2020-09-25 19:40:42 +08:00
|
|
|
/* Target-dependent code for the Z80.
|
|
|
|
|
2023-01-01 20:49:04 +08:00
|
|
|
Copyright (C) 1986-2023 Free Software Foundation, Inc.
|
2020-09-25 19:40:42 +08:00
|
|
|
|
|
|
|
This file is part of GDB.
|
|
|
|
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
|
|
it under the terms of the GNU General Public License as published by
|
|
|
|
the Free Software Foundation; either version 3 of the License, or
|
|
|
|
(at your option) any later version.
|
|
|
|
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
GNU General Public License for more details.
|
|
|
|
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
|
|
|
|
|
|
|
#include "defs.h"
|
|
|
|
#include "arch-utils.h"
|
|
|
|
#include "dis-asm.h"
|
|
|
|
#include "frame.h"
|
|
|
|
#include "frame-unwind.h"
|
|
|
|
#include "frame-base.h"
|
|
|
|
#include "trad-frame.h"
|
|
|
|
#include "gdbcmd.h"
|
|
|
|
#include "gdbcore.h"
|
|
|
|
#include "gdbtypes.h"
|
|
|
|
#include "inferior.h"
|
|
|
|
#include "objfiles.h"
|
|
|
|
#include "symfile.h"
|
2021-11-18 01:13:47 +08:00
|
|
|
#include "gdbarch.h"
|
2020-09-25 19:40:42 +08:00
|
|
|
|
|
|
|
#include "z80-tdep.h"
|
|
|
|
#include "features/z80.c"
|
|
|
|
|
|
|
|
/* You need to define __gdb_break_handler symbol pointing to the breakpoint
|
|
|
|
handler. The value of the symbol will be used to determine the instruction
|
|
|
|
for software breakpoint. If __gdb_break_handler points to one of standard
|
|
|
|
RST addresses (0x00, 0x08, 0x10,... 0x38) then RST __gdb_break_handler
|
|
|
|
instruction will be used, else CALL __gdb_break_handler
|
|
|
|
|
|
|
|
;breakpoint handler
|
|
|
|
.globl __gdb_break_handler
|
|
|
|
.org 8
|
|
|
|
__gdb_break_handler:
|
|
|
|
jp _debug_swbreak
|
|
|
|
|
|
|
|
*/
|
|
|
|
|
|
|
|
/* Meaning of terms "previous" and "next":
|
|
|
|
previous frame - frame of callee, which is called by current function
|
|
|
|
current frame - frame of current function which has called callee
|
|
|
|
next frame - frame of caller, which has called current function
|
|
|
|
*/
|
|
|
|
|
2022-07-25 19:07:11 +08:00
|
|
|
struct z80_gdbarch_tdep : gdbarch_tdep_base
|
2020-09-25 19:40:42 +08:00
|
|
|
{
|
|
|
|
/* Number of bytes used for address:
|
|
|
|
2 bytes for all Z80 family
|
|
|
|
3 bytes for eZ80 CPUs operating in ADL mode */
|
gdb: fix gdbarch_tdep ODR violation
I would like to be able to use non-trivial types in gdbarch_tdep types.
This is not possible at the moment (in theory), because of the one
definition rule.
To allow it, rename all gdbarch_tdep types to <arch>_gdbarch_tdep, and
make them inherit from a gdbarch_tdep base class. The inheritance is
necessary to be able to pass pointers to all these <arch>_gdbarch_tdep
objects to gdbarch_alloc, which takes a pointer to gdbarch_tdep.
These objects are never deleted through a base class pointer, so I
didn't include a virtual destructor. In the future, if gdbarch objects
deletable, I could imagine that the gdbarch_tdep objects could become
owned by the gdbarch objects, and then it would become useful to have a
virtual destructor (so that the gdbarch object can delete the owned
gdbarch_tdep object). But that's not necessary right now.
It turns out that RISC-V already has a gdbarch_tdep that is
non-default-constructible, so that provides a good motivation for this
change.
Most changes are fairly straightforward, mostly needing to add some
casts all over the place. There is however the xtensa architecture,
doing its own little weird thing to define its gdbarch_tdep. I did my
best to adapt it, but I can't test those changes.
Change-Id: Ic001903f91ddd106bd6ca09a79dabe8df2d69f3b
2021-11-16 00:29:39 +08:00
|
|
|
int addr_length = 0;
|
2020-09-25 19:40:42 +08:00
|
|
|
|
|
|
|
/* Type for void. */
|
gdb: fix gdbarch_tdep ODR violation
I would like to be able to use non-trivial types in gdbarch_tdep types.
This is not possible at the moment (in theory), because of the one
definition rule.
To allow it, rename all gdbarch_tdep types to <arch>_gdbarch_tdep, and
make them inherit from a gdbarch_tdep base class. The inheritance is
necessary to be able to pass pointers to all these <arch>_gdbarch_tdep
objects to gdbarch_alloc, which takes a pointer to gdbarch_tdep.
These objects are never deleted through a base class pointer, so I
didn't include a virtual destructor. In the future, if gdbarch objects
deletable, I could imagine that the gdbarch_tdep objects could become
owned by the gdbarch objects, and then it would become useful to have a
virtual destructor (so that the gdbarch object can delete the owned
gdbarch_tdep object). But that's not necessary right now.
It turns out that RISC-V already has a gdbarch_tdep that is
non-default-constructible, so that provides a good motivation for this
change.
Most changes are fairly straightforward, mostly needing to add some
casts all over the place. There is however the xtensa architecture,
doing its own little weird thing to define its gdbarch_tdep. I did my
best to adapt it, but I can't test those changes.
Change-Id: Ic001903f91ddd106bd6ca09a79dabe8df2d69f3b
2021-11-16 00:29:39 +08:00
|
|
|
struct type *void_type = nullptr;
|
|
|
|
|
2020-09-25 19:40:42 +08:00
|
|
|
/* Type for a function returning void. */
|
gdb: fix gdbarch_tdep ODR violation
I would like to be able to use non-trivial types in gdbarch_tdep types.
This is not possible at the moment (in theory), because of the one
definition rule.
To allow it, rename all gdbarch_tdep types to <arch>_gdbarch_tdep, and
make them inherit from a gdbarch_tdep base class. The inheritance is
necessary to be able to pass pointers to all these <arch>_gdbarch_tdep
objects to gdbarch_alloc, which takes a pointer to gdbarch_tdep.
These objects are never deleted through a base class pointer, so I
didn't include a virtual destructor. In the future, if gdbarch objects
deletable, I could imagine that the gdbarch_tdep objects could become
owned by the gdbarch objects, and then it would become useful to have a
virtual destructor (so that the gdbarch object can delete the owned
gdbarch_tdep object). But that's not necessary right now.
It turns out that RISC-V already has a gdbarch_tdep that is
non-default-constructible, so that provides a good motivation for this
change.
Most changes are fairly straightforward, mostly needing to add some
casts all over the place. There is however the xtensa architecture,
doing its own little weird thing to define its gdbarch_tdep. I did my
best to adapt it, but I can't test those changes.
Change-Id: Ic001903f91ddd106bd6ca09a79dabe8df2d69f3b
2021-11-16 00:29:39 +08:00
|
|
|
struct type *func_void_type = nullptr;
|
|
|
|
|
2020-09-25 19:40:42 +08:00
|
|
|
/* Type for a pointer to a function. Used for the type of PC. */
|
gdb: fix gdbarch_tdep ODR violation
I would like to be able to use non-trivial types in gdbarch_tdep types.
This is not possible at the moment (in theory), because of the one
definition rule.
To allow it, rename all gdbarch_tdep types to <arch>_gdbarch_tdep, and
make them inherit from a gdbarch_tdep base class. The inheritance is
necessary to be able to pass pointers to all these <arch>_gdbarch_tdep
objects to gdbarch_alloc, which takes a pointer to gdbarch_tdep.
These objects are never deleted through a base class pointer, so I
didn't include a virtual destructor. In the future, if gdbarch objects
deletable, I could imagine that the gdbarch_tdep objects could become
owned by the gdbarch objects, and then it would become useful to have a
virtual destructor (so that the gdbarch object can delete the owned
gdbarch_tdep object). But that's not necessary right now.
It turns out that RISC-V already has a gdbarch_tdep that is
non-default-constructible, so that provides a good motivation for this
change.
Most changes are fairly straightforward, mostly needing to add some
casts all over the place. There is however the xtensa architecture,
doing its own little weird thing to define its gdbarch_tdep. I did my
best to adapt it, but I can't test those changes.
Change-Id: Ic001903f91ddd106bd6ca09a79dabe8df2d69f3b
2021-11-16 00:29:39 +08:00
|
|
|
struct type *pc_type = nullptr;
|
2020-09-25 19:40:42 +08:00
|
|
|
};
|
|
|
|
|
|
|
|
/* At any time stack frame contains following parts:
|
|
|
|
[<current PC>]
|
|
|
|
[<temporaries, y bytes>]
|
|
|
|
[<local variables, x bytes>
|
|
|
|
<next frame FP>]
|
|
|
|
[<saved state (critical or interrupt functions), 2 or 10 bytes>]
|
|
|
|
In simplest case <next PC> is pointer to the call instruction
|
|
|
|
(or call __call_hl). There are more difficult cases: interrupt handler or
|
|
|
|
push/ret and jp; but they are untrackable.
|
|
|
|
*/
|
|
|
|
|
|
|
|
struct z80_unwind_cache
|
|
|
|
{
|
|
|
|
/* The previous frame's inner most stack address (SP after call executed),
|
|
|
|
it is current frame's frame_id. */
|
|
|
|
CORE_ADDR prev_sp;
|
|
|
|
|
|
|
|
/* Size of the frame, prev_sp + size = next_frame.prev_sp */
|
|
|
|
ULONGEST size;
|
|
|
|
|
|
|
|
/* size of saved state (including frame pointer and return address),
|
|
|
|
assume: prev_sp + size = IX + state_size */
|
|
|
|
ULONGEST state_size;
|
|
|
|
|
|
|
|
struct
|
|
|
|
{
|
2023-02-24 01:35:41 +08:00
|
|
|
unsigned int called : 1; /* there is return address on stack */
|
|
|
|
unsigned int load_args : 1; /* prologues loads args using POPs */
|
|
|
|
unsigned int fp_sdcc : 1; /* prologue saves and adjusts frame pointer IX */
|
|
|
|
unsigned int interrupt : 1; /* __interrupt handler */
|
|
|
|
unsigned int critical : 1; /* __critical function */
|
2020-09-25 19:40:42 +08:00
|
|
|
} prologue_type;
|
|
|
|
|
|
|
|
/* Table indicating the location of each and every register. */
|
|
|
|
struct trad_frame_saved_reg *saved_regs;
|
|
|
|
};
|
|
|
|
|
2022-05-18 23:45:33 +08:00
|
|
|
enum z80_instruction_type
|
2020-09-25 19:40:42 +08:00
|
|
|
{
|
|
|
|
insn_default,
|
|
|
|
insn_z80,
|
|
|
|
insn_adl,
|
|
|
|
insn_z80_ed,
|
|
|
|
insn_adl_ed,
|
|
|
|
insn_z80_ddfd,
|
|
|
|
insn_adl_ddfd,
|
|
|
|
insn_djnz_d,
|
|
|
|
insn_jr_d,
|
|
|
|
insn_jr_cc_d,
|
|
|
|
insn_jp_nn,
|
|
|
|
insn_jp_rr,
|
|
|
|
insn_jp_cc_nn,
|
|
|
|
insn_call_nn,
|
|
|
|
insn_call_cc_nn,
|
|
|
|
insn_rst_n,
|
|
|
|
insn_ret,
|
|
|
|
insn_ret_cc,
|
|
|
|
insn_push_rr,
|
|
|
|
insn_pop_rr,
|
|
|
|
insn_dec_sp,
|
|
|
|
insn_inc_sp,
|
|
|
|
insn_ld_sp_nn,
|
|
|
|
insn_ld_sp_6nn9, /* ld sp, (nn) */
|
|
|
|
insn_ld_sp_rr,
|
|
|
|
insn_force_nop /* invalid opcode prefix */
|
|
|
|
};
|
|
|
|
|
2022-05-19 00:08:43 +08:00
|
|
|
struct z80_insn_info
|
2020-09-25 19:40:42 +08:00
|
|
|
{
|
|
|
|
gdb_byte code;
|
|
|
|
gdb_byte mask;
|
|
|
|
gdb_byte size; /* without prefix(es) */
|
2022-05-18 23:45:33 +08:00
|
|
|
enum z80_instruction_type type;
|
2020-09-25 19:40:42 +08:00
|
|
|
};
|
|
|
|
|
|
|
|
/* Constants */
|
|
|
|
|
2022-05-19 00:08:43 +08:00
|
|
|
static const struct z80_insn_info *
|
2020-09-25 19:40:42 +08:00
|
|
|
z80_get_insn_info (struct gdbarch *gdbarch, const gdb_byte *buf, int *size);
|
|
|
|
|
|
|
|
static const char *z80_reg_names[] =
|
|
|
|
{
|
|
|
|
/* 24 bit on eZ80, else 16 bit */
|
|
|
|
"af", "bc", "de", "hl",
|
|
|
|
"sp", "pc", "ix", "iy",
|
|
|
|
"af'", "bc'", "de'", "hl'",
|
|
|
|
"ir",
|
|
|
|
/* eZ80 only */
|
|
|
|
"sps"
|
|
|
|
};
|
|
|
|
|
|
|
|
/* Return the name of register REGNUM. */
|
|
|
|
static const char *
|
|
|
|
z80_register_name (struct gdbarch *gdbarch, int regnum)
|
|
|
|
{
|
gdb: final cleanup of various gdbarch_register_name methods
Building on the previous commits, this commit goes through the various
gdbarch_register_name methods and removes all the remaining 'return
NULL' cases, I claim that these either couldn't be hit, or should be
returning the empty string.
In all cases the return of NULL was used if the register number being
passed to gdbarch_register_name was "invalid", i.e. negative, or
greater than the total number of declared registers. I don't believe
either of these cases can occur, and the previous commit asserts that
this is the case. As a result we can simplify the code by removing
these checks. In many cases, where the register names are held in an
array, I was able to add a static assert that the array contains the
correct number of strings, after that, a direct access into the array
is fine.
I don't have any means of testing these changes.
2022-08-31 20:32:59 +08:00
|
|
|
if (regnum < ARRAY_SIZE (z80_reg_names))
|
2020-09-25 19:40:42 +08:00
|
|
|
return z80_reg_names[regnum];
|
|
|
|
|
gdb: final cleanup of various gdbarch_register_name methods
Building on the previous commits, this commit goes through the various
gdbarch_register_name methods and removes all the remaining 'return
NULL' cases, I claim that these either couldn't be hit, or should be
returning the empty string.
In all cases the return of NULL was used if the register number being
passed to gdbarch_register_name was "invalid", i.e. negative, or
greater than the total number of declared registers. I don't believe
either of these cases can occur, and the previous commit asserts that
this is the case. As a result we can simplify the code by removing
these checks. In many cases, where the register names are held in an
array, I was able to add a static assert that the array contains the
correct number of strings, after that, a direct access into the array
is fine.
I don't have any means of testing these changes.
2022-08-31 20:32:59 +08:00
|
|
|
return "";
|
2020-09-25 19:40:42 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
/* Return the type of a register specified by the architecture. Only
|
|
|
|
the register cache should call this function directly; others should
|
|
|
|
use "register_type". */
|
|
|
|
static struct type *
|
|
|
|
z80_register_type (struct gdbarch *gdbarch, int reg_nr)
|
|
|
|
{
|
|
|
|
return builtin_type (gdbarch)->builtin_data_ptr;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* The next 2 functions check BUF for instruction. If it is pop/push rr, then
|
|
|
|
it returns register number OR'ed with 0x100 */
|
|
|
|
static int
|
|
|
|
z80_is_pop_rr (const gdb_byte buf[], int *size)
|
|
|
|
{
|
|
|
|
switch (buf[0])
|
|
|
|
{
|
|
|
|
case 0xc1:
|
|
|
|
*size = 1;
|
|
|
|
return Z80_BC_REGNUM | 0x100;
|
|
|
|
case 0xd1:
|
|
|
|
*size = 1;
|
|
|
|
return Z80_DE_REGNUM | 0x100;
|
|
|
|
case 0xe1:
|
|
|
|
*size = 1;
|
|
|
|
return Z80_HL_REGNUM | 0x100;
|
|
|
|
case 0xf1:
|
|
|
|
*size = 1;
|
|
|
|
return Z80_AF_REGNUM | 0x100;
|
|
|
|
case 0xdd:
|
|
|
|
*size = 2;
|
|
|
|
return (buf[1] == 0xe1) ? (Z80_IX_REGNUM | 0x100) : 0;
|
|
|
|
case 0xfd:
|
|
|
|
*size = 2;
|
|
|
|
return (buf[1] == 0xe1) ? (Z80_IY_REGNUM | 0x100) : 0;
|
|
|
|
}
|
|
|
|
*size = 0;
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
z80_is_push_rr (const gdb_byte buf[], int *size)
|
|
|
|
{
|
|
|
|
switch (buf[0])
|
|
|
|
{
|
|
|
|
case 0xc5:
|
|
|
|
*size = 1;
|
|
|
|
return Z80_BC_REGNUM | 0x100;
|
|
|
|
case 0xd5:
|
|
|
|
*size = 1;
|
|
|
|
return Z80_DE_REGNUM | 0x100;
|
|
|
|
case 0xe5:
|
|
|
|
*size = 1;
|
|
|
|
return Z80_HL_REGNUM | 0x100;
|
|
|
|
case 0xf5:
|
|
|
|
*size = 1;
|
|
|
|
return Z80_AF_REGNUM | 0x100;
|
|
|
|
case 0xdd:
|
|
|
|
*size = 2;
|
|
|
|
return (buf[1] == 0xe5) ? (Z80_IX_REGNUM | 0x100) : 0;
|
|
|
|
case 0xfd:
|
|
|
|
*size = 2;
|
|
|
|
return (buf[1] == 0xe5) ? (Z80_IY_REGNUM | 0x100) : 0;
|
|
|
|
}
|
|
|
|
*size = 0;
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Function: z80_scan_prologue
|
|
|
|
|
|
|
|
This function decodes a function prologue to determine:
|
|
|
|
1) the size of the stack frame
|
|
|
|
2) which registers are saved on it
|
|
|
|
3) the offsets of saved regs
|
|
|
|
This information is stored in the z80_unwind_cache structure.
|
|
|
|
Small SDCC functions may just load args using POP instructions in prologue:
|
|
|
|
pop af
|
|
|
|
pop de
|
|
|
|
pop hl
|
|
|
|
pop bc
|
|
|
|
push bc
|
|
|
|
push hl
|
|
|
|
push de
|
|
|
|
push af
|
|
|
|
SDCC function prologue may have up to 3 sections (all are optional):
|
|
|
|
1) save state
|
|
|
|
a) __critical functions:
|
|
|
|
ld a,i
|
|
|
|
di
|
|
|
|
push af
|
|
|
|
b) __interrupt (both int and nmi) functions:
|
|
|
|
push af
|
|
|
|
push bc
|
|
|
|
push de
|
|
|
|
push hl
|
|
|
|
push iy
|
|
|
|
2) save and adjust frame pointer
|
|
|
|
a) call to special function (size optimization)
|
|
|
|
call ___sdcc_enter_ix
|
|
|
|
b) inline (speed optimization)
|
|
|
|
push ix
|
|
|
|
ld ix, #0
|
|
|
|
add ix, sp
|
|
|
|
c) without FP, but saving it (IX is optimized out)
|
|
|
|
push ix
|
|
|
|
3) allocate local variables
|
|
|
|
a) via series of PUSH AF and optional DEC SP (size optimization)
|
|
|
|
push af
|
|
|
|
...
|
|
|
|
push af
|
|
|
|
dec sp ;optional, if allocated odd numbers of bytes
|
|
|
|
b) via SP decrements
|
|
|
|
dec sp
|
|
|
|
...
|
|
|
|
dec sp
|
|
|
|
c) via addition (for large frames: 5+ for speed and 9+ for size opt.)
|
|
|
|
ld hl, #xxxx ;size of stack frame
|
|
|
|
add hl, sp
|
|
|
|
ld sp, hl
|
|
|
|
d) same, but using register IY (arrays or for __z88dk_fastcall functions)
|
|
|
|
ld iy, #xxxx ;size of stack frame
|
|
|
|
add iy, sp
|
|
|
|
ld sp, iy
|
|
|
|
e) same as c, but for eZ80
|
|
|
|
lea hl, ix - #nn
|
|
|
|
ld sp, hl
|
|
|
|
f) same as d, but for eZ80
|
|
|
|
lea iy, ix - #nn
|
|
|
|
ld sp, iy
|
|
|
|
*/
|
|
|
|
|
|
|
|
static int
|
|
|
|
z80_scan_prologue (struct gdbarch *gdbarch, CORE_ADDR pc_beg, CORE_ADDR pc_end,
|
|
|
|
struct z80_unwind_cache *info)
|
|
|
|
{
|
|
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
gdb: move the type cast into gdbarch_tdep
I built GDB for all targets on a x86-64/GNU-Linux system, and
then (accidentally) passed GDB a RISC-V binary, and asked GDB to "run"
the binary on the native target. I got this error:
(gdb) show architecture
The target architecture is set to "auto" (currently "i386").
(gdb) file /tmp/hello.rv32.exe
Reading symbols from /tmp/hello.rv32.exe...
(gdb) show architecture
The target architecture is set to "auto" (currently "riscv:rv32").
(gdb) run
Starting program: /tmp/hello.rv32.exe
../../src/gdb/i387-tdep.c:596: internal-error: i387_supply_fxsave: Assertion `tdep->st0_regnum >= I386_ST0_REGNUM' failed.
What's going on here is this; initially the architecture is i386, this
is based on the default architecture, which is set based on the native
target. After loading the RISC-V executable the architecture of the
current inferior is updated based on the architecture of the
executable.
When we "run", GDB does a fork & exec, with the inferior being
controlled through ptrace. GDB sees an initial stop from the inferior
as soon as the inferior comes to life. In response to this stop GDB
ends up calling save_stop_reason (linux-nat.c), which ends up trying
to read register from the inferior, to do this we end up calling
target_ops::fetch_registers, which, for the x86-64 native target,
calls amd64_linux_nat_target::fetch_registers.
After this I eventually end up in i387_supply_fxsave, different x86
based targets will end in different functions to fetch registers, but
it doesn't really matter which function we end up in, the problem is
this line, which is repeated in many places:
i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (arch);
The problem here is that the ARCH in this line comes from the current
inferior, which, as we discussed above, will be a RISC-V gdbarch, the
tdep field will actually be of type riscv_gdbarch_tdep, not
i386_gdbarch_tdep. After this cast we are relying on undefined
behaviour, in my case I happen to trigger an assert, but this might
not always be the case.
The thing I tried that exposed this problem was of course, trying to
start an executable of the wrong architecture on a native target. I
don't think that the correct solution for this problem is to detect,
at the point of cast, that the gdbarch_tdep object is of the wrong
type, but, I did wonder, is there a way that we could protect
ourselves from incorrectly casting the gdbarch_tdep object?
I think that there is something we can do here, and this commit is the
first step in that direction, though no actual check is added by this
commit.
This commit can be split into two parts:
(1) In gdbarch.h and arch-utils.c. In these files I have modified
gdbarch_tdep (the function) so that it now takes a template argument,
like this:
template<typename TDepType>
static inline TDepType *
gdbarch_tdep (struct gdbarch *gdbarch)
{
struct gdbarch_tdep *tdep = gdbarch_tdep_1 (gdbarch);
return static_cast<TDepType *> (tdep);
}
After this change we are no better protected, but the cast is now
done within the gdbarch_tdep function rather than at the call sites,
this leads to the second, much larger change in this commit,
(2) Everywhere gdbarch_tdep is called, we make changes like this:
- i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (arch);
+ i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (arch);
There should be no functional change after this commit.
In the next commit I will build on this change to add an assertion in
gdbarch_tdep that checks we are casting to the correct type.
2022-05-19 20:20:17 +08:00
|
|
|
z80_gdbarch_tdep *tdep = gdbarch_tdep<z80_gdbarch_tdep> (gdbarch);
|
gdb: fix gdbarch_tdep ODR violation
I would like to be able to use non-trivial types in gdbarch_tdep types.
This is not possible at the moment (in theory), because of the one
definition rule.
To allow it, rename all gdbarch_tdep types to <arch>_gdbarch_tdep, and
make them inherit from a gdbarch_tdep base class. The inheritance is
necessary to be able to pass pointers to all these <arch>_gdbarch_tdep
objects to gdbarch_alloc, which takes a pointer to gdbarch_tdep.
These objects are never deleted through a base class pointer, so I
didn't include a virtual destructor. In the future, if gdbarch objects
deletable, I could imagine that the gdbarch_tdep objects could become
owned by the gdbarch objects, and then it would become useful to have a
virtual destructor (so that the gdbarch object can delete the owned
gdbarch_tdep object). But that's not necessary right now.
It turns out that RISC-V already has a gdbarch_tdep that is
non-default-constructible, so that provides a good motivation for this
change.
Most changes are fairly straightforward, mostly needing to add some
casts all over the place. There is however the xtensa architecture,
doing its own little weird thing to define its gdbarch_tdep. I did my
best to adapt it, but I can't test those changes.
Change-Id: Ic001903f91ddd106bd6ca09a79dabe8df2d69f3b
2021-11-16 00:29:39 +08:00
|
|
|
int addr_len = tdep->addr_length;
|
2020-09-25 19:40:42 +08:00
|
|
|
gdb_byte prologue[32]; /* max prologue is 24 bytes: __interrupt with local array */
|
|
|
|
int pos = 0;
|
|
|
|
int len;
|
|
|
|
int reg;
|
|
|
|
CORE_ADDR value;
|
|
|
|
|
|
|
|
len = pc_end - pc_beg;
|
|
|
|
if (len > (int)sizeof (prologue))
|
|
|
|
len = sizeof (prologue);
|
|
|
|
|
|
|
|
read_memory (pc_beg, prologue, len);
|
|
|
|
|
|
|
|
/* stage0: check for series of POPs and then PUSHs */
|
|
|
|
if ((reg = z80_is_pop_rr(prologue, &pos)))
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
int size = pos;
|
|
|
|
gdb_byte regs[8]; /* Z80 have only 6 register pairs */
|
|
|
|
regs[0] = reg & 0xff;
|
|
|
|
for (i = 1; i < 8 && (regs[i] = z80_is_pop_rr (&prologue[pos], &size));
|
|
|
|
++i, pos += size);
|
|
|
|
/* now we expect series of PUSHs in reverse order */
|
|
|
|
for (--i; i >= 0 && regs[i] == z80_is_push_rr (&prologue[pos], &size);
|
|
|
|
--i, pos += size);
|
|
|
|
if (i == -1 && pos > 0)
|
|
|
|
info->prologue_type.load_args = 1;
|
|
|
|
else
|
|
|
|
pos = 0;
|
|
|
|
}
|
|
|
|
/* stage1: check for __interrupt handlers and __critical functions */
|
|
|
|
else if (!memcmp (&prologue[pos], "\355\127\363\365", 4))
|
|
|
|
{ /* ld a, i; di; push af */
|
|
|
|
info->prologue_type.critical = 1;
|
|
|
|
pos += 4;
|
|
|
|
info->state_size += addr_len;
|
|
|
|
}
|
|
|
|
else if (!memcmp (&prologue[pos], "\365\305\325\345\375\345", 6))
|
|
|
|
{ /* push af; push bc; push de; push hl; push iy */
|
|
|
|
info->prologue_type.interrupt = 1;
|
|
|
|
pos += 6;
|
|
|
|
info->state_size += addr_len * 5;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* stage2: check for FP saving scheme */
|
|
|
|
if (prologue[pos] == 0xcd) /* call nn */
|
|
|
|
{
|
|
|
|
struct bound_minimal_symbol msymbol;
|
|
|
|
msymbol = lookup_minimal_symbol ("__sdcc_enter_ix", NULL, NULL);
|
|
|
|
if (msymbol.minsym)
|
|
|
|
{
|
2022-01-28 21:09:50 +08:00
|
|
|
value = msymbol.value_address ();
|
2020-09-25 19:40:42 +08:00
|
|
|
if (value == extract_unsigned_integer (&prologue[pos+1], addr_len, byte_order))
|
|
|
|
{
|
|
|
|
pos += 1 + addr_len;
|
|
|
|
info->prologue_type.fp_sdcc = 1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else if (!memcmp (&prologue[pos], "\335\345\335\041\000\000", 4+addr_len) &&
|
|
|
|
!memcmp (&prologue[pos+4+addr_len], "\335\071\335\371", 4))
|
|
|
|
{ /* push ix; ld ix, #0; add ix, sp; ld sp, ix */
|
|
|
|
pos += 4 + addr_len + 4;
|
|
|
|
info->prologue_type.fp_sdcc = 1;
|
|
|
|
}
|
|
|
|
else if (!memcmp (&prologue[pos], "\335\345", 2))
|
|
|
|
{ /* push ix */
|
|
|
|
pos += 2;
|
|
|
|
info->prologue_type.fp_sdcc = 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* stage3: check for local variables allocation */
|
|
|
|
switch (prologue[pos])
|
|
|
|
{
|
|
|
|
case 0xf5: /* push af */
|
|
|
|
info->size = 0;
|
|
|
|
while (prologue[pos] == 0xf5)
|
|
|
|
{
|
|
|
|
info->size += addr_len;
|
|
|
|
pos++;
|
|
|
|
}
|
|
|
|
if (prologue[pos] == 0x3b) /* dec sp */
|
|
|
|
{
|
|
|
|
info->size++;
|
|
|
|
pos++;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case 0x3b: /* dec sp */
|
|
|
|
info->size = 0;
|
|
|
|
while (prologue[pos] == 0x3b)
|
|
|
|
{
|
|
|
|
info->size++;
|
|
|
|
pos++;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case 0x21: /*ld hl, -nn */
|
|
|
|
if (prologue[pos+addr_len] == 0x39 && prologue[pos+addr_len] >= 0x80 &&
|
|
|
|
prologue[pos+addr_len+1] == 0xf9)
|
|
|
|
{ /* add hl, sp; ld sp, hl */
|
|
|
|
info->size = -extract_signed_integer(&prologue[pos+1], addr_len, byte_order);
|
|
|
|
pos += 1 + addr_len + 2;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case 0xfd: /* ld iy, -nn */
|
|
|
|
if (prologue[pos+1] == 0x21 && prologue[pos+1+addr_len] >= 0x80 &&
|
|
|
|
!memcmp (&prologue[pos+2+addr_len], "\375\071\375\371", 4))
|
|
|
|
{
|
|
|
|
info->size = -extract_signed_integer(&prologue[pos+2], addr_len, byte_order);
|
|
|
|
pos += 2 + addr_len + 4;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case 0xed: /* check for lea xx, ix - n */
|
|
|
|
switch (prologue[pos+1])
|
|
|
|
{
|
|
|
|
case 0x22: /* lea hl, ix - n */
|
|
|
|
if (prologue[pos+2] >= 0x80 && prologue[pos+3] == 0xf9)
|
|
|
|
{ /* ld sp, hl */
|
|
|
|
info->size = -extract_signed_integer(&prologue[pos+2], 1, byte_order);
|
|
|
|
pos += 4;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case 0x55: /* lea iy, ix - n */
|
|
|
|
if (prologue[pos+2] >= 0x80 && prologue[pos+3] == 0xfd &&
|
|
|
|
prologue[pos+4] == 0xf9)
|
|
|
|
{ /* ld sp, iy */
|
|
|
|
info->size = -extract_signed_integer(&prologue[pos+2], 1, byte_order);
|
|
|
|
pos += 5;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
len = 0;
|
|
|
|
|
|
|
|
if (info->prologue_type.interrupt)
|
|
|
|
{
|
|
|
|
info->saved_regs[Z80_AF_REGNUM].set_addr (len++);
|
|
|
|
info->saved_regs[Z80_BC_REGNUM].set_addr (len++);
|
|
|
|
info->saved_regs[Z80_DE_REGNUM].set_addr (len++);
|
|
|
|
info->saved_regs[Z80_HL_REGNUM].set_addr (len++);
|
|
|
|
info->saved_regs[Z80_IY_REGNUM].set_addr (len++);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (info->prologue_type.critical)
|
|
|
|
len++; /* just skip IFF2 saved state */
|
|
|
|
|
|
|
|
if (info->prologue_type.fp_sdcc)
|
|
|
|
info->saved_regs[Z80_IX_REGNUM].set_addr (len++);
|
|
|
|
|
|
|
|
info->state_size += len * addr_len;
|
|
|
|
|
|
|
|
return pc_beg + pos;
|
|
|
|
}
|
|
|
|
|
|
|
|
static CORE_ADDR
|
|
|
|
z80_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
|
|
|
|
{
|
|
|
|
CORE_ADDR func_addr, func_end;
|
|
|
|
CORE_ADDR prologue_end;
|
|
|
|
|
|
|
|
if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
|
|
|
|
return pc;
|
|
|
|
|
|
|
|
prologue_end = skip_prologue_using_sal (gdbarch, func_addr);
|
|
|
|
if (prologue_end != 0)
|
|
|
|
return std::max (pc, prologue_end);
|
|
|
|
|
|
|
|
{
|
|
|
|
struct z80_unwind_cache info = {0};
|
|
|
|
struct trad_frame_saved_reg saved_regs[Z80_NUM_REGS];
|
|
|
|
|
|
|
|
info.saved_regs = saved_regs;
|
|
|
|
|
|
|
|
/* Need to run the prologue scanner to figure out if the function has a
|
|
|
|
prologue. */
|
|
|
|
|
|
|
|
prologue_end = z80_scan_prologue (gdbarch, func_addr, func_end, &info);
|
|
|
|
|
|
|
|
if (info.prologue_type.fp_sdcc || info.prologue_type.interrupt ||
|
|
|
|
info.prologue_type.critical)
|
|
|
|
return std::max (pc, prologue_end);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (prologue_end != 0)
|
|
|
|
{
|
|
|
|
struct symtab_and_line prologue_sal = find_pc_line (func_addr, 0);
|
2021-11-20 11:49:01 +08:00
|
|
|
struct compunit_symtab *compunit = prologue_sal.symtab->compunit ();
|
2021-11-20 10:49:53 +08:00
|
|
|
const char *debug_format = compunit->debugformat ();
|
2020-09-25 19:40:42 +08:00
|
|
|
|
|
|
|
if (debug_format != NULL &&
|
|
|
|
!strncasecmp ("dwarf", debug_format, strlen("dwarf")))
|
|
|
|
return std::max (pc, prologue_end);
|
|
|
|
}
|
|
|
|
|
|
|
|
return pc;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Return the return-value convention that will be used by FUNCTION
|
|
|
|
to return a value of type VALTYPE. FUNCTION may be NULL in which
|
|
|
|
case the return convention is computed based only on VALTYPE.
|
|
|
|
|
|
|
|
If READBUF is not NULL, extract the return value and save it in this buffer.
|
|
|
|
|
|
|
|
If WRITEBUF is not NULL, it contains a return value which will be
|
|
|
|
stored into the appropriate register. This can be used when we want
|
|
|
|
to force the value returned by a function (see the "return" command
|
|
|
|
for instance). */
|
|
|
|
static enum return_value_convention
|
|
|
|
z80_return_value (struct gdbarch *gdbarch, struct value *function,
|
|
|
|
struct type *valtype, struct regcache *regcache,
|
|
|
|
gdb_byte *readbuf, const gdb_byte *writebuf)
|
|
|
|
{
|
|
|
|
/* Byte are returned in L, word in HL, dword in DEHL. */
|
2022-09-21 23:05:21 +08:00
|
|
|
int len = valtype->length ();
|
2020-09-25 19:40:42 +08:00
|
|
|
|
|
|
|
if ((valtype->code () == TYPE_CODE_STRUCT
|
|
|
|
|| valtype->code () == TYPE_CODE_UNION
|
|
|
|
|| valtype->code () == TYPE_CODE_ARRAY)
|
|
|
|
&& len > 4)
|
|
|
|
return RETURN_VALUE_STRUCT_CONVENTION;
|
|
|
|
|
|
|
|
if (writebuf != NULL)
|
|
|
|
{
|
|
|
|
if (len > 2)
|
|
|
|
{
|
|
|
|
regcache->cooked_write_part (Z80_DE_REGNUM, 0, len - 2, writebuf+2);
|
|
|
|
len = 2;
|
|
|
|
}
|
|
|
|
regcache->cooked_write_part (Z80_HL_REGNUM, 0, len, writebuf);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (readbuf != NULL)
|
|
|
|
{
|
|
|
|
if (len > 2)
|
|
|
|
{
|
|
|
|
regcache->cooked_read_part (Z80_DE_REGNUM, 0, len - 2, readbuf+2);
|
|
|
|
len = 2;
|
|
|
|
}
|
|
|
|
regcache->cooked_read_part (Z80_HL_REGNUM, 0, len, readbuf);
|
|
|
|
}
|
|
|
|
|
|
|
|
return RETURN_VALUE_REGISTER_CONVENTION;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* function unwinds current stack frame and returns next one */
|
|
|
|
static struct z80_unwind_cache *
|
2022-07-26 01:06:35 +08:00
|
|
|
z80_frame_unwind_cache (frame_info_ptr this_frame,
|
2020-09-25 19:40:42 +08:00
|
|
|
void **this_prologue_cache)
|
|
|
|
{
|
|
|
|
CORE_ADDR start_pc, current_pc;
|
|
|
|
ULONGEST this_base;
|
|
|
|
int i;
|
|
|
|
gdb_byte buf[sizeof(void*)];
|
|
|
|
struct z80_unwind_cache *info;
|
|
|
|
struct gdbarch *gdbarch = get_frame_arch (this_frame);
|
gdb: move the type cast into gdbarch_tdep
I built GDB for all targets on a x86-64/GNU-Linux system, and
then (accidentally) passed GDB a RISC-V binary, and asked GDB to "run"
the binary on the native target. I got this error:
(gdb) show architecture
The target architecture is set to "auto" (currently "i386").
(gdb) file /tmp/hello.rv32.exe
Reading symbols from /tmp/hello.rv32.exe...
(gdb) show architecture
The target architecture is set to "auto" (currently "riscv:rv32").
(gdb) run
Starting program: /tmp/hello.rv32.exe
../../src/gdb/i387-tdep.c:596: internal-error: i387_supply_fxsave: Assertion `tdep->st0_regnum >= I386_ST0_REGNUM' failed.
What's going on here is this; initially the architecture is i386, this
is based on the default architecture, which is set based on the native
target. After loading the RISC-V executable the architecture of the
current inferior is updated based on the architecture of the
executable.
When we "run", GDB does a fork & exec, with the inferior being
controlled through ptrace. GDB sees an initial stop from the inferior
as soon as the inferior comes to life. In response to this stop GDB
ends up calling save_stop_reason (linux-nat.c), which ends up trying
to read register from the inferior, to do this we end up calling
target_ops::fetch_registers, which, for the x86-64 native target,
calls amd64_linux_nat_target::fetch_registers.
After this I eventually end up in i387_supply_fxsave, different x86
based targets will end in different functions to fetch registers, but
it doesn't really matter which function we end up in, the problem is
this line, which is repeated in many places:
i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (arch);
The problem here is that the ARCH in this line comes from the current
inferior, which, as we discussed above, will be a RISC-V gdbarch, the
tdep field will actually be of type riscv_gdbarch_tdep, not
i386_gdbarch_tdep. After this cast we are relying on undefined
behaviour, in my case I happen to trigger an assert, but this might
not always be the case.
The thing I tried that exposed this problem was of course, trying to
start an executable of the wrong architecture on a native target. I
don't think that the correct solution for this problem is to detect,
at the point of cast, that the gdbarch_tdep object is of the wrong
type, but, I did wonder, is there a way that we could protect
ourselves from incorrectly casting the gdbarch_tdep object?
I think that there is something we can do here, and this commit is the
first step in that direction, though no actual check is added by this
commit.
This commit can be split into two parts:
(1) In gdbarch.h and arch-utils.c. In these files I have modified
gdbarch_tdep (the function) so that it now takes a template argument,
like this:
template<typename TDepType>
static inline TDepType *
gdbarch_tdep (struct gdbarch *gdbarch)
{
struct gdbarch_tdep *tdep = gdbarch_tdep_1 (gdbarch);
return static_cast<TDepType *> (tdep);
}
After this change we are no better protected, but the cast is now
done within the gdbarch_tdep function rather than at the call sites,
this leads to the second, much larger change in this commit,
(2) Everywhere gdbarch_tdep is called, we make changes like this:
- i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (arch);
+ i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (arch);
There should be no functional change after this commit.
In the next commit I will build on this change to add an assertion in
gdbarch_tdep that checks we are casting to the correct type.
2022-05-19 20:20:17 +08:00
|
|
|
z80_gdbarch_tdep *tdep = gdbarch_tdep<z80_gdbarch_tdep> (gdbarch);
|
gdb: fix gdbarch_tdep ODR violation
I would like to be able to use non-trivial types in gdbarch_tdep types.
This is not possible at the moment (in theory), because of the one
definition rule.
To allow it, rename all gdbarch_tdep types to <arch>_gdbarch_tdep, and
make them inherit from a gdbarch_tdep base class. The inheritance is
necessary to be able to pass pointers to all these <arch>_gdbarch_tdep
objects to gdbarch_alloc, which takes a pointer to gdbarch_tdep.
These objects are never deleted through a base class pointer, so I
didn't include a virtual destructor. In the future, if gdbarch objects
deletable, I could imagine that the gdbarch_tdep objects could become
owned by the gdbarch objects, and then it would become useful to have a
virtual destructor (so that the gdbarch object can delete the owned
gdbarch_tdep object). But that's not necessary right now.
It turns out that RISC-V already has a gdbarch_tdep that is
non-default-constructible, so that provides a good motivation for this
change.
Most changes are fairly straightforward, mostly needing to add some
casts all over the place. There is however the xtensa architecture,
doing its own little weird thing to define its gdbarch_tdep. I did my
best to adapt it, but I can't test those changes.
Change-Id: Ic001903f91ddd106bd6ca09a79dabe8df2d69f3b
2021-11-16 00:29:39 +08:00
|
|
|
int addr_len = tdep->addr_length;
|
2020-09-25 19:40:42 +08:00
|
|
|
|
|
|
|
if (*this_prologue_cache)
|
|
|
|
return (struct z80_unwind_cache *) *this_prologue_cache;
|
|
|
|
|
|
|
|
info = FRAME_OBSTACK_ZALLOC (struct z80_unwind_cache);
|
|
|
|
memset (info, 0, sizeof (*info));
|
|
|
|
info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
|
|
|
|
*this_prologue_cache = info;
|
|
|
|
|
|
|
|
start_pc = get_frame_func (this_frame);
|
|
|
|
current_pc = get_frame_pc (this_frame);
|
|
|
|
if ((start_pc > 0) && (start_pc <= current_pc))
|
|
|
|
z80_scan_prologue (get_frame_arch (this_frame),
|
|
|
|
start_pc, current_pc, info);
|
|
|
|
|
|
|
|
if (info->prologue_type.fp_sdcc)
|
|
|
|
{
|
|
|
|
/* With SDCC standard prologue, IX points to the end of current frame
|
|
|
|
(where previous frame pointer and state are saved). */
|
|
|
|
this_base = get_frame_register_unsigned (this_frame, Z80_IX_REGNUM);
|
|
|
|
info->prev_sp = this_base + info->size;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
CORE_ADDR addr;
|
|
|
|
CORE_ADDR sp;
|
|
|
|
CORE_ADDR sp_mask = (1 << gdbarch_ptr_bit(gdbarch)) - 1;
|
|
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
|
|
|
/* Assume that the FP is this frame's SP but with that pushed
|
|
|
|
stack space added back. */
|
|
|
|
this_base = get_frame_register_unsigned (this_frame, Z80_SP_REGNUM);
|
|
|
|
sp = this_base + info->size;
|
|
|
|
for (;; ++sp)
|
|
|
|
{
|
|
|
|
sp &= sp_mask;
|
|
|
|
if (sp < this_base)
|
|
|
|
{ /* overflow, looks like end of stack */
|
|
|
|
sp = this_base + info->size;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
/* find return address */
|
|
|
|
read_memory (sp, buf, addr_len);
|
|
|
|
addr = extract_unsigned_integer(buf, addr_len, byte_order);
|
|
|
|
read_memory (addr-addr_len-1, buf, addr_len+1);
|
|
|
|
if (buf[0] == 0xcd || (buf[0] & 0307) == 0304) /* Is it CALL */
|
|
|
|
{ /* CALL nn or CALL cc,nn */
|
|
|
|
static const char *names[] =
|
|
|
|
{
|
|
|
|
"__sdcc_call_ix", "__sdcc_call_iy", "__sdcc_call_hl"
|
|
|
|
};
|
|
|
|
addr = extract_unsigned_integer(buf+1, addr_len, byte_order);
|
|
|
|
if (addr == start_pc)
|
|
|
|
break; /* found */
|
|
|
|
for (i = sizeof(names)/sizeof(*names)-1; i >= 0; --i)
|
|
|
|
{
|
|
|
|
struct bound_minimal_symbol msymbol;
|
|
|
|
msymbol = lookup_minimal_symbol (names[i], NULL, NULL);
|
|
|
|
if (!msymbol.minsym)
|
|
|
|
continue;
|
2022-01-28 21:09:50 +08:00
|
|
|
if (addr == msymbol.value_address ())
|
2020-09-25 19:40:42 +08:00
|
|
|
break;
|
|
|
|
}
|
|
|
|
if (i >= 0)
|
|
|
|
break;
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
continue; /* it is not call_nn, call_cc_nn */
|
|
|
|
}
|
|
|
|
info->prev_sp = sp;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Adjust all the saved registers so that they contain addresses and not
|
|
|
|
offsets. */
|
|
|
|
for (i = 0; i < gdbarch_num_regs (gdbarch) - 1; i++)
|
|
|
|
if (info->saved_regs[i].addr () > 0)
|
|
|
|
info->saved_regs[i].set_addr
|
|
|
|
(info->prev_sp - info->saved_regs[i].addr () * addr_len);
|
|
|
|
|
|
|
|
/* Except for the startup code, the return PC is always saved on
|
|
|
|
the stack and is at the base of the frame. */
|
|
|
|
info->saved_regs[Z80_PC_REGNUM].set_addr (info->prev_sp);
|
|
|
|
|
|
|
|
/* The previous frame's SP needed to be computed. Save the computed
|
|
|
|
value. */
|
|
|
|
info->saved_regs[Z80_SP_REGNUM].set_value (info->prev_sp + addr_len);
|
|
|
|
return info;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Given a GDB frame, determine the address of the calling function's
|
|
|
|
frame. This will be used to create a new GDB frame struct. */
|
|
|
|
static void
|
2022-07-26 01:06:35 +08:00
|
|
|
z80_frame_this_id (frame_info_ptr this_frame, void **this_cache,
|
2020-09-25 19:40:42 +08:00
|
|
|
struct frame_id *this_id)
|
|
|
|
{
|
|
|
|
struct frame_id id;
|
|
|
|
struct z80_unwind_cache *info;
|
|
|
|
CORE_ADDR base;
|
|
|
|
CORE_ADDR func;
|
|
|
|
|
|
|
|
/* The FUNC is easy. */
|
|
|
|
func = get_frame_func (this_frame);
|
|
|
|
|
|
|
|
info = z80_frame_unwind_cache (this_frame, this_cache);
|
|
|
|
/* Hopefully the prologue analysis either correctly determined the
|
|
|
|
frame's base (which is the SP from the previous frame), or set
|
|
|
|
that base to "NULL". */
|
|
|
|
base = info->prev_sp;
|
|
|
|
if (base == 0)
|
|
|
|
return;
|
|
|
|
|
|
|
|
id = frame_id_build (base, func);
|
|
|
|
*this_id = id;
|
|
|
|
}
|
|
|
|
|
|
|
|
static struct value *
|
2022-07-26 01:06:35 +08:00
|
|
|
z80_frame_prev_register (frame_info_ptr this_frame,
|
2020-09-25 19:40:42 +08:00
|
|
|
void **this_prologue_cache, int regnum)
|
|
|
|
{
|
|
|
|
struct z80_unwind_cache *info
|
|
|
|
= z80_frame_unwind_cache (this_frame, this_prologue_cache);
|
|
|
|
|
|
|
|
if (regnum == Z80_PC_REGNUM)
|
|
|
|
{
|
|
|
|
if (info->saved_regs[Z80_PC_REGNUM].is_addr ())
|
|
|
|
{
|
|
|
|
/* Reading the return PC from the PC register is slightly
|
|
|
|
abnormal. */
|
|
|
|
ULONGEST pc;
|
|
|
|
gdb_byte buf[3];
|
|
|
|
struct gdbarch *gdbarch = get_frame_arch (this_frame);
|
gdb: move the type cast into gdbarch_tdep
I built GDB for all targets on a x86-64/GNU-Linux system, and
then (accidentally) passed GDB a RISC-V binary, and asked GDB to "run"
the binary on the native target. I got this error:
(gdb) show architecture
The target architecture is set to "auto" (currently "i386").
(gdb) file /tmp/hello.rv32.exe
Reading symbols from /tmp/hello.rv32.exe...
(gdb) show architecture
The target architecture is set to "auto" (currently "riscv:rv32").
(gdb) run
Starting program: /tmp/hello.rv32.exe
../../src/gdb/i387-tdep.c:596: internal-error: i387_supply_fxsave: Assertion `tdep->st0_regnum >= I386_ST0_REGNUM' failed.
What's going on here is this; initially the architecture is i386, this
is based on the default architecture, which is set based on the native
target. After loading the RISC-V executable the architecture of the
current inferior is updated based on the architecture of the
executable.
When we "run", GDB does a fork & exec, with the inferior being
controlled through ptrace. GDB sees an initial stop from the inferior
as soon as the inferior comes to life. In response to this stop GDB
ends up calling save_stop_reason (linux-nat.c), which ends up trying
to read register from the inferior, to do this we end up calling
target_ops::fetch_registers, which, for the x86-64 native target,
calls amd64_linux_nat_target::fetch_registers.
After this I eventually end up in i387_supply_fxsave, different x86
based targets will end in different functions to fetch registers, but
it doesn't really matter which function we end up in, the problem is
this line, which is repeated in many places:
i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (arch);
The problem here is that the ARCH in this line comes from the current
inferior, which, as we discussed above, will be a RISC-V gdbarch, the
tdep field will actually be of type riscv_gdbarch_tdep, not
i386_gdbarch_tdep. After this cast we are relying on undefined
behaviour, in my case I happen to trigger an assert, but this might
not always be the case.
The thing I tried that exposed this problem was of course, trying to
start an executable of the wrong architecture on a native target. I
don't think that the correct solution for this problem is to detect,
at the point of cast, that the gdbarch_tdep object is of the wrong
type, but, I did wonder, is there a way that we could protect
ourselves from incorrectly casting the gdbarch_tdep object?
I think that there is something we can do here, and this commit is the
first step in that direction, though no actual check is added by this
commit.
This commit can be split into two parts:
(1) In gdbarch.h and arch-utils.c. In these files I have modified
gdbarch_tdep (the function) so that it now takes a template argument,
like this:
template<typename TDepType>
static inline TDepType *
gdbarch_tdep (struct gdbarch *gdbarch)
{
struct gdbarch_tdep *tdep = gdbarch_tdep_1 (gdbarch);
return static_cast<TDepType *> (tdep);
}
After this change we are no better protected, but the cast is now
done within the gdbarch_tdep function rather than at the call sites,
this leads to the second, much larger change in this commit,
(2) Everywhere gdbarch_tdep is called, we make changes like this:
- i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (arch);
+ i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (arch);
There should be no functional change after this commit.
In the next commit I will build on this change to add an assertion in
gdbarch_tdep that checks we are casting to the correct type.
2022-05-19 20:20:17 +08:00
|
|
|
z80_gdbarch_tdep *tdep = gdbarch_tdep<z80_gdbarch_tdep> (gdbarch);
|
2020-09-25 19:40:42 +08:00
|
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
|
|
|
|
|
|
|
read_memory (info->saved_regs[Z80_PC_REGNUM].addr (),
|
|
|
|
buf, tdep->addr_length);
|
|
|
|
pc = extract_unsigned_integer (buf, tdep->addr_length, byte_order);
|
|
|
|
return frame_unwind_got_constant (this_frame, regnum, pc);
|
|
|
|
}
|
|
|
|
|
|
|
|
return frame_unwind_got_optimized (this_frame, regnum);
|
|
|
|
}
|
|
|
|
|
|
|
|
return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Return the breakpoint kind for this target based on *PCPTR. */
|
|
|
|
static int
|
|
|
|
z80_breakpoint_kind_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr)
|
|
|
|
{
|
|
|
|
static int addr = -1;
|
|
|
|
if (addr == -1)
|
|
|
|
{
|
|
|
|
struct bound_minimal_symbol bh;
|
|
|
|
bh = lookup_minimal_symbol ("_break_handler", NULL, NULL);
|
|
|
|
if (bh.minsym)
|
2022-01-28 21:09:50 +08:00
|
|
|
addr = bh.value_address ();
|
2020-09-25 19:40:42 +08:00
|
|
|
else
|
|
|
|
{
|
|
|
|
warning(_("Unable to determine inferior's software breakpoint type: "
|
|
|
|
"couldn't find `_break_handler' function in inferior. Will "
|
|
|
|
"be used default software breakpoint instruction RST 0x08."));
|
|
|
|
addr = 0x0008;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return addr;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Return the software breakpoint from KIND. KIND is just address of breakpoint
|
|
|
|
handler. If address is on of standard RSTs, then RST n instruction is used
|
|
|
|
as breakpoint.
|
|
|
|
SIZE is set to the software breakpoint's length in memory. */
|
|
|
|
static const gdb_byte *
|
|
|
|
z80_sw_breakpoint_from_kind (struct gdbarch *gdbarch, int kind, int *size)
|
|
|
|
{
|
|
|
|
static gdb_byte break_insn[8];
|
|
|
|
|
|
|
|
if ((kind & 070) == kind)
|
|
|
|
{
|
|
|
|
break_insn[0] = kind | 0307;
|
|
|
|
*size = 1;
|
|
|
|
}
|
|
|
|
else /* kind is non-RST address, use CALL instead, but it is dungerous */
|
|
|
|
{
|
gdb: move the type cast into gdbarch_tdep
I built GDB for all targets on a x86-64/GNU-Linux system, and
then (accidentally) passed GDB a RISC-V binary, and asked GDB to "run"
the binary on the native target. I got this error:
(gdb) show architecture
The target architecture is set to "auto" (currently "i386").
(gdb) file /tmp/hello.rv32.exe
Reading symbols from /tmp/hello.rv32.exe...
(gdb) show architecture
The target architecture is set to "auto" (currently "riscv:rv32").
(gdb) run
Starting program: /tmp/hello.rv32.exe
../../src/gdb/i387-tdep.c:596: internal-error: i387_supply_fxsave: Assertion `tdep->st0_regnum >= I386_ST0_REGNUM' failed.
What's going on here is this; initially the architecture is i386, this
is based on the default architecture, which is set based on the native
target. After loading the RISC-V executable the architecture of the
current inferior is updated based on the architecture of the
executable.
When we "run", GDB does a fork & exec, with the inferior being
controlled through ptrace. GDB sees an initial stop from the inferior
as soon as the inferior comes to life. In response to this stop GDB
ends up calling save_stop_reason (linux-nat.c), which ends up trying
to read register from the inferior, to do this we end up calling
target_ops::fetch_registers, which, for the x86-64 native target,
calls amd64_linux_nat_target::fetch_registers.
After this I eventually end up in i387_supply_fxsave, different x86
based targets will end in different functions to fetch registers, but
it doesn't really matter which function we end up in, the problem is
this line, which is repeated in many places:
i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (arch);
The problem here is that the ARCH in this line comes from the current
inferior, which, as we discussed above, will be a RISC-V gdbarch, the
tdep field will actually be of type riscv_gdbarch_tdep, not
i386_gdbarch_tdep. After this cast we are relying on undefined
behaviour, in my case I happen to trigger an assert, but this might
not always be the case.
The thing I tried that exposed this problem was of course, trying to
start an executable of the wrong architecture on a native target. I
don't think that the correct solution for this problem is to detect,
at the point of cast, that the gdbarch_tdep object is of the wrong
type, but, I did wonder, is there a way that we could protect
ourselves from incorrectly casting the gdbarch_tdep object?
I think that there is something we can do here, and this commit is the
first step in that direction, though no actual check is added by this
commit.
This commit can be split into two parts:
(1) In gdbarch.h and arch-utils.c. In these files I have modified
gdbarch_tdep (the function) so that it now takes a template argument,
like this:
template<typename TDepType>
static inline TDepType *
gdbarch_tdep (struct gdbarch *gdbarch)
{
struct gdbarch_tdep *tdep = gdbarch_tdep_1 (gdbarch);
return static_cast<TDepType *> (tdep);
}
After this change we are no better protected, but the cast is now
done within the gdbarch_tdep function rather than at the call sites,
this leads to the second, much larger change in this commit,
(2) Everywhere gdbarch_tdep is called, we make changes like this:
- i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (arch);
+ i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (arch);
There should be no functional change after this commit.
In the next commit I will build on this change to add an assertion in
gdbarch_tdep that checks we are casting to the correct type.
2022-05-19 20:20:17 +08:00
|
|
|
z80_gdbarch_tdep *tdep = gdbarch_tdep<z80_gdbarch_tdep> (gdbarch);
|
2020-09-25 19:40:42 +08:00
|
|
|
gdb_byte *p = break_insn;
|
|
|
|
*p++ = 0xcd;
|
|
|
|
*p++ = (kind >> 0) & 0xff;
|
|
|
|
*p++ = (kind >> 8) & 0xff;
|
gdb: fix gdbarch_tdep ODR violation
I would like to be able to use non-trivial types in gdbarch_tdep types.
This is not possible at the moment (in theory), because of the one
definition rule.
To allow it, rename all gdbarch_tdep types to <arch>_gdbarch_tdep, and
make them inherit from a gdbarch_tdep base class. The inheritance is
necessary to be able to pass pointers to all these <arch>_gdbarch_tdep
objects to gdbarch_alloc, which takes a pointer to gdbarch_tdep.
These objects are never deleted through a base class pointer, so I
didn't include a virtual destructor. In the future, if gdbarch objects
deletable, I could imagine that the gdbarch_tdep objects could become
owned by the gdbarch objects, and then it would become useful to have a
virtual destructor (so that the gdbarch object can delete the owned
gdbarch_tdep object). But that's not necessary right now.
It turns out that RISC-V already has a gdbarch_tdep that is
non-default-constructible, so that provides a good motivation for this
change.
Most changes are fairly straightforward, mostly needing to add some
casts all over the place. There is however the xtensa architecture,
doing its own little weird thing to define its gdbarch_tdep. I did my
best to adapt it, but I can't test those changes.
Change-Id: Ic001903f91ddd106bd6ca09a79dabe8df2d69f3b
2021-11-16 00:29:39 +08:00
|
|
|
if (tdep->addr_length > 2)
|
2020-09-25 19:40:42 +08:00
|
|
|
*p++ = (kind >> 16) & 0xff;
|
|
|
|
*size = p - break_insn;
|
|
|
|
}
|
|
|
|
return break_insn;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Return a vector of addresses on which the software single step
|
|
|
|
breakpoints should be inserted. NULL means software single step is
|
|
|
|
not used.
|
|
|
|
Only one breakpoint address will be returned: conditional branches
|
|
|
|
will be always evaluated. */
|
|
|
|
static std::vector<CORE_ADDR>
|
|
|
|
z80_software_single_step (struct regcache *regcache)
|
|
|
|
{
|
|
|
|
static const int flag_mask[] = {1 << 6, 1 << 0, 1 << 2, 1 << 7};
|
|
|
|
gdb_byte buf[8];
|
|
|
|
ULONGEST t;
|
|
|
|
ULONGEST addr;
|
|
|
|
int opcode;
|
|
|
|
int size;
|
2022-05-19 00:08:43 +08:00
|
|
|
const struct z80_insn_info *info;
|
2020-09-25 19:40:42 +08:00
|
|
|
std::vector<CORE_ADDR> ret (1);
|
|
|
|
struct gdbarch *gdbarch = target_gdbarch ();
|
|
|
|
|
|
|
|
regcache->cooked_read (Z80_PC_REGNUM, &addr);
|
|
|
|
read_memory (addr, buf, sizeof(buf));
|
|
|
|
info = z80_get_insn_info (gdbarch, buf, &size);
|
|
|
|
ret[0] = addr + size;
|
|
|
|
if (info == NULL) /* possible in case of double prefix */
|
|
|
|
{ /* forced NOP, TODO: replace by NOP */
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
opcode = buf[size - info->size]; /* take opcode instead of prefix */
|
|
|
|
/* stage 1: check for conditions */
|
|
|
|
switch (info->type)
|
|
|
|
{
|
|
|
|
case insn_djnz_d:
|
|
|
|
regcache->cooked_read (Z80_BC_REGNUM, &t);
|
|
|
|
if ((t & 0xff00) != 0x100)
|
|
|
|
return ret;
|
|
|
|
break;
|
|
|
|
case insn_jr_cc_d:
|
|
|
|
opcode &= 030; /* JR NZ,d has cc equal to 040, but others 000 */
|
|
|
|
/* fall through */
|
|
|
|
case insn_jp_cc_nn:
|
|
|
|
case insn_call_cc_nn:
|
|
|
|
case insn_ret_cc:
|
|
|
|
regcache->cooked_read (Z80_AF_REGNUM, &t);
|
|
|
|
/* lower bit of condition inverts match, so invert flags if set */
|
|
|
|
if ((opcode & 010) != 0)
|
|
|
|
t = ~t;
|
|
|
|
/* two higher bits of condition field defines flag, so use them only
|
|
|
|
to check condition of "not execute" */
|
|
|
|
if (t & flag_mask[(opcode >> 4) & 3])
|
|
|
|
return ret;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
/* stage 2: compute address */
|
|
|
|
/* TODO: implement eZ80 MADL support */
|
|
|
|
switch (info->type)
|
|
|
|
{
|
|
|
|
default:
|
|
|
|
return ret;
|
|
|
|
case insn_djnz_d:
|
|
|
|
case insn_jr_d:
|
|
|
|
case insn_jr_cc_d:
|
|
|
|
addr += size;
|
|
|
|
addr += (signed char)buf[size-1];
|
|
|
|
break;
|
|
|
|
case insn_jp_rr:
|
|
|
|
if (size == 1)
|
|
|
|
opcode = Z80_HL_REGNUM;
|
|
|
|
else
|
|
|
|
opcode = (buf[size-2] & 0x20) ? Z80_IY_REGNUM : Z80_IX_REGNUM;
|
|
|
|
regcache->cooked_read (opcode, &addr);
|
|
|
|
break;
|
|
|
|
case insn_jp_nn:
|
|
|
|
case insn_jp_cc_nn:
|
|
|
|
case insn_call_nn:
|
|
|
|
case insn_call_cc_nn:
|
|
|
|
addr = buf[size-1] * 0x100 + buf[size-2];
|
|
|
|
if (info->size > 3) /* long instruction mode */
|
|
|
|
addr = addr * 0x100 + buf[size-3];
|
|
|
|
break;
|
|
|
|
case insn_rst_n:
|
|
|
|
addr = opcode & 070;
|
|
|
|
break;
|
|
|
|
case insn_ret:
|
|
|
|
case insn_ret_cc:
|
|
|
|
regcache->cooked_read (Z80_SP_REGNUM, &addr);
|
|
|
|
read_memory (addr, buf, 3);
|
|
|
|
addr = buf[1] * 0x100 + buf[0];
|
|
|
|
if (gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_ez80_adl)
|
|
|
|
addr = addr * 0x100 + buf[2];
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
ret[0] = addr;
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Cached, dynamically allocated copies of the target data structures: */
|
|
|
|
static unsigned (*cache_ovly_region_table)[3] = 0;
|
|
|
|
static unsigned cache_novly_regions;
|
|
|
|
static CORE_ADDR cache_ovly_region_table_base = 0;
|
2022-05-19 00:06:17 +08:00
|
|
|
enum z80_ovly_index
|
2020-09-25 19:40:42 +08:00
|
|
|
{
|
2022-05-19 00:06:17 +08:00
|
|
|
Z80_VMA, Z80_OSIZE, Z80_MAPPED_TO_LMA
|
2020-09-25 19:40:42 +08:00
|
|
|
};
|
|
|
|
|
|
|
|
static void
|
|
|
|
z80_free_overlay_region_table (void)
|
|
|
|
{
|
|
|
|
if (cache_ovly_region_table)
|
|
|
|
xfree (cache_ovly_region_table);
|
|
|
|
cache_novly_regions = 0;
|
|
|
|
cache_ovly_region_table = NULL;
|
|
|
|
cache_ovly_region_table_base = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Read an array of ints of size SIZE from the target into a local buffer.
|
|
|
|
Convert to host order. LEN is number of ints. */
|
|
|
|
|
|
|
|
static void
|
|
|
|
read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
|
|
|
|
int len, int size, enum bfd_endian byte_order)
|
|
|
|
{
|
|
|
|
/* alloca is safe here, because regions array is very small. */
|
|
|
|
gdb_byte *buf = (gdb_byte *) alloca (len * size);
|
|
|
|
int i;
|
|
|
|
|
|
|
|
read_memory (memaddr, buf, len * size);
|
|
|
|
for (i = 0; i < len; i++)
|
|
|
|
myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
z80_read_overlay_region_table ()
|
|
|
|
{
|
|
|
|
struct bound_minimal_symbol novly_regions_msym;
|
|
|
|
struct bound_minimal_symbol ovly_region_table_msym;
|
|
|
|
struct gdbarch *gdbarch;
|
|
|
|
int word_size;
|
|
|
|
enum bfd_endian byte_order;
|
|
|
|
|
|
|
|
z80_free_overlay_region_table ();
|
|
|
|
novly_regions_msym = lookup_minimal_symbol ("_novly_regions", NULL, NULL);
|
|
|
|
if (! novly_regions_msym.minsym)
|
|
|
|
{
|
|
|
|
error (_("Error reading inferior's overlay table: "
|
|
|
|
"couldn't find `_novly_regions'\n"
|
|
|
|
"variable in inferior. Use `overlay manual' mode."));
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
ovly_region_table_msym = lookup_bound_minimal_symbol ("_ovly_region_table");
|
|
|
|
if (! ovly_region_table_msym.minsym)
|
|
|
|
{
|
|
|
|
error (_("Error reading inferior's overlay table: couldn't find "
|
|
|
|
"`_ovly_region_table'\n"
|
|
|
|
"array in inferior. Use `overlay manual' mode."));
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
const enum overlay_debugging_state save_ovly_dbg = overlay_debugging;
|
|
|
|
/* prevent infinite recurse */
|
|
|
|
overlay_debugging = ovly_off;
|
|
|
|
|
|
|
|
gdbarch = ovly_region_table_msym.objfile->arch ();
|
|
|
|
word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
|
|
|
|
byte_order = gdbarch_byte_order (gdbarch);
|
|
|
|
|
2022-01-28 21:09:50 +08:00
|
|
|
cache_novly_regions = read_memory_integer (novly_regions_msym.value_address (),
|
|
|
|
4, byte_order);
|
2020-09-25 19:40:42 +08:00
|
|
|
cache_ovly_region_table
|
|
|
|
= (unsigned int (*)[3]) xmalloc (cache_novly_regions *
|
|
|
|
sizeof (*cache_ovly_region_table));
|
|
|
|
cache_ovly_region_table_base
|
2022-01-28 21:09:50 +08:00
|
|
|
= ovly_region_table_msym.value_address ();
|
2020-09-25 19:40:42 +08:00
|
|
|
read_target_long_array (cache_ovly_region_table_base,
|
|
|
|
(unsigned int *) cache_ovly_region_table,
|
|
|
|
cache_novly_regions * 3, word_size, byte_order);
|
|
|
|
|
|
|
|
overlay_debugging = save_ovly_dbg;
|
|
|
|
return 1; /* SUCCESS */
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
z80_overlay_update_1 (struct obj_section *osect)
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
asection *bsect = osect->the_bfd_section;
|
|
|
|
unsigned lma;
|
|
|
|
unsigned vma = bfd_section_vma (bsect);
|
|
|
|
|
|
|
|
/* find region corresponding to the section VMA */
|
|
|
|
for (i = 0; i < cache_novly_regions; i++)
|
2022-05-19 00:06:17 +08:00
|
|
|
if (cache_ovly_region_table[i][Z80_VMA] == vma)
|
2020-09-25 19:40:42 +08:00
|
|
|
break;
|
|
|
|
if (i == cache_novly_regions)
|
|
|
|
return 0; /* no such region */
|
|
|
|
|
2022-05-19 00:06:17 +08:00
|
|
|
lma = cache_ovly_region_table[i][Z80_MAPPED_TO_LMA];
|
2020-09-25 19:40:42 +08:00
|
|
|
i = 0;
|
|
|
|
|
|
|
|
/* we have interest for sections with same VMA */
|
|
|
|
for (objfile *objfile : current_program_space->objfiles ())
|
|
|
|
ALL_OBJFILE_OSECTIONS (objfile, osect)
|
|
|
|
if (section_is_overlay (osect))
|
|
|
|
{
|
|
|
|
osect->ovly_mapped = (lma == bfd_section_lma (osect->the_bfd_section));
|
|
|
|
i |= osect->ovly_mapped; /* true, if at least one section is mapped */
|
|
|
|
}
|
|
|
|
return i;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Refresh overlay mapped state for section OSECT. */
|
|
|
|
static void
|
|
|
|
z80_overlay_update (struct obj_section *osect)
|
|
|
|
{
|
|
|
|
/* Always need to read the entire table anew. */
|
|
|
|
if (!z80_read_overlay_region_table ())
|
|
|
|
return;
|
|
|
|
|
|
|
|
/* Were we given an osect to look up? NULL means do all of them. */
|
|
|
|
if (osect != nullptr && z80_overlay_update_1 (osect))
|
|
|
|
return;
|
|
|
|
|
|
|
|
/* Update all sections, even if only one was requested. */
|
|
|
|
for (objfile *objfile : current_program_space->objfiles ())
|
|
|
|
ALL_OBJFILE_OSECTIONS (objfile, osect)
|
|
|
|
{
|
|
|
|
if (!section_is_overlay (osect))
|
|
|
|
continue;
|
|
|
|
|
|
|
|
asection *bsect = osect->the_bfd_section;
|
|
|
|
bfd_vma lma = bfd_section_lma (bsect);
|
|
|
|
bfd_vma vma = bfd_section_vma (bsect);
|
|
|
|
|
|
|
|
for (int i = 0; i < cache_novly_regions; ++i)
|
2022-05-19 00:06:17 +08:00
|
|
|
if (cache_ovly_region_table[i][Z80_VMA] == vma)
|
2020-09-25 19:40:42 +08:00
|
|
|
osect->ovly_mapped =
|
2022-05-19 00:06:17 +08:00
|
|
|
(cache_ovly_region_table[i][Z80_MAPPED_TO_LMA] == lma);
|
2020-09-25 19:40:42 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Return non-zero if the instruction at ADDR is a call; zero otherwise. */
|
|
|
|
static int
|
|
|
|
z80_insn_is_call (struct gdbarch *gdbarch, CORE_ADDR addr)
|
|
|
|
{
|
|
|
|
gdb_byte buf[8];
|
|
|
|
int size;
|
2022-05-19 00:08:43 +08:00
|
|
|
const struct z80_insn_info *info;
|
2020-09-25 19:40:42 +08:00
|
|
|
read_memory (addr, buf, sizeof(buf));
|
|
|
|
info = z80_get_insn_info (gdbarch, buf, &size);
|
|
|
|
if (info)
|
|
|
|
switch (info->type)
|
|
|
|
{
|
|
|
|
case insn_call_nn:
|
|
|
|
case insn_call_cc_nn:
|
|
|
|
case insn_rst_n:
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Return non-zero if the instruction at ADDR is a return; zero otherwise. */
|
|
|
|
static int
|
|
|
|
z80_insn_is_ret (struct gdbarch *gdbarch, CORE_ADDR addr)
|
|
|
|
{
|
|
|
|
gdb_byte buf[8];
|
|
|
|
int size;
|
2022-05-19 00:08:43 +08:00
|
|
|
const struct z80_insn_info *info;
|
2020-09-25 19:40:42 +08:00
|
|
|
read_memory (addr, buf, sizeof(buf));
|
|
|
|
info = z80_get_insn_info (gdbarch, buf, &size);
|
|
|
|
if (info)
|
|
|
|
switch (info->type)
|
|
|
|
{
|
|
|
|
case insn_ret:
|
|
|
|
case insn_ret_cc:
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Return non-zero if the instruction at ADDR is a jump; zero otherwise. */
|
|
|
|
static int
|
|
|
|
z80_insn_is_jump (struct gdbarch *gdbarch, CORE_ADDR addr)
|
|
|
|
{
|
|
|
|
gdb_byte buf[8];
|
|
|
|
int size;
|
2022-05-19 00:08:43 +08:00
|
|
|
const struct z80_insn_info *info;
|
2020-09-25 19:40:42 +08:00
|
|
|
read_memory (addr, buf, sizeof(buf));
|
|
|
|
info = z80_get_insn_info (gdbarch, buf, &size);
|
|
|
|
if (info)
|
|
|
|
switch (info->type)
|
|
|
|
{
|
|
|
|
case insn_jp_nn:
|
|
|
|
case insn_jp_cc_nn:
|
|
|
|
case insn_jp_rr:
|
|
|
|
case insn_jr_d:
|
|
|
|
case insn_jr_cc_d:
|
|
|
|
case insn_djnz_d:
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static const struct frame_unwind
|
|
|
|
z80_frame_unwind =
|
|
|
|
{
|
|
|
|
"z80",
|
|
|
|
NORMAL_FRAME,
|
|
|
|
default_frame_unwind_stop_reason,
|
|
|
|
z80_frame_this_id,
|
|
|
|
z80_frame_prev_register,
|
|
|
|
NULL, /*unwind_data*/
|
|
|
|
default_frame_sniffer
|
|
|
|
/*dealloc_cache*/
|
|
|
|
/*prev_arch*/
|
|
|
|
};
|
|
|
|
|
|
|
|
/* Initialize the gdbarch struct for the Z80 arch */
|
|
|
|
static struct gdbarch *
|
|
|
|
z80_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
|
|
|
|
{
|
|
|
|
struct gdbarch_list *best_arch;
|
|
|
|
tdesc_arch_data_up tdesc_data;
|
|
|
|
unsigned long mach = info.bfd_arch_info->mach;
|
|
|
|
const struct target_desc *tdesc = info.target_desc;
|
|
|
|
|
|
|
|
if (!tdesc_has_registers (tdesc))
|
|
|
|
/* Pick a default target description. */
|
|
|
|
tdesc = tdesc_z80;
|
|
|
|
|
|
|
|
/* Check any target description for validity. */
|
|
|
|
if (tdesc_has_registers (tdesc))
|
|
|
|
{
|
|
|
|
const struct tdesc_feature *feature;
|
|
|
|
int valid_p;
|
|
|
|
|
|
|
|
feature = tdesc_find_feature (tdesc, "org.gnu.gdb.z80.cpu");
|
|
|
|
if (feature == NULL)
|
|
|
|
return NULL;
|
|
|
|
|
|
|
|
tdesc_data = tdesc_data_alloc ();
|
|
|
|
|
|
|
|
valid_p = 1;
|
|
|
|
|
|
|
|
for (unsigned i = 0; i < Z80_NUM_REGS; i++)
|
|
|
|
valid_p &= tdesc_numbered_register (feature, tdesc_data.get (), i,
|
|
|
|
z80_reg_names[i]);
|
|
|
|
|
|
|
|
if (!valid_p)
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* If there is already a candidate, use it. */
|
|
|
|
for (best_arch = gdbarch_list_lookup_by_info (arches, &info);
|
|
|
|
best_arch != NULL;
|
|
|
|
best_arch = gdbarch_list_lookup_by_info (best_arch->next, &info))
|
|
|
|
{
|
|
|
|
if (mach == gdbarch_bfd_arch_info (best_arch->gdbarch)->mach)
|
|
|
|
return best_arch->gdbarch;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* None found, create a new architecture from the information provided. */
|
gdb: make gdbarch_alloc take ownership of the tdep
It's currently not clear how the ownership of gdbarch_tdep objects
works. In fact, nothing ever takes ownership of it. This is mostly
fine because we never free gdbarch objects, and thus we never free
gdbarch_tdep objects. There is an exception to that however: when
initialization fails, we do free the gdbarch object that is not going to
be used, and we free the tdep too. Currently, i386 and s390 do it.
To make things clearer, change gdbarch_alloc so that it takes ownership
of the tdep. The tdep is thus automatically freed if the gdbarch is
freed.
Change all gdbarch initialization functions to pass a new gdbarch_tdep
object to gdbarch_alloc and then retrieve a non-owning reference from
the gdbarch object.
Before this patch, the xtensa architecture had a single global instance
of xtensa_gdbarch_tdep. Since we need to pass a dynamically allocated
gdbarch_tdep_base instance to gdbarch_alloc, remove this global
instance, and dynamically allocate one as needed, like we do for all
other architectures. Make the `rmap` array externally visible and
rename it to the less collision-prone `xtensa_rmap` name.
Change-Id: Id3d70493ef80ce4bdff701c57636f4c79ed8aea2
Approved-By: Andrew Burgess <aburgess@redhat.com>
2022-10-03 23:15:14 +08:00
|
|
|
gdbarch *gdbarch
|
|
|
|
= gdbarch_alloc (&info, gdbarch_tdep_up (new z80_gdbarch_tdep));
|
|
|
|
z80_gdbarch_tdep *tdep = gdbarch_tdep<z80_gdbarch_tdep> (gdbarch);
|
2020-09-25 19:40:42 +08:00
|
|
|
|
|
|
|
if (mach == bfd_mach_ez80_adl)
|
|
|
|
{
|
|
|
|
tdep->addr_length = 3;
|
|
|
|
set_gdbarch_max_insn_length (gdbarch, 6);
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
tdep->addr_length = 2;
|
|
|
|
set_gdbarch_max_insn_length (gdbarch, 4);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Create a type for PC. We can't use builtin types here, as they may not
|
|
|
|
be defined. */
|
|
|
|
tdep->void_type = arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT,
|
|
|
|
"void");
|
|
|
|
tdep->func_void_type = make_function_type (tdep->void_type, NULL);
|
|
|
|
tdep->pc_type = arch_pointer_type (gdbarch,
|
|
|
|
tdep->addr_length * TARGET_CHAR_BIT,
|
|
|
|
NULL, tdep->func_void_type);
|
|
|
|
|
|
|
|
set_gdbarch_short_bit (gdbarch, TARGET_CHAR_BIT);
|
|
|
|
set_gdbarch_int_bit (gdbarch, 2 * TARGET_CHAR_BIT);
|
|
|
|
set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
|
|
|
|
set_gdbarch_ptr_bit (gdbarch, tdep->addr_length * TARGET_CHAR_BIT);
|
|
|
|
set_gdbarch_addr_bit (gdbarch, tdep->addr_length * TARGET_CHAR_BIT);
|
|
|
|
|
|
|
|
set_gdbarch_num_regs (gdbarch, (mach == bfd_mach_ez80_adl) ? EZ80_NUM_REGS
|
|
|
|
: Z80_NUM_REGS);
|
|
|
|
set_gdbarch_sp_regnum (gdbarch, Z80_SP_REGNUM);
|
|
|
|
set_gdbarch_pc_regnum (gdbarch, Z80_PC_REGNUM);
|
|
|
|
|
|
|
|
set_gdbarch_register_name (gdbarch, z80_register_name);
|
|
|
|
set_gdbarch_register_type (gdbarch, z80_register_type);
|
|
|
|
|
|
|
|
/* TODO: get FP type from binary (extra flags required) */
|
|
|
|
set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
|
|
|
|
set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
|
|
|
|
set_gdbarch_long_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
|
|
|
|
set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
|
|
|
|
set_gdbarch_double_format (gdbarch, floatformats_ieee_single);
|
|
|
|
set_gdbarch_long_double_format (gdbarch, floatformats_ieee_single);
|
|
|
|
|
|
|
|
set_gdbarch_return_value (gdbarch, z80_return_value);
|
|
|
|
|
|
|
|
set_gdbarch_skip_prologue (gdbarch, z80_skip_prologue);
|
|
|
|
set_gdbarch_inner_than (gdbarch, core_addr_lessthan); // falling stack
|
|
|
|
|
|
|
|
set_gdbarch_software_single_step (gdbarch, z80_software_single_step);
|
|
|
|
set_gdbarch_breakpoint_kind_from_pc (gdbarch, z80_breakpoint_kind_from_pc);
|
|
|
|
set_gdbarch_sw_breakpoint_from_kind (gdbarch, z80_sw_breakpoint_from_kind);
|
|
|
|
set_gdbarch_insn_is_call (gdbarch, z80_insn_is_call);
|
|
|
|
set_gdbarch_insn_is_jump (gdbarch, z80_insn_is_jump);
|
|
|
|
set_gdbarch_insn_is_ret (gdbarch, z80_insn_is_ret);
|
|
|
|
|
|
|
|
set_gdbarch_overlay_update (gdbarch, z80_overlay_update);
|
|
|
|
|
|
|
|
frame_unwind_append_unwinder (gdbarch, &z80_frame_unwind);
|
|
|
|
if (tdesc_data)
|
|
|
|
tdesc_use_registers (gdbarch, tdesc, std::move (tdesc_data));
|
|
|
|
|
|
|
|
return gdbarch;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Table to disassemble machine codes without prefix. */
|
2022-05-19 00:08:43 +08:00
|
|
|
static const struct z80_insn_info
|
2020-09-25 19:40:42 +08:00
|
|
|
ez80_main_insn_table[] =
|
|
|
|
{ /* table with double prefix check */
|
|
|
|
{ 0100, 0377, 0, insn_force_nop}, //double prefix
|
|
|
|
{ 0111, 0377, 0, insn_force_nop}, //double prefix
|
|
|
|
{ 0122, 0377, 0, insn_force_nop}, //double prefix
|
|
|
|
{ 0133, 0377, 0, insn_force_nop}, //double prefix
|
|
|
|
/* initial table for eZ80_z80 */
|
|
|
|
{ 0100, 0377, 1, insn_z80 }, //eZ80 mode prefix
|
|
|
|
{ 0111, 0377, 1, insn_z80 }, //eZ80 mode prefix
|
|
|
|
{ 0122, 0377, 1, insn_adl }, //eZ80 mode prefix
|
|
|
|
{ 0133, 0377, 1, insn_adl }, //eZ80 mode prefix
|
|
|
|
/* here common Z80/Z180/eZ80 opcodes */
|
|
|
|
{ 0000, 0367, 1, insn_default }, //"nop", "ex af,af'"
|
|
|
|
{ 0061, 0377, 3, insn_ld_sp_nn }, //"ld sp,nn"
|
|
|
|
{ 0001, 0317, 3, insn_default }, //"ld rr,nn"
|
|
|
|
{ 0002, 0347, 1, insn_default }, //"ld (rr),a", "ld a,(rr)"
|
|
|
|
{ 0042, 0347, 3, insn_default }, //"ld (nn),hl/a", "ld hl/a,(nn)"
|
|
|
|
{ 0063, 0377, 1, insn_inc_sp }, //"inc sp"
|
|
|
|
{ 0073, 0377, 1, insn_dec_sp }, //"dec sp"
|
|
|
|
{ 0003, 0303, 1, insn_default }, //"inc rr", "dec rr", ...
|
|
|
|
{ 0004, 0307, 1, insn_default }, //"inc/dec r/(hl)"
|
|
|
|
{ 0006, 0307, 2, insn_default }, //"ld r,n", "ld (hl),n"
|
|
|
|
{ 0020, 0377, 2, insn_djnz_d }, //"djnz dis"
|
|
|
|
{ 0030, 0377, 2, insn_jr_d }, //"jr dis"
|
|
|
|
{ 0040, 0347, 2, insn_jr_cc_d }, //"jr cc,dis"
|
|
|
|
{ 0100, 0300, 1, insn_default }, //"ld r,r", "halt"
|
|
|
|
{ 0200, 0300, 1, insn_default }, //"alu_op a,r"
|
|
|
|
{ 0300, 0307, 1, insn_ret_cc }, //"ret cc"
|
|
|
|
{ 0301, 0317, 1, insn_pop_rr }, //"pop rr"
|
|
|
|
{ 0302, 0307, 3, insn_jp_cc_nn }, //"jp cc,nn"
|
|
|
|
{ 0303, 0377, 3, insn_jp_nn }, //"jp nn"
|
|
|
|
{ 0304, 0307, 3, insn_call_cc_nn}, //"call cc,nn"
|
|
|
|
{ 0305, 0317, 1, insn_push_rr }, //"push rr"
|
|
|
|
{ 0306, 0307, 2, insn_default }, //"alu_op a,n"
|
|
|
|
{ 0307, 0307, 1, insn_rst_n }, //"rst n"
|
|
|
|
{ 0311, 0377, 1, insn_ret }, //"ret"
|
|
|
|
{ 0313, 0377, 2, insn_default }, //CB prefix
|
|
|
|
{ 0315, 0377, 3, insn_call_nn }, //"call nn"
|
|
|
|
{ 0323, 0367, 2, insn_default }, //"out (n),a", "in a,(n)"
|
|
|
|
{ 0335, 0337, 1, insn_z80_ddfd }, //DD/FD prefix
|
|
|
|
{ 0351, 0377, 1, insn_jp_rr }, //"jp (hl)"
|
|
|
|
{ 0355, 0377, 1, insn_z80_ed }, //ED prefix
|
|
|
|
{ 0371, 0377, 1, insn_ld_sp_rr }, //"ld sp,hl"
|
|
|
|
{ 0000, 0000, 1, insn_default } //others
|
|
|
|
} ;
|
|
|
|
|
2022-05-19 00:08:43 +08:00
|
|
|
static const struct z80_insn_info
|
2020-09-25 19:40:42 +08:00
|
|
|
ez80_adl_main_insn_table[] =
|
|
|
|
{ /* table with double prefix check */
|
|
|
|
{ 0100, 0377, 0, insn_force_nop}, //double prefix
|
|
|
|
{ 0111, 0377, 0, insn_force_nop}, //double prefix
|
|
|
|
{ 0122, 0377, 0, insn_force_nop}, //double prefix
|
|
|
|
{ 0133, 0377, 0, insn_force_nop}, //double prefix
|
|
|
|
/* initial table for eZ80_adl */
|
|
|
|
{ 0000, 0367, 1, insn_default }, //"nop", "ex af,af'"
|
|
|
|
{ 0061, 0377, 4, insn_ld_sp_nn }, //"ld sp,Mmn"
|
|
|
|
{ 0001, 0317, 4, insn_default }, //"ld rr,Mmn"
|
|
|
|
{ 0002, 0347, 1, insn_default }, //"ld (rr),a", "ld a,(rr)"
|
|
|
|
{ 0042, 0347, 4, insn_default }, //"ld (Mmn),hl/a", "ld hl/a,(Mmn)"
|
|
|
|
{ 0063, 0377, 1, insn_inc_sp }, //"inc sp"
|
|
|
|
{ 0073, 0377, 1, insn_dec_sp }, //"dec sp"
|
|
|
|
{ 0003, 0303, 1, insn_default }, //"inc rr", "dec rr", ...
|
|
|
|
{ 0004, 0307, 1, insn_default }, //"inc/dec r/(hl)"
|
|
|
|
{ 0006, 0307, 2, insn_default }, //"ld r,n", "ld (hl),n"
|
|
|
|
{ 0020, 0377, 2, insn_djnz_d }, //"djnz dis"
|
|
|
|
{ 0030, 0377, 2, insn_jr_d }, //"jr dis"
|
|
|
|
{ 0040, 0347, 2, insn_jr_cc_d }, //"jr cc,dis"
|
|
|
|
{ 0100, 0377, 1, insn_z80 }, //eZ80 mode prefix (short instruction)
|
|
|
|
{ 0111, 0377, 1, insn_z80 }, //eZ80 mode prefix (short instruction)
|
|
|
|
{ 0122, 0377, 1, insn_adl }, //eZ80 mode prefix (long instruction)
|
|
|
|
{ 0133, 0377, 1, insn_adl }, //eZ80 mode prefix (long instruction)
|
|
|
|
{ 0100, 0300, 1, insn_default }, //"ld r,r", "halt"
|
|
|
|
{ 0200, 0300, 1, insn_default }, //"alu_op a,r"
|
|
|
|
{ 0300, 0307, 1, insn_ret_cc }, //"ret cc"
|
|
|
|
{ 0301, 0317, 1, insn_pop_rr }, //"pop rr"
|
|
|
|
{ 0302, 0307, 4, insn_jp_cc_nn }, //"jp cc,nn"
|
|
|
|
{ 0303, 0377, 4, insn_jp_nn }, //"jp nn"
|
|
|
|
{ 0304, 0307, 4, insn_call_cc_nn}, //"call cc,Mmn"
|
|
|
|
{ 0305, 0317, 1, insn_push_rr }, //"push rr"
|
|
|
|
{ 0306, 0307, 2, insn_default }, //"alu_op a,n"
|
|
|
|
{ 0307, 0307, 1, insn_rst_n }, //"rst n"
|
|
|
|
{ 0311, 0377, 1, insn_ret }, //"ret"
|
|
|
|
{ 0313, 0377, 2, insn_default }, //CB prefix
|
|
|
|
{ 0315, 0377, 4, insn_call_nn }, //"call Mmn"
|
|
|
|
{ 0323, 0367, 2, insn_default }, //"out (n),a", "in a,(n)"
|
|
|
|
{ 0335, 0337, 1, insn_adl_ddfd }, //DD/FD prefix
|
|
|
|
{ 0351, 0377, 1, insn_jp_rr }, //"jp (hl)"
|
|
|
|
{ 0355, 0377, 1, insn_adl_ed }, //ED prefix
|
|
|
|
{ 0371, 0377, 1, insn_ld_sp_rr }, //"ld sp,hl"
|
|
|
|
{ 0000, 0000, 1, insn_default } //others
|
|
|
|
};
|
|
|
|
|
|
|
|
/* ED prefix opcodes table.
|
|
|
|
Note the instruction length does include the ED prefix (+ 1 byte)
|
|
|
|
*/
|
2022-05-19 00:08:43 +08:00
|
|
|
static const struct z80_insn_info
|
2020-09-25 19:40:42 +08:00
|
|
|
ez80_ed_insn_table[] =
|
|
|
|
{
|
|
|
|
/* eZ80 only instructions */
|
|
|
|
{ 0002, 0366, 2, insn_default }, //"lea rr,ii+d"
|
|
|
|
{ 0124, 0376, 2, insn_default }, //"lea ix,iy+d", "lea iy,ix+d"
|
|
|
|
{ 0145, 0377, 2, insn_default }, //"pea ix+d"
|
|
|
|
{ 0146, 0377, 2, insn_default }, //"pea iy+d"
|
|
|
|
{ 0164, 0377, 2, insn_default }, //"tstio n"
|
|
|
|
/* Z180/eZ80 only instructions */
|
|
|
|
{ 0060, 0376, 1, insn_default }, //not an instruction
|
|
|
|
{ 0000, 0306, 2, insn_default }, //"in0 r,(n)", "out0 (n),r"
|
|
|
|
{ 0144, 0377, 2, insn_default }, //"tst a, n"
|
|
|
|
/* common instructions */
|
|
|
|
{ 0173, 0377, 3, insn_ld_sp_6nn9 }, //"ld sp,(nn)"
|
|
|
|
{ 0103, 0307, 3, insn_default }, //"ld (nn),rr", "ld rr,(nn)"
|
|
|
|
{ 0105, 0317, 1, insn_ret }, //"retn", "reti"
|
|
|
|
{ 0000, 0000, 1, insn_default }
|
|
|
|
};
|
|
|
|
|
2022-05-19 00:08:43 +08:00
|
|
|
static const struct z80_insn_info
|
2020-09-25 19:40:42 +08:00
|
|
|
ez80_adl_ed_insn_table[] =
|
|
|
|
{
|
|
|
|
{ 0002, 0366, 2, insn_default }, //"lea rr,ii+d"
|
|
|
|
{ 0124, 0376, 2, insn_default }, //"lea ix,iy+d", "lea iy,ix+d"
|
|
|
|
{ 0145, 0377, 2, insn_default }, //"pea ix+d"
|
|
|
|
{ 0146, 0377, 2, insn_default }, //"pea iy+d"
|
|
|
|
{ 0164, 0377, 2, insn_default }, //"tstio n"
|
|
|
|
{ 0060, 0376, 1, insn_default }, //not an instruction
|
|
|
|
{ 0000, 0306, 2, insn_default }, //"in0 r,(n)", "out0 (n),r"
|
|
|
|
{ 0144, 0377, 2, insn_default }, //"tst a, n"
|
|
|
|
{ 0173, 0377, 4, insn_ld_sp_6nn9 }, //"ld sp,(nn)"
|
|
|
|
{ 0103, 0307, 4, insn_default }, //"ld (nn),rr", "ld rr,(nn)"
|
|
|
|
{ 0105, 0317, 1, insn_ret }, //"retn", "reti"
|
|
|
|
{ 0000, 0000, 1, insn_default }
|
|
|
|
};
|
|
|
|
|
|
|
|
/* table for FD and DD prefixed instructions */
|
2022-05-19 00:08:43 +08:00
|
|
|
static const struct z80_insn_info
|
2020-09-25 19:40:42 +08:00
|
|
|
ez80_ddfd_insn_table[] =
|
|
|
|
{
|
|
|
|
/* ez80 only instructions */
|
|
|
|
{ 0007, 0307, 2, insn_default }, //"ld rr,(ii+d)"
|
|
|
|
{ 0061, 0377, 2, insn_default }, //"ld ii,(ii+d)"
|
|
|
|
/* common instructions */
|
|
|
|
{ 0011, 0367, 2, insn_default }, //"add ii,rr"
|
|
|
|
{ 0041, 0377, 3, insn_default }, //"ld ii,nn"
|
|
|
|
{ 0042, 0367, 3, insn_default }, //"ld (nn),ii", "ld ii,(nn)"
|
|
|
|
{ 0043, 0367, 1, insn_default }, //"inc ii", "dec ii"
|
|
|
|
{ 0044, 0366, 1, insn_default }, //"inc/dec iih/iil"
|
|
|
|
{ 0046, 0367, 2, insn_default }, //"ld iih,n", "ld iil,n"
|
|
|
|
{ 0064, 0376, 2, insn_default }, //"inc (ii+d)", "dec (ii+d)"
|
|
|
|
{ 0066, 0377, 2, insn_default }, //"ld (ii+d),n"
|
|
|
|
{ 0166, 0377, 0, insn_default }, //not an instruction
|
|
|
|
{ 0160, 0370, 2, insn_default }, //"ld (ii+d),r"
|
|
|
|
{ 0104, 0306, 1, insn_default }, //"ld r,iih", "ld r,iil"
|
|
|
|
{ 0106, 0307, 2, insn_default }, //"ld r,(ii+d)"
|
|
|
|
{ 0140, 0360, 1, insn_default }, //"ld iih,r", "ld iil,r"
|
|
|
|
{ 0204, 0306, 1, insn_default }, //"alu_op a,iih", "alu_op a,iil"
|
|
|
|
{ 0206, 0307, 2, insn_default }, //"alu_op a,(ii+d)"
|
|
|
|
{ 0313, 0377, 3, insn_default }, //DD/FD CB dd oo instructions
|
|
|
|
{ 0335, 0337, 0, insn_force_nop}, //double DD/FD prefix, exec DD/FD as NOP
|
|
|
|
{ 0341, 0373, 1, insn_default }, //"pop ii", "push ii"
|
|
|
|
{ 0343, 0377, 1, insn_default }, //"ex (sp),ii"
|
|
|
|
{ 0351, 0377, 1, insn_jp_rr }, //"jp (ii)"
|
|
|
|
{ 0371, 0377, 1, insn_ld_sp_rr}, //"ld sp,ii"
|
|
|
|
{ 0000, 0000, 0, insn_default } //not an instruction, exec DD/FD as NOP
|
|
|
|
};
|
|
|
|
|
2022-05-19 00:08:43 +08:00
|
|
|
static const struct z80_insn_info
|
2020-09-25 19:40:42 +08:00
|
|
|
ez80_adl_ddfd_insn_table[] =
|
|
|
|
{
|
|
|
|
{ 0007, 0307, 2, insn_default }, //"ld rr,(ii+d)"
|
|
|
|
{ 0061, 0377, 2, insn_default }, //"ld ii,(ii+d)"
|
|
|
|
{ 0011, 0367, 1, insn_default }, //"add ii,rr"
|
|
|
|
{ 0041, 0377, 4, insn_default }, //"ld ii,nn"
|
|
|
|
{ 0042, 0367, 4, insn_default }, //"ld (nn),ii", "ld ii,(nn)"
|
|
|
|
{ 0043, 0367, 1, insn_default }, //"inc ii", "dec ii"
|
|
|
|
{ 0044, 0366, 1, insn_default }, //"inc/dec iih/iil"
|
|
|
|
{ 0046, 0367, 2, insn_default }, //"ld iih,n", "ld iil,n"
|
|
|
|
{ 0064, 0376, 2, insn_default }, //"inc (ii+d)", "dec (ii+d)"
|
|
|
|
{ 0066, 0377, 3, insn_default }, //"ld (ii+d),n"
|
|
|
|
{ 0166, 0377, 0, insn_default }, //not an instruction
|
|
|
|
{ 0160, 0370, 2, insn_default }, //"ld (ii+d),r"
|
|
|
|
{ 0104, 0306, 1, insn_default }, //"ld r,iih", "ld r,iil"
|
|
|
|
{ 0106, 0307, 2, insn_default }, //"ld r,(ii+d)"
|
|
|
|
{ 0140, 0360, 1, insn_default }, //"ld iih,r", "ld iil,r"
|
|
|
|
{ 0204, 0306, 1, insn_default }, //"alu_op a,iih", "alu_op a,iil"
|
|
|
|
{ 0206, 0307, 2, insn_default }, //"alu_op a,(ii+d)"
|
|
|
|
{ 0313, 0377, 3, insn_default }, //DD/FD CB dd oo instructions
|
|
|
|
{ 0335, 0337, 0, insn_force_nop}, //double DD/FD prefix, exec DD/FD as NOP
|
|
|
|
{ 0341, 0373, 1, insn_default }, //"pop ii", "push ii"
|
|
|
|
{ 0343, 0377, 1, insn_default }, //"ex (sp),ii"
|
|
|
|
{ 0351, 0377, 1, insn_jp_rr }, //"jp (ii)"
|
|
|
|
{ 0371, 0377, 1, insn_ld_sp_rr}, //"ld sp,ii"
|
|
|
|
{ 0000, 0000, 0, insn_default } //not an instruction, exec DD/FD as NOP
|
|
|
|
};
|
|
|
|
|
|
|
|
/* Return pointer to instruction information structure corresponded to opcode
|
|
|
|
in buf. */
|
2022-05-19 00:08:43 +08:00
|
|
|
static const struct z80_insn_info *
|
2020-09-25 19:40:42 +08:00
|
|
|
z80_get_insn_info (struct gdbarch *gdbarch, const gdb_byte *buf, int *size)
|
|
|
|
{
|
|
|
|
int code;
|
2022-05-19 00:08:43 +08:00
|
|
|
const struct z80_insn_info *info;
|
2020-09-25 19:40:42 +08:00
|
|
|
unsigned long mach = gdbarch_bfd_arch_info (gdbarch)->mach;
|
|
|
|
*size = 0;
|
|
|
|
switch (mach)
|
|
|
|
{
|
|
|
|
case bfd_mach_ez80_z80:
|
|
|
|
info = &ez80_main_insn_table[4]; /* skip force_nops */
|
|
|
|
break;
|
|
|
|
case bfd_mach_ez80_adl:
|
|
|
|
info = &ez80_adl_main_insn_table[4]; /* skip force_nops */
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
info = &ez80_main_insn_table[8]; /* skip eZ80 prefices and force_nops */
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
do
|
|
|
|
{
|
|
|
|
for (; ((code = buf[*size]) & info->mask) != info->code; ++info)
|
|
|
|
;
|
|
|
|
*size += info->size;
|
|
|
|
/* process instruction type */
|
|
|
|
switch (info->type)
|
|
|
|
{
|
|
|
|
case insn_z80:
|
|
|
|
if (mach == bfd_mach_ez80_z80 || mach == bfd_mach_ez80_adl)
|
|
|
|
info = &ez80_main_insn_table[0];
|
|
|
|
else
|
|
|
|
info = &ez80_main_insn_table[8];
|
|
|
|
break;
|
|
|
|
case insn_adl:
|
|
|
|
info = &ez80_adl_main_insn_table[0];
|
|
|
|
break;
|
|
|
|
/* These two (for GameBoy Z80 & Z80 Next CPUs) haven't been tested.
|
|
|
|
|
|
|
|
case bfd_mach_gbz80:
|
|
|
|
info = &gbz80_main_insn_table[0];
|
|
|
|
break;
|
|
|
|
case bfd_mach_z80n:
|
|
|
|
info = &z80n_main_insn_table[0];
|
|
|
|
break;
|
|
|
|
*/
|
|
|
|
case insn_z80_ddfd:
|
|
|
|
if (mach == bfd_mach_ez80_z80 || mach == bfd_mach_ez80_adl)
|
|
|
|
info = &ez80_ddfd_insn_table[0];
|
|
|
|
else
|
|
|
|
info = &ez80_ddfd_insn_table[2];
|
|
|
|
break;
|
|
|
|
case insn_adl_ddfd:
|
|
|
|
info = &ez80_adl_ddfd_insn_table[0];
|
|
|
|
break;
|
|
|
|
case insn_z80_ed:
|
|
|
|
info = &ez80_ed_insn_table[0];
|
|
|
|
break;
|
|
|
|
case insn_adl_ed:
|
|
|
|
info = &ez80_adl_ed_insn_table[0];
|
|
|
|
break;
|
|
|
|
case insn_force_nop:
|
|
|
|
return NULL;
|
|
|
|
default:
|
|
|
|
return info;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
while (1);
|
|
|
|
}
|
|
|
|
|
|
|
|
extern initialize_file_ftype _initialize_z80_tdep;
|
|
|
|
|
|
|
|
void
|
|
|
|
_initialize_z80_tdep ()
|
|
|
|
{
|
2022-08-01 00:44:01 +08:00
|
|
|
gdbarch_register (bfd_arch_z80, z80_gdbarch_init);
|
2020-09-25 19:40:42 +08:00
|
|
|
initialize_tdesc_z80 ();
|
|
|
|
}
|