongArch-Documentation/LoongArch-Vol1-EN.html#control-and-status-registers-related-to-watchpoints A simple test is as follows: lihui@bogon:~$ cat test.c #include <stdio.h> int a = 0; int main() { printf("start test\n"); a = 1; printf("a = %d\n", a); printf("end test\n"); return 0; } lihui@bogon:~$ gcc -g test.c -o test without this patch: lihui@bogon:~$ gdb test ... (gdb) start ... Temporary breakpoint 1, main () at test.c:5 5 printf("start test\n"); (gdb) hbreak 8 No hardware breakpoint support in the target. with this patch: lihui@bogon:~$ gdb test ... (gdb) start ... Temporary breakpoint 1, main () at test.c:5 5 printf("start test\n"); (gdb) hbreak 8 Hardware assisted breakpoint 2 at 0x1200006ec: file test.c, line 8. (gdb) c Continuing. start test a = 1 Breakpoint 2, main () at test.c:8 8 printf("end test\n"); (gdb) c Continuing. end test [Inferior 1 (process 25378) exited normally] Signed-off-by: Hui Li <lihui@loongson.cn> Signed-off-by: Tiezhu Yang <yangtiezhu@loongson.cn>
2024-06-11 19:21:26 +08:00
int loongarch_num_bp_regs;
gdb: LoongArch: Add support for hardware watchpoint LoongArch defines hardware watchpoint functions for load/store operations. After the software configures the watchpoints for load/store, the processor hardware will monitor the access addresses of the load/store operations and trigger watchpoint exception when the watchpoint setting conditions are met. After this patch, watch/rwatch/awatch command are supported. Refer to the following document for hardware watchpoint. https://loongson.github.io/LoongArch-Documentation/LoongArch-Vol1-EN.html#control-and-status-registers-related-to-watchpoints A simple test is as follows: lihui@bogon:~$ cat test.c #include <stdio.h> int a = 0; int main() { printf("start test\n"); a = 1; printf("a = %d\n", a); printf("end test\n"); return 0; } lihui@bogon:~$ gcc -g test.c -o test without this patch: lihui@bogon:~$ gdb test ... (gdb) start ... Temporary breakpoint 1, main () at test.c:5 5 printf("start test\n"); (gdb) awatch a Target does not support this type of hardware watchpoint. ... with this patch: lihui@bogon:~$ gdb test ... (gdb) start ... Temporary breakpoint 1, main () at test.c:5 5 printf("start test\n"); (gdb) awatch a Hardware access (read/write) watchpoint 2: a (gdb) c Continuing. start test Hardware access (read/write) watchpoint 2: a Old value = 0 New value = 1 main () at test.c:7 7 printf("a = %d\n", a); (gdb) c Continuing. Hardware access (read/write) watchpoint 2: a Value = 1 0x00000001200006e0 in main () at test.c:7 7 printf("a = %d\n", a); (gdb) c Continuing. a = 1 end test [Inferior 1 (process 22250) exited normally] Signed-off-by: Hui Li <lihui@loongson.cn> Signed-off-by: Tiezhu Yang <yangtiezhu@loongson.cn>
2024-06-11 19:21:25 +08:00
int loongarch_num_wp_regs;
/* Given the hardware breakpoint or watchpoint type TYPE and its
length LEN, return the expected encoding for a hardware
breakpoint/watchpoint control register. */
static unsigned int
loongarch_point_encode_ctrl_reg (enum target_hw_bp_type type, int len)
{
unsigned int ctrl, ttype, llen;
gdb_assert (len <= LOONGARCH_HWP_MAX_LEN_PER_REG);
/* type */
switch (type)
{
case hw_write:
ttype = 2;
break;
case hw_read:
ttype = 1;
break;
case hw_access:
ttype = 3;
break;
case hw_execute:
ttype = 0;
break;
default:
perror_with_name (_("Unrecognized watchpoint type"));
}
/* len */
switch (len)
{
case 1:
llen = 0b11;
break;
case 2:
llen = 0b10;
break;
case 4:
llen = 0b01;
break;
case 8:
llen = 0b00;
break;
default:
perror_with_name (_("Unrecognized watchpoint length"));
}
ctrl = 0;
if (type != hw_execute) {
/* type and length bitmask */
ctrl |= llen << 10;
ctrl |= ttype << 8;
}
ctrl |= CTRL_PLV3_ENABLE;
return ctrl;
}
/* Record the insertion of one breakpoint/watchpoint, as represented
by ADDR and CTRL, in the process' arch-specific data area *STATE. */
static int
loongarch_dr_state_insert_one_point (ptid_t ptid,
struct loongarch_debug_reg_state *state,
enum target_hw_bp_type type, CORE_ADDR addr,
int len, CORE_ADDR addr_orig)
{
int i, idx, num_regs, is_watchpoint;
unsigned int ctrl, *dr_ctrl_p, *dr_ref_count;
CORE_ADDR *dr_addr_p;
/* Set up state pointers. */
is_watchpoint = (type != hw_execute);
if (is_watchpoint)
{
num_regs = loongarch_num_wp_regs;
dr_addr_p = state->dr_addr_wp;
dr_ctrl_p = state->dr_ctrl_wp;
dr_ref_count = state->dr_ref_count_wp;
}
else
{
gdb: LoongArch: Add support for hardware breakpoint LoongArch defines hardware watchpoint functions for fetch operations. After the software configures the watchpoints for fetch, the processor hardware will monitor the access addresses of the fetch operations and trigger a watchpoint exception when the watchpoint setting conditions are met. Hardware watchpoints for fetch operations is used to implement hardware breakpoint function on LoongArch. Refer to the following document for hardware breakpoint. https://loongson.github.io/LoongArch-Documentation/LoongArch-Vol1-EN.html#control-and-status-registers-related-to-watchpoints A simple test is as follows: lihui@bogon:~$ cat test.c #include <stdio.h> int a = 0; int main() { printf("start test\n"); a = 1; printf("a = %d\n", a); printf("end test\n"); return 0; } lihui@bogon:~$ gcc -g test.c -o test without this patch: lihui@bogon:~$ gdb test ... (gdb) start ... Temporary breakpoint 1, main () at test.c:5 5 printf("start test\n"); (gdb) hbreak 8 No hardware breakpoint support in the target. with this patch: lihui@bogon:~$ gdb test ... (gdb) start ... Temporary breakpoint 1, main () at test.c:5 5 printf("start test\n"); (gdb) hbreak 8 Hardware assisted breakpoint 2 at 0x1200006ec: file test.c, line 8. (gdb) c Continuing. start test a = 1 Breakpoint 2, main () at test.c:8 8 printf("end test\n"); (gdb) c Continuing. end test [Inferior 1 (process 25378) exited normally] Signed-off-by: Hui Li <lihui@loongson.cn> Signed-off-by: Tiezhu Yang <yangtiezhu@loongson.cn>
2024-06-11 19:21:26 +08:00
num_regs = loongarch_num_bp_regs;
dr_addr_p = state->dr_addr_bp;
dr_ctrl_p = state->dr_ctrl_bp;
dr_ref_count = state->dr_ref_count_bp;
gdb: LoongArch: Add support for hardware watchpoint LoongArch defines hardware watchpoint functions for load/store operations. After the software configures the watchpoints for load/store, the processor hardware will monitor the access addresses of the load/store operations and trigger watchpoint exception when the watchpoint setting conditions are met. After this patch, watch/rwatch/awatch command are supported. Refer to the following document for hardware watchpoint. https://loongson.github.io/LoongArch-Documentation/LoongArch-Vol1-EN.html#control-and-status-registers-related-to-watchpoints A simple test is as follows: lihui@bogon:~$ cat test.c #include <stdio.h> int a = 0; int main() { printf("start test\n"); a = 1; printf("a = %d\n", a); printf("end test\n"); return 0; } lihui@bogon:~$ gcc -g test.c -o test without this patch: lihui@bogon:~$ gdb test ... (gdb) start ... Temporary breakpoint 1, main () at test.c:5 5 printf("start test\n"); (gdb) awatch a Target does not support this type of hardware watchpoint. ... with this patch: lihui@bogon:~$ gdb test ... (gdb) start ... Temporary breakpoint 1, main () at test.c:5 5 printf("start test\n"); (gdb) awatch a Hardware access (read/write) watchpoint 2: a (gdb) c Continuing. start test Hardware access (read/write) watchpoint 2: a Old value = 0 New value = 1 main () at test.c:7 7 printf("a = %d\n", a); (gdb) c Continuing. Hardware access (read/write) watchpoint 2: a Value = 1 0x00000001200006e0 in main () at test.c:7 7 printf("a = %d\n", a); (gdb) c Continuing. a = 1 end test [Inferior 1 (process 22250) exited normally] Signed-off-by: Hui Li <lihui@loongson.cn> Signed-off-by: Tiezhu Yang <yangtiezhu@loongson.cn>
2024-06-11 19:21:25 +08:00
}
ctrl = loongarch_point_encode_ctrl_reg (type, len);
/* Find an existing or free register in our cache. */
idx = -1;
for (i = 0; i < num_regs; ++i)
{
if ((dr_ctrl_p[i] & CTRL_PLV3_ENABLE) == 0) // PLV3 disable
{
gdb_assert (dr_ref_count[i] == 0);
idx = i;
/* no break; continue hunting for an exising one. */
}
else if (dr_addr_p[i] == addr && dr_ctrl_p[i] == ctrl)
{
idx = i;
gdb_assert (dr_ref_count[i] != 0);
break;
}
}
/* No space. */
if (idx == -1)
return -1;
/* Update our cache. */
if ((dr_ctrl_p[idx] & CTRL_PLV3_ENABLE) == 0)
{
/* new entry */
dr_addr_p[idx] = addr;
dr_ctrl_p[idx] = ctrl;
dr_ref_count[idx] = 1;
/* Notify the change. */
loongarch_notify_debug_reg_change (ptid, is_watchpoint, idx);
}
else
{
/* existing entry */
dr_ref_count[idx]++;
}
return 0;
}
/* Record the removal of one breakpoint/watchpoint, as represented by
ADDR and CTRL, in the process' arch-specific data area *STATE. */
static int
loongarch_dr_state_remove_one_point (ptid_t ptid,
struct loongarch_debug_reg_state *state,
enum target_hw_bp_type type, CORE_ADDR addr,
int len, CORE_ADDR addr_orig)
{
int i, num_regs, is_watchpoint;
unsigned int ctrl, *dr_ctrl_p, *dr_ref_count;
CORE_ADDR *dr_addr_p;
/* Set up state pointers. */
is_watchpoint = (type != hw_execute);
if (is_watchpoint)
{
num_regs = loongarch_num_wp_regs;
dr_addr_p = state->dr_addr_wp;
dr_ctrl_p = state->dr_ctrl_wp;
dr_ref_count = state->dr_ref_count_wp;
}
else
{
gdb: LoongArch: Add support for hardware breakpoint LoongArch defines hardware watchpoint functions for fetch operations. After the software configures the watchpoints for fetch, the processor hardware will monitor the access addresses of the fetch operations and trigger a watchpoint exception when the watchpoint setting conditions are met. Hardware watchpoints for fetch operations is used to implement hardware breakpoint function on LoongArch. Refer to the following document for hardware breakpoint. https://loongson.github.io/LoongArch-Documentation/LoongArch-Vol1-EN.html#control-and-status-registers-related-to-watchpoints A simple test is as follows: lihui@bogon:~$ cat test.c #include <stdio.h> int a = 0; int main() { printf("start test\n"); a = 1; printf("a = %d\n", a); printf("end test\n"); return 0; } lihui@bogon:~$ gcc -g test.c -o test without this patch: lihui@bogon:~$ gdb test ... (gdb) start ... Temporary breakpoint 1, main () at test.c:5 5 printf("start test\n"); (gdb) hbreak 8 No hardware breakpoint support in the target. with this patch: lihui@bogon:~$ gdb test ... (gdb) start ... Temporary breakpoint 1, main () at test.c:5 5 printf("start test\n"); (gdb) hbreak 8 Hardware assisted breakpoint 2 at 0x1200006ec: file test.c, line 8. (gdb) c Continuing. start test a = 1 Breakpoint 2, main () at test.c:8 8 printf("end test\n"); (gdb) c Continuing. end test [Inferior 1 (process 25378) exited normally] Signed-off-by: Hui Li <lihui@loongson.cn> Signed-off-by: Tiezhu Yang <yangtiezhu@loongson.cn>
2024-06-11 19:21:26 +08:00
num_regs = loongarch_num_bp_regs;
dr_addr_p = state->dr_addr_bp;
dr_ctrl_p = state->dr_ctrl_bp;
dr_ref_count = state->dr_ref_count_bp;
gdb: LoongArch: Add support for hardware watchpoint LoongArch defines hardware watchpoint functions for load/store operations. After the software configures the watchpoints for load/store, the processor hardware will monitor the access addresses of the load/store operations and trigger watchpoint exception when the watchpoint setting conditions are met. After this patch, watch/rwatch/awatch command are supported. Refer to the following document for hardware watchpoint. https://loongson.github.io/LoongArch-Documentation/LoongArch-Vol1-EN.html#control-and-status-registers-related-to-watchpoints A simple test is as follows: lihui@bogon:~$ cat test.c #include <stdio.h> int a = 0; int main() { printf("start test\n"); a = 1; printf("a = %d\n", a); printf("end test\n"); return 0; } lihui@bogon:~$ gcc -g test.c -o test without this patch: lihui@bogon:~$ gdb test ... (gdb) start ... Temporary breakpoint 1, main () at test.c:5 5 printf("start test\n"); (gdb) awatch a Target does not support this type of hardware watchpoint. ... with this patch: lihui@bogon:~$ gdb test ... (gdb) start ... Temporary breakpoint 1, main () at test.c:5 5 printf("start test\n"); (gdb) awatch a Hardware access (read/write) watchpoint 2: a (gdb) c Continuing. start test Hardware access (read/write) watchpoint 2: a Old value = 0 New value = 1 main () at test.c:7 7 printf("a = %d\n", a); (gdb) c Continuing. Hardware access (read/write) watchpoint 2: a Value = 1 0x00000001200006e0 in main () at test.c:7 7 printf("a = %d\n", a); (gdb) c Continuing. a = 1 end test [Inferior 1 (process 22250) exited normally] Signed-off-by: Hui Li <lihui@loongson.cn> Signed-off-by: Tiezhu Yang <yangtiezhu@loongson.cn>
2024-06-11 19:21:25 +08:00
}
ctrl = loongarch_point_encode_ctrl_reg (type, len);
/* Find the entry that matches the ADDR and CTRL. */
for (i = 0; i < num_regs; ++i)
if (dr_addr_p[i] == addr && dr_ctrl_p[i] == ctrl)
{
gdb_assert (dr_ref_count[i] != 0);
break;
}
/* Not found. */
if (i == num_regs)
return -1;
/* Clear our cache. */
if (--dr_ref_count[i] == 0)
{
dr_addr_p[i] = 0;
dr_ctrl_p[i] = 0;
/* Notify the change. */
loongarch_notify_debug_reg_change (ptid, is_watchpoint, i);
}
return 0;
}
gdb: LoongArch: Add support for hardware breakpoint LoongArch defines hardware watchpoint functions for fetch operations. After the software configures the watchpoints for fetch, the processor hardware will monitor the access addresses of the fetch operations and trigger a watchpoint exception when the watchpoint setting conditions are met. Hardware watchpoints for fetch operations is used to implement hardware breakpoint function on LoongArch. Refer to the following document for hardware breakpoint. https://loongson.github.io/LoongArch-Documentation/LoongArch-Vol1-EN.html#control-and-status-registers-related-to-watchpoints A simple test is as follows: lihui@bogon:~$ cat test.c #include <stdio.h> int a = 0; int main() { printf("start test\n"); a = 1; printf("a = %d\n", a); printf("end test\n"); return 0; } lihui@bogon:~$ gcc -g test.c -o test without this patch: lihui@bogon:~$ gdb test ... (gdb) start ... Temporary breakpoint 1, main () at test.c:5 5 printf("start test\n"); (gdb) hbreak 8 No hardware breakpoint support in the target. with this patch: lihui@bogon:~$ gdb test ... (gdb) start ... Temporary breakpoint 1, main () at test.c:5 5 printf("start test\n"); (gdb) hbreak 8 Hardware assisted breakpoint 2 at 0x1200006ec: file test.c, line 8. (gdb) c Continuing. start test a = 1 Breakpoint 2, main () at test.c:8 8 printf("end test\n"); (gdb) c Continuing. end test [Inferior 1 (process 25378) exited normally] Signed-off-by: Hui Li <lihui@loongson.cn> Signed-off-by: Tiezhu Yang <yangtiezhu@loongson.cn>
2024-06-11 19:21:26 +08:00
int
loongarch_handle_breakpoint (enum target_hw_bp_type type, CORE_ADDR addr,
int len, int is_insert, ptid_t ptid,
struct loongarch_debug_reg_state *state)
{
if (is_insert)
return loongarch_dr_state_insert_one_point (ptid, state, type, addr,
len, -1);
else
return loongarch_dr_state_remove_one_point (ptid, state, type, addr,
len, -1);
}
gdb: LoongArch: Add support for hardware watchpoint LoongArch defines hardware watchpoint functions for load/store operations. After the software configures the watchpoints for load/store, the processor hardware will monitor the access addresses of the load/store operations and trigger watchpoint exception when the watchpoint setting conditions are met. After this patch, watch/rwatch/awatch command are supported. Refer to the following document for hardware watchpoint. https://loongson.github.io/LoongArch-Documentation/LoongArch-Vol1-EN.html#control-and-status-registers-related-to-watchpoints A simple test is as follows: lihui@bogon:~$ cat test.c #include <stdio.h> int a = 0; int main() { printf("start test\n"); a = 1; printf("a = %d\n", a); printf("end test\n"); return 0; } lihui@bogon:~$ gcc -g test.c -o test without this patch: lihui@bogon:~$ gdb test ... (gdb) start ... Temporary breakpoint 1, main () at test.c:5 5 printf("start test\n"); (gdb) awatch a Target does not support this type of hardware watchpoint. ... with this patch: lihui@bogon:~$ gdb test ... (gdb) start ... Temporary breakpoint 1, main () at test.c:5 5 printf("start test\n"); (gdb) awatch a Hardware access (read/write) watchpoint 2: a (gdb) c Continuing. start test Hardware access (read/write) watchpoint 2: a Old value = 0 New value = 1 main () at test.c:7 7 printf("a = %d\n", a); (gdb) c Continuing. Hardware access (read/write) watchpoint 2: a Value = 1 0x00000001200006e0 in main () at test.c:7 7 printf("a = %d\n", a); (gdb) c Continuing. a = 1 end test [Inferior 1 (process 22250) exited normally] Signed-off-by: Hui Li <lihui@loongson.cn> Signed-off-by: Tiezhu Yang <yangtiezhu@loongson.cn>
2024-06-11 19:21:25 +08:00
int
loongarch_handle_watchpoint (enum target_hw_bp_type type, CORE_ADDR addr,
int len, int is_insert, ptid_t ptid,
struct loongarch_debug_reg_state *state)
{
if (is_insert)
return loongarch_dr_state_insert_one_point (ptid, state, type, addr,
len, addr);
else
return loongarch_dr_state_remove_one_point (ptid, state, type, addr,
len, addr);
}
/* See nat/loongarch-hw-point.h. */
bool
loongarch_any_set_debug_regs_state (loongarch_debug_reg_state *state,
bool watchpoint)
{
gdb: LoongArch: Add support for hardware breakpoint LoongArch defines hardware watchpoint functions for fetch operations. After the software configures the watchpoints for fetch, the processor hardware will monitor the access addresses of the fetch operations and trigger a watchpoint exception when the watchpoint setting conditions are met. Hardware watchpoints for fetch operations is used to implement hardware breakpoint function on LoongArch. Refer to the following document for hardware breakpoint. https://loongson.github.io/LoongArch-Documentation/LoongArch-Vol1-EN.html#control-and-status-registers-related-to-watchpoints A simple test is as follows: lihui@bogon:~$ cat test.c #include <stdio.h> int a = 0; int main() { printf("start test\n"); a = 1; printf("a = %d\n", a); printf("end test\n"); return 0; } lihui@bogon:~$ gcc -g test.c -o test without this patch: lihui@bogon:~$ gdb test ... (gdb) start ... Temporary breakpoint 1, main () at test.c:5 5 printf("start test\n"); (gdb) hbreak 8 No hardware breakpoint support in the target. with this patch: lihui@bogon:~$ gdb test ... (gdb) start ... Temporary breakpoint 1, main () at test.c:5 5 printf("start test\n"); (gdb) hbreak 8 Hardware assisted breakpoint 2 at 0x1200006ec: file test.c, line 8. (gdb) c Continuing. start test a = 1 Breakpoint 2, main () at test.c:8 8 printf("end test\n"); (gdb) c Continuing. end test [Inferior 1 (process 25378) exited normally] Signed-off-by: Hui Li <lihui@loongson.cn> Signed-off-by: Tiezhu Yang <yangtiezhu@loongson.cn>
2024-06-11 19:21:26 +08:00
int count = watchpoint ? loongarch_num_wp_regs : loongarch_num_bp_regs;
gdb: LoongArch: Add support for hardware watchpoint LoongArch defines hardware watchpoint functions for load/store operations. After the software configures the watchpoints for load/store, the processor hardware will monitor the access addresses of the load/store operations and trigger watchpoint exception when the watchpoint setting conditions are met. After this patch, watch/rwatch/awatch command are supported. Refer to the following document for hardware watchpoint. https://loongson.github.io/LoongArch-Documentation/LoongArch-Vol1-EN.html#control-and-status-registers-related-to-watchpoints A simple test is as follows: lihui@bogon:~$ cat test.c #include <stdio.h> int a = 0; int main() { printf("start test\n"); a = 1; printf("a = %d\n", a); printf("end test\n"); return 0; } lihui@bogon:~$ gcc -g test.c -o test without this patch: lihui@bogon:~$ gdb test ... (gdb) start ... Temporary breakpoint 1, main () at test.c:5 5 printf("start test\n"); (gdb) awatch a Target does not support this type of hardware watchpoint. ... with this patch: lihui@bogon:~$ gdb test ... (gdb) start ... Temporary breakpoint 1, main () at test.c:5 5 printf("start test\n"); (gdb) awatch a Hardware access (read/write) watchpoint 2: a (gdb) c Continuing. start test Hardware access (read/write) watchpoint 2: a Old value = 0 New value = 1 main () at test.c:7 7 printf("a = %d\n", a); (gdb) c Continuing. Hardware access (read/write) watchpoint 2: a Value = 1 0x00000001200006e0 in main () at test.c:7 7 printf("a = %d\n", a); (gdb) c Continuing. a = 1 end test [Inferior 1 (process 22250) exited normally] Signed-off-by: Hui Li <lihui@loongson.cn> Signed-off-by: Tiezhu Yang <yangtiezhu@loongson.cn>
2024-06-11 19:21:25 +08:00
if (count == 0)
return false;
gdb: LoongArch: Add support for hardware breakpoint LoongArch defines hardware watchpoint functions for fetch operations. After the software configures the watchpoints for fetch, the processor hardware will monitor the access addresses of the fetch operations and trigger a watchpoint exception when the watchpoint setting conditions are met. Hardware watchpoints for fetch operations is used to implement hardware breakpoint function on LoongArch. Refer to the following document for hardware breakpoint. https://loongson.github.io/LoongArch-Documentation/LoongArch-Vol1-EN.html#control-and-status-registers-related-to-watchpoints A simple test is as follows: lihui@bogon:~$ cat test.c #include <stdio.h> int a = 0; int main() { printf("start test\n"); a = 1; printf("a = %d\n", a); printf("end test\n"); return 0; } lihui@bogon:~$ gcc -g test.c -o test without this patch: lihui@bogon:~$ gdb test ... (gdb) start ... Temporary breakpoint 1, main () at test.c:5 5 printf("start test\n"); (gdb) hbreak 8 No hardware breakpoint support in the target. with this patch: lihui@bogon:~$ gdb test ... (gdb) start ... Temporary breakpoint 1, main () at test.c:5 5 printf("start test\n"); (gdb) hbreak 8 Hardware assisted breakpoint 2 at 0x1200006ec: file test.c, line 8. (gdb) c Continuing. start test a = 1 Breakpoint 2, main () at test.c:8 8 printf("end test\n"); (gdb) c Continuing. end test [Inferior 1 (process 25378) exited normally] Signed-off-by: Hui Li <lihui@loongson.cn> Signed-off-by: Tiezhu Yang <yangtiezhu@loongson.cn>
2024-06-11 19:21:26 +08:00
const CORE_ADDR *addr = watchpoint ? state->dr_addr_wp : state->dr_addr_bp;
const unsigned int *ctrl = watchpoint ? state->dr_ctrl_wp : state->dr_ctrl_bp;
gdb: LoongArch: Add support for hardware watchpoint LoongArch defines hardware watchpoint functions for load/store operations. After the software configures the watchpoints for load/store, the processor hardware will monitor the access addresses of the load/store operations and trigger watchpoint exception when the watchpoint setting conditions are met. After this patch, watch/rwatch/awatch command are supported. Refer to the following document for hardware watchpoint. https://loongson.github.io/LoongArch-Documentation/LoongArch-Vol1-EN.html#control-and-status-registers-related-to-watchpoints A simple test is as follows: lihui@bogon:~$ cat test.c #include <stdio.h> int a = 0; int main() { printf("start test\n"); a = 1; printf("a = %d\n", a); printf("end test\n"); return 0; } lihui@bogon:~$ gcc -g test.c -o test without this patch: lihui@bogon:~$ gdb test ... (gdb) start ... Temporary breakpoint 1, main () at test.c:5 5 printf("start test\n"); (gdb) awatch a Target does not support this type of hardware watchpoint. ... with this patch: lihui@bogon:~$ gdb test ... (gdb) start ... Temporary breakpoint 1, main () at test.c:5 5 printf("start test\n"); (gdb) awatch a Hardware access (read/write) watchpoint 2: a (gdb) c Continuing. start test Hardware access (read/write) watchpoint 2: a Old value = 0 New value = 1 main () at test.c:7 7 printf("a = %d\n", a); (gdb) c Continuing. Hardware access (read/write) watchpoint 2: a Value = 1 0x00000001200006e0 in main () at test.c:7 7 printf("a = %d\n", a); (gdb) c Continuing. a = 1 end test [Inferior 1 (process 22250) exited normally] Signed-off-by: Hui Li <lihui@loongson.cn> Signed-off-by: Tiezhu Yang <yangtiezhu@loongson.cn>
2024-06-11 19:21:25 +08:00
for (int i = 0; i < count; i++)
if (addr[i] != 0 || ctrl[i] != 0)
return true;
return false;
}
/* Print the values of the cached breakpoint/watchpoint registers. */
void
loongarch_show_debug_reg_state (struct loongarch_debug_reg_state *state,
const char *func, CORE_ADDR addr,
int len, enum target_hw_bp_type type)
{
int i;
debug_printf ("%s", func);
if (addr || len)
debug_printf (" (addr=0x%08lx, len=%d, type=%s)",
(unsigned long) addr, len,
type == hw_write ? "hw-write-watchpoint"
: (type == hw_read ? "hw-read-watchpoint"
: (type == hw_access ? "hw-access-watchpoint"
: (type == hw_execute ? "hw-breakpoint"
: "??unknown??"))));
debug_printf (":\n");
gdb: LoongArch: Add support for hardware breakpoint LoongArch defines hardware watchpoint functions for fetch operations. After the software configures the watchpoints for fetch, the processor hardware will monitor the access addresses of the fetch operations and trigger a watchpoint exception when the watchpoint setting conditions are met. Hardware watchpoints for fetch operations is used to implement hardware breakpoint function on LoongArch. Refer to the following document for hardware breakpoint. https://loongson.github.io/LoongArch-Documentation/LoongArch-Vol1-EN.html#control-and-status-registers-related-to-watchpoints A simple test is as follows: lihui@bogon:~$ cat test.c #include <stdio.h> int a = 0; int main() { printf("start test\n"); a = 1; printf("a = %d\n", a); printf("end test\n"); return 0; } lihui@bogon:~$ gcc -g test.c -o test without this patch: lihui@bogon:~$ gdb test ... (gdb) start ... Temporary breakpoint 1, main () at test.c:5 5 printf("start test\n"); (gdb) hbreak 8 No hardware breakpoint support in the target. with this patch: lihui@bogon:~$ gdb test ... (gdb) start ... Temporary breakpoint 1, main () at test.c:5 5 printf("start test\n"); (gdb) hbreak 8 Hardware assisted breakpoint 2 at 0x1200006ec: file test.c, line 8. (gdb) c Continuing. start test a = 1 Breakpoint 2, main () at test.c:8 8 printf("end test\n"); (gdb) c Continuing. end test [Inferior 1 (process 25378) exited normally] Signed-off-by: Hui Li <lihui@loongson.cn> Signed-off-by: Tiezhu Yang <yangtiezhu@loongson.cn>
2024-06-11 19:21:26 +08:00
debug_printf ("\tBREAKPOINTs:\n");
for (i = 0; i < loongarch_num_bp_regs; i++)
debug_printf ("\tBP%d: addr=%s, ctrl=0x%08x, ref.count=%d\n",
i, core_addr_to_string_nz (state->dr_addr_bp[i]),
state->dr_ctrl_bp[i], state->dr_ref_count_bp[i]);
gdb: LoongArch: Add support for hardware watchpoint LoongArch defines hardware watchpoint functions for load/store operations. After the software configures the watchpoints for load/store, the processor hardware will monitor the access addresses of the load/store operations and trigger watchpoint exception when the watchpoint setting conditions are met. After this patch, watch/rwatch/awatch command are supported. Refer to the following document for hardware watchpoint. https://loongson.github.io/LoongArch-Documentation/LoongArch-Vol1-EN.html#control-and-status-registers-related-to-watchpoints A simple test is as follows: lihui@bogon:~$ cat test.c #include <stdio.h> int a = 0; int main() { printf("start test\n"); a = 1; printf("a = %d\n", a); printf("end test\n"); return 0; } lihui@bogon:~$ gcc -g test.c -o test without this patch: lihui@bogon:~$ gdb test ... (gdb) start ... Temporary breakpoint 1, main () at test.c:5 5 printf("start test\n"); (gdb) awatch a Target does not support this type of hardware watchpoint. ... with this patch: lihui@bogon:~$ gdb test ... (gdb) start ... Temporary breakpoint 1, main () at test.c:5 5 printf("start test\n"); (gdb) awatch a Hardware access (read/write) watchpoint 2: a (gdb) c Continuing. start test Hardware access (read/write) watchpoint 2: a Old value = 0 New value = 1 main () at test.c:7 7 printf("a = %d\n", a); (gdb) c Continuing. Hardware access (read/write) watchpoint 2: a Value = 1 0x00000001200006e0 in main () at test.c:7 7 printf("a = %d\n", a); (gdb) c Continuing. a = 1 end test [Inferior 1 (process 22250) exited normally] Signed-off-by: Hui Li <lihui@loongson.cn> Signed-off-by: Tiezhu Yang <yangtiezhu@loongson.cn>
2024-06-11 19:21:25 +08:00
debug_printf ("\tWATCHPOINTs:\n");
for (i = 0; i < loongarch_num_wp_regs; i++)
debug_printf ("\tWP%d: addr=%s, ctrl=0x%08x, ref.count=%d\n",
i, core_addr_to_string_nz (state->dr_addr_wp[i]),
state->dr_ctrl_wp[i], state->dr_ref_count_wp[i]);
}
/* Return true if we can watch a memory region that starts address
ADDR and whose length is LEN in bytes. */
int
loongarch_region_ok_for_watchpoint (CORE_ADDR addr, int len)
{
/* Can not set watchpoints for zero or negative lengths. */
if (len <= 0)
return 0;
/* Must have hardware watchpoint debug register(s). */
if (loongarch_num_wp_regs == 0)
return 0;
return 1;
}
/* See nat/loongarch-hw-point.h*/
bool
loongarch_stopped_data_address (const struct loongarch_debug_reg_state *state,
CORE_ADDR addr_trap, CORE_ADDR *addr_p)
{
int i;
for (i = loongarch_num_wp_regs - 1; i >= 0; --i)
{
const CORE_ADDR addr_watch = state->dr_addr_wp[i];
if (state->dr_ref_count_wp[i]
&& DR_CONTROL_ENABLED (state->dr_ctrl_wp[i])
&& addr_trap == addr_watch)
{
*addr_p = addr_watch;
return true;
}
}
return false;
}