2021-03-18 20:37:52 +08:00
|
|
|
/* CTF dict creation.
|
2024-01-04 19:52:08 +08:00
|
|
|
Copyright (C) 2019-2024 Free Software Foundation, Inc.
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
|
|
|
|
This file is part of libctf.
|
|
|
|
|
|
|
|
libctf is free software; you can redistribute it and/or modify it under
|
|
|
|
the terms of the GNU General Public License as published by the Free
|
|
|
|
Software Foundation; either version 3, or (at your option) any later
|
|
|
|
version.
|
|
|
|
|
|
|
|
This program is distributed in the hope that it will be useful, but
|
|
|
|
WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
|
|
|
|
See the GNU General Public License for more details.
|
|
|
|
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
|
|
along with this program; see the file COPYING. If not see
|
|
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
|
|
|
|
#include <ctf-impl.h>
|
|
|
|
#include <sys/param.h>
|
|
|
|
#include <string.h>
|
2019-12-16 19:38:57 +08:00
|
|
|
#include <unistd.h>
|
libctf: symbol type linking support
This adds facilities to write out the function info and data object
sections, which efficiently map from entries in the symbol table to
types. The write-side code is entirely new: the read-side code was
merely significantly changed and support for indexed tables added
(pointed to by the no-longer-unused cth_objtidxoff and cth_funcidxoff
header fields).
With this in place, you can use ctf_lookup_by_symbol to look up the
types of symbols of function and object type (and, as before, you can
use ctf_lookup_variable to look up types of file-scope variables not
present in the symbol table, as long as you know their name: but
variables that are also data objects are now found in the data object
section instead.)
(Compatible) file format change:
The CTF spec has always said that the function info section looks much
like the CTF_K_FUNCTIONs in the type section: an info word (including an
argument count) followed by a return type and N argument types. This
format is suboptimal: it means function symbols cannot be deduplicated
and it causes a lot of ugly code duplication in libctf. But
conveniently the compiler has never emitted this! Because it has always
emitted a rather different format that libctf has never accepted, we can
be sure that there are no instances of this function info section in the
wild, and can freely change its format without compatibility concerns or
a file format version bump. (And since it has never been emitted in any
code that generated any older file format version, either, we need keep
no code to read the format as specified at all!)
So the function info section is now specified as an array of uint32_t,
exactly like the object data section: each entry is a type ID in the
type section which must be of kind CTF_K_FUNCTION, the prototype of
this function.
This allows function types to be deduplicated and also correctly encodes
the fact that all functions declared in C really are types available to
the program: so they should be stored in the type section like all other
types. (In format v4, we will be able to represent the types of static
functions as well, but that really does require a file format change.)
We introduce a new header flag, CTF_F_NEWFUNCINFO, which is set if the
new function info format is in use. A sufficiently new compiler will
always set this flag. New libctf will always set this flag: old libctf
will refuse to open any CTF dicts that have this flag set. If the flag
is not set on a dict being read in, new libctf will disregard the
function info section. Format v4 will remove this flag (or, rather, the
flag has no meaning there and the bit position may be recycled for some
other purpose).
New API:
Symbol addition:
ctf_add_func_sym: Add a symbol with a given name and type. The
type must be of kind CTF_K_FUNCTION (a function
pointer). Internally this adds a name -> type
mapping to the ctf_funchash in the ctf_dict.
ctf_add_objt_sym: Add a symbol with a given name and type. The type
kind can be anything, including function pointers.
This adds to ctf_objthash.
These both treat symbols as name -> type mappings: the linker associates
symbol names with symbol indexes via the ctf_link_shuffle_syms callback,
which sets up the ctf_dynsyms/ctf_dynsymidx/ctf_dynsymmax fields in the
ctf_dict. Repeated relinks can add more symbols.
Variables that are also exposed as symbols are removed from the variable
section at serialization time.
CTF symbol type sections which have enough pads, defined by
CTF_INDEX_PAD_THRESHOLD (whether because they are in dicts with symbols
where most types are unknown, or in archive where most types are defined
in some child or parent dict, not in this specific dict) are sorted by
name rather than symidx and accompanied by an index which associates
each symbol type entry with a name: the existing ctf_lookup_by_symbol
will map symbol indexes to symbol names and look the names up in the
index automatically. (This is currently ELF-symbol-table-dependent, but
there is almost nothing specific to ELF in here and we can add support
for other symbol table formats easily).
The compiler also uses index sections to communicate the contents of
object file symbol tables without relying on any specific ordering of
symbols: it doesn't need to sort them, and libctf will detect an
unsorted index section via the absence of the new CTF_F_IDXSORTED header
flag, and sort it if needed.
Iteration:
ctf_symbol_next: Iterator which returns the types and names of symbols
one by one, either for function or data symbols.
This does not require any sorting: the ctf_link machinery uses it to
pull in all the compiler-provided symbols cheaply, but it is not
restricted to that use.
(Compatible) changes in API:
ctf_lookup_by_symbol: can now be called for object and function
symbols: never returns ECTF_NOTDATA (which is
now not thrown by anything, but is kept for
compatibility and because it is a plausible
error that we might start throwing again at some
later date).
Internally we also have changes to the ctf-string functionality so that
"external" strings (those where we track a string -> offset mapping, but
only write out an offset) can be consulted via the usual means
(ctf_strptr) before the strtab is written out. This is important
because ctf_link_add_linker_symbol can now be handed symbols named via
strtab offsets, and ctf_link_shuffle_syms must figure out their actual
names by looking in the external symtab we have just been fed by the
ctf_link_add_strtab callback, long before that strtab is written out.
include/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-api.h (ctf_symbol_next): New.
(ctf_add_objt_sym): Likewise.
(ctf_add_func_sym): Likewise.
* ctf.h: Document new function info section format.
(CTF_F_NEWFUNCINFO): New.
(CTF_F_IDXSORTED): New.
(CTF_F_MAX): Adjust accordingly.
libctf/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h (CTF_INDEX_PAD_THRESHOLD): New.
(_libctf_nonnull_): Likewise.
(ctf_in_flight_dynsym_t): New.
(ctf_dict_t) <ctf_funcidx_names>: Likewise.
<ctf_objtidx_names>: Likewise.
<ctf_nfuncidx>: Likewise.
<ctf_nobjtidx>: Likewise.
<ctf_funcidx_sxlate>: Likewise.
<ctf_objtidx_sxlate>: Likewise.
<ctf_objthash>: Likewise.
<ctf_funchash>: Likewise.
<ctf_dynsyms>: Likewise.
<ctf_dynsymidx>: Likewise.
<ctf_dynsymmax>: Likewise.
<ctf_in_flight_dynsym>: Likewise.
(struct ctf_next) <u.ctn_next>: Likewise.
(ctf_symtab_skippable): New prototype.
(ctf_add_funcobjt_sym): Likewise.
(ctf_dynhash_sort_by_name): Likewise.
(ctf_sym_to_elf64): Rename to...
(ctf_elf32_to_link_sym): ... this, and...
(ctf_elf64_to_link_sym): ... this.
* ctf-open.c (init_symtab): Check for lack of CTF_F_NEWFUNCINFO
flag, and presence of index sections. Refactor out
ctf_symtab_skippable and ctf_elf*_to_link_sym, and use them. Use
ctf_link_sym_t, not Elf64_Sym. Skip initializing objt or func
sxlate sections if corresponding index section is present. Adjust
for new func info section format.
(ctf_bufopen_internal): Add ctf_err_warn to corrupt-file error
handling. Report incorrect-length index sections. Always do an
init_symtab, even if there is no symtab section (there may be index
sections still).
(flip_objts): Adjust comment: func and objt sections are actually
identical in structure now, no need to caveat.
(ctf_dict_close): Free newly-added data structures.
* ctf-create.c (ctf_create): Initialize them.
(ctf_symtab_skippable): New, refactored out of
init_symtab, with st_nameidx_set check added.
(ctf_add_funcobjt_sym): New, add a function or object symbol to the
ctf_objthash or ctf_funchash, by name.
(ctf_add_objt_sym): Call it.
(ctf_add_func_sym): Likewise.
(symtypetab_delete_nonstatic_vars): New, delete vars also present as
data objects.
(CTF_SYMTYPETAB_EMIT_FUNCTION): New flag to symtypetab emitters:
this is a function emission, not a data object emission.
(CTF_SYMTYPETAB_EMIT_PAD): New flag to symtypetab emitters: emit
pads for symbols with no type (only set for unindexed sections).
(CTF_SYMTYPETAB_FORCE_INDEXED): New flag to symtypetab emitters:
always emit indexed.
(symtypetab_density): New, figure out section sizes.
(emit_symtypetab): New, emit a symtypetab.
(emit_symtypetab_index): New, emit a symtypetab index.
(ctf_serialize): Call them, emitting suitably sorted symtypetab
sections and indexes. Set suitable header flags. Copy over new
fields.
* ctf-hash.c (ctf_dynhash_sort_by_name): New, used to impose an
order on symtypetab index sections.
* ctf-link.c (ctf_add_type_mapping): Delete erroneous comment
relating to code that was never committed.
(ctf_link_one_variable): Improve variable name.
(check_sym): New, symtypetab analogue of check_variable.
(ctf_link_deduplicating_one_symtypetab): New.
(ctf_link_deduplicating_syms): Likewise.
(ctf_link_deduplicating): Call them.
(ctf_link_deduplicating_per_cu): Note that we don't call them in
this case (yet).
(ctf_link_add_strtab): Set the error on the fp correctly.
(ctf_link_add_linker_symbol): New (no longer a do-nothing stub), add
a linker symbol to the in-flight list.
(ctf_link_shuffle_syms): New (no longer a do-nothing stub), turn the
in-flight list into a mapping we can use, now its names are
resolvable in the external strtab.
* ctf-string.c (ctf_str_rollback_atom): Don't roll back atoms with
external strtab offsets.
(ctf_str_rollback): Adjust comment.
(ctf_str_write_strtab): Migrate ctf_syn_ext_strtab population from
writeout time...
(ctf_str_add_external): ... to string addition time.
* ctf-lookup.c (ctf_lookup_var_key_t): Rename to...
(ctf_lookup_idx_key_t): ... this, now we use it for syms too.
<clik_names>: New member, a name table.
(ctf_lookup_var): Adjust accordingly.
(ctf_lookup_variable): Likewise.
(ctf_lookup_by_id): Shuffle further up in the file.
(ctf_symidx_sort_arg_cb): New, callback for...
(sort_symidx_by_name): ... this new function to sort a symidx
found to be unsorted (likely originating from the compiler).
(ctf_symidx_sort): New, sort a symidx.
(ctf_lookup_symbol_name): Support dynamic symbols with indexes
provided by the linker. Use ctf_link_sym_t, not Elf64_Sym.
Check the parent if a child lookup fails.
(ctf_lookup_by_symbol): Likewise. Work for function symbols too.
(ctf_symbol_next): New, iterate over symbols with types (without
sorting).
(ctf_lookup_idx_name): New, bsearch for symbol names in indexes.
(ctf_try_lookup_indexed): New, attempt an indexed lookup.
(ctf_func_info): Reimplement in terms of ctf_lookup_by_symbol.
(ctf_func_args): Likewise.
(ctf_get_dict): Move...
* ctf-types.c (ctf_get_dict): ... here.
* ctf-util.c (ctf_sym_to_elf64): Re-express as...
(ctf_elf64_to_link_sym): ... this. Add new st_symidx field, and
st_nameidx_set (always 0, so st_nameidx can be ignored). Look in
the ELF strtab for names.
(ctf_elf32_to_link_sym): Likewise, for Elf32_Sym.
(ctf_next_destroy): Destroy ctf_next_t.u.ctn_next if need be.
* libctf.ver: Add ctf_symbol_next, ctf_add_objt_sym and
ctf_add_func_sym.
2020-11-20 21:34:04 +08:00
|
|
|
|
2020-07-27 07:06:02 +08:00
|
|
|
#ifndef EOVERFLOW
|
|
|
|
#define EOVERFLOW ERANGE
|
|
|
|
#endif
|
|
|
|
|
libctf: fix a number of build problems found on Solaris and NetBSD
- Use of nonportable <endian.h>
- Use of qsort_r
- Use of zlib without appropriate magic to pull in the binutils zlib
- Use of off64_t without checking (fixed by dropping the unused fields
that need off64_t entirely)
- signedness problems due to long being too short a type on 32-bit
platforms: ctf_id_t is now 'unsigned long', and CTF_ERR must be
used only for functions that return ctf_id_t
- One lingering use of bzero() and of <sys/errno.h>
All fixed, using code from gnulib where possible.
Relatedly, set cts_size in a couple of places it was missed
(string table and symbol table loading upon ctf_bfdopen()).
binutils/
* objdump.c (make_ctfsect): Drop cts_type, cts_flags, and
cts_offset.
* readelf.c (shdr_to_ctf_sect): Likewise.
include/
* ctf-api.h (ctf_sect_t): Drop cts_type, cts_flags, and cts_offset.
(ctf_id_t): This is now an unsigned type.
(CTF_ERR): Cast it to ctf_id_t. Note that it should only be used
for ctf_id_t-returning functions.
libctf/
* Makefile.am (ZLIB): New.
(ZLIBINC): Likewise.
(AM_CFLAGS): Use them.
(libctf_a_LIBADD): New, for LIBOBJS.
* configure.ac: Check for zlib, endian.h, and qsort_r.
* ctf-endian.h: New, providing htole64 and le64toh.
* swap.h: Code style fixes.
(bswap_identity_64): New.
* qsort_r.c: New, from gnulib (with one added #include).
* ctf-decls.h: New, providing a conditional qsort_r declaration,
and unconditional definitions of MIN and MAX.
* ctf-impl.h: Use it. Do not use <sys/errno.h>.
(ctf_set_errno): Now returns unsigned long.
* ctf-util.c (ctf_set_errno): Adjust here too.
* ctf-archive.c: Use ctf-endian.h.
(ctf_arc_open_by_offset): Use memset, not bzero. Drop cts_type,
cts_flags and cts_offset.
(ctf_arc_write): Drop debugging dependent on the size of off_t.
* ctf-create.c: Provide a definition of roundup if not defined.
(ctf_create): Drop cts_type, cts_flags and cts_offset.
(ctf_add_reftype): Do not check if type IDs are below zero.
(ctf_add_slice): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_member_offset): Cast error-returning ssize_t's to size_t
when known error-free. Drop CTF_ERR usage for functions returning
int.
(ctf_add_member_encoded): Drop CTF_ERR usage for functions returning
int.
(ctf_add_variable): Likewise.
(enumcmp): Likewise.
(enumadd): Likewise.
(membcmp): Likewise.
(ctf_add_type): Likewise. Cast error-returning ssize_t's to size_t
when known error-free.
* ctf-dump.c (ctf_is_slice): Drop CTF_ERR usage for functions
returning int: use CTF_ERR for functions returning ctf_type_id.
(ctf_dump_label): Likewise.
(ctf_dump_objts): Likewise.
* ctf-labels.c (ctf_label_topmost): Likewise.
(ctf_label_iter): Likewise.
(ctf_label_info): Likewise.
* ctf-lookup.c (ctf_func_args): Likewise.
* ctf-open.c (upgrade_types): Cast to size_t where appropriate.
(ctf_bufopen): Likewise. Use zlib types as needed.
* ctf-types.c (ctf_member_iter): Drop CTF_ERR usage for functions
returning int.
(ctf_enum_iter): Likewise.
(ctf_type_size): Likewise.
(ctf_type_align): Likewise. Cast to size_t where appropriate.
(ctf_type_kind_unsliced): Likewise.
(ctf_type_kind): Likewise.
(ctf_type_encoding): Likewise.
(ctf_member_info): Likewise.
(ctf_array_info): Likewise.
(ctf_enum_value): Likewise.
(ctf_type_rvisit): Likewise.
* ctf-open-bfd.c (ctf_bfdopen): Drop cts_type, cts_flags and
cts_offset.
(ctf_simple_open): Likewise.
(ctf_bfdopen_ctfsect): Likewise. Set cts_size properly.
* Makefile.in: Regenerate.
* aclocal.m4: Likewise.
* config.h: Likewise.
* configure: Likewise.
2019-05-31 17:10:51 +08:00
|
|
|
#ifndef roundup
|
|
|
|
#define roundup(x, y) ((((x) + ((y) - 1)) / (y)) * (y))
|
|
|
|
#endif
|
|
|
|
|
libctf: eliminate dtd_u, part 5: structs / unions
Eliminate the dynamic member storage for structs and unions as we have
for other dynamic types. This is much like the previous enum
elimination, except that structs and unions are the only types for which
a full-sized ctf_type_t might be needed. Up to now, this decision has
been made in the individual ctf_add_{struct,union}_sized functions and
duplicated in ctf_add_member_offset. The vlen machinery lets us
simplify this, always allocating a ctf_lmember_t and setting the
dtd_data's ctt_size to CTF_LSIZE_SENT: we figure out whether this is
really justified and (almost always) repack things down into a
ctf_stype_t at ctf_serialize time.
This allows us to eliminate the dynamic member paths from the iterators and
query functions in ctf-types.c in favour of always using the large-structure
vlen stuff for dynamic types (the diff is ugly but that's just because of the
volume of reindentation this calls for). This also means the large-structure
vlen stuff gets more heavily tested, which is nice because it was an almost
totally unused code path before now (it only kicked in for structures of size
>4GiB, and how often do you see those?)
The only extra complexity here is ctf_add_type. Back in the days of the
nondeduplicating linker this was called a ridiculous number of times for
countless identical copies of structures: eschewing the repeated lookups of the
dtd in ctf_add_member_offset and adding the members directly saved an amazing
amount of time. Now the nondeduplicating linker is gone, this is extreme
overoptimization: we can rip out the direct addition and use ctf_member_next and
ctf_add_member_offset, just like ctf_dedup_emit does.
We augment a ctf_add_type test to try adding a self-referential struct, the only
thing the ctf_add_type part of this change really perturbs.
This completes the elimination of dtd_u.
libctf/ChangeLog
2021-03-18 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h (ctf_dtdef_t) <dtu_members>: Remove.
<dtd_u>: Likewise.
(ctf_dmdef_t): Remove.
(struct ctf_next) <u.ctn_dmd>: Remove.
* ctf-create.c (INITIAL_VLEN): New, more-or-less arbitrary initial
vlen size.
(ctf_add_enum): Use it.
(ctf_dtd_delete): Do not free the (removed) dmd; remove string
refs from the vlen on struct deletion.
(ctf_add_struct_sized): Populate the vlen: do it by hand if
promoting forwards. Always populate the full-size
lsizehi/lsizelo members.
(ctf_add_union_sized): Likewise.
(ctf_add_member_offset): Set up the vlen rather than the dmd.
Expand it as needed, repointing string refs via
ctf_str_move_pending. Add the member names as pending strings.
Always populate the full-size lsizehi/lsizelo members.
(membadd): Remove, folding back into...
(ctf_add_type_internal): ... here, adding via an ordinary
ctf_add_struct_sized and _next iteration rather than doing
everything by hand.
* ctf-serialize.c (ctf_copy_smembers): Remove this...
(ctf_copy_lmembers): ... and this...
(ctf_emit_type_sect): ... folding into here. Figure out if a
ctf_stype_t is needed here, not in ctf_add_*_sized.
(ctf_type_sect_size): Figure out the ctf_stype_t stuff the same
way here.
* ctf-types.c (ctf_member_next): Remove the dmd path and always
use the vlen. Force large-structure usage for dynamic types.
(ctf_type_align): Likewise.
(ctf_member_info): Likewise.
(ctf_type_rvisit): Likewise.
* testsuite/libctf-regression/type-add-unnamed-struct-ctf.c: Add a
self-referential type to this test.
* testsuite/libctf-regression/type-add-unnamed-struct.c: Adjusted
accordingly.
* testsuite/libctf-regression/type-add-unnamed-struct.lk: Likewise.
2021-03-18 20:37:52 +08:00
|
|
|
/* The initial size of a dynamic type's vlen in members. Arbitrary: the bigger
|
|
|
|
this is, the less allocation needs to be done for small structure
|
|
|
|
initialization, and the more memory is wasted for small structures during CTF
|
|
|
|
construction. No effect on generated CTF or ctf_open()ed CTF. */
|
|
|
|
#define INITIAL_VLEN 16
|
|
|
|
|
libctf: avoid the need to ever use ctf_update
The method of operation of libctf when the dictionary is writable has
before now been that types that are added land in the dynamic type
section, which is a linked list and hash of IDs -> dynamic type
definitions (and, recently a hash of names): the DTDs are a bit of CTF
representing the ctf_type_t and ad hoc C structures representing the
vlen. Historically, libctf was unable to do anything with these types,
not even look them up by ID, let alone by name: if you wanted to do that
say if you were adding a type that depended on one you just added) you
called ctf_update, which serializes all the DTDs into a CTF file and
reopens it, copying its guts over the fp it's called with. The
ctf_updated types are then frozen in amber and unchangeable: all lookups
will return the types in the static portion in preference to the dynamic
portion, and we will refuse to re-add things that already exist in the
static portion (and, of late, in the dynamic portion too). The libctf
machinery remembers the boundary between static and dynamic types and
looks in the right portion for each type. Lots of things still don't
quite work with dynamic types (e.g. getting their size), but enough
works to do a bunch of additions and then a ctf_update, most of the
time.
Except it doesn't, because ctf_add_type finds it necessary to walk the
full dynamic type definition list looking for types with matching names,
so it gets slower and slower with every type you add: fixing this
requires calling ctf_update periodically for no other reason than to
avoid massively slowing things down.
This is all clunky and very slow but kind of works, until you consider
that it is in fact possible and indeed necessary to modify one sort of
type after it has been added: forwards. These are necessarily promoted
to structs, unions or enums, and when they do so *their type ID does not
change*. So all of a sudden we are changing types that already exist in
the static portion. ctf_update gets massively confused by this and
allocates space enough for the forward (with no members), but then emits
the new dynamic type (with all the members) into it. You get an
assertion failure after that, if you're lucky, or a coredump.
So this commit rejigs things a bit and arranges to exclusively use the
dynamic type definitions in writable dictionaries, and the static type
definitions in readable dictionaries: we don't at any time have a mixture
of static and dynamic types, and you don't need to call ctf_update to
make things "appear". The ctf_dtbyname hash I introduced a few months
ago, which maps things like "struct foo" to DTDs, is removed, replaced
instead by a change of type of the four dictionaries which track names.
Rather than just being (unresizable) ctf_hash_t's populated only at
ctf_bufopen time, they are now a ctf_names_t structure, which is a pair
of ctf_hash_t and ctf_dynhash_t, with the ctf_hash_t portion being used
in readonly dictionaries, and the ctf_dynhash_t being used in writable
ones. The decision as to which to use is centralized in the new
functions ctf_lookup_by_rawname (which takes a type kind) and
ctf_lookup_by_rawhash, which it calls (which takes a ctf_names_t *.)
This change lets us switch from using static to dynamic name hashes on
the fly across the entirety of libctf without complexifying anything: in
fact, because we now centralize the knowledge about how to map from type
kind to name hash, it actually simplifies things and lets us throw out
quite a lot of now-unnecessary complexity, from ctf_dtnyname (replaced
by the dynamic half of the name tables), through to ctf_dtnextid (now
that a dictionary's static portion is never referenced if the dictionary
is writable, we can just use ctf_typemax to indicate the maximum type:
dynamic or non-dynamic does not matter, and we no longer need to track
the boundary between the types). You can now ctf_rollback() as far as
you like, even past a ctf_update or for that matter a full writeout; all
the iteration functions work just as well on writable as on read-only
dictionaries; ctf_add_type no longer needs expensive duplicated code to
run over the dynamic types hunting for ones it might be interested in;
and the linker no longer needs a hack to call ctf_update so that calling
ctf_add_type is not impossibly expensive.
There is still a bit more complexity: some new code paths in ctf-types.c
need to know how to extract information from dynamic types. This
complexity will go away again in a few months when libctf acquires a
proper intermediate representation.
You can still call ctf_update if you like (it's public API, after all),
but its only effect now is to set the point to which ctf_discard rolls
back.
Obviously *something* still needs to serialize the CTF file before
writeout, and this job is done by ctf_serialize, which does everything
ctf_update used to except set the counter used by ctf_discard. It is
automatically called by the various functions that do CTF writeout:
nobody else ever needs to call it.
With this in place, forwards that are promoted to non-forwards no longer
crash the link, even if it happens tens of thousands of types later.
v5: fix tabdamage.
libctf/
* ctf-impl.h (ctf_names_t): New.
(ctf_lookup_t) <ctf_hash>: Now a ctf_names_t, not a ctf_hash_t.
(ctf_file_t) <ctf_structs>: Likewise.
<ctf_unions>: Likewise.
<ctf_enums>: Likewise.
<ctf_names>: Likewise.
<ctf_lookups>: Improve comment.
<ctf_ptrtab_len>: New.
<ctf_prov_strtab>: New.
<ctf_str_prov_offset>: New.
<ctf_dtbyname>: Remove, redundant to the names hashes.
<ctf_dtnextid>: Remove, redundant to ctf_typemax.
(ctf_dtdef_t) <dtd_name>: Remove.
<dtd_data>: Note that the ctt_name is now populated.
(ctf_str_atom_t) <csa_offset>: This is now the strtab
offset for internal strings too.
<csa_external_offset>: New, the external strtab offset.
(CTF_INDEX_TO_TYPEPTR): Handle the LCTF_RDWR case.
(ctf_name_table): New declaration.
(ctf_lookup_by_rawname): Likewise.
(ctf_lookup_by_rawhash): Likewise.
(ctf_set_ctl_hashes): Likewise.
(ctf_serialize): Likewise.
(ctf_dtd_insert): Adjust.
(ctf_simple_open_internal): Likewise.
(ctf_bufopen_internal): Likewise.
(ctf_list_empty_p): Likewise.
(ctf_str_remove_ref): Likewise.
(ctf_str_add): Returns uint32_t now.
(ctf_str_add_ref): Likewise.
(ctf_str_add_external): Now returns a boolean (int).
* ctf-string.c (ctf_strraw_explicit): Check the ctf_prov_strtab
for strings in the appropriate range.
(ctf_str_create_atoms): Create the ctf_prov_strtab. Detect OOM
when adding the null string to the new strtab.
(ctf_str_free_atoms): Destroy the ctf_prov_strtab.
(ctf_str_add_ref_internal): Add make_provisional argument. If
make_provisional, populate the offset and fill in the
ctf_prov_strtab accordingly.
(ctf_str_add): Return the offset, not the string.
(ctf_str_add_ref): Likewise.
(ctf_str_add_external): Return a success integer.
(ctf_str_remove_ref): New, remove a single ref.
(ctf_str_count_strtab): Do not count the initial null string's
length or the existence or length of any unreferenced internal
atoms.
(ctf_str_populate_sorttab): Skip atoms with no refs.
(ctf_str_write_strtab): Populate the nullstr earlier. Add one
to the cts_len for the null string, since it is no longer done
in ctf_str_count_strtab. Adjust for csa_external_offset rename.
Populate the csa_offset for both internal and external cases.
Flush the ctf_prov_strtab afterwards, and reset the
ctf_str_prov_offset.
* ctf-create.c (ctf_grow_ptrtab): New.
(ctf_create): Call it. Initialize new fields rather than old
ones. Tell ctf_bufopen_internal that this is a writable dictionary.
Set the ctl hashes and data model.
(ctf_update): Rename to...
(ctf_serialize): ... this. Leave a compatibility function behind.
Tell ctf_simple_open_internal that this is a writable dictionary.
Pass the new fields along from the old dictionary. Drop
ctf_dtnextid and ctf_dtbyname. Use ctf_strraw, not dtd_name.
Do not zero out the DTD's ctt_name.
(ctf_prefixed_name): Rename to...
(ctf_name_table): ... this. No longer return a prefixed name: return
the applicable name table instead.
(ctf_dtd_insert): Use it, and use the right name table. Pass in the
kind we're adding. Migrate away from dtd_name.
(ctf_dtd_delete): Adjust similarly. Remove the ref to the
deleted ctt_name.
(ctf_dtd_lookup_type_by_name): Remove.
(ctf_dynamic_type): Always return NULL on read-only dictionaries.
No longer check ctf_dtnextid: check ctf_typemax instead.
(ctf_snapshot): No longer use ctf_dtnextid: use ctf_typemax instead.
(ctf_rollback): Likewise. No longer fail with ECTF_OVERROLLBACK. Use
ctf_name_table and the right name table, and migrate away from
dtd_name as in ctf_dtd_delete.
(ctf_add_generic): Pass in the kind explicitly and pass it to
ctf_dtd_insert. Use ctf_typemax, not ctf_dtnextid. Migrate away
from dtd_name to using ctf_str_add_ref to populate the ctt_name.
Grow the ptrtab if needed.
(ctf_add_encoded): Pass in the kind.
(ctf_add_slice): Likewise.
(ctf_add_array): Likewise.
(ctf_add_function): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_reftype): Likewise. Initialize the ctf_ptrtab, checking
ctt_name rather than dtd_name.
(ctf_add_struct_sized): Pass in the kind. Use
ctf_lookup_by_rawname, not ctf_hash_lookup_type /
ctf_dtd_lookup_type_by_name.
(ctf_add_union_sized): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_type): Likewise.
(ctf_compress_write): Call ctf_serialize: adjust for ctf_size not
being initialized until after the call.
(ctf_write_mem): Likewise.
(ctf_write): Likewise.
* ctf-archive.c (arc_write_one_ctf): Likewise.
* ctf-lookup.c (ctf_lookup_by_name): Use ctf_lookuup_by_rawhash, not
ctf_hash_lookup_type.
(ctf_lookup_by_id): No longer check the readonly types if the
dictionary is writable.
* ctf-open.c (init_types): Assert that this dictionary is not
writable. Adjust to use the new name hashes, ctf_name_table,
and ctf_ptrtab_len. GNU style fix for the final ptrtab scan.
(ctf_bufopen_internal): New 'writable' parameter. Flip on LCTF_RDWR
if set. Drop out early when dictionary is writable. Split the
ctf_lookups initialization into...
(ctf_set_cth_hashes): ... this new function.
(ctf_simple_open_internal): Adjust. New 'writable' parameter.
(ctf_simple_open): Adjust accordingly.
(ctf_bufopen): Likewise.
(ctf_file_close): Destroy the appropriate name hashes. No longer
destroy ctf_dtbyname, which is gone.
(ctf_getdatasect): Remove spurious "extern".
* ctf-types.c (ctf_lookup_by_rawname): New, look up types in the
specified name table, given a kind.
(ctf_lookup_by_rawhash): Likewise, given a ctf_names_t *.
(ctf_member_iter): Add support for iterating over the
dynamic type list.
(ctf_enum_iter): Likewise.
(ctf_variable_iter): Likewise.
(ctf_type_rvisit): Likewise.
(ctf_member_info): Add support for types in the dynamic type list.
(ctf_enum_name): Likewise.
(ctf_enum_value): Likewise.
(ctf_func_type_info): Likewise.
(ctf_func_type_args): Likewise.
* ctf-link.c (ctf_accumulate_archive_names): No longer call
ctf_update.
(ctf_link_write): Likewise.
(ctf_link_intern_extern_string): Adjust for new
ctf_str_add_external return value.
(ctf_link_add_strtab): Likewise.
* ctf-util.c (ctf_list_empty_p): New.
2019-08-08 00:55:09 +08:00
|
|
|
/* Make sure the ptrtab has enough space for at least one more type.
|
|
|
|
|
|
|
|
We start with 4KiB of ptrtab, enough for a thousand types, then grow it 25%
|
|
|
|
at a time. */
|
|
|
|
|
|
|
|
static int
|
libctf, include, binutils, gdb, ld: rename ctf_file_t to ctf_dict_t
The naming of the ctf_file_t type in libctf is a historical curiosity.
Back in the Solaris days, CTF dictionaries were originally generated as
a separate file and then (sometimes) merged into objects: hence the
datatype was named ctf_file_t, and known as a "CTF file". Nowadays, raw
CTF is essentially never written to a file on its own, and the datatype
changed name to a "CTF dictionary" years ago. So the term "CTF file"
refers to something that is never a file! This is at best confusing.
The type has also historically been known as a 'CTF container", which is
even more confusing now that we have CTF archives which are *also* a
sort of container (they contain CTF dictionaries), but which are never
referred to as containers in the source code.
So fix this by completing the renaming, renaming ctf_file_t to
ctf_dict_t throughout, and renaming those few functions that refer to
CTF files by name (keeping compatibility aliases) to refer to dicts
instead. Old users who still refer to ctf_file_t will see (harmless)
pointer-compatibility warnings at compile time, but the ABI is unchanged
(since C doesn't mangle names, and ctf_file_t was always an opaque type)
and things will still compile fine as long as -Werror is not specified.
All references to CTF containers and CTF files in the source code are
fixed to refer to CTF dicts instead.
Further (smaller) renamings of annoyingly-named functions to come, as
part of the process of souping up queries across whole archives at once
(needed for the function info and data object sections).
binutils/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* objdump.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_ctf): Likewise. Use ctf_dict_close, not ctf_file_close.
* readelf.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_section_as_ctf): Likewise. Use ctf_dict_close, not
ctf_file_close.
gdb/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctfread.c: Change uses of ctf_file_t to ctf_dict_t.
(ctf_fp_info::~ctf_fp_info): Call ctf_dict_close, not ctf_file_close.
include/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-api.h (ctf_file_t): Rename to...
(ctf_dict_t): ... this. Keep ctf_file_t around for compatibility.
(struct ctf_file): Likewise rename to...
(struct ctf_dict): ... this.
(ctf_file_close): Rename to...
(ctf_dict_close): ... this, keeping compatibility function.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this, keeping compatibility function.
All callers adjusted.
* ctf.h: Rename references to ctf_file_t to ctf_dict_t.
(struct ctf_archive) <ctfa_nfiles>: Rename to...
<ctfa_ndicts>: ... this.
ld/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ldlang.c (ctf_output): This is a ctf_dict_t now.
(lang_ctf_errs_warnings): Rename ctf_file_t to ctf_dict_t.
(ldlang_open_ctf): Adjust comment.
(lang_merge_ctf): Use ctf_dict_close, not ctf_file_close.
* ldelfgen.h (ldelf_examine_strtab_for_ctf): Rename ctf_file_t to
ctf_dict_t. Change opaque declaration accordingly.
* ldelfgen.c (ldelf_examine_strtab_for_ctf): Adjust.
* ldemul.h (examine_strtab_for_ctf): Likewise.
(ldemul_examine_strtab_for_ctf): Likewise.
* ldeuml.c (ldemul_examine_strtab_for_ctf): Likewise.
libctf/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h: Rename ctf_file_t to ctf_dict_t: all declarations
adjusted.
(ctf_fileops): Rename to...
(ctf_dictops): ... this.
(ctf_dedup_t) <cd_id_to_file_t>: Rename to...
<cd_id_to_dict_t>: ... this.
(ctf_file_t): Fix outdated comment.
<ctf_fileops>: Rename to...
<ctf_dictops>: ... this.
(struct ctf_archive_internal) <ctfi_file>: Rename to...
<ctfi_dict>: ... this.
* ctf-archive.c: Rename ctf_file_t to ctf_dict_t.
Rename ctf_archive.ctfa_nfiles to ctfa_ndicts.
Rename ctf_file_close to ctf_dict_close. All users adjusted.
* ctf-create.c: Likewise. Refer to CTF dicts, not CTF containers.
(ctf_bundle_t) <ctb_file>: Rename to...
<ctb_dict): ... this.
* ctf-decl.c: Rename ctf_file_t to ctf_dict_t.
* ctf-dedup.c: Likewise. Rename ctf_file_close to
ctf_dict_close. Refer to CTF dicts, not CTF containers.
* ctf-dump.c: Likewise.
* ctf-error.c: Likewise.
* ctf-hash.c: Likewise.
* ctf-inlines.h: Likewise.
* ctf-labels.c: Likewise.
* ctf-link.c: Likewise.
* ctf-lookup.c: Likewise.
* ctf-open-bfd.c: Likewise.
* ctf-string.c: Likewise.
* ctf-subr.c: Likewise.
* ctf-types.c: Likewise.
* ctf-util.c: Likewise.
* ctf-open.c: Likewise.
(ctf_file_close): Rename to...
(ctf_dict_close): ...this.
(ctf_file_close): New trivial wrapper around ctf_dict_close, for
compatibility.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this.
(ctf_parent_file): New trivial wrapper around ctf_parent_dict, for
compatibility.
* libctf.ver: Add ctf_dict_close and ctf_parent_dict.
2020-11-20 21:34:04 +08:00
|
|
|
ctf_grow_ptrtab (ctf_dict_t *fp)
|
libctf: avoid the need to ever use ctf_update
The method of operation of libctf when the dictionary is writable has
before now been that types that are added land in the dynamic type
section, which is a linked list and hash of IDs -> dynamic type
definitions (and, recently a hash of names): the DTDs are a bit of CTF
representing the ctf_type_t and ad hoc C structures representing the
vlen. Historically, libctf was unable to do anything with these types,
not even look them up by ID, let alone by name: if you wanted to do that
say if you were adding a type that depended on one you just added) you
called ctf_update, which serializes all the DTDs into a CTF file and
reopens it, copying its guts over the fp it's called with. The
ctf_updated types are then frozen in amber and unchangeable: all lookups
will return the types in the static portion in preference to the dynamic
portion, and we will refuse to re-add things that already exist in the
static portion (and, of late, in the dynamic portion too). The libctf
machinery remembers the boundary between static and dynamic types and
looks in the right portion for each type. Lots of things still don't
quite work with dynamic types (e.g. getting their size), but enough
works to do a bunch of additions and then a ctf_update, most of the
time.
Except it doesn't, because ctf_add_type finds it necessary to walk the
full dynamic type definition list looking for types with matching names,
so it gets slower and slower with every type you add: fixing this
requires calling ctf_update periodically for no other reason than to
avoid massively slowing things down.
This is all clunky and very slow but kind of works, until you consider
that it is in fact possible and indeed necessary to modify one sort of
type after it has been added: forwards. These are necessarily promoted
to structs, unions or enums, and when they do so *their type ID does not
change*. So all of a sudden we are changing types that already exist in
the static portion. ctf_update gets massively confused by this and
allocates space enough for the forward (with no members), but then emits
the new dynamic type (with all the members) into it. You get an
assertion failure after that, if you're lucky, or a coredump.
So this commit rejigs things a bit and arranges to exclusively use the
dynamic type definitions in writable dictionaries, and the static type
definitions in readable dictionaries: we don't at any time have a mixture
of static and dynamic types, and you don't need to call ctf_update to
make things "appear". The ctf_dtbyname hash I introduced a few months
ago, which maps things like "struct foo" to DTDs, is removed, replaced
instead by a change of type of the four dictionaries which track names.
Rather than just being (unresizable) ctf_hash_t's populated only at
ctf_bufopen time, they are now a ctf_names_t structure, which is a pair
of ctf_hash_t and ctf_dynhash_t, with the ctf_hash_t portion being used
in readonly dictionaries, and the ctf_dynhash_t being used in writable
ones. The decision as to which to use is centralized in the new
functions ctf_lookup_by_rawname (which takes a type kind) and
ctf_lookup_by_rawhash, which it calls (which takes a ctf_names_t *.)
This change lets us switch from using static to dynamic name hashes on
the fly across the entirety of libctf without complexifying anything: in
fact, because we now centralize the knowledge about how to map from type
kind to name hash, it actually simplifies things and lets us throw out
quite a lot of now-unnecessary complexity, from ctf_dtnyname (replaced
by the dynamic half of the name tables), through to ctf_dtnextid (now
that a dictionary's static portion is never referenced if the dictionary
is writable, we can just use ctf_typemax to indicate the maximum type:
dynamic or non-dynamic does not matter, and we no longer need to track
the boundary between the types). You can now ctf_rollback() as far as
you like, even past a ctf_update or for that matter a full writeout; all
the iteration functions work just as well on writable as on read-only
dictionaries; ctf_add_type no longer needs expensive duplicated code to
run over the dynamic types hunting for ones it might be interested in;
and the linker no longer needs a hack to call ctf_update so that calling
ctf_add_type is not impossibly expensive.
There is still a bit more complexity: some new code paths in ctf-types.c
need to know how to extract information from dynamic types. This
complexity will go away again in a few months when libctf acquires a
proper intermediate representation.
You can still call ctf_update if you like (it's public API, after all),
but its only effect now is to set the point to which ctf_discard rolls
back.
Obviously *something* still needs to serialize the CTF file before
writeout, and this job is done by ctf_serialize, which does everything
ctf_update used to except set the counter used by ctf_discard. It is
automatically called by the various functions that do CTF writeout:
nobody else ever needs to call it.
With this in place, forwards that are promoted to non-forwards no longer
crash the link, even if it happens tens of thousands of types later.
v5: fix tabdamage.
libctf/
* ctf-impl.h (ctf_names_t): New.
(ctf_lookup_t) <ctf_hash>: Now a ctf_names_t, not a ctf_hash_t.
(ctf_file_t) <ctf_structs>: Likewise.
<ctf_unions>: Likewise.
<ctf_enums>: Likewise.
<ctf_names>: Likewise.
<ctf_lookups>: Improve comment.
<ctf_ptrtab_len>: New.
<ctf_prov_strtab>: New.
<ctf_str_prov_offset>: New.
<ctf_dtbyname>: Remove, redundant to the names hashes.
<ctf_dtnextid>: Remove, redundant to ctf_typemax.
(ctf_dtdef_t) <dtd_name>: Remove.
<dtd_data>: Note that the ctt_name is now populated.
(ctf_str_atom_t) <csa_offset>: This is now the strtab
offset for internal strings too.
<csa_external_offset>: New, the external strtab offset.
(CTF_INDEX_TO_TYPEPTR): Handle the LCTF_RDWR case.
(ctf_name_table): New declaration.
(ctf_lookup_by_rawname): Likewise.
(ctf_lookup_by_rawhash): Likewise.
(ctf_set_ctl_hashes): Likewise.
(ctf_serialize): Likewise.
(ctf_dtd_insert): Adjust.
(ctf_simple_open_internal): Likewise.
(ctf_bufopen_internal): Likewise.
(ctf_list_empty_p): Likewise.
(ctf_str_remove_ref): Likewise.
(ctf_str_add): Returns uint32_t now.
(ctf_str_add_ref): Likewise.
(ctf_str_add_external): Now returns a boolean (int).
* ctf-string.c (ctf_strraw_explicit): Check the ctf_prov_strtab
for strings in the appropriate range.
(ctf_str_create_atoms): Create the ctf_prov_strtab. Detect OOM
when adding the null string to the new strtab.
(ctf_str_free_atoms): Destroy the ctf_prov_strtab.
(ctf_str_add_ref_internal): Add make_provisional argument. If
make_provisional, populate the offset and fill in the
ctf_prov_strtab accordingly.
(ctf_str_add): Return the offset, not the string.
(ctf_str_add_ref): Likewise.
(ctf_str_add_external): Return a success integer.
(ctf_str_remove_ref): New, remove a single ref.
(ctf_str_count_strtab): Do not count the initial null string's
length or the existence or length of any unreferenced internal
atoms.
(ctf_str_populate_sorttab): Skip atoms with no refs.
(ctf_str_write_strtab): Populate the nullstr earlier. Add one
to the cts_len for the null string, since it is no longer done
in ctf_str_count_strtab. Adjust for csa_external_offset rename.
Populate the csa_offset for both internal and external cases.
Flush the ctf_prov_strtab afterwards, and reset the
ctf_str_prov_offset.
* ctf-create.c (ctf_grow_ptrtab): New.
(ctf_create): Call it. Initialize new fields rather than old
ones. Tell ctf_bufopen_internal that this is a writable dictionary.
Set the ctl hashes and data model.
(ctf_update): Rename to...
(ctf_serialize): ... this. Leave a compatibility function behind.
Tell ctf_simple_open_internal that this is a writable dictionary.
Pass the new fields along from the old dictionary. Drop
ctf_dtnextid and ctf_dtbyname. Use ctf_strraw, not dtd_name.
Do not zero out the DTD's ctt_name.
(ctf_prefixed_name): Rename to...
(ctf_name_table): ... this. No longer return a prefixed name: return
the applicable name table instead.
(ctf_dtd_insert): Use it, and use the right name table. Pass in the
kind we're adding. Migrate away from dtd_name.
(ctf_dtd_delete): Adjust similarly. Remove the ref to the
deleted ctt_name.
(ctf_dtd_lookup_type_by_name): Remove.
(ctf_dynamic_type): Always return NULL on read-only dictionaries.
No longer check ctf_dtnextid: check ctf_typemax instead.
(ctf_snapshot): No longer use ctf_dtnextid: use ctf_typemax instead.
(ctf_rollback): Likewise. No longer fail with ECTF_OVERROLLBACK. Use
ctf_name_table and the right name table, and migrate away from
dtd_name as in ctf_dtd_delete.
(ctf_add_generic): Pass in the kind explicitly and pass it to
ctf_dtd_insert. Use ctf_typemax, not ctf_dtnextid. Migrate away
from dtd_name to using ctf_str_add_ref to populate the ctt_name.
Grow the ptrtab if needed.
(ctf_add_encoded): Pass in the kind.
(ctf_add_slice): Likewise.
(ctf_add_array): Likewise.
(ctf_add_function): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_reftype): Likewise. Initialize the ctf_ptrtab, checking
ctt_name rather than dtd_name.
(ctf_add_struct_sized): Pass in the kind. Use
ctf_lookup_by_rawname, not ctf_hash_lookup_type /
ctf_dtd_lookup_type_by_name.
(ctf_add_union_sized): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_type): Likewise.
(ctf_compress_write): Call ctf_serialize: adjust for ctf_size not
being initialized until after the call.
(ctf_write_mem): Likewise.
(ctf_write): Likewise.
* ctf-archive.c (arc_write_one_ctf): Likewise.
* ctf-lookup.c (ctf_lookup_by_name): Use ctf_lookuup_by_rawhash, not
ctf_hash_lookup_type.
(ctf_lookup_by_id): No longer check the readonly types if the
dictionary is writable.
* ctf-open.c (init_types): Assert that this dictionary is not
writable. Adjust to use the new name hashes, ctf_name_table,
and ctf_ptrtab_len. GNU style fix for the final ptrtab scan.
(ctf_bufopen_internal): New 'writable' parameter. Flip on LCTF_RDWR
if set. Drop out early when dictionary is writable. Split the
ctf_lookups initialization into...
(ctf_set_cth_hashes): ... this new function.
(ctf_simple_open_internal): Adjust. New 'writable' parameter.
(ctf_simple_open): Adjust accordingly.
(ctf_bufopen): Likewise.
(ctf_file_close): Destroy the appropriate name hashes. No longer
destroy ctf_dtbyname, which is gone.
(ctf_getdatasect): Remove spurious "extern".
* ctf-types.c (ctf_lookup_by_rawname): New, look up types in the
specified name table, given a kind.
(ctf_lookup_by_rawhash): Likewise, given a ctf_names_t *.
(ctf_member_iter): Add support for iterating over the
dynamic type list.
(ctf_enum_iter): Likewise.
(ctf_variable_iter): Likewise.
(ctf_type_rvisit): Likewise.
(ctf_member_info): Add support for types in the dynamic type list.
(ctf_enum_name): Likewise.
(ctf_enum_value): Likewise.
(ctf_func_type_info): Likewise.
(ctf_func_type_args): Likewise.
* ctf-link.c (ctf_accumulate_archive_names): No longer call
ctf_update.
(ctf_link_write): Likewise.
(ctf_link_intern_extern_string): Adjust for new
ctf_str_add_external return value.
(ctf_link_add_strtab): Likewise.
* ctf-util.c (ctf_list_empty_p): New.
2019-08-08 00:55:09 +08:00
|
|
|
{
|
|
|
|
size_t new_ptrtab_len = fp->ctf_ptrtab_len;
|
|
|
|
|
|
|
|
/* We allocate one more ptrtab entry than we need, for the initial zero,
|
libctf: support addition of types to dicts read via ctf_open()
libctf has long declared deserialized dictionaries (out of files or ELF
sections or memory buffers or whatever) to be read-only: back in the
furthest prehistory this was not the case, in that you could add a
few sorts of type to such dicts, but attempting to do so often caused
horrible memory corruption, so I banned the lot.
But it turns out real consumers want it (notably DTrace, which
synthesises pointers to types that don't have them and adds them to the
ctf_open()ed dicts if it needs them). Let's bring it back again, but
without the memory corruption and without the massive code duplication
required in days of yore to distinguish between static and dynamic
types: the representation of both types has been identical for a few
years, with the only difference being that types as a whole are stored in
a big buffer for types read in via ctf_open and per-type hashtables for
newly-added types.
So we discard the internally-visible concept of "readonly dictionaries"
in favour of declaring the *range of types* that were already present
when the dict was read in to be read-only: you can't modify them (say,
by adding members to them if they're structs, or calling ctf_set_array
on them), but you can add more types and point to them. (The API
remains the same, with calls sometimes returning ECTF_RDONLY, but now
they do so less often.)
This is a fairly invasive change, mostly because code written since the
ban was introduced didn't take the possibility of a static/dynamic split
into account. Some of these irregularities were hard to define as
anything but bugs.
Notably:
- The symbol handling was assuming that symbols only needed to be
looked for in dynamic hashtabs or static linker-laid-out indexed/
nonindexed layouts, but now we want to check both in case people
added more symbols to a dict they opened.
- The code that handles type additions wasn't checking to see if types
with the same name existed *at all* (so you could do
ctf_add_typedef (fp, "foo", bar) repeatedly without error). This
seems reasonable for types you just added, but we probably *do* want
to ban addition of types with names that override names we already
used in the ctf_open()ed portion, since that would probably corrupt
existing type relationships. (Doing things this way also avoids
causing new errors for any existing code that was doing this sort of
thing.)
- ctf_lookup_variable entirely failed to work for variables just added
by ctf_add_variable: you had to write the dict out and read it back
in again before they appeared.
- The symbol handling remembered what symbols you looked up but didn't
remember their types, so you could look up an object symbol and then
find it popping up when you asked for function symbols, which seems
less than ideal. Since we had to rejig things enough to be able to
distinguish function and object symbols internally anyway (in order
to give suitable errors if you try to add a symbol with a name that
already existed in the ctf_open()ed dict), this bug suddenly became
more visible and was easily fixed.
We do not (yet) support writing out dicts that have been previously read
in via ctf_open() or other deserializer (you can look things up in them,
but not write them out a second time). This never worked, so there is
no incompatibility; if it is needed at a later date, the serializer is a
little bit closer to having it work now (the only table we don't deal
with is the types table, and that's because the upcoming CTFv4 changes
are likely to make major changes to the way that table is represented
internally, so adding more code that depends on its current form seems
like a bad idea).
There is a new testcase that tests much of this, in particular that
modification of existing types is still banned and that you can add new
ones and chase them without error.
libctf/
* ctf-impl.h (struct ctf_dict.ctf_symhash): Split into...
(ctf_dict.ctf_symhash_func): ... this and...
(ctf_dict.ctf_symhash_objt): ... this.
(ctf_dict.ctf_stypes): New, counts static types.
(LCTF_INDEX_TO_TYPEPTR): Use it instead of CTF_RDWR.
(LCTF_RDWR): Deleted.
(LCTF_DIRTY): Renumbered.
(LCTF_LINKING): Likewise.
(ctf_lookup_variable_here): New.
(ctf_lookup_by_sym_or_name): Likewise.
(ctf_symbol_next_static): Likewise.
(ctf_add_variable_forced): Likewise.
(ctf_add_funcobjt_sym_forced): Likewise.
(ctf_simple_open_internal): Adjust.
(ctf_bufopen_internal): Likewise.
* ctf-create.c (ctf_grow_ptrtab): Adjust a lot to start with.
(ctf_create): Migrate a bunch of initializations into bufopen.
Force recreation of name tables. Do not forcibly override the
model, let ctf_bufopen do it.
(ctf_static_type): New.
(ctf_update): Drop LCTF_RDWR check.
(ctf_dynamic_type): Likewise.
(ctf_add_function): Likewise.
(ctf_add_type_internal): Likewise.
(ctf_rollback): Check ctf_stypes, not LCTF_RDWR.
(ctf_set_array): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_enumerator): Likewise (only on the target dict).
(ctf_add_member_offset): Likewise.
(ctf_add_generic): Drop LCTF_RDWR check. Ban addition of types
with colliding names.
(ctf_add_forward): Note safety under the new rules.
(ctf_add_variable): Split all but the existence check into...
(ctf_add_variable_forced): ... this new function.
(ctf_add_funcobjt_sym): Likewise...
(ctf_add_funcobjt_sym_forced): ... for this new function.
* ctf-link.c (ctf_link_add_linker_symbol): Ban calling on dicts
with any stypes.
(ctf_link_add_strtab): Likewise.
(ctf_link_shuffle_syms): Likewise.
(ctf_link_intern_extern_string): Note pre-existing prohibition.
* ctf-lookup.c (ctf_lookup_by_id): Drop LCTF_RDWR check.
(ctf_lookup_variable): Split out looking in a dict but not
its parent into...
(ctf_lookup_variable_here): ... this new function.
(ctf_lookup_symbol_idx): Track whether looking up a function or
object: cache them separately.
(ctf_symbol_next): Split out looking in non-dynamic symtypetab
entries to...
(ctf_symbol_next_static): ... this new function. Don't get confused
by the simultaneous presence of static and dynamic symtypetab entries.
(ctf_try_lookup_indexed): Don't waste time looking up symbols by
index before there can be any idea how symbols are numbered.
(ctf_lookup_by_sym_or_name): Distinguish between function and
data object lookups. Drop LCTF_RDWR.
(ctf_lookup_by_symbol): Adjust.
(ctf_lookup_by_symbol_name): Likewise.
* ctf-open.c (init_types): Rename to...
(init_static_types): ... this. Drop LCTF_RDWR. Populate ctf_stypes.
(ctf_simple_open): Drop writable arg.
(ctf_simple_open_internal): Likewise.
(ctf_bufopen): Likewise.
(ctf_bufopen_internal): Populate fields only used for writable dicts.
Drop LCTF_RDWR.
(ctf_dict_close): Cater for symhash cache split.
* ctf-serialize.c (ctf_serialize): Use ctf_stypes, not LCTF_RDWR.
* ctf-types.c (ctf_variable_next): Drop LCTF_RDWR.
* testsuite/libctf-lookup/add-to-opened*: New test.
2023-12-20 00:58:19 +08:00
|
|
|
plus one because the caller will probably allocate a new type.
|
libctf: avoid the need to ever use ctf_update
The method of operation of libctf when the dictionary is writable has
before now been that types that are added land in the dynamic type
section, which is a linked list and hash of IDs -> dynamic type
definitions (and, recently a hash of names): the DTDs are a bit of CTF
representing the ctf_type_t and ad hoc C structures representing the
vlen. Historically, libctf was unable to do anything with these types,
not even look them up by ID, let alone by name: if you wanted to do that
say if you were adding a type that depended on one you just added) you
called ctf_update, which serializes all the DTDs into a CTF file and
reopens it, copying its guts over the fp it's called with. The
ctf_updated types are then frozen in amber and unchangeable: all lookups
will return the types in the static portion in preference to the dynamic
portion, and we will refuse to re-add things that already exist in the
static portion (and, of late, in the dynamic portion too). The libctf
machinery remembers the boundary between static and dynamic types and
looks in the right portion for each type. Lots of things still don't
quite work with dynamic types (e.g. getting their size), but enough
works to do a bunch of additions and then a ctf_update, most of the
time.
Except it doesn't, because ctf_add_type finds it necessary to walk the
full dynamic type definition list looking for types with matching names,
so it gets slower and slower with every type you add: fixing this
requires calling ctf_update periodically for no other reason than to
avoid massively slowing things down.
This is all clunky and very slow but kind of works, until you consider
that it is in fact possible and indeed necessary to modify one sort of
type after it has been added: forwards. These are necessarily promoted
to structs, unions or enums, and when they do so *their type ID does not
change*. So all of a sudden we are changing types that already exist in
the static portion. ctf_update gets massively confused by this and
allocates space enough for the forward (with no members), but then emits
the new dynamic type (with all the members) into it. You get an
assertion failure after that, if you're lucky, or a coredump.
So this commit rejigs things a bit and arranges to exclusively use the
dynamic type definitions in writable dictionaries, and the static type
definitions in readable dictionaries: we don't at any time have a mixture
of static and dynamic types, and you don't need to call ctf_update to
make things "appear". The ctf_dtbyname hash I introduced a few months
ago, which maps things like "struct foo" to DTDs, is removed, replaced
instead by a change of type of the four dictionaries which track names.
Rather than just being (unresizable) ctf_hash_t's populated only at
ctf_bufopen time, they are now a ctf_names_t structure, which is a pair
of ctf_hash_t and ctf_dynhash_t, with the ctf_hash_t portion being used
in readonly dictionaries, and the ctf_dynhash_t being used in writable
ones. The decision as to which to use is centralized in the new
functions ctf_lookup_by_rawname (which takes a type kind) and
ctf_lookup_by_rawhash, which it calls (which takes a ctf_names_t *.)
This change lets us switch from using static to dynamic name hashes on
the fly across the entirety of libctf without complexifying anything: in
fact, because we now centralize the knowledge about how to map from type
kind to name hash, it actually simplifies things and lets us throw out
quite a lot of now-unnecessary complexity, from ctf_dtnyname (replaced
by the dynamic half of the name tables), through to ctf_dtnextid (now
that a dictionary's static portion is never referenced if the dictionary
is writable, we can just use ctf_typemax to indicate the maximum type:
dynamic or non-dynamic does not matter, and we no longer need to track
the boundary between the types). You can now ctf_rollback() as far as
you like, even past a ctf_update or for that matter a full writeout; all
the iteration functions work just as well on writable as on read-only
dictionaries; ctf_add_type no longer needs expensive duplicated code to
run over the dynamic types hunting for ones it might be interested in;
and the linker no longer needs a hack to call ctf_update so that calling
ctf_add_type is not impossibly expensive.
There is still a bit more complexity: some new code paths in ctf-types.c
need to know how to extract information from dynamic types. This
complexity will go away again in a few months when libctf acquires a
proper intermediate representation.
You can still call ctf_update if you like (it's public API, after all),
but its only effect now is to set the point to which ctf_discard rolls
back.
Obviously *something* still needs to serialize the CTF file before
writeout, and this job is done by ctf_serialize, which does everything
ctf_update used to except set the counter used by ctf_discard. It is
automatically called by the various functions that do CTF writeout:
nobody else ever needs to call it.
With this in place, forwards that are promoted to non-forwards no longer
crash the link, even if it happens tens of thousands of types later.
v5: fix tabdamage.
libctf/
* ctf-impl.h (ctf_names_t): New.
(ctf_lookup_t) <ctf_hash>: Now a ctf_names_t, not a ctf_hash_t.
(ctf_file_t) <ctf_structs>: Likewise.
<ctf_unions>: Likewise.
<ctf_enums>: Likewise.
<ctf_names>: Likewise.
<ctf_lookups>: Improve comment.
<ctf_ptrtab_len>: New.
<ctf_prov_strtab>: New.
<ctf_str_prov_offset>: New.
<ctf_dtbyname>: Remove, redundant to the names hashes.
<ctf_dtnextid>: Remove, redundant to ctf_typemax.
(ctf_dtdef_t) <dtd_name>: Remove.
<dtd_data>: Note that the ctt_name is now populated.
(ctf_str_atom_t) <csa_offset>: This is now the strtab
offset for internal strings too.
<csa_external_offset>: New, the external strtab offset.
(CTF_INDEX_TO_TYPEPTR): Handle the LCTF_RDWR case.
(ctf_name_table): New declaration.
(ctf_lookup_by_rawname): Likewise.
(ctf_lookup_by_rawhash): Likewise.
(ctf_set_ctl_hashes): Likewise.
(ctf_serialize): Likewise.
(ctf_dtd_insert): Adjust.
(ctf_simple_open_internal): Likewise.
(ctf_bufopen_internal): Likewise.
(ctf_list_empty_p): Likewise.
(ctf_str_remove_ref): Likewise.
(ctf_str_add): Returns uint32_t now.
(ctf_str_add_ref): Likewise.
(ctf_str_add_external): Now returns a boolean (int).
* ctf-string.c (ctf_strraw_explicit): Check the ctf_prov_strtab
for strings in the appropriate range.
(ctf_str_create_atoms): Create the ctf_prov_strtab. Detect OOM
when adding the null string to the new strtab.
(ctf_str_free_atoms): Destroy the ctf_prov_strtab.
(ctf_str_add_ref_internal): Add make_provisional argument. If
make_provisional, populate the offset and fill in the
ctf_prov_strtab accordingly.
(ctf_str_add): Return the offset, not the string.
(ctf_str_add_ref): Likewise.
(ctf_str_add_external): Return a success integer.
(ctf_str_remove_ref): New, remove a single ref.
(ctf_str_count_strtab): Do not count the initial null string's
length or the existence or length of any unreferenced internal
atoms.
(ctf_str_populate_sorttab): Skip atoms with no refs.
(ctf_str_write_strtab): Populate the nullstr earlier. Add one
to the cts_len for the null string, since it is no longer done
in ctf_str_count_strtab. Adjust for csa_external_offset rename.
Populate the csa_offset for both internal and external cases.
Flush the ctf_prov_strtab afterwards, and reset the
ctf_str_prov_offset.
* ctf-create.c (ctf_grow_ptrtab): New.
(ctf_create): Call it. Initialize new fields rather than old
ones. Tell ctf_bufopen_internal that this is a writable dictionary.
Set the ctl hashes and data model.
(ctf_update): Rename to...
(ctf_serialize): ... this. Leave a compatibility function behind.
Tell ctf_simple_open_internal that this is a writable dictionary.
Pass the new fields along from the old dictionary. Drop
ctf_dtnextid and ctf_dtbyname. Use ctf_strraw, not dtd_name.
Do not zero out the DTD's ctt_name.
(ctf_prefixed_name): Rename to...
(ctf_name_table): ... this. No longer return a prefixed name: return
the applicable name table instead.
(ctf_dtd_insert): Use it, and use the right name table. Pass in the
kind we're adding. Migrate away from dtd_name.
(ctf_dtd_delete): Adjust similarly. Remove the ref to the
deleted ctt_name.
(ctf_dtd_lookup_type_by_name): Remove.
(ctf_dynamic_type): Always return NULL on read-only dictionaries.
No longer check ctf_dtnextid: check ctf_typemax instead.
(ctf_snapshot): No longer use ctf_dtnextid: use ctf_typemax instead.
(ctf_rollback): Likewise. No longer fail with ECTF_OVERROLLBACK. Use
ctf_name_table and the right name table, and migrate away from
dtd_name as in ctf_dtd_delete.
(ctf_add_generic): Pass in the kind explicitly and pass it to
ctf_dtd_insert. Use ctf_typemax, not ctf_dtnextid. Migrate away
from dtd_name to using ctf_str_add_ref to populate the ctt_name.
Grow the ptrtab if needed.
(ctf_add_encoded): Pass in the kind.
(ctf_add_slice): Likewise.
(ctf_add_array): Likewise.
(ctf_add_function): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_reftype): Likewise. Initialize the ctf_ptrtab, checking
ctt_name rather than dtd_name.
(ctf_add_struct_sized): Pass in the kind. Use
ctf_lookup_by_rawname, not ctf_hash_lookup_type /
ctf_dtd_lookup_type_by_name.
(ctf_add_union_sized): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_type): Likewise.
(ctf_compress_write): Call ctf_serialize: adjust for ctf_size not
being initialized until after the call.
(ctf_write_mem): Likewise.
(ctf_write): Likewise.
* ctf-archive.c (arc_write_one_ctf): Likewise.
* ctf-lookup.c (ctf_lookup_by_name): Use ctf_lookuup_by_rawhash, not
ctf_hash_lookup_type.
(ctf_lookup_by_id): No longer check the readonly types if the
dictionary is writable.
* ctf-open.c (init_types): Assert that this dictionary is not
writable. Adjust to use the new name hashes, ctf_name_table,
and ctf_ptrtab_len. GNU style fix for the final ptrtab scan.
(ctf_bufopen_internal): New 'writable' parameter. Flip on LCTF_RDWR
if set. Drop out early when dictionary is writable. Split the
ctf_lookups initialization into...
(ctf_set_cth_hashes): ... this new function.
(ctf_simple_open_internal): Adjust. New 'writable' parameter.
(ctf_simple_open): Adjust accordingly.
(ctf_bufopen): Likewise.
(ctf_file_close): Destroy the appropriate name hashes. No longer
destroy ctf_dtbyname, which is gone.
(ctf_getdatasect): Remove spurious "extern".
* ctf-types.c (ctf_lookup_by_rawname): New, look up types in the
specified name table, given a kind.
(ctf_lookup_by_rawhash): Likewise, given a ctf_names_t *.
(ctf_member_iter): Add support for iterating over the
dynamic type list.
(ctf_enum_iter): Likewise.
(ctf_variable_iter): Likewise.
(ctf_type_rvisit): Likewise.
(ctf_member_info): Add support for types in the dynamic type list.
(ctf_enum_name): Likewise.
(ctf_enum_value): Likewise.
(ctf_func_type_info): Likewise.
(ctf_func_type_args): Likewise.
* ctf-link.c (ctf_accumulate_archive_names): No longer call
ctf_update.
(ctf_link_write): Likewise.
(ctf_link_intern_extern_string): Adjust for new
ctf_str_add_external return value.
(ctf_link_add_strtab): Likewise.
* ctf-util.c (ctf_list_empty_p): New.
2019-08-08 00:55:09 +08:00
|
|
|
|
libctf: support addition of types to dicts read via ctf_open()
libctf has long declared deserialized dictionaries (out of files or ELF
sections or memory buffers or whatever) to be read-only: back in the
furthest prehistory this was not the case, in that you could add a
few sorts of type to such dicts, but attempting to do so often caused
horrible memory corruption, so I banned the lot.
But it turns out real consumers want it (notably DTrace, which
synthesises pointers to types that don't have them and adds them to the
ctf_open()ed dicts if it needs them). Let's bring it back again, but
without the memory corruption and without the massive code duplication
required in days of yore to distinguish between static and dynamic
types: the representation of both types has been identical for a few
years, with the only difference being that types as a whole are stored in
a big buffer for types read in via ctf_open and per-type hashtables for
newly-added types.
So we discard the internally-visible concept of "readonly dictionaries"
in favour of declaring the *range of types* that were already present
when the dict was read in to be read-only: you can't modify them (say,
by adding members to them if they're structs, or calling ctf_set_array
on them), but you can add more types and point to them. (The API
remains the same, with calls sometimes returning ECTF_RDONLY, but now
they do so less often.)
This is a fairly invasive change, mostly because code written since the
ban was introduced didn't take the possibility of a static/dynamic split
into account. Some of these irregularities were hard to define as
anything but bugs.
Notably:
- The symbol handling was assuming that symbols only needed to be
looked for in dynamic hashtabs or static linker-laid-out indexed/
nonindexed layouts, but now we want to check both in case people
added more symbols to a dict they opened.
- The code that handles type additions wasn't checking to see if types
with the same name existed *at all* (so you could do
ctf_add_typedef (fp, "foo", bar) repeatedly without error). This
seems reasonable for types you just added, but we probably *do* want
to ban addition of types with names that override names we already
used in the ctf_open()ed portion, since that would probably corrupt
existing type relationships. (Doing things this way also avoids
causing new errors for any existing code that was doing this sort of
thing.)
- ctf_lookup_variable entirely failed to work for variables just added
by ctf_add_variable: you had to write the dict out and read it back
in again before they appeared.
- The symbol handling remembered what symbols you looked up but didn't
remember their types, so you could look up an object symbol and then
find it popping up when you asked for function symbols, which seems
less than ideal. Since we had to rejig things enough to be able to
distinguish function and object symbols internally anyway (in order
to give suitable errors if you try to add a symbol with a name that
already existed in the ctf_open()ed dict), this bug suddenly became
more visible and was easily fixed.
We do not (yet) support writing out dicts that have been previously read
in via ctf_open() or other deserializer (you can look things up in them,
but not write them out a second time). This never worked, so there is
no incompatibility; if it is needed at a later date, the serializer is a
little bit closer to having it work now (the only table we don't deal
with is the types table, and that's because the upcoming CTFv4 changes
are likely to make major changes to the way that table is represented
internally, so adding more code that depends on its current form seems
like a bad idea).
There is a new testcase that tests much of this, in particular that
modification of existing types is still banned and that you can add new
ones and chase them without error.
libctf/
* ctf-impl.h (struct ctf_dict.ctf_symhash): Split into...
(ctf_dict.ctf_symhash_func): ... this and...
(ctf_dict.ctf_symhash_objt): ... this.
(ctf_dict.ctf_stypes): New, counts static types.
(LCTF_INDEX_TO_TYPEPTR): Use it instead of CTF_RDWR.
(LCTF_RDWR): Deleted.
(LCTF_DIRTY): Renumbered.
(LCTF_LINKING): Likewise.
(ctf_lookup_variable_here): New.
(ctf_lookup_by_sym_or_name): Likewise.
(ctf_symbol_next_static): Likewise.
(ctf_add_variable_forced): Likewise.
(ctf_add_funcobjt_sym_forced): Likewise.
(ctf_simple_open_internal): Adjust.
(ctf_bufopen_internal): Likewise.
* ctf-create.c (ctf_grow_ptrtab): Adjust a lot to start with.
(ctf_create): Migrate a bunch of initializations into bufopen.
Force recreation of name tables. Do not forcibly override the
model, let ctf_bufopen do it.
(ctf_static_type): New.
(ctf_update): Drop LCTF_RDWR check.
(ctf_dynamic_type): Likewise.
(ctf_add_function): Likewise.
(ctf_add_type_internal): Likewise.
(ctf_rollback): Check ctf_stypes, not LCTF_RDWR.
(ctf_set_array): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_enumerator): Likewise (only on the target dict).
(ctf_add_member_offset): Likewise.
(ctf_add_generic): Drop LCTF_RDWR check. Ban addition of types
with colliding names.
(ctf_add_forward): Note safety under the new rules.
(ctf_add_variable): Split all but the existence check into...
(ctf_add_variable_forced): ... this new function.
(ctf_add_funcobjt_sym): Likewise...
(ctf_add_funcobjt_sym_forced): ... for this new function.
* ctf-link.c (ctf_link_add_linker_symbol): Ban calling on dicts
with any stypes.
(ctf_link_add_strtab): Likewise.
(ctf_link_shuffle_syms): Likewise.
(ctf_link_intern_extern_string): Note pre-existing prohibition.
* ctf-lookup.c (ctf_lookup_by_id): Drop LCTF_RDWR check.
(ctf_lookup_variable): Split out looking in a dict but not
its parent into...
(ctf_lookup_variable_here): ... this new function.
(ctf_lookup_symbol_idx): Track whether looking up a function or
object: cache them separately.
(ctf_symbol_next): Split out looking in non-dynamic symtypetab
entries to...
(ctf_symbol_next_static): ... this new function. Don't get confused
by the simultaneous presence of static and dynamic symtypetab entries.
(ctf_try_lookup_indexed): Don't waste time looking up symbols by
index before there can be any idea how symbols are numbered.
(ctf_lookup_by_sym_or_name): Distinguish between function and
data object lookups. Drop LCTF_RDWR.
(ctf_lookup_by_symbol): Adjust.
(ctf_lookup_by_symbol_name): Likewise.
* ctf-open.c (init_types): Rename to...
(init_static_types): ... this. Drop LCTF_RDWR. Populate ctf_stypes.
(ctf_simple_open): Drop writable arg.
(ctf_simple_open_internal): Likewise.
(ctf_bufopen): Likewise.
(ctf_bufopen_internal): Populate fields only used for writable dicts.
Drop LCTF_RDWR.
(ctf_dict_close): Cater for symhash cache split.
* ctf-serialize.c (ctf_serialize): Use ctf_stypes, not LCTF_RDWR.
* ctf-types.c (ctf_variable_next): Drop LCTF_RDWR.
* testsuite/libctf-lookup/add-to-opened*: New test.
2023-12-20 00:58:19 +08:00
|
|
|
Equally, if the ptrtab is small -- perhaps due to ctf_open of a small
|
|
|
|
dict -- boost it by quite a lot at first, so we don't need to keep
|
|
|
|
realloc()ing. */
|
|
|
|
|
|
|
|
if (fp->ctf_ptrtab == NULL || fp->ctf_ptrtab_len < 1024)
|
libctf: avoid the need to ever use ctf_update
The method of operation of libctf when the dictionary is writable has
before now been that types that are added land in the dynamic type
section, which is a linked list and hash of IDs -> dynamic type
definitions (and, recently a hash of names): the DTDs are a bit of CTF
representing the ctf_type_t and ad hoc C structures representing the
vlen. Historically, libctf was unable to do anything with these types,
not even look them up by ID, let alone by name: if you wanted to do that
say if you were adding a type that depended on one you just added) you
called ctf_update, which serializes all the DTDs into a CTF file and
reopens it, copying its guts over the fp it's called with. The
ctf_updated types are then frozen in amber and unchangeable: all lookups
will return the types in the static portion in preference to the dynamic
portion, and we will refuse to re-add things that already exist in the
static portion (and, of late, in the dynamic portion too). The libctf
machinery remembers the boundary between static and dynamic types and
looks in the right portion for each type. Lots of things still don't
quite work with dynamic types (e.g. getting their size), but enough
works to do a bunch of additions and then a ctf_update, most of the
time.
Except it doesn't, because ctf_add_type finds it necessary to walk the
full dynamic type definition list looking for types with matching names,
so it gets slower and slower with every type you add: fixing this
requires calling ctf_update periodically for no other reason than to
avoid massively slowing things down.
This is all clunky and very slow but kind of works, until you consider
that it is in fact possible and indeed necessary to modify one sort of
type after it has been added: forwards. These are necessarily promoted
to structs, unions or enums, and when they do so *their type ID does not
change*. So all of a sudden we are changing types that already exist in
the static portion. ctf_update gets massively confused by this and
allocates space enough for the forward (with no members), but then emits
the new dynamic type (with all the members) into it. You get an
assertion failure after that, if you're lucky, or a coredump.
So this commit rejigs things a bit and arranges to exclusively use the
dynamic type definitions in writable dictionaries, and the static type
definitions in readable dictionaries: we don't at any time have a mixture
of static and dynamic types, and you don't need to call ctf_update to
make things "appear". The ctf_dtbyname hash I introduced a few months
ago, which maps things like "struct foo" to DTDs, is removed, replaced
instead by a change of type of the four dictionaries which track names.
Rather than just being (unresizable) ctf_hash_t's populated only at
ctf_bufopen time, they are now a ctf_names_t structure, which is a pair
of ctf_hash_t and ctf_dynhash_t, with the ctf_hash_t portion being used
in readonly dictionaries, and the ctf_dynhash_t being used in writable
ones. The decision as to which to use is centralized in the new
functions ctf_lookup_by_rawname (which takes a type kind) and
ctf_lookup_by_rawhash, which it calls (which takes a ctf_names_t *.)
This change lets us switch from using static to dynamic name hashes on
the fly across the entirety of libctf without complexifying anything: in
fact, because we now centralize the knowledge about how to map from type
kind to name hash, it actually simplifies things and lets us throw out
quite a lot of now-unnecessary complexity, from ctf_dtnyname (replaced
by the dynamic half of the name tables), through to ctf_dtnextid (now
that a dictionary's static portion is never referenced if the dictionary
is writable, we can just use ctf_typemax to indicate the maximum type:
dynamic or non-dynamic does not matter, and we no longer need to track
the boundary between the types). You can now ctf_rollback() as far as
you like, even past a ctf_update or for that matter a full writeout; all
the iteration functions work just as well on writable as on read-only
dictionaries; ctf_add_type no longer needs expensive duplicated code to
run over the dynamic types hunting for ones it might be interested in;
and the linker no longer needs a hack to call ctf_update so that calling
ctf_add_type is not impossibly expensive.
There is still a bit more complexity: some new code paths in ctf-types.c
need to know how to extract information from dynamic types. This
complexity will go away again in a few months when libctf acquires a
proper intermediate representation.
You can still call ctf_update if you like (it's public API, after all),
but its only effect now is to set the point to which ctf_discard rolls
back.
Obviously *something* still needs to serialize the CTF file before
writeout, and this job is done by ctf_serialize, which does everything
ctf_update used to except set the counter used by ctf_discard. It is
automatically called by the various functions that do CTF writeout:
nobody else ever needs to call it.
With this in place, forwards that are promoted to non-forwards no longer
crash the link, even if it happens tens of thousands of types later.
v5: fix tabdamage.
libctf/
* ctf-impl.h (ctf_names_t): New.
(ctf_lookup_t) <ctf_hash>: Now a ctf_names_t, not a ctf_hash_t.
(ctf_file_t) <ctf_structs>: Likewise.
<ctf_unions>: Likewise.
<ctf_enums>: Likewise.
<ctf_names>: Likewise.
<ctf_lookups>: Improve comment.
<ctf_ptrtab_len>: New.
<ctf_prov_strtab>: New.
<ctf_str_prov_offset>: New.
<ctf_dtbyname>: Remove, redundant to the names hashes.
<ctf_dtnextid>: Remove, redundant to ctf_typemax.
(ctf_dtdef_t) <dtd_name>: Remove.
<dtd_data>: Note that the ctt_name is now populated.
(ctf_str_atom_t) <csa_offset>: This is now the strtab
offset for internal strings too.
<csa_external_offset>: New, the external strtab offset.
(CTF_INDEX_TO_TYPEPTR): Handle the LCTF_RDWR case.
(ctf_name_table): New declaration.
(ctf_lookup_by_rawname): Likewise.
(ctf_lookup_by_rawhash): Likewise.
(ctf_set_ctl_hashes): Likewise.
(ctf_serialize): Likewise.
(ctf_dtd_insert): Adjust.
(ctf_simple_open_internal): Likewise.
(ctf_bufopen_internal): Likewise.
(ctf_list_empty_p): Likewise.
(ctf_str_remove_ref): Likewise.
(ctf_str_add): Returns uint32_t now.
(ctf_str_add_ref): Likewise.
(ctf_str_add_external): Now returns a boolean (int).
* ctf-string.c (ctf_strraw_explicit): Check the ctf_prov_strtab
for strings in the appropriate range.
(ctf_str_create_atoms): Create the ctf_prov_strtab. Detect OOM
when adding the null string to the new strtab.
(ctf_str_free_atoms): Destroy the ctf_prov_strtab.
(ctf_str_add_ref_internal): Add make_provisional argument. If
make_provisional, populate the offset and fill in the
ctf_prov_strtab accordingly.
(ctf_str_add): Return the offset, not the string.
(ctf_str_add_ref): Likewise.
(ctf_str_add_external): Return a success integer.
(ctf_str_remove_ref): New, remove a single ref.
(ctf_str_count_strtab): Do not count the initial null string's
length or the existence or length of any unreferenced internal
atoms.
(ctf_str_populate_sorttab): Skip atoms with no refs.
(ctf_str_write_strtab): Populate the nullstr earlier. Add one
to the cts_len for the null string, since it is no longer done
in ctf_str_count_strtab. Adjust for csa_external_offset rename.
Populate the csa_offset for both internal and external cases.
Flush the ctf_prov_strtab afterwards, and reset the
ctf_str_prov_offset.
* ctf-create.c (ctf_grow_ptrtab): New.
(ctf_create): Call it. Initialize new fields rather than old
ones. Tell ctf_bufopen_internal that this is a writable dictionary.
Set the ctl hashes and data model.
(ctf_update): Rename to...
(ctf_serialize): ... this. Leave a compatibility function behind.
Tell ctf_simple_open_internal that this is a writable dictionary.
Pass the new fields along from the old dictionary. Drop
ctf_dtnextid and ctf_dtbyname. Use ctf_strraw, not dtd_name.
Do not zero out the DTD's ctt_name.
(ctf_prefixed_name): Rename to...
(ctf_name_table): ... this. No longer return a prefixed name: return
the applicable name table instead.
(ctf_dtd_insert): Use it, and use the right name table. Pass in the
kind we're adding. Migrate away from dtd_name.
(ctf_dtd_delete): Adjust similarly. Remove the ref to the
deleted ctt_name.
(ctf_dtd_lookup_type_by_name): Remove.
(ctf_dynamic_type): Always return NULL on read-only dictionaries.
No longer check ctf_dtnextid: check ctf_typemax instead.
(ctf_snapshot): No longer use ctf_dtnextid: use ctf_typemax instead.
(ctf_rollback): Likewise. No longer fail with ECTF_OVERROLLBACK. Use
ctf_name_table and the right name table, and migrate away from
dtd_name as in ctf_dtd_delete.
(ctf_add_generic): Pass in the kind explicitly and pass it to
ctf_dtd_insert. Use ctf_typemax, not ctf_dtnextid. Migrate away
from dtd_name to using ctf_str_add_ref to populate the ctt_name.
Grow the ptrtab if needed.
(ctf_add_encoded): Pass in the kind.
(ctf_add_slice): Likewise.
(ctf_add_array): Likewise.
(ctf_add_function): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_reftype): Likewise. Initialize the ctf_ptrtab, checking
ctt_name rather than dtd_name.
(ctf_add_struct_sized): Pass in the kind. Use
ctf_lookup_by_rawname, not ctf_hash_lookup_type /
ctf_dtd_lookup_type_by_name.
(ctf_add_union_sized): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_type): Likewise.
(ctf_compress_write): Call ctf_serialize: adjust for ctf_size not
being initialized until after the call.
(ctf_write_mem): Likewise.
(ctf_write): Likewise.
* ctf-archive.c (arc_write_one_ctf): Likewise.
* ctf-lookup.c (ctf_lookup_by_name): Use ctf_lookuup_by_rawhash, not
ctf_hash_lookup_type.
(ctf_lookup_by_id): No longer check the readonly types if the
dictionary is writable.
* ctf-open.c (init_types): Assert that this dictionary is not
writable. Adjust to use the new name hashes, ctf_name_table,
and ctf_ptrtab_len. GNU style fix for the final ptrtab scan.
(ctf_bufopen_internal): New 'writable' parameter. Flip on LCTF_RDWR
if set. Drop out early when dictionary is writable. Split the
ctf_lookups initialization into...
(ctf_set_cth_hashes): ... this new function.
(ctf_simple_open_internal): Adjust. New 'writable' parameter.
(ctf_simple_open): Adjust accordingly.
(ctf_bufopen): Likewise.
(ctf_file_close): Destroy the appropriate name hashes. No longer
destroy ctf_dtbyname, which is gone.
(ctf_getdatasect): Remove spurious "extern".
* ctf-types.c (ctf_lookup_by_rawname): New, look up types in the
specified name table, given a kind.
(ctf_lookup_by_rawhash): Likewise, given a ctf_names_t *.
(ctf_member_iter): Add support for iterating over the
dynamic type list.
(ctf_enum_iter): Likewise.
(ctf_variable_iter): Likewise.
(ctf_type_rvisit): Likewise.
(ctf_member_info): Add support for types in the dynamic type list.
(ctf_enum_name): Likewise.
(ctf_enum_value): Likewise.
(ctf_func_type_info): Likewise.
(ctf_func_type_args): Likewise.
* ctf-link.c (ctf_accumulate_archive_names): No longer call
ctf_update.
(ctf_link_write): Likewise.
(ctf_link_intern_extern_string): Adjust for new
ctf_str_add_external return value.
(ctf_link_add_strtab): Likewise.
* ctf-util.c (ctf_list_empty_p): New.
2019-08-08 00:55:09 +08:00
|
|
|
new_ptrtab_len = 1024;
|
|
|
|
else if ((fp->ctf_typemax + 2) > fp->ctf_ptrtab_len)
|
|
|
|
new_ptrtab_len = fp->ctf_ptrtab_len * 1.25;
|
|
|
|
|
|
|
|
if (new_ptrtab_len != fp->ctf_ptrtab_len)
|
|
|
|
{
|
|
|
|
uint32_t *new_ptrtab;
|
|
|
|
|
|
|
|
if ((new_ptrtab = realloc (fp->ctf_ptrtab,
|
|
|
|
new_ptrtab_len * sizeof (uint32_t))) == NULL)
|
|
|
|
return (ctf_set_errno (fp, ENOMEM));
|
|
|
|
|
|
|
|
fp->ctf_ptrtab = new_ptrtab;
|
|
|
|
memset (fp->ctf_ptrtab + fp->ctf_ptrtab_len, 0,
|
|
|
|
(new_ptrtab_len - fp->ctf_ptrtab_len) * sizeof (uint32_t));
|
|
|
|
fp->ctf_ptrtab_len = new_ptrtab_len;
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2021-03-18 20:37:52 +08:00
|
|
|
/* Make sure a vlen has enough space: expand it otherwise. Unlike the ptrtab,
|
|
|
|
which grows quite slowly, the vlen grows in big jumps because it is quite
|
|
|
|
expensive to expand: the caller has to scan the old vlen for string refs
|
|
|
|
first and remove them, then re-add them afterwards. The initial size is
|
|
|
|
more or less arbitrary. */
|
|
|
|
static int
|
|
|
|
ctf_grow_vlen (ctf_dict_t *fp, ctf_dtdef_t *dtd, size_t vlen)
|
|
|
|
{
|
|
|
|
unsigned char *old = dtd->dtd_vlen;
|
|
|
|
|
|
|
|
if (dtd->dtd_vlen_alloc > vlen)
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
if ((dtd->dtd_vlen = realloc (dtd->dtd_vlen,
|
|
|
|
dtd->dtd_vlen_alloc * 2)) == NULL)
|
|
|
|
{
|
|
|
|
dtd->dtd_vlen = old;
|
|
|
|
return (ctf_set_errno (fp, ENOMEM));
|
|
|
|
}
|
|
|
|
memset (dtd->dtd_vlen + dtd->dtd_vlen_alloc, 0, dtd->dtd_vlen_alloc);
|
|
|
|
dtd->dtd_vlen_alloc *= 2;
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
libctf, include, binutils, gdb, ld: rename ctf_file_t to ctf_dict_t
The naming of the ctf_file_t type in libctf is a historical curiosity.
Back in the Solaris days, CTF dictionaries were originally generated as
a separate file and then (sometimes) merged into objects: hence the
datatype was named ctf_file_t, and known as a "CTF file". Nowadays, raw
CTF is essentially never written to a file on its own, and the datatype
changed name to a "CTF dictionary" years ago. So the term "CTF file"
refers to something that is never a file! This is at best confusing.
The type has also historically been known as a 'CTF container", which is
even more confusing now that we have CTF archives which are *also* a
sort of container (they contain CTF dictionaries), but which are never
referred to as containers in the source code.
So fix this by completing the renaming, renaming ctf_file_t to
ctf_dict_t throughout, and renaming those few functions that refer to
CTF files by name (keeping compatibility aliases) to refer to dicts
instead. Old users who still refer to ctf_file_t will see (harmless)
pointer-compatibility warnings at compile time, but the ABI is unchanged
(since C doesn't mangle names, and ctf_file_t was always an opaque type)
and things will still compile fine as long as -Werror is not specified.
All references to CTF containers and CTF files in the source code are
fixed to refer to CTF dicts instead.
Further (smaller) renamings of annoyingly-named functions to come, as
part of the process of souping up queries across whole archives at once
(needed for the function info and data object sections).
binutils/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* objdump.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_ctf): Likewise. Use ctf_dict_close, not ctf_file_close.
* readelf.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_section_as_ctf): Likewise. Use ctf_dict_close, not
ctf_file_close.
gdb/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctfread.c: Change uses of ctf_file_t to ctf_dict_t.
(ctf_fp_info::~ctf_fp_info): Call ctf_dict_close, not ctf_file_close.
include/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-api.h (ctf_file_t): Rename to...
(ctf_dict_t): ... this. Keep ctf_file_t around for compatibility.
(struct ctf_file): Likewise rename to...
(struct ctf_dict): ... this.
(ctf_file_close): Rename to...
(ctf_dict_close): ... this, keeping compatibility function.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this, keeping compatibility function.
All callers adjusted.
* ctf.h: Rename references to ctf_file_t to ctf_dict_t.
(struct ctf_archive) <ctfa_nfiles>: Rename to...
<ctfa_ndicts>: ... this.
ld/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ldlang.c (ctf_output): This is a ctf_dict_t now.
(lang_ctf_errs_warnings): Rename ctf_file_t to ctf_dict_t.
(ldlang_open_ctf): Adjust comment.
(lang_merge_ctf): Use ctf_dict_close, not ctf_file_close.
* ldelfgen.h (ldelf_examine_strtab_for_ctf): Rename ctf_file_t to
ctf_dict_t. Change opaque declaration accordingly.
* ldelfgen.c (ldelf_examine_strtab_for_ctf): Adjust.
* ldemul.h (examine_strtab_for_ctf): Likewise.
(ldemul_examine_strtab_for_ctf): Likewise.
* ldeuml.c (ldemul_examine_strtab_for_ctf): Likewise.
libctf/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h: Rename ctf_file_t to ctf_dict_t: all declarations
adjusted.
(ctf_fileops): Rename to...
(ctf_dictops): ... this.
(ctf_dedup_t) <cd_id_to_file_t>: Rename to...
<cd_id_to_dict_t>: ... this.
(ctf_file_t): Fix outdated comment.
<ctf_fileops>: Rename to...
<ctf_dictops>: ... this.
(struct ctf_archive_internal) <ctfi_file>: Rename to...
<ctfi_dict>: ... this.
* ctf-archive.c: Rename ctf_file_t to ctf_dict_t.
Rename ctf_archive.ctfa_nfiles to ctfa_ndicts.
Rename ctf_file_close to ctf_dict_close. All users adjusted.
* ctf-create.c: Likewise. Refer to CTF dicts, not CTF containers.
(ctf_bundle_t) <ctb_file>: Rename to...
<ctb_dict): ... this.
* ctf-decl.c: Rename ctf_file_t to ctf_dict_t.
* ctf-dedup.c: Likewise. Rename ctf_file_close to
ctf_dict_close. Refer to CTF dicts, not CTF containers.
* ctf-dump.c: Likewise.
* ctf-error.c: Likewise.
* ctf-hash.c: Likewise.
* ctf-inlines.h: Likewise.
* ctf-labels.c: Likewise.
* ctf-link.c: Likewise.
* ctf-lookup.c: Likewise.
* ctf-open-bfd.c: Likewise.
* ctf-string.c: Likewise.
* ctf-subr.c: Likewise.
* ctf-types.c: Likewise.
* ctf-util.c: Likewise.
* ctf-open.c: Likewise.
(ctf_file_close): Rename to...
(ctf_dict_close): ...this.
(ctf_file_close): New trivial wrapper around ctf_dict_close, for
compatibility.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this.
(ctf_parent_file): New trivial wrapper around ctf_parent_dict, for
compatibility.
* libctf.ver: Add ctf_dict_close and ctf_parent_dict.
2020-11-20 21:34:04 +08:00
|
|
|
/* To create an empty CTF dict, we just declare a zeroed header and call
|
|
|
|
ctf_bufopen() on it. If ctf_bufopen succeeds, we mark the new dict r/w and
|
|
|
|
initialize the dynamic members. We start assigning type IDs at 1 because
|
libctf: deduplicate and sort the string table
ctf.h states:
> [...] the CTF string table does not contain any duplicated strings.
Unfortunately this is entirely untrue: libctf has before now made no
attempt whatsoever to deduplicate the string table. It computes the
string table's length on the fly as it adds new strings to the dynamic
CTF file, and ctf_update() just writes each string to the table and
notes the current write position as it traverses the dynamic CTF file's
data structures and builds the final CTF buffer. There is no global
view of the strings and no deduplication.
Fix this by erasing the ctf_dtvstrlen dead-reckoning length, and adding
a new dynhash table ctf_str_atoms that maps unique strings to a list
of references to those strings: a reference is a simple uint32_t * to
some value somewhere in the under-construction CTF buffer that needs
updating to note the string offset when the strtab is laid out.
Adding a string is now a simple matter of calling ctf_str_add_ref(),
which adds a new atom to the atoms table, if one doesn't already exist,
and adding the location of the reference to this atom to the refs list
attached to the atom: this works reliably as long as one takes care to
only call ctf_str_add_ref() once the final location of the offset is
known (so you can't call it on a temporary structure and then memcpy()
that structure into place in the CTF buffer, because the ref will still
point to the old location: ctf_update() changes accordingly).
Generating the CTF string table is a matter of calling
ctf_str_write_strtab(), which counts the length and number of elements
in the atoms table using the ctf_dynhash_iter() function we just added,
populating an array of pointers into the atoms table and sorting it into
order (to help compressors), then traversing this table and emitting it,
updating the refs to each atom as we go. The only complexity here is
arranging to keep the null string at offset zero, since a lot of code in
libctf depends on being able to leave strtab references at 0 to indicate
'no name'. Once the table is constructed and the refs updated, we know
how long it is, so we can realloc() the partial CTF buffer we allocated
earlier and can copy the table on to the end of it (and purge the refs
because they're not needed any more and have been invalidated by the
realloc() call in any case).
The net effect of all this is a reduction in uncompressed strtab sizes
of about 30% (perhaps a quarter to a half of all strings across the
Linux kernel are eliminated as duplicates). Of course, duplicated
strings are highly redundant, so the space saving after compression is
only about 20%: when the other non-strtab sections are factored in, CTF
sizes shrink by about 10%.
No change in externally-visible API or file format (other than the
reduction in pointless redundancy).
libctf/
* ctf-impl.h: (struct ctf_strs_writable): New, non-const version of
struct ctf_strs.
(struct ctf_dtdef): Note that dtd_data.ctt_name is unpopulated.
(struct ctf_str_atom): New, disambiguated single string.
(struct ctf_str_atom_ref): New, points to some other location that
references this string's offset.
(struct ctf_file): New members ctf_str_atoms and ctf_str_num_refs.
Remove member ctf_dtvstrlen: we no longer track the total strlen
as we add strings.
(ctf_str_create_atoms): Declare new function in ctf-string.c.
(ctf_str_free_atoms): Likewise.
(ctf_str_add): Likewise.
(ctf_str_add_ref): Likewise.
(ctf_str_purge_refs): Likewise.
(ctf_str_write_strtab): Likewise.
(ctf_realloc): Declare new function in ctf-util.c.
* ctf-open.c (ctf_bufopen): Create the atoms table.
(ctf_file_close): Destroy it.
* ctf-create.c (ctf_update): Copy-and-free it on update. No longer
special-case the position of the parname string. Construct the
strtab by calling ctf_str_add_ref and ctf_str_write_strtab after the
rest of each buffer element is constructed, not via open-coding:
realloc the CTF buffer and append the strtab to it. No longer
maintain ctf_dtvstrlen. Sort the variable entry table later, after
strtab construction.
(ctf_copy_membnames): Remove: integrated into ctf_copy_{s,l,e}members.
(ctf_copy_smembers): Drop the string offset: call ctf_str_add_ref
after buffer element construction instead.
(ctf_copy_lmembers): Likewise.
(ctf_copy_emembers): Likewise.
(ctf_create): No longer maintain the ctf_dtvstrlen.
(ctf_dtd_delete): Likewise.
(ctf_dvd_delete): Likewise.
(ctf_add_generic): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_variable): Likewise.
(membadd): Likewise.
* ctf-util.c (ctf_realloc): New, wrapper around realloc that aborts
if there are active ctf_str_num_refs.
(ctf_strraw): Move to ctf-string.c.
(ctf_strptr): Likewise.
* ctf-string.c: New file, strtab manipulation.
* Makefile.am (libctf_a_SOURCES): Add it.
* Makefile.in: Regenerate.
2019-06-27 20:51:10 +08:00
|
|
|
type ID 0 is used as a sentinel and a not-found indicator. */
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
|
libctf, include, binutils, gdb, ld: rename ctf_file_t to ctf_dict_t
The naming of the ctf_file_t type in libctf is a historical curiosity.
Back in the Solaris days, CTF dictionaries were originally generated as
a separate file and then (sometimes) merged into objects: hence the
datatype was named ctf_file_t, and known as a "CTF file". Nowadays, raw
CTF is essentially never written to a file on its own, and the datatype
changed name to a "CTF dictionary" years ago. So the term "CTF file"
refers to something that is never a file! This is at best confusing.
The type has also historically been known as a 'CTF container", which is
even more confusing now that we have CTF archives which are *also* a
sort of container (they contain CTF dictionaries), but which are never
referred to as containers in the source code.
So fix this by completing the renaming, renaming ctf_file_t to
ctf_dict_t throughout, and renaming those few functions that refer to
CTF files by name (keeping compatibility aliases) to refer to dicts
instead. Old users who still refer to ctf_file_t will see (harmless)
pointer-compatibility warnings at compile time, but the ABI is unchanged
(since C doesn't mangle names, and ctf_file_t was always an opaque type)
and things will still compile fine as long as -Werror is not specified.
All references to CTF containers and CTF files in the source code are
fixed to refer to CTF dicts instead.
Further (smaller) renamings of annoyingly-named functions to come, as
part of the process of souping up queries across whole archives at once
(needed for the function info and data object sections).
binutils/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* objdump.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_ctf): Likewise. Use ctf_dict_close, not ctf_file_close.
* readelf.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_section_as_ctf): Likewise. Use ctf_dict_close, not
ctf_file_close.
gdb/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctfread.c: Change uses of ctf_file_t to ctf_dict_t.
(ctf_fp_info::~ctf_fp_info): Call ctf_dict_close, not ctf_file_close.
include/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-api.h (ctf_file_t): Rename to...
(ctf_dict_t): ... this. Keep ctf_file_t around for compatibility.
(struct ctf_file): Likewise rename to...
(struct ctf_dict): ... this.
(ctf_file_close): Rename to...
(ctf_dict_close): ... this, keeping compatibility function.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this, keeping compatibility function.
All callers adjusted.
* ctf.h: Rename references to ctf_file_t to ctf_dict_t.
(struct ctf_archive) <ctfa_nfiles>: Rename to...
<ctfa_ndicts>: ... this.
ld/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ldlang.c (ctf_output): This is a ctf_dict_t now.
(lang_ctf_errs_warnings): Rename ctf_file_t to ctf_dict_t.
(ldlang_open_ctf): Adjust comment.
(lang_merge_ctf): Use ctf_dict_close, not ctf_file_close.
* ldelfgen.h (ldelf_examine_strtab_for_ctf): Rename ctf_file_t to
ctf_dict_t. Change opaque declaration accordingly.
* ldelfgen.c (ldelf_examine_strtab_for_ctf): Adjust.
* ldemul.h (examine_strtab_for_ctf): Likewise.
(ldemul_examine_strtab_for_ctf): Likewise.
* ldeuml.c (ldemul_examine_strtab_for_ctf): Likewise.
libctf/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h: Rename ctf_file_t to ctf_dict_t: all declarations
adjusted.
(ctf_fileops): Rename to...
(ctf_dictops): ... this.
(ctf_dedup_t) <cd_id_to_file_t>: Rename to...
<cd_id_to_dict_t>: ... this.
(ctf_file_t): Fix outdated comment.
<ctf_fileops>: Rename to...
<ctf_dictops>: ... this.
(struct ctf_archive_internal) <ctfi_file>: Rename to...
<ctfi_dict>: ... this.
* ctf-archive.c: Rename ctf_file_t to ctf_dict_t.
Rename ctf_archive.ctfa_nfiles to ctfa_ndicts.
Rename ctf_file_close to ctf_dict_close. All users adjusted.
* ctf-create.c: Likewise. Refer to CTF dicts, not CTF containers.
(ctf_bundle_t) <ctb_file>: Rename to...
<ctb_dict): ... this.
* ctf-decl.c: Rename ctf_file_t to ctf_dict_t.
* ctf-dedup.c: Likewise. Rename ctf_file_close to
ctf_dict_close. Refer to CTF dicts, not CTF containers.
* ctf-dump.c: Likewise.
* ctf-error.c: Likewise.
* ctf-hash.c: Likewise.
* ctf-inlines.h: Likewise.
* ctf-labels.c: Likewise.
* ctf-link.c: Likewise.
* ctf-lookup.c: Likewise.
* ctf-open-bfd.c: Likewise.
* ctf-string.c: Likewise.
* ctf-subr.c: Likewise.
* ctf-types.c: Likewise.
* ctf-util.c: Likewise.
* ctf-open.c: Likewise.
(ctf_file_close): Rename to...
(ctf_dict_close): ...this.
(ctf_file_close): New trivial wrapper around ctf_dict_close, for
compatibility.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this.
(ctf_parent_file): New trivial wrapper around ctf_parent_dict, for
compatibility.
* libctf.ver: Add ctf_dict_close and ctf_parent_dict.
2020-11-20 21:34:04 +08:00
|
|
|
ctf_dict_t *
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
ctf_create (int *errp)
|
|
|
|
{
|
|
|
|
static const ctf_header_t hdr = { .cth_preamble = { CTF_MAGIC, CTF_VERSION, 0 } };
|
|
|
|
|
libctf: avoid the need to ever use ctf_update
The method of operation of libctf when the dictionary is writable has
before now been that types that are added land in the dynamic type
section, which is a linked list and hash of IDs -> dynamic type
definitions (and, recently a hash of names): the DTDs are a bit of CTF
representing the ctf_type_t and ad hoc C structures representing the
vlen. Historically, libctf was unable to do anything with these types,
not even look them up by ID, let alone by name: if you wanted to do that
say if you were adding a type that depended on one you just added) you
called ctf_update, which serializes all the DTDs into a CTF file and
reopens it, copying its guts over the fp it's called with. The
ctf_updated types are then frozen in amber and unchangeable: all lookups
will return the types in the static portion in preference to the dynamic
portion, and we will refuse to re-add things that already exist in the
static portion (and, of late, in the dynamic portion too). The libctf
machinery remembers the boundary between static and dynamic types and
looks in the right portion for each type. Lots of things still don't
quite work with dynamic types (e.g. getting their size), but enough
works to do a bunch of additions and then a ctf_update, most of the
time.
Except it doesn't, because ctf_add_type finds it necessary to walk the
full dynamic type definition list looking for types with matching names,
so it gets slower and slower with every type you add: fixing this
requires calling ctf_update periodically for no other reason than to
avoid massively slowing things down.
This is all clunky and very slow but kind of works, until you consider
that it is in fact possible and indeed necessary to modify one sort of
type after it has been added: forwards. These are necessarily promoted
to structs, unions or enums, and when they do so *their type ID does not
change*. So all of a sudden we are changing types that already exist in
the static portion. ctf_update gets massively confused by this and
allocates space enough for the forward (with no members), but then emits
the new dynamic type (with all the members) into it. You get an
assertion failure after that, if you're lucky, or a coredump.
So this commit rejigs things a bit and arranges to exclusively use the
dynamic type definitions in writable dictionaries, and the static type
definitions in readable dictionaries: we don't at any time have a mixture
of static and dynamic types, and you don't need to call ctf_update to
make things "appear". The ctf_dtbyname hash I introduced a few months
ago, which maps things like "struct foo" to DTDs, is removed, replaced
instead by a change of type of the four dictionaries which track names.
Rather than just being (unresizable) ctf_hash_t's populated only at
ctf_bufopen time, they are now a ctf_names_t structure, which is a pair
of ctf_hash_t and ctf_dynhash_t, with the ctf_hash_t portion being used
in readonly dictionaries, and the ctf_dynhash_t being used in writable
ones. The decision as to which to use is centralized in the new
functions ctf_lookup_by_rawname (which takes a type kind) and
ctf_lookup_by_rawhash, which it calls (which takes a ctf_names_t *.)
This change lets us switch from using static to dynamic name hashes on
the fly across the entirety of libctf without complexifying anything: in
fact, because we now centralize the knowledge about how to map from type
kind to name hash, it actually simplifies things and lets us throw out
quite a lot of now-unnecessary complexity, from ctf_dtnyname (replaced
by the dynamic half of the name tables), through to ctf_dtnextid (now
that a dictionary's static portion is never referenced if the dictionary
is writable, we can just use ctf_typemax to indicate the maximum type:
dynamic or non-dynamic does not matter, and we no longer need to track
the boundary between the types). You can now ctf_rollback() as far as
you like, even past a ctf_update or for that matter a full writeout; all
the iteration functions work just as well on writable as on read-only
dictionaries; ctf_add_type no longer needs expensive duplicated code to
run over the dynamic types hunting for ones it might be interested in;
and the linker no longer needs a hack to call ctf_update so that calling
ctf_add_type is not impossibly expensive.
There is still a bit more complexity: some new code paths in ctf-types.c
need to know how to extract information from dynamic types. This
complexity will go away again in a few months when libctf acquires a
proper intermediate representation.
You can still call ctf_update if you like (it's public API, after all),
but its only effect now is to set the point to which ctf_discard rolls
back.
Obviously *something* still needs to serialize the CTF file before
writeout, and this job is done by ctf_serialize, which does everything
ctf_update used to except set the counter used by ctf_discard. It is
automatically called by the various functions that do CTF writeout:
nobody else ever needs to call it.
With this in place, forwards that are promoted to non-forwards no longer
crash the link, even if it happens tens of thousands of types later.
v5: fix tabdamage.
libctf/
* ctf-impl.h (ctf_names_t): New.
(ctf_lookup_t) <ctf_hash>: Now a ctf_names_t, not a ctf_hash_t.
(ctf_file_t) <ctf_structs>: Likewise.
<ctf_unions>: Likewise.
<ctf_enums>: Likewise.
<ctf_names>: Likewise.
<ctf_lookups>: Improve comment.
<ctf_ptrtab_len>: New.
<ctf_prov_strtab>: New.
<ctf_str_prov_offset>: New.
<ctf_dtbyname>: Remove, redundant to the names hashes.
<ctf_dtnextid>: Remove, redundant to ctf_typemax.
(ctf_dtdef_t) <dtd_name>: Remove.
<dtd_data>: Note that the ctt_name is now populated.
(ctf_str_atom_t) <csa_offset>: This is now the strtab
offset for internal strings too.
<csa_external_offset>: New, the external strtab offset.
(CTF_INDEX_TO_TYPEPTR): Handle the LCTF_RDWR case.
(ctf_name_table): New declaration.
(ctf_lookup_by_rawname): Likewise.
(ctf_lookup_by_rawhash): Likewise.
(ctf_set_ctl_hashes): Likewise.
(ctf_serialize): Likewise.
(ctf_dtd_insert): Adjust.
(ctf_simple_open_internal): Likewise.
(ctf_bufopen_internal): Likewise.
(ctf_list_empty_p): Likewise.
(ctf_str_remove_ref): Likewise.
(ctf_str_add): Returns uint32_t now.
(ctf_str_add_ref): Likewise.
(ctf_str_add_external): Now returns a boolean (int).
* ctf-string.c (ctf_strraw_explicit): Check the ctf_prov_strtab
for strings in the appropriate range.
(ctf_str_create_atoms): Create the ctf_prov_strtab. Detect OOM
when adding the null string to the new strtab.
(ctf_str_free_atoms): Destroy the ctf_prov_strtab.
(ctf_str_add_ref_internal): Add make_provisional argument. If
make_provisional, populate the offset and fill in the
ctf_prov_strtab accordingly.
(ctf_str_add): Return the offset, not the string.
(ctf_str_add_ref): Likewise.
(ctf_str_add_external): Return a success integer.
(ctf_str_remove_ref): New, remove a single ref.
(ctf_str_count_strtab): Do not count the initial null string's
length or the existence or length of any unreferenced internal
atoms.
(ctf_str_populate_sorttab): Skip atoms with no refs.
(ctf_str_write_strtab): Populate the nullstr earlier. Add one
to the cts_len for the null string, since it is no longer done
in ctf_str_count_strtab. Adjust for csa_external_offset rename.
Populate the csa_offset for both internal and external cases.
Flush the ctf_prov_strtab afterwards, and reset the
ctf_str_prov_offset.
* ctf-create.c (ctf_grow_ptrtab): New.
(ctf_create): Call it. Initialize new fields rather than old
ones. Tell ctf_bufopen_internal that this is a writable dictionary.
Set the ctl hashes and data model.
(ctf_update): Rename to...
(ctf_serialize): ... this. Leave a compatibility function behind.
Tell ctf_simple_open_internal that this is a writable dictionary.
Pass the new fields along from the old dictionary. Drop
ctf_dtnextid and ctf_dtbyname. Use ctf_strraw, not dtd_name.
Do not zero out the DTD's ctt_name.
(ctf_prefixed_name): Rename to...
(ctf_name_table): ... this. No longer return a prefixed name: return
the applicable name table instead.
(ctf_dtd_insert): Use it, and use the right name table. Pass in the
kind we're adding. Migrate away from dtd_name.
(ctf_dtd_delete): Adjust similarly. Remove the ref to the
deleted ctt_name.
(ctf_dtd_lookup_type_by_name): Remove.
(ctf_dynamic_type): Always return NULL on read-only dictionaries.
No longer check ctf_dtnextid: check ctf_typemax instead.
(ctf_snapshot): No longer use ctf_dtnextid: use ctf_typemax instead.
(ctf_rollback): Likewise. No longer fail with ECTF_OVERROLLBACK. Use
ctf_name_table and the right name table, and migrate away from
dtd_name as in ctf_dtd_delete.
(ctf_add_generic): Pass in the kind explicitly and pass it to
ctf_dtd_insert. Use ctf_typemax, not ctf_dtnextid. Migrate away
from dtd_name to using ctf_str_add_ref to populate the ctt_name.
Grow the ptrtab if needed.
(ctf_add_encoded): Pass in the kind.
(ctf_add_slice): Likewise.
(ctf_add_array): Likewise.
(ctf_add_function): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_reftype): Likewise. Initialize the ctf_ptrtab, checking
ctt_name rather than dtd_name.
(ctf_add_struct_sized): Pass in the kind. Use
ctf_lookup_by_rawname, not ctf_hash_lookup_type /
ctf_dtd_lookup_type_by_name.
(ctf_add_union_sized): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_type): Likewise.
(ctf_compress_write): Call ctf_serialize: adjust for ctf_size not
being initialized until after the call.
(ctf_write_mem): Likewise.
(ctf_write): Likewise.
* ctf-archive.c (arc_write_one_ctf): Likewise.
* ctf-lookup.c (ctf_lookup_by_name): Use ctf_lookuup_by_rawhash, not
ctf_hash_lookup_type.
(ctf_lookup_by_id): No longer check the readonly types if the
dictionary is writable.
* ctf-open.c (init_types): Assert that this dictionary is not
writable. Adjust to use the new name hashes, ctf_name_table,
and ctf_ptrtab_len. GNU style fix for the final ptrtab scan.
(ctf_bufopen_internal): New 'writable' parameter. Flip on LCTF_RDWR
if set. Drop out early when dictionary is writable. Split the
ctf_lookups initialization into...
(ctf_set_cth_hashes): ... this new function.
(ctf_simple_open_internal): Adjust. New 'writable' parameter.
(ctf_simple_open): Adjust accordingly.
(ctf_bufopen): Likewise.
(ctf_file_close): Destroy the appropriate name hashes. No longer
destroy ctf_dtbyname, which is gone.
(ctf_getdatasect): Remove spurious "extern".
* ctf-types.c (ctf_lookup_by_rawname): New, look up types in the
specified name table, given a kind.
(ctf_lookup_by_rawhash): Likewise, given a ctf_names_t *.
(ctf_member_iter): Add support for iterating over the
dynamic type list.
(ctf_enum_iter): Likewise.
(ctf_variable_iter): Likewise.
(ctf_type_rvisit): Likewise.
(ctf_member_info): Add support for types in the dynamic type list.
(ctf_enum_name): Likewise.
(ctf_enum_value): Likewise.
(ctf_func_type_info): Likewise.
(ctf_func_type_args): Likewise.
* ctf-link.c (ctf_accumulate_archive_names): No longer call
ctf_update.
(ctf_link_write): Likewise.
(ctf_link_intern_extern_string): Adjust for new
ctf_str_add_external return value.
(ctf_link_add_strtab): Likewise.
* ctf-util.c (ctf_list_empty_p): New.
2019-08-08 00:55:09 +08:00
|
|
|
ctf_dynhash_t *structs = NULL, *unions = NULL, *enums = NULL, *names = NULL;
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
ctf_sect_t cts;
|
libctf, include, binutils, gdb, ld: rename ctf_file_t to ctf_dict_t
The naming of the ctf_file_t type in libctf is a historical curiosity.
Back in the Solaris days, CTF dictionaries were originally generated as
a separate file and then (sometimes) merged into objects: hence the
datatype was named ctf_file_t, and known as a "CTF file". Nowadays, raw
CTF is essentially never written to a file on its own, and the datatype
changed name to a "CTF dictionary" years ago. So the term "CTF file"
refers to something that is never a file! This is at best confusing.
The type has also historically been known as a 'CTF container", which is
even more confusing now that we have CTF archives which are *also* a
sort of container (they contain CTF dictionaries), but which are never
referred to as containers in the source code.
So fix this by completing the renaming, renaming ctf_file_t to
ctf_dict_t throughout, and renaming those few functions that refer to
CTF files by name (keeping compatibility aliases) to refer to dicts
instead. Old users who still refer to ctf_file_t will see (harmless)
pointer-compatibility warnings at compile time, but the ABI is unchanged
(since C doesn't mangle names, and ctf_file_t was always an opaque type)
and things will still compile fine as long as -Werror is not specified.
All references to CTF containers and CTF files in the source code are
fixed to refer to CTF dicts instead.
Further (smaller) renamings of annoyingly-named functions to come, as
part of the process of souping up queries across whole archives at once
(needed for the function info and data object sections).
binutils/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* objdump.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_ctf): Likewise. Use ctf_dict_close, not ctf_file_close.
* readelf.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_section_as_ctf): Likewise. Use ctf_dict_close, not
ctf_file_close.
gdb/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctfread.c: Change uses of ctf_file_t to ctf_dict_t.
(ctf_fp_info::~ctf_fp_info): Call ctf_dict_close, not ctf_file_close.
include/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-api.h (ctf_file_t): Rename to...
(ctf_dict_t): ... this. Keep ctf_file_t around for compatibility.
(struct ctf_file): Likewise rename to...
(struct ctf_dict): ... this.
(ctf_file_close): Rename to...
(ctf_dict_close): ... this, keeping compatibility function.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this, keeping compatibility function.
All callers adjusted.
* ctf.h: Rename references to ctf_file_t to ctf_dict_t.
(struct ctf_archive) <ctfa_nfiles>: Rename to...
<ctfa_ndicts>: ... this.
ld/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ldlang.c (ctf_output): This is a ctf_dict_t now.
(lang_ctf_errs_warnings): Rename ctf_file_t to ctf_dict_t.
(ldlang_open_ctf): Adjust comment.
(lang_merge_ctf): Use ctf_dict_close, not ctf_file_close.
* ldelfgen.h (ldelf_examine_strtab_for_ctf): Rename ctf_file_t to
ctf_dict_t. Change opaque declaration accordingly.
* ldelfgen.c (ldelf_examine_strtab_for_ctf): Adjust.
* ldemul.h (examine_strtab_for_ctf): Likewise.
(ldemul_examine_strtab_for_ctf): Likewise.
* ldeuml.c (ldemul_examine_strtab_for_ctf): Likewise.
libctf/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h: Rename ctf_file_t to ctf_dict_t: all declarations
adjusted.
(ctf_fileops): Rename to...
(ctf_dictops): ... this.
(ctf_dedup_t) <cd_id_to_file_t>: Rename to...
<cd_id_to_dict_t>: ... this.
(ctf_file_t): Fix outdated comment.
<ctf_fileops>: Rename to...
<ctf_dictops>: ... this.
(struct ctf_archive_internal) <ctfi_file>: Rename to...
<ctfi_dict>: ... this.
* ctf-archive.c: Rename ctf_file_t to ctf_dict_t.
Rename ctf_archive.ctfa_nfiles to ctfa_ndicts.
Rename ctf_file_close to ctf_dict_close. All users adjusted.
* ctf-create.c: Likewise. Refer to CTF dicts, not CTF containers.
(ctf_bundle_t) <ctb_file>: Rename to...
<ctb_dict): ... this.
* ctf-decl.c: Rename ctf_file_t to ctf_dict_t.
* ctf-dedup.c: Likewise. Rename ctf_file_close to
ctf_dict_close. Refer to CTF dicts, not CTF containers.
* ctf-dump.c: Likewise.
* ctf-error.c: Likewise.
* ctf-hash.c: Likewise.
* ctf-inlines.h: Likewise.
* ctf-labels.c: Likewise.
* ctf-link.c: Likewise.
* ctf-lookup.c: Likewise.
* ctf-open-bfd.c: Likewise.
* ctf-string.c: Likewise.
* ctf-subr.c: Likewise.
* ctf-types.c: Likewise.
* ctf-util.c: Likewise.
* ctf-open.c: Likewise.
(ctf_file_close): Rename to...
(ctf_dict_close): ...this.
(ctf_file_close): New trivial wrapper around ctf_dict_close, for
compatibility.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this.
(ctf_parent_file): New trivial wrapper around ctf_parent_dict, for
compatibility.
* libctf.ver: Add ctf_dict_close and ctf_parent_dict.
2020-11-20 21:34:04 +08:00
|
|
|
ctf_dict_t *fp;
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
|
|
|
|
libctf_init_debug();
|
|
|
|
|
libctf: avoid the need to ever use ctf_update
The method of operation of libctf when the dictionary is writable has
before now been that types that are added land in the dynamic type
section, which is a linked list and hash of IDs -> dynamic type
definitions (and, recently a hash of names): the DTDs are a bit of CTF
representing the ctf_type_t and ad hoc C structures representing the
vlen. Historically, libctf was unable to do anything with these types,
not even look them up by ID, let alone by name: if you wanted to do that
say if you were adding a type that depended on one you just added) you
called ctf_update, which serializes all the DTDs into a CTF file and
reopens it, copying its guts over the fp it's called with. The
ctf_updated types are then frozen in amber and unchangeable: all lookups
will return the types in the static portion in preference to the dynamic
portion, and we will refuse to re-add things that already exist in the
static portion (and, of late, in the dynamic portion too). The libctf
machinery remembers the boundary between static and dynamic types and
looks in the right portion for each type. Lots of things still don't
quite work with dynamic types (e.g. getting their size), but enough
works to do a bunch of additions and then a ctf_update, most of the
time.
Except it doesn't, because ctf_add_type finds it necessary to walk the
full dynamic type definition list looking for types with matching names,
so it gets slower and slower with every type you add: fixing this
requires calling ctf_update periodically for no other reason than to
avoid massively slowing things down.
This is all clunky and very slow but kind of works, until you consider
that it is in fact possible and indeed necessary to modify one sort of
type after it has been added: forwards. These are necessarily promoted
to structs, unions or enums, and when they do so *their type ID does not
change*. So all of a sudden we are changing types that already exist in
the static portion. ctf_update gets massively confused by this and
allocates space enough for the forward (with no members), but then emits
the new dynamic type (with all the members) into it. You get an
assertion failure after that, if you're lucky, or a coredump.
So this commit rejigs things a bit and arranges to exclusively use the
dynamic type definitions in writable dictionaries, and the static type
definitions in readable dictionaries: we don't at any time have a mixture
of static and dynamic types, and you don't need to call ctf_update to
make things "appear". The ctf_dtbyname hash I introduced a few months
ago, which maps things like "struct foo" to DTDs, is removed, replaced
instead by a change of type of the four dictionaries which track names.
Rather than just being (unresizable) ctf_hash_t's populated only at
ctf_bufopen time, they are now a ctf_names_t structure, which is a pair
of ctf_hash_t and ctf_dynhash_t, with the ctf_hash_t portion being used
in readonly dictionaries, and the ctf_dynhash_t being used in writable
ones. The decision as to which to use is centralized in the new
functions ctf_lookup_by_rawname (which takes a type kind) and
ctf_lookup_by_rawhash, which it calls (which takes a ctf_names_t *.)
This change lets us switch from using static to dynamic name hashes on
the fly across the entirety of libctf without complexifying anything: in
fact, because we now centralize the knowledge about how to map from type
kind to name hash, it actually simplifies things and lets us throw out
quite a lot of now-unnecessary complexity, from ctf_dtnyname (replaced
by the dynamic half of the name tables), through to ctf_dtnextid (now
that a dictionary's static portion is never referenced if the dictionary
is writable, we can just use ctf_typemax to indicate the maximum type:
dynamic or non-dynamic does not matter, and we no longer need to track
the boundary between the types). You can now ctf_rollback() as far as
you like, even past a ctf_update or for that matter a full writeout; all
the iteration functions work just as well on writable as on read-only
dictionaries; ctf_add_type no longer needs expensive duplicated code to
run over the dynamic types hunting for ones it might be interested in;
and the linker no longer needs a hack to call ctf_update so that calling
ctf_add_type is not impossibly expensive.
There is still a bit more complexity: some new code paths in ctf-types.c
need to know how to extract information from dynamic types. This
complexity will go away again in a few months when libctf acquires a
proper intermediate representation.
You can still call ctf_update if you like (it's public API, after all),
but its only effect now is to set the point to which ctf_discard rolls
back.
Obviously *something* still needs to serialize the CTF file before
writeout, and this job is done by ctf_serialize, which does everything
ctf_update used to except set the counter used by ctf_discard. It is
automatically called by the various functions that do CTF writeout:
nobody else ever needs to call it.
With this in place, forwards that are promoted to non-forwards no longer
crash the link, even if it happens tens of thousands of types later.
v5: fix tabdamage.
libctf/
* ctf-impl.h (ctf_names_t): New.
(ctf_lookup_t) <ctf_hash>: Now a ctf_names_t, not a ctf_hash_t.
(ctf_file_t) <ctf_structs>: Likewise.
<ctf_unions>: Likewise.
<ctf_enums>: Likewise.
<ctf_names>: Likewise.
<ctf_lookups>: Improve comment.
<ctf_ptrtab_len>: New.
<ctf_prov_strtab>: New.
<ctf_str_prov_offset>: New.
<ctf_dtbyname>: Remove, redundant to the names hashes.
<ctf_dtnextid>: Remove, redundant to ctf_typemax.
(ctf_dtdef_t) <dtd_name>: Remove.
<dtd_data>: Note that the ctt_name is now populated.
(ctf_str_atom_t) <csa_offset>: This is now the strtab
offset for internal strings too.
<csa_external_offset>: New, the external strtab offset.
(CTF_INDEX_TO_TYPEPTR): Handle the LCTF_RDWR case.
(ctf_name_table): New declaration.
(ctf_lookup_by_rawname): Likewise.
(ctf_lookup_by_rawhash): Likewise.
(ctf_set_ctl_hashes): Likewise.
(ctf_serialize): Likewise.
(ctf_dtd_insert): Adjust.
(ctf_simple_open_internal): Likewise.
(ctf_bufopen_internal): Likewise.
(ctf_list_empty_p): Likewise.
(ctf_str_remove_ref): Likewise.
(ctf_str_add): Returns uint32_t now.
(ctf_str_add_ref): Likewise.
(ctf_str_add_external): Now returns a boolean (int).
* ctf-string.c (ctf_strraw_explicit): Check the ctf_prov_strtab
for strings in the appropriate range.
(ctf_str_create_atoms): Create the ctf_prov_strtab. Detect OOM
when adding the null string to the new strtab.
(ctf_str_free_atoms): Destroy the ctf_prov_strtab.
(ctf_str_add_ref_internal): Add make_provisional argument. If
make_provisional, populate the offset and fill in the
ctf_prov_strtab accordingly.
(ctf_str_add): Return the offset, not the string.
(ctf_str_add_ref): Likewise.
(ctf_str_add_external): Return a success integer.
(ctf_str_remove_ref): New, remove a single ref.
(ctf_str_count_strtab): Do not count the initial null string's
length or the existence or length of any unreferenced internal
atoms.
(ctf_str_populate_sorttab): Skip atoms with no refs.
(ctf_str_write_strtab): Populate the nullstr earlier. Add one
to the cts_len for the null string, since it is no longer done
in ctf_str_count_strtab. Adjust for csa_external_offset rename.
Populate the csa_offset for both internal and external cases.
Flush the ctf_prov_strtab afterwards, and reset the
ctf_str_prov_offset.
* ctf-create.c (ctf_grow_ptrtab): New.
(ctf_create): Call it. Initialize new fields rather than old
ones. Tell ctf_bufopen_internal that this is a writable dictionary.
Set the ctl hashes and data model.
(ctf_update): Rename to...
(ctf_serialize): ... this. Leave a compatibility function behind.
Tell ctf_simple_open_internal that this is a writable dictionary.
Pass the new fields along from the old dictionary. Drop
ctf_dtnextid and ctf_dtbyname. Use ctf_strraw, not dtd_name.
Do not zero out the DTD's ctt_name.
(ctf_prefixed_name): Rename to...
(ctf_name_table): ... this. No longer return a prefixed name: return
the applicable name table instead.
(ctf_dtd_insert): Use it, and use the right name table. Pass in the
kind we're adding. Migrate away from dtd_name.
(ctf_dtd_delete): Adjust similarly. Remove the ref to the
deleted ctt_name.
(ctf_dtd_lookup_type_by_name): Remove.
(ctf_dynamic_type): Always return NULL on read-only dictionaries.
No longer check ctf_dtnextid: check ctf_typemax instead.
(ctf_snapshot): No longer use ctf_dtnextid: use ctf_typemax instead.
(ctf_rollback): Likewise. No longer fail with ECTF_OVERROLLBACK. Use
ctf_name_table and the right name table, and migrate away from
dtd_name as in ctf_dtd_delete.
(ctf_add_generic): Pass in the kind explicitly and pass it to
ctf_dtd_insert. Use ctf_typemax, not ctf_dtnextid. Migrate away
from dtd_name to using ctf_str_add_ref to populate the ctt_name.
Grow the ptrtab if needed.
(ctf_add_encoded): Pass in the kind.
(ctf_add_slice): Likewise.
(ctf_add_array): Likewise.
(ctf_add_function): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_reftype): Likewise. Initialize the ctf_ptrtab, checking
ctt_name rather than dtd_name.
(ctf_add_struct_sized): Pass in the kind. Use
ctf_lookup_by_rawname, not ctf_hash_lookup_type /
ctf_dtd_lookup_type_by_name.
(ctf_add_union_sized): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_type): Likewise.
(ctf_compress_write): Call ctf_serialize: adjust for ctf_size not
being initialized until after the call.
(ctf_write_mem): Likewise.
(ctf_write): Likewise.
* ctf-archive.c (arc_write_one_ctf): Likewise.
* ctf-lookup.c (ctf_lookup_by_name): Use ctf_lookuup_by_rawhash, not
ctf_hash_lookup_type.
(ctf_lookup_by_id): No longer check the readonly types if the
dictionary is writable.
* ctf-open.c (init_types): Assert that this dictionary is not
writable. Adjust to use the new name hashes, ctf_name_table,
and ctf_ptrtab_len. GNU style fix for the final ptrtab scan.
(ctf_bufopen_internal): New 'writable' parameter. Flip on LCTF_RDWR
if set. Drop out early when dictionary is writable. Split the
ctf_lookups initialization into...
(ctf_set_cth_hashes): ... this new function.
(ctf_simple_open_internal): Adjust. New 'writable' parameter.
(ctf_simple_open): Adjust accordingly.
(ctf_bufopen): Likewise.
(ctf_file_close): Destroy the appropriate name hashes. No longer
destroy ctf_dtbyname, which is gone.
(ctf_getdatasect): Remove spurious "extern".
* ctf-types.c (ctf_lookup_by_rawname): New, look up types in the
specified name table, given a kind.
(ctf_lookup_by_rawhash): Likewise, given a ctf_names_t *.
(ctf_member_iter): Add support for iterating over the
dynamic type list.
(ctf_enum_iter): Likewise.
(ctf_variable_iter): Likewise.
(ctf_type_rvisit): Likewise.
(ctf_member_info): Add support for types in the dynamic type list.
(ctf_enum_name): Likewise.
(ctf_enum_value): Likewise.
(ctf_func_type_info): Likewise.
(ctf_func_type_args): Likewise.
* ctf-link.c (ctf_accumulate_archive_names): No longer call
ctf_update.
(ctf_link_write): Likewise.
(ctf_link_intern_extern_string): Adjust for new
ctf_str_add_external return value.
(ctf_link_add_strtab): Likewise.
* ctf-util.c (ctf_list_empty_p): New.
2019-08-08 00:55:09 +08:00
|
|
|
structs = ctf_dynhash_create (ctf_hash_string, ctf_hash_eq_string,
|
|
|
|
NULL, NULL);
|
|
|
|
unions = ctf_dynhash_create (ctf_hash_string, ctf_hash_eq_string,
|
|
|
|
NULL, NULL);
|
|
|
|
enums = ctf_dynhash_create (ctf_hash_string, ctf_hash_eq_string,
|
|
|
|
NULL, NULL);
|
|
|
|
names = ctf_dynhash_create (ctf_hash_string, ctf_hash_eq_string,
|
|
|
|
NULL, NULL);
|
|
|
|
if (!structs || !unions || !enums || !names)
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
{
|
|
|
|
ctf_set_open_errno (errp, EAGAIN);
|
libctf: support addition of types to dicts read via ctf_open()
libctf has long declared deserialized dictionaries (out of files or ELF
sections or memory buffers or whatever) to be read-only: back in the
furthest prehistory this was not the case, in that you could add a
few sorts of type to such dicts, but attempting to do so often caused
horrible memory corruption, so I banned the lot.
But it turns out real consumers want it (notably DTrace, which
synthesises pointers to types that don't have them and adds them to the
ctf_open()ed dicts if it needs them). Let's bring it back again, but
without the memory corruption and without the massive code duplication
required in days of yore to distinguish between static and dynamic
types: the representation of both types has been identical for a few
years, with the only difference being that types as a whole are stored in
a big buffer for types read in via ctf_open and per-type hashtables for
newly-added types.
So we discard the internally-visible concept of "readonly dictionaries"
in favour of declaring the *range of types* that were already present
when the dict was read in to be read-only: you can't modify them (say,
by adding members to them if they're structs, or calling ctf_set_array
on them), but you can add more types and point to them. (The API
remains the same, with calls sometimes returning ECTF_RDONLY, but now
they do so less often.)
This is a fairly invasive change, mostly because code written since the
ban was introduced didn't take the possibility of a static/dynamic split
into account. Some of these irregularities were hard to define as
anything but bugs.
Notably:
- The symbol handling was assuming that symbols only needed to be
looked for in dynamic hashtabs or static linker-laid-out indexed/
nonindexed layouts, but now we want to check both in case people
added more symbols to a dict they opened.
- The code that handles type additions wasn't checking to see if types
with the same name existed *at all* (so you could do
ctf_add_typedef (fp, "foo", bar) repeatedly without error). This
seems reasonable for types you just added, but we probably *do* want
to ban addition of types with names that override names we already
used in the ctf_open()ed portion, since that would probably corrupt
existing type relationships. (Doing things this way also avoids
causing new errors for any existing code that was doing this sort of
thing.)
- ctf_lookup_variable entirely failed to work for variables just added
by ctf_add_variable: you had to write the dict out and read it back
in again before they appeared.
- The symbol handling remembered what symbols you looked up but didn't
remember their types, so you could look up an object symbol and then
find it popping up when you asked for function symbols, which seems
less than ideal. Since we had to rejig things enough to be able to
distinguish function and object symbols internally anyway (in order
to give suitable errors if you try to add a symbol with a name that
already existed in the ctf_open()ed dict), this bug suddenly became
more visible and was easily fixed.
We do not (yet) support writing out dicts that have been previously read
in via ctf_open() or other deserializer (you can look things up in them,
but not write them out a second time). This never worked, so there is
no incompatibility; if it is needed at a later date, the serializer is a
little bit closer to having it work now (the only table we don't deal
with is the types table, and that's because the upcoming CTFv4 changes
are likely to make major changes to the way that table is represented
internally, so adding more code that depends on its current form seems
like a bad idea).
There is a new testcase that tests much of this, in particular that
modification of existing types is still banned and that you can add new
ones and chase them without error.
libctf/
* ctf-impl.h (struct ctf_dict.ctf_symhash): Split into...
(ctf_dict.ctf_symhash_func): ... this and...
(ctf_dict.ctf_symhash_objt): ... this.
(ctf_dict.ctf_stypes): New, counts static types.
(LCTF_INDEX_TO_TYPEPTR): Use it instead of CTF_RDWR.
(LCTF_RDWR): Deleted.
(LCTF_DIRTY): Renumbered.
(LCTF_LINKING): Likewise.
(ctf_lookup_variable_here): New.
(ctf_lookup_by_sym_or_name): Likewise.
(ctf_symbol_next_static): Likewise.
(ctf_add_variable_forced): Likewise.
(ctf_add_funcobjt_sym_forced): Likewise.
(ctf_simple_open_internal): Adjust.
(ctf_bufopen_internal): Likewise.
* ctf-create.c (ctf_grow_ptrtab): Adjust a lot to start with.
(ctf_create): Migrate a bunch of initializations into bufopen.
Force recreation of name tables. Do not forcibly override the
model, let ctf_bufopen do it.
(ctf_static_type): New.
(ctf_update): Drop LCTF_RDWR check.
(ctf_dynamic_type): Likewise.
(ctf_add_function): Likewise.
(ctf_add_type_internal): Likewise.
(ctf_rollback): Check ctf_stypes, not LCTF_RDWR.
(ctf_set_array): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_enumerator): Likewise (only on the target dict).
(ctf_add_member_offset): Likewise.
(ctf_add_generic): Drop LCTF_RDWR check. Ban addition of types
with colliding names.
(ctf_add_forward): Note safety under the new rules.
(ctf_add_variable): Split all but the existence check into...
(ctf_add_variable_forced): ... this new function.
(ctf_add_funcobjt_sym): Likewise...
(ctf_add_funcobjt_sym_forced): ... for this new function.
* ctf-link.c (ctf_link_add_linker_symbol): Ban calling on dicts
with any stypes.
(ctf_link_add_strtab): Likewise.
(ctf_link_shuffle_syms): Likewise.
(ctf_link_intern_extern_string): Note pre-existing prohibition.
* ctf-lookup.c (ctf_lookup_by_id): Drop LCTF_RDWR check.
(ctf_lookup_variable): Split out looking in a dict but not
its parent into...
(ctf_lookup_variable_here): ... this new function.
(ctf_lookup_symbol_idx): Track whether looking up a function or
object: cache them separately.
(ctf_symbol_next): Split out looking in non-dynamic symtypetab
entries to...
(ctf_symbol_next_static): ... this new function. Don't get confused
by the simultaneous presence of static and dynamic symtypetab entries.
(ctf_try_lookup_indexed): Don't waste time looking up symbols by
index before there can be any idea how symbols are numbered.
(ctf_lookup_by_sym_or_name): Distinguish between function and
data object lookups. Drop LCTF_RDWR.
(ctf_lookup_by_symbol): Adjust.
(ctf_lookup_by_symbol_name): Likewise.
* ctf-open.c (init_types): Rename to...
(init_static_types): ... this. Drop LCTF_RDWR. Populate ctf_stypes.
(ctf_simple_open): Drop writable arg.
(ctf_simple_open_internal): Likewise.
(ctf_bufopen): Likewise.
(ctf_bufopen_internal): Populate fields only used for writable dicts.
Drop LCTF_RDWR.
(ctf_dict_close): Cater for symhash cache split.
* ctf-serialize.c (ctf_serialize): Use ctf_stypes, not LCTF_RDWR.
* ctf-types.c (ctf_variable_next): Drop LCTF_RDWR.
* testsuite/libctf-lookup/add-to-opened*: New test.
2023-12-20 00:58:19 +08:00
|
|
|
goto err;
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
cts.cts_name = _CTF_SECTION;
|
|
|
|
cts.cts_data = &hdr;
|
|
|
|
cts.cts_size = sizeof (hdr);
|
|
|
|
cts.cts_entsize = 1;
|
|
|
|
|
libctf: make ctf_serialize() actually serialize
ctf_serialize() evolved from the old ctf_update(), which mutated the
in-memory CTF dict to make all the dynamic in-memory types into static,
unchanging written-to-the-dict types (by deserializing and reserializing
it): back in the days when you could only do type lookups on static types,
this meant you could see all the types you added recently, at the small,
small cost of making it impossible to change those older types ever again
and inducing an amortized O(n^2) cost if you actually wanted to add
references to types you added at arbitrary times to later types.
It also reset things so that ctf_discard() would throw away only types you
added after the most recent ctf_update() call.
Some time ago this was all changed so that you could look up dynamic types
just as easily as static types: ctf_update() changed so that only its
visible side-effect of affecting ctf_discard() remained: the old
ctf_update() was renamed to ctf_serialize(), made internal to libctf, and
called from the various functions that wrote files out.
... but it was still working by serializing and deserializing the entire
dict, swapping out its guts with the newly-serialized copy in an invasive
and horrible fashion that coupled ctf_serialize() to almost every field in
the ctf_dict_t. This is totally useless, and fixing it is easy: just rip
all that code out and have ctf_serialize return a serialized representation,
and let everything use that directly. This simplifies most of its callers
significantly.
(It also points up another bug: ctf_gzwrite() failed to call ctf_serialize()
at all, so it would only ever work for a dict you just ctf_write_mem()ed
yourself, just for its invisible side-effect of serializing the dict!)
This lets us simplify away a bunch of internal-only open-side functionality
for overriding the syn_ext_strtab and some just-added functionality for
forcing in an existing atoms table, without loss of functionality, and lets
us lift the restriction on reserializing a dict that was ctf_open()ed rather
than being ctf_create()d: it's now perfectly OK to open a dict, modify it
(except for adding members to existing structs, unions, or enums, which
fails with -ECTF_RDONLY), and write it out again, just as one would expect.
libctf/
* ctf-serialize.c (ctf_symtypetab_sect_sizes): Fix typos.
(ctf_type_sect_size): Add static type sizes too.
(ctf_serialize): Return the new dict rather than updating the
existing dict. No longer fail for dicts with static types;
copy them onto the start of the new types table.
(ctf_gzwrite): Actually serialize before gzwriting.
(ctf_write_mem): Improve forced (test-mode) endian-flipping:
flip dicts even if they are too small to be compressed.
Improve confusing variable naming.
* ctf-archive.c (arc_write_one_ctf): Don't bother to call
ctf_serialize: both the functions we call do so.
* ctf-string.c (ctf_str_create_atoms): Drop serializing case
(atoms arg).
* ctf-open.c (ctf_simple_open): Call ctf_bufopen directly.
(ctf_simple_open_internal): Delete.
(ctf_bufopen_internal): Delete/rename to ctf_bufopen: no
longer bother with syn_ext_strtab or forced atoms table,
serialization no longer needs them.
* ctf-create.c (ctf_create): Call ctf_bufopen directly.
* ctf-impl.h (ctf_str_create_atoms): Drop atoms arg.
(ctf_simple_open_internal): Delete.
(ctf_bufopen_internal): Likewise.
(ctf_serialize): Adjust.
* testsuite/libctf-lookup/add-to-opened.c: Adjust now that
this is supposed to work.
2024-03-26 21:04:20 +08:00
|
|
|
if ((fp = ctf_bufopen (&cts, NULL, NULL, errp)) == NULL)
|
libctf: support addition of types to dicts read via ctf_open()
libctf has long declared deserialized dictionaries (out of files or ELF
sections or memory buffers or whatever) to be read-only: back in the
furthest prehistory this was not the case, in that you could add a
few sorts of type to such dicts, but attempting to do so often caused
horrible memory corruption, so I banned the lot.
But it turns out real consumers want it (notably DTrace, which
synthesises pointers to types that don't have them and adds them to the
ctf_open()ed dicts if it needs them). Let's bring it back again, but
without the memory corruption and without the massive code duplication
required in days of yore to distinguish between static and dynamic
types: the representation of both types has been identical for a few
years, with the only difference being that types as a whole are stored in
a big buffer for types read in via ctf_open and per-type hashtables for
newly-added types.
So we discard the internally-visible concept of "readonly dictionaries"
in favour of declaring the *range of types* that were already present
when the dict was read in to be read-only: you can't modify them (say,
by adding members to them if they're structs, or calling ctf_set_array
on them), but you can add more types and point to them. (The API
remains the same, with calls sometimes returning ECTF_RDONLY, but now
they do so less often.)
This is a fairly invasive change, mostly because code written since the
ban was introduced didn't take the possibility of a static/dynamic split
into account. Some of these irregularities were hard to define as
anything but bugs.
Notably:
- The symbol handling was assuming that symbols only needed to be
looked for in dynamic hashtabs or static linker-laid-out indexed/
nonindexed layouts, but now we want to check both in case people
added more symbols to a dict they opened.
- The code that handles type additions wasn't checking to see if types
with the same name existed *at all* (so you could do
ctf_add_typedef (fp, "foo", bar) repeatedly without error). This
seems reasonable for types you just added, but we probably *do* want
to ban addition of types with names that override names we already
used in the ctf_open()ed portion, since that would probably corrupt
existing type relationships. (Doing things this way also avoids
causing new errors for any existing code that was doing this sort of
thing.)
- ctf_lookup_variable entirely failed to work for variables just added
by ctf_add_variable: you had to write the dict out and read it back
in again before they appeared.
- The symbol handling remembered what symbols you looked up but didn't
remember their types, so you could look up an object symbol and then
find it popping up when you asked for function symbols, which seems
less than ideal. Since we had to rejig things enough to be able to
distinguish function and object symbols internally anyway (in order
to give suitable errors if you try to add a symbol with a name that
already existed in the ctf_open()ed dict), this bug suddenly became
more visible and was easily fixed.
We do not (yet) support writing out dicts that have been previously read
in via ctf_open() or other deserializer (you can look things up in them,
but not write them out a second time). This never worked, so there is
no incompatibility; if it is needed at a later date, the serializer is a
little bit closer to having it work now (the only table we don't deal
with is the types table, and that's because the upcoming CTFv4 changes
are likely to make major changes to the way that table is represented
internally, so adding more code that depends on its current form seems
like a bad idea).
There is a new testcase that tests much of this, in particular that
modification of existing types is still banned and that you can add new
ones and chase them without error.
libctf/
* ctf-impl.h (struct ctf_dict.ctf_symhash): Split into...
(ctf_dict.ctf_symhash_func): ... this and...
(ctf_dict.ctf_symhash_objt): ... this.
(ctf_dict.ctf_stypes): New, counts static types.
(LCTF_INDEX_TO_TYPEPTR): Use it instead of CTF_RDWR.
(LCTF_RDWR): Deleted.
(LCTF_DIRTY): Renumbered.
(LCTF_LINKING): Likewise.
(ctf_lookup_variable_here): New.
(ctf_lookup_by_sym_or_name): Likewise.
(ctf_symbol_next_static): Likewise.
(ctf_add_variable_forced): Likewise.
(ctf_add_funcobjt_sym_forced): Likewise.
(ctf_simple_open_internal): Adjust.
(ctf_bufopen_internal): Likewise.
* ctf-create.c (ctf_grow_ptrtab): Adjust a lot to start with.
(ctf_create): Migrate a bunch of initializations into bufopen.
Force recreation of name tables. Do not forcibly override the
model, let ctf_bufopen do it.
(ctf_static_type): New.
(ctf_update): Drop LCTF_RDWR check.
(ctf_dynamic_type): Likewise.
(ctf_add_function): Likewise.
(ctf_add_type_internal): Likewise.
(ctf_rollback): Check ctf_stypes, not LCTF_RDWR.
(ctf_set_array): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_enumerator): Likewise (only on the target dict).
(ctf_add_member_offset): Likewise.
(ctf_add_generic): Drop LCTF_RDWR check. Ban addition of types
with colliding names.
(ctf_add_forward): Note safety under the new rules.
(ctf_add_variable): Split all but the existence check into...
(ctf_add_variable_forced): ... this new function.
(ctf_add_funcobjt_sym): Likewise...
(ctf_add_funcobjt_sym_forced): ... for this new function.
* ctf-link.c (ctf_link_add_linker_symbol): Ban calling on dicts
with any stypes.
(ctf_link_add_strtab): Likewise.
(ctf_link_shuffle_syms): Likewise.
(ctf_link_intern_extern_string): Note pre-existing prohibition.
* ctf-lookup.c (ctf_lookup_by_id): Drop LCTF_RDWR check.
(ctf_lookup_variable): Split out looking in a dict but not
its parent into...
(ctf_lookup_variable_here): ... this new function.
(ctf_lookup_symbol_idx): Track whether looking up a function or
object: cache them separately.
(ctf_symbol_next): Split out looking in non-dynamic symtypetab
entries to...
(ctf_symbol_next_static): ... this new function. Don't get confused
by the simultaneous presence of static and dynamic symtypetab entries.
(ctf_try_lookup_indexed): Don't waste time looking up symbols by
index before there can be any idea how symbols are numbered.
(ctf_lookup_by_sym_or_name): Distinguish between function and
data object lookups. Drop LCTF_RDWR.
(ctf_lookup_by_symbol): Adjust.
(ctf_lookup_by_symbol_name): Likewise.
* ctf-open.c (init_types): Rename to...
(init_static_types): ... this. Drop LCTF_RDWR. Populate ctf_stypes.
(ctf_simple_open): Drop writable arg.
(ctf_simple_open_internal): Likewise.
(ctf_bufopen): Likewise.
(ctf_bufopen_internal): Populate fields only used for writable dicts.
Drop LCTF_RDWR.
(ctf_dict_close): Cater for symhash cache split.
* ctf-serialize.c (ctf_serialize): Use ctf_stypes, not LCTF_RDWR.
* ctf-types.c (ctf_variable_next): Drop LCTF_RDWR.
* testsuite/libctf-lookup/add-to-opened*: New test.
2023-12-20 00:58:19 +08:00
|
|
|
goto err;
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
|
libctf: support addition of types to dicts read via ctf_open()
libctf has long declared deserialized dictionaries (out of files or ELF
sections or memory buffers or whatever) to be read-only: back in the
furthest prehistory this was not the case, in that you could add a
few sorts of type to such dicts, but attempting to do so often caused
horrible memory corruption, so I banned the lot.
But it turns out real consumers want it (notably DTrace, which
synthesises pointers to types that don't have them and adds them to the
ctf_open()ed dicts if it needs them). Let's bring it back again, but
without the memory corruption and without the massive code duplication
required in days of yore to distinguish between static and dynamic
types: the representation of both types has been identical for a few
years, with the only difference being that types as a whole are stored in
a big buffer for types read in via ctf_open and per-type hashtables for
newly-added types.
So we discard the internally-visible concept of "readonly dictionaries"
in favour of declaring the *range of types* that were already present
when the dict was read in to be read-only: you can't modify them (say,
by adding members to them if they're structs, or calling ctf_set_array
on them), but you can add more types and point to them. (The API
remains the same, with calls sometimes returning ECTF_RDONLY, but now
they do so less often.)
This is a fairly invasive change, mostly because code written since the
ban was introduced didn't take the possibility of a static/dynamic split
into account. Some of these irregularities were hard to define as
anything but bugs.
Notably:
- The symbol handling was assuming that symbols only needed to be
looked for in dynamic hashtabs or static linker-laid-out indexed/
nonindexed layouts, but now we want to check both in case people
added more symbols to a dict they opened.
- The code that handles type additions wasn't checking to see if types
with the same name existed *at all* (so you could do
ctf_add_typedef (fp, "foo", bar) repeatedly without error). This
seems reasonable for types you just added, but we probably *do* want
to ban addition of types with names that override names we already
used in the ctf_open()ed portion, since that would probably corrupt
existing type relationships. (Doing things this way also avoids
causing new errors for any existing code that was doing this sort of
thing.)
- ctf_lookup_variable entirely failed to work for variables just added
by ctf_add_variable: you had to write the dict out and read it back
in again before they appeared.
- The symbol handling remembered what symbols you looked up but didn't
remember their types, so you could look up an object symbol and then
find it popping up when you asked for function symbols, which seems
less than ideal. Since we had to rejig things enough to be able to
distinguish function and object symbols internally anyway (in order
to give suitable errors if you try to add a symbol with a name that
already existed in the ctf_open()ed dict), this bug suddenly became
more visible and was easily fixed.
We do not (yet) support writing out dicts that have been previously read
in via ctf_open() or other deserializer (you can look things up in them,
but not write them out a second time). This never worked, so there is
no incompatibility; if it is needed at a later date, the serializer is a
little bit closer to having it work now (the only table we don't deal
with is the types table, and that's because the upcoming CTFv4 changes
are likely to make major changes to the way that table is represented
internally, so adding more code that depends on its current form seems
like a bad idea).
There is a new testcase that tests much of this, in particular that
modification of existing types is still banned and that you can add new
ones and chase them without error.
libctf/
* ctf-impl.h (struct ctf_dict.ctf_symhash): Split into...
(ctf_dict.ctf_symhash_func): ... this and...
(ctf_dict.ctf_symhash_objt): ... this.
(ctf_dict.ctf_stypes): New, counts static types.
(LCTF_INDEX_TO_TYPEPTR): Use it instead of CTF_RDWR.
(LCTF_RDWR): Deleted.
(LCTF_DIRTY): Renumbered.
(LCTF_LINKING): Likewise.
(ctf_lookup_variable_here): New.
(ctf_lookup_by_sym_or_name): Likewise.
(ctf_symbol_next_static): Likewise.
(ctf_add_variable_forced): Likewise.
(ctf_add_funcobjt_sym_forced): Likewise.
(ctf_simple_open_internal): Adjust.
(ctf_bufopen_internal): Likewise.
* ctf-create.c (ctf_grow_ptrtab): Adjust a lot to start with.
(ctf_create): Migrate a bunch of initializations into bufopen.
Force recreation of name tables. Do not forcibly override the
model, let ctf_bufopen do it.
(ctf_static_type): New.
(ctf_update): Drop LCTF_RDWR check.
(ctf_dynamic_type): Likewise.
(ctf_add_function): Likewise.
(ctf_add_type_internal): Likewise.
(ctf_rollback): Check ctf_stypes, not LCTF_RDWR.
(ctf_set_array): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_enumerator): Likewise (only on the target dict).
(ctf_add_member_offset): Likewise.
(ctf_add_generic): Drop LCTF_RDWR check. Ban addition of types
with colliding names.
(ctf_add_forward): Note safety under the new rules.
(ctf_add_variable): Split all but the existence check into...
(ctf_add_variable_forced): ... this new function.
(ctf_add_funcobjt_sym): Likewise...
(ctf_add_funcobjt_sym_forced): ... for this new function.
* ctf-link.c (ctf_link_add_linker_symbol): Ban calling on dicts
with any stypes.
(ctf_link_add_strtab): Likewise.
(ctf_link_shuffle_syms): Likewise.
(ctf_link_intern_extern_string): Note pre-existing prohibition.
* ctf-lookup.c (ctf_lookup_by_id): Drop LCTF_RDWR check.
(ctf_lookup_variable): Split out looking in a dict but not
its parent into...
(ctf_lookup_variable_here): ... this new function.
(ctf_lookup_symbol_idx): Track whether looking up a function or
object: cache them separately.
(ctf_symbol_next): Split out looking in non-dynamic symtypetab
entries to...
(ctf_symbol_next_static): ... this new function. Don't get confused
by the simultaneous presence of static and dynamic symtypetab entries.
(ctf_try_lookup_indexed): Don't waste time looking up symbols by
index before there can be any idea how symbols are numbered.
(ctf_lookup_by_sym_or_name): Distinguish between function and
data object lookups. Drop LCTF_RDWR.
(ctf_lookup_by_symbol): Adjust.
(ctf_lookup_by_symbol_name): Likewise.
* ctf-open.c (init_types): Rename to...
(init_static_types): ... this. Drop LCTF_RDWR. Populate ctf_stypes.
(ctf_simple_open): Drop writable arg.
(ctf_simple_open_internal): Likewise.
(ctf_bufopen): Likewise.
(ctf_bufopen_internal): Populate fields only used for writable dicts.
Drop LCTF_RDWR.
(ctf_dict_close): Cater for symhash cache split.
* ctf-serialize.c (ctf_serialize): Use ctf_stypes, not LCTF_RDWR.
* ctf-types.c (ctf_variable_next): Drop LCTF_RDWR.
* testsuite/libctf-lookup/add-to-opened*: New test.
2023-12-20 00:58:19 +08:00
|
|
|
/* These hashes will have been initialized with a starting size of zero,
|
|
|
|
which is surely wrong. Use ones with slightly larger sizes. */
|
|
|
|
ctf_dynhash_destroy (fp->ctf_structs);
|
|
|
|
ctf_dynhash_destroy (fp->ctf_unions);
|
|
|
|
ctf_dynhash_destroy (fp->ctf_enums);
|
|
|
|
ctf_dynhash_destroy (fp->ctf_names);
|
libctf: remove static/dynamic name lookup distinction
libctf internally maintains a set of hash tables for type name lookups,
one for each valid C type namespace (struct, union, enum, and everything
else).
Or, rather, it maintains *two* sets of hash tables: one, a ctf_hash *,
is meant for lookups in ctf_(buf)open()ed dicts with fixed content; the
other, a ctf_dynhash *, is meant for lookups in ctf_create()d dicts.
This distinction was somewhat valuable in the far pre-binutils past when
two different hashtable implementations were used (one expanding, the
other fixed-size), but those days are long gone: the hash table
implementations are almost identical, both wrappers around the libiberty
hashtab. The ctf_dynhash has many more capabilities than the ctf_hash
(iteration, deletion, etc etc) and has no downsides other than starting
at a fixed, arbitrary small size.
That limitation is easy to lift (via a new ctf_dynhash_create_sized()),
following which we can throw away nearly all the ctf_hash
implementation, and all the code to choose between readable and writable
hashtabs; the few convenience functions that are still useful (for
insertion of name -> type mappings) can also be generalized a bit so
that the extra string verification they do is potentially available to
other string lookups as well.
(libctf still has two hashtable implementations, ctf_dynhash, above,
and ctf_dynset, which is a key-only hashtab that can avoid a great many
malloc()s, used for high-volume applications in the deduplicator.)
libctf/
* ctf-create.c (ctf_create): Eliminate ctn_writable.
(ctf_dtd_insert): Likewise.
(ctf_dtd_delete): Likewise.
(ctf_rollback): Likewise.
(ctf_name_table): Eliminate ctf_names_t.
* ctf-hash.c (ctf_dynhash_create): Comment update.
Reimplement in terms of...
(ctf_dynhash_create_sized): ... this new function.
(ctf_hash_create): Remove.
(ctf_hash_size): Remove.
(ctf_hash_define_type): Remove.
(ctf_hash_destroy): Remove.
(ctf_hash_lookup_type): Rename to...
(ctf_dynhash_lookup_type): ... this.
(ctf_hash_insert_type): Rename to...
(ctf_dynhash_insert_type): ... this, moving validation to...
* ctf-string.c (ctf_strptr_validate): ... this new function.
* ctf-impl.h (struct ctf_names): Extirpate.
(struct ctf_lookup.ctl_hash): Now a ctf_dynhash_t.
(struct ctf_dict): All ctf_names_t fields are now ctf_dynhash_t.
(ctf_name_table): Now returns a ctf_dynhash_t.
(ctf_lookup_by_rawhash): Remove.
(ctf_hash_create): Likewise.
(ctf_hash_insert_type): Likewise.
(ctf_hash_define_type): Likewise.
(ctf_hash_lookup_type): Likewise.
(ctf_hash_size): Likewise.
(ctf_hash_destroy): Likewise.
(ctf_dynhash_create_sized): New.
(ctf_dynhash_insert_type): New.
(ctf_dynhash_lookup_type): New.
(ctf_strptr_validate): New.
* ctf-lookup.c (ctf_lookup_by_name_internal): Adapt.
* ctf-open.c (init_types): Adapt.
(ctf_set_ctl_hashes): Adapt.
(ctf_dict_close): Adapt.
* ctf-serialize.c (ctf_serialize): Adapt.
* ctf-types.c (ctf_lookup_by_rawhash): Remove.
2023-12-19 01:47:48 +08:00
|
|
|
fp->ctf_structs = structs;
|
|
|
|
fp->ctf_unions = unions;
|
|
|
|
fp->ctf_enums = enums;
|
|
|
|
fp->ctf_names = names;
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
fp->ctf_dtoldid = 0;
|
|
|
|
fp->ctf_snapshot_lu = 0;
|
|
|
|
|
libctf: support addition of types to dicts read via ctf_open()
libctf has long declared deserialized dictionaries (out of files or ELF
sections or memory buffers or whatever) to be read-only: back in the
furthest prehistory this was not the case, in that you could add a
few sorts of type to such dicts, but attempting to do so often caused
horrible memory corruption, so I banned the lot.
But it turns out real consumers want it (notably DTrace, which
synthesises pointers to types that don't have them and adds them to the
ctf_open()ed dicts if it needs them). Let's bring it back again, but
without the memory corruption and without the massive code duplication
required in days of yore to distinguish between static and dynamic
types: the representation of both types has been identical for a few
years, with the only difference being that types as a whole are stored in
a big buffer for types read in via ctf_open and per-type hashtables for
newly-added types.
So we discard the internally-visible concept of "readonly dictionaries"
in favour of declaring the *range of types* that were already present
when the dict was read in to be read-only: you can't modify them (say,
by adding members to them if they're structs, or calling ctf_set_array
on them), but you can add more types and point to them. (The API
remains the same, with calls sometimes returning ECTF_RDONLY, but now
they do so less often.)
This is a fairly invasive change, mostly because code written since the
ban was introduced didn't take the possibility of a static/dynamic split
into account. Some of these irregularities were hard to define as
anything but bugs.
Notably:
- The symbol handling was assuming that symbols only needed to be
looked for in dynamic hashtabs or static linker-laid-out indexed/
nonindexed layouts, but now we want to check both in case people
added more symbols to a dict they opened.
- The code that handles type additions wasn't checking to see if types
with the same name existed *at all* (so you could do
ctf_add_typedef (fp, "foo", bar) repeatedly without error). This
seems reasonable for types you just added, but we probably *do* want
to ban addition of types with names that override names we already
used in the ctf_open()ed portion, since that would probably corrupt
existing type relationships. (Doing things this way also avoids
causing new errors for any existing code that was doing this sort of
thing.)
- ctf_lookup_variable entirely failed to work for variables just added
by ctf_add_variable: you had to write the dict out and read it back
in again before they appeared.
- The symbol handling remembered what symbols you looked up but didn't
remember their types, so you could look up an object symbol and then
find it popping up when you asked for function symbols, which seems
less than ideal. Since we had to rejig things enough to be able to
distinguish function and object symbols internally anyway (in order
to give suitable errors if you try to add a symbol with a name that
already existed in the ctf_open()ed dict), this bug suddenly became
more visible and was easily fixed.
We do not (yet) support writing out dicts that have been previously read
in via ctf_open() or other deserializer (you can look things up in them,
but not write them out a second time). This never worked, so there is
no incompatibility; if it is needed at a later date, the serializer is a
little bit closer to having it work now (the only table we don't deal
with is the types table, and that's because the upcoming CTFv4 changes
are likely to make major changes to the way that table is represented
internally, so adding more code that depends on its current form seems
like a bad idea).
There is a new testcase that tests much of this, in particular that
modification of existing types is still banned and that you can add new
ones and chase them without error.
libctf/
* ctf-impl.h (struct ctf_dict.ctf_symhash): Split into...
(ctf_dict.ctf_symhash_func): ... this and...
(ctf_dict.ctf_symhash_objt): ... this.
(ctf_dict.ctf_stypes): New, counts static types.
(LCTF_INDEX_TO_TYPEPTR): Use it instead of CTF_RDWR.
(LCTF_RDWR): Deleted.
(LCTF_DIRTY): Renumbered.
(LCTF_LINKING): Likewise.
(ctf_lookup_variable_here): New.
(ctf_lookup_by_sym_or_name): Likewise.
(ctf_symbol_next_static): Likewise.
(ctf_add_variable_forced): Likewise.
(ctf_add_funcobjt_sym_forced): Likewise.
(ctf_simple_open_internal): Adjust.
(ctf_bufopen_internal): Likewise.
* ctf-create.c (ctf_grow_ptrtab): Adjust a lot to start with.
(ctf_create): Migrate a bunch of initializations into bufopen.
Force recreation of name tables. Do not forcibly override the
model, let ctf_bufopen do it.
(ctf_static_type): New.
(ctf_update): Drop LCTF_RDWR check.
(ctf_dynamic_type): Likewise.
(ctf_add_function): Likewise.
(ctf_add_type_internal): Likewise.
(ctf_rollback): Check ctf_stypes, not LCTF_RDWR.
(ctf_set_array): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_enumerator): Likewise (only on the target dict).
(ctf_add_member_offset): Likewise.
(ctf_add_generic): Drop LCTF_RDWR check. Ban addition of types
with colliding names.
(ctf_add_forward): Note safety under the new rules.
(ctf_add_variable): Split all but the existence check into...
(ctf_add_variable_forced): ... this new function.
(ctf_add_funcobjt_sym): Likewise...
(ctf_add_funcobjt_sym_forced): ... for this new function.
* ctf-link.c (ctf_link_add_linker_symbol): Ban calling on dicts
with any stypes.
(ctf_link_add_strtab): Likewise.
(ctf_link_shuffle_syms): Likewise.
(ctf_link_intern_extern_string): Note pre-existing prohibition.
* ctf-lookup.c (ctf_lookup_by_id): Drop LCTF_RDWR check.
(ctf_lookup_variable): Split out looking in a dict but not
its parent into...
(ctf_lookup_variable_here): ... this new function.
(ctf_lookup_symbol_idx): Track whether looking up a function or
object: cache them separately.
(ctf_symbol_next): Split out looking in non-dynamic symtypetab
entries to...
(ctf_symbol_next_static): ... this new function. Don't get confused
by the simultaneous presence of static and dynamic symtypetab entries.
(ctf_try_lookup_indexed): Don't waste time looking up symbols by
index before there can be any idea how symbols are numbered.
(ctf_lookup_by_sym_or_name): Distinguish between function and
data object lookups. Drop LCTF_RDWR.
(ctf_lookup_by_symbol): Adjust.
(ctf_lookup_by_symbol_name): Likewise.
* ctf-open.c (init_types): Rename to...
(init_static_types): ... this. Drop LCTF_RDWR. Populate ctf_stypes.
(ctf_simple_open): Drop writable arg.
(ctf_simple_open_internal): Likewise.
(ctf_bufopen): Likewise.
(ctf_bufopen_internal): Populate fields only used for writable dicts.
Drop LCTF_RDWR.
(ctf_dict_close): Cater for symhash cache split.
* ctf-serialize.c (ctf_serialize): Use ctf_stypes, not LCTF_RDWR.
* ctf-types.c (ctf_variable_next): Drop LCTF_RDWR.
* testsuite/libctf-lookup/add-to-opened*: New test.
2023-12-20 00:58:19 +08:00
|
|
|
/* Make sure the ptrtab starts out at a reasonable size. */
|
|
|
|
|
libctf: avoid the need to ever use ctf_update
The method of operation of libctf when the dictionary is writable has
before now been that types that are added land in the dynamic type
section, which is a linked list and hash of IDs -> dynamic type
definitions (and, recently a hash of names): the DTDs are a bit of CTF
representing the ctf_type_t and ad hoc C structures representing the
vlen. Historically, libctf was unable to do anything with these types,
not even look them up by ID, let alone by name: if you wanted to do that
say if you were adding a type that depended on one you just added) you
called ctf_update, which serializes all the DTDs into a CTF file and
reopens it, copying its guts over the fp it's called with. The
ctf_updated types are then frozen in amber and unchangeable: all lookups
will return the types in the static portion in preference to the dynamic
portion, and we will refuse to re-add things that already exist in the
static portion (and, of late, in the dynamic portion too). The libctf
machinery remembers the boundary between static and dynamic types and
looks in the right portion for each type. Lots of things still don't
quite work with dynamic types (e.g. getting their size), but enough
works to do a bunch of additions and then a ctf_update, most of the
time.
Except it doesn't, because ctf_add_type finds it necessary to walk the
full dynamic type definition list looking for types with matching names,
so it gets slower and slower with every type you add: fixing this
requires calling ctf_update periodically for no other reason than to
avoid massively slowing things down.
This is all clunky and very slow but kind of works, until you consider
that it is in fact possible and indeed necessary to modify one sort of
type after it has been added: forwards. These are necessarily promoted
to structs, unions or enums, and when they do so *their type ID does not
change*. So all of a sudden we are changing types that already exist in
the static portion. ctf_update gets massively confused by this and
allocates space enough for the forward (with no members), but then emits
the new dynamic type (with all the members) into it. You get an
assertion failure after that, if you're lucky, or a coredump.
So this commit rejigs things a bit and arranges to exclusively use the
dynamic type definitions in writable dictionaries, and the static type
definitions in readable dictionaries: we don't at any time have a mixture
of static and dynamic types, and you don't need to call ctf_update to
make things "appear". The ctf_dtbyname hash I introduced a few months
ago, which maps things like "struct foo" to DTDs, is removed, replaced
instead by a change of type of the four dictionaries which track names.
Rather than just being (unresizable) ctf_hash_t's populated only at
ctf_bufopen time, they are now a ctf_names_t structure, which is a pair
of ctf_hash_t and ctf_dynhash_t, with the ctf_hash_t portion being used
in readonly dictionaries, and the ctf_dynhash_t being used in writable
ones. The decision as to which to use is centralized in the new
functions ctf_lookup_by_rawname (which takes a type kind) and
ctf_lookup_by_rawhash, which it calls (which takes a ctf_names_t *.)
This change lets us switch from using static to dynamic name hashes on
the fly across the entirety of libctf without complexifying anything: in
fact, because we now centralize the knowledge about how to map from type
kind to name hash, it actually simplifies things and lets us throw out
quite a lot of now-unnecessary complexity, from ctf_dtnyname (replaced
by the dynamic half of the name tables), through to ctf_dtnextid (now
that a dictionary's static portion is never referenced if the dictionary
is writable, we can just use ctf_typemax to indicate the maximum type:
dynamic or non-dynamic does not matter, and we no longer need to track
the boundary between the types). You can now ctf_rollback() as far as
you like, even past a ctf_update or for that matter a full writeout; all
the iteration functions work just as well on writable as on read-only
dictionaries; ctf_add_type no longer needs expensive duplicated code to
run over the dynamic types hunting for ones it might be interested in;
and the linker no longer needs a hack to call ctf_update so that calling
ctf_add_type is not impossibly expensive.
There is still a bit more complexity: some new code paths in ctf-types.c
need to know how to extract information from dynamic types. This
complexity will go away again in a few months when libctf acquires a
proper intermediate representation.
You can still call ctf_update if you like (it's public API, after all),
but its only effect now is to set the point to which ctf_discard rolls
back.
Obviously *something* still needs to serialize the CTF file before
writeout, and this job is done by ctf_serialize, which does everything
ctf_update used to except set the counter used by ctf_discard. It is
automatically called by the various functions that do CTF writeout:
nobody else ever needs to call it.
With this in place, forwards that are promoted to non-forwards no longer
crash the link, even if it happens tens of thousands of types later.
v5: fix tabdamage.
libctf/
* ctf-impl.h (ctf_names_t): New.
(ctf_lookup_t) <ctf_hash>: Now a ctf_names_t, not a ctf_hash_t.
(ctf_file_t) <ctf_structs>: Likewise.
<ctf_unions>: Likewise.
<ctf_enums>: Likewise.
<ctf_names>: Likewise.
<ctf_lookups>: Improve comment.
<ctf_ptrtab_len>: New.
<ctf_prov_strtab>: New.
<ctf_str_prov_offset>: New.
<ctf_dtbyname>: Remove, redundant to the names hashes.
<ctf_dtnextid>: Remove, redundant to ctf_typemax.
(ctf_dtdef_t) <dtd_name>: Remove.
<dtd_data>: Note that the ctt_name is now populated.
(ctf_str_atom_t) <csa_offset>: This is now the strtab
offset for internal strings too.
<csa_external_offset>: New, the external strtab offset.
(CTF_INDEX_TO_TYPEPTR): Handle the LCTF_RDWR case.
(ctf_name_table): New declaration.
(ctf_lookup_by_rawname): Likewise.
(ctf_lookup_by_rawhash): Likewise.
(ctf_set_ctl_hashes): Likewise.
(ctf_serialize): Likewise.
(ctf_dtd_insert): Adjust.
(ctf_simple_open_internal): Likewise.
(ctf_bufopen_internal): Likewise.
(ctf_list_empty_p): Likewise.
(ctf_str_remove_ref): Likewise.
(ctf_str_add): Returns uint32_t now.
(ctf_str_add_ref): Likewise.
(ctf_str_add_external): Now returns a boolean (int).
* ctf-string.c (ctf_strraw_explicit): Check the ctf_prov_strtab
for strings in the appropriate range.
(ctf_str_create_atoms): Create the ctf_prov_strtab. Detect OOM
when adding the null string to the new strtab.
(ctf_str_free_atoms): Destroy the ctf_prov_strtab.
(ctf_str_add_ref_internal): Add make_provisional argument. If
make_provisional, populate the offset and fill in the
ctf_prov_strtab accordingly.
(ctf_str_add): Return the offset, not the string.
(ctf_str_add_ref): Likewise.
(ctf_str_add_external): Return a success integer.
(ctf_str_remove_ref): New, remove a single ref.
(ctf_str_count_strtab): Do not count the initial null string's
length or the existence or length of any unreferenced internal
atoms.
(ctf_str_populate_sorttab): Skip atoms with no refs.
(ctf_str_write_strtab): Populate the nullstr earlier. Add one
to the cts_len for the null string, since it is no longer done
in ctf_str_count_strtab. Adjust for csa_external_offset rename.
Populate the csa_offset for both internal and external cases.
Flush the ctf_prov_strtab afterwards, and reset the
ctf_str_prov_offset.
* ctf-create.c (ctf_grow_ptrtab): New.
(ctf_create): Call it. Initialize new fields rather than old
ones. Tell ctf_bufopen_internal that this is a writable dictionary.
Set the ctl hashes and data model.
(ctf_update): Rename to...
(ctf_serialize): ... this. Leave a compatibility function behind.
Tell ctf_simple_open_internal that this is a writable dictionary.
Pass the new fields along from the old dictionary. Drop
ctf_dtnextid and ctf_dtbyname. Use ctf_strraw, not dtd_name.
Do not zero out the DTD's ctt_name.
(ctf_prefixed_name): Rename to...
(ctf_name_table): ... this. No longer return a prefixed name: return
the applicable name table instead.
(ctf_dtd_insert): Use it, and use the right name table. Pass in the
kind we're adding. Migrate away from dtd_name.
(ctf_dtd_delete): Adjust similarly. Remove the ref to the
deleted ctt_name.
(ctf_dtd_lookup_type_by_name): Remove.
(ctf_dynamic_type): Always return NULL on read-only dictionaries.
No longer check ctf_dtnextid: check ctf_typemax instead.
(ctf_snapshot): No longer use ctf_dtnextid: use ctf_typemax instead.
(ctf_rollback): Likewise. No longer fail with ECTF_OVERROLLBACK. Use
ctf_name_table and the right name table, and migrate away from
dtd_name as in ctf_dtd_delete.
(ctf_add_generic): Pass in the kind explicitly and pass it to
ctf_dtd_insert. Use ctf_typemax, not ctf_dtnextid. Migrate away
from dtd_name to using ctf_str_add_ref to populate the ctt_name.
Grow the ptrtab if needed.
(ctf_add_encoded): Pass in the kind.
(ctf_add_slice): Likewise.
(ctf_add_array): Likewise.
(ctf_add_function): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_reftype): Likewise. Initialize the ctf_ptrtab, checking
ctt_name rather than dtd_name.
(ctf_add_struct_sized): Pass in the kind. Use
ctf_lookup_by_rawname, not ctf_hash_lookup_type /
ctf_dtd_lookup_type_by_name.
(ctf_add_union_sized): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_type): Likewise.
(ctf_compress_write): Call ctf_serialize: adjust for ctf_size not
being initialized until after the call.
(ctf_write_mem): Likewise.
(ctf_write): Likewise.
* ctf-archive.c (arc_write_one_ctf): Likewise.
* ctf-lookup.c (ctf_lookup_by_name): Use ctf_lookuup_by_rawhash, not
ctf_hash_lookup_type.
(ctf_lookup_by_id): No longer check the readonly types if the
dictionary is writable.
* ctf-open.c (init_types): Assert that this dictionary is not
writable. Adjust to use the new name hashes, ctf_name_table,
and ctf_ptrtab_len. GNU style fix for the final ptrtab scan.
(ctf_bufopen_internal): New 'writable' parameter. Flip on LCTF_RDWR
if set. Drop out early when dictionary is writable. Split the
ctf_lookups initialization into...
(ctf_set_cth_hashes): ... this new function.
(ctf_simple_open_internal): Adjust. New 'writable' parameter.
(ctf_simple_open): Adjust accordingly.
(ctf_bufopen): Likewise.
(ctf_file_close): Destroy the appropriate name hashes. No longer
destroy ctf_dtbyname, which is gone.
(ctf_getdatasect): Remove spurious "extern".
* ctf-types.c (ctf_lookup_by_rawname): New, look up types in the
specified name table, given a kind.
(ctf_lookup_by_rawhash): Likewise, given a ctf_names_t *.
(ctf_member_iter): Add support for iterating over the
dynamic type list.
(ctf_enum_iter): Likewise.
(ctf_variable_iter): Likewise.
(ctf_type_rvisit): Likewise.
(ctf_member_info): Add support for types in the dynamic type list.
(ctf_enum_name): Likewise.
(ctf_enum_value): Likewise.
(ctf_func_type_info): Likewise.
(ctf_func_type_args): Likewise.
* ctf-link.c (ctf_accumulate_archive_names): No longer call
ctf_update.
(ctf_link_write): Likewise.
(ctf_link_intern_extern_string): Adjust for new
ctf_str_add_external return value.
(ctf_link_add_strtab): Likewise.
* ctf-util.c (ctf_list_empty_p): New.
2019-08-08 00:55:09 +08:00
|
|
|
ctf_set_ctl_hashes (fp);
|
|
|
|
if (ctf_grow_ptrtab (fp) < 0)
|
|
|
|
{
|
|
|
|
ctf_set_open_errno (errp, ctf_errno (fp));
|
libctf, include, binutils, gdb, ld: rename ctf_file_t to ctf_dict_t
The naming of the ctf_file_t type in libctf is a historical curiosity.
Back in the Solaris days, CTF dictionaries were originally generated as
a separate file and then (sometimes) merged into objects: hence the
datatype was named ctf_file_t, and known as a "CTF file". Nowadays, raw
CTF is essentially never written to a file on its own, and the datatype
changed name to a "CTF dictionary" years ago. So the term "CTF file"
refers to something that is never a file! This is at best confusing.
The type has also historically been known as a 'CTF container", which is
even more confusing now that we have CTF archives which are *also* a
sort of container (they contain CTF dictionaries), but which are never
referred to as containers in the source code.
So fix this by completing the renaming, renaming ctf_file_t to
ctf_dict_t throughout, and renaming those few functions that refer to
CTF files by name (keeping compatibility aliases) to refer to dicts
instead. Old users who still refer to ctf_file_t will see (harmless)
pointer-compatibility warnings at compile time, but the ABI is unchanged
(since C doesn't mangle names, and ctf_file_t was always an opaque type)
and things will still compile fine as long as -Werror is not specified.
All references to CTF containers and CTF files in the source code are
fixed to refer to CTF dicts instead.
Further (smaller) renamings of annoyingly-named functions to come, as
part of the process of souping up queries across whole archives at once
(needed for the function info and data object sections).
binutils/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* objdump.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_ctf): Likewise. Use ctf_dict_close, not ctf_file_close.
* readelf.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_section_as_ctf): Likewise. Use ctf_dict_close, not
ctf_file_close.
gdb/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctfread.c: Change uses of ctf_file_t to ctf_dict_t.
(ctf_fp_info::~ctf_fp_info): Call ctf_dict_close, not ctf_file_close.
include/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-api.h (ctf_file_t): Rename to...
(ctf_dict_t): ... this. Keep ctf_file_t around for compatibility.
(struct ctf_file): Likewise rename to...
(struct ctf_dict): ... this.
(ctf_file_close): Rename to...
(ctf_dict_close): ... this, keeping compatibility function.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this, keeping compatibility function.
All callers adjusted.
* ctf.h: Rename references to ctf_file_t to ctf_dict_t.
(struct ctf_archive) <ctfa_nfiles>: Rename to...
<ctfa_ndicts>: ... this.
ld/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ldlang.c (ctf_output): This is a ctf_dict_t now.
(lang_ctf_errs_warnings): Rename ctf_file_t to ctf_dict_t.
(ldlang_open_ctf): Adjust comment.
(lang_merge_ctf): Use ctf_dict_close, not ctf_file_close.
* ldelfgen.h (ldelf_examine_strtab_for_ctf): Rename ctf_file_t to
ctf_dict_t. Change opaque declaration accordingly.
* ldelfgen.c (ldelf_examine_strtab_for_ctf): Adjust.
* ldemul.h (examine_strtab_for_ctf): Likewise.
(ldemul_examine_strtab_for_ctf): Likewise.
* ldeuml.c (ldemul_examine_strtab_for_ctf): Likewise.
libctf/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h: Rename ctf_file_t to ctf_dict_t: all declarations
adjusted.
(ctf_fileops): Rename to...
(ctf_dictops): ... this.
(ctf_dedup_t) <cd_id_to_file_t>: Rename to...
<cd_id_to_dict_t>: ... this.
(ctf_file_t): Fix outdated comment.
<ctf_fileops>: Rename to...
<ctf_dictops>: ... this.
(struct ctf_archive_internal) <ctfi_file>: Rename to...
<ctfi_dict>: ... this.
* ctf-archive.c: Rename ctf_file_t to ctf_dict_t.
Rename ctf_archive.ctfa_nfiles to ctfa_ndicts.
Rename ctf_file_close to ctf_dict_close. All users adjusted.
* ctf-create.c: Likewise. Refer to CTF dicts, not CTF containers.
(ctf_bundle_t) <ctb_file>: Rename to...
<ctb_dict): ... this.
* ctf-decl.c: Rename ctf_file_t to ctf_dict_t.
* ctf-dedup.c: Likewise. Rename ctf_file_close to
ctf_dict_close. Refer to CTF dicts, not CTF containers.
* ctf-dump.c: Likewise.
* ctf-error.c: Likewise.
* ctf-hash.c: Likewise.
* ctf-inlines.h: Likewise.
* ctf-labels.c: Likewise.
* ctf-link.c: Likewise.
* ctf-lookup.c: Likewise.
* ctf-open-bfd.c: Likewise.
* ctf-string.c: Likewise.
* ctf-subr.c: Likewise.
* ctf-types.c: Likewise.
* ctf-util.c: Likewise.
* ctf-open.c: Likewise.
(ctf_file_close): Rename to...
(ctf_dict_close): ...this.
(ctf_file_close): New trivial wrapper around ctf_dict_close, for
compatibility.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this.
(ctf_parent_file): New trivial wrapper around ctf_parent_dict, for
compatibility.
* libctf.ver: Add ctf_dict_close and ctf_parent_dict.
2020-11-20 21:34:04 +08:00
|
|
|
ctf_dict_close (fp);
|
libctf: avoid the need to ever use ctf_update
The method of operation of libctf when the dictionary is writable has
before now been that types that are added land in the dynamic type
section, which is a linked list and hash of IDs -> dynamic type
definitions (and, recently a hash of names): the DTDs are a bit of CTF
representing the ctf_type_t and ad hoc C structures representing the
vlen. Historically, libctf was unable to do anything with these types,
not even look them up by ID, let alone by name: if you wanted to do that
say if you were adding a type that depended on one you just added) you
called ctf_update, which serializes all the DTDs into a CTF file and
reopens it, copying its guts over the fp it's called with. The
ctf_updated types are then frozen in amber and unchangeable: all lookups
will return the types in the static portion in preference to the dynamic
portion, and we will refuse to re-add things that already exist in the
static portion (and, of late, in the dynamic portion too). The libctf
machinery remembers the boundary between static and dynamic types and
looks in the right portion for each type. Lots of things still don't
quite work with dynamic types (e.g. getting their size), but enough
works to do a bunch of additions and then a ctf_update, most of the
time.
Except it doesn't, because ctf_add_type finds it necessary to walk the
full dynamic type definition list looking for types with matching names,
so it gets slower and slower with every type you add: fixing this
requires calling ctf_update periodically for no other reason than to
avoid massively slowing things down.
This is all clunky and very slow but kind of works, until you consider
that it is in fact possible and indeed necessary to modify one sort of
type after it has been added: forwards. These are necessarily promoted
to structs, unions or enums, and when they do so *their type ID does not
change*. So all of a sudden we are changing types that already exist in
the static portion. ctf_update gets massively confused by this and
allocates space enough for the forward (with no members), but then emits
the new dynamic type (with all the members) into it. You get an
assertion failure after that, if you're lucky, or a coredump.
So this commit rejigs things a bit and arranges to exclusively use the
dynamic type definitions in writable dictionaries, and the static type
definitions in readable dictionaries: we don't at any time have a mixture
of static and dynamic types, and you don't need to call ctf_update to
make things "appear". The ctf_dtbyname hash I introduced a few months
ago, which maps things like "struct foo" to DTDs, is removed, replaced
instead by a change of type of the four dictionaries which track names.
Rather than just being (unresizable) ctf_hash_t's populated only at
ctf_bufopen time, they are now a ctf_names_t structure, which is a pair
of ctf_hash_t and ctf_dynhash_t, with the ctf_hash_t portion being used
in readonly dictionaries, and the ctf_dynhash_t being used in writable
ones. The decision as to which to use is centralized in the new
functions ctf_lookup_by_rawname (which takes a type kind) and
ctf_lookup_by_rawhash, which it calls (which takes a ctf_names_t *.)
This change lets us switch from using static to dynamic name hashes on
the fly across the entirety of libctf without complexifying anything: in
fact, because we now centralize the knowledge about how to map from type
kind to name hash, it actually simplifies things and lets us throw out
quite a lot of now-unnecessary complexity, from ctf_dtnyname (replaced
by the dynamic half of the name tables), through to ctf_dtnextid (now
that a dictionary's static portion is never referenced if the dictionary
is writable, we can just use ctf_typemax to indicate the maximum type:
dynamic or non-dynamic does not matter, and we no longer need to track
the boundary between the types). You can now ctf_rollback() as far as
you like, even past a ctf_update or for that matter a full writeout; all
the iteration functions work just as well on writable as on read-only
dictionaries; ctf_add_type no longer needs expensive duplicated code to
run over the dynamic types hunting for ones it might be interested in;
and the linker no longer needs a hack to call ctf_update so that calling
ctf_add_type is not impossibly expensive.
There is still a bit more complexity: some new code paths in ctf-types.c
need to know how to extract information from dynamic types. This
complexity will go away again in a few months when libctf acquires a
proper intermediate representation.
You can still call ctf_update if you like (it's public API, after all),
but its only effect now is to set the point to which ctf_discard rolls
back.
Obviously *something* still needs to serialize the CTF file before
writeout, and this job is done by ctf_serialize, which does everything
ctf_update used to except set the counter used by ctf_discard. It is
automatically called by the various functions that do CTF writeout:
nobody else ever needs to call it.
With this in place, forwards that are promoted to non-forwards no longer
crash the link, even if it happens tens of thousands of types later.
v5: fix tabdamage.
libctf/
* ctf-impl.h (ctf_names_t): New.
(ctf_lookup_t) <ctf_hash>: Now a ctf_names_t, not a ctf_hash_t.
(ctf_file_t) <ctf_structs>: Likewise.
<ctf_unions>: Likewise.
<ctf_enums>: Likewise.
<ctf_names>: Likewise.
<ctf_lookups>: Improve comment.
<ctf_ptrtab_len>: New.
<ctf_prov_strtab>: New.
<ctf_str_prov_offset>: New.
<ctf_dtbyname>: Remove, redundant to the names hashes.
<ctf_dtnextid>: Remove, redundant to ctf_typemax.
(ctf_dtdef_t) <dtd_name>: Remove.
<dtd_data>: Note that the ctt_name is now populated.
(ctf_str_atom_t) <csa_offset>: This is now the strtab
offset for internal strings too.
<csa_external_offset>: New, the external strtab offset.
(CTF_INDEX_TO_TYPEPTR): Handle the LCTF_RDWR case.
(ctf_name_table): New declaration.
(ctf_lookup_by_rawname): Likewise.
(ctf_lookup_by_rawhash): Likewise.
(ctf_set_ctl_hashes): Likewise.
(ctf_serialize): Likewise.
(ctf_dtd_insert): Adjust.
(ctf_simple_open_internal): Likewise.
(ctf_bufopen_internal): Likewise.
(ctf_list_empty_p): Likewise.
(ctf_str_remove_ref): Likewise.
(ctf_str_add): Returns uint32_t now.
(ctf_str_add_ref): Likewise.
(ctf_str_add_external): Now returns a boolean (int).
* ctf-string.c (ctf_strraw_explicit): Check the ctf_prov_strtab
for strings in the appropriate range.
(ctf_str_create_atoms): Create the ctf_prov_strtab. Detect OOM
when adding the null string to the new strtab.
(ctf_str_free_atoms): Destroy the ctf_prov_strtab.
(ctf_str_add_ref_internal): Add make_provisional argument. If
make_provisional, populate the offset and fill in the
ctf_prov_strtab accordingly.
(ctf_str_add): Return the offset, not the string.
(ctf_str_add_ref): Likewise.
(ctf_str_add_external): Return a success integer.
(ctf_str_remove_ref): New, remove a single ref.
(ctf_str_count_strtab): Do not count the initial null string's
length or the existence or length of any unreferenced internal
atoms.
(ctf_str_populate_sorttab): Skip atoms with no refs.
(ctf_str_write_strtab): Populate the nullstr earlier. Add one
to the cts_len for the null string, since it is no longer done
in ctf_str_count_strtab. Adjust for csa_external_offset rename.
Populate the csa_offset for both internal and external cases.
Flush the ctf_prov_strtab afterwards, and reset the
ctf_str_prov_offset.
* ctf-create.c (ctf_grow_ptrtab): New.
(ctf_create): Call it. Initialize new fields rather than old
ones. Tell ctf_bufopen_internal that this is a writable dictionary.
Set the ctl hashes and data model.
(ctf_update): Rename to...
(ctf_serialize): ... this. Leave a compatibility function behind.
Tell ctf_simple_open_internal that this is a writable dictionary.
Pass the new fields along from the old dictionary. Drop
ctf_dtnextid and ctf_dtbyname. Use ctf_strraw, not dtd_name.
Do not zero out the DTD's ctt_name.
(ctf_prefixed_name): Rename to...
(ctf_name_table): ... this. No longer return a prefixed name: return
the applicable name table instead.
(ctf_dtd_insert): Use it, and use the right name table. Pass in the
kind we're adding. Migrate away from dtd_name.
(ctf_dtd_delete): Adjust similarly. Remove the ref to the
deleted ctt_name.
(ctf_dtd_lookup_type_by_name): Remove.
(ctf_dynamic_type): Always return NULL on read-only dictionaries.
No longer check ctf_dtnextid: check ctf_typemax instead.
(ctf_snapshot): No longer use ctf_dtnextid: use ctf_typemax instead.
(ctf_rollback): Likewise. No longer fail with ECTF_OVERROLLBACK. Use
ctf_name_table and the right name table, and migrate away from
dtd_name as in ctf_dtd_delete.
(ctf_add_generic): Pass in the kind explicitly and pass it to
ctf_dtd_insert. Use ctf_typemax, not ctf_dtnextid. Migrate away
from dtd_name to using ctf_str_add_ref to populate the ctt_name.
Grow the ptrtab if needed.
(ctf_add_encoded): Pass in the kind.
(ctf_add_slice): Likewise.
(ctf_add_array): Likewise.
(ctf_add_function): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_reftype): Likewise. Initialize the ctf_ptrtab, checking
ctt_name rather than dtd_name.
(ctf_add_struct_sized): Pass in the kind. Use
ctf_lookup_by_rawname, not ctf_hash_lookup_type /
ctf_dtd_lookup_type_by_name.
(ctf_add_union_sized): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_type): Likewise.
(ctf_compress_write): Call ctf_serialize: adjust for ctf_size not
being initialized until after the call.
(ctf_write_mem): Likewise.
(ctf_write): Likewise.
* ctf-archive.c (arc_write_one_ctf): Likewise.
* ctf-lookup.c (ctf_lookup_by_name): Use ctf_lookuup_by_rawhash, not
ctf_hash_lookup_type.
(ctf_lookup_by_id): No longer check the readonly types if the
dictionary is writable.
* ctf-open.c (init_types): Assert that this dictionary is not
writable. Adjust to use the new name hashes, ctf_name_table,
and ctf_ptrtab_len. GNU style fix for the final ptrtab scan.
(ctf_bufopen_internal): New 'writable' parameter. Flip on LCTF_RDWR
if set. Drop out early when dictionary is writable. Split the
ctf_lookups initialization into...
(ctf_set_cth_hashes): ... this new function.
(ctf_simple_open_internal): Adjust. New 'writable' parameter.
(ctf_simple_open): Adjust accordingly.
(ctf_bufopen): Likewise.
(ctf_file_close): Destroy the appropriate name hashes. No longer
destroy ctf_dtbyname, which is gone.
(ctf_getdatasect): Remove spurious "extern".
* ctf-types.c (ctf_lookup_by_rawname): New, look up types in the
specified name table, given a kind.
(ctf_lookup_by_rawhash): Likewise, given a ctf_names_t *.
(ctf_member_iter): Add support for iterating over the
dynamic type list.
(ctf_enum_iter): Likewise.
(ctf_variable_iter): Likewise.
(ctf_type_rvisit): Likewise.
(ctf_member_info): Add support for types in the dynamic type list.
(ctf_enum_name): Likewise.
(ctf_enum_value): Likewise.
(ctf_func_type_info): Likewise.
(ctf_func_type_args): Likewise.
* ctf-link.c (ctf_accumulate_archive_names): No longer call
ctf_update.
(ctf_link_write): Likewise.
(ctf_link_intern_extern_string): Adjust for new
ctf_str_add_external return value.
(ctf_link_add_strtab): Likewise.
* ctf-util.c (ctf_list_empty_p): New.
2019-08-08 00:55:09 +08:00
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
return fp;
|
|
|
|
|
libctf: support addition of types to dicts read via ctf_open()
libctf has long declared deserialized dictionaries (out of files or ELF
sections or memory buffers or whatever) to be read-only: back in the
furthest prehistory this was not the case, in that you could add a
few sorts of type to such dicts, but attempting to do so often caused
horrible memory corruption, so I banned the lot.
But it turns out real consumers want it (notably DTrace, which
synthesises pointers to types that don't have them and adds them to the
ctf_open()ed dicts if it needs them). Let's bring it back again, but
without the memory corruption and without the massive code duplication
required in days of yore to distinguish between static and dynamic
types: the representation of both types has been identical for a few
years, with the only difference being that types as a whole are stored in
a big buffer for types read in via ctf_open and per-type hashtables for
newly-added types.
So we discard the internally-visible concept of "readonly dictionaries"
in favour of declaring the *range of types* that were already present
when the dict was read in to be read-only: you can't modify them (say,
by adding members to them if they're structs, or calling ctf_set_array
on them), but you can add more types and point to them. (The API
remains the same, with calls sometimes returning ECTF_RDONLY, but now
they do so less often.)
This is a fairly invasive change, mostly because code written since the
ban was introduced didn't take the possibility of a static/dynamic split
into account. Some of these irregularities were hard to define as
anything but bugs.
Notably:
- The symbol handling was assuming that symbols only needed to be
looked for in dynamic hashtabs or static linker-laid-out indexed/
nonindexed layouts, but now we want to check both in case people
added more symbols to a dict they opened.
- The code that handles type additions wasn't checking to see if types
with the same name existed *at all* (so you could do
ctf_add_typedef (fp, "foo", bar) repeatedly without error). This
seems reasonable for types you just added, but we probably *do* want
to ban addition of types with names that override names we already
used in the ctf_open()ed portion, since that would probably corrupt
existing type relationships. (Doing things this way also avoids
causing new errors for any existing code that was doing this sort of
thing.)
- ctf_lookup_variable entirely failed to work for variables just added
by ctf_add_variable: you had to write the dict out and read it back
in again before they appeared.
- The symbol handling remembered what symbols you looked up but didn't
remember their types, so you could look up an object symbol and then
find it popping up when you asked for function symbols, which seems
less than ideal. Since we had to rejig things enough to be able to
distinguish function and object symbols internally anyway (in order
to give suitable errors if you try to add a symbol with a name that
already existed in the ctf_open()ed dict), this bug suddenly became
more visible and was easily fixed.
We do not (yet) support writing out dicts that have been previously read
in via ctf_open() or other deserializer (you can look things up in them,
but not write them out a second time). This never worked, so there is
no incompatibility; if it is needed at a later date, the serializer is a
little bit closer to having it work now (the only table we don't deal
with is the types table, and that's because the upcoming CTFv4 changes
are likely to make major changes to the way that table is represented
internally, so adding more code that depends on its current form seems
like a bad idea).
There is a new testcase that tests much of this, in particular that
modification of existing types is still banned and that you can add new
ones and chase them without error.
libctf/
* ctf-impl.h (struct ctf_dict.ctf_symhash): Split into...
(ctf_dict.ctf_symhash_func): ... this and...
(ctf_dict.ctf_symhash_objt): ... this.
(ctf_dict.ctf_stypes): New, counts static types.
(LCTF_INDEX_TO_TYPEPTR): Use it instead of CTF_RDWR.
(LCTF_RDWR): Deleted.
(LCTF_DIRTY): Renumbered.
(LCTF_LINKING): Likewise.
(ctf_lookup_variable_here): New.
(ctf_lookup_by_sym_or_name): Likewise.
(ctf_symbol_next_static): Likewise.
(ctf_add_variable_forced): Likewise.
(ctf_add_funcobjt_sym_forced): Likewise.
(ctf_simple_open_internal): Adjust.
(ctf_bufopen_internal): Likewise.
* ctf-create.c (ctf_grow_ptrtab): Adjust a lot to start with.
(ctf_create): Migrate a bunch of initializations into bufopen.
Force recreation of name tables. Do not forcibly override the
model, let ctf_bufopen do it.
(ctf_static_type): New.
(ctf_update): Drop LCTF_RDWR check.
(ctf_dynamic_type): Likewise.
(ctf_add_function): Likewise.
(ctf_add_type_internal): Likewise.
(ctf_rollback): Check ctf_stypes, not LCTF_RDWR.
(ctf_set_array): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_enumerator): Likewise (only on the target dict).
(ctf_add_member_offset): Likewise.
(ctf_add_generic): Drop LCTF_RDWR check. Ban addition of types
with colliding names.
(ctf_add_forward): Note safety under the new rules.
(ctf_add_variable): Split all but the existence check into...
(ctf_add_variable_forced): ... this new function.
(ctf_add_funcobjt_sym): Likewise...
(ctf_add_funcobjt_sym_forced): ... for this new function.
* ctf-link.c (ctf_link_add_linker_symbol): Ban calling on dicts
with any stypes.
(ctf_link_add_strtab): Likewise.
(ctf_link_shuffle_syms): Likewise.
(ctf_link_intern_extern_string): Note pre-existing prohibition.
* ctf-lookup.c (ctf_lookup_by_id): Drop LCTF_RDWR check.
(ctf_lookup_variable): Split out looking in a dict but not
its parent into...
(ctf_lookup_variable_here): ... this new function.
(ctf_lookup_symbol_idx): Track whether looking up a function or
object: cache them separately.
(ctf_symbol_next): Split out looking in non-dynamic symtypetab
entries to...
(ctf_symbol_next_static): ... this new function. Don't get confused
by the simultaneous presence of static and dynamic symtypetab entries.
(ctf_try_lookup_indexed): Don't waste time looking up symbols by
index before there can be any idea how symbols are numbered.
(ctf_lookup_by_sym_or_name): Distinguish between function and
data object lookups. Drop LCTF_RDWR.
(ctf_lookup_by_symbol): Adjust.
(ctf_lookup_by_symbol_name): Likewise.
* ctf-open.c (init_types): Rename to...
(init_static_types): ... this. Drop LCTF_RDWR. Populate ctf_stypes.
(ctf_simple_open): Drop writable arg.
(ctf_simple_open_internal): Likewise.
(ctf_bufopen): Likewise.
(ctf_bufopen_internal): Populate fields only used for writable dicts.
Drop LCTF_RDWR.
(ctf_dict_close): Cater for symhash cache split.
* ctf-serialize.c (ctf_serialize): Use ctf_stypes, not LCTF_RDWR.
* ctf-types.c (ctf_variable_next): Drop LCTF_RDWR.
* testsuite/libctf-lookup/add-to-opened*: New test.
2023-12-20 00:58:19 +08:00
|
|
|
err:
|
libctf: avoid the need to ever use ctf_update
The method of operation of libctf when the dictionary is writable has
before now been that types that are added land in the dynamic type
section, which is a linked list and hash of IDs -> dynamic type
definitions (and, recently a hash of names): the DTDs are a bit of CTF
representing the ctf_type_t and ad hoc C structures representing the
vlen. Historically, libctf was unable to do anything with these types,
not even look them up by ID, let alone by name: if you wanted to do that
say if you were adding a type that depended on one you just added) you
called ctf_update, which serializes all the DTDs into a CTF file and
reopens it, copying its guts over the fp it's called with. The
ctf_updated types are then frozen in amber and unchangeable: all lookups
will return the types in the static portion in preference to the dynamic
portion, and we will refuse to re-add things that already exist in the
static portion (and, of late, in the dynamic portion too). The libctf
machinery remembers the boundary between static and dynamic types and
looks in the right portion for each type. Lots of things still don't
quite work with dynamic types (e.g. getting their size), but enough
works to do a bunch of additions and then a ctf_update, most of the
time.
Except it doesn't, because ctf_add_type finds it necessary to walk the
full dynamic type definition list looking for types with matching names,
so it gets slower and slower with every type you add: fixing this
requires calling ctf_update periodically for no other reason than to
avoid massively slowing things down.
This is all clunky and very slow but kind of works, until you consider
that it is in fact possible and indeed necessary to modify one sort of
type after it has been added: forwards. These are necessarily promoted
to structs, unions or enums, and when they do so *their type ID does not
change*. So all of a sudden we are changing types that already exist in
the static portion. ctf_update gets massively confused by this and
allocates space enough for the forward (with no members), but then emits
the new dynamic type (with all the members) into it. You get an
assertion failure after that, if you're lucky, or a coredump.
So this commit rejigs things a bit and arranges to exclusively use the
dynamic type definitions in writable dictionaries, and the static type
definitions in readable dictionaries: we don't at any time have a mixture
of static and dynamic types, and you don't need to call ctf_update to
make things "appear". The ctf_dtbyname hash I introduced a few months
ago, which maps things like "struct foo" to DTDs, is removed, replaced
instead by a change of type of the four dictionaries which track names.
Rather than just being (unresizable) ctf_hash_t's populated only at
ctf_bufopen time, they are now a ctf_names_t structure, which is a pair
of ctf_hash_t and ctf_dynhash_t, with the ctf_hash_t portion being used
in readonly dictionaries, and the ctf_dynhash_t being used in writable
ones. The decision as to which to use is centralized in the new
functions ctf_lookup_by_rawname (which takes a type kind) and
ctf_lookup_by_rawhash, which it calls (which takes a ctf_names_t *.)
This change lets us switch from using static to dynamic name hashes on
the fly across the entirety of libctf without complexifying anything: in
fact, because we now centralize the knowledge about how to map from type
kind to name hash, it actually simplifies things and lets us throw out
quite a lot of now-unnecessary complexity, from ctf_dtnyname (replaced
by the dynamic half of the name tables), through to ctf_dtnextid (now
that a dictionary's static portion is never referenced if the dictionary
is writable, we can just use ctf_typemax to indicate the maximum type:
dynamic or non-dynamic does not matter, and we no longer need to track
the boundary between the types). You can now ctf_rollback() as far as
you like, even past a ctf_update or for that matter a full writeout; all
the iteration functions work just as well on writable as on read-only
dictionaries; ctf_add_type no longer needs expensive duplicated code to
run over the dynamic types hunting for ones it might be interested in;
and the linker no longer needs a hack to call ctf_update so that calling
ctf_add_type is not impossibly expensive.
There is still a bit more complexity: some new code paths in ctf-types.c
need to know how to extract information from dynamic types. This
complexity will go away again in a few months when libctf acquires a
proper intermediate representation.
You can still call ctf_update if you like (it's public API, after all),
but its only effect now is to set the point to which ctf_discard rolls
back.
Obviously *something* still needs to serialize the CTF file before
writeout, and this job is done by ctf_serialize, which does everything
ctf_update used to except set the counter used by ctf_discard. It is
automatically called by the various functions that do CTF writeout:
nobody else ever needs to call it.
With this in place, forwards that are promoted to non-forwards no longer
crash the link, even if it happens tens of thousands of types later.
v5: fix tabdamage.
libctf/
* ctf-impl.h (ctf_names_t): New.
(ctf_lookup_t) <ctf_hash>: Now a ctf_names_t, not a ctf_hash_t.
(ctf_file_t) <ctf_structs>: Likewise.
<ctf_unions>: Likewise.
<ctf_enums>: Likewise.
<ctf_names>: Likewise.
<ctf_lookups>: Improve comment.
<ctf_ptrtab_len>: New.
<ctf_prov_strtab>: New.
<ctf_str_prov_offset>: New.
<ctf_dtbyname>: Remove, redundant to the names hashes.
<ctf_dtnextid>: Remove, redundant to ctf_typemax.
(ctf_dtdef_t) <dtd_name>: Remove.
<dtd_data>: Note that the ctt_name is now populated.
(ctf_str_atom_t) <csa_offset>: This is now the strtab
offset for internal strings too.
<csa_external_offset>: New, the external strtab offset.
(CTF_INDEX_TO_TYPEPTR): Handle the LCTF_RDWR case.
(ctf_name_table): New declaration.
(ctf_lookup_by_rawname): Likewise.
(ctf_lookup_by_rawhash): Likewise.
(ctf_set_ctl_hashes): Likewise.
(ctf_serialize): Likewise.
(ctf_dtd_insert): Adjust.
(ctf_simple_open_internal): Likewise.
(ctf_bufopen_internal): Likewise.
(ctf_list_empty_p): Likewise.
(ctf_str_remove_ref): Likewise.
(ctf_str_add): Returns uint32_t now.
(ctf_str_add_ref): Likewise.
(ctf_str_add_external): Now returns a boolean (int).
* ctf-string.c (ctf_strraw_explicit): Check the ctf_prov_strtab
for strings in the appropriate range.
(ctf_str_create_atoms): Create the ctf_prov_strtab. Detect OOM
when adding the null string to the new strtab.
(ctf_str_free_atoms): Destroy the ctf_prov_strtab.
(ctf_str_add_ref_internal): Add make_provisional argument. If
make_provisional, populate the offset and fill in the
ctf_prov_strtab accordingly.
(ctf_str_add): Return the offset, not the string.
(ctf_str_add_ref): Likewise.
(ctf_str_add_external): Return a success integer.
(ctf_str_remove_ref): New, remove a single ref.
(ctf_str_count_strtab): Do not count the initial null string's
length or the existence or length of any unreferenced internal
atoms.
(ctf_str_populate_sorttab): Skip atoms with no refs.
(ctf_str_write_strtab): Populate the nullstr earlier. Add one
to the cts_len for the null string, since it is no longer done
in ctf_str_count_strtab. Adjust for csa_external_offset rename.
Populate the csa_offset for both internal and external cases.
Flush the ctf_prov_strtab afterwards, and reset the
ctf_str_prov_offset.
* ctf-create.c (ctf_grow_ptrtab): New.
(ctf_create): Call it. Initialize new fields rather than old
ones. Tell ctf_bufopen_internal that this is a writable dictionary.
Set the ctl hashes and data model.
(ctf_update): Rename to...
(ctf_serialize): ... this. Leave a compatibility function behind.
Tell ctf_simple_open_internal that this is a writable dictionary.
Pass the new fields along from the old dictionary. Drop
ctf_dtnextid and ctf_dtbyname. Use ctf_strraw, not dtd_name.
Do not zero out the DTD's ctt_name.
(ctf_prefixed_name): Rename to...
(ctf_name_table): ... this. No longer return a prefixed name: return
the applicable name table instead.
(ctf_dtd_insert): Use it, and use the right name table. Pass in the
kind we're adding. Migrate away from dtd_name.
(ctf_dtd_delete): Adjust similarly. Remove the ref to the
deleted ctt_name.
(ctf_dtd_lookup_type_by_name): Remove.
(ctf_dynamic_type): Always return NULL on read-only dictionaries.
No longer check ctf_dtnextid: check ctf_typemax instead.
(ctf_snapshot): No longer use ctf_dtnextid: use ctf_typemax instead.
(ctf_rollback): Likewise. No longer fail with ECTF_OVERROLLBACK. Use
ctf_name_table and the right name table, and migrate away from
dtd_name as in ctf_dtd_delete.
(ctf_add_generic): Pass in the kind explicitly and pass it to
ctf_dtd_insert. Use ctf_typemax, not ctf_dtnextid. Migrate away
from dtd_name to using ctf_str_add_ref to populate the ctt_name.
Grow the ptrtab if needed.
(ctf_add_encoded): Pass in the kind.
(ctf_add_slice): Likewise.
(ctf_add_array): Likewise.
(ctf_add_function): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_reftype): Likewise. Initialize the ctf_ptrtab, checking
ctt_name rather than dtd_name.
(ctf_add_struct_sized): Pass in the kind. Use
ctf_lookup_by_rawname, not ctf_hash_lookup_type /
ctf_dtd_lookup_type_by_name.
(ctf_add_union_sized): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_type): Likewise.
(ctf_compress_write): Call ctf_serialize: adjust for ctf_size not
being initialized until after the call.
(ctf_write_mem): Likewise.
(ctf_write): Likewise.
* ctf-archive.c (arc_write_one_ctf): Likewise.
* ctf-lookup.c (ctf_lookup_by_name): Use ctf_lookuup_by_rawhash, not
ctf_hash_lookup_type.
(ctf_lookup_by_id): No longer check the readonly types if the
dictionary is writable.
* ctf-open.c (init_types): Assert that this dictionary is not
writable. Adjust to use the new name hashes, ctf_name_table,
and ctf_ptrtab_len. GNU style fix for the final ptrtab scan.
(ctf_bufopen_internal): New 'writable' parameter. Flip on LCTF_RDWR
if set. Drop out early when dictionary is writable. Split the
ctf_lookups initialization into...
(ctf_set_cth_hashes): ... this new function.
(ctf_simple_open_internal): Adjust. New 'writable' parameter.
(ctf_simple_open): Adjust accordingly.
(ctf_bufopen): Likewise.
(ctf_file_close): Destroy the appropriate name hashes. No longer
destroy ctf_dtbyname, which is gone.
(ctf_getdatasect): Remove spurious "extern".
* ctf-types.c (ctf_lookup_by_rawname): New, look up types in the
specified name table, given a kind.
(ctf_lookup_by_rawhash): Likewise, given a ctf_names_t *.
(ctf_member_iter): Add support for iterating over the
dynamic type list.
(ctf_enum_iter): Likewise.
(ctf_variable_iter): Likewise.
(ctf_type_rvisit): Likewise.
(ctf_member_info): Add support for types in the dynamic type list.
(ctf_enum_name): Likewise.
(ctf_enum_value): Likewise.
(ctf_func_type_info): Likewise.
(ctf_func_type_args): Likewise.
* ctf-link.c (ctf_accumulate_archive_names): No longer call
ctf_update.
(ctf_link_write): Likewise.
(ctf_link_intern_extern_string): Adjust for new
ctf_str_add_external return value.
(ctf_link_add_strtab): Likewise.
* ctf-util.c (ctf_list_empty_p): New.
2019-08-08 00:55:09 +08:00
|
|
|
ctf_dynhash_destroy (structs);
|
|
|
|
ctf_dynhash_destroy (unions);
|
|
|
|
ctf_dynhash_destroy (enums);
|
|
|
|
ctf_dynhash_destroy (names);
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
libctf: avoid the need to ever use ctf_update
The method of operation of libctf when the dictionary is writable has
before now been that types that are added land in the dynamic type
section, which is a linked list and hash of IDs -> dynamic type
definitions (and, recently a hash of names): the DTDs are a bit of CTF
representing the ctf_type_t and ad hoc C structures representing the
vlen. Historically, libctf was unable to do anything with these types,
not even look them up by ID, let alone by name: if you wanted to do that
say if you were adding a type that depended on one you just added) you
called ctf_update, which serializes all the DTDs into a CTF file and
reopens it, copying its guts over the fp it's called with. The
ctf_updated types are then frozen in amber and unchangeable: all lookups
will return the types in the static portion in preference to the dynamic
portion, and we will refuse to re-add things that already exist in the
static portion (and, of late, in the dynamic portion too). The libctf
machinery remembers the boundary between static and dynamic types and
looks in the right portion for each type. Lots of things still don't
quite work with dynamic types (e.g. getting their size), but enough
works to do a bunch of additions and then a ctf_update, most of the
time.
Except it doesn't, because ctf_add_type finds it necessary to walk the
full dynamic type definition list looking for types with matching names,
so it gets slower and slower with every type you add: fixing this
requires calling ctf_update periodically for no other reason than to
avoid massively slowing things down.
This is all clunky and very slow but kind of works, until you consider
that it is in fact possible and indeed necessary to modify one sort of
type after it has been added: forwards. These are necessarily promoted
to structs, unions or enums, and when they do so *their type ID does not
change*. So all of a sudden we are changing types that already exist in
the static portion. ctf_update gets massively confused by this and
allocates space enough for the forward (with no members), but then emits
the new dynamic type (with all the members) into it. You get an
assertion failure after that, if you're lucky, or a coredump.
So this commit rejigs things a bit and arranges to exclusively use the
dynamic type definitions in writable dictionaries, and the static type
definitions in readable dictionaries: we don't at any time have a mixture
of static and dynamic types, and you don't need to call ctf_update to
make things "appear". The ctf_dtbyname hash I introduced a few months
ago, which maps things like "struct foo" to DTDs, is removed, replaced
instead by a change of type of the four dictionaries which track names.
Rather than just being (unresizable) ctf_hash_t's populated only at
ctf_bufopen time, they are now a ctf_names_t structure, which is a pair
of ctf_hash_t and ctf_dynhash_t, with the ctf_hash_t portion being used
in readonly dictionaries, and the ctf_dynhash_t being used in writable
ones. The decision as to which to use is centralized in the new
functions ctf_lookup_by_rawname (which takes a type kind) and
ctf_lookup_by_rawhash, which it calls (which takes a ctf_names_t *.)
This change lets us switch from using static to dynamic name hashes on
the fly across the entirety of libctf without complexifying anything: in
fact, because we now centralize the knowledge about how to map from type
kind to name hash, it actually simplifies things and lets us throw out
quite a lot of now-unnecessary complexity, from ctf_dtnyname (replaced
by the dynamic half of the name tables), through to ctf_dtnextid (now
that a dictionary's static portion is never referenced if the dictionary
is writable, we can just use ctf_typemax to indicate the maximum type:
dynamic or non-dynamic does not matter, and we no longer need to track
the boundary between the types). You can now ctf_rollback() as far as
you like, even past a ctf_update or for that matter a full writeout; all
the iteration functions work just as well on writable as on read-only
dictionaries; ctf_add_type no longer needs expensive duplicated code to
run over the dynamic types hunting for ones it might be interested in;
and the linker no longer needs a hack to call ctf_update so that calling
ctf_add_type is not impossibly expensive.
There is still a bit more complexity: some new code paths in ctf-types.c
need to know how to extract information from dynamic types. This
complexity will go away again in a few months when libctf acquires a
proper intermediate representation.
You can still call ctf_update if you like (it's public API, after all),
but its only effect now is to set the point to which ctf_discard rolls
back.
Obviously *something* still needs to serialize the CTF file before
writeout, and this job is done by ctf_serialize, which does everything
ctf_update used to except set the counter used by ctf_discard. It is
automatically called by the various functions that do CTF writeout:
nobody else ever needs to call it.
With this in place, forwards that are promoted to non-forwards no longer
crash the link, even if it happens tens of thousands of types later.
v5: fix tabdamage.
libctf/
* ctf-impl.h (ctf_names_t): New.
(ctf_lookup_t) <ctf_hash>: Now a ctf_names_t, not a ctf_hash_t.
(ctf_file_t) <ctf_structs>: Likewise.
<ctf_unions>: Likewise.
<ctf_enums>: Likewise.
<ctf_names>: Likewise.
<ctf_lookups>: Improve comment.
<ctf_ptrtab_len>: New.
<ctf_prov_strtab>: New.
<ctf_str_prov_offset>: New.
<ctf_dtbyname>: Remove, redundant to the names hashes.
<ctf_dtnextid>: Remove, redundant to ctf_typemax.
(ctf_dtdef_t) <dtd_name>: Remove.
<dtd_data>: Note that the ctt_name is now populated.
(ctf_str_atom_t) <csa_offset>: This is now the strtab
offset for internal strings too.
<csa_external_offset>: New, the external strtab offset.
(CTF_INDEX_TO_TYPEPTR): Handle the LCTF_RDWR case.
(ctf_name_table): New declaration.
(ctf_lookup_by_rawname): Likewise.
(ctf_lookup_by_rawhash): Likewise.
(ctf_set_ctl_hashes): Likewise.
(ctf_serialize): Likewise.
(ctf_dtd_insert): Adjust.
(ctf_simple_open_internal): Likewise.
(ctf_bufopen_internal): Likewise.
(ctf_list_empty_p): Likewise.
(ctf_str_remove_ref): Likewise.
(ctf_str_add): Returns uint32_t now.
(ctf_str_add_ref): Likewise.
(ctf_str_add_external): Now returns a boolean (int).
* ctf-string.c (ctf_strraw_explicit): Check the ctf_prov_strtab
for strings in the appropriate range.
(ctf_str_create_atoms): Create the ctf_prov_strtab. Detect OOM
when adding the null string to the new strtab.
(ctf_str_free_atoms): Destroy the ctf_prov_strtab.
(ctf_str_add_ref_internal): Add make_provisional argument. If
make_provisional, populate the offset and fill in the
ctf_prov_strtab accordingly.
(ctf_str_add): Return the offset, not the string.
(ctf_str_add_ref): Likewise.
(ctf_str_add_external): Return a success integer.
(ctf_str_remove_ref): New, remove a single ref.
(ctf_str_count_strtab): Do not count the initial null string's
length or the existence or length of any unreferenced internal
atoms.
(ctf_str_populate_sorttab): Skip atoms with no refs.
(ctf_str_write_strtab): Populate the nullstr earlier. Add one
to the cts_len for the null string, since it is no longer done
in ctf_str_count_strtab. Adjust for csa_external_offset rename.
Populate the csa_offset for both internal and external cases.
Flush the ctf_prov_strtab afterwards, and reset the
ctf_str_prov_offset.
* ctf-create.c (ctf_grow_ptrtab): New.
(ctf_create): Call it. Initialize new fields rather than old
ones. Tell ctf_bufopen_internal that this is a writable dictionary.
Set the ctl hashes and data model.
(ctf_update): Rename to...
(ctf_serialize): ... this. Leave a compatibility function behind.
Tell ctf_simple_open_internal that this is a writable dictionary.
Pass the new fields along from the old dictionary. Drop
ctf_dtnextid and ctf_dtbyname. Use ctf_strraw, not dtd_name.
Do not zero out the DTD's ctt_name.
(ctf_prefixed_name): Rename to...
(ctf_name_table): ... this. No longer return a prefixed name: return
the applicable name table instead.
(ctf_dtd_insert): Use it, and use the right name table. Pass in the
kind we're adding. Migrate away from dtd_name.
(ctf_dtd_delete): Adjust similarly. Remove the ref to the
deleted ctt_name.
(ctf_dtd_lookup_type_by_name): Remove.
(ctf_dynamic_type): Always return NULL on read-only dictionaries.
No longer check ctf_dtnextid: check ctf_typemax instead.
(ctf_snapshot): No longer use ctf_dtnextid: use ctf_typemax instead.
(ctf_rollback): Likewise. No longer fail with ECTF_OVERROLLBACK. Use
ctf_name_table and the right name table, and migrate away from
dtd_name as in ctf_dtd_delete.
(ctf_add_generic): Pass in the kind explicitly and pass it to
ctf_dtd_insert. Use ctf_typemax, not ctf_dtnextid. Migrate away
from dtd_name to using ctf_str_add_ref to populate the ctt_name.
Grow the ptrtab if needed.
(ctf_add_encoded): Pass in the kind.
(ctf_add_slice): Likewise.
(ctf_add_array): Likewise.
(ctf_add_function): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_reftype): Likewise. Initialize the ctf_ptrtab, checking
ctt_name rather than dtd_name.
(ctf_add_struct_sized): Pass in the kind. Use
ctf_lookup_by_rawname, not ctf_hash_lookup_type /
ctf_dtd_lookup_type_by_name.
(ctf_add_union_sized): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_type): Likewise.
(ctf_compress_write): Call ctf_serialize: adjust for ctf_size not
being initialized until after the call.
(ctf_write_mem): Likewise.
(ctf_write): Likewise.
* ctf-archive.c (arc_write_one_ctf): Likewise.
* ctf-lookup.c (ctf_lookup_by_name): Use ctf_lookuup_by_rawhash, not
ctf_hash_lookup_type.
(ctf_lookup_by_id): No longer check the readonly types if the
dictionary is writable.
* ctf-open.c (init_types): Assert that this dictionary is not
writable. Adjust to use the new name hashes, ctf_name_table,
and ctf_ptrtab_len. GNU style fix for the final ptrtab scan.
(ctf_bufopen_internal): New 'writable' parameter. Flip on LCTF_RDWR
if set. Drop out early when dictionary is writable. Split the
ctf_lookups initialization into...
(ctf_set_cth_hashes): ... this new function.
(ctf_simple_open_internal): Adjust. New 'writable' parameter.
(ctf_simple_open): Adjust accordingly.
(ctf_bufopen): Likewise.
(ctf_file_close): Destroy the appropriate name hashes. No longer
destroy ctf_dtbyname, which is gone.
(ctf_getdatasect): Remove spurious "extern".
* ctf-types.c (ctf_lookup_by_rawname): New, look up types in the
specified name table, given a kind.
(ctf_lookup_by_rawhash): Likewise, given a ctf_names_t *.
(ctf_member_iter): Add support for iterating over the
dynamic type list.
(ctf_enum_iter): Likewise.
(ctf_variable_iter): Likewise.
(ctf_type_rvisit): Likewise.
(ctf_member_info): Add support for types in the dynamic type list.
(ctf_enum_name): Likewise.
(ctf_enum_value): Likewise.
(ctf_func_type_info): Likewise.
(ctf_func_type_args): Likewise.
* ctf-link.c (ctf_accumulate_archive_names): No longer call
ctf_update.
(ctf_link_write): Likewise.
(ctf_link_intern_extern_string): Adjust for new
ctf_str_add_external return value.
(ctf_link_add_strtab): Likewise.
* ctf-util.c (ctf_list_empty_p): New.
2019-08-08 00:55:09 +08:00
|
|
|
/* Compatibility: just update the threshold for ctf_discard. */
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
int
|
libctf, include, binutils, gdb, ld: rename ctf_file_t to ctf_dict_t
The naming of the ctf_file_t type in libctf is a historical curiosity.
Back in the Solaris days, CTF dictionaries were originally generated as
a separate file and then (sometimes) merged into objects: hence the
datatype was named ctf_file_t, and known as a "CTF file". Nowadays, raw
CTF is essentially never written to a file on its own, and the datatype
changed name to a "CTF dictionary" years ago. So the term "CTF file"
refers to something that is never a file! This is at best confusing.
The type has also historically been known as a 'CTF container", which is
even more confusing now that we have CTF archives which are *also* a
sort of container (they contain CTF dictionaries), but which are never
referred to as containers in the source code.
So fix this by completing the renaming, renaming ctf_file_t to
ctf_dict_t throughout, and renaming those few functions that refer to
CTF files by name (keeping compatibility aliases) to refer to dicts
instead. Old users who still refer to ctf_file_t will see (harmless)
pointer-compatibility warnings at compile time, but the ABI is unchanged
(since C doesn't mangle names, and ctf_file_t was always an opaque type)
and things will still compile fine as long as -Werror is not specified.
All references to CTF containers and CTF files in the source code are
fixed to refer to CTF dicts instead.
Further (smaller) renamings of annoyingly-named functions to come, as
part of the process of souping up queries across whole archives at once
(needed for the function info and data object sections).
binutils/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* objdump.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_ctf): Likewise. Use ctf_dict_close, not ctf_file_close.
* readelf.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_section_as_ctf): Likewise. Use ctf_dict_close, not
ctf_file_close.
gdb/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctfread.c: Change uses of ctf_file_t to ctf_dict_t.
(ctf_fp_info::~ctf_fp_info): Call ctf_dict_close, not ctf_file_close.
include/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-api.h (ctf_file_t): Rename to...
(ctf_dict_t): ... this. Keep ctf_file_t around for compatibility.
(struct ctf_file): Likewise rename to...
(struct ctf_dict): ... this.
(ctf_file_close): Rename to...
(ctf_dict_close): ... this, keeping compatibility function.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this, keeping compatibility function.
All callers adjusted.
* ctf.h: Rename references to ctf_file_t to ctf_dict_t.
(struct ctf_archive) <ctfa_nfiles>: Rename to...
<ctfa_ndicts>: ... this.
ld/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ldlang.c (ctf_output): This is a ctf_dict_t now.
(lang_ctf_errs_warnings): Rename ctf_file_t to ctf_dict_t.
(ldlang_open_ctf): Adjust comment.
(lang_merge_ctf): Use ctf_dict_close, not ctf_file_close.
* ldelfgen.h (ldelf_examine_strtab_for_ctf): Rename ctf_file_t to
ctf_dict_t. Change opaque declaration accordingly.
* ldelfgen.c (ldelf_examine_strtab_for_ctf): Adjust.
* ldemul.h (examine_strtab_for_ctf): Likewise.
(ldemul_examine_strtab_for_ctf): Likewise.
* ldeuml.c (ldemul_examine_strtab_for_ctf): Likewise.
libctf/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h: Rename ctf_file_t to ctf_dict_t: all declarations
adjusted.
(ctf_fileops): Rename to...
(ctf_dictops): ... this.
(ctf_dedup_t) <cd_id_to_file_t>: Rename to...
<cd_id_to_dict_t>: ... this.
(ctf_file_t): Fix outdated comment.
<ctf_fileops>: Rename to...
<ctf_dictops>: ... this.
(struct ctf_archive_internal) <ctfi_file>: Rename to...
<ctfi_dict>: ... this.
* ctf-archive.c: Rename ctf_file_t to ctf_dict_t.
Rename ctf_archive.ctfa_nfiles to ctfa_ndicts.
Rename ctf_file_close to ctf_dict_close. All users adjusted.
* ctf-create.c: Likewise. Refer to CTF dicts, not CTF containers.
(ctf_bundle_t) <ctb_file>: Rename to...
<ctb_dict): ... this.
* ctf-decl.c: Rename ctf_file_t to ctf_dict_t.
* ctf-dedup.c: Likewise. Rename ctf_file_close to
ctf_dict_close. Refer to CTF dicts, not CTF containers.
* ctf-dump.c: Likewise.
* ctf-error.c: Likewise.
* ctf-hash.c: Likewise.
* ctf-inlines.h: Likewise.
* ctf-labels.c: Likewise.
* ctf-link.c: Likewise.
* ctf-lookup.c: Likewise.
* ctf-open-bfd.c: Likewise.
* ctf-string.c: Likewise.
* ctf-subr.c: Likewise.
* ctf-types.c: Likewise.
* ctf-util.c: Likewise.
* ctf-open.c: Likewise.
(ctf_file_close): Rename to...
(ctf_dict_close): ...this.
(ctf_file_close): New trivial wrapper around ctf_dict_close, for
compatibility.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this.
(ctf_parent_file): New trivial wrapper around ctf_parent_dict, for
compatibility.
* libctf.ver: Add ctf_dict_close and ctf_parent_dict.
2020-11-20 21:34:04 +08:00
|
|
|
ctf_update (ctf_dict_t *fp)
|
libctf: avoid the need to ever use ctf_update
The method of operation of libctf when the dictionary is writable has
before now been that types that are added land in the dynamic type
section, which is a linked list and hash of IDs -> dynamic type
definitions (and, recently a hash of names): the DTDs are a bit of CTF
representing the ctf_type_t and ad hoc C structures representing the
vlen. Historically, libctf was unable to do anything with these types,
not even look them up by ID, let alone by name: if you wanted to do that
say if you were adding a type that depended on one you just added) you
called ctf_update, which serializes all the DTDs into a CTF file and
reopens it, copying its guts over the fp it's called with. The
ctf_updated types are then frozen in amber and unchangeable: all lookups
will return the types in the static portion in preference to the dynamic
portion, and we will refuse to re-add things that already exist in the
static portion (and, of late, in the dynamic portion too). The libctf
machinery remembers the boundary between static and dynamic types and
looks in the right portion for each type. Lots of things still don't
quite work with dynamic types (e.g. getting their size), but enough
works to do a bunch of additions and then a ctf_update, most of the
time.
Except it doesn't, because ctf_add_type finds it necessary to walk the
full dynamic type definition list looking for types with matching names,
so it gets slower and slower with every type you add: fixing this
requires calling ctf_update periodically for no other reason than to
avoid massively slowing things down.
This is all clunky and very slow but kind of works, until you consider
that it is in fact possible and indeed necessary to modify one sort of
type after it has been added: forwards. These are necessarily promoted
to structs, unions or enums, and when they do so *their type ID does not
change*. So all of a sudden we are changing types that already exist in
the static portion. ctf_update gets massively confused by this and
allocates space enough for the forward (with no members), but then emits
the new dynamic type (with all the members) into it. You get an
assertion failure after that, if you're lucky, or a coredump.
So this commit rejigs things a bit and arranges to exclusively use the
dynamic type definitions in writable dictionaries, and the static type
definitions in readable dictionaries: we don't at any time have a mixture
of static and dynamic types, and you don't need to call ctf_update to
make things "appear". The ctf_dtbyname hash I introduced a few months
ago, which maps things like "struct foo" to DTDs, is removed, replaced
instead by a change of type of the four dictionaries which track names.
Rather than just being (unresizable) ctf_hash_t's populated only at
ctf_bufopen time, they are now a ctf_names_t structure, which is a pair
of ctf_hash_t and ctf_dynhash_t, with the ctf_hash_t portion being used
in readonly dictionaries, and the ctf_dynhash_t being used in writable
ones. The decision as to which to use is centralized in the new
functions ctf_lookup_by_rawname (which takes a type kind) and
ctf_lookup_by_rawhash, which it calls (which takes a ctf_names_t *.)
This change lets us switch from using static to dynamic name hashes on
the fly across the entirety of libctf without complexifying anything: in
fact, because we now centralize the knowledge about how to map from type
kind to name hash, it actually simplifies things and lets us throw out
quite a lot of now-unnecessary complexity, from ctf_dtnyname (replaced
by the dynamic half of the name tables), through to ctf_dtnextid (now
that a dictionary's static portion is never referenced if the dictionary
is writable, we can just use ctf_typemax to indicate the maximum type:
dynamic or non-dynamic does not matter, and we no longer need to track
the boundary between the types). You can now ctf_rollback() as far as
you like, even past a ctf_update or for that matter a full writeout; all
the iteration functions work just as well on writable as on read-only
dictionaries; ctf_add_type no longer needs expensive duplicated code to
run over the dynamic types hunting for ones it might be interested in;
and the linker no longer needs a hack to call ctf_update so that calling
ctf_add_type is not impossibly expensive.
There is still a bit more complexity: some new code paths in ctf-types.c
need to know how to extract information from dynamic types. This
complexity will go away again in a few months when libctf acquires a
proper intermediate representation.
You can still call ctf_update if you like (it's public API, after all),
but its only effect now is to set the point to which ctf_discard rolls
back.
Obviously *something* still needs to serialize the CTF file before
writeout, and this job is done by ctf_serialize, which does everything
ctf_update used to except set the counter used by ctf_discard. It is
automatically called by the various functions that do CTF writeout:
nobody else ever needs to call it.
With this in place, forwards that are promoted to non-forwards no longer
crash the link, even if it happens tens of thousands of types later.
v5: fix tabdamage.
libctf/
* ctf-impl.h (ctf_names_t): New.
(ctf_lookup_t) <ctf_hash>: Now a ctf_names_t, not a ctf_hash_t.
(ctf_file_t) <ctf_structs>: Likewise.
<ctf_unions>: Likewise.
<ctf_enums>: Likewise.
<ctf_names>: Likewise.
<ctf_lookups>: Improve comment.
<ctf_ptrtab_len>: New.
<ctf_prov_strtab>: New.
<ctf_str_prov_offset>: New.
<ctf_dtbyname>: Remove, redundant to the names hashes.
<ctf_dtnextid>: Remove, redundant to ctf_typemax.
(ctf_dtdef_t) <dtd_name>: Remove.
<dtd_data>: Note that the ctt_name is now populated.
(ctf_str_atom_t) <csa_offset>: This is now the strtab
offset for internal strings too.
<csa_external_offset>: New, the external strtab offset.
(CTF_INDEX_TO_TYPEPTR): Handle the LCTF_RDWR case.
(ctf_name_table): New declaration.
(ctf_lookup_by_rawname): Likewise.
(ctf_lookup_by_rawhash): Likewise.
(ctf_set_ctl_hashes): Likewise.
(ctf_serialize): Likewise.
(ctf_dtd_insert): Adjust.
(ctf_simple_open_internal): Likewise.
(ctf_bufopen_internal): Likewise.
(ctf_list_empty_p): Likewise.
(ctf_str_remove_ref): Likewise.
(ctf_str_add): Returns uint32_t now.
(ctf_str_add_ref): Likewise.
(ctf_str_add_external): Now returns a boolean (int).
* ctf-string.c (ctf_strraw_explicit): Check the ctf_prov_strtab
for strings in the appropriate range.
(ctf_str_create_atoms): Create the ctf_prov_strtab. Detect OOM
when adding the null string to the new strtab.
(ctf_str_free_atoms): Destroy the ctf_prov_strtab.
(ctf_str_add_ref_internal): Add make_provisional argument. If
make_provisional, populate the offset and fill in the
ctf_prov_strtab accordingly.
(ctf_str_add): Return the offset, not the string.
(ctf_str_add_ref): Likewise.
(ctf_str_add_external): Return a success integer.
(ctf_str_remove_ref): New, remove a single ref.
(ctf_str_count_strtab): Do not count the initial null string's
length or the existence or length of any unreferenced internal
atoms.
(ctf_str_populate_sorttab): Skip atoms with no refs.
(ctf_str_write_strtab): Populate the nullstr earlier. Add one
to the cts_len for the null string, since it is no longer done
in ctf_str_count_strtab. Adjust for csa_external_offset rename.
Populate the csa_offset for both internal and external cases.
Flush the ctf_prov_strtab afterwards, and reset the
ctf_str_prov_offset.
* ctf-create.c (ctf_grow_ptrtab): New.
(ctf_create): Call it. Initialize new fields rather than old
ones. Tell ctf_bufopen_internal that this is a writable dictionary.
Set the ctl hashes and data model.
(ctf_update): Rename to...
(ctf_serialize): ... this. Leave a compatibility function behind.
Tell ctf_simple_open_internal that this is a writable dictionary.
Pass the new fields along from the old dictionary. Drop
ctf_dtnextid and ctf_dtbyname. Use ctf_strraw, not dtd_name.
Do not zero out the DTD's ctt_name.
(ctf_prefixed_name): Rename to...
(ctf_name_table): ... this. No longer return a prefixed name: return
the applicable name table instead.
(ctf_dtd_insert): Use it, and use the right name table. Pass in the
kind we're adding. Migrate away from dtd_name.
(ctf_dtd_delete): Adjust similarly. Remove the ref to the
deleted ctt_name.
(ctf_dtd_lookup_type_by_name): Remove.
(ctf_dynamic_type): Always return NULL on read-only dictionaries.
No longer check ctf_dtnextid: check ctf_typemax instead.
(ctf_snapshot): No longer use ctf_dtnextid: use ctf_typemax instead.
(ctf_rollback): Likewise. No longer fail with ECTF_OVERROLLBACK. Use
ctf_name_table and the right name table, and migrate away from
dtd_name as in ctf_dtd_delete.
(ctf_add_generic): Pass in the kind explicitly and pass it to
ctf_dtd_insert. Use ctf_typemax, not ctf_dtnextid. Migrate away
from dtd_name to using ctf_str_add_ref to populate the ctt_name.
Grow the ptrtab if needed.
(ctf_add_encoded): Pass in the kind.
(ctf_add_slice): Likewise.
(ctf_add_array): Likewise.
(ctf_add_function): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_reftype): Likewise. Initialize the ctf_ptrtab, checking
ctt_name rather than dtd_name.
(ctf_add_struct_sized): Pass in the kind. Use
ctf_lookup_by_rawname, not ctf_hash_lookup_type /
ctf_dtd_lookup_type_by_name.
(ctf_add_union_sized): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_type): Likewise.
(ctf_compress_write): Call ctf_serialize: adjust for ctf_size not
being initialized until after the call.
(ctf_write_mem): Likewise.
(ctf_write): Likewise.
* ctf-archive.c (arc_write_one_ctf): Likewise.
* ctf-lookup.c (ctf_lookup_by_name): Use ctf_lookuup_by_rawhash, not
ctf_hash_lookup_type.
(ctf_lookup_by_id): No longer check the readonly types if the
dictionary is writable.
* ctf-open.c (init_types): Assert that this dictionary is not
writable. Adjust to use the new name hashes, ctf_name_table,
and ctf_ptrtab_len. GNU style fix for the final ptrtab scan.
(ctf_bufopen_internal): New 'writable' parameter. Flip on LCTF_RDWR
if set. Drop out early when dictionary is writable. Split the
ctf_lookups initialization into...
(ctf_set_cth_hashes): ... this new function.
(ctf_simple_open_internal): Adjust. New 'writable' parameter.
(ctf_simple_open): Adjust accordingly.
(ctf_bufopen): Likewise.
(ctf_file_close): Destroy the appropriate name hashes. No longer
destroy ctf_dtbyname, which is gone.
(ctf_getdatasect): Remove spurious "extern".
* ctf-types.c (ctf_lookup_by_rawname): New, look up types in the
specified name table, given a kind.
(ctf_lookup_by_rawhash): Likewise, given a ctf_names_t *.
(ctf_member_iter): Add support for iterating over the
dynamic type list.
(ctf_enum_iter): Likewise.
(ctf_variable_iter): Likewise.
(ctf_type_rvisit): Likewise.
(ctf_member_info): Add support for types in the dynamic type list.
(ctf_enum_name): Likewise.
(ctf_enum_value): Likewise.
(ctf_func_type_info): Likewise.
(ctf_func_type_args): Likewise.
* ctf-link.c (ctf_accumulate_archive_names): No longer call
ctf_update.
(ctf_link_write): Likewise.
(ctf_link_intern_extern_string): Adjust for new
ctf_str_add_external return value.
(ctf_link_add_strtab): Likewise.
* ctf-util.c (ctf_list_empty_p): New.
2019-08-08 00:55:09 +08:00
|
|
|
{
|
|
|
|
fp->ctf_dtoldid = fp->ctf_typemax;
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
libctf: remove static/dynamic name lookup distinction
libctf internally maintains a set of hash tables for type name lookups,
one for each valid C type namespace (struct, union, enum, and everything
else).
Or, rather, it maintains *two* sets of hash tables: one, a ctf_hash *,
is meant for lookups in ctf_(buf)open()ed dicts with fixed content; the
other, a ctf_dynhash *, is meant for lookups in ctf_create()d dicts.
This distinction was somewhat valuable in the far pre-binutils past when
two different hashtable implementations were used (one expanding, the
other fixed-size), but those days are long gone: the hash table
implementations are almost identical, both wrappers around the libiberty
hashtab. The ctf_dynhash has many more capabilities than the ctf_hash
(iteration, deletion, etc etc) and has no downsides other than starting
at a fixed, arbitrary small size.
That limitation is easy to lift (via a new ctf_dynhash_create_sized()),
following which we can throw away nearly all the ctf_hash
implementation, and all the code to choose between readable and writable
hashtabs; the few convenience functions that are still useful (for
insertion of name -> type mappings) can also be generalized a bit so
that the extra string verification they do is potentially available to
other string lookups as well.
(libctf still has two hashtable implementations, ctf_dynhash, above,
and ctf_dynset, which is a key-only hashtab that can avoid a great many
malloc()s, used for high-volume applications in the deduplicator.)
libctf/
* ctf-create.c (ctf_create): Eliminate ctn_writable.
(ctf_dtd_insert): Likewise.
(ctf_dtd_delete): Likewise.
(ctf_rollback): Likewise.
(ctf_name_table): Eliminate ctf_names_t.
* ctf-hash.c (ctf_dynhash_create): Comment update.
Reimplement in terms of...
(ctf_dynhash_create_sized): ... this new function.
(ctf_hash_create): Remove.
(ctf_hash_size): Remove.
(ctf_hash_define_type): Remove.
(ctf_hash_destroy): Remove.
(ctf_hash_lookup_type): Rename to...
(ctf_dynhash_lookup_type): ... this.
(ctf_hash_insert_type): Rename to...
(ctf_dynhash_insert_type): ... this, moving validation to...
* ctf-string.c (ctf_strptr_validate): ... this new function.
* ctf-impl.h (struct ctf_names): Extirpate.
(struct ctf_lookup.ctl_hash): Now a ctf_dynhash_t.
(struct ctf_dict): All ctf_names_t fields are now ctf_dynhash_t.
(ctf_name_table): Now returns a ctf_dynhash_t.
(ctf_lookup_by_rawhash): Remove.
(ctf_hash_create): Likewise.
(ctf_hash_insert_type): Likewise.
(ctf_hash_define_type): Likewise.
(ctf_hash_lookup_type): Likewise.
(ctf_hash_size): Likewise.
(ctf_hash_destroy): Likewise.
(ctf_dynhash_create_sized): New.
(ctf_dynhash_insert_type): New.
(ctf_dynhash_lookup_type): New.
(ctf_strptr_validate): New.
* ctf-lookup.c (ctf_lookup_by_name_internal): Adapt.
* ctf-open.c (init_types): Adapt.
(ctf_set_ctl_hashes): Adapt.
(ctf_dict_close): Adapt.
* ctf-serialize.c (ctf_serialize): Adapt.
* ctf-types.c (ctf_lookup_by_rawhash): Remove.
2023-12-19 01:47:48 +08:00
|
|
|
ctf_dynhash_t *
|
libctf, include, binutils, gdb, ld: rename ctf_file_t to ctf_dict_t
The naming of the ctf_file_t type in libctf is a historical curiosity.
Back in the Solaris days, CTF dictionaries were originally generated as
a separate file and then (sometimes) merged into objects: hence the
datatype was named ctf_file_t, and known as a "CTF file". Nowadays, raw
CTF is essentially never written to a file on its own, and the datatype
changed name to a "CTF dictionary" years ago. So the term "CTF file"
refers to something that is never a file! This is at best confusing.
The type has also historically been known as a 'CTF container", which is
even more confusing now that we have CTF archives which are *also* a
sort of container (they contain CTF dictionaries), but which are never
referred to as containers in the source code.
So fix this by completing the renaming, renaming ctf_file_t to
ctf_dict_t throughout, and renaming those few functions that refer to
CTF files by name (keeping compatibility aliases) to refer to dicts
instead. Old users who still refer to ctf_file_t will see (harmless)
pointer-compatibility warnings at compile time, but the ABI is unchanged
(since C doesn't mangle names, and ctf_file_t was always an opaque type)
and things will still compile fine as long as -Werror is not specified.
All references to CTF containers and CTF files in the source code are
fixed to refer to CTF dicts instead.
Further (smaller) renamings of annoyingly-named functions to come, as
part of the process of souping up queries across whole archives at once
(needed for the function info and data object sections).
binutils/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* objdump.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_ctf): Likewise. Use ctf_dict_close, not ctf_file_close.
* readelf.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_section_as_ctf): Likewise. Use ctf_dict_close, not
ctf_file_close.
gdb/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctfread.c: Change uses of ctf_file_t to ctf_dict_t.
(ctf_fp_info::~ctf_fp_info): Call ctf_dict_close, not ctf_file_close.
include/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-api.h (ctf_file_t): Rename to...
(ctf_dict_t): ... this. Keep ctf_file_t around for compatibility.
(struct ctf_file): Likewise rename to...
(struct ctf_dict): ... this.
(ctf_file_close): Rename to...
(ctf_dict_close): ... this, keeping compatibility function.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this, keeping compatibility function.
All callers adjusted.
* ctf.h: Rename references to ctf_file_t to ctf_dict_t.
(struct ctf_archive) <ctfa_nfiles>: Rename to...
<ctfa_ndicts>: ... this.
ld/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ldlang.c (ctf_output): This is a ctf_dict_t now.
(lang_ctf_errs_warnings): Rename ctf_file_t to ctf_dict_t.
(ldlang_open_ctf): Adjust comment.
(lang_merge_ctf): Use ctf_dict_close, not ctf_file_close.
* ldelfgen.h (ldelf_examine_strtab_for_ctf): Rename ctf_file_t to
ctf_dict_t. Change opaque declaration accordingly.
* ldelfgen.c (ldelf_examine_strtab_for_ctf): Adjust.
* ldemul.h (examine_strtab_for_ctf): Likewise.
(ldemul_examine_strtab_for_ctf): Likewise.
* ldeuml.c (ldemul_examine_strtab_for_ctf): Likewise.
libctf/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h: Rename ctf_file_t to ctf_dict_t: all declarations
adjusted.
(ctf_fileops): Rename to...
(ctf_dictops): ... this.
(ctf_dedup_t) <cd_id_to_file_t>: Rename to...
<cd_id_to_dict_t>: ... this.
(ctf_file_t): Fix outdated comment.
<ctf_fileops>: Rename to...
<ctf_dictops>: ... this.
(struct ctf_archive_internal) <ctfi_file>: Rename to...
<ctfi_dict>: ... this.
* ctf-archive.c: Rename ctf_file_t to ctf_dict_t.
Rename ctf_archive.ctfa_nfiles to ctfa_ndicts.
Rename ctf_file_close to ctf_dict_close. All users adjusted.
* ctf-create.c: Likewise. Refer to CTF dicts, not CTF containers.
(ctf_bundle_t) <ctb_file>: Rename to...
<ctb_dict): ... this.
* ctf-decl.c: Rename ctf_file_t to ctf_dict_t.
* ctf-dedup.c: Likewise. Rename ctf_file_close to
ctf_dict_close. Refer to CTF dicts, not CTF containers.
* ctf-dump.c: Likewise.
* ctf-error.c: Likewise.
* ctf-hash.c: Likewise.
* ctf-inlines.h: Likewise.
* ctf-labels.c: Likewise.
* ctf-link.c: Likewise.
* ctf-lookup.c: Likewise.
* ctf-open-bfd.c: Likewise.
* ctf-string.c: Likewise.
* ctf-subr.c: Likewise.
* ctf-types.c: Likewise.
* ctf-util.c: Likewise.
* ctf-open.c: Likewise.
(ctf_file_close): Rename to...
(ctf_dict_close): ...this.
(ctf_file_close): New trivial wrapper around ctf_dict_close, for
compatibility.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this.
(ctf_parent_file): New trivial wrapper around ctf_parent_dict, for
compatibility.
* libctf.ver: Add ctf_dict_close and ctf_parent_dict.
2020-11-20 21:34:04 +08:00
|
|
|
ctf_name_table (ctf_dict_t *fp, int kind)
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
{
|
|
|
|
switch (kind)
|
|
|
|
{
|
|
|
|
case CTF_K_STRUCT:
|
libctf: remove static/dynamic name lookup distinction
libctf internally maintains a set of hash tables for type name lookups,
one for each valid C type namespace (struct, union, enum, and everything
else).
Or, rather, it maintains *two* sets of hash tables: one, a ctf_hash *,
is meant for lookups in ctf_(buf)open()ed dicts with fixed content; the
other, a ctf_dynhash *, is meant for lookups in ctf_create()d dicts.
This distinction was somewhat valuable in the far pre-binutils past when
two different hashtable implementations were used (one expanding, the
other fixed-size), but those days are long gone: the hash table
implementations are almost identical, both wrappers around the libiberty
hashtab. The ctf_dynhash has many more capabilities than the ctf_hash
(iteration, deletion, etc etc) and has no downsides other than starting
at a fixed, arbitrary small size.
That limitation is easy to lift (via a new ctf_dynhash_create_sized()),
following which we can throw away nearly all the ctf_hash
implementation, and all the code to choose between readable and writable
hashtabs; the few convenience functions that are still useful (for
insertion of name -> type mappings) can also be generalized a bit so
that the extra string verification they do is potentially available to
other string lookups as well.
(libctf still has two hashtable implementations, ctf_dynhash, above,
and ctf_dynset, which is a key-only hashtab that can avoid a great many
malloc()s, used for high-volume applications in the deduplicator.)
libctf/
* ctf-create.c (ctf_create): Eliminate ctn_writable.
(ctf_dtd_insert): Likewise.
(ctf_dtd_delete): Likewise.
(ctf_rollback): Likewise.
(ctf_name_table): Eliminate ctf_names_t.
* ctf-hash.c (ctf_dynhash_create): Comment update.
Reimplement in terms of...
(ctf_dynhash_create_sized): ... this new function.
(ctf_hash_create): Remove.
(ctf_hash_size): Remove.
(ctf_hash_define_type): Remove.
(ctf_hash_destroy): Remove.
(ctf_hash_lookup_type): Rename to...
(ctf_dynhash_lookup_type): ... this.
(ctf_hash_insert_type): Rename to...
(ctf_dynhash_insert_type): ... this, moving validation to...
* ctf-string.c (ctf_strptr_validate): ... this new function.
* ctf-impl.h (struct ctf_names): Extirpate.
(struct ctf_lookup.ctl_hash): Now a ctf_dynhash_t.
(struct ctf_dict): All ctf_names_t fields are now ctf_dynhash_t.
(ctf_name_table): Now returns a ctf_dynhash_t.
(ctf_lookup_by_rawhash): Remove.
(ctf_hash_create): Likewise.
(ctf_hash_insert_type): Likewise.
(ctf_hash_define_type): Likewise.
(ctf_hash_lookup_type): Likewise.
(ctf_hash_size): Likewise.
(ctf_hash_destroy): Likewise.
(ctf_dynhash_create_sized): New.
(ctf_dynhash_insert_type): New.
(ctf_dynhash_lookup_type): New.
(ctf_strptr_validate): New.
* ctf-lookup.c (ctf_lookup_by_name_internal): Adapt.
* ctf-open.c (init_types): Adapt.
(ctf_set_ctl_hashes): Adapt.
(ctf_dict_close): Adapt.
* ctf-serialize.c (ctf_serialize): Adapt.
* ctf-types.c (ctf_lookup_by_rawhash): Remove.
2023-12-19 01:47:48 +08:00
|
|
|
return fp->ctf_structs;
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
case CTF_K_UNION:
|
libctf: remove static/dynamic name lookup distinction
libctf internally maintains a set of hash tables for type name lookups,
one for each valid C type namespace (struct, union, enum, and everything
else).
Or, rather, it maintains *two* sets of hash tables: one, a ctf_hash *,
is meant for lookups in ctf_(buf)open()ed dicts with fixed content; the
other, a ctf_dynhash *, is meant for lookups in ctf_create()d dicts.
This distinction was somewhat valuable in the far pre-binutils past when
two different hashtable implementations were used (one expanding, the
other fixed-size), but those days are long gone: the hash table
implementations are almost identical, both wrappers around the libiberty
hashtab. The ctf_dynhash has many more capabilities than the ctf_hash
(iteration, deletion, etc etc) and has no downsides other than starting
at a fixed, arbitrary small size.
That limitation is easy to lift (via a new ctf_dynhash_create_sized()),
following which we can throw away nearly all the ctf_hash
implementation, and all the code to choose between readable and writable
hashtabs; the few convenience functions that are still useful (for
insertion of name -> type mappings) can also be generalized a bit so
that the extra string verification they do is potentially available to
other string lookups as well.
(libctf still has two hashtable implementations, ctf_dynhash, above,
and ctf_dynset, which is a key-only hashtab that can avoid a great many
malloc()s, used for high-volume applications in the deduplicator.)
libctf/
* ctf-create.c (ctf_create): Eliminate ctn_writable.
(ctf_dtd_insert): Likewise.
(ctf_dtd_delete): Likewise.
(ctf_rollback): Likewise.
(ctf_name_table): Eliminate ctf_names_t.
* ctf-hash.c (ctf_dynhash_create): Comment update.
Reimplement in terms of...
(ctf_dynhash_create_sized): ... this new function.
(ctf_hash_create): Remove.
(ctf_hash_size): Remove.
(ctf_hash_define_type): Remove.
(ctf_hash_destroy): Remove.
(ctf_hash_lookup_type): Rename to...
(ctf_dynhash_lookup_type): ... this.
(ctf_hash_insert_type): Rename to...
(ctf_dynhash_insert_type): ... this, moving validation to...
* ctf-string.c (ctf_strptr_validate): ... this new function.
* ctf-impl.h (struct ctf_names): Extirpate.
(struct ctf_lookup.ctl_hash): Now a ctf_dynhash_t.
(struct ctf_dict): All ctf_names_t fields are now ctf_dynhash_t.
(ctf_name_table): Now returns a ctf_dynhash_t.
(ctf_lookup_by_rawhash): Remove.
(ctf_hash_create): Likewise.
(ctf_hash_insert_type): Likewise.
(ctf_hash_define_type): Likewise.
(ctf_hash_lookup_type): Likewise.
(ctf_hash_size): Likewise.
(ctf_hash_destroy): Likewise.
(ctf_dynhash_create_sized): New.
(ctf_dynhash_insert_type): New.
(ctf_dynhash_lookup_type): New.
(ctf_strptr_validate): New.
* ctf-lookup.c (ctf_lookup_by_name_internal): Adapt.
* ctf-open.c (init_types): Adapt.
(ctf_set_ctl_hashes): Adapt.
(ctf_dict_close): Adapt.
* ctf-serialize.c (ctf_serialize): Adapt.
* ctf-types.c (ctf_lookup_by_rawhash): Remove.
2023-12-19 01:47:48 +08:00
|
|
|
return fp->ctf_unions;
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
case CTF_K_ENUM:
|
libctf: remove static/dynamic name lookup distinction
libctf internally maintains a set of hash tables for type name lookups,
one for each valid C type namespace (struct, union, enum, and everything
else).
Or, rather, it maintains *two* sets of hash tables: one, a ctf_hash *,
is meant for lookups in ctf_(buf)open()ed dicts with fixed content; the
other, a ctf_dynhash *, is meant for lookups in ctf_create()d dicts.
This distinction was somewhat valuable in the far pre-binutils past when
two different hashtable implementations were used (one expanding, the
other fixed-size), but those days are long gone: the hash table
implementations are almost identical, both wrappers around the libiberty
hashtab. The ctf_dynhash has many more capabilities than the ctf_hash
(iteration, deletion, etc etc) and has no downsides other than starting
at a fixed, arbitrary small size.
That limitation is easy to lift (via a new ctf_dynhash_create_sized()),
following which we can throw away nearly all the ctf_hash
implementation, and all the code to choose between readable and writable
hashtabs; the few convenience functions that are still useful (for
insertion of name -> type mappings) can also be generalized a bit so
that the extra string verification they do is potentially available to
other string lookups as well.
(libctf still has two hashtable implementations, ctf_dynhash, above,
and ctf_dynset, which is a key-only hashtab that can avoid a great many
malloc()s, used for high-volume applications in the deduplicator.)
libctf/
* ctf-create.c (ctf_create): Eliminate ctn_writable.
(ctf_dtd_insert): Likewise.
(ctf_dtd_delete): Likewise.
(ctf_rollback): Likewise.
(ctf_name_table): Eliminate ctf_names_t.
* ctf-hash.c (ctf_dynhash_create): Comment update.
Reimplement in terms of...
(ctf_dynhash_create_sized): ... this new function.
(ctf_hash_create): Remove.
(ctf_hash_size): Remove.
(ctf_hash_define_type): Remove.
(ctf_hash_destroy): Remove.
(ctf_hash_lookup_type): Rename to...
(ctf_dynhash_lookup_type): ... this.
(ctf_hash_insert_type): Rename to...
(ctf_dynhash_insert_type): ... this, moving validation to...
* ctf-string.c (ctf_strptr_validate): ... this new function.
* ctf-impl.h (struct ctf_names): Extirpate.
(struct ctf_lookup.ctl_hash): Now a ctf_dynhash_t.
(struct ctf_dict): All ctf_names_t fields are now ctf_dynhash_t.
(ctf_name_table): Now returns a ctf_dynhash_t.
(ctf_lookup_by_rawhash): Remove.
(ctf_hash_create): Likewise.
(ctf_hash_insert_type): Likewise.
(ctf_hash_define_type): Likewise.
(ctf_hash_lookup_type): Likewise.
(ctf_hash_size): Likewise.
(ctf_hash_destroy): Likewise.
(ctf_dynhash_create_sized): New.
(ctf_dynhash_insert_type): New.
(ctf_dynhash_lookup_type): New.
(ctf_strptr_validate): New.
* ctf-lookup.c (ctf_lookup_by_name_internal): Adapt.
* ctf-open.c (init_types): Adapt.
(ctf_set_ctl_hashes): Adapt.
(ctf_dict_close): Adapt.
* ctf-serialize.c (ctf_serialize): Adapt.
* ctf-types.c (ctf_lookup_by_rawhash): Remove.
2023-12-19 01:47:48 +08:00
|
|
|
return fp->ctf_enums;
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
default:
|
libctf: remove static/dynamic name lookup distinction
libctf internally maintains a set of hash tables for type name lookups,
one for each valid C type namespace (struct, union, enum, and everything
else).
Or, rather, it maintains *two* sets of hash tables: one, a ctf_hash *,
is meant for lookups in ctf_(buf)open()ed dicts with fixed content; the
other, a ctf_dynhash *, is meant for lookups in ctf_create()d dicts.
This distinction was somewhat valuable in the far pre-binutils past when
two different hashtable implementations were used (one expanding, the
other fixed-size), but those days are long gone: the hash table
implementations are almost identical, both wrappers around the libiberty
hashtab. The ctf_dynhash has many more capabilities than the ctf_hash
(iteration, deletion, etc etc) and has no downsides other than starting
at a fixed, arbitrary small size.
That limitation is easy to lift (via a new ctf_dynhash_create_sized()),
following which we can throw away nearly all the ctf_hash
implementation, and all the code to choose between readable and writable
hashtabs; the few convenience functions that are still useful (for
insertion of name -> type mappings) can also be generalized a bit so
that the extra string verification they do is potentially available to
other string lookups as well.
(libctf still has two hashtable implementations, ctf_dynhash, above,
and ctf_dynset, which is a key-only hashtab that can avoid a great many
malloc()s, used for high-volume applications in the deduplicator.)
libctf/
* ctf-create.c (ctf_create): Eliminate ctn_writable.
(ctf_dtd_insert): Likewise.
(ctf_dtd_delete): Likewise.
(ctf_rollback): Likewise.
(ctf_name_table): Eliminate ctf_names_t.
* ctf-hash.c (ctf_dynhash_create): Comment update.
Reimplement in terms of...
(ctf_dynhash_create_sized): ... this new function.
(ctf_hash_create): Remove.
(ctf_hash_size): Remove.
(ctf_hash_define_type): Remove.
(ctf_hash_destroy): Remove.
(ctf_hash_lookup_type): Rename to...
(ctf_dynhash_lookup_type): ... this.
(ctf_hash_insert_type): Rename to...
(ctf_dynhash_insert_type): ... this, moving validation to...
* ctf-string.c (ctf_strptr_validate): ... this new function.
* ctf-impl.h (struct ctf_names): Extirpate.
(struct ctf_lookup.ctl_hash): Now a ctf_dynhash_t.
(struct ctf_dict): All ctf_names_t fields are now ctf_dynhash_t.
(ctf_name_table): Now returns a ctf_dynhash_t.
(ctf_lookup_by_rawhash): Remove.
(ctf_hash_create): Likewise.
(ctf_hash_insert_type): Likewise.
(ctf_hash_define_type): Likewise.
(ctf_hash_lookup_type): Likewise.
(ctf_hash_size): Likewise.
(ctf_hash_destroy): Likewise.
(ctf_dynhash_create_sized): New.
(ctf_dynhash_insert_type): New.
(ctf_dynhash_lookup_type): New.
(ctf_strptr_validate): New.
* ctf-lookup.c (ctf_lookup_by_name_internal): Adapt.
* ctf-open.c (init_types): Adapt.
(ctf_set_ctl_hashes): Adapt.
(ctf_dict_close): Adapt.
* ctf-serialize.c (ctf_serialize): Adapt.
* ctf-types.c (ctf_lookup_by_rawhash): Remove.
2023-12-19 01:47:48 +08:00
|
|
|
return fp->ctf_names;
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2019-06-19 19:14:16 +08:00
|
|
|
int
|
libctf, include, binutils, gdb, ld: rename ctf_file_t to ctf_dict_t
The naming of the ctf_file_t type in libctf is a historical curiosity.
Back in the Solaris days, CTF dictionaries were originally generated as
a separate file and then (sometimes) merged into objects: hence the
datatype was named ctf_file_t, and known as a "CTF file". Nowadays, raw
CTF is essentially never written to a file on its own, and the datatype
changed name to a "CTF dictionary" years ago. So the term "CTF file"
refers to something that is never a file! This is at best confusing.
The type has also historically been known as a 'CTF container", which is
even more confusing now that we have CTF archives which are *also* a
sort of container (they contain CTF dictionaries), but which are never
referred to as containers in the source code.
So fix this by completing the renaming, renaming ctf_file_t to
ctf_dict_t throughout, and renaming those few functions that refer to
CTF files by name (keeping compatibility aliases) to refer to dicts
instead. Old users who still refer to ctf_file_t will see (harmless)
pointer-compatibility warnings at compile time, but the ABI is unchanged
(since C doesn't mangle names, and ctf_file_t was always an opaque type)
and things will still compile fine as long as -Werror is not specified.
All references to CTF containers and CTF files in the source code are
fixed to refer to CTF dicts instead.
Further (smaller) renamings of annoyingly-named functions to come, as
part of the process of souping up queries across whole archives at once
(needed for the function info and data object sections).
binutils/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* objdump.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_ctf): Likewise. Use ctf_dict_close, not ctf_file_close.
* readelf.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_section_as_ctf): Likewise. Use ctf_dict_close, not
ctf_file_close.
gdb/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctfread.c: Change uses of ctf_file_t to ctf_dict_t.
(ctf_fp_info::~ctf_fp_info): Call ctf_dict_close, not ctf_file_close.
include/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-api.h (ctf_file_t): Rename to...
(ctf_dict_t): ... this. Keep ctf_file_t around for compatibility.
(struct ctf_file): Likewise rename to...
(struct ctf_dict): ... this.
(ctf_file_close): Rename to...
(ctf_dict_close): ... this, keeping compatibility function.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this, keeping compatibility function.
All callers adjusted.
* ctf.h: Rename references to ctf_file_t to ctf_dict_t.
(struct ctf_archive) <ctfa_nfiles>: Rename to...
<ctfa_ndicts>: ... this.
ld/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ldlang.c (ctf_output): This is a ctf_dict_t now.
(lang_ctf_errs_warnings): Rename ctf_file_t to ctf_dict_t.
(ldlang_open_ctf): Adjust comment.
(lang_merge_ctf): Use ctf_dict_close, not ctf_file_close.
* ldelfgen.h (ldelf_examine_strtab_for_ctf): Rename ctf_file_t to
ctf_dict_t. Change opaque declaration accordingly.
* ldelfgen.c (ldelf_examine_strtab_for_ctf): Adjust.
* ldemul.h (examine_strtab_for_ctf): Likewise.
(ldemul_examine_strtab_for_ctf): Likewise.
* ldeuml.c (ldemul_examine_strtab_for_ctf): Likewise.
libctf/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h: Rename ctf_file_t to ctf_dict_t: all declarations
adjusted.
(ctf_fileops): Rename to...
(ctf_dictops): ... this.
(ctf_dedup_t) <cd_id_to_file_t>: Rename to...
<cd_id_to_dict_t>: ... this.
(ctf_file_t): Fix outdated comment.
<ctf_fileops>: Rename to...
<ctf_dictops>: ... this.
(struct ctf_archive_internal) <ctfi_file>: Rename to...
<ctfi_dict>: ... this.
* ctf-archive.c: Rename ctf_file_t to ctf_dict_t.
Rename ctf_archive.ctfa_nfiles to ctfa_ndicts.
Rename ctf_file_close to ctf_dict_close. All users adjusted.
* ctf-create.c: Likewise. Refer to CTF dicts, not CTF containers.
(ctf_bundle_t) <ctb_file>: Rename to...
<ctb_dict): ... this.
* ctf-decl.c: Rename ctf_file_t to ctf_dict_t.
* ctf-dedup.c: Likewise. Rename ctf_file_close to
ctf_dict_close. Refer to CTF dicts, not CTF containers.
* ctf-dump.c: Likewise.
* ctf-error.c: Likewise.
* ctf-hash.c: Likewise.
* ctf-inlines.h: Likewise.
* ctf-labels.c: Likewise.
* ctf-link.c: Likewise.
* ctf-lookup.c: Likewise.
* ctf-open-bfd.c: Likewise.
* ctf-string.c: Likewise.
* ctf-subr.c: Likewise.
* ctf-types.c: Likewise.
* ctf-util.c: Likewise.
* ctf-open.c: Likewise.
(ctf_file_close): Rename to...
(ctf_dict_close): ...this.
(ctf_file_close): New trivial wrapper around ctf_dict_close, for
compatibility.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this.
(ctf_parent_file): New trivial wrapper around ctf_parent_dict, for
compatibility.
* libctf.ver: Add ctf_dict_close and ctf_parent_dict.
2020-11-20 21:34:04 +08:00
|
|
|
ctf_dtd_insert (ctf_dict_t *fp, ctf_dtdef_t *dtd, int flag, int kind)
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
{
|
libctf: avoid the need to ever use ctf_update
The method of operation of libctf when the dictionary is writable has
before now been that types that are added land in the dynamic type
section, which is a linked list and hash of IDs -> dynamic type
definitions (and, recently a hash of names): the DTDs are a bit of CTF
representing the ctf_type_t and ad hoc C structures representing the
vlen. Historically, libctf was unable to do anything with these types,
not even look them up by ID, let alone by name: if you wanted to do that
say if you were adding a type that depended on one you just added) you
called ctf_update, which serializes all the DTDs into a CTF file and
reopens it, copying its guts over the fp it's called with. The
ctf_updated types are then frozen in amber and unchangeable: all lookups
will return the types in the static portion in preference to the dynamic
portion, and we will refuse to re-add things that already exist in the
static portion (and, of late, in the dynamic portion too). The libctf
machinery remembers the boundary between static and dynamic types and
looks in the right portion for each type. Lots of things still don't
quite work with dynamic types (e.g. getting their size), but enough
works to do a bunch of additions and then a ctf_update, most of the
time.
Except it doesn't, because ctf_add_type finds it necessary to walk the
full dynamic type definition list looking for types with matching names,
so it gets slower and slower with every type you add: fixing this
requires calling ctf_update periodically for no other reason than to
avoid massively slowing things down.
This is all clunky and very slow but kind of works, until you consider
that it is in fact possible and indeed necessary to modify one sort of
type after it has been added: forwards. These are necessarily promoted
to structs, unions or enums, and when they do so *their type ID does not
change*. So all of a sudden we are changing types that already exist in
the static portion. ctf_update gets massively confused by this and
allocates space enough for the forward (with no members), but then emits
the new dynamic type (with all the members) into it. You get an
assertion failure after that, if you're lucky, or a coredump.
So this commit rejigs things a bit and arranges to exclusively use the
dynamic type definitions in writable dictionaries, and the static type
definitions in readable dictionaries: we don't at any time have a mixture
of static and dynamic types, and you don't need to call ctf_update to
make things "appear". The ctf_dtbyname hash I introduced a few months
ago, which maps things like "struct foo" to DTDs, is removed, replaced
instead by a change of type of the four dictionaries which track names.
Rather than just being (unresizable) ctf_hash_t's populated only at
ctf_bufopen time, they are now a ctf_names_t structure, which is a pair
of ctf_hash_t and ctf_dynhash_t, with the ctf_hash_t portion being used
in readonly dictionaries, and the ctf_dynhash_t being used in writable
ones. The decision as to which to use is centralized in the new
functions ctf_lookup_by_rawname (which takes a type kind) and
ctf_lookup_by_rawhash, which it calls (which takes a ctf_names_t *.)
This change lets us switch from using static to dynamic name hashes on
the fly across the entirety of libctf without complexifying anything: in
fact, because we now centralize the knowledge about how to map from type
kind to name hash, it actually simplifies things and lets us throw out
quite a lot of now-unnecessary complexity, from ctf_dtnyname (replaced
by the dynamic half of the name tables), through to ctf_dtnextid (now
that a dictionary's static portion is never referenced if the dictionary
is writable, we can just use ctf_typemax to indicate the maximum type:
dynamic or non-dynamic does not matter, and we no longer need to track
the boundary between the types). You can now ctf_rollback() as far as
you like, even past a ctf_update or for that matter a full writeout; all
the iteration functions work just as well on writable as on read-only
dictionaries; ctf_add_type no longer needs expensive duplicated code to
run over the dynamic types hunting for ones it might be interested in;
and the linker no longer needs a hack to call ctf_update so that calling
ctf_add_type is not impossibly expensive.
There is still a bit more complexity: some new code paths in ctf-types.c
need to know how to extract information from dynamic types. This
complexity will go away again in a few months when libctf acquires a
proper intermediate representation.
You can still call ctf_update if you like (it's public API, after all),
but its only effect now is to set the point to which ctf_discard rolls
back.
Obviously *something* still needs to serialize the CTF file before
writeout, and this job is done by ctf_serialize, which does everything
ctf_update used to except set the counter used by ctf_discard. It is
automatically called by the various functions that do CTF writeout:
nobody else ever needs to call it.
With this in place, forwards that are promoted to non-forwards no longer
crash the link, even if it happens tens of thousands of types later.
v5: fix tabdamage.
libctf/
* ctf-impl.h (ctf_names_t): New.
(ctf_lookup_t) <ctf_hash>: Now a ctf_names_t, not a ctf_hash_t.
(ctf_file_t) <ctf_structs>: Likewise.
<ctf_unions>: Likewise.
<ctf_enums>: Likewise.
<ctf_names>: Likewise.
<ctf_lookups>: Improve comment.
<ctf_ptrtab_len>: New.
<ctf_prov_strtab>: New.
<ctf_str_prov_offset>: New.
<ctf_dtbyname>: Remove, redundant to the names hashes.
<ctf_dtnextid>: Remove, redundant to ctf_typemax.
(ctf_dtdef_t) <dtd_name>: Remove.
<dtd_data>: Note that the ctt_name is now populated.
(ctf_str_atom_t) <csa_offset>: This is now the strtab
offset for internal strings too.
<csa_external_offset>: New, the external strtab offset.
(CTF_INDEX_TO_TYPEPTR): Handle the LCTF_RDWR case.
(ctf_name_table): New declaration.
(ctf_lookup_by_rawname): Likewise.
(ctf_lookup_by_rawhash): Likewise.
(ctf_set_ctl_hashes): Likewise.
(ctf_serialize): Likewise.
(ctf_dtd_insert): Adjust.
(ctf_simple_open_internal): Likewise.
(ctf_bufopen_internal): Likewise.
(ctf_list_empty_p): Likewise.
(ctf_str_remove_ref): Likewise.
(ctf_str_add): Returns uint32_t now.
(ctf_str_add_ref): Likewise.
(ctf_str_add_external): Now returns a boolean (int).
* ctf-string.c (ctf_strraw_explicit): Check the ctf_prov_strtab
for strings in the appropriate range.
(ctf_str_create_atoms): Create the ctf_prov_strtab. Detect OOM
when adding the null string to the new strtab.
(ctf_str_free_atoms): Destroy the ctf_prov_strtab.
(ctf_str_add_ref_internal): Add make_provisional argument. If
make_provisional, populate the offset and fill in the
ctf_prov_strtab accordingly.
(ctf_str_add): Return the offset, not the string.
(ctf_str_add_ref): Likewise.
(ctf_str_add_external): Return a success integer.
(ctf_str_remove_ref): New, remove a single ref.
(ctf_str_count_strtab): Do not count the initial null string's
length or the existence or length of any unreferenced internal
atoms.
(ctf_str_populate_sorttab): Skip atoms with no refs.
(ctf_str_write_strtab): Populate the nullstr earlier. Add one
to the cts_len for the null string, since it is no longer done
in ctf_str_count_strtab. Adjust for csa_external_offset rename.
Populate the csa_offset for both internal and external cases.
Flush the ctf_prov_strtab afterwards, and reset the
ctf_str_prov_offset.
* ctf-create.c (ctf_grow_ptrtab): New.
(ctf_create): Call it. Initialize new fields rather than old
ones. Tell ctf_bufopen_internal that this is a writable dictionary.
Set the ctl hashes and data model.
(ctf_update): Rename to...
(ctf_serialize): ... this. Leave a compatibility function behind.
Tell ctf_simple_open_internal that this is a writable dictionary.
Pass the new fields along from the old dictionary. Drop
ctf_dtnextid and ctf_dtbyname. Use ctf_strraw, not dtd_name.
Do not zero out the DTD's ctt_name.
(ctf_prefixed_name): Rename to...
(ctf_name_table): ... this. No longer return a prefixed name: return
the applicable name table instead.
(ctf_dtd_insert): Use it, and use the right name table. Pass in the
kind we're adding. Migrate away from dtd_name.
(ctf_dtd_delete): Adjust similarly. Remove the ref to the
deleted ctt_name.
(ctf_dtd_lookup_type_by_name): Remove.
(ctf_dynamic_type): Always return NULL on read-only dictionaries.
No longer check ctf_dtnextid: check ctf_typemax instead.
(ctf_snapshot): No longer use ctf_dtnextid: use ctf_typemax instead.
(ctf_rollback): Likewise. No longer fail with ECTF_OVERROLLBACK. Use
ctf_name_table and the right name table, and migrate away from
dtd_name as in ctf_dtd_delete.
(ctf_add_generic): Pass in the kind explicitly and pass it to
ctf_dtd_insert. Use ctf_typemax, not ctf_dtnextid. Migrate away
from dtd_name to using ctf_str_add_ref to populate the ctt_name.
Grow the ptrtab if needed.
(ctf_add_encoded): Pass in the kind.
(ctf_add_slice): Likewise.
(ctf_add_array): Likewise.
(ctf_add_function): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_reftype): Likewise. Initialize the ctf_ptrtab, checking
ctt_name rather than dtd_name.
(ctf_add_struct_sized): Pass in the kind. Use
ctf_lookup_by_rawname, not ctf_hash_lookup_type /
ctf_dtd_lookup_type_by_name.
(ctf_add_union_sized): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_type): Likewise.
(ctf_compress_write): Call ctf_serialize: adjust for ctf_size not
being initialized until after the call.
(ctf_write_mem): Likewise.
(ctf_write): Likewise.
* ctf-archive.c (arc_write_one_ctf): Likewise.
* ctf-lookup.c (ctf_lookup_by_name): Use ctf_lookuup_by_rawhash, not
ctf_hash_lookup_type.
(ctf_lookup_by_id): No longer check the readonly types if the
dictionary is writable.
* ctf-open.c (init_types): Assert that this dictionary is not
writable. Adjust to use the new name hashes, ctf_name_table,
and ctf_ptrtab_len. GNU style fix for the final ptrtab scan.
(ctf_bufopen_internal): New 'writable' parameter. Flip on LCTF_RDWR
if set. Drop out early when dictionary is writable. Split the
ctf_lookups initialization into...
(ctf_set_cth_hashes): ... this new function.
(ctf_simple_open_internal): Adjust. New 'writable' parameter.
(ctf_simple_open): Adjust accordingly.
(ctf_bufopen): Likewise.
(ctf_file_close): Destroy the appropriate name hashes. No longer
destroy ctf_dtbyname, which is gone.
(ctf_getdatasect): Remove spurious "extern".
* ctf-types.c (ctf_lookup_by_rawname): New, look up types in the
specified name table, given a kind.
(ctf_lookup_by_rawhash): Likewise, given a ctf_names_t *.
(ctf_member_iter): Add support for iterating over the
dynamic type list.
(ctf_enum_iter): Likewise.
(ctf_variable_iter): Likewise.
(ctf_type_rvisit): Likewise.
(ctf_member_info): Add support for types in the dynamic type list.
(ctf_enum_name): Likewise.
(ctf_enum_value): Likewise.
(ctf_func_type_info): Likewise.
(ctf_func_type_args): Likewise.
* ctf-link.c (ctf_accumulate_archive_names): No longer call
ctf_update.
(ctf_link_write): Likewise.
(ctf_link_intern_extern_string): Adjust for new
ctf_str_add_external return value.
(ctf_link_add_strtab): Likewise.
* ctf-util.c (ctf_list_empty_p): New.
2019-08-08 00:55:09 +08:00
|
|
|
const char *name;
|
2020-07-21 22:38:08 +08:00
|
|
|
if (ctf_dynhash_insert (fp->ctf_dthash, (void *) (uintptr_t) dtd->dtd_type,
|
|
|
|
dtd) < 0)
|
2023-09-13 17:02:36 +08:00
|
|
|
return ctf_set_errno (fp, ENOMEM);
|
2019-06-19 19:14:16 +08:00
|
|
|
|
2019-10-21 18:27:43 +08:00
|
|
|
if (flag == CTF_ADD_ROOT && dtd->dtd_data.ctt_name
|
libctf: avoid the need to ever use ctf_update
The method of operation of libctf when the dictionary is writable has
before now been that types that are added land in the dynamic type
section, which is a linked list and hash of IDs -> dynamic type
definitions (and, recently a hash of names): the DTDs are a bit of CTF
representing the ctf_type_t and ad hoc C structures representing the
vlen. Historically, libctf was unable to do anything with these types,
not even look them up by ID, let alone by name: if you wanted to do that
say if you were adding a type that depended on one you just added) you
called ctf_update, which serializes all the DTDs into a CTF file and
reopens it, copying its guts over the fp it's called with. The
ctf_updated types are then frozen in amber and unchangeable: all lookups
will return the types in the static portion in preference to the dynamic
portion, and we will refuse to re-add things that already exist in the
static portion (and, of late, in the dynamic portion too). The libctf
machinery remembers the boundary between static and dynamic types and
looks in the right portion for each type. Lots of things still don't
quite work with dynamic types (e.g. getting their size), but enough
works to do a bunch of additions and then a ctf_update, most of the
time.
Except it doesn't, because ctf_add_type finds it necessary to walk the
full dynamic type definition list looking for types with matching names,
so it gets slower and slower with every type you add: fixing this
requires calling ctf_update periodically for no other reason than to
avoid massively slowing things down.
This is all clunky and very slow but kind of works, until you consider
that it is in fact possible and indeed necessary to modify one sort of
type after it has been added: forwards. These are necessarily promoted
to structs, unions or enums, and when they do so *their type ID does not
change*. So all of a sudden we are changing types that already exist in
the static portion. ctf_update gets massively confused by this and
allocates space enough for the forward (with no members), but then emits
the new dynamic type (with all the members) into it. You get an
assertion failure after that, if you're lucky, or a coredump.
So this commit rejigs things a bit and arranges to exclusively use the
dynamic type definitions in writable dictionaries, and the static type
definitions in readable dictionaries: we don't at any time have a mixture
of static and dynamic types, and you don't need to call ctf_update to
make things "appear". The ctf_dtbyname hash I introduced a few months
ago, which maps things like "struct foo" to DTDs, is removed, replaced
instead by a change of type of the four dictionaries which track names.
Rather than just being (unresizable) ctf_hash_t's populated only at
ctf_bufopen time, they are now a ctf_names_t structure, which is a pair
of ctf_hash_t and ctf_dynhash_t, with the ctf_hash_t portion being used
in readonly dictionaries, and the ctf_dynhash_t being used in writable
ones. The decision as to which to use is centralized in the new
functions ctf_lookup_by_rawname (which takes a type kind) and
ctf_lookup_by_rawhash, which it calls (which takes a ctf_names_t *.)
This change lets us switch from using static to dynamic name hashes on
the fly across the entirety of libctf without complexifying anything: in
fact, because we now centralize the knowledge about how to map from type
kind to name hash, it actually simplifies things and lets us throw out
quite a lot of now-unnecessary complexity, from ctf_dtnyname (replaced
by the dynamic half of the name tables), through to ctf_dtnextid (now
that a dictionary's static portion is never referenced if the dictionary
is writable, we can just use ctf_typemax to indicate the maximum type:
dynamic or non-dynamic does not matter, and we no longer need to track
the boundary between the types). You can now ctf_rollback() as far as
you like, even past a ctf_update or for that matter a full writeout; all
the iteration functions work just as well on writable as on read-only
dictionaries; ctf_add_type no longer needs expensive duplicated code to
run over the dynamic types hunting for ones it might be interested in;
and the linker no longer needs a hack to call ctf_update so that calling
ctf_add_type is not impossibly expensive.
There is still a bit more complexity: some new code paths in ctf-types.c
need to know how to extract information from dynamic types. This
complexity will go away again in a few months when libctf acquires a
proper intermediate representation.
You can still call ctf_update if you like (it's public API, after all),
but its only effect now is to set the point to which ctf_discard rolls
back.
Obviously *something* still needs to serialize the CTF file before
writeout, and this job is done by ctf_serialize, which does everything
ctf_update used to except set the counter used by ctf_discard. It is
automatically called by the various functions that do CTF writeout:
nobody else ever needs to call it.
With this in place, forwards that are promoted to non-forwards no longer
crash the link, even if it happens tens of thousands of types later.
v5: fix tabdamage.
libctf/
* ctf-impl.h (ctf_names_t): New.
(ctf_lookup_t) <ctf_hash>: Now a ctf_names_t, not a ctf_hash_t.
(ctf_file_t) <ctf_structs>: Likewise.
<ctf_unions>: Likewise.
<ctf_enums>: Likewise.
<ctf_names>: Likewise.
<ctf_lookups>: Improve comment.
<ctf_ptrtab_len>: New.
<ctf_prov_strtab>: New.
<ctf_str_prov_offset>: New.
<ctf_dtbyname>: Remove, redundant to the names hashes.
<ctf_dtnextid>: Remove, redundant to ctf_typemax.
(ctf_dtdef_t) <dtd_name>: Remove.
<dtd_data>: Note that the ctt_name is now populated.
(ctf_str_atom_t) <csa_offset>: This is now the strtab
offset for internal strings too.
<csa_external_offset>: New, the external strtab offset.
(CTF_INDEX_TO_TYPEPTR): Handle the LCTF_RDWR case.
(ctf_name_table): New declaration.
(ctf_lookup_by_rawname): Likewise.
(ctf_lookup_by_rawhash): Likewise.
(ctf_set_ctl_hashes): Likewise.
(ctf_serialize): Likewise.
(ctf_dtd_insert): Adjust.
(ctf_simple_open_internal): Likewise.
(ctf_bufopen_internal): Likewise.
(ctf_list_empty_p): Likewise.
(ctf_str_remove_ref): Likewise.
(ctf_str_add): Returns uint32_t now.
(ctf_str_add_ref): Likewise.
(ctf_str_add_external): Now returns a boolean (int).
* ctf-string.c (ctf_strraw_explicit): Check the ctf_prov_strtab
for strings in the appropriate range.
(ctf_str_create_atoms): Create the ctf_prov_strtab. Detect OOM
when adding the null string to the new strtab.
(ctf_str_free_atoms): Destroy the ctf_prov_strtab.
(ctf_str_add_ref_internal): Add make_provisional argument. If
make_provisional, populate the offset and fill in the
ctf_prov_strtab accordingly.
(ctf_str_add): Return the offset, not the string.
(ctf_str_add_ref): Likewise.
(ctf_str_add_external): Return a success integer.
(ctf_str_remove_ref): New, remove a single ref.
(ctf_str_count_strtab): Do not count the initial null string's
length or the existence or length of any unreferenced internal
atoms.
(ctf_str_populate_sorttab): Skip atoms with no refs.
(ctf_str_write_strtab): Populate the nullstr earlier. Add one
to the cts_len for the null string, since it is no longer done
in ctf_str_count_strtab. Adjust for csa_external_offset rename.
Populate the csa_offset for both internal and external cases.
Flush the ctf_prov_strtab afterwards, and reset the
ctf_str_prov_offset.
* ctf-create.c (ctf_grow_ptrtab): New.
(ctf_create): Call it. Initialize new fields rather than old
ones. Tell ctf_bufopen_internal that this is a writable dictionary.
Set the ctl hashes and data model.
(ctf_update): Rename to...
(ctf_serialize): ... this. Leave a compatibility function behind.
Tell ctf_simple_open_internal that this is a writable dictionary.
Pass the new fields along from the old dictionary. Drop
ctf_dtnextid and ctf_dtbyname. Use ctf_strraw, not dtd_name.
Do not zero out the DTD's ctt_name.
(ctf_prefixed_name): Rename to...
(ctf_name_table): ... this. No longer return a prefixed name: return
the applicable name table instead.
(ctf_dtd_insert): Use it, and use the right name table. Pass in the
kind we're adding. Migrate away from dtd_name.
(ctf_dtd_delete): Adjust similarly. Remove the ref to the
deleted ctt_name.
(ctf_dtd_lookup_type_by_name): Remove.
(ctf_dynamic_type): Always return NULL on read-only dictionaries.
No longer check ctf_dtnextid: check ctf_typemax instead.
(ctf_snapshot): No longer use ctf_dtnextid: use ctf_typemax instead.
(ctf_rollback): Likewise. No longer fail with ECTF_OVERROLLBACK. Use
ctf_name_table and the right name table, and migrate away from
dtd_name as in ctf_dtd_delete.
(ctf_add_generic): Pass in the kind explicitly and pass it to
ctf_dtd_insert. Use ctf_typemax, not ctf_dtnextid. Migrate away
from dtd_name to using ctf_str_add_ref to populate the ctt_name.
Grow the ptrtab if needed.
(ctf_add_encoded): Pass in the kind.
(ctf_add_slice): Likewise.
(ctf_add_array): Likewise.
(ctf_add_function): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_reftype): Likewise. Initialize the ctf_ptrtab, checking
ctt_name rather than dtd_name.
(ctf_add_struct_sized): Pass in the kind. Use
ctf_lookup_by_rawname, not ctf_hash_lookup_type /
ctf_dtd_lookup_type_by_name.
(ctf_add_union_sized): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_type): Likewise.
(ctf_compress_write): Call ctf_serialize: adjust for ctf_size not
being initialized until after the call.
(ctf_write_mem): Likewise.
(ctf_write): Likewise.
* ctf-archive.c (arc_write_one_ctf): Likewise.
* ctf-lookup.c (ctf_lookup_by_name): Use ctf_lookuup_by_rawhash, not
ctf_hash_lookup_type.
(ctf_lookup_by_id): No longer check the readonly types if the
dictionary is writable.
* ctf-open.c (init_types): Assert that this dictionary is not
writable. Adjust to use the new name hashes, ctf_name_table,
and ctf_ptrtab_len. GNU style fix for the final ptrtab scan.
(ctf_bufopen_internal): New 'writable' parameter. Flip on LCTF_RDWR
if set. Drop out early when dictionary is writable. Split the
ctf_lookups initialization into...
(ctf_set_cth_hashes): ... this new function.
(ctf_simple_open_internal): Adjust. New 'writable' parameter.
(ctf_simple_open): Adjust accordingly.
(ctf_bufopen): Likewise.
(ctf_file_close): Destroy the appropriate name hashes. No longer
destroy ctf_dtbyname, which is gone.
(ctf_getdatasect): Remove spurious "extern".
* ctf-types.c (ctf_lookup_by_rawname): New, look up types in the
specified name table, given a kind.
(ctf_lookup_by_rawhash): Likewise, given a ctf_names_t *.
(ctf_member_iter): Add support for iterating over the
dynamic type list.
(ctf_enum_iter): Likewise.
(ctf_variable_iter): Likewise.
(ctf_type_rvisit): Likewise.
(ctf_member_info): Add support for types in the dynamic type list.
(ctf_enum_name): Likewise.
(ctf_enum_value): Likewise.
(ctf_func_type_info): Likewise.
(ctf_func_type_args): Likewise.
* ctf-link.c (ctf_accumulate_archive_names): No longer call
ctf_update.
(ctf_link_write): Likewise.
(ctf_link_intern_extern_string): Adjust for new
ctf_str_add_external return value.
(ctf_link_add_strtab): Likewise.
* ctf-util.c (ctf_list_empty_p): New.
2019-08-08 00:55:09 +08:00
|
|
|
&& (name = ctf_strraw (fp, dtd->dtd_data.ctt_name)) != NULL)
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
{
|
libctf: remove static/dynamic name lookup distinction
libctf internally maintains a set of hash tables for type name lookups,
one for each valid C type namespace (struct, union, enum, and everything
else).
Or, rather, it maintains *two* sets of hash tables: one, a ctf_hash *,
is meant for lookups in ctf_(buf)open()ed dicts with fixed content; the
other, a ctf_dynhash *, is meant for lookups in ctf_create()d dicts.
This distinction was somewhat valuable in the far pre-binutils past when
two different hashtable implementations were used (one expanding, the
other fixed-size), but those days are long gone: the hash table
implementations are almost identical, both wrappers around the libiberty
hashtab. The ctf_dynhash has many more capabilities than the ctf_hash
(iteration, deletion, etc etc) and has no downsides other than starting
at a fixed, arbitrary small size.
That limitation is easy to lift (via a new ctf_dynhash_create_sized()),
following which we can throw away nearly all the ctf_hash
implementation, and all the code to choose between readable and writable
hashtabs; the few convenience functions that are still useful (for
insertion of name -> type mappings) can also be generalized a bit so
that the extra string verification they do is potentially available to
other string lookups as well.
(libctf still has two hashtable implementations, ctf_dynhash, above,
and ctf_dynset, which is a key-only hashtab that can avoid a great many
malloc()s, used for high-volume applications in the deduplicator.)
libctf/
* ctf-create.c (ctf_create): Eliminate ctn_writable.
(ctf_dtd_insert): Likewise.
(ctf_dtd_delete): Likewise.
(ctf_rollback): Likewise.
(ctf_name_table): Eliminate ctf_names_t.
* ctf-hash.c (ctf_dynhash_create): Comment update.
Reimplement in terms of...
(ctf_dynhash_create_sized): ... this new function.
(ctf_hash_create): Remove.
(ctf_hash_size): Remove.
(ctf_hash_define_type): Remove.
(ctf_hash_destroy): Remove.
(ctf_hash_lookup_type): Rename to...
(ctf_dynhash_lookup_type): ... this.
(ctf_hash_insert_type): Rename to...
(ctf_dynhash_insert_type): ... this, moving validation to...
* ctf-string.c (ctf_strptr_validate): ... this new function.
* ctf-impl.h (struct ctf_names): Extirpate.
(struct ctf_lookup.ctl_hash): Now a ctf_dynhash_t.
(struct ctf_dict): All ctf_names_t fields are now ctf_dynhash_t.
(ctf_name_table): Now returns a ctf_dynhash_t.
(ctf_lookup_by_rawhash): Remove.
(ctf_hash_create): Likewise.
(ctf_hash_insert_type): Likewise.
(ctf_hash_define_type): Likewise.
(ctf_hash_lookup_type): Likewise.
(ctf_hash_size): Likewise.
(ctf_hash_destroy): Likewise.
(ctf_dynhash_create_sized): New.
(ctf_dynhash_insert_type): New.
(ctf_dynhash_lookup_type): New.
(ctf_strptr_validate): New.
* ctf-lookup.c (ctf_lookup_by_name_internal): Adapt.
* ctf-open.c (init_types): Adapt.
(ctf_set_ctl_hashes): Adapt.
(ctf_dict_close): Adapt.
* ctf-serialize.c (ctf_serialize): Adapt.
* ctf-types.c (ctf_lookup_by_rawhash): Remove.
2023-12-19 01:47:48 +08:00
|
|
|
if (ctf_dynhash_insert (ctf_name_table (fp, kind),
|
2020-07-21 22:38:08 +08:00
|
|
|
(char *) name, (void *) (uintptr_t)
|
|
|
|
dtd->dtd_type) < 0)
|
libctf: avoid the need to ever use ctf_update
The method of operation of libctf when the dictionary is writable has
before now been that types that are added land in the dynamic type
section, which is a linked list and hash of IDs -> dynamic type
definitions (and, recently a hash of names): the DTDs are a bit of CTF
representing the ctf_type_t and ad hoc C structures representing the
vlen. Historically, libctf was unable to do anything with these types,
not even look them up by ID, let alone by name: if you wanted to do that
say if you were adding a type that depended on one you just added) you
called ctf_update, which serializes all the DTDs into a CTF file and
reopens it, copying its guts over the fp it's called with. The
ctf_updated types are then frozen in amber and unchangeable: all lookups
will return the types in the static portion in preference to the dynamic
portion, and we will refuse to re-add things that already exist in the
static portion (and, of late, in the dynamic portion too). The libctf
machinery remembers the boundary between static and dynamic types and
looks in the right portion for each type. Lots of things still don't
quite work with dynamic types (e.g. getting their size), but enough
works to do a bunch of additions and then a ctf_update, most of the
time.
Except it doesn't, because ctf_add_type finds it necessary to walk the
full dynamic type definition list looking for types with matching names,
so it gets slower and slower with every type you add: fixing this
requires calling ctf_update periodically for no other reason than to
avoid massively slowing things down.
This is all clunky and very slow but kind of works, until you consider
that it is in fact possible and indeed necessary to modify one sort of
type after it has been added: forwards. These are necessarily promoted
to structs, unions or enums, and when they do so *their type ID does not
change*. So all of a sudden we are changing types that already exist in
the static portion. ctf_update gets massively confused by this and
allocates space enough for the forward (with no members), but then emits
the new dynamic type (with all the members) into it. You get an
assertion failure after that, if you're lucky, or a coredump.
So this commit rejigs things a bit and arranges to exclusively use the
dynamic type definitions in writable dictionaries, and the static type
definitions in readable dictionaries: we don't at any time have a mixture
of static and dynamic types, and you don't need to call ctf_update to
make things "appear". The ctf_dtbyname hash I introduced a few months
ago, which maps things like "struct foo" to DTDs, is removed, replaced
instead by a change of type of the four dictionaries which track names.
Rather than just being (unresizable) ctf_hash_t's populated only at
ctf_bufopen time, they are now a ctf_names_t structure, which is a pair
of ctf_hash_t and ctf_dynhash_t, with the ctf_hash_t portion being used
in readonly dictionaries, and the ctf_dynhash_t being used in writable
ones. The decision as to which to use is centralized in the new
functions ctf_lookup_by_rawname (which takes a type kind) and
ctf_lookup_by_rawhash, which it calls (which takes a ctf_names_t *.)
This change lets us switch from using static to dynamic name hashes on
the fly across the entirety of libctf without complexifying anything: in
fact, because we now centralize the knowledge about how to map from type
kind to name hash, it actually simplifies things and lets us throw out
quite a lot of now-unnecessary complexity, from ctf_dtnyname (replaced
by the dynamic half of the name tables), through to ctf_dtnextid (now
that a dictionary's static portion is never referenced if the dictionary
is writable, we can just use ctf_typemax to indicate the maximum type:
dynamic or non-dynamic does not matter, and we no longer need to track
the boundary between the types). You can now ctf_rollback() as far as
you like, even past a ctf_update or for that matter a full writeout; all
the iteration functions work just as well on writable as on read-only
dictionaries; ctf_add_type no longer needs expensive duplicated code to
run over the dynamic types hunting for ones it might be interested in;
and the linker no longer needs a hack to call ctf_update so that calling
ctf_add_type is not impossibly expensive.
There is still a bit more complexity: some new code paths in ctf-types.c
need to know how to extract information from dynamic types. This
complexity will go away again in a few months when libctf acquires a
proper intermediate representation.
You can still call ctf_update if you like (it's public API, after all),
but its only effect now is to set the point to which ctf_discard rolls
back.
Obviously *something* still needs to serialize the CTF file before
writeout, and this job is done by ctf_serialize, which does everything
ctf_update used to except set the counter used by ctf_discard. It is
automatically called by the various functions that do CTF writeout:
nobody else ever needs to call it.
With this in place, forwards that are promoted to non-forwards no longer
crash the link, even if it happens tens of thousands of types later.
v5: fix tabdamage.
libctf/
* ctf-impl.h (ctf_names_t): New.
(ctf_lookup_t) <ctf_hash>: Now a ctf_names_t, not a ctf_hash_t.
(ctf_file_t) <ctf_structs>: Likewise.
<ctf_unions>: Likewise.
<ctf_enums>: Likewise.
<ctf_names>: Likewise.
<ctf_lookups>: Improve comment.
<ctf_ptrtab_len>: New.
<ctf_prov_strtab>: New.
<ctf_str_prov_offset>: New.
<ctf_dtbyname>: Remove, redundant to the names hashes.
<ctf_dtnextid>: Remove, redundant to ctf_typemax.
(ctf_dtdef_t) <dtd_name>: Remove.
<dtd_data>: Note that the ctt_name is now populated.
(ctf_str_atom_t) <csa_offset>: This is now the strtab
offset for internal strings too.
<csa_external_offset>: New, the external strtab offset.
(CTF_INDEX_TO_TYPEPTR): Handle the LCTF_RDWR case.
(ctf_name_table): New declaration.
(ctf_lookup_by_rawname): Likewise.
(ctf_lookup_by_rawhash): Likewise.
(ctf_set_ctl_hashes): Likewise.
(ctf_serialize): Likewise.
(ctf_dtd_insert): Adjust.
(ctf_simple_open_internal): Likewise.
(ctf_bufopen_internal): Likewise.
(ctf_list_empty_p): Likewise.
(ctf_str_remove_ref): Likewise.
(ctf_str_add): Returns uint32_t now.
(ctf_str_add_ref): Likewise.
(ctf_str_add_external): Now returns a boolean (int).
* ctf-string.c (ctf_strraw_explicit): Check the ctf_prov_strtab
for strings in the appropriate range.
(ctf_str_create_atoms): Create the ctf_prov_strtab. Detect OOM
when adding the null string to the new strtab.
(ctf_str_free_atoms): Destroy the ctf_prov_strtab.
(ctf_str_add_ref_internal): Add make_provisional argument. If
make_provisional, populate the offset and fill in the
ctf_prov_strtab accordingly.
(ctf_str_add): Return the offset, not the string.
(ctf_str_add_ref): Likewise.
(ctf_str_add_external): Return a success integer.
(ctf_str_remove_ref): New, remove a single ref.
(ctf_str_count_strtab): Do not count the initial null string's
length or the existence or length of any unreferenced internal
atoms.
(ctf_str_populate_sorttab): Skip atoms with no refs.
(ctf_str_write_strtab): Populate the nullstr earlier. Add one
to the cts_len for the null string, since it is no longer done
in ctf_str_count_strtab. Adjust for csa_external_offset rename.
Populate the csa_offset for both internal and external cases.
Flush the ctf_prov_strtab afterwards, and reset the
ctf_str_prov_offset.
* ctf-create.c (ctf_grow_ptrtab): New.
(ctf_create): Call it. Initialize new fields rather than old
ones. Tell ctf_bufopen_internal that this is a writable dictionary.
Set the ctl hashes and data model.
(ctf_update): Rename to...
(ctf_serialize): ... this. Leave a compatibility function behind.
Tell ctf_simple_open_internal that this is a writable dictionary.
Pass the new fields along from the old dictionary. Drop
ctf_dtnextid and ctf_dtbyname. Use ctf_strraw, not dtd_name.
Do not zero out the DTD's ctt_name.
(ctf_prefixed_name): Rename to...
(ctf_name_table): ... this. No longer return a prefixed name: return
the applicable name table instead.
(ctf_dtd_insert): Use it, and use the right name table. Pass in the
kind we're adding. Migrate away from dtd_name.
(ctf_dtd_delete): Adjust similarly. Remove the ref to the
deleted ctt_name.
(ctf_dtd_lookup_type_by_name): Remove.
(ctf_dynamic_type): Always return NULL on read-only dictionaries.
No longer check ctf_dtnextid: check ctf_typemax instead.
(ctf_snapshot): No longer use ctf_dtnextid: use ctf_typemax instead.
(ctf_rollback): Likewise. No longer fail with ECTF_OVERROLLBACK. Use
ctf_name_table and the right name table, and migrate away from
dtd_name as in ctf_dtd_delete.
(ctf_add_generic): Pass in the kind explicitly and pass it to
ctf_dtd_insert. Use ctf_typemax, not ctf_dtnextid. Migrate away
from dtd_name to using ctf_str_add_ref to populate the ctt_name.
Grow the ptrtab if needed.
(ctf_add_encoded): Pass in the kind.
(ctf_add_slice): Likewise.
(ctf_add_array): Likewise.
(ctf_add_function): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_reftype): Likewise. Initialize the ctf_ptrtab, checking
ctt_name rather than dtd_name.
(ctf_add_struct_sized): Pass in the kind. Use
ctf_lookup_by_rawname, not ctf_hash_lookup_type /
ctf_dtd_lookup_type_by_name.
(ctf_add_union_sized): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_type): Likewise.
(ctf_compress_write): Call ctf_serialize: adjust for ctf_size not
being initialized until after the call.
(ctf_write_mem): Likewise.
(ctf_write): Likewise.
* ctf-archive.c (arc_write_one_ctf): Likewise.
* ctf-lookup.c (ctf_lookup_by_name): Use ctf_lookuup_by_rawhash, not
ctf_hash_lookup_type.
(ctf_lookup_by_id): No longer check the readonly types if the
dictionary is writable.
* ctf-open.c (init_types): Assert that this dictionary is not
writable. Adjust to use the new name hashes, ctf_name_table,
and ctf_ptrtab_len. GNU style fix for the final ptrtab scan.
(ctf_bufopen_internal): New 'writable' parameter. Flip on LCTF_RDWR
if set. Drop out early when dictionary is writable. Split the
ctf_lookups initialization into...
(ctf_set_cth_hashes): ... this new function.
(ctf_simple_open_internal): Adjust. New 'writable' parameter.
(ctf_simple_open): Adjust accordingly.
(ctf_bufopen): Likewise.
(ctf_file_close): Destroy the appropriate name hashes. No longer
destroy ctf_dtbyname, which is gone.
(ctf_getdatasect): Remove spurious "extern".
* ctf-types.c (ctf_lookup_by_rawname): New, look up types in the
specified name table, given a kind.
(ctf_lookup_by_rawhash): Likewise, given a ctf_names_t *.
(ctf_member_iter): Add support for iterating over the
dynamic type list.
(ctf_enum_iter): Likewise.
(ctf_variable_iter): Likewise.
(ctf_type_rvisit): Likewise.
(ctf_member_info): Add support for types in the dynamic type list.
(ctf_enum_name): Likewise.
(ctf_enum_value): Likewise.
(ctf_func_type_info): Likewise.
(ctf_func_type_args): Likewise.
* ctf-link.c (ctf_accumulate_archive_names): No longer call
ctf_update.
(ctf_link_write): Likewise.
(ctf_link_intern_extern_string): Adjust for new
ctf_str_add_external return value.
(ctf_link_add_strtab): Likewise.
* ctf-util.c (ctf_list_empty_p): New.
2019-08-08 00:55:09 +08:00
|
|
|
{
|
2020-07-21 22:38:08 +08:00
|
|
|
ctf_dynhash_remove (fp->ctf_dthash, (void *) (uintptr_t)
|
|
|
|
dtd->dtd_type);
|
2023-09-13 17:02:36 +08:00
|
|
|
return ctf_set_errno (fp, ENOMEM);
|
libctf: avoid the need to ever use ctf_update
The method of operation of libctf when the dictionary is writable has
before now been that types that are added land in the dynamic type
section, which is a linked list and hash of IDs -> dynamic type
definitions (and, recently a hash of names): the DTDs are a bit of CTF
representing the ctf_type_t and ad hoc C structures representing the
vlen. Historically, libctf was unable to do anything with these types,
not even look them up by ID, let alone by name: if you wanted to do that
say if you were adding a type that depended on one you just added) you
called ctf_update, which serializes all the DTDs into a CTF file and
reopens it, copying its guts over the fp it's called with. The
ctf_updated types are then frozen in amber and unchangeable: all lookups
will return the types in the static portion in preference to the dynamic
portion, and we will refuse to re-add things that already exist in the
static portion (and, of late, in the dynamic portion too). The libctf
machinery remembers the boundary between static and dynamic types and
looks in the right portion for each type. Lots of things still don't
quite work with dynamic types (e.g. getting their size), but enough
works to do a bunch of additions and then a ctf_update, most of the
time.
Except it doesn't, because ctf_add_type finds it necessary to walk the
full dynamic type definition list looking for types with matching names,
so it gets slower and slower with every type you add: fixing this
requires calling ctf_update periodically for no other reason than to
avoid massively slowing things down.
This is all clunky and very slow but kind of works, until you consider
that it is in fact possible and indeed necessary to modify one sort of
type after it has been added: forwards. These are necessarily promoted
to structs, unions or enums, and when they do so *their type ID does not
change*. So all of a sudden we are changing types that already exist in
the static portion. ctf_update gets massively confused by this and
allocates space enough for the forward (with no members), but then emits
the new dynamic type (with all the members) into it. You get an
assertion failure after that, if you're lucky, or a coredump.
So this commit rejigs things a bit and arranges to exclusively use the
dynamic type definitions in writable dictionaries, and the static type
definitions in readable dictionaries: we don't at any time have a mixture
of static and dynamic types, and you don't need to call ctf_update to
make things "appear". The ctf_dtbyname hash I introduced a few months
ago, which maps things like "struct foo" to DTDs, is removed, replaced
instead by a change of type of the four dictionaries which track names.
Rather than just being (unresizable) ctf_hash_t's populated only at
ctf_bufopen time, they are now a ctf_names_t structure, which is a pair
of ctf_hash_t and ctf_dynhash_t, with the ctf_hash_t portion being used
in readonly dictionaries, and the ctf_dynhash_t being used in writable
ones. The decision as to which to use is centralized in the new
functions ctf_lookup_by_rawname (which takes a type kind) and
ctf_lookup_by_rawhash, which it calls (which takes a ctf_names_t *.)
This change lets us switch from using static to dynamic name hashes on
the fly across the entirety of libctf without complexifying anything: in
fact, because we now centralize the knowledge about how to map from type
kind to name hash, it actually simplifies things and lets us throw out
quite a lot of now-unnecessary complexity, from ctf_dtnyname (replaced
by the dynamic half of the name tables), through to ctf_dtnextid (now
that a dictionary's static portion is never referenced if the dictionary
is writable, we can just use ctf_typemax to indicate the maximum type:
dynamic or non-dynamic does not matter, and we no longer need to track
the boundary between the types). You can now ctf_rollback() as far as
you like, even past a ctf_update or for that matter a full writeout; all
the iteration functions work just as well on writable as on read-only
dictionaries; ctf_add_type no longer needs expensive duplicated code to
run over the dynamic types hunting for ones it might be interested in;
and the linker no longer needs a hack to call ctf_update so that calling
ctf_add_type is not impossibly expensive.
There is still a bit more complexity: some new code paths in ctf-types.c
need to know how to extract information from dynamic types. This
complexity will go away again in a few months when libctf acquires a
proper intermediate representation.
You can still call ctf_update if you like (it's public API, after all),
but its only effect now is to set the point to which ctf_discard rolls
back.
Obviously *something* still needs to serialize the CTF file before
writeout, and this job is done by ctf_serialize, which does everything
ctf_update used to except set the counter used by ctf_discard. It is
automatically called by the various functions that do CTF writeout:
nobody else ever needs to call it.
With this in place, forwards that are promoted to non-forwards no longer
crash the link, even if it happens tens of thousands of types later.
v5: fix tabdamage.
libctf/
* ctf-impl.h (ctf_names_t): New.
(ctf_lookup_t) <ctf_hash>: Now a ctf_names_t, not a ctf_hash_t.
(ctf_file_t) <ctf_structs>: Likewise.
<ctf_unions>: Likewise.
<ctf_enums>: Likewise.
<ctf_names>: Likewise.
<ctf_lookups>: Improve comment.
<ctf_ptrtab_len>: New.
<ctf_prov_strtab>: New.
<ctf_str_prov_offset>: New.
<ctf_dtbyname>: Remove, redundant to the names hashes.
<ctf_dtnextid>: Remove, redundant to ctf_typemax.
(ctf_dtdef_t) <dtd_name>: Remove.
<dtd_data>: Note that the ctt_name is now populated.
(ctf_str_atom_t) <csa_offset>: This is now the strtab
offset for internal strings too.
<csa_external_offset>: New, the external strtab offset.
(CTF_INDEX_TO_TYPEPTR): Handle the LCTF_RDWR case.
(ctf_name_table): New declaration.
(ctf_lookup_by_rawname): Likewise.
(ctf_lookup_by_rawhash): Likewise.
(ctf_set_ctl_hashes): Likewise.
(ctf_serialize): Likewise.
(ctf_dtd_insert): Adjust.
(ctf_simple_open_internal): Likewise.
(ctf_bufopen_internal): Likewise.
(ctf_list_empty_p): Likewise.
(ctf_str_remove_ref): Likewise.
(ctf_str_add): Returns uint32_t now.
(ctf_str_add_ref): Likewise.
(ctf_str_add_external): Now returns a boolean (int).
* ctf-string.c (ctf_strraw_explicit): Check the ctf_prov_strtab
for strings in the appropriate range.
(ctf_str_create_atoms): Create the ctf_prov_strtab. Detect OOM
when adding the null string to the new strtab.
(ctf_str_free_atoms): Destroy the ctf_prov_strtab.
(ctf_str_add_ref_internal): Add make_provisional argument. If
make_provisional, populate the offset and fill in the
ctf_prov_strtab accordingly.
(ctf_str_add): Return the offset, not the string.
(ctf_str_add_ref): Likewise.
(ctf_str_add_external): Return a success integer.
(ctf_str_remove_ref): New, remove a single ref.
(ctf_str_count_strtab): Do not count the initial null string's
length or the existence or length of any unreferenced internal
atoms.
(ctf_str_populate_sorttab): Skip atoms with no refs.
(ctf_str_write_strtab): Populate the nullstr earlier. Add one
to the cts_len for the null string, since it is no longer done
in ctf_str_count_strtab. Adjust for csa_external_offset rename.
Populate the csa_offset for both internal and external cases.
Flush the ctf_prov_strtab afterwards, and reset the
ctf_str_prov_offset.
* ctf-create.c (ctf_grow_ptrtab): New.
(ctf_create): Call it. Initialize new fields rather than old
ones. Tell ctf_bufopen_internal that this is a writable dictionary.
Set the ctl hashes and data model.
(ctf_update): Rename to...
(ctf_serialize): ... this. Leave a compatibility function behind.
Tell ctf_simple_open_internal that this is a writable dictionary.
Pass the new fields along from the old dictionary. Drop
ctf_dtnextid and ctf_dtbyname. Use ctf_strraw, not dtd_name.
Do not zero out the DTD's ctt_name.
(ctf_prefixed_name): Rename to...
(ctf_name_table): ... this. No longer return a prefixed name: return
the applicable name table instead.
(ctf_dtd_insert): Use it, and use the right name table. Pass in the
kind we're adding. Migrate away from dtd_name.
(ctf_dtd_delete): Adjust similarly. Remove the ref to the
deleted ctt_name.
(ctf_dtd_lookup_type_by_name): Remove.
(ctf_dynamic_type): Always return NULL on read-only dictionaries.
No longer check ctf_dtnextid: check ctf_typemax instead.
(ctf_snapshot): No longer use ctf_dtnextid: use ctf_typemax instead.
(ctf_rollback): Likewise. No longer fail with ECTF_OVERROLLBACK. Use
ctf_name_table and the right name table, and migrate away from
dtd_name as in ctf_dtd_delete.
(ctf_add_generic): Pass in the kind explicitly and pass it to
ctf_dtd_insert. Use ctf_typemax, not ctf_dtnextid. Migrate away
from dtd_name to using ctf_str_add_ref to populate the ctt_name.
Grow the ptrtab if needed.
(ctf_add_encoded): Pass in the kind.
(ctf_add_slice): Likewise.
(ctf_add_array): Likewise.
(ctf_add_function): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_reftype): Likewise. Initialize the ctf_ptrtab, checking
ctt_name rather than dtd_name.
(ctf_add_struct_sized): Pass in the kind. Use
ctf_lookup_by_rawname, not ctf_hash_lookup_type /
ctf_dtd_lookup_type_by_name.
(ctf_add_union_sized): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_type): Likewise.
(ctf_compress_write): Call ctf_serialize: adjust for ctf_size not
being initialized until after the call.
(ctf_write_mem): Likewise.
(ctf_write): Likewise.
* ctf-archive.c (arc_write_one_ctf): Likewise.
* ctf-lookup.c (ctf_lookup_by_name): Use ctf_lookuup_by_rawhash, not
ctf_hash_lookup_type.
(ctf_lookup_by_id): No longer check the readonly types if the
dictionary is writable.
* ctf-open.c (init_types): Assert that this dictionary is not
writable. Adjust to use the new name hashes, ctf_name_table,
and ctf_ptrtab_len. GNU style fix for the final ptrtab scan.
(ctf_bufopen_internal): New 'writable' parameter. Flip on LCTF_RDWR
if set. Drop out early when dictionary is writable. Split the
ctf_lookups initialization into...
(ctf_set_cth_hashes): ... this new function.
(ctf_simple_open_internal): Adjust. New 'writable' parameter.
(ctf_simple_open): Adjust accordingly.
(ctf_bufopen): Likewise.
(ctf_file_close): Destroy the appropriate name hashes. No longer
destroy ctf_dtbyname, which is gone.
(ctf_getdatasect): Remove spurious "extern".
* ctf-types.c (ctf_lookup_by_rawname): New, look up types in the
specified name table, given a kind.
(ctf_lookup_by_rawhash): Likewise, given a ctf_names_t *.
(ctf_member_iter): Add support for iterating over the
dynamic type list.
(ctf_enum_iter): Likewise.
(ctf_variable_iter): Likewise.
(ctf_type_rvisit): Likewise.
(ctf_member_info): Add support for types in the dynamic type list.
(ctf_enum_name): Likewise.
(ctf_enum_value): Likewise.
(ctf_func_type_info): Likewise.
(ctf_func_type_args): Likewise.
* ctf-link.c (ctf_accumulate_archive_names): No longer call
ctf_update.
(ctf_link_write): Likewise.
(ctf_link_intern_extern_string): Adjust for new
ctf_str_add_external return value.
(ctf_link_add_strtab): Likewise.
* ctf-util.c (ctf_list_empty_p): New.
2019-08-08 00:55:09 +08:00
|
|
|
}
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
}
|
2019-06-19 19:14:16 +08:00
|
|
|
ctf_list_append (&fp->ctf_dtdefs, dtd);
|
|
|
|
return 0;
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
void
|
libctf, include, binutils, gdb, ld: rename ctf_file_t to ctf_dict_t
The naming of the ctf_file_t type in libctf is a historical curiosity.
Back in the Solaris days, CTF dictionaries were originally generated as
a separate file and then (sometimes) merged into objects: hence the
datatype was named ctf_file_t, and known as a "CTF file". Nowadays, raw
CTF is essentially never written to a file on its own, and the datatype
changed name to a "CTF dictionary" years ago. So the term "CTF file"
refers to something that is never a file! This is at best confusing.
The type has also historically been known as a 'CTF container", which is
even more confusing now that we have CTF archives which are *also* a
sort of container (they contain CTF dictionaries), but which are never
referred to as containers in the source code.
So fix this by completing the renaming, renaming ctf_file_t to
ctf_dict_t throughout, and renaming those few functions that refer to
CTF files by name (keeping compatibility aliases) to refer to dicts
instead. Old users who still refer to ctf_file_t will see (harmless)
pointer-compatibility warnings at compile time, but the ABI is unchanged
(since C doesn't mangle names, and ctf_file_t was always an opaque type)
and things will still compile fine as long as -Werror is not specified.
All references to CTF containers and CTF files in the source code are
fixed to refer to CTF dicts instead.
Further (smaller) renamings of annoyingly-named functions to come, as
part of the process of souping up queries across whole archives at once
(needed for the function info and data object sections).
binutils/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* objdump.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_ctf): Likewise. Use ctf_dict_close, not ctf_file_close.
* readelf.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_section_as_ctf): Likewise. Use ctf_dict_close, not
ctf_file_close.
gdb/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctfread.c: Change uses of ctf_file_t to ctf_dict_t.
(ctf_fp_info::~ctf_fp_info): Call ctf_dict_close, not ctf_file_close.
include/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-api.h (ctf_file_t): Rename to...
(ctf_dict_t): ... this. Keep ctf_file_t around for compatibility.
(struct ctf_file): Likewise rename to...
(struct ctf_dict): ... this.
(ctf_file_close): Rename to...
(ctf_dict_close): ... this, keeping compatibility function.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this, keeping compatibility function.
All callers adjusted.
* ctf.h: Rename references to ctf_file_t to ctf_dict_t.
(struct ctf_archive) <ctfa_nfiles>: Rename to...
<ctfa_ndicts>: ... this.
ld/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ldlang.c (ctf_output): This is a ctf_dict_t now.
(lang_ctf_errs_warnings): Rename ctf_file_t to ctf_dict_t.
(ldlang_open_ctf): Adjust comment.
(lang_merge_ctf): Use ctf_dict_close, not ctf_file_close.
* ldelfgen.h (ldelf_examine_strtab_for_ctf): Rename ctf_file_t to
ctf_dict_t. Change opaque declaration accordingly.
* ldelfgen.c (ldelf_examine_strtab_for_ctf): Adjust.
* ldemul.h (examine_strtab_for_ctf): Likewise.
(ldemul_examine_strtab_for_ctf): Likewise.
* ldeuml.c (ldemul_examine_strtab_for_ctf): Likewise.
libctf/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h: Rename ctf_file_t to ctf_dict_t: all declarations
adjusted.
(ctf_fileops): Rename to...
(ctf_dictops): ... this.
(ctf_dedup_t) <cd_id_to_file_t>: Rename to...
<cd_id_to_dict_t>: ... this.
(ctf_file_t): Fix outdated comment.
<ctf_fileops>: Rename to...
<ctf_dictops>: ... this.
(struct ctf_archive_internal) <ctfi_file>: Rename to...
<ctfi_dict>: ... this.
* ctf-archive.c: Rename ctf_file_t to ctf_dict_t.
Rename ctf_archive.ctfa_nfiles to ctfa_ndicts.
Rename ctf_file_close to ctf_dict_close. All users adjusted.
* ctf-create.c: Likewise. Refer to CTF dicts, not CTF containers.
(ctf_bundle_t) <ctb_file>: Rename to...
<ctb_dict): ... this.
* ctf-decl.c: Rename ctf_file_t to ctf_dict_t.
* ctf-dedup.c: Likewise. Rename ctf_file_close to
ctf_dict_close. Refer to CTF dicts, not CTF containers.
* ctf-dump.c: Likewise.
* ctf-error.c: Likewise.
* ctf-hash.c: Likewise.
* ctf-inlines.h: Likewise.
* ctf-labels.c: Likewise.
* ctf-link.c: Likewise.
* ctf-lookup.c: Likewise.
* ctf-open-bfd.c: Likewise.
* ctf-string.c: Likewise.
* ctf-subr.c: Likewise.
* ctf-types.c: Likewise.
* ctf-util.c: Likewise.
* ctf-open.c: Likewise.
(ctf_file_close): Rename to...
(ctf_dict_close): ...this.
(ctf_file_close): New trivial wrapper around ctf_dict_close, for
compatibility.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this.
(ctf_parent_file): New trivial wrapper around ctf_parent_dict, for
compatibility.
* libctf.ver: Add ctf_dict_close and ctf_parent_dict.
2020-11-20 21:34:04 +08:00
|
|
|
ctf_dtd_delete (ctf_dict_t *fp, ctf_dtdef_t *dtd)
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
{
|
|
|
|
int kind = LCTF_INFO_KIND (fp, dtd->dtd_data.ctt_info);
|
2021-03-18 20:37:52 +08:00
|
|
|
size_t vlen = LCTF_INFO_VLEN (fp, dtd->dtd_data.ctt_info);
|
libctf: create: forwards are always in the namespace of their referent
The C namespace a forward is located in is always the same as the
namespace of the corresponding complete type: 'struct foo' is in the
struct namespace and does not collide with, say, 'union foo'.
libctf allowed for this in many places, but inconsistently: in
particular, forward *addition* never allowed for this, and was interning
forwards in the default namespace, which is always wrong, since you can
only forward structs, unions and enums, all of which are in their own
namespaces in C.
Forward removal needs corresponding adjustment to remove the names form
the right namespace, as does ctf_rollback.
libctf/
* ctf-create.c (ctf_add_forward): Intern in the right namespace.
(ctf_dtd_delete): Remove correspondingly.
(ctf_rollback): Likewise.
2019-11-06 01:57:55 +08:00
|
|
|
int name_kind = kind;
|
libctf: avoid the need to ever use ctf_update
The method of operation of libctf when the dictionary is writable has
before now been that types that are added land in the dynamic type
section, which is a linked list and hash of IDs -> dynamic type
definitions (and, recently a hash of names): the DTDs are a bit of CTF
representing the ctf_type_t and ad hoc C structures representing the
vlen. Historically, libctf was unable to do anything with these types,
not even look them up by ID, let alone by name: if you wanted to do that
say if you were adding a type that depended on one you just added) you
called ctf_update, which serializes all the DTDs into a CTF file and
reopens it, copying its guts over the fp it's called with. The
ctf_updated types are then frozen in amber and unchangeable: all lookups
will return the types in the static portion in preference to the dynamic
portion, and we will refuse to re-add things that already exist in the
static portion (and, of late, in the dynamic portion too). The libctf
machinery remembers the boundary between static and dynamic types and
looks in the right portion for each type. Lots of things still don't
quite work with dynamic types (e.g. getting their size), but enough
works to do a bunch of additions and then a ctf_update, most of the
time.
Except it doesn't, because ctf_add_type finds it necessary to walk the
full dynamic type definition list looking for types with matching names,
so it gets slower and slower with every type you add: fixing this
requires calling ctf_update periodically for no other reason than to
avoid massively slowing things down.
This is all clunky and very slow but kind of works, until you consider
that it is in fact possible and indeed necessary to modify one sort of
type after it has been added: forwards. These are necessarily promoted
to structs, unions or enums, and when they do so *their type ID does not
change*. So all of a sudden we are changing types that already exist in
the static portion. ctf_update gets massively confused by this and
allocates space enough for the forward (with no members), but then emits
the new dynamic type (with all the members) into it. You get an
assertion failure after that, if you're lucky, or a coredump.
So this commit rejigs things a bit and arranges to exclusively use the
dynamic type definitions in writable dictionaries, and the static type
definitions in readable dictionaries: we don't at any time have a mixture
of static and dynamic types, and you don't need to call ctf_update to
make things "appear". The ctf_dtbyname hash I introduced a few months
ago, which maps things like "struct foo" to DTDs, is removed, replaced
instead by a change of type of the four dictionaries which track names.
Rather than just being (unresizable) ctf_hash_t's populated only at
ctf_bufopen time, they are now a ctf_names_t structure, which is a pair
of ctf_hash_t and ctf_dynhash_t, with the ctf_hash_t portion being used
in readonly dictionaries, and the ctf_dynhash_t being used in writable
ones. The decision as to which to use is centralized in the new
functions ctf_lookup_by_rawname (which takes a type kind) and
ctf_lookup_by_rawhash, which it calls (which takes a ctf_names_t *.)
This change lets us switch from using static to dynamic name hashes on
the fly across the entirety of libctf without complexifying anything: in
fact, because we now centralize the knowledge about how to map from type
kind to name hash, it actually simplifies things and lets us throw out
quite a lot of now-unnecessary complexity, from ctf_dtnyname (replaced
by the dynamic half of the name tables), through to ctf_dtnextid (now
that a dictionary's static portion is never referenced if the dictionary
is writable, we can just use ctf_typemax to indicate the maximum type:
dynamic or non-dynamic does not matter, and we no longer need to track
the boundary between the types). You can now ctf_rollback() as far as
you like, even past a ctf_update or for that matter a full writeout; all
the iteration functions work just as well on writable as on read-only
dictionaries; ctf_add_type no longer needs expensive duplicated code to
run over the dynamic types hunting for ones it might be interested in;
and the linker no longer needs a hack to call ctf_update so that calling
ctf_add_type is not impossibly expensive.
There is still a bit more complexity: some new code paths in ctf-types.c
need to know how to extract information from dynamic types. This
complexity will go away again in a few months when libctf acquires a
proper intermediate representation.
You can still call ctf_update if you like (it's public API, after all),
but its only effect now is to set the point to which ctf_discard rolls
back.
Obviously *something* still needs to serialize the CTF file before
writeout, and this job is done by ctf_serialize, which does everything
ctf_update used to except set the counter used by ctf_discard. It is
automatically called by the various functions that do CTF writeout:
nobody else ever needs to call it.
With this in place, forwards that are promoted to non-forwards no longer
crash the link, even if it happens tens of thousands of types later.
v5: fix tabdamage.
libctf/
* ctf-impl.h (ctf_names_t): New.
(ctf_lookup_t) <ctf_hash>: Now a ctf_names_t, not a ctf_hash_t.
(ctf_file_t) <ctf_structs>: Likewise.
<ctf_unions>: Likewise.
<ctf_enums>: Likewise.
<ctf_names>: Likewise.
<ctf_lookups>: Improve comment.
<ctf_ptrtab_len>: New.
<ctf_prov_strtab>: New.
<ctf_str_prov_offset>: New.
<ctf_dtbyname>: Remove, redundant to the names hashes.
<ctf_dtnextid>: Remove, redundant to ctf_typemax.
(ctf_dtdef_t) <dtd_name>: Remove.
<dtd_data>: Note that the ctt_name is now populated.
(ctf_str_atom_t) <csa_offset>: This is now the strtab
offset for internal strings too.
<csa_external_offset>: New, the external strtab offset.
(CTF_INDEX_TO_TYPEPTR): Handle the LCTF_RDWR case.
(ctf_name_table): New declaration.
(ctf_lookup_by_rawname): Likewise.
(ctf_lookup_by_rawhash): Likewise.
(ctf_set_ctl_hashes): Likewise.
(ctf_serialize): Likewise.
(ctf_dtd_insert): Adjust.
(ctf_simple_open_internal): Likewise.
(ctf_bufopen_internal): Likewise.
(ctf_list_empty_p): Likewise.
(ctf_str_remove_ref): Likewise.
(ctf_str_add): Returns uint32_t now.
(ctf_str_add_ref): Likewise.
(ctf_str_add_external): Now returns a boolean (int).
* ctf-string.c (ctf_strraw_explicit): Check the ctf_prov_strtab
for strings in the appropriate range.
(ctf_str_create_atoms): Create the ctf_prov_strtab. Detect OOM
when adding the null string to the new strtab.
(ctf_str_free_atoms): Destroy the ctf_prov_strtab.
(ctf_str_add_ref_internal): Add make_provisional argument. If
make_provisional, populate the offset and fill in the
ctf_prov_strtab accordingly.
(ctf_str_add): Return the offset, not the string.
(ctf_str_add_ref): Likewise.
(ctf_str_add_external): Return a success integer.
(ctf_str_remove_ref): New, remove a single ref.
(ctf_str_count_strtab): Do not count the initial null string's
length or the existence or length of any unreferenced internal
atoms.
(ctf_str_populate_sorttab): Skip atoms with no refs.
(ctf_str_write_strtab): Populate the nullstr earlier. Add one
to the cts_len for the null string, since it is no longer done
in ctf_str_count_strtab. Adjust for csa_external_offset rename.
Populate the csa_offset for both internal and external cases.
Flush the ctf_prov_strtab afterwards, and reset the
ctf_str_prov_offset.
* ctf-create.c (ctf_grow_ptrtab): New.
(ctf_create): Call it. Initialize new fields rather than old
ones. Tell ctf_bufopen_internal that this is a writable dictionary.
Set the ctl hashes and data model.
(ctf_update): Rename to...
(ctf_serialize): ... this. Leave a compatibility function behind.
Tell ctf_simple_open_internal that this is a writable dictionary.
Pass the new fields along from the old dictionary. Drop
ctf_dtnextid and ctf_dtbyname. Use ctf_strraw, not dtd_name.
Do not zero out the DTD's ctt_name.
(ctf_prefixed_name): Rename to...
(ctf_name_table): ... this. No longer return a prefixed name: return
the applicable name table instead.
(ctf_dtd_insert): Use it, and use the right name table. Pass in the
kind we're adding. Migrate away from dtd_name.
(ctf_dtd_delete): Adjust similarly. Remove the ref to the
deleted ctt_name.
(ctf_dtd_lookup_type_by_name): Remove.
(ctf_dynamic_type): Always return NULL on read-only dictionaries.
No longer check ctf_dtnextid: check ctf_typemax instead.
(ctf_snapshot): No longer use ctf_dtnextid: use ctf_typemax instead.
(ctf_rollback): Likewise. No longer fail with ECTF_OVERROLLBACK. Use
ctf_name_table and the right name table, and migrate away from
dtd_name as in ctf_dtd_delete.
(ctf_add_generic): Pass in the kind explicitly and pass it to
ctf_dtd_insert. Use ctf_typemax, not ctf_dtnextid. Migrate away
from dtd_name to using ctf_str_add_ref to populate the ctt_name.
Grow the ptrtab if needed.
(ctf_add_encoded): Pass in the kind.
(ctf_add_slice): Likewise.
(ctf_add_array): Likewise.
(ctf_add_function): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_reftype): Likewise. Initialize the ctf_ptrtab, checking
ctt_name rather than dtd_name.
(ctf_add_struct_sized): Pass in the kind. Use
ctf_lookup_by_rawname, not ctf_hash_lookup_type /
ctf_dtd_lookup_type_by_name.
(ctf_add_union_sized): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_type): Likewise.
(ctf_compress_write): Call ctf_serialize: adjust for ctf_size not
being initialized until after the call.
(ctf_write_mem): Likewise.
(ctf_write): Likewise.
* ctf-archive.c (arc_write_one_ctf): Likewise.
* ctf-lookup.c (ctf_lookup_by_name): Use ctf_lookuup_by_rawhash, not
ctf_hash_lookup_type.
(ctf_lookup_by_id): No longer check the readonly types if the
dictionary is writable.
* ctf-open.c (init_types): Assert that this dictionary is not
writable. Adjust to use the new name hashes, ctf_name_table,
and ctf_ptrtab_len. GNU style fix for the final ptrtab scan.
(ctf_bufopen_internal): New 'writable' parameter. Flip on LCTF_RDWR
if set. Drop out early when dictionary is writable. Split the
ctf_lookups initialization into...
(ctf_set_cth_hashes): ... this new function.
(ctf_simple_open_internal): Adjust. New 'writable' parameter.
(ctf_simple_open): Adjust accordingly.
(ctf_bufopen): Likewise.
(ctf_file_close): Destroy the appropriate name hashes. No longer
destroy ctf_dtbyname, which is gone.
(ctf_getdatasect): Remove spurious "extern".
* ctf-types.c (ctf_lookup_by_rawname): New, look up types in the
specified name table, given a kind.
(ctf_lookup_by_rawhash): Likewise, given a ctf_names_t *.
(ctf_member_iter): Add support for iterating over the
dynamic type list.
(ctf_enum_iter): Likewise.
(ctf_variable_iter): Likewise.
(ctf_type_rvisit): Likewise.
(ctf_member_info): Add support for types in the dynamic type list.
(ctf_enum_name): Likewise.
(ctf_enum_value): Likewise.
(ctf_func_type_info): Likewise.
(ctf_func_type_args): Likewise.
* ctf-link.c (ctf_accumulate_archive_names): No longer call
ctf_update.
(ctf_link_write): Likewise.
(ctf_link_intern_extern_string): Adjust for new
ctf_str_add_external return value.
(ctf_link_add_strtab): Likewise.
* ctf-util.c (ctf_list_empty_p): New.
2019-08-08 00:55:09 +08:00
|
|
|
const char *name;
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
|
2020-07-21 22:38:08 +08:00
|
|
|
ctf_dynhash_remove (fp->ctf_dthash, (void *) (uintptr_t) dtd->dtd_type);
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
|
|
|
|
switch (kind)
|
|
|
|
{
|
|
|
|
case CTF_K_STRUCT:
|
|
|
|
case CTF_K_UNION:
|
libctf: eliminate dtd_u, part 5: structs / unions
Eliminate the dynamic member storage for structs and unions as we have
for other dynamic types. This is much like the previous enum
elimination, except that structs and unions are the only types for which
a full-sized ctf_type_t might be needed. Up to now, this decision has
been made in the individual ctf_add_{struct,union}_sized functions and
duplicated in ctf_add_member_offset. The vlen machinery lets us
simplify this, always allocating a ctf_lmember_t and setting the
dtd_data's ctt_size to CTF_LSIZE_SENT: we figure out whether this is
really justified and (almost always) repack things down into a
ctf_stype_t at ctf_serialize time.
This allows us to eliminate the dynamic member paths from the iterators and
query functions in ctf-types.c in favour of always using the large-structure
vlen stuff for dynamic types (the diff is ugly but that's just because of the
volume of reindentation this calls for). This also means the large-structure
vlen stuff gets more heavily tested, which is nice because it was an almost
totally unused code path before now (it only kicked in for structures of size
>4GiB, and how often do you see those?)
The only extra complexity here is ctf_add_type. Back in the days of the
nondeduplicating linker this was called a ridiculous number of times for
countless identical copies of structures: eschewing the repeated lookups of the
dtd in ctf_add_member_offset and adding the members directly saved an amazing
amount of time. Now the nondeduplicating linker is gone, this is extreme
overoptimization: we can rip out the direct addition and use ctf_member_next and
ctf_add_member_offset, just like ctf_dedup_emit does.
We augment a ctf_add_type test to try adding a self-referential struct, the only
thing the ctf_add_type part of this change really perturbs.
This completes the elimination of dtd_u.
libctf/ChangeLog
2021-03-18 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h (ctf_dtdef_t) <dtu_members>: Remove.
<dtd_u>: Likewise.
(ctf_dmdef_t): Remove.
(struct ctf_next) <u.ctn_dmd>: Remove.
* ctf-create.c (INITIAL_VLEN): New, more-or-less arbitrary initial
vlen size.
(ctf_add_enum): Use it.
(ctf_dtd_delete): Do not free the (removed) dmd; remove string
refs from the vlen on struct deletion.
(ctf_add_struct_sized): Populate the vlen: do it by hand if
promoting forwards. Always populate the full-size
lsizehi/lsizelo members.
(ctf_add_union_sized): Likewise.
(ctf_add_member_offset): Set up the vlen rather than the dmd.
Expand it as needed, repointing string refs via
ctf_str_move_pending. Add the member names as pending strings.
Always populate the full-size lsizehi/lsizelo members.
(membadd): Remove, folding back into...
(ctf_add_type_internal): ... here, adding via an ordinary
ctf_add_struct_sized and _next iteration rather than doing
everything by hand.
* ctf-serialize.c (ctf_copy_smembers): Remove this...
(ctf_copy_lmembers): ... and this...
(ctf_emit_type_sect): ... folding into here. Figure out if a
ctf_stype_t is needed here, not in ctf_add_*_sized.
(ctf_type_sect_size): Figure out the ctf_stype_t stuff the same
way here.
* ctf-types.c (ctf_member_next): Remove the dmd path and always
use the vlen. Force large-structure usage for dynamic types.
(ctf_type_align): Likewise.
(ctf_member_info): Likewise.
(ctf_type_rvisit): Likewise.
* testsuite/libctf-regression/type-add-unnamed-struct-ctf.c: Add a
self-referential type to this test.
* testsuite/libctf-regression/type-add-unnamed-struct.c: Adjusted
accordingly.
* testsuite/libctf-regression/type-add-unnamed-struct.lk: Likewise.
2021-03-18 20:37:52 +08:00
|
|
|
{
|
|
|
|
ctf_lmember_t *memb = (ctf_lmember_t *) dtd->dtd_vlen;
|
|
|
|
size_t i;
|
|
|
|
|
|
|
|
for (i = 0; i < vlen; i++)
|
|
|
|
ctf_str_remove_ref (fp, ctf_strraw (fp, memb[i].ctlm_name),
|
|
|
|
&memb[i].ctlm_name);
|
|
|
|
}
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
break;
|
2021-03-18 20:37:52 +08:00
|
|
|
case CTF_K_ENUM:
|
|
|
|
{
|
|
|
|
ctf_enum_t *en = (ctf_enum_t *) dtd->dtd_vlen;
|
|
|
|
size_t i;
|
|
|
|
|
|
|
|
for (i = 0; i < vlen; i++)
|
|
|
|
ctf_str_remove_ref (fp, ctf_strraw (fp, en[i].cte_name),
|
|
|
|
&en[i].cte_name);
|
|
|
|
}
|
|
|
|
break;
|
libctf: create: forwards are always in the namespace of their referent
The C namespace a forward is located in is always the same as the
namespace of the corresponding complete type: 'struct foo' is in the
struct namespace and does not collide with, say, 'union foo'.
libctf allowed for this in many places, but inconsistently: in
particular, forward *addition* never allowed for this, and was interning
forwards in the default namespace, which is always wrong, since you can
only forward structs, unions and enums, all of which are in their own
namespaces in C.
Forward removal needs corresponding adjustment to remove the names form
the right namespace, as does ctf_rollback.
libctf/
* ctf-create.c (ctf_add_forward): Intern in the right namespace.
(ctf_dtd_delete): Remove correspondingly.
(ctf_rollback): Likewise.
2019-11-06 01:57:55 +08:00
|
|
|
case CTF_K_FORWARD:
|
|
|
|
name_kind = dtd->dtd_data.ctt_type;
|
|
|
|
break;
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
}
|
2021-03-18 20:37:52 +08:00
|
|
|
free (dtd->dtd_vlen);
|
|
|
|
dtd->dtd_vlen_alloc = 0;
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
|
libctf: avoid the need to ever use ctf_update
The method of operation of libctf when the dictionary is writable has
before now been that types that are added land in the dynamic type
section, which is a linked list and hash of IDs -> dynamic type
definitions (and, recently a hash of names): the DTDs are a bit of CTF
representing the ctf_type_t and ad hoc C structures representing the
vlen. Historically, libctf was unable to do anything with these types,
not even look them up by ID, let alone by name: if you wanted to do that
say if you were adding a type that depended on one you just added) you
called ctf_update, which serializes all the DTDs into a CTF file and
reopens it, copying its guts over the fp it's called with. The
ctf_updated types are then frozen in amber and unchangeable: all lookups
will return the types in the static portion in preference to the dynamic
portion, and we will refuse to re-add things that already exist in the
static portion (and, of late, in the dynamic portion too). The libctf
machinery remembers the boundary between static and dynamic types and
looks in the right portion for each type. Lots of things still don't
quite work with dynamic types (e.g. getting their size), but enough
works to do a bunch of additions and then a ctf_update, most of the
time.
Except it doesn't, because ctf_add_type finds it necessary to walk the
full dynamic type definition list looking for types with matching names,
so it gets slower and slower with every type you add: fixing this
requires calling ctf_update periodically for no other reason than to
avoid massively slowing things down.
This is all clunky and very slow but kind of works, until you consider
that it is in fact possible and indeed necessary to modify one sort of
type after it has been added: forwards. These are necessarily promoted
to structs, unions or enums, and when they do so *their type ID does not
change*. So all of a sudden we are changing types that already exist in
the static portion. ctf_update gets massively confused by this and
allocates space enough for the forward (with no members), but then emits
the new dynamic type (with all the members) into it. You get an
assertion failure after that, if you're lucky, or a coredump.
So this commit rejigs things a bit and arranges to exclusively use the
dynamic type definitions in writable dictionaries, and the static type
definitions in readable dictionaries: we don't at any time have a mixture
of static and dynamic types, and you don't need to call ctf_update to
make things "appear". The ctf_dtbyname hash I introduced a few months
ago, which maps things like "struct foo" to DTDs, is removed, replaced
instead by a change of type of the four dictionaries which track names.
Rather than just being (unresizable) ctf_hash_t's populated only at
ctf_bufopen time, they are now a ctf_names_t structure, which is a pair
of ctf_hash_t and ctf_dynhash_t, with the ctf_hash_t portion being used
in readonly dictionaries, and the ctf_dynhash_t being used in writable
ones. The decision as to which to use is centralized in the new
functions ctf_lookup_by_rawname (which takes a type kind) and
ctf_lookup_by_rawhash, which it calls (which takes a ctf_names_t *.)
This change lets us switch from using static to dynamic name hashes on
the fly across the entirety of libctf without complexifying anything: in
fact, because we now centralize the knowledge about how to map from type
kind to name hash, it actually simplifies things and lets us throw out
quite a lot of now-unnecessary complexity, from ctf_dtnyname (replaced
by the dynamic half of the name tables), through to ctf_dtnextid (now
that a dictionary's static portion is never referenced if the dictionary
is writable, we can just use ctf_typemax to indicate the maximum type:
dynamic or non-dynamic does not matter, and we no longer need to track
the boundary between the types). You can now ctf_rollback() as far as
you like, even past a ctf_update or for that matter a full writeout; all
the iteration functions work just as well on writable as on read-only
dictionaries; ctf_add_type no longer needs expensive duplicated code to
run over the dynamic types hunting for ones it might be interested in;
and the linker no longer needs a hack to call ctf_update so that calling
ctf_add_type is not impossibly expensive.
There is still a bit more complexity: some new code paths in ctf-types.c
need to know how to extract information from dynamic types. This
complexity will go away again in a few months when libctf acquires a
proper intermediate representation.
You can still call ctf_update if you like (it's public API, after all),
but its only effect now is to set the point to which ctf_discard rolls
back.
Obviously *something* still needs to serialize the CTF file before
writeout, and this job is done by ctf_serialize, which does everything
ctf_update used to except set the counter used by ctf_discard. It is
automatically called by the various functions that do CTF writeout:
nobody else ever needs to call it.
With this in place, forwards that are promoted to non-forwards no longer
crash the link, even if it happens tens of thousands of types later.
v5: fix tabdamage.
libctf/
* ctf-impl.h (ctf_names_t): New.
(ctf_lookup_t) <ctf_hash>: Now a ctf_names_t, not a ctf_hash_t.
(ctf_file_t) <ctf_structs>: Likewise.
<ctf_unions>: Likewise.
<ctf_enums>: Likewise.
<ctf_names>: Likewise.
<ctf_lookups>: Improve comment.
<ctf_ptrtab_len>: New.
<ctf_prov_strtab>: New.
<ctf_str_prov_offset>: New.
<ctf_dtbyname>: Remove, redundant to the names hashes.
<ctf_dtnextid>: Remove, redundant to ctf_typemax.
(ctf_dtdef_t) <dtd_name>: Remove.
<dtd_data>: Note that the ctt_name is now populated.
(ctf_str_atom_t) <csa_offset>: This is now the strtab
offset for internal strings too.
<csa_external_offset>: New, the external strtab offset.
(CTF_INDEX_TO_TYPEPTR): Handle the LCTF_RDWR case.
(ctf_name_table): New declaration.
(ctf_lookup_by_rawname): Likewise.
(ctf_lookup_by_rawhash): Likewise.
(ctf_set_ctl_hashes): Likewise.
(ctf_serialize): Likewise.
(ctf_dtd_insert): Adjust.
(ctf_simple_open_internal): Likewise.
(ctf_bufopen_internal): Likewise.
(ctf_list_empty_p): Likewise.
(ctf_str_remove_ref): Likewise.
(ctf_str_add): Returns uint32_t now.
(ctf_str_add_ref): Likewise.
(ctf_str_add_external): Now returns a boolean (int).
* ctf-string.c (ctf_strraw_explicit): Check the ctf_prov_strtab
for strings in the appropriate range.
(ctf_str_create_atoms): Create the ctf_prov_strtab. Detect OOM
when adding the null string to the new strtab.
(ctf_str_free_atoms): Destroy the ctf_prov_strtab.
(ctf_str_add_ref_internal): Add make_provisional argument. If
make_provisional, populate the offset and fill in the
ctf_prov_strtab accordingly.
(ctf_str_add): Return the offset, not the string.
(ctf_str_add_ref): Likewise.
(ctf_str_add_external): Return a success integer.
(ctf_str_remove_ref): New, remove a single ref.
(ctf_str_count_strtab): Do not count the initial null string's
length or the existence or length of any unreferenced internal
atoms.
(ctf_str_populate_sorttab): Skip atoms with no refs.
(ctf_str_write_strtab): Populate the nullstr earlier. Add one
to the cts_len for the null string, since it is no longer done
in ctf_str_count_strtab. Adjust for csa_external_offset rename.
Populate the csa_offset for both internal and external cases.
Flush the ctf_prov_strtab afterwards, and reset the
ctf_str_prov_offset.
* ctf-create.c (ctf_grow_ptrtab): New.
(ctf_create): Call it. Initialize new fields rather than old
ones. Tell ctf_bufopen_internal that this is a writable dictionary.
Set the ctl hashes and data model.
(ctf_update): Rename to...
(ctf_serialize): ... this. Leave a compatibility function behind.
Tell ctf_simple_open_internal that this is a writable dictionary.
Pass the new fields along from the old dictionary. Drop
ctf_dtnextid and ctf_dtbyname. Use ctf_strraw, not dtd_name.
Do not zero out the DTD's ctt_name.
(ctf_prefixed_name): Rename to...
(ctf_name_table): ... this. No longer return a prefixed name: return
the applicable name table instead.
(ctf_dtd_insert): Use it, and use the right name table. Pass in the
kind we're adding. Migrate away from dtd_name.
(ctf_dtd_delete): Adjust similarly. Remove the ref to the
deleted ctt_name.
(ctf_dtd_lookup_type_by_name): Remove.
(ctf_dynamic_type): Always return NULL on read-only dictionaries.
No longer check ctf_dtnextid: check ctf_typemax instead.
(ctf_snapshot): No longer use ctf_dtnextid: use ctf_typemax instead.
(ctf_rollback): Likewise. No longer fail with ECTF_OVERROLLBACK. Use
ctf_name_table and the right name table, and migrate away from
dtd_name as in ctf_dtd_delete.
(ctf_add_generic): Pass in the kind explicitly and pass it to
ctf_dtd_insert. Use ctf_typemax, not ctf_dtnextid. Migrate away
from dtd_name to using ctf_str_add_ref to populate the ctt_name.
Grow the ptrtab if needed.
(ctf_add_encoded): Pass in the kind.
(ctf_add_slice): Likewise.
(ctf_add_array): Likewise.
(ctf_add_function): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_reftype): Likewise. Initialize the ctf_ptrtab, checking
ctt_name rather than dtd_name.
(ctf_add_struct_sized): Pass in the kind. Use
ctf_lookup_by_rawname, not ctf_hash_lookup_type /
ctf_dtd_lookup_type_by_name.
(ctf_add_union_sized): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_type): Likewise.
(ctf_compress_write): Call ctf_serialize: adjust for ctf_size not
being initialized until after the call.
(ctf_write_mem): Likewise.
(ctf_write): Likewise.
* ctf-archive.c (arc_write_one_ctf): Likewise.
* ctf-lookup.c (ctf_lookup_by_name): Use ctf_lookuup_by_rawhash, not
ctf_hash_lookup_type.
(ctf_lookup_by_id): No longer check the readonly types if the
dictionary is writable.
* ctf-open.c (init_types): Assert that this dictionary is not
writable. Adjust to use the new name hashes, ctf_name_table,
and ctf_ptrtab_len. GNU style fix for the final ptrtab scan.
(ctf_bufopen_internal): New 'writable' parameter. Flip on LCTF_RDWR
if set. Drop out early when dictionary is writable. Split the
ctf_lookups initialization into...
(ctf_set_cth_hashes): ... this new function.
(ctf_simple_open_internal): Adjust. New 'writable' parameter.
(ctf_simple_open): Adjust accordingly.
(ctf_bufopen): Likewise.
(ctf_file_close): Destroy the appropriate name hashes. No longer
destroy ctf_dtbyname, which is gone.
(ctf_getdatasect): Remove spurious "extern".
* ctf-types.c (ctf_lookup_by_rawname): New, look up types in the
specified name table, given a kind.
(ctf_lookup_by_rawhash): Likewise, given a ctf_names_t *.
(ctf_member_iter): Add support for iterating over the
dynamic type list.
(ctf_enum_iter): Likewise.
(ctf_variable_iter): Likewise.
(ctf_type_rvisit): Likewise.
(ctf_member_info): Add support for types in the dynamic type list.
(ctf_enum_name): Likewise.
(ctf_enum_value): Likewise.
(ctf_func_type_info): Likewise.
(ctf_func_type_args): Likewise.
* ctf-link.c (ctf_accumulate_archive_names): No longer call
ctf_update.
(ctf_link_write): Likewise.
(ctf_link_intern_extern_string): Adjust for new
ctf_str_add_external return value.
(ctf_link_add_strtab): Likewise.
* ctf-util.c (ctf_list_empty_p): New.
2019-08-08 00:55:09 +08:00
|
|
|
if (dtd->dtd_data.ctt_name
|
2019-10-21 18:27:43 +08:00
|
|
|
&& (name = ctf_strraw (fp, dtd->dtd_data.ctt_name)) != NULL
|
|
|
|
&& LCTF_INFO_ISROOT (fp, dtd->dtd_data.ctt_info))
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
{
|
libctf: remove static/dynamic name lookup distinction
libctf internally maintains a set of hash tables for type name lookups,
one for each valid C type namespace (struct, union, enum, and everything
else).
Or, rather, it maintains *two* sets of hash tables: one, a ctf_hash *,
is meant for lookups in ctf_(buf)open()ed dicts with fixed content; the
other, a ctf_dynhash *, is meant for lookups in ctf_create()d dicts.
This distinction was somewhat valuable in the far pre-binutils past when
two different hashtable implementations were used (one expanding, the
other fixed-size), but those days are long gone: the hash table
implementations are almost identical, both wrappers around the libiberty
hashtab. The ctf_dynhash has many more capabilities than the ctf_hash
(iteration, deletion, etc etc) and has no downsides other than starting
at a fixed, arbitrary small size.
That limitation is easy to lift (via a new ctf_dynhash_create_sized()),
following which we can throw away nearly all the ctf_hash
implementation, and all the code to choose between readable and writable
hashtabs; the few convenience functions that are still useful (for
insertion of name -> type mappings) can also be generalized a bit so
that the extra string verification they do is potentially available to
other string lookups as well.
(libctf still has two hashtable implementations, ctf_dynhash, above,
and ctf_dynset, which is a key-only hashtab that can avoid a great many
malloc()s, used for high-volume applications in the deduplicator.)
libctf/
* ctf-create.c (ctf_create): Eliminate ctn_writable.
(ctf_dtd_insert): Likewise.
(ctf_dtd_delete): Likewise.
(ctf_rollback): Likewise.
(ctf_name_table): Eliminate ctf_names_t.
* ctf-hash.c (ctf_dynhash_create): Comment update.
Reimplement in terms of...
(ctf_dynhash_create_sized): ... this new function.
(ctf_hash_create): Remove.
(ctf_hash_size): Remove.
(ctf_hash_define_type): Remove.
(ctf_hash_destroy): Remove.
(ctf_hash_lookup_type): Rename to...
(ctf_dynhash_lookup_type): ... this.
(ctf_hash_insert_type): Rename to...
(ctf_dynhash_insert_type): ... this, moving validation to...
* ctf-string.c (ctf_strptr_validate): ... this new function.
* ctf-impl.h (struct ctf_names): Extirpate.
(struct ctf_lookup.ctl_hash): Now a ctf_dynhash_t.
(struct ctf_dict): All ctf_names_t fields are now ctf_dynhash_t.
(ctf_name_table): Now returns a ctf_dynhash_t.
(ctf_lookup_by_rawhash): Remove.
(ctf_hash_create): Likewise.
(ctf_hash_insert_type): Likewise.
(ctf_hash_define_type): Likewise.
(ctf_hash_lookup_type): Likewise.
(ctf_hash_size): Likewise.
(ctf_hash_destroy): Likewise.
(ctf_dynhash_create_sized): New.
(ctf_dynhash_insert_type): New.
(ctf_dynhash_lookup_type): New.
(ctf_strptr_validate): New.
* ctf-lookup.c (ctf_lookup_by_name_internal): Adapt.
* ctf-open.c (init_types): Adapt.
(ctf_set_ctl_hashes): Adapt.
(ctf_dict_close): Adapt.
* ctf-serialize.c (ctf_serialize): Adapt.
* ctf-types.c (ctf_lookup_by_rawhash): Remove.
2023-12-19 01:47:48 +08:00
|
|
|
ctf_dynhash_remove (ctf_name_table (fp, name_kind), name);
|
libctf: avoid the need to ever use ctf_update
The method of operation of libctf when the dictionary is writable has
before now been that types that are added land in the dynamic type
section, which is a linked list and hash of IDs -> dynamic type
definitions (and, recently a hash of names): the DTDs are a bit of CTF
representing the ctf_type_t and ad hoc C structures representing the
vlen. Historically, libctf was unable to do anything with these types,
not even look them up by ID, let alone by name: if you wanted to do that
say if you were adding a type that depended on one you just added) you
called ctf_update, which serializes all the DTDs into a CTF file and
reopens it, copying its guts over the fp it's called with. The
ctf_updated types are then frozen in amber and unchangeable: all lookups
will return the types in the static portion in preference to the dynamic
portion, and we will refuse to re-add things that already exist in the
static portion (and, of late, in the dynamic portion too). The libctf
machinery remembers the boundary between static and dynamic types and
looks in the right portion for each type. Lots of things still don't
quite work with dynamic types (e.g. getting their size), but enough
works to do a bunch of additions and then a ctf_update, most of the
time.
Except it doesn't, because ctf_add_type finds it necessary to walk the
full dynamic type definition list looking for types with matching names,
so it gets slower and slower with every type you add: fixing this
requires calling ctf_update periodically for no other reason than to
avoid massively slowing things down.
This is all clunky and very slow but kind of works, until you consider
that it is in fact possible and indeed necessary to modify one sort of
type after it has been added: forwards. These are necessarily promoted
to structs, unions or enums, and when they do so *their type ID does not
change*. So all of a sudden we are changing types that already exist in
the static portion. ctf_update gets massively confused by this and
allocates space enough for the forward (with no members), but then emits
the new dynamic type (with all the members) into it. You get an
assertion failure after that, if you're lucky, or a coredump.
So this commit rejigs things a bit and arranges to exclusively use the
dynamic type definitions in writable dictionaries, and the static type
definitions in readable dictionaries: we don't at any time have a mixture
of static and dynamic types, and you don't need to call ctf_update to
make things "appear". The ctf_dtbyname hash I introduced a few months
ago, which maps things like "struct foo" to DTDs, is removed, replaced
instead by a change of type of the four dictionaries which track names.
Rather than just being (unresizable) ctf_hash_t's populated only at
ctf_bufopen time, they are now a ctf_names_t structure, which is a pair
of ctf_hash_t and ctf_dynhash_t, with the ctf_hash_t portion being used
in readonly dictionaries, and the ctf_dynhash_t being used in writable
ones. The decision as to which to use is centralized in the new
functions ctf_lookup_by_rawname (which takes a type kind) and
ctf_lookup_by_rawhash, which it calls (which takes a ctf_names_t *.)
This change lets us switch from using static to dynamic name hashes on
the fly across the entirety of libctf without complexifying anything: in
fact, because we now centralize the knowledge about how to map from type
kind to name hash, it actually simplifies things and lets us throw out
quite a lot of now-unnecessary complexity, from ctf_dtnyname (replaced
by the dynamic half of the name tables), through to ctf_dtnextid (now
that a dictionary's static portion is never referenced if the dictionary
is writable, we can just use ctf_typemax to indicate the maximum type:
dynamic or non-dynamic does not matter, and we no longer need to track
the boundary between the types). You can now ctf_rollback() as far as
you like, even past a ctf_update or for that matter a full writeout; all
the iteration functions work just as well on writable as on read-only
dictionaries; ctf_add_type no longer needs expensive duplicated code to
run over the dynamic types hunting for ones it might be interested in;
and the linker no longer needs a hack to call ctf_update so that calling
ctf_add_type is not impossibly expensive.
There is still a bit more complexity: some new code paths in ctf-types.c
need to know how to extract information from dynamic types. This
complexity will go away again in a few months when libctf acquires a
proper intermediate representation.
You can still call ctf_update if you like (it's public API, after all),
but its only effect now is to set the point to which ctf_discard rolls
back.
Obviously *something* still needs to serialize the CTF file before
writeout, and this job is done by ctf_serialize, which does everything
ctf_update used to except set the counter used by ctf_discard. It is
automatically called by the various functions that do CTF writeout:
nobody else ever needs to call it.
With this in place, forwards that are promoted to non-forwards no longer
crash the link, even if it happens tens of thousands of types later.
v5: fix tabdamage.
libctf/
* ctf-impl.h (ctf_names_t): New.
(ctf_lookup_t) <ctf_hash>: Now a ctf_names_t, not a ctf_hash_t.
(ctf_file_t) <ctf_structs>: Likewise.
<ctf_unions>: Likewise.
<ctf_enums>: Likewise.
<ctf_names>: Likewise.
<ctf_lookups>: Improve comment.
<ctf_ptrtab_len>: New.
<ctf_prov_strtab>: New.
<ctf_str_prov_offset>: New.
<ctf_dtbyname>: Remove, redundant to the names hashes.
<ctf_dtnextid>: Remove, redundant to ctf_typemax.
(ctf_dtdef_t) <dtd_name>: Remove.
<dtd_data>: Note that the ctt_name is now populated.
(ctf_str_atom_t) <csa_offset>: This is now the strtab
offset for internal strings too.
<csa_external_offset>: New, the external strtab offset.
(CTF_INDEX_TO_TYPEPTR): Handle the LCTF_RDWR case.
(ctf_name_table): New declaration.
(ctf_lookup_by_rawname): Likewise.
(ctf_lookup_by_rawhash): Likewise.
(ctf_set_ctl_hashes): Likewise.
(ctf_serialize): Likewise.
(ctf_dtd_insert): Adjust.
(ctf_simple_open_internal): Likewise.
(ctf_bufopen_internal): Likewise.
(ctf_list_empty_p): Likewise.
(ctf_str_remove_ref): Likewise.
(ctf_str_add): Returns uint32_t now.
(ctf_str_add_ref): Likewise.
(ctf_str_add_external): Now returns a boolean (int).
* ctf-string.c (ctf_strraw_explicit): Check the ctf_prov_strtab
for strings in the appropriate range.
(ctf_str_create_atoms): Create the ctf_prov_strtab. Detect OOM
when adding the null string to the new strtab.
(ctf_str_free_atoms): Destroy the ctf_prov_strtab.
(ctf_str_add_ref_internal): Add make_provisional argument. If
make_provisional, populate the offset and fill in the
ctf_prov_strtab accordingly.
(ctf_str_add): Return the offset, not the string.
(ctf_str_add_ref): Likewise.
(ctf_str_add_external): Return a success integer.
(ctf_str_remove_ref): New, remove a single ref.
(ctf_str_count_strtab): Do not count the initial null string's
length or the existence or length of any unreferenced internal
atoms.
(ctf_str_populate_sorttab): Skip atoms with no refs.
(ctf_str_write_strtab): Populate the nullstr earlier. Add one
to the cts_len for the null string, since it is no longer done
in ctf_str_count_strtab. Adjust for csa_external_offset rename.
Populate the csa_offset for both internal and external cases.
Flush the ctf_prov_strtab afterwards, and reset the
ctf_str_prov_offset.
* ctf-create.c (ctf_grow_ptrtab): New.
(ctf_create): Call it. Initialize new fields rather than old
ones. Tell ctf_bufopen_internal that this is a writable dictionary.
Set the ctl hashes and data model.
(ctf_update): Rename to...
(ctf_serialize): ... this. Leave a compatibility function behind.
Tell ctf_simple_open_internal that this is a writable dictionary.
Pass the new fields along from the old dictionary. Drop
ctf_dtnextid and ctf_dtbyname. Use ctf_strraw, not dtd_name.
Do not zero out the DTD's ctt_name.
(ctf_prefixed_name): Rename to...
(ctf_name_table): ... this. No longer return a prefixed name: return
the applicable name table instead.
(ctf_dtd_insert): Use it, and use the right name table. Pass in the
kind we're adding. Migrate away from dtd_name.
(ctf_dtd_delete): Adjust similarly. Remove the ref to the
deleted ctt_name.
(ctf_dtd_lookup_type_by_name): Remove.
(ctf_dynamic_type): Always return NULL on read-only dictionaries.
No longer check ctf_dtnextid: check ctf_typemax instead.
(ctf_snapshot): No longer use ctf_dtnextid: use ctf_typemax instead.
(ctf_rollback): Likewise. No longer fail with ECTF_OVERROLLBACK. Use
ctf_name_table and the right name table, and migrate away from
dtd_name as in ctf_dtd_delete.
(ctf_add_generic): Pass in the kind explicitly and pass it to
ctf_dtd_insert. Use ctf_typemax, not ctf_dtnextid. Migrate away
from dtd_name to using ctf_str_add_ref to populate the ctt_name.
Grow the ptrtab if needed.
(ctf_add_encoded): Pass in the kind.
(ctf_add_slice): Likewise.
(ctf_add_array): Likewise.
(ctf_add_function): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_reftype): Likewise. Initialize the ctf_ptrtab, checking
ctt_name rather than dtd_name.
(ctf_add_struct_sized): Pass in the kind. Use
ctf_lookup_by_rawname, not ctf_hash_lookup_type /
ctf_dtd_lookup_type_by_name.
(ctf_add_union_sized): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_type): Likewise.
(ctf_compress_write): Call ctf_serialize: adjust for ctf_size not
being initialized until after the call.
(ctf_write_mem): Likewise.
(ctf_write): Likewise.
* ctf-archive.c (arc_write_one_ctf): Likewise.
* ctf-lookup.c (ctf_lookup_by_name): Use ctf_lookuup_by_rawhash, not
ctf_hash_lookup_type.
(ctf_lookup_by_id): No longer check the readonly types if the
dictionary is writable.
* ctf-open.c (init_types): Assert that this dictionary is not
writable. Adjust to use the new name hashes, ctf_name_table,
and ctf_ptrtab_len. GNU style fix for the final ptrtab scan.
(ctf_bufopen_internal): New 'writable' parameter. Flip on LCTF_RDWR
if set. Drop out early when dictionary is writable. Split the
ctf_lookups initialization into...
(ctf_set_cth_hashes): ... this new function.
(ctf_simple_open_internal): Adjust. New 'writable' parameter.
(ctf_simple_open): Adjust accordingly.
(ctf_bufopen): Likewise.
(ctf_file_close): Destroy the appropriate name hashes. No longer
destroy ctf_dtbyname, which is gone.
(ctf_getdatasect): Remove spurious "extern".
* ctf-types.c (ctf_lookup_by_rawname): New, look up types in the
specified name table, given a kind.
(ctf_lookup_by_rawhash): Likewise, given a ctf_names_t *.
(ctf_member_iter): Add support for iterating over the
dynamic type list.
(ctf_enum_iter): Likewise.
(ctf_variable_iter): Likewise.
(ctf_type_rvisit): Likewise.
(ctf_member_info): Add support for types in the dynamic type list.
(ctf_enum_name): Likewise.
(ctf_enum_value): Likewise.
(ctf_func_type_info): Likewise.
(ctf_func_type_args): Likewise.
* ctf-link.c (ctf_accumulate_archive_names): No longer call
ctf_update.
(ctf_link_write): Likewise.
(ctf_link_intern_extern_string): Adjust for new
ctf_str_add_external return value.
(ctf_link_add_strtab): Likewise.
* ctf-util.c (ctf_list_empty_p): New.
2019-08-08 00:55:09 +08:00
|
|
|
ctf_str_remove_ref (fp, name, &dtd->dtd_data.ctt_name);
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
ctf_list_delete (&fp->ctf_dtdefs, dtd);
|
libctf: remove ctf_malloc, ctf_free and ctf_strdup
These just get in the way of auditing for erroneous usage of strdup and
add a huge irregular surface of "ctf_malloc or malloc? ctf_free or free?
ctf_strdup or strdup?"
ctf_malloc and ctf_free usage has not reliably matched up for many
years, if ever, making the whole game pointless.
Go back to malloc, free, and strdup like everyone else: while we're at
it, fix a bunch of places where we weren't properly checking for OOM.
This changes the interface of ctf_cuname_set and ctf_parent_name_set,
which could strdup but could not return errors (like ENOMEM).
New in v4.
include/
* ctf-api.h (ctf_cuname_set): Can now fail, returning int.
(ctf_parent_name_set): Likewise.
libctf/
* ctf-impl.h (ctf_alloc): Remove.
(ctf_free): Likewise.
(ctf_strdup): Likewise.
* ctf-subr.c (ctf_alloc): Remove.
(ctf_free): Likewise.
* ctf-util.c (ctf_strdup): Remove.
* ctf-create.c (ctf_serialize): Use malloc, not ctf_alloc; free, not
ctf_free; strdup, not ctf_strdup.
(ctf_dtd_delete): Likewise.
(ctf_dvd_delete): Likewise.
(ctf_add_generic): Likewise.
(ctf_add_function): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_variable): Likewise.
(membadd): Likewise.
(ctf_compress_write): Likewise.
(ctf_write_mem): Likewise.
* ctf-decl.c (ctf_decl_push): Likewise.
(ctf_decl_fini): Likewise.
(ctf_decl_sprintf): Likewise. Check for OOM.
* ctf-dump.c (ctf_dump_append): Use malloc, not ctf_alloc; free, not
ctf_free; strdup, not ctf_strdup.
(ctf_dump_free): Likewise.
(ctf_dump): Likewise.
* ctf-open.c (upgrade_types_v1): Likewise.
(init_types): Likewise.
(ctf_file_close): Likewise.
(ctf_bufopen_internal): Likewise. Check for OOM.
(ctf_parent_name_set): Likewise: report the OOM to the caller.
(ctf_cuname_set): Likewise.
(ctf_import): Likewise.
* ctf-string.c (ctf_str_purge_atom_refs): Use malloc, not ctf_alloc;
free, not ctf_free; strdup, not ctf_strdup.
(ctf_str_free_atom): Likewise.
(ctf_str_create_atoms): Likewise.
(ctf_str_add_ref_internal): Likewise.
(ctf_str_remove_ref): Likewise.
(ctf_str_write_strtab): Likewise.
2019-09-17 13:54:23 +08:00
|
|
|
free (dtd);
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
ctf_dtdef_t *
|
libctf, include, binutils, gdb, ld: rename ctf_file_t to ctf_dict_t
The naming of the ctf_file_t type in libctf is a historical curiosity.
Back in the Solaris days, CTF dictionaries were originally generated as
a separate file and then (sometimes) merged into objects: hence the
datatype was named ctf_file_t, and known as a "CTF file". Nowadays, raw
CTF is essentially never written to a file on its own, and the datatype
changed name to a "CTF dictionary" years ago. So the term "CTF file"
refers to something that is never a file! This is at best confusing.
The type has also historically been known as a 'CTF container", which is
even more confusing now that we have CTF archives which are *also* a
sort of container (they contain CTF dictionaries), but which are never
referred to as containers in the source code.
So fix this by completing the renaming, renaming ctf_file_t to
ctf_dict_t throughout, and renaming those few functions that refer to
CTF files by name (keeping compatibility aliases) to refer to dicts
instead. Old users who still refer to ctf_file_t will see (harmless)
pointer-compatibility warnings at compile time, but the ABI is unchanged
(since C doesn't mangle names, and ctf_file_t was always an opaque type)
and things will still compile fine as long as -Werror is not specified.
All references to CTF containers and CTF files in the source code are
fixed to refer to CTF dicts instead.
Further (smaller) renamings of annoyingly-named functions to come, as
part of the process of souping up queries across whole archives at once
(needed for the function info and data object sections).
binutils/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* objdump.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_ctf): Likewise. Use ctf_dict_close, not ctf_file_close.
* readelf.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_section_as_ctf): Likewise. Use ctf_dict_close, not
ctf_file_close.
gdb/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctfread.c: Change uses of ctf_file_t to ctf_dict_t.
(ctf_fp_info::~ctf_fp_info): Call ctf_dict_close, not ctf_file_close.
include/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-api.h (ctf_file_t): Rename to...
(ctf_dict_t): ... this. Keep ctf_file_t around for compatibility.
(struct ctf_file): Likewise rename to...
(struct ctf_dict): ... this.
(ctf_file_close): Rename to...
(ctf_dict_close): ... this, keeping compatibility function.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this, keeping compatibility function.
All callers adjusted.
* ctf.h: Rename references to ctf_file_t to ctf_dict_t.
(struct ctf_archive) <ctfa_nfiles>: Rename to...
<ctfa_ndicts>: ... this.
ld/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ldlang.c (ctf_output): This is a ctf_dict_t now.
(lang_ctf_errs_warnings): Rename ctf_file_t to ctf_dict_t.
(ldlang_open_ctf): Adjust comment.
(lang_merge_ctf): Use ctf_dict_close, not ctf_file_close.
* ldelfgen.h (ldelf_examine_strtab_for_ctf): Rename ctf_file_t to
ctf_dict_t. Change opaque declaration accordingly.
* ldelfgen.c (ldelf_examine_strtab_for_ctf): Adjust.
* ldemul.h (examine_strtab_for_ctf): Likewise.
(ldemul_examine_strtab_for_ctf): Likewise.
* ldeuml.c (ldemul_examine_strtab_for_ctf): Likewise.
libctf/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h: Rename ctf_file_t to ctf_dict_t: all declarations
adjusted.
(ctf_fileops): Rename to...
(ctf_dictops): ... this.
(ctf_dedup_t) <cd_id_to_file_t>: Rename to...
<cd_id_to_dict_t>: ... this.
(ctf_file_t): Fix outdated comment.
<ctf_fileops>: Rename to...
<ctf_dictops>: ... this.
(struct ctf_archive_internal) <ctfi_file>: Rename to...
<ctfi_dict>: ... this.
* ctf-archive.c: Rename ctf_file_t to ctf_dict_t.
Rename ctf_archive.ctfa_nfiles to ctfa_ndicts.
Rename ctf_file_close to ctf_dict_close. All users adjusted.
* ctf-create.c: Likewise. Refer to CTF dicts, not CTF containers.
(ctf_bundle_t) <ctb_file>: Rename to...
<ctb_dict): ... this.
* ctf-decl.c: Rename ctf_file_t to ctf_dict_t.
* ctf-dedup.c: Likewise. Rename ctf_file_close to
ctf_dict_close. Refer to CTF dicts, not CTF containers.
* ctf-dump.c: Likewise.
* ctf-error.c: Likewise.
* ctf-hash.c: Likewise.
* ctf-inlines.h: Likewise.
* ctf-labels.c: Likewise.
* ctf-link.c: Likewise.
* ctf-lookup.c: Likewise.
* ctf-open-bfd.c: Likewise.
* ctf-string.c: Likewise.
* ctf-subr.c: Likewise.
* ctf-types.c: Likewise.
* ctf-util.c: Likewise.
* ctf-open.c: Likewise.
(ctf_file_close): Rename to...
(ctf_dict_close): ...this.
(ctf_file_close): New trivial wrapper around ctf_dict_close, for
compatibility.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this.
(ctf_parent_file): New trivial wrapper around ctf_parent_dict, for
compatibility.
* libctf.ver: Add ctf_dict_close and ctf_parent_dict.
2020-11-20 21:34:04 +08:00
|
|
|
ctf_dtd_lookup (const ctf_dict_t *fp, ctf_id_t type)
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
{
|
libctf: fix creation-time parent/child dict confusions
The fixes applied a few years ago to resolve confusions between parent and
child dicts at lookup time also apply in various forms to creation. In
general, if you have a type in a parent dict ctf_imported into a child and
you do something to it, and the parent dict is writable (created via
ctf_create, not opened via ctf_open*) it should work just the same to make
changes to that type via a child dict as it does to make the change
to the parent dict directly -- and nothing you're prohibited from doing
to the parent dict when done directly should be allowed just because
you're doing it via a child.
Specifically, the following don't work when doing things from the child, but
should:
- adding a member of a type in the parent to a struct or union in the
parent via ctf_add_member or ctf_add_member_offset: this yields
ECTF_BADID
- adding a member of a type in the parent to a struct or union in the
parent via ctf_add_member_encoded: this dumps core (!).
- adding an enumerand to an enumerator in the parent: this yields
ECTF_BADID
- setting the properties of an array in the parent via ctf_set_array;
this yields ECTF_BADID
Relatedly, some things work when doing things via a child that should fail,
yielding a CTF dictionary with invalid content (readable, but meaningless):
in particular, you can add a child type to a struct in the parent via
any of the ctf_add_member* family and nothing complains at all, even though
you should never be able to add references to children to parents (since any
given parent can be associated with many different children).
A family of tests is added to check each of these cases independently, since
some can result in coredumps and it would be nice to test the other cases
even if some dump core. They use a common library to do all the actual
work. The set of affected API calls was determined by code inspection
(auditing all calls to ctf_dtd_lookup): it's possible that I missed a few,
but I doubt it, since other cases use ctf_lookup* functions, which already
climb to the parent where appropriate.
libctf/ChangeLog:
PR libctf/30985
* ctf-create.c (ctf_dtd_lookup): Traverse to parents if necessary.
(ctf_set_array): Likewise. Report errors on the child; require
both parent and child to be writable.
(ctf_add_enumerator): Likewise.
(ctf_add_member_offset): Likewise. Prohibit addition of child types
to structs in the parent.
(ctf_add_member_encoded): Do not dereference a NULL dtd: report
ECTF_BADID instead.
* ctf-string.c (ctf_str_add_ref_internal): Report ENOMEM on the
dict if addition of a string ref fails.
* testsuite/libctf-writable/parent-child-dtd-crash-lib.c: New library.
* testsuite/libctf-writable/parent-child-dtd-enum.*: New test.
* testsuite/libctf-writable/parent-child-dtd-enumerator.*: New test.
* testsuite/libctf-writable/parent-child-dtd-member-encoded.*: New test.
* testsuite/libctf-writable/parent-child-dtd-member-offset.*: New test.
* testsuite/libctf-writable/parent-child-dtd-set-array.*: New test.
* testsuite/libctf-writable/parent-child-dtd-struct.*: New test.
* testsuite/libctf-writable/parent-child-dtd-union.*: New test.
2023-10-19 01:34:57 +08:00
|
|
|
if ((fp->ctf_flags & LCTF_CHILD) && LCTF_TYPE_ISPARENT (fp, type))
|
|
|
|
fp = fp->ctf_parent;
|
|
|
|
|
2020-07-21 22:38:08 +08:00
|
|
|
return (ctf_dtdef_t *)
|
|
|
|
ctf_dynhash_lookup (fp->ctf_dthash, (void *) (uintptr_t) type);
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
ctf_dtdef_t *
|
libctf, include, binutils, gdb, ld: rename ctf_file_t to ctf_dict_t
The naming of the ctf_file_t type in libctf is a historical curiosity.
Back in the Solaris days, CTF dictionaries were originally generated as
a separate file and then (sometimes) merged into objects: hence the
datatype was named ctf_file_t, and known as a "CTF file". Nowadays, raw
CTF is essentially never written to a file on its own, and the datatype
changed name to a "CTF dictionary" years ago. So the term "CTF file"
refers to something that is never a file! This is at best confusing.
The type has also historically been known as a 'CTF container", which is
even more confusing now that we have CTF archives which are *also* a
sort of container (they contain CTF dictionaries), but which are never
referred to as containers in the source code.
So fix this by completing the renaming, renaming ctf_file_t to
ctf_dict_t throughout, and renaming those few functions that refer to
CTF files by name (keeping compatibility aliases) to refer to dicts
instead. Old users who still refer to ctf_file_t will see (harmless)
pointer-compatibility warnings at compile time, but the ABI is unchanged
(since C doesn't mangle names, and ctf_file_t was always an opaque type)
and things will still compile fine as long as -Werror is not specified.
All references to CTF containers and CTF files in the source code are
fixed to refer to CTF dicts instead.
Further (smaller) renamings of annoyingly-named functions to come, as
part of the process of souping up queries across whole archives at once
(needed for the function info and data object sections).
binutils/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* objdump.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_ctf): Likewise. Use ctf_dict_close, not ctf_file_close.
* readelf.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_section_as_ctf): Likewise. Use ctf_dict_close, not
ctf_file_close.
gdb/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctfread.c: Change uses of ctf_file_t to ctf_dict_t.
(ctf_fp_info::~ctf_fp_info): Call ctf_dict_close, not ctf_file_close.
include/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-api.h (ctf_file_t): Rename to...
(ctf_dict_t): ... this. Keep ctf_file_t around for compatibility.
(struct ctf_file): Likewise rename to...
(struct ctf_dict): ... this.
(ctf_file_close): Rename to...
(ctf_dict_close): ... this, keeping compatibility function.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this, keeping compatibility function.
All callers adjusted.
* ctf.h: Rename references to ctf_file_t to ctf_dict_t.
(struct ctf_archive) <ctfa_nfiles>: Rename to...
<ctfa_ndicts>: ... this.
ld/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ldlang.c (ctf_output): This is a ctf_dict_t now.
(lang_ctf_errs_warnings): Rename ctf_file_t to ctf_dict_t.
(ldlang_open_ctf): Adjust comment.
(lang_merge_ctf): Use ctf_dict_close, not ctf_file_close.
* ldelfgen.h (ldelf_examine_strtab_for_ctf): Rename ctf_file_t to
ctf_dict_t. Change opaque declaration accordingly.
* ldelfgen.c (ldelf_examine_strtab_for_ctf): Adjust.
* ldemul.h (examine_strtab_for_ctf): Likewise.
(ldemul_examine_strtab_for_ctf): Likewise.
* ldeuml.c (ldemul_examine_strtab_for_ctf): Likewise.
libctf/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h: Rename ctf_file_t to ctf_dict_t: all declarations
adjusted.
(ctf_fileops): Rename to...
(ctf_dictops): ... this.
(ctf_dedup_t) <cd_id_to_file_t>: Rename to...
<cd_id_to_dict_t>: ... this.
(ctf_file_t): Fix outdated comment.
<ctf_fileops>: Rename to...
<ctf_dictops>: ... this.
(struct ctf_archive_internal) <ctfi_file>: Rename to...
<ctfi_dict>: ... this.
* ctf-archive.c: Rename ctf_file_t to ctf_dict_t.
Rename ctf_archive.ctfa_nfiles to ctfa_ndicts.
Rename ctf_file_close to ctf_dict_close. All users adjusted.
* ctf-create.c: Likewise. Refer to CTF dicts, not CTF containers.
(ctf_bundle_t) <ctb_file>: Rename to...
<ctb_dict): ... this.
* ctf-decl.c: Rename ctf_file_t to ctf_dict_t.
* ctf-dedup.c: Likewise. Rename ctf_file_close to
ctf_dict_close. Refer to CTF dicts, not CTF containers.
* ctf-dump.c: Likewise.
* ctf-error.c: Likewise.
* ctf-hash.c: Likewise.
* ctf-inlines.h: Likewise.
* ctf-labels.c: Likewise.
* ctf-link.c: Likewise.
* ctf-lookup.c: Likewise.
* ctf-open-bfd.c: Likewise.
* ctf-string.c: Likewise.
* ctf-subr.c: Likewise.
* ctf-types.c: Likewise.
* ctf-util.c: Likewise.
* ctf-open.c: Likewise.
(ctf_file_close): Rename to...
(ctf_dict_close): ...this.
(ctf_file_close): New trivial wrapper around ctf_dict_close, for
compatibility.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this.
(ctf_parent_file): New trivial wrapper around ctf_parent_dict, for
compatibility.
* libctf.ver: Add ctf_dict_close and ctf_parent_dict.
2020-11-20 21:34:04 +08:00
|
|
|
ctf_dynamic_type (const ctf_dict_t *fp, ctf_id_t id)
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
{
|
|
|
|
ctf_id_t idx;
|
|
|
|
|
|
|
|
if ((fp->ctf_flags & LCTF_CHILD) && LCTF_TYPE_ISPARENT (fp, id))
|
|
|
|
fp = fp->ctf_parent;
|
|
|
|
|
|
|
|
idx = LCTF_TYPE_TO_INDEX(fp, id);
|
|
|
|
|
libctf: avoid the need to ever use ctf_update
The method of operation of libctf when the dictionary is writable has
before now been that types that are added land in the dynamic type
section, which is a linked list and hash of IDs -> dynamic type
definitions (and, recently a hash of names): the DTDs are a bit of CTF
representing the ctf_type_t and ad hoc C structures representing the
vlen. Historically, libctf was unable to do anything with these types,
not even look them up by ID, let alone by name: if you wanted to do that
say if you were adding a type that depended on one you just added) you
called ctf_update, which serializes all the DTDs into a CTF file and
reopens it, copying its guts over the fp it's called with. The
ctf_updated types are then frozen in amber and unchangeable: all lookups
will return the types in the static portion in preference to the dynamic
portion, and we will refuse to re-add things that already exist in the
static portion (and, of late, in the dynamic portion too). The libctf
machinery remembers the boundary between static and dynamic types and
looks in the right portion for each type. Lots of things still don't
quite work with dynamic types (e.g. getting their size), but enough
works to do a bunch of additions and then a ctf_update, most of the
time.
Except it doesn't, because ctf_add_type finds it necessary to walk the
full dynamic type definition list looking for types with matching names,
so it gets slower and slower with every type you add: fixing this
requires calling ctf_update periodically for no other reason than to
avoid massively slowing things down.
This is all clunky and very slow but kind of works, until you consider
that it is in fact possible and indeed necessary to modify one sort of
type after it has been added: forwards. These are necessarily promoted
to structs, unions or enums, and when they do so *their type ID does not
change*. So all of a sudden we are changing types that already exist in
the static portion. ctf_update gets massively confused by this and
allocates space enough for the forward (with no members), but then emits
the new dynamic type (with all the members) into it. You get an
assertion failure after that, if you're lucky, or a coredump.
So this commit rejigs things a bit and arranges to exclusively use the
dynamic type definitions in writable dictionaries, and the static type
definitions in readable dictionaries: we don't at any time have a mixture
of static and dynamic types, and you don't need to call ctf_update to
make things "appear". The ctf_dtbyname hash I introduced a few months
ago, which maps things like "struct foo" to DTDs, is removed, replaced
instead by a change of type of the four dictionaries which track names.
Rather than just being (unresizable) ctf_hash_t's populated only at
ctf_bufopen time, they are now a ctf_names_t structure, which is a pair
of ctf_hash_t and ctf_dynhash_t, with the ctf_hash_t portion being used
in readonly dictionaries, and the ctf_dynhash_t being used in writable
ones. The decision as to which to use is centralized in the new
functions ctf_lookup_by_rawname (which takes a type kind) and
ctf_lookup_by_rawhash, which it calls (which takes a ctf_names_t *.)
This change lets us switch from using static to dynamic name hashes on
the fly across the entirety of libctf without complexifying anything: in
fact, because we now centralize the knowledge about how to map from type
kind to name hash, it actually simplifies things and lets us throw out
quite a lot of now-unnecessary complexity, from ctf_dtnyname (replaced
by the dynamic half of the name tables), through to ctf_dtnextid (now
that a dictionary's static portion is never referenced if the dictionary
is writable, we can just use ctf_typemax to indicate the maximum type:
dynamic or non-dynamic does not matter, and we no longer need to track
the boundary between the types). You can now ctf_rollback() as far as
you like, even past a ctf_update or for that matter a full writeout; all
the iteration functions work just as well on writable as on read-only
dictionaries; ctf_add_type no longer needs expensive duplicated code to
run over the dynamic types hunting for ones it might be interested in;
and the linker no longer needs a hack to call ctf_update so that calling
ctf_add_type is not impossibly expensive.
There is still a bit more complexity: some new code paths in ctf-types.c
need to know how to extract information from dynamic types. This
complexity will go away again in a few months when libctf acquires a
proper intermediate representation.
You can still call ctf_update if you like (it's public API, after all),
but its only effect now is to set the point to which ctf_discard rolls
back.
Obviously *something* still needs to serialize the CTF file before
writeout, and this job is done by ctf_serialize, which does everything
ctf_update used to except set the counter used by ctf_discard. It is
automatically called by the various functions that do CTF writeout:
nobody else ever needs to call it.
With this in place, forwards that are promoted to non-forwards no longer
crash the link, even if it happens tens of thousands of types later.
v5: fix tabdamage.
libctf/
* ctf-impl.h (ctf_names_t): New.
(ctf_lookup_t) <ctf_hash>: Now a ctf_names_t, not a ctf_hash_t.
(ctf_file_t) <ctf_structs>: Likewise.
<ctf_unions>: Likewise.
<ctf_enums>: Likewise.
<ctf_names>: Likewise.
<ctf_lookups>: Improve comment.
<ctf_ptrtab_len>: New.
<ctf_prov_strtab>: New.
<ctf_str_prov_offset>: New.
<ctf_dtbyname>: Remove, redundant to the names hashes.
<ctf_dtnextid>: Remove, redundant to ctf_typemax.
(ctf_dtdef_t) <dtd_name>: Remove.
<dtd_data>: Note that the ctt_name is now populated.
(ctf_str_atom_t) <csa_offset>: This is now the strtab
offset for internal strings too.
<csa_external_offset>: New, the external strtab offset.
(CTF_INDEX_TO_TYPEPTR): Handle the LCTF_RDWR case.
(ctf_name_table): New declaration.
(ctf_lookup_by_rawname): Likewise.
(ctf_lookup_by_rawhash): Likewise.
(ctf_set_ctl_hashes): Likewise.
(ctf_serialize): Likewise.
(ctf_dtd_insert): Adjust.
(ctf_simple_open_internal): Likewise.
(ctf_bufopen_internal): Likewise.
(ctf_list_empty_p): Likewise.
(ctf_str_remove_ref): Likewise.
(ctf_str_add): Returns uint32_t now.
(ctf_str_add_ref): Likewise.
(ctf_str_add_external): Now returns a boolean (int).
* ctf-string.c (ctf_strraw_explicit): Check the ctf_prov_strtab
for strings in the appropriate range.
(ctf_str_create_atoms): Create the ctf_prov_strtab. Detect OOM
when adding the null string to the new strtab.
(ctf_str_free_atoms): Destroy the ctf_prov_strtab.
(ctf_str_add_ref_internal): Add make_provisional argument. If
make_provisional, populate the offset and fill in the
ctf_prov_strtab accordingly.
(ctf_str_add): Return the offset, not the string.
(ctf_str_add_ref): Likewise.
(ctf_str_add_external): Return a success integer.
(ctf_str_remove_ref): New, remove a single ref.
(ctf_str_count_strtab): Do not count the initial null string's
length or the existence or length of any unreferenced internal
atoms.
(ctf_str_populate_sorttab): Skip atoms with no refs.
(ctf_str_write_strtab): Populate the nullstr earlier. Add one
to the cts_len for the null string, since it is no longer done
in ctf_str_count_strtab. Adjust for csa_external_offset rename.
Populate the csa_offset for both internal and external cases.
Flush the ctf_prov_strtab afterwards, and reset the
ctf_str_prov_offset.
* ctf-create.c (ctf_grow_ptrtab): New.
(ctf_create): Call it. Initialize new fields rather than old
ones. Tell ctf_bufopen_internal that this is a writable dictionary.
Set the ctl hashes and data model.
(ctf_update): Rename to...
(ctf_serialize): ... this. Leave a compatibility function behind.
Tell ctf_simple_open_internal that this is a writable dictionary.
Pass the new fields along from the old dictionary. Drop
ctf_dtnextid and ctf_dtbyname. Use ctf_strraw, not dtd_name.
Do not zero out the DTD's ctt_name.
(ctf_prefixed_name): Rename to...
(ctf_name_table): ... this. No longer return a prefixed name: return
the applicable name table instead.
(ctf_dtd_insert): Use it, and use the right name table. Pass in the
kind we're adding. Migrate away from dtd_name.
(ctf_dtd_delete): Adjust similarly. Remove the ref to the
deleted ctt_name.
(ctf_dtd_lookup_type_by_name): Remove.
(ctf_dynamic_type): Always return NULL on read-only dictionaries.
No longer check ctf_dtnextid: check ctf_typemax instead.
(ctf_snapshot): No longer use ctf_dtnextid: use ctf_typemax instead.
(ctf_rollback): Likewise. No longer fail with ECTF_OVERROLLBACK. Use
ctf_name_table and the right name table, and migrate away from
dtd_name as in ctf_dtd_delete.
(ctf_add_generic): Pass in the kind explicitly and pass it to
ctf_dtd_insert. Use ctf_typemax, not ctf_dtnextid. Migrate away
from dtd_name to using ctf_str_add_ref to populate the ctt_name.
Grow the ptrtab if needed.
(ctf_add_encoded): Pass in the kind.
(ctf_add_slice): Likewise.
(ctf_add_array): Likewise.
(ctf_add_function): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_reftype): Likewise. Initialize the ctf_ptrtab, checking
ctt_name rather than dtd_name.
(ctf_add_struct_sized): Pass in the kind. Use
ctf_lookup_by_rawname, not ctf_hash_lookup_type /
ctf_dtd_lookup_type_by_name.
(ctf_add_union_sized): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_type): Likewise.
(ctf_compress_write): Call ctf_serialize: adjust for ctf_size not
being initialized until after the call.
(ctf_write_mem): Likewise.
(ctf_write): Likewise.
* ctf-archive.c (arc_write_one_ctf): Likewise.
* ctf-lookup.c (ctf_lookup_by_name): Use ctf_lookuup_by_rawhash, not
ctf_hash_lookup_type.
(ctf_lookup_by_id): No longer check the readonly types if the
dictionary is writable.
* ctf-open.c (init_types): Assert that this dictionary is not
writable. Adjust to use the new name hashes, ctf_name_table,
and ctf_ptrtab_len. GNU style fix for the final ptrtab scan.
(ctf_bufopen_internal): New 'writable' parameter. Flip on LCTF_RDWR
if set. Drop out early when dictionary is writable. Split the
ctf_lookups initialization into...
(ctf_set_cth_hashes): ... this new function.
(ctf_simple_open_internal): Adjust. New 'writable' parameter.
(ctf_simple_open): Adjust accordingly.
(ctf_bufopen): Likewise.
(ctf_file_close): Destroy the appropriate name hashes. No longer
destroy ctf_dtbyname, which is gone.
(ctf_getdatasect): Remove spurious "extern".
* ctf-types.c (ctf_lookup_by_rawname): New, look up types in the
specified name table, given a kind.
(ctf_lookup_by_rawhash): Likewise, given a ctf_names_t *.
(ctf_member_iter): Add support for iterating over the
dynamic type list.
(ctf_enum_iter): Likewise.
(ctf_variable_iter): Likewise.
(ctf_type_rvisit): Likewise.
(ctf_member_info): Add support for types in the dynamic type list.
(ctf_enum_name): Likewise.
(ctf_enum_value): Likewise.
(ctf_func_type_info): Likewise.
(ctf_func_type_args): Likewise.
* ctf-link.c (ctf_accumulate_archive_names): No longer call
ctf_update.
(ctf_link_write): Likewise.
(ctf_link_intern_extern_string): Adjust for new
ctf_str_add_external return value.
(ctf_link_add_strtab): Likewise.
* ctf-util.c (ctf_list_empty_p): New.
2019-08-08 00:55:09 +08:00
|
|
|
if ((unsigned long) idx <= fp->ctf_typemax)
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
return ctf_dtd_lookup (fp, id);
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
libctf: support addition of types to dicts read via ctf_open()
libctf has long declared deserialized dictionaries (out of files or ELF
sections or memory buffers or whatever) to be read-only: back in the
furthest prehistory this was not the case, in that you could add a
few sorts of type to such dicts, but attempting to do so often caused
horrible memory corruption, so I banned the lot.
But it turns out real consumers want it (notably DTrace, which
synthesises pointers to types that don't have them and adds them to the
ctf_open()ed dicts if it needs them). Let's bring it back again, but
without the memory corruption and without the massive code duplication
required in days of yore to distinguish between static and dynamic
types: the representation of both types has been identical for a few
years, with the only difference being that types as a whole are stored in
a big buffer for types read in via ctf_open and per-type hashtables for
newly-added types.
So we discard the internally-visible concept of "readonly dictionaries"
in favour of declaring the *range of types* that were already present
when the dict was read in to be read-only: you can't modify them (say,
by adding members to them if they're structs, or calling ctf_set_array
on them), but you can add more types and point to them. (The API
remains the same, with calls sometimes returning ECTF_RDONLY, but now
they do so less often.)
This is a fairly invasive change, mostly because code written since the
ban was introduced didn't take the possibility of a static/dynamic split
into account. Some of these irregularities were hard to define as
anything but bugs.
Notably:
- The symbol handling was assuming that symbols only needed to be
looked for in dynamic hashtabs or static linker-laid-out indexed/
nonindexed layouts, but now we want to check both in case people
added more symbols to a dict they opened.
- The code that handles type additions wasn't checking to see if types
with the same name existed *at all* (so you could do
ctf_add_typedef (fp, "foo", bar) repeatedly without error). This
seems reasonable for types you just added, but we probably *do* want
to ban addition of types with names that override names we already
used in the ctf_open()ed portion, since that would probably corrupt
existing type relationships. (Doing things this way also avoids
causing new errors for any existing code that was doing this sort of
thing.)
- ctf_lookup_variable entirely failed to work for variables just added
by ctf_add_variable: you had to write the dict out and read it back
in again before they appeared.
- The symbol handling remembered what symbols you looked up but didn't
remember their types, so you could look up an object symbol and then
find it popping up when you asked for function symbols, which seems
less than ideal. Since we had to rejig things enough to be able to
distinguish function and object symbols internally anyway (in order
to give suitable errors if you try to add a symbol with a name that
already existed in the ctf_open()ed dict), this bug suddenly became
more visible and was easily fixed.
We do not (yet) support writing out dicts that have been previously read
in via ctf_open() or other deserializer (you can look things up in them,
but not write them out a second time). This never worked, so there is
no incompatibility; if it is needed at a later date, the serializer is a
little bit closer to having it work now (the only table we don't deal
with is the types table, and that's because the upcoming CTFv4 changes
are likely to make major changes to the way that table is represented
internally, so adding more code that depends on its current form seems
like a bad idea).
There is a new testcase that tests much of this, in particular that
modification of existing types is still banned and that you can add new
ones and chase them without error.
libctf/
* ctf-impl.h (struct ctf_dict.ctf_symhash): Split into...
(ctf_dict.ctf_symhash_func): ... this and...
(ctf_dict.ctf_symhash_objt): ... this.
(ctf_dict.ctf_stypes): New, counts static types.
(LCTF_INDEX_TO_TYPEPTR): Use it instead of CTF_RDWR.
(LCTF_RDWR): Deleted.
(LCTF_DIRTY): Renumbered.
(LCTF_LINKING): Likewise.
(ctf_lookup_variable_here): New.
(ctf_lookup_by_sym_or_name): Likewise.
(ctf_symbol_next_static): Likewise.
(ctf_add_variable_forced): Likewise.
(ctf_add_funcobjt_sym_forced): Likewise.
(ctf_simple_open_internal): Adjust.
(ctf_bufopen_internal): Likewise.
* ctf-create.c (ctf_grow_ptrtab): Adjust a lot to start with.
(ctf_create): Migrate a bunch of initializations into bufopen.
Force recreation of name tables. Do not forcibly override the
model, let ctf_bufopen do it.
(ctf_static_type): New.
(ctf_update): Drop LCTF_RDWR check.
(ctf_dynamic_type): Likewise.
(ctf_add_function): Likewise.
(ctf_add_type_internal): Likewise.
(ctf_rollback): Check ctf_stypes, not LCTF_RDWR.
(ctf_set_array): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_enumerator): Likewise (only on the target dict).
(ctf_add_member_offset): Likewise.
(ctf_add_generic): Drop LCTF_RDWR check. Ban addition of types
with colliding names.
(ctf_add_forward): Note safety under the new rules.
(ctf_add_variable): Split all but the existence check into...
(ctf_add_variable_forced): ... this new function.
(ctf_add_funcobjt_sym): Likewise...
(ctf_add_funcobjt_sym_forced): ... for this new function.
* ctf-link.c (ctf_link_add_linker_symbol): Ban calling on dicts
with any stypes.
(ctf_link_add_strtab): Likewise.
(ctf_link_shuffle_syms): Likewise.
(ctf_link_intern_extern_string): Note pre-existing prohibition.
* ctf-lookup.c (ctf_lookup_by_id): Drop LCTF_RDWR check.
(ctf_lookup_variable): Split out looking in a dict but not
its parent into...
(ctf_lookup_variable_here): ... this new function.
(ctf_lookup_symbol_idx): Track whether looking up a function or
object: cache them separately.
(ctf_symbol_next): Split out looking in non-dynamic symtypetab
entries to...
(ctf_symbol_next_static): ... this new function. Don't get confused
by the simultaneous presence of static and dynamic symtypetab entries.
(ctf_try_lookup_indexed): Don't waste time looking up symbols by
index before there can be any idea how symbols are numbered.
(ctf_lookup_by_sym_or_name): Distinguish between function and
data object lookups. Drop LCTF_RDWR.
(ctf_lookup_by_symbol): Adjust.
(ctf_lookup_by_symbol_name): Likewise.
* ctf-open.c (init_types): Rename to...
(init_static_types): ... this. Drop LCTF_RDWR. Populate ctf_stypes.
(ctf_simple_open): Drop writable arg.
(ctf_simple_open_internal): Likewise.
(ctf_bufopen): Likewise.
(ctf_bufopen_internal): Populate fields only used for writable dicts.
Drop LCTF_RDWR.
(ctf_dict_close): Cater for symhash cache split.
* ctf-serialize.c (ctf_serialize): Use ctf_stypes, not LCTF_RDWR.
* ctf-types.c (ctf_variable_next): Drop LCTF_RDWR.
* testsuite/libctf-lookup/add-to-opened*: New test.
2023-12-20 00:58:19 +08:00
|
|
|
static int
|
|
|
|
ctf_static_type (const ctf_dict_t *fp, ctf_id_t id)
|
|
|
|
{
|
|
|
|
ctf_id_t idx;
|
|
|
|
|
|
|
|
if ((fp->ctf_flags & LCTF_CHILD) && LCTF_TYPE_ISPARENT (fp, id))
|
|
|
|
fp = fp->ctf_parent;
|
|
|
|
|
|
|
|
idx = LCTF_TYPE_TO_INDEX(fp, id);
|
|
|
|
|
|
|
|
return ((unsigned long) idx <= fp->ctf_stypes);
|
|
|
|
}
|
|
|
|
|
2019-06-19 19:14:16 +08:00
|
|
|
int
|
libctf, include, binutils, gdb, ld: rename ctf_file_t to ctf_dict_t
The naming of the ctf_file_t type in libctf is a historical curiosity.
Back in the Solaris days, CTF dictionaries were originally generated as
a separate file and then (sometimes) merged into objects: hence the
datatype was named ctf_file_t, and known as a "CTF file". Nowadays, raw
CTF is essentially never written to a file on its own, and the datatype
changed name to a "CTF dictionary" years ago. So the term "CTF file"
refers to something that is never a file! This is at best confusing.
The type has also historically been known as a 'CTF container", which is
even more confusing now that we have CTF archives which are *also* a
sort of container (they contain CTF dictionaries), but which are never
referred to as containers in the source code.
So fix this by completing the renaming, renaming ctf_file_t to
ctf_dict_t throughout, and renaming those few functions that refer to
CTF files by name (keeping compatibility aliases) to refer to dicts
instead. Old users who still refer to ctf_file_t will see (harmless)
pointer-compatibility warnings at compile time, but the ABI is unchanged
(since C doesn't mangle names, and ctf_file_t was always an opaque type)
and things will still compile fine as long as -Werror is not specified.
All references to CTF containers and CTF files in the source code are
fixed to refer to CTF dicts instead.
Further (smaller) renamings of annoyingly-named functions to come, as
part of the process of souping up queries across whole archives at once
(needed for the function info and data object sections).
binutils/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* objdump.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_ctf): Likewise. Use ctf_dict_close, not ctf_file_close.
* readelf.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_section_as_ctf): Likewise. Use ctf_dict_close, not
ctf_file_close.
gdb/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctfread.c: Change uses of ctf_file_t to ctf_dict_t.
(ctf_fp_info::~ctf_fp_info): Call ctf_dict_close, not ctf_file_close.
include/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-api.h (ctf_file_t): Rename to...
(ctf_dict_t): ... this. Keep ctf_file_t around for compatibility.
(struct ctf_file): Likewise rename to...
(struct ctf_dict): ... this.
(ctf_file_close): Rename to...
(ctf_dict_close): ... this, keeping compatibility function.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this, keeping compatibility function.
All callers adjusted.
* ctf.h: Rename references to ctf_file_t to ctf_dict_t.
(struct ctf_archive) <ctfa_nfiles>: Rename to...
<ctfa_ndicts>: ... this.
ld/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ldlang.c (ctf_output): This is a ctf_dict_t now.
(lang_ctf_errs_warnings): Rename ctf_file_t to ctf_dict_t.
(ldlang_open_ctf): Adjust comment.
(lang_merge_ctf): Use ctf_dict_close, not ctf_file_close.
* ldelfgen.h (ldelf_examine_strtab_for_ctf): Rename ctf_file_t to
ctf_dict_t. Change opaque declaration accordingly.
* ldelfgen.c (ldelf_examine_strtab_for_ctf): Adjust.
* ldemul.h (examine_strtab_for_ctf): Likewise.
(ldemul_examine_strtab_for_ctf): Likewise.
* ldeuml.c (ldemul_examine_strtab_for_ctf): Likewise.
libctf/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h: Rename ctf_file_t to ctf_dict_t: all declarations
adjusted.
(ctf_fileops): Rename to...
(ctf_dictops): ... this.
(ctf_dedup_t) <cd_id_to_file_t>: Rename to...
<cd_id_to_dict_t>: ... this.
(ctf_file_t): Fix outdated comment.
<ctf_fileops>: Rename to...
<ctf_dictops>: ... this.
(struct ctf_archive_internal) <ctfi_file>: Rename to...
<ctfi_dict>: ... this.
* ctf-archive.c: Rename ctf_file_t to ctf_dict_t.
Rename ctf_archive.ctfa_nfiles to ctfa_ndicts.
Rename ctf_file_close to ctf_dict_close. All users adjusted.
* ctf-create.c: Likewise. Refer to CTF dicts, not CTF containers.
(ctf_bundle_t) <ctb_file>: Rename to...
<ctb_dict): ... this.
* ctf-decl.c: Rename ctf_file_t to ctf_dict_t.
* ctf-dedup.c: Likewise. Rename ctf_file_close to
ctf_dict_close. Refer to CTF dicts, not CTF containers.
* ctf-dump.c: Likewise.
* ctf-error.c: Likewise.
* ctf-hash.c: Likewise.
* ctf-inlines.h: Likewise.
* ctf-labels.c: Likewise.
* ctf-link.c: Likewise.
* ctf-lookup.c: Likewise.
* ctf-open-bfd.c: Likewise.
* ctf-string.c: Likewise.
* ctf-subr.c: Likewise.
* ctf-types.c: Likewise.
* ctf-util.c: Likewise.
* ctf-open.c: Likewise.
(ctf_file_close): Rename to...
(ctf_dict_close): ...this.
(ctf_file_close): New trivial wrapper around ctf_dict_close, for
compatibility.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this.
(ctf_parent_file): New trivial wrapper around ctf_parent_dict, for
compatibility.
* libctf.ver: Add ctf_dict_close and ctf_parent_dict.
2020-11-20 21:34:04 +08:00
|
|
|
ctf_dvd_insert (ctf_dict_t *fp, ctf_dvdef_t *dvd)
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
{
|
2019-06-19 19:14:16 +08:00
|
|
|
if (ctf_dynhash_insert (fp->ctf_dvhash, dvd->dvd_name, dvd) < 0)
|
2023-09-13 17:02:36 +08:00
|
|
|
return ctf_set_errno (fp, ENOMEM);
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
ctf_list_append (&fp->ctf_dvdefs, dvd);
|
2019-06-19 19:14:16 +08:00
|
|
|
return 0;
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
void
|
libctf, include, binutils, gdb, ld: rename ctf_file_t to ctf_dict_t
The naming of the ctf_file_t type in libctf is a historical curiosity.
Back in the Solaris days, CTF dictionaries were originally generated as
a separate file and then (sometimes) merged into objects: hence the
datatype was named ctf_file_t, and known as a "CTF file". Nowadays, raw
CTF is essentially never written to a file on its own, and the datatype
changed name to a "CTF dictionary" years ago. So the term "CTF file"
refers to something that is never a file! This is at best confusing.
The type has also historically been known as a 'CTF container", which is
even more confusing now that we have CTF archives which are *also* a
sort of container (they contain CTF dictionaries), but which are never
referred to as containers in the source code.
So fix this by completing the renaming, renaming ctf_file_t to
ctf_dict_t throughout, and renaming those few functions that refer to
CTF files by name (keeping compatibility aliases) to refer to dicts
instead. Old users who still refer to ctf_file_t will see (harmless)
pointer-compatibility warnings at compile time, but the ABI is unchanged
(since C doesn't mangle names, and ctf_file_t was always an opaque type)
and things will still compile fine as long as -Werror is not specified.
All references to CTF containers and CTF files in the source code are
fixed to refer to CTF dicts instead.
Further (smaller) renamings of annoyingly-named functions to come, as
part of the process of souping up queries across whole archives at once
(needed for the function info and data object sections).
binutils/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* objdump.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_ctf): Likewise. Use ctf_dict_close, not ctf_file_close.
* readelf.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_section_as_ctf): Likewise. Use ctf_dict_close, not
ctf_file_close.
gdb/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctfread.c: Change uses of ctf_file_t to ctf_dict_t.
(ctf_fp_info::~ctf_fp_info): Call ctf_dict_close, not ctf_file_close.
include/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-api.h (ctf_file_t): Rename to...
(ctf_dict_t): ... this. Keep ctf_file_t around for compatibility.
(struct ctf_file): Likewise rename to...
(struct ctf_dict): ... this.
(ctf_file_close): Rename to...
(ctf_dict_close): ... this, keeping compatibility function.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this, keeping compatibility function.
All callers adjusted.
* ctf.h: Rename references to ctf_file_t to ctf_dict_t.
(struct ctf_archive) <ctfa_nfiles>: Rename to...
<ctfa_ndicts>: ... this.
ld/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ldlang.c (ctf_output): This is a ctf_dict_t now.
(lang_ctf_errs_warnings): Rename ctf_file_t to ctf_dict_t.
(ldlang_open_ctf): Adjust comment.
(lang_merge_ctf): Use ctf_dict_close, not ctf_file_close.
* ldelfgen.h (ldelf_examine_strtab_for_ctf): Rename ctf_file_t to
ctf_dict_t. Change opaque declaration accordingly.
* ldelfgen.c (ldelf_examine_strtab_for_ctf): Adjust.
* ldemul.h (examine_strtab_for_ctf): Likewise.
(ldemul_examine_strtab_for_ctf): Likewise.
* ldeuml.c (ldemul_examine_strtab_for_ctf): Likewise.
libctf/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h: Rename ctf_file_t to ctf_dict_t: all declarations
adjusted.
(ctf_fileops): Rename to...
(ctf_dictops): ... this.
(ctf_dedup_t) <cd_id_to_file_t>: Rename to...
<cd_id_to_dict_t>: ... this.
(ctf_file_t): Fix outdated comment.
<ctf_fileops>: Rename to...
<ctf_dictops>: ... this.
(struct ctf_archive_internal) <ctfi_file>: Rename to...
<ctfi_dict>: ... this.
* ctf-archive.c: Rename ctf_file_t to ctf_dict_t.
Rename ctf_archive.ctfa_nfiles to ctfa_ndicts.
Rename ctf_file_close to ctf_dict_close. All users adjusted.
* ctf-create.c: Likewise. Refer to CTF dicts, not CTF containers.
(ctf_bundle_t) <ctb_file>: Rename to...
<ctb_dict): ... this.
* ctf-decl.c: Rename ctf_file_t to ctf_dict_t.
* ctf-dedup.c: Likewise. Rename ctf_file_close to
ctf_dict_close. Refer to CTF dicts, not CTF containers.
* ctf-dump.c: Likewise.
* ctf-error.c: Likewise.
* ctf-hash.c: Likewise.
* ctf-inlines.h: Likewise.
* ctf-labels.c: Likewise.
* ctf-link.c: Likewise.
* ctf-lookup.c: Likewise.
* ctf-open-bfd.c: Likewise.
* ctf-string.c: Likewise.
* ctf-subr.c: Likewise.
* ctf-types.c: Likewise.
* ctf-util.c: Likewise.
* ctf-open.c: Likewise.
(ctf_file_close): Rename to...
(ctf_dict_close): ...this.
(ctf_file_close): New trivial wrapper around ctf_dict_close, for
compatibility.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this.
(ctf_parent_file): New trivial wrapper around ctf_parent_dict, for
compatibility.
* libctf.ver: Add ctf_dict_close and ctf_parent_dict.
2020-11-20 21:34:04 +08:00
|
|
|
ctf_dvd_delete (ctf_dict_t *fp, ctf_dvdef_t *dvd)
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
{
|
|
|
|
ctf_dynhash_remove (fp->ctf_dvhash, dvd->dvd_name);
|
libctf: remove ctf_malloc, ctf_free and ctf_strdup
These just get in the way of auditing for erroneous usage of strdup and
add a huge irregular surface of "ctf_malloc or malloc? ctf_free or free?
ctf_strdup or strdup?"
ctf_malloc and ctf_free usage has not reliably matched up for many
years, if ever, making the whole game pointless.
Go back to malloc, free, and strdup like everyone else: while we're at
it, fix a bunch of places where we weren't properly checking for OOM.
This changes the interface of ctf_cuname_set and ctf_parent_name_set,
which could strdup but could not return errors (like ENOMEM).
New in v4.
include/
* ctf-api.h (ctf_cuname_set): Can now fail, returning int.
(ctf_parent_name_set): Likewise.
libctf/
* ctf-impl.h (ctf_alloc): Remove.
(ctf_free): Likewise.
(ctf_strdup): Likewise.
* ctf-subr.c (ctf_alloc): Remove.
(ctf_free): Likewise.
* ctf-util.c (ctf_strdup): Remove.
* ctf-create.c (ctf_serialize): Use malloc, not ctf_alloc; free, not
ctf_free; strdup, not ctf_strdup.
(ctf_dtd_delete): Likewise.
(ctf_dvd_delete): Likewise.
(ctf_add_generic): Likewise.
(ctf_add_function): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_variable): Likewise.
(membadd): Likewise.
(ctf_compress_write): Likewise.
(ctf_write_mem): Likewise.
* ctf-decl.c (ctf_decl_push): Likewise.
(ctf_decl_fini): Likewise.
(ctf_decl_sprintf): Likewise. Check for OOM.
* ctf-dump.c (ctf_dump_append): Use malloc, not ctf_alloc; free, not
ctf_free; strdup, not ctf_strdup.
(ctf_dump_free): Likewise.
(ctf_dump): Likewise.
* ctf-open.c (upgrade_types_v1): Likewise.
(init_types): Likewise.
(ctf_file_close): Likewise.
(ctf_bufopen_internal): Likewise. Check for OOM.
(ctf_parent_name_set): Likewise: report the OOM to the caller.
(ctf_cuname_set): Likewise.
(ctf_import): Likewise.
* ctf-string.c (ctf_str_purge_atom_refs): Use malloc, not ctf_alloc;
free, not ctf_free; strdup, not ctf_strdup.
(ctf_str_free_atom): Likewise.
(ctf_str_create_atoms): Likewise.
(ctf_str_add_ref_internal): Likewise.
(ctf_str_remove_ref): Likewise.
(ctf_str_write_strtab): Likewise.
2019-09-17 13:54:23 +08:00
|
|
|
free (dvd->dvd_name);
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
|
|
|
|
ctf_list_delete (&fp->ctf_dvdefs, dvd);
|
libctf: remove ctf_malloc, ctf_free and ctf_strdup
These just get in the way of auditing for erroneous usage of strdup and
add a huge irregular surface of "ctf_malloc or malloc? ctf_free or free?
ctf_strdup or strdup?"
ctf_malloc and ctf_free usage has not reliably matched up for many
years, if ever, making the whole game pointless.
Go back to malloc, free, and strdup like everyone else: while we're at
it, fix a bunch of places where we weren't properly checking for OOM.
This changes the interface of ctf_cuname_set and ctf_parent_name_set,
which could strdup but could not return errors (like ENOMEM).
New in v4.
include/
* ctf-api.h (ctf_cuname_set): Can now fail, returning int.
(ctf_parent_name_set): Likewise.
libctf/
* ctf-impl.h (ctf_alloc): Remove.
(ctf_free): Likewise.
(ctf_strdup): Likewise.
* ctf-subr.c (ctf_alloc): Remove.
(ctf_free): Likewise.
* ctf-util.c (ctf_strdup): Remove.
* ctf-create.c (ctf_serialize): Use malloc, not ctf_alloc; free, not
ctf_free; strdup, not ctf_strdup.
(ctf_dtd_delete): Likewise.
(ctf_dvd_delete): Likewise.
(ctf_add_generic): Likewise.
(ctf_add_function): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_variable): Likewise.
(membadd): Likewise.
(ctf_compress_write): Likewise.
(ctf_write_mem): Likewise.
* ctf-decl.c (ctf_decl_push): Likewise.
(ctf_decl_fini): Likewise.
(ctf_decl_sprintf): Likewise. Check for OOM.
* ctf-dump.c (ctf_dump_append): Use malloc, not ctf_alloc; free, not
ctf_free; strdup, not ctf_strdup.
(ctf_dump_free): Likewise.
(ctf_dump): Likewise.
* ctf-open.c (upgrade_types_v1): Likewise.
(init_types): Likewise.
(ctf_file_close): Likewise.
(ctf_bufopen_internal): Likewise. Check for OOM.
(ctf_parent_name_set): Likewise: report the OOM to the caller.
(ctf_cuname_set): Likewise.
(ctf_import): Likewise.
* ctf-string.c (ctf_str_purge_atom_refs): Use malloc, not ctf_alloc;
free, not ctf_free; strdup, not ctf_strdup.
(ctf_str_free_atom): Likewise.
(ctf_str_create_atoms): Likewise.
(ctf_str_add_ref_internal): Likewise.
(ctf_str_remove_ref): Likewise.
(ctf_str_write_strtab): Likewise.
2019-09-17 13:54:23 +08:00
|
|
|
free (dvd);
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
ctf_dvdef_t *
|
libctf, include, binutils, gdb, ld: rename ctf_file_t to ctf_dict_t
The naming of the ctf_file_t type in libctf is a historical curiosity.
Back in the Solaris days, CTF dictionaries were originally generated as
a separate file and then (sometimes) merged into objects: hence the
datatype was named ctf_file_t, and known as a "CTF file". Nowadays, raw
CTF is essentially never written to a file on its own, and the datatype
changed name to a "CTF dictionary" years ago. So the term "CTF file"
refers to something that is never a file! This is at best confusing.
The type has also historically been known as a 'CTF container", which is
even more confusing now that we have CTF archives which are *also* a
sort of container (they contain CTF dictionaries), but which are never
referred to as containers in the source code.
So fix this by completing the renaming, renaming ctf_file_t to
ctf_dict_t throughout, and renaming those few functions that refer to
CTF files by name (keeping compatibility aliases) to refer to dicts
instead. Old users who still refer to ctf_file_t will see (harmless)
pointer-compatibility warnings at compile time, but the ABI is unchanged
(since C doesn't mangle names, and ctf_file_t was always an opaque type)
and things will still compile fine as long as -Werror is not specified.
All references to CTF containers and CTF files in the source code are
fixed to refer to CTF dicts instead.
Further (smaller) renamings of annoyingly-named functions to come, as
part of the process of souping up queries across whole archives at once
(needed for the function info and data object sections).
binutils/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* objdump.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_ctf): Likewise. Use ctf_dict_close, not ctf_file_close.
* readelf.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_section_as_ctf): Likewise. Use ctf_dict_close, not
ctf_file_close.
gdb/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctfread.c: Change uses of ctf_file_t to ctf_dict_t.
(ctf_fp_info::~ctf_fp_info): Call ctf_dict_close, not ctf_file_close.
include/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-api.h (ctf_file_t): Rename to...
(ctf_dict_t): ... this. Keep ctf_file_t around for compatibility.
(struct ctf_file): Likewise rename to...
(struct ctf_dict): ... this.
(ctf_file_close): Rename to...
(ctf_dict_close): ... this, keeping compatibility function.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this, keeping compatibility function.
All callers adjusted.
* ctf.h: Rename references to ctf_file_t to ctf_dict_t.
(struct ctf_archive) <ctfa_nfiles>: Rename to...
<ctfa_ndicts>: ... this.
ld/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ldlang.c (ctf_output): This is a ctf_dict_t now.
(lang_ctf_errs_warnings): Rename ctf_file_t to ctf_dict_t.
(ldlang_open_ctf): Adjust comment.
(lang_merge_ctf): Use ctf_dict_close, not ctf_file_close.
* ldelfgen.h (ldelf_examine_strtab_for_ctf): Rename ctf_file_t to
ctf_dict_t. Change opaque declaration accordingly.
* ldelfgen.c (ldelf_examine_strtab_for_ctf): Adjust.
* ldemul.h (examine_strtab_for_ctf): Likewise.
(ldemul_examine_strtab_for_ctf): Likewise.
* ldeuml.c (ldemul_examine_strtab_for_ctf): Likewise.
libctf/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h: Rename ctf_file_t to ctf_dict_t: all declarations
adjusted.
(ctf_fileops): Rename to...
(ctf_dictops): ... this.
(ctf_dedup_t) <cd_id_to_file_t>: Rename to...
<cd_id_to_dict_t>: ... this.
(ctf_file_t): Fix outdated comment.
<ctf_fileops>: Rename to...
<ctf_dictops>: ... this.
(struct ctf_archive_internal) <ctfi_file>: Rename to...
<ctfi_dict>: ... this.
* ctf-archive.c: Rename ctf_file_t to ctf_dict_t.
Rename ctf_archive.ctfa_nfiles to ctfa_ndicts.
Rename ctf_file_close to ctf_dict_close. All users adjusted.
* ctf-create.c: Likewise. Refer to CTF dicts, not CTF containers.
(ctf_bundle_t) <ctb_file>: Rename to...
<ctb_dict): ... this.
* ctf-decl.c: Rename ctf_file_t to ctf_dict_t.
* ctf-dedup.c: Likewise. Rename ctf_file_close to
ctf_dict_close. Refer to CTF dicts, not CTF containers.
* ctf-dump.c: Likewise.
* ctf-error.c: Likewise.
* ctf-hash.c: Likewise.
* ctf-inlines.h: Likewise.
* ctf-labels.c: Likewise.
* ctf-link.c: Likewise.
* ctf-lookup.c: Likewise.
* ctf-open-bfd.c: Likewise.
* ctf-string.c: Likewise.
* ctf-subr.c: Likewise.
* ctf-types.c: Likewise.
* ctf-util.c: Likewise.
* ctf-open.c: Likewise.
(ctf_file_close): Rename to...
(ctf_dict_close): ...this.
(ctf_file_close): New trivial wrapper around ctf_dict_close, for
compatibility.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this.
(ctf_parent_file): New trivial wrapper around ctf_parent_dict, for
compatibility.
* libctf.ver: Add ctf_dict_close and ctf_parent_dict.
2020-11-20 21:34:04 +08:00
|
|
|
ctf_dvd_lookup (const ctf_dict_t *fp, const char *name)
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
{
|
|
|
|
return (ctf_dvdef_t *) ctf_dynhash_lookup (fp->ctf_dvhash, name);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Discard all of the dynamic type definitions and variable definitions that
|
libctf, include, binutils, gdb, ld: rename ctf_file_t to ctf_dict_t
The naming of the ctf_file_t type in libctf is a historical curiosity.
Back in the Solaris days, CTF dictionaries were originally generated as
a separate file and then (sometimes) merged into objects: hence the
datatype was named ctf_file_t, and known as a "CTF file". Nowadays, raw
CTF is essentially never written to a file on its own, and the datatype
changed name to a "CTF dictionary" years ago. So the term "CTF file"
refers to something that is never a file! This is at best confusing.
The type has also historically been known as a 'CTF container", which is
even more confusing now that we have CTF archives which are *also* a
sort of container (they contain CTF dictionaries), but which are never
referred to as containers in the source code.
So fix this by completing the renaming, renaming ctf_file_t to
ctf_dict_t throughout, and renaming those few functions that refer to
CTF files by name (keeping compatibility aliases) to refer to dicts
instead. Old users who still refer to ctf_file_t will see (harmless)
pointer-compatibility warnings at compile time, but the ABI is unchanged
(since C doesn't mangle names, and ctf_file_t was always an opaque type)
and things will still compile fine as long as -Werror is not specified.
All references to CTF containers and CTF files in the source code are
fixed to refer to CTF dicts instead.
Further (smaller) renamings of annoyingly-named functions to come, as
part of the process of souping up queries across whole archives at once
(needed for the function info and data object sections).
binutils/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* objdump.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_ctf): Likewise. Use ctf_dict_close, not ctf_file_close.
* readelf.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_section_as_ctf): Likewise. Use ctf_dict_close, not
ctf_file_close.
gdb/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctfread.c: Change uses of ctf_file_t to ctf_dict_t.
(ctf_fp_info::~ctf_fp_info): Call ctf_dict_close, not ctf_file_close.
include/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-api.h (ctf_file_t): Rename to...
(ctf_dict_t): ... this. Keep ctf_file_t around for compatibility.
(struct ctf_file): Likewise rename to...
(struct ctf_dict): ... this.
(ctf_file_close): Rename to...
(ctf_dict_close): ... this, keeping compatibility function.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this, keeping compatibility function.
All callers adjusted.
* ctf.h: Rename references to ctf_file_t to ctf_dict_t.
(struct ctf_archive) <ctfa_nfiles>: Rename to...
<ctfa_ndicts>: ... this.
ld/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ldlang.c (ctf_output): This is a ctf_dict_t now.
(lang_ctf_errs_warnings): Rename ctf_file_t to ctf_dict_t.
(ldlang_open_ctf): Adjust comment.
(lang_merge_ctf): Use ctf_dict_close, not ctf_file_close.
* ldelfgen.h (ldelf_examine_strtab_for_ctf): Rename ctf_file_t to
ctf_dict_t. Change opaque declaration accordingly.
* ldelfgen.c (ldelf_examine_strtab_for_ctf): Adjust.
* ldemul.h (examine_strtab_for_ctf): Likewise.
(ldemul_examine_strtab_for_ctf): Likewise.
* ldeuml.c (ldemul_examine_strtab_for_ctf): Likewise.
libctf/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h: Rename ctf_file_t to ctf_dict_t: all declarations
adjusted.
(ctf_fileops): Rename to...
(ctf_dictops): ... this.
(ctf_dedup_t) <cd_id_to_file_t>: Rename to...
<cd_id_to_dict_t>: ... this.
(ctf_file_t): Fix outdated comment.
<ctf_fileops>: Rename to...
<ctf_dictops>: ... this.
(struct ctf_archive_internal) <ctfi_file>: Rename to...
<ctfi_dict>: ... this.
* ctf-archive.c: Rename ctf_file_t to ctf_dict_t.
Rename ctf_archive.ctfa_nfiles to ctfa_ndicts.
Rename ctf_file_close to ctf_dict_close. All users adjusted.
* ctf-create.c: Likewise. Refer to CTF dicts, not CTF containers.
(ctf_bundle_t) <ctb_file>: Rename to...
<ctb_dict): ... this.
* ctf-decl.c: Rename ctf_file_t to ctf_dict_t.
* ctf-dedup.c: Likewise. Rename ctf_file_close to
ctf_dict_close. Refer to CTF dicts, not CTF containers.
* ctf-dump.c: Likewise.
* ctf-error.c: Likewise.
* ctf-hash.c: Likewise.
* ctf-inlines.h: Likewise.
* ctf-labels.c: Likewise.
* ctf-link.c: Likewise.
* ctf-lookup.c: Likewise.
* ctf-open-bfd.c: Likewise.
* ctf-string.c: Likewise.
* ctf-subr.c: Likewise.
* ctf-types.c: Likewise.
* ctf-util.c: Likewise.
* ctf-open.c: Likewise.
(ctf_file_close): Rename to...
(ctf_dict_close): ...this.
(ctf_file_close): New trivial wrapper around ctf_dict_close, for
compatibility.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this.
(ctf_parent_file): New trivial wrapper around ctf_parent_dict, for
compatibility.
* libctf.ver: Add ctf_dict_close and ctf_parent_dict.
2020-11-20 21:34:04 +08:00
|
|
|
have been added to the dict since the last call to ctf_update(). We locate
|
|
|
|
such types by scanning the dtd list and deleting elements that have type IDs
|
|
|
|
greater than ctf_dtoldid, which is set by ctf_update(), above, and by
|
|
|
|
scanning the variable list and deleting elements that have update IDs equal
|
|
|
|
to the current value of the last-update snapshot count (indicating that they
|
|
|
|
were added after the most recent call to ctf_update()). */
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
int
|
libctf, include, binutils, gdb, ld: rename ctf_file_t to ctf_dict_t
The naming of the ctf_file_t type in libctf is a historical curiosity.
Back in the Solaris days, CTF dictionaries were originally generated as
a separate file and then (sometimes) merged into objects: hence the
datatype was named ctf_file_t, and known as a "CTF file". Nowadays, raw
CTF is essentially never written to a file on its own, and the datatype
changed name to a "CTF dictionary" years ago. So the term "CTF file"
refers to something that is never a file! This is at best confusing.
The type has also historically been known as a 'CTF container", which is
even more confusing now that we have CTF archives which are *also* a
sort of container (they contain CTF dictionaries), but which are never
referred to as containers in the source code.
So fix this by completing the renaming, renaming ctf_file_t to
ctf_dict_t throughout, and renaming those few functions that refer to
CTF files by name (keeping compatibility aliases) to refer to dicts
instead. Old users who still refer to ctf_file_t will see (harmless)
pointer-compatibility warnings at compile time, but the ABI is unchanged
(since C doesn't mangle names, and ctf_file_t was always an opaque type)
and things will still compile fine as long as -Werror is not specified.
All references to CTF containers and CTF files in the source code are
fixed to refer to CTF dicts instead.
Further (smaller) renamings of annoyingly-named functions to come, as
part of the process of souping up queries across whole archives at once
(needed for the function info and data object sections).
binutils/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* objdump.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_ctf): Likewise. Use ctf_dict_close, not ctf_file_close.
* readelf.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_section_as_ctf): Likewise. Use ctf_dict_close, not
ctf_file_close.
gdb/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctfread.c: Change uses of ctf_file_t to ctf_dict_t.
(ctf_fp_info::~ctf_fp_info): Call ctf_dict_close, not ctf_file_close.
include/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-api.h (ctf_file_t): Rename to...
(ctf_dict_t): ... this. Keep ctf_file_t around for compatibility.
(struct ctf_file): Likewise rename to...
(struct ctf_dict): ... this.
(ctf_file_close): Rename to...
(ctf_dict_close): ... this, keeping compatibility function.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this, keeping compatibility function.
All callers adjusted.
* ctf.h: Rename references to ctf_file_t to ctf_dict_t.
(struct ctf_archive) <ctfa_nfiles>: Rename to...
<ctfa_ndicts>: ... this.
ld/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ldlang.c (ctf_output): This is a ctf_dict_t now.
(lang_ctf_errs_warnings): Rename ctf_file_t to ctf_dict_t.
(ldlang_open_ctf): Adjust comment.
(lang_merge_ctf): Use ctf_dict_close, not ctf_file_close.
* ldelfgen.h (ldelf_examine_strtab_for_ctf): Rename ctf_file_t to
ctf_dict_t. Change opaque declaration accordingly.
* ldelfgen.c (ldelf_examine_strtab_for_ctf): Adjust.
* ldemul.h (examine_strtab_for_ctf): Likewise.
(ldemul_examine_strtab_for_ctf): Likewise.
* ldeuml.c (ldemul_examine_strtab_for_ctf): Likewise.
libctf/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h: Rename ctf_file_t to ctf_dict_t: all declarations
adjusted.
(ctf_fileops): Rename to...
(ctf_dictops): ... this.
(ctf_dedup_t) <cd_id_to_file_t>: Rename to...
<cd_id_to_dict_t>: ... this.
(ctf_file_t): Fix outdated comment.
<ctf_fileops>: Rename to...
<ctf_dictops>: ... this.
(struct ctf_archive_internal) <ctfi_file>: Rename to...
<ctfi_dict>: ... this.
* ctf-archive.c: Rename ctf_file_t to ctf_dict_t.
Rename ctf_archive.ctfa_nfiles to ctfa_ndicts.
Rename ctf_file_close to ctf_dict_close. All users adjusted.
* ctf-create.c: Likewise. Refer to CTF dicts, not CTF containers.
(ctf_bundle_t) <ctb_file>: Rename to...
<ctb_dict): ... this.
* ctf-decl.c: Rename ctf_file_t to ctf_dict_t.
* ctf-dedup.c: Likewise. Rename ctf_file_close to
ctf_dict_close. Refer to CTF dicts, not CTF containers.
* ctf-dump.c: Likewise.
* ctf-error.c: Likewise.
* ctf-hash.c: Likewise.
* ctf-inlines.h: Likewise.
* ctf-labels.c: Likewise.
* ctf-link.c: Likewise.
* ctf-lookup.c: Likewise.
* ctf-open-bfd.c: Likewise.
* ctf-string.c: Likewise.
* ctf-subr.c: Likewise.
* ctf-types.c: Likewise.
* ctf-util.c: Likewise.
* ctf-open.c: Likewise.
(ctf_file_close): Rename to...
(ctf_dict_close): ...this.
(ctf_file_close): New trivial wrapper around ctf_dict_close, for
compatibility.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this.
(ctf_parent_file): New trivial wrapper around ctf_parent_dict, for
compatibility.
* libctf.ver: Add ctf_dict_close and ctf_parent_dict.
2020-11-20 21:34:04 +08:00
|
|
|
ctf_discard (ctf_dict_t *fp)
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
{
|
|
|
|
ctf_snapshot_id_t last_update =
|
|
|
|
{ fp->ctf_dtoldid,
|
|
|
|
fp->ctf_snapshot_lu + 1 };
|
|
|
|
|
|
|
|
return (ctf_rollback (fp, last_update));
|
|
|
|
}
|
|
|
|
|
|
|
|
ctf_snapshot_id_t
|
libctf, include, binutils, gdb, ld: rename ctf_file_t to ctf_dict_t
The naming of the ctf_file_t type in libctf is a historical curiosity.
Back in the Solaris days, CTF dictionaries were originally generated as
a separate file and then (sometimes) merged into objects: hence the
datatype was named ctf_file_t, and known as a "CTF file". Nowadays, raw
CTF is essentially never written to a file on its own, and the datatype
changed name to a "CTF dictionary" years ago. So the term "CTF file"
refers to something that is never a file! This is at best confusing.
The type has also historically been known as a 'CTF container", which is
even more confusing now that we have CTF archives which are *also* a
sort of container (they contain CTF dictionaries), but which are never
referred to as containers in the source code.
So fix this by completing the renaming, renaming ctf_file_t to
ctf_dict_t throughout, and renaming those few functions that refer to
CTF files by name (keeping compatibility aliases) to refer to dicts
instead. Old users who still refer to ctf_file_t will see (harmless)
pointer-compatibility warnings at compile time, but the ABI is unchanged
(since C doesn't mangle names, and ctf_file_t was always an opaque type)
and things will still compile fine as long as -Werror is not specified.
All references to CTF containers and CTF files in the source code are
fixed to refer to CTF dicts instead.
Further (smaller) renamings of annoyingly-named functions to come, as
part of the process of souping up queries across whole archives at once
(needed for the function info and data object sections).
binutils/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* objdump.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_ctf): Likewise. Use ctf_dict_close, not ctf_file_close.
* readelf.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_section_as_ctf): Likewise. Use ctf_dict_close, not
ctf_file_close.
gdb/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctfread.c: Change uses of ctf_file_t to ctf_dict_t.
(ctf_fp_info::~ctf_fp_info): Call ctf_dict_close, not ctf_file_close.
include/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-api.h (ctf_file_t): Rename to...
(ctf_dict_t): ... this. Keep ctf_file_t around for compatibility.
(struct ctf_file): Likewise rename to...
(struct ctf_dict): ... this.
(ctf_file_close): Rename to...
(ctf_dict_close): ... this, keeping compatibility function.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this, keeping compatibility function.
All callers adjusted.
* ctf.h: Rename references to ctf_file_t to ctf_dict_t.
(struct ctf_archive) <ctfa_nfiles>: Rename to...
<ctfa_ndicts>: ... this.
ld/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ldlang.c (ctf_output): This is a ctf_dict_t now.
(lang_ctf_errs_warnings): Rename ctf_file_t to ctf_dict_t.
(ldlang_open_ctf): Adjust comment.
(lang_merge_ctf): Use ctf_dict_close, not ctf_file_close.
* ldelfgen.h (ldelf_examine_strtab_for_ctf): Rename ctf_file_t to
ctf_dict_t. Change opaque declaration accordingly.
* ldelfgen.c (ldelf_examine_strtab_for_ctf): Adjust.
* ldemul.h (examine_strtab_for_ctf): Likewise.
(ldemul_examine_strtab_for_ctf): Likewise.
* ldeuml.c (ldemul_examine_strtab_for_ctf): Likewise.
libctf/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h: Rename ctf_file_t to ctf_dict_t: all declarations
adjusted.
(ctf_fileops): Rename to...
(ctf_dictops): ... this.
(ctf_dedup_t) <cd_id_to_file_t>: Rename to...
<cd_id_to_dict_t>: ... this.
(ctf_file_t): Fix outdated comment.
<ctf_fileops>: Rename to...
<ctf_dictops>: ... this.
(struct ctf_archive_internal) <ctfi_file>: Rename to...
<ctfi_dict>: ... this.
* ctf-archive.c: Rename ctf_file_t to ctf_dict_t.
Rename ctf_archive.ctfa_nfiles to ctfa_ndicts.
Rename ctf_file_close to ctf_dict_close. All users adjusted.
* ctf-create.c: Likewise. Refer to CTF dicts, not CTF containers.
(ctf_bundle_t) <ctb_file>: Rename to...
<ctb_dict): ... this.
* ctf-decl.c: Rename ctf_file_t to ctf_dict_t.
* ctf-dedup.c: Likewise. Rename ctf_file_close to
ctf_dict_close. Refer to CTF dicts, not CTF containers.
* ctf-dump.c: Likewise.
* ctf-error.c: Likewise.
* ctf-hash.c: Likewise.
* ctf-inlines.h: Likewise.
* ctf-labels.c: Likewise.
* ctf-link.c: Likewise.
* ctf-lookup.c: Likewise.
* ctf-open-bfd.c: Likewise.
* ctf-string.c: Likewise.
* ctf-subr.c: Likewise.
* ctf-types.c: Likewise.
* ctf-util.c: Likewise.
* ctf-open.c: Likewise.
(ctf_file_close): Rename to...
(ctf_dict_close): ...this.
(ctf_file_close): New trivial wrapper around ctf_dict_close, for
compatibility.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this.
(ctf_parent_file): New trivial wrapper around ctf_parent_dict, for
compatibility.
* libctf.ver: Add ctf_dict_close and ctf_parent_dict.
2020-11-20 21:34:04 +08:00
|
|
|
ctf_snapshot (ctf_dict_t *fp)
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
{
|
|
|
|
ctf_snapshot_id_t snapid;
|
libctf: avoid the need to ever use ctf_update
The method of operation of libctf when the dictionary is writable has
before now been that types that are added land in the dynamic type
section, which is a linked list and hash of IDs -> dynamic type
definitions (and, recently a hash of names): the DTDs are a bit of CTF
representing the ctf_type_t and ad hoc C structures representing the
vlen. Historically, libctf was unable to do anything with these types,
not even look them up by ID, let alone by name: if you wanted to do that
say if you were adding a type that depended on one you just added) you
called ctf_update, which serializes all the DTDs into a CTF file and
reopens it, copying its guts over the fp it's called with. The
ctf_updated types are then frozen in amber and unchangeable: all lookups
will return the types in the static portion in preference to the dynamic
portion, and we will refuse to re-add things that already exist in the
static portion (and, of late, in the dynamic portion too). The libctf
machinery remembers the boundary between static and dynamic types and
looks in the right portion for each type. Lots of things still don't
quite work with dynamic types (e.g. getting their size), but enough
works to do a bunch of additions and then a ctf_update, most of the
time.
Except it doesn't, because ctf_add_type finds it necessary to walk the
full dynamic type definition list looking for types with matching names,
so it gets slower and slower with every type you add: fixing this
requires calling ctf_update periodically for no other reason than to
avoid massively slowing things down.
This is all clunky and very slow but kind of works, until you consider
that it is in fact possible and indeed necessary to modify one sort of
type after it has been added: forwards. These are necessarily promoted
to structs, unions or enums, and when they do so *their type ID does not
change*. So all of a sudden we are changing types that already exist in
the static portion. ctf_update gets massively confused by this and
allocates space enough for the forward (with no members), but then emits
the new dynamic type (with all the members) into it. You get an
assertion failure after that, if you're lucky, or a coredump.
So this commit rejigs things a bit and arranges to exclusively use the
dynamic type definitions in writable dictionaries, and the static type
definitions in readable dictionaries: we don't at any time have a mixture
of static and dynamic types, and you don't need to call ctf_update to
make things "appear". The ctf_dtbyname hash I introduced a few months
ago, which maps things like "struct foo" to DTDs, is removed, replaced
instead by a change of type of the four dictionaries which track names.
Rather than just being (unresizable) ctf_hash_t's populated only at
ctf_bufopen time, they are now a ctf_names_t structure, which is a pair
of ctf_hash_t and ctf_dynhash_t, with the ctf_hash_t portion being used
in readonly dictionaries, and the ctf_dynhash_t being used in writable
ones. The decision as to which to use is centralized in the new
functions ctf_lookup_by_rawname (which takes a type kind) and
ctf_lookup_by_rawhash, which it calls (which takes a ctf_names_t *.)
This change lets us switch from using static to dynamic name hashes on
the fly across the entirety of libctf without complexifying anything: in
fact, because we now centralize the knowledge about how to map from type
kind to name hash, it actually simplifies things and lets us throw out
quite a lot of now-unnecessary complexity, from ctf_dtnyname (replaced
by the dynamic half of the name tables), through to ctf_dtnextid (now
that a dictionary's static portion is never referenced if the dictionary
is writable, we can just use ctf_typemax to indicate the maximum type:
dynamic or non-dynamic does not matter, and we no longer need to track
the boundary between the types). You can now ctf_rollback() as far as
you like, even past a ctf_update or for that matter a full writeout; all
the iteration functions work just as well on writable as on read-only
dictionaries; ctf_add_type no longer needs expensive duplicated code to
run over the dynamic types hunting for ones it might be interested in;
and the linker no longer needs a hack to call ctf_update so that calling
ctf_add_type is not impossibly expensive.
There is still a bit more complexity: some new code paths in ctf-types.c
need to know how to extract information from dynamic types. This
complexity will go away again in a few months when libctf acquires a
proper intermediate representation.
You can still call ctf_update if you like (it's public API, after all),
but its only effect now is to set the point to which ctf_discard rolls
back.
Obviously *something* still needs to serialize the CTF file before
writeout, and this job is done by ctf_serialize, which does everything
ctf_update used to except set the counter used by ctf_discard. It is
automatically called by the various functions that do CTF writeout:
nobody else ever needs to call it.
With this in place, forwards that are promoted to non-forwards no longer
crash the link, even if it happens tens of thousands of types later.
v5: fix tabdamage.
libctf/
* ctf-impl.h (ctf_names_t): New.
(ctf_lookup_t) <ctf_hash>: Now a ctf_names_t, not a ctf_hash_t.
(ctf_file_t) <ctf_structs>: Likewise.
<ctf_unions>: Likewise.
<ctf_enums>: Likewise.
<ctf_names>: Likewise.
<ctf_lookups>: Improve comment.
<ctf_ptrtab_len>: New.
<ctf_prov_strtab>: New.
<ctf_str_prov_offset>: New.
<ctf_dtbyname>: Remove, redundant to the names hashes.
<ctf_dtnextid>: Remove, redundant to ctf_typemax.
(ctf_dtdef_t) <dtd_name>: Remove.
<dtd_data>: Note that the ctt_name is now populated.
(ctf_str_atom_t) <csa_offset>: This is now the strtab
offset for internal strings too.
<csa_external_offset>: New, the external strtab offset.
(CTF_INDEX_TO_TYPEPTR): Handle the LCTF_RDWR case.
(ctf_name_table): New declaration.
(ctf_lookup_by_rawname): Likewise.
(ctf_lookup_by_rawhash): Likewise.
(ctf_set_ctl_hashes): Likewise.
(ctf_serialize): Likewise.
(ctf_dtd_insert): Adjust.
(ctf_simple_open_internal): Likewise.
(ctf_bufopen_internal): Likewise.
(ctf_list_empty_p): Likewise.
(ctf_str_remove_ref): Likewise.
(ctf_str_add): Returns uint32_t now.
(ctf_str_add_ref): Likewise.
(ctf_str_add_external): Now returns a boolean (int).
* ctf-string.c (ctf_strraw_explicit): Check the ctf_prov_strtab
for strings in the appropriate range.
(ctf_str_create_atoms): Create the ctf_prov_strtab. Detect OOM
when adding the null string to the new strtab.
(ctf_str_free_atoms): Destroy the ctf_prov_strtab.
(ctf_str_add_ref_internal): Add make_provisional argument. If
make_provisional, populate the offset and fill in the
ctf_prov_strtab accordingly.
(ctf_str_add): Return the offset, not the string.
(ctf_str_add_ref): Likewise.
(ctf_str_add_external): Return a success integer.
(ctf_str_remove_ref): New, remove a single ref.
(ctf_str_count_strtab): Do not count the initial null string's
length or the existence or length of any unreferenced internal
atoms.
(ctf_str_populate_sorttab): Skip atoms with no refs.
(ctf_str_write_strtab): Populate the nullstr earlier. Add one
to the cts_len for the null string, since it is no longer done
in ctf_str_count_strtab. Adjust for csa_external_offset rename.
Populate the csa_offset for both internal and external cases.
Flush the ctf_prov_strtab afterwards, and reset the
ctf_str_prov_offset.
* ctf-create.c (ctf_grow_ptrtab): New.
(ctf_create): Call it. Initialize new fields rather than old
ones. Tell ctf_bufopen_internal that this is a writable dictionary.
Set the ctl hashes and data model.
(ctf_update): Rename to...
(ctf_serialize): ... this. Leave a compatibility function behind.
Tell ctf_simple_open_internal that this is a writable dictionary.
Pass the new fields along from the old dictionary. Drop
ctf_dtnextid and ctf_dtbyname. Use ctf_strraw, not dtd_name.
Do not zero out the DTD's ctt_name.
(ctf_prefixed_name): Rename to...
(ctf_name_table): ... this. No longer return a prefixed name: return
the applicable name table instead.
(ctf_dtd_insert): Use it, and use the right name table. Pass in the
kind we're adding. Migrate away from dtd_name.
(ctf_dtd_delete): Adjust similarly. Remove the ref to the
deleted ctt_name.
(ctf_dtd_lookup_type_by_name): Remove.
(ctf_dynamic_type): Always return NULL on read-only dictionaries.
No longer check ctf_dtnextid: check ctf_typemax instead.
(ctf_snapshot): No longer use ctf_dtnextid: use ctf_typemax instead.
(ctf_rollback): Likewise. No longer fail with ECTF_OVERROLLBACK. Use
ctf_name_table and the right name table, and migrate away from
dtd_name as in ctf_dtd_delete.
(ctf_add_generic): Pass in the kind explicitly and pass it to
ctf_dtd_insert. Use ctf_typemax, not ctf_dtnextid. Migrate away
from dtd_name to using ctf_str_add_ref to populate the ctt_name.
Grow the ptrtab if needed.
(ctf_add_encoded): Pass in the kind.
(ctf_add_slice): Likewise.
(ctf_add_array): Likewise.
(ctf_add_function): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_reftype): Likewise. Initialize the ctf_ptrtab, checking
ctt_name rather than dtd_name.
(ctf_add_struct_sized): Pass in the kind. Use
ctf_lookup_by_rawname, not ctf_hash_lookup_type /
ctf_dtd_lookup_type_by_name.
(ctf_add_union_sized): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_type): Likewise.
(ctf_compress_write): Call ctf_serialize: adjust for ctf_size not
being initialized until after the call.
(ctf_write_mem): Likewise.
(ctf_write): Likewise.
* ctf-archive.c (arc_write_one_ctf): Likewise.
* ctf-lookup.c (ctf_lookup_by_name): Use ctf_lookuup_by_rawhash, not
ctf_hash_lookup_type.
(ctf_lookup_by_id): No longer check the readonly types if the
dictionary is writable.
* ctf-open.c (init_types): Assert that this dictionary is not
writable. Adjust to use the new name hashes, ctf_name_table,
and ctf_ptrtab_len. GNU style fix for the final ptrtab scan.
(ctf_bufopen_internal): New 'writable' parameter. Flip on LCTF_RDWR
if set. Drop out early when dictionary is writable. Split the
ctf_lookups initialization into...
(ctf_set_cth_hashes): ... this new function.
(ctf_simple_open_internal): Adjust. New 'writable' parameter.
(ctf_simple_open): Adjust accordingly.
(ctf_bufopen): Likewise.
(ctf_file_close): Destroy the appropriate name hashes. No longer
destroy ctf_dtbyname, which is gone.
(ctf_getdatasect): Remove spurious "extern".
* ctf-types.c (ctf_lookup_by_rawname): New, look up types in the
specified name table, given a kind.
(ctf_lookup_by_rawhash): Likewise, given a ctf_names_t *.
(ctf_member_iter): Add support for iterating over the
dynamic type list.
(ctf_enum_iter): Likewise.
(ctf_variable_iter): Likewise.
(ctf_type_rvisit): Likewise.
(ctf_member_info): Add support for types in the dynamic type list.
(ctf_enum_name): Likewise.
(ctf_enum_value): Likewise.
(ctf_func_type_info): Likewise.
(ctf_func_type_args): Likewise.
* ctf-link.c (ctf_accumulate_archive_names): No longer call
ctf_update.
(ctf_link_write): Likewise.
(ctf_link_intern_extern_string): Adjust for new
ctf_str_add_external return value.
(ctf_link_add_strtab): Likewise.
* ctf-util.c (ctf_list_empty_p): New.
2019-08-08 00:55:09 +08:00
|
|
|
snapid.dtd_id = fp->ctf_typemax;
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
snapid.snapshot_id = fp->ctf_snapshots++;
|
|
|
|
return snapid;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Like ctf_discard(), only discards everything after a particular ID. */
|
|
|
|
int
|
libctf, include, binutils, gdb, ld: rename ctf_file_t to ctf_dict_t
The naming of the ctf_file_t type in libctf is a historical curiosity.
Back in the Solaris days, CTF dictionaries were originally generated as
a separate file and then (sometimes) merged into objects: hence the
datatype was named ctf_file_t, and known as a "CTF file". Nowadays, raw
CTF is essentially never written to a file on its own, and the datatype
changed name to a "CTF dictionary" years ago. So the term "CTF file"
refers to something that is never a file! This is at best confusing.
The type has also historically been known as a 'CTF container", which is
even more confusing now that we have CTF archives which are *also* a
sort of container (they contain CTF dictionaries), but which are never
referred to as containers in the source code.
So fix this by completing the renaming, renaming ctf_file_t to
ctf_dict_t throughout, and renaming those few functions that refer to
CTF files by name (keeping compatibility aliases) to refer to dicts
instead. Old users who still refer to ctf_file_t will see (harmless)
pointer-compatibility warnings at compile time, but the ABI is unchanged
(since C doesn't mangle names, and ctf_file_t was always an opaque type)
and things will still compile fine as long as -Werror is not specified.
All references to CTF containers and CTF files in the source code are
fixed to refer to CTF dicts instead.
Further (smaller) renamings of annoyingly-named functions to come, as
part of the process of souping up queries across whole archives at once
(needed for the function info and data object sections).
binutils/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* objdump.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_ctf): Likewise. Use ctf_dict_close, not ctf_file_close.
* readelf.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_section_as_ctf): Likewise. Use ctf_dict_close, not
ctf_file_close.
gdb/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctfread.c: Change uses of ctf_file_t to ctf_dict_t.
(ctf_fp_info::~ctf_fp_info): Call ctf_dict_close, not ctf_file_close.
include/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-api.h (ctf_file_t): Rename to...
(ctf_dict_t): ... this. Keep ctf_file_t around for compatibility.
(struct ctf_file): Likewise rename to...
(struct ctf_dict): ... this.
(ctf_file_close): Rename to...
(ctf_dict_close): ... this, keeping compatibility function.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this, keeping compatibility function.
All callers adjusted.
* ctf.h: Rename references to ctf_file_t to ctf_dict_t.
(struct ctf_archive) <ctfa_nfiles>: Rename to...
<ctfa_ndicts>: ... this.
ld/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ldlang.c (ctf_output): This is a ctf_dict_t now.
(lang_ctf_errs_warnings): Rename ctf_file_t to ctf_dict_t.
(ldlang_open_ctf): Adjust comment.
(lang_merge_ctf): Use ctf_dict_close, not ctf_file_close.
* ldelfgen.h (ldelf_examine_strtab_for_ctf): Rename ctf_file_t to
ctf_dict_t. Change opaque declaration accordingly.
* ldelfgen.c (ldelf_examine_strtab_for_ctf): Adjust.
* ldemul.h (examine_strtab_for_ctf): Likewise.
(ldemul_examine_strtab_for_ctf): Likewise.
* ldeuml.c (ldemul_examine_strtab_for_ctf): Likewise.
libctf/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h: Rename ctf_file_t to ctf_dict_t: all declarations
adjusted.
(ctf_fileops): Rename to...
(ctf_dictops): ... this.
(ctf_dedup_t) <cd_id_to_file_t>: Rename to...
<cd_id_to_dict_t>: ... this.
(ctf_file_t): Fix outdated comment.
<ctf_fileops>: Rename to...
<ctf_dictops>: ... this.
(struct ctf_archive_internal) <ctfi_file>: Rename to...
<ctfi_dict>: ... this.
* ctf-archive.c: Rename ctf_file_t to ctf_dict_t.
Rename ctf_archive.ctfa_nfiles to ctfa_ndicts.
Rename ctf_file_close to ctf_dict_close. All users adjusted.
* ctf-create.c: Likewise. Refer to CTF dicts, not CTF containers.
(ctf_bundle_t) <ctb_file>: Rename to...
<ctb_dict): ... this.
* ctf-decl.c: Rename ctf_file_t to ctf_dict_t.
* ctf-dedup.c: Likewise. Rename ctf_file_close to
ctf_dict_close. Refer to CTF dicts, not CTF containers.
* ctf-dump.c: Likewise.
* ctf-error.c: Likewise.
* ctf-hash.c: Likewise.
* ctf-inlines.h: Likewise.
* ctf-labels.c: Likewise.
* ctf-link.c: Likewise.
* ctf-lookup.c: Likewise.
* ctf-open-bfd.c: Likewise.
* ctf-string.c: Likewise.
* ctf-subr.c: Likewise.
* ctf-types.c: Likewise.
* ctf-util.c: Likewise.
* ctf-open.c: Likewise.
(ctf_file_close): Rename to...
(ctf_dict_close): ...this.
(ctf_file_close): New trivial wrapper around ctf_dict_close, for
compatibility.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this.
(ctf_parent_file): New trivial wrapper around ctf_parent_dict, for
compatibility.
* libctf.ver: Add ctf_dict_close and ctf_parent_dict.
2020-11-20 21:34:04 +08:00
|
|
|
ctf_rollback (ctf_dict_t *fp, ctf_snapshot_id_t id)
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
{
|
|
|
|
ctf_dtdef_t *dtd, *ntd;
|
|
|
|
ctf_dvdef_t *dvd, *nvd;
|
|
|
|
|
libctf: support addition of types to dicts read via ctf_open()
libctf has long declared deserialized dictionaries (out of files or ELF
sections or memory buffers or whatever) to be read-only: back in the
furthest prehistory this was not the case, in that you could add a
few sorts of type to such dicts, but attempting to do so often caused
horrible memory corruption, so I banned the lot.
But it turns out real consumers want it (notably DTrace, which
synthesises pointers to types that don't have them and adds them to the
ctf_open()ed dicts if it needs them). Let's bring it back again, but
without the memory corruption and without the massive code duplication
required in days of yore to distinguish between static and dynamic
types: the representation of both types has been identical for a few
years, with the only difference being that types as a whole are stored in
a big buffer for types read in via ctf_open and per-type hashtables for
newly-added types.
So we discard the internally-visible concept of "readonly dictionaries"
in favour of declaring the *range of types* that were already present
when the dict was read in to be read-only: you can't modify them (say,
by adding members to them if they're structs, or calling ctf_set_array
on them), but you can add more types and point to them. (The API
remains the same, with calls sometimes returning ECTF_RDONLY, but now
they do so less often.)
This is a fairly invasive change, mostly because code written since the
ban was introduced didn't take the possibility of a static/dynamic split
into account. Some of these irregularities were hard to define as
anything but bugs.
Notably:
- The symbol handling was assuming that symbols only needed to be
looked for in dynamic hashtabs or static linker-laid-out indexed/
nonindexed layouts, but now we want to check both in case people
added more symbols to a dict they opened.
- The code that handles type additions wasn't checking to see if types
with the same name existed *at all* (so you could do
ctf_add_typedef (fp, "foo", bar) repeatedly without error). This
seems reasonable for types you just added, but we probably *do* want
to ban addition of types with names that override names we already
used in the ctf_open()ed portion, since that would probably corrupt
existing type relationships. (Doing things this way also avoids
causing new errors for any existing code that was doing this sort of
thing.)
- ctf_lookup_variable entirely failed to work for variables just added
by ctf_add_variable: you had to write the dict out and read it back
in again before they appeared.
- The symbol handling remembered what symbols you looked up but didn't
remember their types, so you could look up an object symbol and then
find it popping up when you asked for function symbols, which seems
less than ideal. Since we had to rejig things enough to be able to
distinguish function and object symbols internally anyway (in order
to give suitable errors if you try to add a symbol with a name that
already existed in the ctf_open()ed dict), this bug suddenly became
more visible and was easily fixed.
We do not (yet) support writing out dicts that have been previously read
in via ctf_open() or other deserializer (you can look things up in them,
but not write them out a second time). This never worked, so there is
no incompatibility; if it is needed at a later date, the serializer is a
little bit closer to having it work now (the only table we don't deal
with is the types table, and that's because the upcoming CTFv4 changes
are likely to make major changes to the way that table is represented
internally, so adding more code that depends on its current form seems
like a bad idea).
There is a new testcase that tests much of this, in particular that
modification of existing types is still banned and that you can add new
ones and chase them without error.
libctf/
* ctf-impl.h (struct ctf_dict.ctf_symhash): Split into...
(ctf_dict.ctf_symhash_func): ... this and...
(ctf_dict.ctf_symhash_objt): ... this.
(ctf_dict.ctf_stypes): New, counts static types.
(LCTF_INDEX_TO_TYPEPTR): Use it instead of CTF_RDWR.
(LCTF_RDWR): Deleted.
(LCTF_DIRTY): Renumbered.
(LCTF_LINKING): Likewise.
(ctf_lookup_variable_here): New.
(ctf_lookup_by_sym_or_name): Likewise.
(ctf_symbol_next_static): Likewise.
(ctf_add_variable_forced): Likewise.
(ctf_add_funcobjt_sym_forced): Likewise.
(ctf_simple_open_internal): Adjust.
(ctf_bufopen_internal): Likewise.
* ctf-create.c (ctf_grow_ptrtab): Adjust a lot to start with.
(ctf_create): Migrate a bunch of initializations into bufopen.
Force recreation of name tables. Do not forcibly override the
model, let ctf_bufopen do it.
(ctf_static_type): New.
(ctf_update): Drop LCTF_RDWR check.
(ctf_dynamic_type): Likewise.
(ctf_add_function): Likewise.
(ctf_add_type_internal): Likewise.
(ctf_rollback): Check ctf_stypes, not LCTF_RDWR.
(ctf_set_array): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_enumerator): Likewise (only on the target dict).
(ctf_add_member_offset): Likewise.
(ctf_add_generic): Drop LCTF_RDWR check. Ban addition of types
with colliding names.
(ctf_add_forward): Note safety under the new rules.
(ctf_add_variable): Split all but the existence check into...
(ctf_add_variable_forced): ... this new function.
(ctf_add_funcobjt_sym): Likewise...
(ctf_add_funcobjt_sym_forced): ... for this new function.
* ctf-link.c (ctf_link_add_linker_symbol): Ban calling on dicts
with any stypes.
(ctf_link_add_strtab): Likewise.
(ctf_link_shuffle_syms): Likewise.
(ctf_link_intern_extern_string): Note pre-existing prohibition.
* ctf-lookup.c (ctf_lookup_by_id): Drop LCTF_RDWR check.
(ctf_lookup_variable): Split out looking in a dict but not
its parent into...
(ctf_lookup_variable_here): ... this new function.
(ctf_lookup_symbol_idx): Track whether looking up a function or
object: cache them separately.
(ctf_symbol_next): Split out looking in non-dynamic symtypetab
entries to...
(ctf_symbol_next_static): ... this new function. Don't get confused
by the simultaneous presence of static and dynamic symtypetab entries.
(ctf_try_lookup_indexed): Don't waste time looking up symbols by
index before there can be any idea how symbols are numbered.
(ctf_lookup_by_sym_or_name): Distinguish between function and
data object lookups. Drop LCTF_RDWR.
(ctf_lookup_by_symbol): Adjust.
(ctf_lookup_by_symbol_name): Likewise.
* ctf-open.c (init_types): Rename to...
(init_static_types): ... this. Drop LCTF_RDWR. Populate ctf_stypes.
(ctf_simple_open): Drop writable arg.
(ctf_simple_open_internal): Likewise.
(ctf_bufopen): Likewise.
(ctf_bufopen_internal): Populate fields only used for writable dicts.
Drop LCTF_RDWR.
(ctf_dict_close): Cater for symhash cache split.
* ctf-serialize.c (ctf_serialize): Use ctf_stypes, not LCTF_RDWR.
* ctf-types.c (ctf_variable_next): Drop LCTF_RDWR.
* testsuite/libctf-lookup/add-to-opened*: New test.
2023-12-20 00:58:19 +08:00
|
|
|
if (id.snapshot_id < fp->ctf_stypes)
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
return (ctf_set_errno (fp, ECTF_RDONLY));
|
|
|
|
|
|
|
|
if (fp->ctf_snapshot_lu >= id.snapshot_id)
|
|
|
|
return (ctf_set_errno (fp, ECTF_OVERROLLBACK));
|
|
|
|
|
|
|
|
for (dtd = ctf_list_next (&fp->ctf_dtdefs); dtd != NULL; dtd = ntd)
|
|
|
|
{
|
libctf: avoid the need to ever use ctf_update
The method of operation of libctf when the dictionary is writable has
before now been that types that are added land in the dynamic type
section, which is a linked list and hash of IDs -> dynamic type
definitions (and, recently a hash of names): the DTDs are a bit of CTF
representing the ctf_type_t and ad hoc C structures representing the
vlen. Historically, libctf was unable to do anything with these types,
not even look them up by ID, let alone by name: if you wanted to do that
say if you were adding a type that depended on one you just added) you
called ctf_update, which serializes all the DTDs into a CTF file and
reopens it, copying its guts over the fp it's called with. The
ctf_updated types are then frozen in amber and unchangeable: all lookups
will return the types in the static portion in preference to the dynamic
portion, and we will refuse to re-add things that already exist in the
static portion (and, of late, in the dynamic portion too). The libctf
machinery remembers the boundary between static and dynamic types and
looks in the right portion for each type. Lots of things still don't
quite work with dynamic types (e.g. getting their size), but enough
works to do a bunch of additions and then a ctf_update, most of the
time.
Except it doesn't, because ctf_add_type finds it necessary to walk the
full dynamic type definition list looking for types with matching names,
so it gets slower and slower with every type you add: fixing this
requires calling ctf_update periodically for no other reason than to
avoid massively slowing things down.
This is all clunky and very slow but kind of works, until you consider
that it is in fact possible and indeed necessary to modify one sort of
type after it has been added: forwards. These are necessarily promoted
to structs, unions or enums, and when they do so *their type ID does not
change*. So all of a sudden we are changing types that already exist in
the static portion. ctf_update gets massively confused by this and
allocates space enough for the forward (with no members), but then emits
the new dynamic type (with all the members) into it. You get an
assertion failure after that, if you're lucky, or a coredump.
So this commit rejigs things a bit and arranges to exclusively use the
dynamic type definitions in writable dictionaries, and the static type
definitions in readable dictionaries: we don't at any time have a mixture
of static and dynamic types, and you don't need to call ctf_update to
make things "appear". The ctf_dtbyname hash I introduced a few months
ago, which maps things like "struct foo" to DTDs, is removed, replaced
instead by a change of type of the four dictionaries which track names.
Rather than just being (unresizable) ctf_hash_t's populated only at
ctf_bufopen time, they are now a ctf_names_t structure, which is a pair
of ctf_hash_t and ctf_dynhash_t, with the ctf_hash_t portion being used
in readonly dictionaries, and the ctf_dynhash_t being used in writable
ones. The decision as to which to use is centralized in the new
functions ctf_lookup_by_rawname (which takes a type kind) and
ctf_lookup_by_rawhash, which it calls (which takes a ctf_names_t *.)
This change lets us switch from using static to dynamic name hashes on
the fly across the entirety of libctf without complexifying anything: in
fact, because we now centralize the knowledge about how to map from type
kind to name hash, it actually simplifies things and lets us throw out
quite a lot of now-unnecessary complexity, from ctf_dtnyname (replaced
by the dynamic half of the name tables), through to ctf_dtnextid (now
that a dictionary's static portion is never referenced if the dictionary
is writable, we can just use ctf_typemax to indicate the maximum type:
dynamic or non-dynamic does not matter, and we no longer need to track
the boundary between the types). You can now ctf_rollback() as far as
you like, even past a ctf_update or for that matter a full writeout; all
the iteration functions work just as well on writable as on read-only
dictionaries; ctf_add_type no longer needs expensive duplicated code to
run over the dynamic types hunting for ones it might be interested in;
and the linker no longer needs a hack to call ctf_update so that calling
ctf_add_type is not impossibly expensive.
There is still a bit more complexity: some new code paths in ctf-types.c
need to know how to extract information from dynamic types. This
complexity will go away again in a few months when libctf acquires a
proper intermediate representation.
You can still call ctf_update if you like (it's public API, after all),
but its only effect now is to set the point to which ctf_discard rolls
back.
Obviously *something* still needs to serialize the CTF file before
writeout, and this job is done by ctf_serialize, which does everything
ctf_update used to except set the counter used by ctf_discard. It is
automatically called by the various functions that do CTF writeout:
nobody else ever needs to call it.
With this in place, forwards that are promoted to non-forwards no longer
crash the link, even if it happens tens of thousands of types later.
v5: fix tabdamage.
libctf/
* ctf-impl.h (ctf_names_t): New.
(ctf_lookup_t) <ctf_hash>: Now a ctf_names_t, not a ctf_hash_t.
(ctf_file_t) <ctf_structs>: Likewise.
<ctf_unions>: Likewise.
<ctf_enums>: Likewise.
<ctf_names>: Likewise.
<ctf_lookups>: Improve comment.
<ctf_ptrtab_len>: New.
<ctf_prov_strtab>: New.
<ctf_str_prov_offset>: New.
<ctf_dtbyname>: Remove, redundant to the names hashes.
<ctf_dtnextid>: Remove, redundant to ctf_typemax.
(ctf_dtdef_t) <dtd_name>: Remove.
<dtd_data>: Note that the ctt_name is now populated.
(ctf_str_atom_t) <csa_offset>: This is now the strtab
offset for internal strings too.
<csa_external_offset>: New, the external strtab offset.
(CTF_INDEX_TO_TYPEPTR): Handle the LCTF_RDWR case.
(ctf_name_table): New declaration.
(ctf_lookup_by_rawname): Likewise.
(ctf_lookup_by_rawhash): Likewise.
(ctf_set_ctl_hashes): Likewise.
(ctf_serialize): Likewise.
(ctf_dtd_insert): Adjust.
(ctf_simple_open_internal): Likewise.
(ctf_bufopen_internal): Likewise.
(ctf_list_empty_p): Likewise.
(ctf_str_remove_ref): Likewise.
(ctf_str_add): Returns uint32_t now.
(ctf_str_add_ref): Likewise.
(ctf_str_add_external): Now returns a boolean (int).
* ctf-string.c (ctf_strraw_explicit): Check the ctf_prov_strtab
for strings in the appropriate range.
(ctf_str_create_atoms): Create the ctf_prov_strtab. Detect OOM
when adding the null string to the new strtab.
(ctf_str_free_atoms): Destroy the ctf_prov_strtab.
(ctf_str_add_ref_internal): Add make_provisional argument. If
make_provisional, populate the offset and fill in the
ctf_prov_strtab accordingly.
(ctf_str_add): Return the offset, not the string.
(ctf_str_add_ref): Likewise.
(ctf_str_add_external): Return a success integer.
(ctf_str_remove_ref): New, remove a single ref.
(ctf_str_count_strtab): Do not count the initial null string's
length or the existence or length of any unreferenced internal
atoms.
(ctf_str_populate_sorttab): Skip atoms with no refs.
(ctf_str_write_strtab): Populate the nullstr earlier. Add one
to the cts_len for the null string, since it is no longer done
in ctf_str_count_strtab. Adjust for csa_external_offset rename.
Populate the csa_offset for both internal and external cases.
Flush the ctf_prov_strtab afterwards, and reset the
ctf_str_prov_offset.
* ctf-create.c (ctf_grow_ptrtab): New.
(ctf_create): Call it. Initialize new fields rather than old
ones. Tell ctf_bufopen_internal that this is a writable dictionary.
Set the ctl hashes and data model.
(ctf_update): Rename to...
(ctf_serialize): ... this. Leave a compatibility function behind.
Tell ctf_simple_open_internal that this is a writable dictionary.
Pass the new fields along from the old dictionary. Drop
ctf_dtnextid and ctf_dtbyname. Use ctf_strraw, not dtd_name.
Do not zero out the DTD's ctt_name.
(ctf_prefixed_name): Rename to...
(ctf_name_table): ... this. No longer return a prefixed name: return
the applicable name table instead.
(ctf_dtd_insert): Use it, and use the right name table. Pass in the
kind we're adding. Migrate away from dtd_name.
(ctf_dtd_delete): Adjust similarly. Remove the ref to the
deleted ctt_name.
(ctf_dtd_lookup_type_by_name): Remove.
(ctf_dynamic_type): Always return NULL on read-only dictionaries.
No longer check ctf_dtnextid: check ctf_typemax instead.
(ctf_snapshot): No longer use ctf_dtnextid: use ctf_typemax instead.
(ctf_rollback): Likewise. No longer fail with ECTF_OVERROLLBACK. Use
ctf_name_table and the right name table, and migrate away from
dtd_name as in ctf_dtd_delete.
(ctf_add_generic): Pass in the kind explicitly and pass it to
ctf_dtd_insert. Use ctf_typemax, not ctf_dtnextid. Migrate away
from dtd_name to using ctf_str_add_ref to populate the ctt_name.
Grow the ptrtab if needed.
(ctf_add_encoded): Pass in the kind.
(ctf_add_slice): Likewise.
(ctf_add_array): Likewise.
(ctf_add_function): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_reftype): Likewise. Initialize the ctf_ptrtab, checking
ctt_name rather than dtd_name.
(ctf_add_struct_sized): Pass in the kind. Use
ctf_lookup_by_rawname, not ctf_hash_lookup_type /
ctf_dtd_lookup_type_by_name.
(ctf_add_union_sized): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_type): Likewise.
(ctf_compress_write): Call ctf_serialize: adjust for ctf_size not
being initialized until after the call.
(ctf_write_mem): Likewise.
(ctf_write): Likewise.
* ctf-archive.c (arc_write_one_ctf): Likewise.
* ctf-lookup.c (ctf_lookup_by_name): Use ctf_lookuup_by_rawhash, not
ctf_hash_lookup_type.
(ctf_lookup_by_id): No longer check the readonly types if the
dictionary is writable.
* ctf-open.c (init_types): Assert that this dictionary is not
writable. Adjust to use the new name hashes, ctf_name_table,
and ctf_ptrtab_len. GNU style fix for the final ptrtab scan.
(ctf_bufopen_internal): New 'writable' parameter. Flip on LCTF_RDWR
if set. Drop out early when dictionary is writable. Split the
ctf_lookups initialization into...
(ctf_set_cth_hashes): ... this new function.
(ctf_simple_open_internal): Adjust. New 'writable' parameter.
(ctf_simple_open): Adjust accordingly.
(ctf_bufopen): Likewise.
(ctf_file_close): Destroy the appropriate name hashes. No longer
destroy ctf_dtbyname, which is gone.
(ctf_getdatasect): Remove spurious "extern".
* ctf-types.c (ctf_lookup_by_rawname): New, look up types in the
specified name table, given a kind.
(ctf_lookup_by_rawhash): Likewise, given a ctf_names_t *.
(ctf_member_iter): Add support for iterating over the
dynamic type list.
(ctf_enum_iter): Likewise.
(ctf_variable_iter): Likewise.
(ctf_type_rvisit): Likewise.
(ctf_member_info): Add support for types in the dynamic type list.
(ctf_enum_name): Likewise.
(ctf_enum_value): Likewise.
(ctf_func_type_info): Likewise.
(ctf_func_type_args): Likewise.
* ctf-link.c (ctf_accumulate_archive_names): No longer call
ctf_update.
(ctf_link_write): Likewise.
(ctf_link_intern_extern_string): Adjust for new
ctf_str_add_external return value.
(ctf_link_add_strtab): Likewise.
* ctf-util.c (ctf_list_empty_p): New.
2019-08-08 00:55:09 +08:00
|
|
|
int kind;
|
|
|
|
const char *name;
|
|
|
|
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
ntd = ctf_list_next (dtd);
|
|
|
|
|
|
|
|
if (LCTF_TYPE_TO_INDEX (fp, dtd->dtd_type) <= id.dtd_id)
|
|
|
|
continue;
|
|
|
|
|
libctf: avoid the need to ever use ctf_update
The method of operation of libctf when the dictionary is writable has
before now been that types that are added land in the dynamic type
section, which is a linked list and hash of IDs -> dynamic type
definitions (and, recently a hash of names): the DTDs are a bit of CTF
representing the ctf_type_t and ad hoc C structures representing the
vlen. Historically, libctf was unable to do anything with these types,
not even look them up by ID, let alone by name: if you wanted to do that
say if you were adding a type that depended on one you just added) you
called ctf_update, which serializes all the DTDs into a CTF file and
reopens it, copying its guts over the fp it's called with. The
ctf_updated types are then frozen in amber and unchangeable: all lookups
will return the types in the static portion in preference to the dynamic
portion, and we will refuse to re-add things that already exist in the
static portion (and, of late, in the dynamic portion too). The libctf
machinery remembers the boundary between static and dynamic types and
looks in the right portion for each type. Lots of things still don't
quite work with dynamic types (e.g. getting their size), but enough
works to do a bunch of additions and then a ctf_update, most of the
time.
Except it doesn't, because ctf_add_type finds it necessary to walk the
full dynamic type definition list looking for types with matching names,
so it gets slower and slower with every type you add: fixing this
requires calling ctf_update periodically for no other reason than to
avoid massively slowing things down.
This is all clunky and very slow but kind of works, until you consider
that it is in fact possible and indeed necessary to modify one sort of
type after it has been added: forwards. These are necessarily promoted
to structs, unions or enums, and when they do so *their type ID does not
change*. So all of a sudden we are changing types that already exist in
the static portion. ctf_update gets massively confused by this and
allocates space enough for the forward (with no members), but then emits
the new dynamic type (with all the members) into it. You get an
assertion failure after that, if you're lucky, or a coredump.
So this commit rejigs things a bit and arranges to exclusively use the
dynamic type definitions in writable dictionaries, and the static type
definitions in readable dictionaries: we don't at any time have a mixture
of static and dynamic types, and you don't need to call ctf_update to
make things "appear". The ctf_dtbyname hash I introduced a few months
ago, which maps things like "struct foo" to DTDs, is removed, replaced
instead by a change of type of the four dictionaries which track names.
Rather than just being (unresizable) ctf_hash_t's populated only at
ctf_bufopen time, they are now a ctf_names_t structure, which is a pair
of ctf_hash_t and ctf_dynhash_t, with the ctf_hash_t portion being used
in readonly dictionaries, and the ctf_dynhash_t being used in writable
ones. The decision as to which to use is centralized in the new
functions ctf_lookup_by_rawname (which takes a type kind) and
ctf_lookup_by_rawhash, which it calls (which takes a ctf_names_t *.)
This change lets us switch from using static to dynamic name hashes on
the fly across the entirety of libctf without complexifying anything: in
fact, because we now centralize the knowledge about how to map from type
kind to name hash, it actually simplifies things and lets us throw out
quite a lot of now-unnecessary complexity, from ctf_dtnyname (replaced
by the dynamic half of the name tables), through to ctf_dtnextid (now
that a dictionary's static portion is never referenced if the dictionary
is writable, we can just use ctf_typemax to indicate the maximum type:
dynamic or non-dynamic does not matter, and we no longer need to track
the boundary between the types). You can now ctf_rollback() as far as
you like, even past a ctf_update or for that matter a full writeout; all
the iteration functions work just as well on writable as on read-only
dictionaries; ctf_add_type no longer needs expensive duplicated code to
run over the dynamic types hunting for ones it might be interested in;
and the linker no longer needs a hack to call ctf_update so that calling
ctf_add_type is not impossibly expensive.
There is still a bit more complexity: some new code paths in ctf-types.c
need to know how to extract information from dynamic types. This
complexity will go away again in a few months when libctf acquires a
proper intermediate representation.
You can still call ctf_update if you like (it's public API, after all),
but its only effect now is to set the point to which ctf_discard rolls
back.
Obviously *something* still needs to serialize the CTF file before
writeout, and this job is done by ctf_serialize, which does everything
ctf_update used to except set the counter used by ctf_discard. It is
automatically called by the various functions that do CTF writeout:
nobody else ever needs to call it.
With this in place, forwards that are promoted to non-forwards no longer
crash the link, even if it happens tens of thousands of types later.
v5: fix tabdamage.
libctf/
* ctf-impl.h (ctf_names_t): New.
(ctf_lookup_t) <ctf_hash>: Now a ctf_names_t, not a ctf_hash_t.
(ctf_file_t) <ctf_structs>: Likewise.
<ctf_unions>: Likewise.
<ctf_enums>: Likewise.
<ctf_names>: Likewise.
<ctf_lookups>: Improve comment.
<ctf_ptrtab_len>: New.
<ctf_prov_strtab>: New.
<ctf_str_prov_offset>: New.
<ctf_dtbyname>: Remove, redundant to the names hashes.
<ctf_dtnextid>: Remove, redundant to ctf_typemax.
(ctf_dtdef_t) <dtd_name>: Remove.
<dtd_data>: Note that the ctt_name is now populated.
(ctf_str_atom_t) <csa_offset>: This is now the strtab
offset for internal strings too.
<csa_external_offset>: New, the external strtab offset.
(CTF_INDEX_TO_TYPEPTR): Handle the LCTF_RDWR case.
(ctf_name_table): New declaration.
(ctf_lookup_by_rawname): Likewise.
(ctf_lookup_by_rawhash): Likewise.
(ctf_set_ctl_hashes): Likewise.
(ctf_serialize): Likewise.
(ctf_dtd_insert): Adjust.
(ctf_simple_open_internal): Likewise.
(ctf_bufopen_internal): Likewise.
(ctf_list_empty_p): Likewise.
(ctf_str_remove_ref): Likewise.
(ctf_str_add): Returns uint32_t now.
(ctf_str_add_ref): Likewise.
(ctf_str_add_external): Now returns a boolean (int).
* ctf-string.c (ctf_strraw_explicit): Check the ctf_prov_strtab
for strings in the appropriate range.
(ctf_str_create_atoms): Create the ctf_prov_strtab. Detect OOM
when adding the null string to the new strtab.
(ctf_str_free_atoms): Destroy the ctf_prov_strtab.
(ctf_str_add_ref_internal): Add make_provisional argument. If
make_provisional, populate the offset and fill in the
ctf_prov_strtab accordingly.
(ctf_str_add): Return the offset, not the string.
(ctf_str_add_ref): Likewise.
(ctf_str_add_external): Return a success integer.
(ctf_str_remove_ref): New, remove a single ref.
(ctf_str_count_strtab): Do not count the initial null string's
length or the existence or length of any unreferenced internal
atoms.
(ctf_str_populate_sorttab): Skip atoms with no refs.
(ctf_str_write_strtab): Populate the nullstr earlier. Add one
to the cts_len for the null string, since it is no longer done
in ctf_str_count_strtab. Adjust for csa_external_offset rename.
Populate the csa_offset for both internal and external cases.
Flush the ctf_prov_strtab afterwards, and reset the
ctf_str_prov_offset.
* ctf-create.c (ctf_grow_ptrtab): New.
(ctf_create): Call it. Initialize new fields rather than old
ones. Tell ctf_bufopen_internal that this is a writable dictionary.
Set the ctl hashes and data model.
(ctf_update): Rename to...
(ctf_serialize): ... this. Leave a compatibility function behind.
Tell ctf_simple_open_internal that this is a writable dictionary.
Pass the new fields along from the old dictionary. Drop
ctf_dtnextid and ctf_dtbyname. Use ctf_strraw, not dtd_name.
Do not zero out the DTD's ctt_name.
(ctf_prefixed_name): Rename to...
(ctf_name_table): ... this. No longer return a prefixed name: return
the applicable name table instead.
(ctf_dtd_insert): Use it, and use the right name table. Pass in the
kind we're adding. Migrate away from dtd_name.
(ctf_dtd_delete): Adjust similarly. Remove the ref to the
deleted ctt_name.
(ctf_dtd_lookup_type_by_name): Remove.
(ctf_dynamic_type): Always return NULL on read-only dictionaries.
No longer check ctf_dtnextid: check ctf_typemax instead.
(ctf_snapshot): No longer use ctf_dtnextid: use ctf_typemax instead.
(ctf_rollback): Likewise. No longer fail with ECTF_OVERROLLBACK. Use
ctf_name_table and the right name table, and migrate away from
dtd_name as in ctf_dtd_delete.
(ctf_add_generic): Pass in the kind explicitly and pass it to
ctf_dtd_insert. Use ctf_typemax, not ctf_dtnextid. Migrate away
from dtd_name to using ctf_str_add_ref to populate the ctt_name.
Grow the ptrtab if needed.
(ctf_add_encoded): Pass in the kind.
(ctf_add_slice): Likewise.
(ctf_add_array): Likewise.
(ctf_add_function): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_reftype): Likewise. Initialize the ctf_ptrtab, checking
ctt_name rather than dtd_name.
(ctf_add_struct_sized): Pass in the kind. Use
ctf_lookup_by_rawname, not ctf_hash_lookup_type /
ctf_dtd_lookup_type_by_name.
(ctf_add_union_sized): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_type): Likewise.
(ctf_compress_write): Call ctf_serialize: adjust for ctf_size not
being initialized until after the call.
(ctf_write_mem): Likewise.
(ctf_write): Likewise.
* ctf-archive.c (arc_write_one_ctf): Likewise.
* ctf-lookup.c (ctf_lookup_by_name): Use ctf_lookuup_by_rawhash, not
ctf_hash_lookup_type.
(ctf_lookup_by_id): No longer check the readonly types if the
dictionary is writable.
* ctf-open.c (init_types): Assert that this dictionary is not
writable. Adjust to use the new name hashes, ctf_name_table,
and ctf_ptrtab_len. GNU style fix for the final ptrtab scan.
(ctf_bufopen_internal): New 'writable' parameter. Flip on LCTF_RDWR
if set. Drop out early when dictionary is writable. Split the
ctf_lookups initialization into...
(ctf_set_cth_hashes): ... this new function.
(ctf_simple_open_internal): Adjust. New 'writable' parameter.
(ctf_simple_open): Adjust accordingly.
(ctf_bufopen): Likewise.
(ctf_file_close): Destroy the appropriate name hashes. No longer
destroy ctf_dtbyname, which is gone.
(ctf_getdatasect): Remove spurious "extern".
* ctf-types.c (ctf_lookup_by_rawname): New, look up types in the
specified name table, given a kind.
(ctf_lookup_by_rawhash): Likewise, given a ctf_names_t *.
(ctf_member_iter): Add support for iterating over the
dynamic type list.
(ctf_enum_iter): Likewise.
(ctf_variable_iter): Likewise.
(ctf_type_rvisit): Likewise.
(ctf_member_info): Add support for types in the dynamic type list.
(ctf_enum_name): Likewise.
(ctf_enum_value): Likewise.
(ctf_func_type_info): Likewise.
(ctf_func_type_args): Likewise.
* ctf-link.c (ctf_accumulate_archive_names): No longer call
ctf_update.
(ctf_link_write): Likewise.
(ctf_link_intern_extern_string): Adjust for new
ctf_str_add_external return value.
(ctf_link_add_strtab): Likewise.
* ctf-util.c (ctf_list_empty_p): New.
2019-08-08 00:55:09 +08:00
|
|
|
kind = LCTF_INFO_KIND (fp, dtd->dtd_data.ctt_info);
|
libctf: create: forwards are always in the namespace of their referent
The C namespace a forward is located in is always the same as the
namespace of the corresponding complete type: 'struct foo' is in the
struct namespace and does not collide with, say, 'union foo'.
libctf allowed for this in many places, but inconsistently: in
particular, forward *addition* never allowed for this, and was interning
forwards in the default namespace, which is always wrong, since you can
only forward structs, unions and enums, all of which are in their own
namespaces in C.
Forward removal needs corresponding adjustment to remove the names form
the right namespace, as does ctf_rollback.
libctf/
* ctf-create.c (ctf_add_forward): Intern in the right namespace.
(ctf_dtd_delete): Remove correspondingly.
(ctf_rollback): Likewise.
2019-11-06 01:57:55 +08:00
|
|
|
if (kind == CTF_K_FORWARD)
|
|
|
|
kind = dtd->dtd_data.ctt_type;
|
libctf: avoid the need to ever use ctf_update
The method of operation of libctf when the dictionary is writable has
before now been that types that are added land in the dynamic type
section, which is a linked list and hash of IDs -> dynamic type
definitions (and, recently a hash of names): the DTDs are a bit of CTF
representing the ctf_type_t and ad hoc C structures representing the
vlen. Historically, libctf was unable to do anything with these types,
not even look them up by ID, let alone by name: if you wanted to do that
say if you were adding a type that depended on one you just added) you
called ctf_update, which serializes all the DTDs into a CTF file and
reopens it, copying its guts over the fp it's called with. The
ctf_updated types are then frozen in amber and unchangeable: all lookups
will return the types in the static portion in preference to the dynamic
portion, and we will refuse to re-add things that already exist in the
static portion (and, of late, in the dynamic portion too). The libctf
machinery remembers the boundary between static and dynamic types and
looks in the right portion for each type. Lots of things still don't
quite work with dynamic types (e.g. getting their size), but enough
works to do a bunch of additions and then a ctf_update, most of the
time.
Except it doesn't, because ctf_add_type finds it necessary to walk the
full dynamic type definition list looking for types with matching names,
so it gets slower and slower with every type you add: fixing this
requires calling ctf_update periodically for no other reason than to
avoid massively slowing things down.
This is all clunky and very slow but kind of works, until you consider
that it is in fact possible and indeed necessary to modify one sort of
type after it has been added: forwards. These are necessarily promoted
to structs, unions or enums, and when they do so *their type ID does not
change*. So all of a sudden we are changing types that already exist in
the static portion. ctf_update gets massively confused by this and
allocates space enough for the forward (with no members), but then emits
the new dynamic type (with all the members) into it. You get an
assertion failure after that, if you're lucky, or a coredump.
So this commit rejigs things a bit and arranges to exclusively use the
dynamic type definitions in writable dictionaries, and the static type
definitions in readable dictionaries: we don't at any time have a mixture
of static and dynamic types, and you don't need to call ctf_update to
make things "appear". The ctf_dtbyname hash I introduced a few months
ago, which maps things like "struct foo" to DTDs, is removed, replaced
instead by a change of type of the four dictionaries which track names.
Rather than just being (unresizable) ctf_hash_t's populated only at
ctf_bufopen time, they are now a ctf_names_t structure, which is a pair
of ctf_hash_t and ctf_dynhash_t, with the ctf_hash_t portion being used
in readonly dictionaries, and the ctf_dynhash_t being used in writable
ones. The decision as to which to use is centralized in the new
functions ctf_lookup_by_rawname (which takes a type kind) and
ctf_lookup_by_rawhash, which it calls (which takes a ctf_names_t *.)
This change lets us switch from using static to dynamic name hashes on
the fly across the entirety of libctf without complexifying anything: in
fact, because we now centralize the knowledge about how to map from type
kind to name hash, it actually simplifies things and lets us throw out
quite a lot of now-unnecessary complexity, from ctf_dtnyname (replaced
by the dynamic half of the name tables), through to ctf_dtnextid (now
that a dictionary's static portion is never referenced if the dictionary
is writable, we can just use ctf_typemax to indicate the maximum type:
dynamic or non-dynamic does not matter, and we no longer need to track
the boundary between the types). You can now ctf_rollback() as far as
you like, even past a ctf_update or for that matter a full writeout; all
the iteration functions work just as well on writable as on read-only
dictionaries; ctf_add_type no longer needs expensive duplicated code to
run over the dynamic types hunting for ones it might be interested in;
and the linker no longer needs a hack to call ctf_update so that calling
ctf_add_type is not impossibly expensive.
There is still a bit more complexity: some new code paths in ctf-types.c
need to know how to extract information from dynamic types. This
complexity will go away again in a few months when libctf acquires a
proper intermediate representation.
You can still call ctf_update if you like (it's public API, after all),
but its only effect now is to set the point to which ctf_discard rolls
back.
Obviously *something* still needs to serialize the CTF file before
writeout, and this job is done by ctf_serialize, which does everything
ctf_update used to except set the counter used by ctf_discard. It is
automatically called by the various functions that do CTF writeout:
nobody else ever needs to call it.
With this in place, forwards that are promoted to non-forwards no longer
crash the link, even if it happens tens of thousands of types later.
v5: fix tabdamage.
libctf/
* ctf-impl.h (ctf_names_t): New.
(ctf_lookup_t) <ctf_hash>: Now a ctf_names_t, not a ctf_hash_t.
(ctf_file_t) <ctf_structs>: Likewise.
<ctf_unions>: Likewise.
<ctf_enums>: Likewise.
<ctf_names>: Likewise.
<ctf_lookups>: Improve comment.
<ctf_ptrtab_len>: New.
<ctf_prov_strtab>: New.
<ctf_str_prov_offset>: New.
<ctf_dtbyname>: Remove, redundant to the names hashes.
<ctf_dtnextid>: Remove, redundant to ctf_typemax.
(ctf_dtdef_t) <dtd_name>: Remove.
<dtd_data>: Note that the ctt_name is now populated.
(ctf_str_atom_t) <csa_offset>: This is now the strtab
offset for internal strings too.
<csa_external_offset>: New, the external strtab offset.
(CTF_INDEX_TO_TYPEPTR): Handle the LCTF_RDWR case.
(ctf_name_table): New declaration.
(ctf_lookup_by_rawname): Likewise.
(ctf_lookup_by_rawhash): Likewise.
(ctf_set_ctl_hashes): Likewise.
(ctf_serialize): Likewise.
(ctf_dtd_insert): Adjust.
(ctf_simple_open_internal): Likewise.
(ctf_bufopen_internal): Likewise.
(ctf_list_empty_p): Likewise.
(ctf_str_remove_ref): Likewise.
(ctf_str_add): Returns uint32_t now.
(ctf_str_add_ref): Likewise.
(ctf_str_add_external): Now returns a boolean (int).
* ctf-string.c (ctf_strraw_explicit): Check the ctf_prov_strtab
for strings in the appropriate range.
(ctf_str_create_atoms): Create the ctf_prov_strtab. Detect OOM
when adding the null string to the new strtab.
(ctf_str_free_atoms): Destroy the ctf_prov_strtab.
(ctf_str_add_ref_internal): Add make_provisional argument. If
make_provisional, populate the offset and fill in the
ctf_prov_strtab accordingly.
(ctf_str_add): Return the offset, not the string.
(ctf_str_add_ref): Likewise.
(ctf_str_add_external): Return a success integer.
(ctf_str_remove_ref): New, remove a single ref.
(ctf_str_count_strtab): Do not count the initial null string's
length or the existence or length of any unreferenced internal
atoms.
(ctf_str_populate_sorttab): Skip atoms with no refs.
(ctf_str_write_strtab): Populate the nullstr earlier. Add one
to the cts_len for the null string, since it is no longer done
in ctf_str_count_strtab. Adjust for csa_external_offset rename.
Populate the csa_offset for both internal and external cases.
Flush the ctf_prov_strtab afterwards, and reset the
ctf_str_prov_offset.
* ctf-create.c (ctf_grow_ptrtab): New.
(ctf_create): Call it. Initialize new fields rather than old
ones. Tell ctf_bufopen_internal that this is a writable dictionary.
Set the ctl hashes and data model.
(ctf_update): Rename to...
(ctf_serialize): ... this. Leave a compatibility function behind.
Tell ctf_simple_open_internal that this is a writable dictionary.
Pass the new fields along from the old dictionary. Drop
ctf_dtnextid and ctf_dtbyname. Use ctf_strraw, not dtd_name.
Do not zero out the DTD's ctt_name.
(ctf_prefixed_name): Rename to...
(ctf_name_table): ... this. No longer return a prefixed name: return
the applicable name table instead.
(ctf_dtd_insert): Use it, and use the right name table. Pass in the
kind we're adding. Migrate away from dtd_name.
(ctf_dtd_delete): Adjust similarly. Remove the ref to the
deleted ctt_name.
(ctf_dtd_lookup_type_by_name): Remove.
(ctf_dynamic_type): Always return NULL on read-only dictionaries.
No longer check ctf_dtnextid: check ctf_typemax instead.
(ctf_snapshot): No longer use ctf_dtnextid: use ctf_typemax instead.
(ctf_rollback): Likewise. No longer fail with ECTF_OVERROLLBACK. Use
ctf_name_table and the right name table, and migrate away from
dtd_name as in ctf_dtd_delete.
(ctf_add_generic): Pass in the kind explicitly and pass it to
ctf_dtd_insert. Use ctf_typemax, not ctf_dtnextid. Migrate away
from dtd_name to using ctf_str_add_ref to populate the ctt_name.
Grow the ptrtab if needed.
(ctf_add_encoded): Pass in the kind.
(ctf_add_slice): Likewise.
(ctf_add_array): Likewise.
(ctf_add_function): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_reftype): Likewise. Initialize the ctf_ptrtab, checking
ctt_name rather than dtd_name.
(ctf_add_struct_sized): Pass in the kind. Use
ctf_lookup_by_rawname, not ctf_hash_lookup_type /
ctf_dtd_lookup_type_by_name.
(ctf_add_union_sized): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_type): Likewise.
(ctf_compress_write): Call ctf_serialize: adjust for ctf_size not
being initialized until after the call.
(ctf_write_mem): Likewise.
(ctf_write): Likewise.
* ctf-archive.c (arc_write_one_ctf): Likewise.
* ctf-lookup.c (ctf_lookup_by_name): Use ctf_lookuup_by_rawhash, not
ctf_hash_lookup_type.
(ctf_lookup_by_id): No longer check the readonly types if the
dictionary is writable.
* ctf-open.c (init_types): Assert that this dictionary is not
writable. Adjust to use the new name hashes, ctf_name_table,
and ctf_ptrtab_len. GNU style fix for the final ptrtab scan.
(ctf_bufopen_internal): New 'writable' parameter. Flip on LCTF_RDWR
if set. Drop out early when dictionary is writable. Split the
ctf_lookups initialization into...
(ctf_set_cth_hashes): ... this new function.
(ctf_simple_open_internal): Adjust. New 'writable' parameter.
(ctf_simple_open): Adjust accordingly.
(ctf_bufopen): Likewise.
(ctf_file_close): Destroy the appropriate name hashes. No longer
destroy ctf_dtbyname, which is gone.
(ctf_getdatasect): Remove spurious "extern".
* ctf-types.c (ctf_lookup_by_rawname): New, look up types in the
specified name table, given a kind.
(ctf_lookup_by_rawhash): Likewise, given a ctf_names_t *.
(ctf_member_iter): Add support for iterating over the
dynamic type list.
(ctf_enum_iter): Likewise.
(ctf_variable_iter): Likewise.
(ctf_type_rvisit): Likewise.
(ctf_member_info): Add support for types in the dynamic type list.
(ctf_enum_name): Likewise.
(ctf_enum_value): Likewise.
(ctf_func_type_info): Likewise.
(ctf_func_type_args): Likewise.
* ctf-link.c (ctf_accumulate_archive_names): No longer call
ctf_update.
(ctf_link_write): Likewise.
(ctf_link_intern_extern_string): Adjust for new
ctf_str_add_external return value.
(ctf_link_add_strtab): Likewise.
* ctf-util.c (ctf_list_empty_p): New.
2019-08-08 00:55:09 +08:00
|
|
|
|
|
|
|
if (dtd->dtd_data.ctt_name
|
2019-10-21 18:27:43 +08:00
|
|
|
&& (name = ctf_strraw (fp, dtd->dtd_data.ctt_name)) != NULL
|
|
|
|
&& LCTF_INFO_ISROOT (fp, dtd->dtd_data.ctt_info))
|
libctf: avoid the need to ever use ctf_update
The method of operation of libctf when the dictionary is writable has
before now been that types that are added land in the dynamic type
section, which is a linked list and hash of IDs -> dynamic type
definitions (and, recently a hash of names): the DTDs are a bit of CTF
representing the ctf_type_t and ad hoc C structures representing the
vlen. Historically, libctf was unable to do anything with these types,
not even look them up by ID, let alone by name: if you wanted to do that
say if you were adding a type that depended on one you just added) you
called ctf_update, which serializes all the DTDs into a CTF file and
reopens it, copying its guts over the fp it's called with. The
ctf_updated types are then frozen in amber and unchangeable: all lookups
will return the types in the static portion in preference to the dynamic
portion, and we will refuse to re-add things that already exist in the
static portion (and, of late, in the dynamic portion too). The libctf
machinery remembers the boundary between static and dynamic types and
looks in the right portion for each type. Lots of things still don't
quite work with dynamic types (e.g. getting their size), but enough
works to do a bunch of additions and then a ctf_update, most of the
time.
Except it doesn't, because ctf_add_type finds it necessary to walk the
full dynamic type definition list looking for types with matching names,
so it gets slower and slower with every type you add: fixing this
requires calling ctf_update periodically for no other reason than to
avoid massively slowing things down.
This is all clunky and very slow but kind of works, until you consider
that it is in fact possible and indeed necessary to modify one sort of
type after it has been added: forwards. These are necessarily promoted
to structs, unions or enums, and when they do so *their type ID does not
change*. So all of a sudden we are changing types that already exist in
the static portion. ctf_update gets massively confused by this and
allocates space enough for the forward (with no members), but then emits
the new dynamic type (with all the members) into it. You get an
assertion failure after that, if you're lucky, or a coredump.
So this commit rejigs things a bit and arranges to exclusively use the
dynamic type definitions in writable dictionaries, and the static type
definitions in readable dictionaries: we don't at any time have a mixture
of static and dynamic types, and you don't need to call ctf_update to
make things "appear". The ctf_dtbyname hash I introduced a few months
ago, which maps things like "struct foo" to DTDs, is removed, replaced
instead by a change of type of the four dictionaries which track names.
Rather than just being (unresizable) ctf_hash_t's populated only at
ctf_bufopen time, they are now a ctf_names_t structure, which is a pair
of ctf_hash_t and ctf_dynhash_t, with the ctf_hash_t portion being used
in readonly dictionaries, and the ctf_dynhash_t being used in writable
ones. The decision as to which to use is centralized in the new
functions ctf_lookup_by_rawname (which takes a type kind) and
ctf_lookup_by_rawhash, which it calls (which takes a ctf_names_t *.)
This change lets us switch from using static to dynamic name hashes on
the fly across the entirety of libctf without complexifying anything: in
fact, because we now centralize the knowledge about how to map from type
kind to name hash, it actually simplifies things and lets us throw out
quite a lot of now-unnecessary complexity, from ctf_dtnyname (replaced
by the dynamic half of the name tables), through to ctf_dtnextid (now
that a dictionary's static portion is never referenced if the dictionary
is writable, we can just use ctf_typemax to indicate the maximum type:
dynamic or non-dynamic does not matter, and we no longer need to track
the boundary between the types). You can now ctf_rollback() as far as
you like, even past a ctf_update or for that matter a full writeout; all
the iteration functions work just as well on writable as on read-only
dictionaries; ctf_add_type no longer needs expensive duplicated code to
run over the dynamic types hunting for ones it might be interested in;
and the linker no longer needs a hack to call ctf_update so that calling
ctf_add_type is not impossibly expensive.
There is still a bit more complexity: some new code paths in ctf-types.c
need to know how to extract information from dynamic types. This
complexity will go away again in a few months when libctf acquires a
proper intermediate representation.
You can still call ctf_update if you like (it's public API, after all),
but its only effect now is to set the point to which ctf_discard rolls
back.
Obviously *something* still needs to serialize the CTF file before
writeout, and this job is done by ctf_serialize, which does everything
ctf_update used to except set the counter used by ctf_discard. It is
automatically called by the various functions that do CTF writeout:
nobody else ever needs to call it.
With this in place, forwards that are promoted to non-forwards no longer
crash the link, even if it happens tens of thousands of types later.
v5: fix tabdamage.
libctf/
* ctf-impl.h (ctf_names_t): New.
(ctf_lookup_t) <ctf_hash>: Now a ctf_names_t, not a ctf_hash_t.
(ctf_file_t) <ctf_structs>: Likewise.
<ctf_unions>: Likewise.
<ctf_enums>: Likewise.
<ctf_names>: Likewise.
<ctf_lookups>: Improve comment.
<ctf_ptrtab_len>: New.
<ctf_prov_strtab>: New.
<ctf_str_prov_offset>: New.
<ctf_dtbyname>: Remove, redundant to the names hashes.
<ctf_dtnextid>: Remove, redundant to ctf_typemax.
(ctf_dtdef_t) <dtd_name>: Remove.
<dtd_data>: Note that the ctt_name is now populated.
(ctf_str_atom_t) <csa_offset>: This is now the strtab
offset for internal strings too.
<csa_external_offset>: New, the external strtab offset.
(CTF_INDEX_TO_TYPEPTR): Handle the LCTF_RDWR case.
(ctf_name_table): New declaration.
(ctf_lookup_by_rawname): Likewise.
(ctf_lookup_by_rawhash): Likewise.
(ctf_set_ctl_hashes): Likewise.
(ctf_serialize): Likewise.
(ctf_dtd_insert): Adjust.
(ctf_simple_open_internal): Likewise.
(ctf_bufopen_internal): Likewise.
(ctf_list_empty_p): Likewise.
(ctf_str_remove_ref): Likewise.
(ctf_str_add): Returns uint32_t now.
(ctf_str_add_ref): Likewise.
(ctf_str_add_external): Now returns a boolean (int).
* ctf-string.c (ctf_strraw_explicit): Check the ctf_prov_strtab
for strings in the appropriate range.
(ctf_str_create_atoms): Create the ctf_prov_strtab. Detect OOM
when adding the null string to the new strtab.
(ctf_str_free_atoms): Destroy the ctf_prov_strtab.
(ctf_str_add_ref_internal): Add make_provisional argument. If
make_provisional, populate the offset and fill in the
ctf_prov_strtab accordingly.
(ctf_str_add): Return the offset, not the string.
(ctf_str_add_ref): Likewise.
(ctf_str_add_external): Return a success integer.
(ctf_str_remove_ref): New, remove a single ref.
(ctf_str_count_strtab): Do not count the initial null string's
length or the existence or length of any unreferenced internal
atoms.
(ctf_str_populate_sorttab): Skip atoms with no refs.
(ctf_str_write_strtab): Populate the nullstr earlier. Add one
to the cts_len for the null string, since it is no longer done
in ctf_str_count_strtab. Adjust for csa_external_offset rename.
Populate the csa_offset for both internal and external cases.
Flush the ctf_prov_strtab afterwards, and reset the
ctf_str_prov_offset.
* ctf-create.c (ctf_grow_ptrtab): New.
(ctf_create): Call it. Initialize new fields rather than old
ones. Tell ctf_bufopen_internal that this is a writable dictionary.
Set the ctl hashes and data model.
(ctf_update): Rename to...
(ctf_serialize): ... this. Leave a compatibility function behind.
Tell ctf_simple_open_internal that this is a writable dictionary.
Pass the new fields along from the old dictionary. Drop
ctf_dtnextid and ctf_dtbyname. Use ctf_strraw, not dtd_name.
Do not zero out the DTD's ctt_name.
(ctf_prefixed_name): Rename to...
(ctf_name_table): ... this. No longer return a prefixed name: return
the applicable name table instead.
(ctf_dtd_insert): Use it, and use the right name table. Pass in the
kind we're adding. Migrate away from dtd_name.
(ctf_dtd_delete): Adjust similarly. Remove the ref to the
deleted ctt_name.
(ctf_dtd_lookup_type_by_name): Remove.
(ctf_dynamic_type): Always return NULL on read-only dictionaries.
No longer check ctf_dtnextid: check ctf_typemax instead.
(ctf_snapshot): No longer use ctf_dtnextid: use ctf_typemax instead.
(ctf_rollback): Likewise. No longer fail with ECTF_OVERROLLBACK. Use
ctf_name_table and the right name table, and migrate away from
dtd_name as in ctf_dtd_delete.
(ctf_add_generic): Pass in the kind explicitly and pass it to
ctf_dtd_insert. Use ctf_typemax, not ctf_dtnextid. Migrate away
from dtd_name to using ctf_str_add_ref to populate the ctt_name.
Grow the ptrtab if needed.
(ctf_add_encoded): Pass in the kind.
(ctf_add_slice): Likewise.
(ctf_add_array): Likewise.
(ctf_add_function): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_reftype): Likewise. Initialize the ctf_ptrtab, checking
ctt_name rather than dtd_name.
(ctf_add_struct_sized): Pass in the kind. Use
ctf_lookup_by_rawname, not ctf_hash_lookup_type /
ctf_dtd_lookup_type_by_name.
(ctf_add_union_sized): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_type): Likewise.
(ctf_compress_write): Call ctf_serialize: adjust for ctf_size not
being initialized until after the call.
(ctf_write_mem): Likewise.
(ctf_write): Likewise.
* ctf-archive.c (arc_write_one_ctf): Likewise.
* ctf-lookup.c (ctf_lookup_by_name): Use ctf_lookuup_by_rawhash, not
ctf_hash_lookup_type.
(ctf_lookup_by_id): No longer check the readonly types if the
dictionary is writable.
* ctf-open.c (init_types): Assert that this dictionary is not
writable. Adjust to use the new name hashes, ctf_name_table,
and ctf_ptrtab_len. GNU style fix for the final ptrtab scan.
(ctf_bufopen_internal): New 'writable' parameter. Flip on LCTF_RDWR
if set. Drop out early when dictionary is writable. Split the
ctf_lookups initialization into...
(ctf_set_cth_hashes): ... this new function.
(ctf_simple_open_internal): Adjust. New 'writable' parameter.
(ctf_simple_open): Adjust accordingly.
(ctf_bufopen): Likewise.
(ctf_file_close): Destroy the appropriate name hashes. No longer
destroy ctf_dtbyname, which is gone.
(ctf_getdatasect): Remove spurious "extern".
* ctf-types.c (ctf_lookup_by_rawname): New, look up types in the
specified name table, given a kind.
(ctf_lookup_by_rawhash): Likewise, given a ctf_names_t *.
(ctf_member_iter): Add support for iterating over the
dynamic type list.
(ctf_enum_iter): Likewise.
(ctf_variable_iter): Likewise.
(ctf_type_rvisit): Likewise.
(ctf_member_info): Add support for types in the dynamic type list.
(ctf_enum_name): Likewise.
(ctf_enum_value): Likewise.
(ctf_func_type_info): Likewise.
(ctf_func_type_args): Likewise.
* ctf-link.c (ctf_accumulate_archive_names): No longer call
ctf_update.
(ctf_link_write): Likewise.
(ctf_link_intern_extern_string): Adjust for new
ctf_str_add_external return value.
(ctf_link_add_strtab): Likewise.
* ctf-util.c (ctf_list_empty_p): New.
2019-08-08 00:55:09 +08:00
|
|
|
{
|
libctf: remove static/dynamic name lookup distinction
libctf internally maintains a set of hash tables for type name lookups,
one for each valid C type namespace (struct, union, enum, and everything
else).
Or, rather, it maintains *two* sets of hash tables: one, a ctf_hash *,
is meant for lookups in ctf_(buf)open()ed dicts with fixed content; the
other, a ctf_dynhash *, is meant for lookups in ctf_create()d dicts.
This distinction was somewhat valuable in the far pre-binutils past when
two different hashtable implementations were used (one expanding, the
other fixed-size), but those days are long gone: the hash table
implementations are almost identical, both wrappers around the libiberty
hashtab. The ctf_dynhash has many more capabilities than the ctf_hash
(iteration, deletion, etc etc) and has no downsides other than starting
at a fixed, arbitrary small size.
That limitation is easy to lift (via a new ctf_dynhash_create_sized()),
following which we can throw away nearly all the ctf_hash
implementation, and all the code to choose between readable and writable
hashtabs; the few convenience functions that are still useful (for
insertion of name -> type mappings) can also be generalized a bit so
that the extra string verification they do is potentially available to
other string lookups as well.
(libctf still has two hashtable implementations, ctf_dynhash, above,
and ctf_dynset, which is a key-only hashtab that can avoid a great many
malloc()s, used for high-volume applications in the deduplicator.)
libctf/
* ctf-create.c (ctf_create): Eliminate ctn_writable.
(ctf_dtd_insert): Likewise.
(ctf_dtd_delete): Likewise.
(ctf_rollback): Likewise.
(ctf_name_table): Eliminate ctf_names_t.
* ctf-hash.c (ctf_dynhash_create): Comment update.
Reimplement in terms of...
(ctf_dynhash_create_sized): ... this new function.
(ctf_hash_create): Remove.
(ctf_hash_size): Remove.
(ctf_hash_define_type): Remove.
(ctf_hash_destroy): Remove.
(ctf_hash_lookup_type): Rename to...
(ctf_dynhash_lookup_type): ... this.
(ctf_hash_insert_type): Rename to...
(ctf_dynhash_insert_type): ... this, moving validation to...
* ctf-string.c (ctf_strptr_validate): ... this new function.
* ctf-impl.h (struct ctf_names): Extirpate.
(struct ctf_lookup.ctl_hash): Now a ctf_dynhash_t.
(struct ctf_dict): All ctf_names_t fields are now ctf_dynhash_t.
(ctf_name_table): Now returns a ctf_dynhash_t.
(ctf_lookup_by_rawhash): Remove.
(ctf_hash_create): Likewise.
(ctf_hash_insert_type): Likewise.
(ctf_hash_define_type): Likewise.
(ctf_hash_lookup_type): Likewise.
(ctf_hash_size): Likewise.
(ctf_hash_destroy): Likewise.
(ctf_dynhash_create_sized): New.
(ctf_dynhash_insert_type): New.
(ctf_dynhash_lookup_type): New.
(ctf_strptr_validate): New.
* ctf-lookup.c (ctf_lookup_by_name_internal): Adapt.
* ctf-open.c (init_types): Adapt.
(ctf_set_ctl_hashes): Adapt.
(ctf_dict_close): Adapt.
* ctf-serialize.c (ctf_serialize): Adapt.
* ctf-types.c (ctf_lookup_by_rawhash): Remove.
2023-12-19 01:47:48 +08:00
|
|
|
ctf_dynhash_remove (ctf_name_table (fp, kind), name);
|
libctf: avoid the need to ever use ctf_update
The method of operation of libctf when the dictionary is writable has
before now been that types that are added land in the dynamic type
section, which is a linked list and hash of IDs -> dynamic type
definitions (and, recently a hash of names): the DTDs are a bit of CTF
representing the ctf_type_t and ad hoc C structures representing the
vlen. Historically, libctf was unable to do anything with these types,
not even look them up by ID, let alone by name: if you wanted to do that
say if you were adding a type that depended on one you just added) you
called ctf_update, which serializes all the DTDs into a CTF file and
reopens it, copying its guts over the fp it's called with. The
ctf_updated types are then frozen in amber and unchangeable: all lookups
will return the types in the static portion in preference to the dynamic
portion, and we will refuse to re-add things that already exist in the
static portion (and, of late, in the dynamic portion too). The libctf
machinery remembers the boundary between static and dynamic types and
looks in the right portion for each type. Lots of things still don't
quite work with dynamic types (e.g. getting their size), but enough
works to do a bunch of additions and then a ctf_update, most of the
time.
Except it doesn't, because ctf_add_type finds it necessary to walk the
full dynamic type definition list looking for types with matching names,
so it gets slower and slower with every type you add: fixing this
requires calling ctf_update periodically for no other reason than to
avoid massively slowing things down.
This is all clunky and very slow but kind of works, until you consider
that it is in fact possible and indeed necessary to modify one sort of
type after it has been added: forwards. These are necessarily promoted
to structs, unions or enums, and when they do so *their type ID does not
change*. So all of a sudden we are changing types that already exist in
the static portion. ctf_update gets massively confused by this and
allocates space enough for the forward (with no members), but then emits
the new dynamic type (with all the members) into it. You get an
assertion failure after that, if you're lucky, or a coredump.
So this commit rejigs things a bit and arranges to exclusively use the
dynamic type definitions in writable dictionaries, and the static type
definitions in readable dictionaries: we don't at any time have a mixture
of static and dynamic types, and you don't need to call ctf_update to
make things "appear". The ctf_dtbyname hash I introduced a few months
ago, which maps things like "struct foo" to DTDs, is removed, replaced
instead by a change of type of the four dictionaries which track names.
Rather than just being (unresizable) ctf_hash_t's populated only at
ctf_bufopen time, they are now a ctf_names_t structure, which is a pair
of ctf_hash_t and ctf_dynhash_t, with the ctf_hash_t portion being used
in readonly dictionaries, and the ctf_dynhash_t being used in writable
ones. The decision as to which to use is centralized in the new
functions ctf_lookup_by_rawname (which takes a type kind) and
ctf_lookup_by_rawhash, which it calls (which takes a ctf_names_t *.)
This change lets us switch from using static to dynamic name hashes on
the fly across the entirety of libctf without complexifying anything: in
fact, because we now centralize the knowledge about how to map from type
kind to name hash, it actually simplifies things and lets us throw out
quite a lot of now-unnecessary complexity, from ctf_dtnyname (replaced
by the dynamic half of the name tables), through to ctf_dtnextid (now
that a dictionary's static portion is never referenced if the dictionary
is writable, we can just use ctf_typemax to indicate the maximum type:
dynamic or non-dynamic does not matter, and we no longer need to track
the boundary between the types). You can now ctf_rollback() as far as
you like, even past a ctf_update or for that matter a full writeout; all
the iteration functions work just as well on writable as on read-only
dictionaries; ctf_add_type no longer needs expensive duplicated code to
run over the dynamic types hunting for ones it might be interested in;
and the linker no longer needs a hack to call ctf_update so that calling
ctf_add_type is not impossibly expensive.
There is still a bit more complexity: some new code paths in ctf-types.c
need to know how to extract information from dynamic types. This
complexity will go away again in a few months when libctf acquires a
proper intermediate representation.
You can still call ctf_update if you like (it's public API, after all),
but its only effect now is to set the point to which ctf_discard rolls
back.
Obviously *something* still needs to serialize the CTF file before
writeout, and this job is done by ctf_serialize, which does everything
ctf_update used to except set the counter used by ctf_discard. It is
automatically called by the various functions that do CTF writeout:
nobody else ever needs to call it.
With this in place, forwards that are promoted to non-forwards no longer
crash the link, even if it happens tens of thousands of types later.
v5: fix tabdamage.
libctf/
* ctf-impl.h (ctf_names_t): New.
(ctf_lookup_t) <ctf_hash>: Now a ctf_names_t, not a ctf_hash_t.
(ctf_file_t) <ctf_structs>: Likewise.
<ctf_unions>: Likewise.
<ctf_enums>: Likewise.
<ctf_names>: Likewise.
<ctf_lookups>: Improve comment.
<ctf_ptrtab_len>: New.
<ctf_prov_strtab>: New.
<ctf_str_prov_offset>: New.
<ctf_dtbyname>: Remove, redundant to the names hashes.
<ctf_dtnextid>: Remove, redundant to ctf_typemax.
(ctf_dtdef_t) <dtd_name>: Remove.
<dtd_data>: Note that the ctt_name is now populated.
(ctf_str_atom_t) <csa_offset>: This is now the strtab
offset for internal strings too.
<csa_external_offset>: New, the external strtab offset.
(CTF_INDEX_TO_TYPEPTR): Handle the LCTF_RDWR case.
(ctf_name_table): New declaration.
(ctf_lookup_by_rawname): Likewise.
(ctf_lookup_by_rawhash): Likewise.
(ctf_set_ctl_hashes): Likewise.
(ctf_serialize): Likewise.
(ctf_dtd_insert): Adjust.
(ctf_simple_open_internal): Likewise.
(ctf_bufopen_internal): Likewise.
(ctf_list_empty_p): Likewise.
(ctf_str_remove_ref): Likewise.
(ctf_str_add): Returns uint32_t now.
(ctf_str_add_ref): Likewise.
(ctf_str_add_external): Now returns a boolean (int).
* ctf-string.c (ctf_strraw_explicit): Check the ctf_prov_strtab
for strings in the appropriate range.
(ctf_str_create_atoms): Create the ctf_prov_strtab. Detect OOM
when adding the null string to the new strtab.
(ctf_str_free_atoms): Destroy the ctf_prov_strtab.
(ctf_str_add_ref_internal): Add make_provisional argument. If
make_provisional, populate the offset and fill in the
ctf_prov_strtab accordingly.
(ctf_str_add): Return the offset, not the string.
(ctf_str_add_ref): Likewise.
(ctf_str_add_external): Return a success integer.
(ctf_str_remove_ref): New, remove a single ref.
(ctf_str_count_strtab): Do not count the initial null string's
length or the existence or length of any unreferenced internal
atoms.
(ctf_str_populate_sorttab): Skip atoms with no refs.
(ctf_str_write_strtab): Populate the nullstr earlier. Add one
to the cts_len for the null string, since it is no longer done
in ctf_str_count_strtab. Adjust for csa_external_offset rename.
Populate the csa_offset for both internal and external cases.
Flush the ctf_prov_strtab afterwards, and reset the
ctf_str_prov_offset.
* ctf-create.c (ctf_grow_ptrtab): New.
(ctf_create): Call it. Initialize new fields rather than old
ones. Tell ctf_bufopen_internal that this is a writable dictionary.
Set the ctl hashes and data model.
(ctf_update): Rename to...
(ctf_serialize): ... this. Leave a compatibility function behind.
Tell ctf_simple_open_internal that this is a writable dictionary.
Pass the new fields along from the old dictionary. Drop
ctf_dtnextid and ctf_dtbyname. Use ctf_strraw, not dtd_name.
Do not zero out the DTD's ctt_name.
(ctf_prefixed_name): Rename to...
(ctf_name_table): ... this. No longer return a prefixed name: return
the applicable name table instead.
(ctf_dtd_insert): Use it, and use the right name table. Pass in the
kind we're adding. Migrate away from dtd_name.
(ctf_dtd_delete): Adjust similarly. Remove the ref to the
deleted ctt_name.
(ctf_dtd_lookup_type_by_name): Remove.
(ctf_dynamic_type): Always return NULL on read-only dictionaries.
No longer check ctf_dtnextid: check ctf_typemax instead.
(ctf_snapshot): No longer use ctf_dtnextid: use ctf_typemax instead.
(ctf_rollback): Likewise. No longer fail with ECTF_OVERROLLBACK. Use
ctf_name_table and the right name table, and migrate away from
dtd_name as in ctf_dtd_delete.
(ctf_add_generic): Pass in the kind explicitly and pass it to
ctf_dtd_insert. Use ctf_typemax, not ctf_dtnextid. Migrate away
from dtd_name to using ctf_str_add_ref to populate the ctt_name.
Grow the ptrtab if needed.
(ctf_add_encoded): Pass in the kind.
(ctf_add_slice): Likewise.
(ctf_add_array): Likewise.
(ctf_add_function): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_reftype): Likewise. Initialize the ctf_ptrtab, checking
ctt_name rather than dtd_name.
(ctf_add_struct_sized): Pass in the kind. Use
ctf_lookup_by_rawname, not ctf_hash_lookup_type /
ctf_dtd_lookup_type_by_name.
(ctf_add_union_sized): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_type): Likewise.
(ctf_compress_write): Call ctf_serialize: adjust for ctf_size not
being initialized until after the call.
(ctf_write_mem): Likewise.
(ctf_write): Likewise.
* ctf-archive.c (arc_write_one_ctf): Likewise.
* ctf-lookup.c (ctf_lookup_by_name): Use ctf_lookuup_by_rawhash, not
ctf_hash_lookup_type.
(ctf_lookup_by_id): No longer check the readonly types if the
dictionary is writable.
* ctf-open.c (init_types): Assert that this dictionary is not
writable. Adjust to use the new name hashes, ctf_name_table,
and ctf_ptrtab_len. GNU style fix for the final ptrtab scan.
(ctf_bufopen_internal): New 'writable' parameter. Flip on LCTF_RDWR
if set. Drop out early when dictionary is writable. Split the
ctf_lookups initialization into...
(ctf_set_cth_hashes): ... this new function.
(ctf_simple_open_internal): Adjust. New 'writable' parameter.
(ctf_simple_open): Adjust accordingly.
(ctf_bufopen): Likewise.
(ctf_file_close): Destroy the appropriate name hashes. No longer
destroy ctf_dtbyname, which is gone.
(ctf_getdatasect): Remove spurious "extern".
* ctf-types.c (ctf_lookup_by_rawname): New, look up types in the
specified name table, given a kind.
(ctf_lookup_by_rawhash): Likewise, given a ctf_names_t *.
(ctf_member_iter): Add support for iterating over the
dynamic type list.
(ctf_enum_iter): Likewise.
(ctf_variable_iter): Likewise.
(ctf_type_rvisit): Likewise.
(ctf_member_info): Add support for types in the dynamic type list.
(ctf_enum_name): Likewise.
(ctf_enum_value): Likewise.
(ctf_func_type_info): Likewise.
(ctf_func_type_args): Likewise.
* ctf-link.c (ctf_accumulate_archive_names): No longer call
ctf_update.
(ctf_link_write): Likewise.
(ctf_link_intern_extern_string): Adjust for new
ctf_str_add_external return value.
(ctf_link_add_strtab): Likewise.
* ctf-util.c (ctf_list_empty_p): New.
2019-08-08 00:55:09 +08:00
|
|
|
ctf_str_remove_ref (fp, name, &dtd->dtd_data.ctt_name);
|
|
|
|
}
|
|
|
|
|
2020-07-21 22:38:08 +08:00
|
|
|
ctf_dynhash_remove (fp->ctf_dthash, (void *) (uintptr_t) dtd->dtd_type);
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
ctf_dtd_delete (fp, dtd);
|
|
|
|
}
|
|
|
|
|
|
|
|
for (dvd = ctf_list_next (&fp->ctf_dvdefs); dvd != NULL; dvd = nvd)
|
|
|
|
{
|
|
|
|
nvd = ctf_list_next (dvd);
|
|
|
|
|
|
|
|
if (dvd->dvd_snapshots <= id.snapshot_id)
|
|
|
|
continue;
|
|
|
|
|
|
|
|
ctf_dvd_delete (fp, dvd);
|
|
|
|
}
|
|
|
|
|
libctf: avoid the need to ever use ctf_update
The method of operation of libctf when the dictionary is writable has
before now been that types that are added land in the dynamic type
section, which is a linked list and hash of IDs -> dynamic type
definitions (and, recently a hash of names): the DTDs are a bit of CTF
representing the ctf_type_t and ad hoc C structures representing the
vlen. Historically, libctf was unable to do anything with these types,
not even look them up by ID, let alone by name: if you wanted to do that
say if you were adding a type that depended on one you just added) you
called ctf_update, which serializes all the DTDs into a CTF file and
reopens it, copying its guts over the fp it's called with. The
ctf_updated types are then frozen in amber and unchangeable: all lookups
will return the types in the static portion in preference to the dynamic
portion, and we will refuse to re-add things that already exist in the
static portion (and, of late, in the dynamic portion too). The libctf
machinery remembers the boundary between static and dynamic types and
looks in the right portion for each type. Lots of things still don't
quite work with dynamic types (e.g. getting their size), but enough
works to do a bunch of additions and then a ctf_update, most of the
time.
Except it doesn't, because ctf_add_type finds it necessary to walk the
full dynamic type definition list looking for types with matching names,
so it gets slower and slower with every type you add: fixing this
requires calling ctf_update periodically for no other reason than to
avoid massively slowing things down.
This is all clunky and very slow but kind of works, until you consider
that it is in fact possible and indeed necessary to modify one sort of
type after it has been added: forwards. These are necessarily promoted
to structs, unions or enums, and when they do so *their type ID does not
change*. So all of a sudden we are changing types that already exist in
the static portion. ctf_update gets massively confused by this and
allocates space enough for the forward (with no members), but then emits
the new dynamic type (with all the members) into it. You get an
assertion failure after that, if you're lucky, or a coredump.
So this commit rejigs things a bit and arranges to exclusively use the
dynamic type definitions in writable dictionaries, and the static type
definitions in readable dictionaries: we don't at any time have a mixture
of static and dynamic types, and you don't need to call ctf_update to
make things "appear". The ctf_dtbyname hash I introduced a few months
ago, which maps things like "struct foo" to DTDs, is removed, replaced
instead by a change of type of the four dictionaries which track names.
Rather than just being (unresizable) ctf_hash_t's populated only at
ctf_bufopen time, they are now a ctf_names_t structure, which is a pair
of ctf_hash_t and ctf_dynhash_t, with the ctf_hash_t portion being used
in readonly dictionaries, and the ctf_dynhash_t being used in writable
ones. The decision as to which to use is centralized in the new
functions ctf_lookup_by_rawname (which takes a type kind) and
ctf_lookup_by_rawhash, which it calls (which takes a ctf_names_t *.)
This change lets us switch from using static to dynamic name hashes on
the fly across the entirety of libctf without complexifying anything: in
fact, because we now centralize the knowledge about how to map from type
kind to name hash, it actually simplifies things and lets us throw out
quite a lot of now-unnecessary complexity, from ctf_dtnyname (replaced
by the dynamic half of the name tables), through to ctf_dtnextid (now
that a dictionary's static portion is never referenced if the dictionary
is writable, we can just use ctf_typemax to indicate the maximum type:
dynamic or non-dynamic does not matter, and we no longer need to track
the boundary between the types). You can now ctf_rollback() as far as
you like, even past a ctf_update or for that matter a full writeout; all
the iteration functions work just as well on writable as on read-only
dictionaries; ctf_add_type no longer needs expensive duplicated code to
run over the dynamic types hunting for ones it might be interested in;
and the linker no longer needs a hack to call ctf_update so that calling
ctf_add_type is not impossibly expensive.
There is still a bit more complexity: some new code paths in ctf-types.c
need to know how to extract information from dynamic types. This
complexity will go away again in a few months when libctf acquires a
proper intermediate representation.
You can still call ctf_update if you like (it's public API, after all),
but its only effect now is to set the point to which ctf_discard rolls
back.
Obviously *something* still needs to serialize the CTF file before
writeout, and this job is done by ctf_serialize, which does everything
ctf_update used to except set the counter used by ctf_discard. It is
automatically called by the various functions that do CTF writeout:
nobody else ever needs to call it.
With this in place, forwards that are promoted to non-forwards no longer
crash the link, even if it happens tens of thousands of types later.
v5: fix tabdamage.
libctf/
* ctf-impl.h (ctf_names_t): New.
(ctf_lookup_t) <ctf_hash>: Now a ctf_names_t, not a ctf_hash_t.
(ctf_file_t) <ctf_structs>: Likewise.
<ctf_unions>: Likewise.
<ctf_enums>: Likewise.
<ctf_names>: Likewise.
<ctf_lookups>: Improve comment.
<ctf_ptrtab_len>: New.
<ctf_prov_strtab>: New.
<ctf_str_prov_offset>: New.
<ctf_dtbyname>: Remove, redundant to the names hashes.
<ctf_dtnextid>: Remove, redundant to ctf_typemax.
(ctf_dtdef_t) <dtd_name>: Remove.
<dtd_data>: Note that the ctt_name is now populated.
(ctf_str_atom_t) <csa_offset>: This is now the strtab
offset for internal strings too.
<csa_external_offset>: New, the external strtab offset.
(CTF_INDEX_TO_TYPEPTR): Handle the LCTF_RDWR case.
(ctf_name_table): New declaration.
(ctf_lookup_by_rawname): Likewise.
(ctf_lookup_by_rawhash): Likewise.
(ctf_set_ctl_hashes): Likewise.
(ctf_serialize): Likewise.
(ctf_dtd_insert): Adjust.
(ctf_simple_open_internal): Likewise.
(ctf_bufopen_internal): Likewise.
(ctf_list_empty_p): Likewise.
(ctf_str_remove_ref): Likewise.
(ctf_str_add): Returns uint32_t now.
(ctf_str_add_ref): Likewise.
(ctf_str_add_external): Now returns a boolean (int).
* ctf-string.c (ctf_strraw_explicit): Check the ctf_prov_strtab
for strings in the appropriate range.
(ctf_str_create_atoms): Create the ctf_prov_strtab. Detect OOM
when adding the null string to the new strtab.
(ctf_str_free_atoms): Destroy the ctf_prov_strtab.
(ctf_str_add_ref_internal): Add make_provisional argument. If
make_provisional, populate the offset and fill in the
ctf_prov_strtab accordingly.
(ctf_str_add): Return the offset, not the string.
(ctf_str_add_ref): Likewise.
(ctf_str_add_external): Return a success integer.
(ctf_str_remove_ref): New, remove a single ref.
(ctf_str_count_strtab): Do not count the initial null string's
length or the existence or length of any unreferenced internal
atoms.
(ctf_str_populate_sorttab): Skip atoms with no refs.
(ctf_str_write_strtab): Populate the nullstr earlier. Add one
to the cts_len for the null string, since it is no longer done
in ctf_str_count_strtab. Adjust for csa_external_offset rename.
Populate the csa_offset for both internal and external cases.
Flush the ctf_prov_strtab afterwards, and reset the
ctf_str_prov_offset.
* ctf-create.c (ctf_grow_ptrtab): New.
(ctf_create): Call it. Initialize new fields rather than old
ones. Tell ctf_bufopen_internal that this is a writable dictionary.
Set the ctl hashes and data model.
(ctf_update): Rename to...
(ctf_serialize): ... this. Leave a compatibility function behind.
Tell ctf_simple_open_internal that this is a writable dictionary.
Pass the new fields along from the old dictionary. Drop
ctf_dtnextid and ctf_dtbyname. Use ctf_strraw, not dtd_name.
Do not zero out the DTD's ctt_name.
(ctf_prefixed_name): Rename to...
(ctf_name_table): ... this. No longer return a prefixed name: return
the applicable name table instead.
(ctf_dtd_insert): Use it, and use the right name table. Pass in the
kind we're adding. Migrate away from dtd_name.
(ctf_dtd_delete): Adjust similarly. Remove the ref to the
deleted ctt_name.
(ctf_dtd_lookup_type_by_name): Remove.
(ctf_dynamic_type): Always return NULL on read-only dictionaries.
No longer check ctf_dtnextid: check ctf_typemax instead.
(ctf_snapshot): No longer use ctf_dtnextid: use ctf_typemax instead.
(ctf_rollback): Likewise. No longer fail with ECTF_OVERROLLBACK. Use
ctf_name_table and the right name table, and migrate away from
dtd_name as in ctf_dtd_delete.
(ctf_add_generic): Pass in the kind explicitly and pass it to
ctf_dtd_insert. Use ctf_typemax, not ctf_dtnextid. Migrate away
from dtd_name to using ctf_str_add_ref to populate the ctt_name.
Grow the ptrtab if needed.
(ctf_add_encoded): Pass in the kind.
(ctf_add_slice): Likewise.
(ctf_add_array): Likewise.
(ctf_add_function): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_reftype): Likewise. Initialize the ctf_ptrtab, checking
ctt_name rather than dtd_name.
(ctf_add_struct_sized): Pass in the kind. Use
ctf_lookup_by_rawname, not ctf_hash_lookup_type /
ctf_dtd_lookup_type_by_name.
(ctf_add_union_sized): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_type): Likewise.
(ctf_compress_write): Call ctf_serialize: adjust for ctf_size not
being initialized until after the call.
(ctf_write_mem): Likewise.
(ctf_write): Likewise.
* ctf-archive.c (arc_write_one_ctf): Likewise.
* ctf-lookup.c (ctf_lookup_by_name): Use ctf_lookuup_by_rawhash, not
ctf_hash_lookup_type.
(ctf_lookup_by_id): No longer check the readonly types if the
dictionary is writable.
* ctf-open.c (init_types): Assert that this dictionary is not
writable. Adjust to use the new name hashes, ctf_name_table,
and ctf_ptrtab_len. GNU style fix for the final ptrtab scan.
(ctf_bufopen_internal): New 'writable' parameter. Flip on LCTF_RDWR
if set. Drop out early when dictionary is writable. Split the
ctf_lookups initialization into...
(ctf_set_cth_hashes): ... this new function.
(ctf_simple_open_internal): Adjust. New 'writable' parameter.
(ctf_simple_open): Adjust accordingly.
(ctf_bufopen): Likewise.
(ctf_file_close): Destroy the appropriate name hashes. No longer
destroy ctf_dtbyname, which is gone.
(ctf_getdatasect): Remove spurious "extern".
* ctf-types.c (ctf_lookup_by_rawname): New, look up types in the
specified name table, given a kind.
(ctf_lookup_by_rawhash): Likewise, given a ctf_names_t *.
(ctf_member_iter): Add support for iterating over the
dynamic type list.
(ctf_enum_iter): Likewise.
(ctf_variable_iter): Likewise.
(ctf_type_rvisit): Likewise.
(ctf_member_info): Add support for types in the dynamic type list.
(ctf_enum_name): Likewise.
(ctf_enum_value): Likewise.
(ctf_func_type_info): Likewise.
(ctf_func_type_args): Likewise.
* ctf-link.c (ctf_accumulate_archive_names): No longer call
ctf_update.
(ctf_link_write): Likewise.
(ctf_link_intern_extern_string): Adjust for new
ctf_str_add_external return value.
(ctf_link_add_strtab): Likewise.
* ctf-util.c (ctf_list_empty_p): New.
2019-08-08 00:55:09 +08:00
|
|
|
fp->ctf_typemax = id.dtd_id;
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
fp->ctf_snapshots = id.snapshot_id;
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2021-03-18 20:37:52 +08:00
|
|
|
/* Note: vlen is the amount of space *allocated* for the vlen. It may well not
|
|
|
|
be the amount of space used (yet): the space used is declared in per-kind
|
|
|
|
fashion in the dtd_data's info word. */
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
static ctf_id_t
|
libctf, include, binutils, gdb, ld: rename ctf_file_t to ctf_dict_t
The naming of the ctf_file_t type in libctf is a historical curiosity.
Back in the Solaris days, CTF dictionaries were originally generated as
a separate file and then (sometimes) merged into objects: hence the
datatype was named ctf_file_t, and known as a "CTF file". Nowadays, raw
CTF is essentially never written to a file on its own, and the datatype
changed name to a "CTF dictionary" years ago. So the term "CTF file"
refers to something that is never a file! This is at best confusing.
The type has also historically been known as a 'CTF container", which is
even more confusing now that we have CTF archives which are *also* a
sort of container (they contain CTF dictionaries), but which are never
referred to as containers in the source code.
So fix this by completing the renaming, renaming ctf_file_t to
ctf_dict_t throughout, and renaming those few functions that refer to
CTF files by name (keeping compatibility aliases) to refer to dicts
instead. Old users who still refer to ctf_file_t will see (harmless)
pointer-compatibility warnings at compile time, but the ABI is unchanged
(since C doesn't mangle names, and ctf_file_t was always an opaque type)
and things will still compile fine as long as -Werror is not specified.
All references to CTF containers and CTF files in the source code are
fixed to refer to CTF dicts instead.
Further (smaller) renamings of annoyingly-named functions to come, as
part of the process of souping up queries across whole archives at once
(needed for the function info and data object sections).
binutils/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* objdump.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_ctf): Likewise. Use ctf_dict_close, not ctf_file_close.
* readelf.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_section_as_ctf): Likewise. Use ctf_dict_close, not
ctf_file_close.
gdb/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctfread.c: Change uses of ctf_file_t to ctf_dict_t.
(ctf_fp_info::~ctf_fp_info): Call ctf_dict_close, not ctf_file_close.
include/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-api.h (ctf_file_t): Rename to...
(ctf_dict_t): ... this. Keep ctf_file_t around for compatibility.
(struct ctf_file): Likewise rename to...
(struct ctf_dict): ... this.
(ctf_file_close): Rename to...
(ctf_dict_close): ... this, keeping compatibility function.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this, keeping compatibility function.
All callers adjusted.
* ctf.h: Rename references to ctf_file_t to ctf_dict_t.
(struct ctf_archive) <ctfa_nfiles>: Rename to...
<ctfa_ndicts>: ... this.
ld/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ldlang.c (ctf_output): This is a ctf_dict_t now.
(lang_ctf_errs_warnings): Rename ctf_file_t to ctf_dict_t.
(ldlang_open_ctf): Adjust comment.
(lang_merge_ctf): Use ctf_dict_close, not ctf_file_close.
* ldelfgen.h (ldelf_examine_strtab_for_ctf): Rename ctf_file_t to
ctf_dict_t. Change opaque declaration accordingly.
* ldelfgen.c (ldelf_examine_strtab_for_ctf): Adjust.
* ldemul.h (examine_strtab_for_ctf): Likewise.
(ldemul_examine_strtab_for_ctf): Likewise.
* ldeuml.c (ldemul_examine_strtab_for_ctf): Likewise.
libctf/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h: Rename ctf_file_t to ctf_dict_t: all declarations
adjusted.
(ctf_fileops): Rename to...
(ctf_dictops): ... this.
(ctf_dedup_t) <cd_id_to_file_t>: Rename to...
<cd_id_to_dict_t>: ... this.
(ctf_file_t): Fix outdated comment.
<ctf_fileops>: Rename to...
<ctf_dictops>: ... this.
(struct ctf_archive_internal) <ctfi_file>: Rename to...
<ctfi_dict>: ... this.
* ctf-archive.c: Rename ctf_file_t to ctf_dict_t.
Rename ctf_archive.ctfa_nfiles to ctfa_ndicts.
Rename ctf_file_close to ctf_dict_close. All users adjusted.
* ctf-create.c: Likewise. Refer to CTF dicts, not CTF containers.
(ctf_bundle_t) <ctb_file>: Rename to...
<ctb_dict): ... this.
* ctf-decl.c: Rename ctf_file_t to ctf_dict_t.
* ctf-dedup.c: Likewise. Rename ctf_file_close to
ctf_dict_close. Refer to CTF dicts, not CTF containers.
* ctf-dump.c: Likewise.
* ctf-error.c: Likewise.
* ctf-hash.c: Likewise.
* ctf-inlines.h: Likewise.
* ctf-labels.c: Likewise.
* ctf-link.c: Likewise.
* ctf-lookup.c: Likewise.
* ctf-open-bfd.c: Likewise.
* ctf-string.c: Likewise.
* ctf-subr.c: Likewise.
* ctf-types.c: Likewise.
* ctf-util.c: Likewise.
* ctf-open.c: Likewise.
(ctf_file_close): Rename to...
(ctf_dict_close): ...this.
(ctf_file_close): New trivial wrapper around ctf_dict_close, for
compatibility.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this.
(ctf_parent_file): New trivial wrapper around ctf_parent_dict, for
compatibility.
* libctf.ver: Add ctf_dict_close and ctf_parent_dict.
2020-11-20 21:34:04 +08:00
|
|
|
ctf_add_generic (ctf_dict_t *fp, uint32_t flag, const char *name, int kind,
|
libctf: eliminate dtd_u, part 1: int/float/slice
This series eliminates a lot of special-case code to handle dynamic
types (types added to writable dicts and not yet serialized).
Historically, when such types have variable-length data in their final
CTF representations, libctf has always worked by adding such types to a
special union (ctf_dtdef_t.dtd_u) in the dynamic type definition
structure, then picking the members out of this structure at
serialization time and packing them into their final form.
This has the advantage that the ctf_add_* code doesn't need to know
anything about the final CTF representation, but the significant
disadvantage that all code that looks up types in any way needs two code
paths, one for dynamic types, one for all others. Historically libctf
"handled" this by not supporting most type lookups on dynamic types at
all until ctf_update was called to do a complete reserialization of the
entire dict (it didn't emit an error, it just emitted wrong results).
Since commit 676c3ecbad6e9c4, which eliminated ctf_update in favour of
the internal-only ctf_serialize function, all the type-lookup paths
grew an extra branch to handle dynamic types.
We can eliminate this branch again by dropping the dtd_u stuff and
simply writing out the vlen in (close to) its final form at ctf_add_*
time: type lookup for types using this approach is then identical for
types in writable dicts and types that are in read-only ones, and
serialization is also simplified (we just need to write out the vlen
we already created).
The only complexity lies in type kinds for which multiple
vlen representations are valid depending on properties of the type,
e.g. structures. But we can start simple, adjusting ints, floats,
and slices to work this way, and leaving everything else as is.
libctf/ChangeLog
2021-03-18 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h (ctf_dtdef_t) <dtd_u.dtu_enc>: Remove.
<dtd_u.dtu_slice>: Likewise.
<dtd_vlen>: New.
* ctf-create.c (ctf_add_generic): Perhaps allocate it. All
callers adjusted.
(ctf_dtd_delete): Free it.
(ctf_add_slice): Use the dtd_vlen, not dtu_enc.
(ctf_add_encoded): Likewise. Assert that this must be an int or
float.
* ctf-serialize.c (ctf_emit_type_sect): Just copy the dtd_vlen.
* ctf-dedup.c (ctf_dedup_rhash_type): Use the dtd_vlen, not
dtu_slice.
* ctf-types.c (ctf_type_reference): Likewise.
(ctf_type_encoding): Remove most dynamic-type-specific code: just
get the vlen from the right place. Report failure to look up the
underlying type's encoding.
2021-03-18 20:37:52 +08:00
|
|
|
size_t vlen, ctf_dtdef_t **rp)
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
{
|
|
|
|
ctf_dtdef_t *dtd;
|
|
|
|
ctf_id_t type;
|
|
|
|
|
|
|
|
if (flag != CTF_ADD_NONROOT && flag != CTF_ADD_ROOT)
|
2023-09-13 17:02:36 +08:00
|
|
|
return (ctf_set_typed_errno (fp, EINVAL));
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
|
libctf: avoid the need to ever use ctf_update
The method of operation of libctf when the dictionary is writable has
before now been that types that are added land in the dynamic type
section, which is a linked list and hash of IDs -> dynamic type
definitions (and, recently a hash of names): the DTDs are a bit of CTF
representing the ctf_type_t and ad hoc C structures representing the
vlen. Historically, libctf was unable to do anything with these types,
not even look them up by ID, let alone by name: if you wanted to do that
say if you were adding a type that depended on one you just added) you
called ctf_update, which serializes all the DTDs into a CTF file and
reopens it, copying its guts over the fp it's called with. The
ctf_updated types are then frozen in amber and unchangeable: all lookups
will return the types in the static portion in preference to the dynamic
portion, and we will refuse to re-add things that already exist in the
static portion (and, of late, in the dynamic portion too). The libctf
machinery remembers the boundary between static and dynamic types and
looks in the right portion for each type. Lots of things still don't
quite work with dynamic types (e.g. getting their size), but enough
works to do a bunch of additions and then a ctf_update, most of the
time.
Except it doesn't, because ctf_add_type finds it necessary to walk the
full dynamic type definition list looking for types with matching names,
so it gets slower and slower with every type you add: fixing this
requires calling ctf_update periodically for no other reason than to
avoid massively slowing things down.
This is all clunky and very slow but kind of works, until you consider
that it is in fact possible and indeed necessary to modify one sort of
type after it has been added: forwards. These are necessarily promoted
to structs, unions or enums, and when they do so *their type ID does not
change*. So all of a sudden we are changing types that already exist in
the static portion. ctf_update gets massively confused by this and
allocates space enough for the forward (with no members), but then emits
the new dynamic type (with all the members) into it. You get an
assertion failure after that, if you're lucky, or a coredump.
So this commit rejigs things a bit and arranges to exclusively use the
dynamic type definitions in writable dictionaries, and the static type
definitions in readable dictionaries: we don't at any time have a mixture
of static and dynamic types, and you don't need to call ctf_update to
make things "appear". The ctf_dtbyname hash I introduced a few months
ago, which maps things like "struct foo" to DTDs, is removed, replaced
instead by a change of type of the four dictionaries which track names.
Rather than just being (unresizable) ctf_hash_t's populated only at
ctf_bufopen time, they are now a ctf_names_t structure, which is a pair
of ctf_hash_t and ctf_dynhash_t, with the ctf_hash_t portion being used
in readonly dictionaries, and the ctf_dynhash_t being used in writable
ones. The decision as to which to use is centralized in the new
functions ctf_lookup_by_rawname (which takes a type kind) and
ctf_lookup_by_rawhash, which it calls (which takes a ctf_names_t *.)
This change lets us switch from using static to dynamic name hashes on
the fly across the entirety of libctf without complexifying anything: in
fact, because we now centralize the knowledge about how to map from type
kind to name hash, it actually simplifies things and lets us throw out
quite a lot of now-unnecessary complexity, from ctf_dtnyname (replaced
by the dynamic half of the name tables), through to ctf_dtnextid (now
that a dictionary's static portion is never referenced if the dictionary
is writable, we can just use ctf_typemax to indicate the maximum type:
dynamic or non-dynamic does not matter, and we no longer need to track
the boundary between the types). You can now ctf_rollback() as far as
you like, even past a ctf_update or for that matter a full writeout; all
the iteration functions work just as well on writable as on read-only
dictionaries; ctf_add_type no longer needs expensive duplicated code to
run over the dynamic types hunting for ones it might be interested in;
and the linker no longer needs a hack to call ctf_update so that calling
ctf_add_type is not impossibly expensive.
There is still a bit more complexity: some new code paths in ctf-types.c
need to know how to extract information from dynamic types. This
complexity will go away again in a few months when libctf acquires a
proper intermediate representation.
You can still call ctf_update if you like (it's public API, after all),
but its only effect now is to set the point to which ctf_discard rolls
back.
Obviously *something* still needs to serialize the CTF file before
writeout, and this job is done by ctf_serialize, which does everything
ctf_update used to except set the counter used by ctf_discard. It is
automatically called by the various functions that do CTF writeout:
nobody else ever needs to call it.
With this in place, forwards that are promoted to non-forwards no longer
crash the link, even if it happens tens of thousands of types later.
v5: fix tabdamage.
libctf/
* ctf-impl.h (ctf_names_t): New.
(ctf_lookup_t) <ctf_hash>: Now a ctf_names_t, not a ctf_hash_t.
(ctf_file_t) <ctf_structs>: Likewise.
<ctf_unions>: Likewise.
<ctf_enums>: Likewise.
<ctf_names>: Likewise.
<ctf_lookups>: Improve comment.
<ctf_ptrtab_len>: New.
<ctf_prov_strtab>: New.
<ctf_str_prov_offset>: New.
<ctf_dtbyname>: Remove, redundant to the names hashes.
<ctf_dtnextid>: Remove, redundant to ctf_typemax.
(ctf_dtdef_t) <dtd_name>: Remove.
<dtd_data>: Note that the ctt_name is now populated.
(ctf_str_atom_t) <csa_offset>: This is now the strtab
offset for internal strings too.
<csa_external_offset>: New, the external strtab offset.
(CTF_INDEX_TO_TYPEPTR): Handle the LCTF_RDWR case.
(ctf_name_table): New declaration.
(ctf_lookup_by_rawname): Likewise.
(ctf_lookup_by_rawhash): Likewise.
(ctf_set_ctl_hashes): Likewise.
(ctf_serialize): Likewise.
(ctf_dtd_insert): Adjust.
(ctf_simple_open_internal): Likewise.
(ctf_bufopen_internal): Likewise.
(ctf_list_empty_p): Likewise.
(ctf_str_remove_ref): Likewise.
(ctf_str_add): Returns uint32_t now.
(ctf_str_add_ref): Likewise.
(ctf_str_add_external): Now returns a boolean (int).
* ctf-string.c (ctf_strraw_explicit): Check the ctf_prov_strtab
for strings in the appropriate range.
(ctf_str_create_atoms): Create the ctf_prov_strtab. Detect OOM
when adding the null string to the new strtab.
(ctf_str_free_atoms): Destroy the ctf_prov_strtab.
(ctf_str_add_ref_internal): Add make_provisional argument. If
make_provisional, populate the offset and fill in the
ctf_prov_strtab accordingly.
(ctf_str_add): Return the offset, not the string.
(ctf_str_add_ref): Likewise.
(ctf_str_add_external): Return a success integer.
(ctf_str_remove_ref): New, remove a single ref.
(ctf_str_count_strtab): Do not count the initial null string's
length or the existence or length of any unreferenced internal
atoms.
(ctf_str_populate_sorttab): Skip atoms with no refs.
(ctf_str_write_strtab): Populate the nullstr earlier. Add one
to the cts_len for the null string, since it is no longer done
in ctf_str_count_strtab. Adjust for csa_external_offset rename.
Populate the csa_offset for both internal and external cases.
Flush the ctf_prov_strtab afterwards, and reset the
ctf_str_prov_offset.
* ctf-create.c (ctf_grow_ptrtab): New.
(ctf_create): Call it. Initialize new fields rather than old
ones. Tell ctf_bufopen_internal that this is a writable dictionary.
Set the ctl hashes and data model.
(ctf_update): Rename to...
(ctf_serialize): ... this. Leave a compatibility function behind.
Tell ctf_simple_open_internal that this is a writable dictionary.
Pass the new fields along from the old dictionary. Drop
ctf_dtnextid and ctf_dtbyname. Use ctf_strraw, not dtd_name.
Do not zero out the DTD's ctt_name.
(ctf_prefixed_name): Rename to...
(ctf_name_table): ... this. No longer return a prefixed name: return
the applicable name table instead.
(ctf_dtd_insert): Use it, and use the right name table. Pass in the
kind we're adding. Migrate away from dtd_name.
(ctf_dtd_delete): Adjust similarly. Remove the ref to the
deleted ctt_name.
(ctf_dtd_lookup_type_by_name): Remove.
(ctf_dynamic_type): Always return NULL on read-only dictionaries.
No longer check ctf_dtnextid: check ctf_typemax instead.
(ctf_snapshot): No longer use ctf_dtnextid: use ctf_typemax instead.
(ctf_rollback): Likewise. No longer fail with ECTF_OVERROLLBACK. Use
ctf_name_table and the right name table, and migrate away from
dtd_name as in ctf_dtd_delete.
(ctf_add_generic): Pass in the kind explicitly and pass it to
ctf_dtd_insert. Use ctf_typemax, not ctf_dtnextid. Migrate away
from dtd_name to using ctf_str_add_ref to populate the ctt_name.
Grow the ptrtab if needed.
(ctf_add_encoded): Pass in the kind.
(ctf_add_slice): Likewise.
(ctf_add_array): Likewise.
(ctf_add_function): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_reftype): Likewise. Initialize the ctf_ptrtab, checking
ctt_name rather than dtd_name.
(ctf_add_struct_sized): Pass in the kind. Use
ctf_lookup_by_rawname, not ctf_hash_lookup_type /
ctf_dtd_lookup_type_by_name.
(ctf_add_union_sized): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_type): Likewise.
(ctf_compress_write): Call ctf_serialize: adjust for ctf_size not
being initialized until after the call.
(ctf_write_mem): Likewise.
(ctf_write): Likewise.
* ctf-archive.c (arc_write_one_ctf): Likewise.
* ctf-lookup.c (ctf_lookup_by_name): Use ctf_lookuup_by_rawhash, not
ctf_hash_lookup_type.
(ctf_lookup_by_id): No longer check the readonly types if the
dictionary is writable.
* ctf-open.c (init_types): Assert that this dictionary is not
writable. Adjust to use the new name hashes, ctf_name_table,
and ctf_ptrtab_len. GNU style fix for the final ptrtab scan.
(ctf_bufopen_internal): New 'writable' parameter. Flip on LCTF_RDWR
if set. Drop out early when dictionary is writable. Split the
ctf_lookups initialization into...
(ctf_set_cth_hashes): ... this new function.
(ctf_simple_open_internal): Adjust. New 'writable' parameter.
(ctf_simple_open): Adjust accordingly.
(ctf_bufopen): Likewise.
(ctf_file_close): Destroy the appropriate name hashes. No longer
destroy ctf_dtbyname, which is gone.
(ctf_getdatasect): Remove spurious "extern".
* ctf-types.c (ctf_lookup_by_rawname): New, look up types in the
specified name table, given a kind.
(ctf_lookup_by_rawhash): Likewise, given a ctf_names_t *.
(ctf_member_iter): Add support for iterating over the
dynamic type list.
(ctf_enum_iter): Likewise.
(ctf_variable_iter): Likewise.
(ctf_type_rvisit): Likewise.
(ctf_member_info): Add support for types in the dynamic type list.
(ctf_enum_name): Likewise.
(ctf_enum_value): Likewise.
(ctf_func_type_info): Likewise.
(ctf_func_type_args): Likewise.
* ctf-link.c (ctf_accumulate_archive_names): No longer call
ctf_update.
(ctf_link_write): Likewise.
(ctf_link_intern_extern_string): Adjust for new
ctf_str_add_external return value.
(ctf_link_add_strtab): Likewise.
* ctf-util.c (ctf_list_empty_p): New.
2019-08-08 00:55:09 +08:00
|
|
|
if (LCTF_INDEX_TO_TYPE (fp, fp->ctf_typemax, 1) >= CTF_MAX_TYPE)
|
2023-09-13 17:02:36 +08:00
|
|
|
return (ctf_set_typed_errno (fp, ECTF_FULL));
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
|
libctf: avoid the need to ever use ctf_update
The method of operation of libctf when the dictionary is writable has
before now been that types that are added land in the dynamic type
section, which is a linked list and hash of IDs -> dynamic type
definitions (and, recently a hash of names): the DTDs are a bit of CTF
representing the ctf_type_t and ad hoc C structures representing the
vlen. Historically, libctf was unable to do anything with these types,
not even look them up by ID, let alone by name: if you wanted to do that
say if you were adding a type that depended on one you just added) you
called ctf_update, which serializes all the DTDs into a CTF file and
reopens it, copying its guts over the fp it's called with. The
ctf_updated types are then frozen in amber and unchangeable: all lookups
will return the types in the static portion in preference to the dynamic
portion, and we will refuse to re-add things that already exist in the
static portion (and, of late, in the dynamic portion too). The libctf
machinery remembers the boundary between static and dynamic types and
looks in the right portion for each type. Lots of things still don't
quite work with dynamic types (e.g. getting their size), but enough
works to do a bunch of additions and then a ctf_update, most of the
time.
Except it doesn't, because ctf_add_type finds it necessary to walk the
full dynamic type definition list looking for types with matching names,
so it gets slower and slower with every type you add: fixing this
requires calling ctf_update periodically for no other reason than to
avoid massively slowing things down.
This is all clunky and very slow but kind of works, until you consider
that it is in fact possible and indeed necessary to modify one sort of
type after it has been added: forwards. These are necessarily promoted
to structs, unions or enums, and when they do so *their type ID does not
change*. So all of a sudden we are changing types that already exist in
the static portion. ctf_update gets massively confused by this and
allocates space enough for the forward (with no members), but then emits
the new dynamic type (with all the members) into it. You get an
assertion failure after that, if you're lucky, or a coredump.
So this commit rejigs things a bit and arranges to exclusively use the
dynamic type definitions in writable dictionaries, and the static type
definitions in readable dictionaries: we don't at any time have a mixture
of static and dynamic types, and you don't need to call ctf_update to
make things "appear". The ctf_dtbyname hash I introduced a few months
ago, which maps things like "struct foo" to DTDs, is removed, replaced
instead by a change of type of the four dictionaries which track names.
Rather than just being (unresizable) ctf_hash_t's populated only at
ctf_bufopen time, they are now a ctf_names_t structure, which is a pair
of ctf_hash_t and ctf_dynhash_t, with the ctf_hash_t portion being used
in readonly dictionaries, and the ctf_dynhash_t being used in writable
ones. The decision as to which to use is centralized in the new
functions ctf_lookup_by_rawname (which takes a type kind) and
ctf_lookup_by_rawhash, which it calls (which takes a ctf_names_t *.)
This change lets us switch from using static to dynamic name hashes on
the fly across the entirety of libctf without complexifying anything: in
fact, because we now centralize the knowledge about how to map from type
kind to name hash, it actually simplifies things and lets us throw out
quite a lot of now-unnecessary complexity, from ctf_dtnyname (replaced
by the dynamic half of the name tables), through to ctf_dtnextid (now
that a dictionary's static portion is never referenced if the dictionary
is writable, we can just use ctf_typemax to indicate the maximum type:
dynamic or non-dynamic does not matter, and we no longer need to track
the boundary between the types). You can now ctf_rollback() as far as
you like, even past a ctf_update or for that matter a full writeout; all
the iteration functions work just as well on writable as on read-only
dictionaries; ctf_add_type no longer needs expensive duplicated code to
run over the dynamic types hunting for ones it might be interested in;
and the linker no longer needs a hack to call ctf_update so that calling
ctf_add_type is not impossibly expensive.
There is still a bit more complexity: some new code paths in ctf-types.c
need to know how to extract information from dynamic types. This
complexity will go away again in a few months when libctf acquires a
proper intermediate representation.
You can still call ctf_update if you like (it's public API, after all),
but its only effect now is to set the point to which ctf_discard rolls
back.
Obviously *something* still needs to serialize the CTF file before
writeout, and this job is done by ctf_serialize, which does everything
ctf_update used to except set the counter used by ctf_discard. It is
automatically called by the various functions that do CTF writeout:
nobody else ever needs to call it.
With this in place, forwards that are promoted to non-forwards no longer
crash the link, even if it happens tens of thousands of types later.
v5: fix tabdamage.
libctf/
* ctf-impl.h (ctf_names_t): New.
(ctf_lookup_t) <ctf_hash>: Now a ctf_names_t, not a ctf_hash_t.
(ctf_file_t) <ctf_structs>: Likewise.
<ctf_unions>: Likewise.
<ctf_enums>: Likewise.
<ctf_names>: Likewise.
<ctf_lookups>: Improve comment.
<ctf_ptrtab_len>: New.
<ctf_prov_strtab>: New.
<ctf_str_prov_offset>: New.
<ctf_dtbyname>: Remove, redundant to the names hashes.
<ctf_dtnextid>: Remove, redundant to ctf_typemax.
(ctf_dtdef_t) <dtd_name>: Remove.
<dtd_data>: Note that the ctt_name is now populated.
(ctf_str_atom_t) <csa_offset>: This is now the strtab
offset for internal strings too.
<csa_external_offset>: New, the external strtab offset.
(CTF_INDEX_TO_TYPEPTR): Handle the LCTF_RDWR case.
(ctf_name_table): New declaration.
(ctf_lookup_by_rawname): Likewise.
(ctf_lookup_by_rawhash): Likewise.
(ctf_set_ctl_hashes): Likewise.
(ctf_serialize): Likewise.
(ctf_dtd_insert): Adjust.
(ctf_simple_open_internal): Likewise.
(ctf_bufopen_internal): Likewise.
(ctf_list_empty_p): Likewise.
(ctf_str_remove_ref): Likewise.
(ctf_str_add): Returns uint32_t now.
(ctf_str_add_ref): Likewise.
(ctf_str_add_external): Now returns a boolean (int).
* ctf-string.c (ctf_strraw_explicit): Check the ctf_prov_strtab
for strings in the appropriate range.
(ctf_str_create_atoms): Create the ctf_prov_strtab. Detect OOM
when adding the null string to the new strtab.
(ctf_str_free_atoms): Destroy the ctf_prov_strtab.
(ctf_str_add_ref_internal): Add make_provisional argument. If
make_provisional, populate the offset and fill in the
ctf_prov_strtab accordingly.
(ctf_str_add): Return the offset, not the string.
(ctf_str_add_ref): Likewise.
(ctf_str_add_external): Return a success integer.
(ctf_str_remove_ref): New, remove a single ref.
(ctf_str_count_strtab): Do not count the initial null string's
length or the existence or length of any unreferenced internal
atoms.
(ctf_str_populate_sorttab): Skip atoms with no refs.
(ctf_str_write_strtab): Populate the nullstr earlier. Add one
to the cts_len for the null string, since it is no longer done
in ctf_str_count_strtab. Adjust for csa_external_offset rename.
Populate the csa_offset for both internal and external cases.
Flush the ctf_prov_strtab afterwards, and reset the
ctf_str_prov_offset.
* ctf-create.c (ctf_grow_ptrtab): New.
(ctf_create): Call it. Initialize new fields rather than old
ones. Tell ctf_bufopen_internal that this is a writable dictionary.
Set the ctl hashes and data model.
(ctf_update): Rename to...
(ctf_serialize): ... this. Leave a compatibility function behind.
Tell ctf_simple_open_internal that this is a writable dictionary.
Pass the new fields along from the old dictionary. Drop
ctf_dtnextid and ctf_dtbyname. Use ctf_strraw, not dtd_name.
Do not zero out the DTD's ctt_name.
(ctf_prefixed_name): Rename to...
(ctf_name_table): ... this. No longer return a prefixed name: return
the applicable name table instead.
(ctf_dtd_insert): Use it, and use the right name table. Pass in the
kind we're adding. Migrate away from dtd_name.
(ctf_dtd_delete): Adjust similarly. Remove the ref to the
deleted ctt_name.
(ctf_dtd_lookup_type_by_name): Remove.
(ctf_dynamic_type): Always return NULL on read-only dictionaries.
No longer check ctf_dtnextid: check ctf_typemax instead.
(ctf_snapshot): No longer use ctf_dtnextid: use ctf_typemax instead.
(ctf_rollback): Likewise. No longer fail with ECTF_OVERROLLBACK. Use
ctf_name_table and the right name table, and migrate away from
dtd_name as in ctf_dtd_delete.
(ctf_add_generic): Pass in the kind explicitly and pass it to
ctf_dtd_insert. Use ctf_typemax, not ctf_dtnextid. Migrate away
from dtd_name to using ctf_str_add_ref to populate the ctt_name.
Grow the ptrtab if needed.
(ctf_add_encoded): Pass in the kind.
(ctf_add_slice): Likewise.
(ctf_add_array): Likewise.
(ctf_add_function): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_reftype): Likewise. Initialize the ctf_ptrtab, checking
ctt_name rather than dtd_name.
(ctf_add_struct_sized): Pass in the kind. Use
ctf_lookup_by_rawname, not ctf_hash_lookup_type /
ctf_dtd_lookup_type_by_name.
(ctf_add_union_sized): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_type): Likewise.
(ctf_compress_write): Call ctf_serialize: adjust for ctf_size not
being initialized until after the call.
(ctf_write_mem): Likewise.
(ctf_write): Likewise.
* ctf-archive.c (arc_write_one_ctf): Likewise.
* ctf-lookup.c (ctf_lookup_by_name): Use ctf_lookuup_by_rawhash, not
ctf_hash_lookup_type.
(ctf_lookup_by_id): No longer check the readonly types if the
dictionary is writable.
* ctf-open.c (init_types): Assert that this dictionary is not
writable. Adjust to use the new name hashes, ctf_name_table,
and ctf_ptrtab_len. GNU style fix for the final ptrtab scan.
(ctf_bufopen_internal): New 'writable' parameter. Flip on LCTF_RDWR
if set. Drop out early when dictionary is writable. Split the
ctf_lookups initialization into...
(ctf_set_cth_hashes): ... this new function.
(ctf_simple_open_internal): Adjust. New 'writable' parameter.
(ctf_simple_open): Adjust accordingly.
(ctf_bufopen): Likewise.
(ctf_file_close): Destroy the appropriate name hashes. No longer
destroy ctf_dtbyname, which is gone.
(ctf_getdatasect): Remove spurious "extern".
* ctf-types.c (ctf_lookup_by_rawname): New, look up types in the
specified name table, given a kind.
(ctf_lookup_by_rawhash): Likewise, given a ctf_names_t *.
(ctf_member_iter): Add support for iterating over the
dynamic type list.
(ctf_enum_iter): Likewise.
(ctf_variable_iter): Likewise.
(ctf_type_rvisit): Likewise.
(ctf_member_info): Add support for types in the dynamic type list.
(ctf_enum_name): Likewise.
(ctf_enum_value): Likewise.
(ctf_func_type_info): Likewise.
(ctf_func_type_args): Likewise.
* ctf-link.c (ctf_accumulate_archive_names): No longer call
ctf_update.
(ctf_link_write): Likewise.
(ctf_link_intern_extern_string): Adjust for new
ctf_str_add_external return value.
(ctf_link_add_strtab): Likewise.
* ctf-util.c (ctf_list_empty_p): New.
2019-08-08 00:55:09 +08:00
|
|
|
if (LCTF_INDEX_TO_TYPE (fp, fp->ctf_typemax, 1) == (CTF_MAX_PTYPE - 1))
|
2023-09-13 17:02:36 +08:00
|
|
|
return (ctf_set_typed_errno (fp, ECTF_FULL));
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
|
libctf: support addition of types to dicts read via ctf_open()
libctf has long declared deserialized dictionaries (out of files or ELF
sections or memory buffers or whatever) to be read-only: back in the
furthest prehistory this was not the case, in that you could add a
few sorts of type to such dicts, but attempting to do so often caused
horrible memory corruption, so I banned the lot.
But it turns out real consumers want it (notably DTrace, which
synthesises pointers to types that don't have them and adds them to the
ctf_open()ed dicts if it needs them). Let's bring it back again, but
without the memory corruption and without the massive code duplication
required in days of yore to distinguish between static and dynamic
types: the representation of both types has been identical for a few
years, with the only difference being that types as a whole are stored in
a big buffer for types read in via ctf_open and per-type hashtables for
newly-added types.
So we discard the internally-visible concept of "readonly dictionaries"
in favour of declaring the *range of types* that were already present
when the dict was read in to be read-only: you can't modify them (say,
by adding members to them if they're structs, or calling ctf_set_array
on them), but you can add more types and point to them. (The API
remains the same, with calls sometimes returning ECTF_RDONLY, but now
they do so less often.)
This is a fairly invasive change, mostly because code written since the
ban was introduced didn't take the possibility of a static/dynamic split
into account. Some of these irregularities were hard to define as
anything but bugs.
Notably:
- The symbol handling was assuming that symbols only needed to be
looked for in dynamic hashtabs or static linker-laid-out indexed/
nonindexed layouts, but now we want to check both in case people
added more symbols to a dict they opened.
- The code that handles type additions wasn't checking to see if types
with the same name existed *at all* (so you could do
ctf_add_typedef (fp, "foo", bar) repeatedly without error). This
seems reasonable for types you just added, but we probably *do* want
to ban addition of types with names that override names we already
used in the ctf_open()ed portion, since that would probably corrupt
existing type relationships. (Doing things this way also avoids
causing new errors for any existing code that was doing this sort of
thing.)
- ctf_lookup_variable entirely failed to work for variables just added
by ctf_add_variable: you had to write the dict out and read it back
in again before they appeared.
- The symbol handling remembered what symbols you looked up but didn't
remember their types, so you could look up an object symbol and then
find it popping up when you asked for function symbols, which seems
less than ideal. Since we had to rejig things enough to be able to
distinguish function and object symbols internally anyway (in order
to give suitable errors if you try to add a symbol with a name that
already existed in the ctf_open()ed dict), this bug suddenly became
more visible and was easily fixed.
We do not (yet) support writing out dicts that have been previously read
in via ctf_open() or other deserializer (you can look things up in them,
but not write them out a second time). This never worked, so there is
no incompatibility; if it is needed at a later date, the serializer is a
little bit closer to having it work now (the only table we don't deal
with is the types table, and that's because the upcoming CTFv4 changes
are likely to make major changes to the way that table is represented
internally, so adding more code that depends on its current form seems
like a bad idea).
There is a new testcase that tests much of this, in particular that
modification of existing types is still banned and that you can add new
ones and chase them without error.
libctf/
* ctf-impl.h (struct ctf_dict.ctf_symhash): Split into...
(ctf_dict.ctf_symhash_func): ... this and...
(ctf_dict.ctf_symhash_objt): ... this.
(ctf_dict.ctf_stypes): New, counts static types.
(LCTF_INDEX_TO_TYPEPTR): Use it instead of CTF_RDWR.
(LCTF_RDWR): Deleted.
(LCTF_DIRTY): Renumbered.
(LCTF_LINKING): Likewise.
(ctf_lookup_variable_here): New.
(ctf_lookup_by_sym_or_name): Likewise.
(ctf_symbol_next_static): Likewise.
(ctf_add_variable_forced): Likewise.
(ctf_add_funcobjt_sym_forced): Likewise.
(ctf_simple_open_internal): Adjust.
(ctf_bufopen_internal): Likewise.
* ctf-create.c (ctf_grow_ptrtab): Adjust a lot to start with.
(ctf_create): Migrate a bunch of initializations into bufopen.
Force recreation of name tables. Do not forcibly override the
model, let ctf_bufopen do it.
(ctf_static_type): New.
(ctf_update): Drop LCTF_RDWR check.
(ctf_dynamic_type): Likewise.
(ctf_add_function): Likewise.
(ctf_add_type_internal): Likewise.
(ctf_rollback): Check ctf_stypes, not LCTF_RDWR.
(ctf_set_array): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_enumerator): Likewise (only on the target dict).
(ctf_add_member_offset): Likewise.
(ctf_add_generic): Drop LCTF_RDWR check. Ban addition of types
with colliding names.
(ctf_add_forward): Note safety under the new rules.
(ctf_add_variable): Split all but the existence check into...
(ctf_add_variable_forced): ... this new function.
(ctf_add_funcobjt_sym): Likewise...
(ctf_add_funcobjt_sym_forced): ... for this new function.
* ctf-link.c (ctf_link_add_linker_symbol): Ban calling on dicts
with any stypes.
(ctf_link_add_strtab): Likewise.
(ctf_link_shuffle_syms): Likewise.
(ctf_link_intern_extern_string): Note pre-existing prohibition.
* ctf-lookup.c (ctf_lookup_by_id): Drop LCTF_RDWR check.
(ctf_lookup_variable): Split out looking in a dict but not
its parent into...
(ctf_lookup_variable_here): ... this new function.
(ctf_lookup_symbol_idx): Track whether looking up a function or
object: cache them separately.
(ctf_symbol_next): Split out looking in non-dynamic symtypetab
entries to...
(ctf_symbol_next_static): ... this new function. Don't get confused
by the simultaneous presence of static and dynamic symtypetab entries.
(ctf_try_lookup_indexed): Don't waste time looking up symbols by
index before there can be any idea how symbols are numbered.
(ctf_lookup_by_sym_or_name): Distinguish between function and
data object lookups. Drop LCTF_RDWR.
(ctf_lookup_by_symbol): Adjust.
(ctf_lookup_by_symbol_name): Likewise.
* ctf-open.c (init_types): Rename to...
(init_static_types): ... this. Drop LCTF_RDWR. Populate ctf_stypes.
(ctf_simple_open): Drop writable arg.
(ctf_simple_open_internal): Likewise.
(ctf_bufopen): Likewise.
(ctf_bufopen_internal): Populate fields only used for writable dicts.
Drop LCTF_RDWR.
(ctf_dict_close): Cater for symhash cache split.
* ctf-serialize.c (ctf_serialize): Use ctf_stypes, not LCTF_RDWR.
* ctf-types.c (ctf_variable_next): Drop LCTF_RDWR.
* testsuite/libctf-lookup/add-to-opened*: New test.
2023-12-20 00:58:19 +08:00
|
|
|
/* Prohibit addition of a root-visible type that is already present
|
|
|
|
in the non-dynamic portion. */
|
|
|
|
|
|
|
|
if (flag == CTF_ADD_ROOT && name != NULL && name[0] != '\0')
|
|
|
|
{
|
|
|
|
ctf_id_t existing;
|
|
|
|
|
|
|
|
if (((existing = ctf_dynhash_lookup_type (ctf_name_table (fp, kind),
|
|
|
|
name)) > 0)
|
|
|
|
&& ctf_static_type (fp, existing))
|
|
|
|
return (ctf_set_typed_errno (fp, ECTF_RDONLY));
|
|
|
|
}
|
|
|
|
|
libctf: avoid the need to ever use ctf_update
The method of operation of libctf when the dictionary is writable has
before now been that types that are added land in the dynamic type
section, which is a linked list and hash of IDs -> dynamic type
definitions (and, recently a hash of names): the DTDs are a bit of CTF
representing the ctf_type_t and ad hoc C structures representing the
vlen. Historically, libctf was unable to do anything with these types,
not even look them up by ID, let alone by name: if you wanted to do that
say if you were adding a type that depended on one you just added) you
called ctf_update, which serializes all the DTDs into a CTF file and
reopens it, copying its guts over the fp it's called with. The
ctf_updated types are then frozen in amber and unchangeable: all lookups
will return the types in the static portion in preference to the dynamic
portion, and we will refuse to re-add things that already exist in the
static portion (and, of late, in the dynamic portion too). The libctf
machinery remembers the boundary between static and dynamic types and
looks in the right portion for each type. Lots of things still don't
quite work with dynamic types (e.g. getting their size), but enough
works to do a bunch of additions and then a ctf_update, most of the
time.
Except it doesn't, because ctf_add_type finds it necessary to walk the
full dynamic type definition list looking for types with matching names,
so it gets slower and slower with every type you add: fixing this
requires calling ctf_update periodically for no other reason than to
avoid massively slowing things down.
This is all clunky and very slow but kind of works, until you consider
that it is in fact possible and indeed necessary to modify one sort of
type after it has been added: forwards. These are necessarily promoted
to structs, unions or enums, and when they do so *their type ID does not
change*. So all of a sudden we are changing types that already exist in
the static portion. ctf_update gets massively confused by this and
allocates space enough for the forward (with no members), but then emits
the new dynamic type (with all the members) into it. You get an
assertion failure after that, if you're lucky, or a coredump.
So this commit rejigs things a bit and arranges to exclusively use the
dynamic type definitions in writable dictionaries, and the static type
definitions in readable dictionaries: we don't at any time have a mixture
of static and dynamic types, and you don't need to call ctf_update to
make things "appear". The ctf_dtbyname hash I introduced a few months
ago, which maps things like "struct foo" to DTDs, is removed, replaced
instead by a change of type of the four dictionaries which track names.
Rather than just being (unresizable) ctf_hash_t's populated only at
ctf_bufopen time, they are now a ctf_names_t structure, which is a pair
of ctf_hash_t and ctf_dynhash_t, with the ctf_hash_t portion being used
in readonly dictionaries, and the ctf_dynhash_t being used in writable
ones. The decision as to which to use is centralized in the new
functions ctf_lookup_by_rawname (which takes a type kind) and
ctf_lookup_by_rawhash, which it calls (which takes a ctf_names_t *.)
This change lets us switch from using static to dynamic name hashes on
the fly across the entirety of libctf without complexifying anything: in
fact, because we now centralize the knowledge about how to map from type
kind to name hash, it actually simplifies things and lets us throw out
quite a lot of now-unnecessary complexity, from ctf_dtnyname (replaced
by the dynamic half of the name tables), through to ctf_dtnextid (now
that a dictionary's static portion is never referenced if the dictionary
is writable, we can just use ctf_typemax to indicate the maximum type:
dynamic or non-dynamic does not matter, and we no longer need to track
the boundary between the types). You can now ctf_rollback() as far as
you like, even past a ctf_update or for that matter a full writeout; all
the iteration functions work just as well on writable as on read-only
dictionaries; ctf_add_type no longer needs expensive duplicated code to
run over the dynamic types hunting for ones it might be interested in;
and the linker no longer needs a hack to call ctf_update so that calling
ctf_add_type is not impossibly expensive.
There is still a bit more complexity: some new code paths in ctf-types.c
need to know how to extract information from dynamic types. This
complexity will go away again in a few months when libctf acquires a
proper intermediate representation.
You can still call ctf_update if you like (it's public API, after all),
but its only effect now is to set the point to which ctf_discard rolls
back.
Obviously *something* still needs to serialize the CTF file before
writeout, and this job is done by ctf_serialize, which does everything
ctf_update used to except set the counter used by ctf_discard. It is
automatically called by the various functions that do CTF writeout:
nobody else ever needs to call it.
With this in place, forwards that are promoted to non-forwards no longer
crash the link, even if it happens tens of thousands of types later.
v5: fix tabdamage.
libctf/
* ctf-impl.h (ctf_names_t): New.
(ctf_lookup_t) <ctf_hash>: Now a ctf_names_t, not a ctf_hash_t.
(ctf_file_t) <ctf_structs>: Likewise.
<ctf_unions>: Likewise.
<ctf_enums>: Likewise.
<ctf_names>: Likewise.
<ctf_lookups>: Improve comment.
<ctf_ptrtab_len>: New.
<ctf_prov_strtab>: New.
<ctf_str_prov_offset>: New.
<ctf_dtbyname>: Remove, redundant to the names hashes.
<ctf_dtnextid>: Remove, redundant to ctf_typemax.
(ctf_dtdef_t) <dtd_name>: Remove.
<dtd_data>: Note that the ctt_name is now populated.
(ctf_str_atom_t) <csa_offset>: This is now the strtab
offset for internal strings too.
<csa_external_offset>: New, the external strtab offset.
(CTF_INDEX_TO_TYPEPTR): Handle the LCTF_RDWR case.
(ctf_name_table): New declaration.
(ctf_lookup_by_rawname): Likewise.
(ctf_lookup_by_rawhash): Likewise.
(ctf_set_ctl_hashes): Likewise.
(ctf_serialize): Likewise.
(ctf_dtd_insert): Adjust.
(ctf_simple_open_internal): Likewise.
(ctf_bufopen_internal): Likewise.
(ctf_list_empty_p): Likewise.
(ctf_str_remove_ref): Likewise.
(ctf_str_add): Returns uint32_t now.
(ctf_str_add_ref): Likewise.
(ctf_str_add_external): Now returns a boolean (int).
* ctf-string.c (ctf_strraw_explicit): Check the ctf_prov_strtab
for strings in the appropriate range.
(ctf_str_create_atoms): Create the ctf_prov_strtab. Detect OOM
when adding the null string to the new strtab.
(ctf_str_free_atoms): Destroy the ctf_prov_strtab.
(ctf_str_add_ref_internal): Add make_provisional argument. If
make_provisional, populate the offset and fill in the
ctf_prov_strtab accordingly.
(ctf_str_add): Return the offset, not the string.
(ctf_str_add_ref): Likewise.
(ctf_str_add_external): Return a success integer.
(ctf_str_remove_ref): New, remove a single ref.
(ctf_str_count_strtab): Do not count the initial null string's
length or the existence or length of any unreferenced internal
atoms.
(ctf_str_populate_sorttab): Skip atoms with no refs.
(ctf_str_write_strtab): Populate the nullstr earlier. Add one
to the cts_len for the null string, since it is no longer done
in ctf_str_count_strtab. Adjust for csa_external_offset rename.
Populate the csa_offset for both internal and external cases.
Flush the ctf_prov_strtab afterwards, and reset the
ctf_str_prov_offset.
* ctf-create.c (ctf_grow_ptrtab): New.
(ctf_create): Call it. Initialize new fields rather than old
ones. Tell ctf_bufopen_internal that this is a writable dictionary.
Set the ctl hashes and data model.
(ctf_update): Rename to...
(ctf_serialize): ... this. Leave a compatibility function behind.
Tell ctf_simple_open_internal that this is a writable dictionary.
Pass the new fields along from the old dictionary. Drop
ctf_dtnextid and ctf_dtbyname. Use ctf_strraw, not dtd_name.
Do not zero out the DTD's ctt_name.
(ctf_prefixed_name): Rename to...
(ctf_name_table): ... this. No longer return a prefixed name: return
the applicable name table instead.
(ctf_dtd_insert): Use it, and use the right name table. Pass in the
kind we're adding. Migrate away from dtd_name.
(ctf_dtd_delete): Adjust similarly. Remove the ref to the
deleted ctt_name.
(ctf_dtd_lookup_type_by_name): Remove.
(ctf_dynamic_type): Always return NULL on read-only dictionaries.
No longer check ctf_dtnextid: check ctf_typemax instead.
(ctf_snapshot): No longer use ctf_dtnextid: use ctf_typemax instead.
(ctf_rollback): Likewise. No longer fail with ECTF_OVERROLLBACK. Use
ctf_name_table and the right name table, and migrate away from
dtd_name as in ctf_dtd_delete.
(ctf_add_generic): Pass in the kind explicitly and pass it to
ctf_dtd_insert. Use ctf_typemax, not ctf_dtnextid. Migrate away
from dtd_name to using ctf_str_add_ref to populate the ctt_name.
Grow the ptrtab if needed.
(ctf_add_encoded): Pass in the kind.
(ctf_add_slice): Likewise.
(ctf_add_array): Likewise.
(ctf_add_function): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_reftype): Likewise. Initialize the ctf_ptrtab, checking
ctt_name rather than dtd_name.
(ctf_add_struct_sized): Pass in the kind. Use
ctf_lookup_by_rawname, not ctf_hash_lookup_type /
ctf_dtd_lookup_type_by_name.
(ctf_add_union_sized): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_type): Likewise.
(ctf_compress_write): Call ctf_serialize: adjust for ctf_size not
being initialized until after the call.
(ctf_write_mem): Likewise.
(ctf_write): Likewise.
* ctf-archive.c (arc_write_one_ctf): Likewise.
* ctf-lookup.c (ctf_lookup_by_name): Use ctf_lookuup_by_rawhash, not
ctf_hash_lookup_type.
(ctf_lookup_by_id): No longer check the readonly types if the
dictionary is writable.
* ctf-open.c (init_types): Assert that this dictionary is not
writable. Adjust to use the new name hashes, ctf_name_table,
and ctf_ptrtab_len. GNU style fix for the final ptrtab scan.
(ctf_bufopen_internal): New 'writable' parameter. Flip on LCTF_RDWR
if set. Drop out early when dictionary is writable. Split the
ctf_lookups initialization into...
(ctf_set_cth_hashes): ... this new function.
(ctf_simple_open_internal): Adjust. New 'writable' parameter.
(ctf_simple_open): Adjust accordingly.
(ctf_bufopen): Likewise.
(ctf_file_close): Destroy the appropriate name hashes. No longer
destroy ctf_dtbyname, which is gone.
(ctf_getdatasect): Remove spurious "extern".
* ctf-types.c (ctf_lookup_by_rawname): New, look up types in the
specified name table, given a kind.
(ctf_lookup_by_rawhash): Likewise, given a ctf_names_t *.
(ctf_member_iter): Add support for iterating over the
dynamic type list.
(ctf_enum_iter): Likewise.
(ctf_variable_iter): Likewise.
(ctf_type_rvisit): Likewise.
(ctf_member_info): Add support for types in the dynamic type list.
(ctf_enum_name): Likewise.
(ctf_enum_value): Likewise.
(ctf_func_type_info): Likewise.
(ctf_func_type_args): Likewise.
* ctf-link.c (ctf_accumulate_archive_names): No longer call
ctf_update.
(ctf_link_write): Likewise.
(ctf_link_intern_extern_string): Adjust for new
ctf_str_add_external return value.
(ctf_link_add_strtab): Likewise.
* ctf-util.c (ctf_list_empty_p): New.
2019-08-08 00:55:09 +08:00
|
|
|
/* Make sure ptrtab always grows to be big enough for all types. */
|
|
|
|
if (ctf_grow_ptrtab (fp) < 0)
|
libctf: eliminate dtd_u, part 1: int/float/slice
This series eliminates a lot of special-case code to handle dynamic
types (types added to writable dicts and not yet serialized).
Historically, when such types have variable-length data in their final
CTF representations, libctf has always worked by adding such types to a
special union (ctf_dtdef_t.dtd_u) in the dynamic type definition
structure, then picking the members out of this structure at
serialization time and packing them into their final form.
This has the advantage that the ctf_add_* code doesn't need to know
anything about the final CTF representation, but the significant
disadvantage that all code that looks up types in any way needs two code
paths, one for dynamic types, one for all others. Historically libctf
"handled" this by not supporting most type lookups on dynamic types at
all until ctf_update was called to do a complete reserialization of the
entire dict (it didn't emit an error, it just emitted wrong results).
Since commit 676c3ecbad6e9c4, which eliminated ctf_update in favour of
the internal-only ctf_serialize function, all the type-lookup paths
grew an extra branch to handle dynamic types.
We can eliminate this branch again by dropping the dtd_u stuff and
simply writing out the vlen in (close to) its final form at ctf_add_*
time: type lookup for types using this approach is then identical for
types in writable dicts and types that are in read-only ones, and
serialization is also simplified (we just need to write out the vlen
we already created).
The only complexity lies in type kinds for which multiple
vlen representations are valid depending on properties of the type,
e.g. structures. But we can start simple, adjusting ints, floats,
and slices to work this way, and leaving everything else as is.
libctf/ChangeLog
2021-03-18 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h (ctf_dtdef_t) <dtd_u.dtu_enc>: Remove.
<dtd_u.dtu_slice>: Likewise.
<dtd_vlen>: New.
* ctf-create.c (ctf_add_generic): Perhaps allocate it. All
callers adjusted.
(ctf_dtd_delete): Free it.
(ctf_add_slice): Use the dtd_vlen, not dtu_enc.
(ctf_add_encoded): Likewise. Assert that this must be an int or
float.
* ctf-serialize.c (ctf_emit_type_sect): Just copy the dtd_vlen.
* ctf-dedup.c (ctf_dedup_rhash_type): Use the dtd_vlen, not
dtu_slice.
* ctf-types.c (ctf_type_reference): Likewise.
(ctf_type_encoding): Remove most dynamic-type-specific code: just
get the vlen from the right place. Report failure to look up the
underlying type's encoding.
2021-03-18 20:37:52 +08:00
|
|
|
return CTF_ERR; /* errno is set for us. */
|
libctf: avoid the need to ever use ctf_update
The method of operation of libctf when the dictionary is writable has
before now been that types that are added land in the dynamic type
section, which is a linked list and hash of IDs -> dynamic type
definitions (and, recently a hash of names): the DTDs are a bit of CTF
representing the ctf_type_t and ad hoc C structures representing the
vlen. Historically, libctf was unable to do anything with these types,
not even look them up by ID, let alone by name: if you wanted to do that
say if you were adding a type that depended on one you just added) you
called ctf_update, which serializes all the DTDs into a CTF file and
reopens it, copying its guts over the fp it's called with. The
ctf_updated types are then frozen in amber and unchangeable: all lookups
will return the types in the static portion in preference to the dynamic
portion, and we will refuse to re-add things that already exist in the
static portion (and, of late, in the dynamic portion too). The libctf
machinery remembers the boundary between static and dynamic types and
looks in the right portion for each type. Lots of things still don't
quite work with dynamic types (e.g. getting their size), but enough
works to do a bunch of additions and then a ctf_update, most of the
time.
Except it doesn't, because ctf_add_type finds it necessary to walk the
full dynamic type definition list looking for types with matching names,
so it gets slower and slower with every type you add: fixing this
requires calling ctf_update periodically for no other reason than to
avoid massively slowing things down.
This is all clunky and very slow but kind of works, until you consider
that it is in fact possible and indeed necessary to modify one sort of
type after it has been added: forwards. These are necessarily promoted
to structs, unions or enums, and when they do so *their type ID does not
change*. So all of a sudden we are changing types that already exist in
the static portion. ctf_update gets massively confused by this and
allocates space enough for the forward (with no members), but then emits
the new dynamic type (with all the members) into it. You get an
assertion failure after that, if you're lucky, or a coredump.
So this commit rejigs things a bit and arranges to exclusively use the
dynamic type definitions in writable dictionaries, and the static type
definitions in readable dictionaries: we don't at any time have a mixture
of static and dynamic types, and you don't need to call ctf_update to
make things "appear". The ctf_dtbyname hash I introduced a few months
ago, which maps things like "struct foo" to DTDs, is removed, replaced
instead by a change of type of the four dictionaries which track names.
Rather than just being (unresizable) ctf_hash_t's populated only at
ctf_bufopen time, they are now a ctf_names_t structure, which is a pair
of ctf_hash_t and ctf_dynhash_t, with the ctf_hash_t portion being used
in readonly dictionaries, and the ctf_dynhash_t being used in writable
ones. The decision as to which to use is centralized in the new
functions ctf_lookup_by_rawname (which takes a type kind) and
ctf_lookup_by_rawhash, which it calls (which takes a ctf_names_t *.)
This change lets us switch from using static to dynamic name hashes on
the fly across the entirety of libctf without complexifying anything: in
fact, because we now centralize the knowledge about how to map from type
kind to name hash, it actually simplifies things and lets us throw out
quite a lot of now-unnecessary complexity, from ctf_dtnyname (replaced
by the dynamic half of the name tables), through to ctf_dtnextid (now
that a dictionary's static portion is never referenced if the dictionary
is writable, we can just use ctf_typemax to indicate the maximum type:
dynamic or non-dynamic does not matter, and we no longer need to track
the boundary between the types). You can now ctf_rollback() as far as
you like, even past a ctf_update or for that matter a full writeout; all
the iteration functions work just as well on writable as on read-only
dictionaries; ctf_add_type no longer needs expensive duplicated code to
run over the dynamic types hunting for ones it might be interested in;
and the linker no longer needs a hack to call ctf_update so that calling
ctf_add_type is not impossibly expensive.
There is still a bit more complexity: some new code paths in ctf-types.c
need to know how to extract information from dynamic types. This
complexity will go away again in a few months when libctf acquires a
proper intermediate representation.
You can still call ctf_update if you like (it's public API, after all),
but its only effect now is to set the point to which ctf_discard rolls
back.
Obviously *something* still needs to serialize the CTF file before
writeout, and this job is done by ctf_serialize, which does everything
ctf_update used to except set the counter used by ctf_discard. It is
automatically called by the various functions that do CTF writeout:
nobody else ever needs to call it.
With this in place, forwards that are promoted to non-forwards no longer
crash the link, even if it happens tens of thousands of types later.
v5: fix tabdamage.
libctf/
* ctf-impl.h (ctf_names_t): New.
(ctf_lookup_t) <ctf_hash>: Now a ctf_names_t, not a ctf_hash_t.
(ctf_file_t) <ctf_structs>: Likewise.
<ctf_unions>: Likewise.
<ctf_enums>: Likewise.
<ctf_names>: Likewise.
<ctf_lookups>: Improve comment.
<ctf_ptrtab_len>: New.
<ctf_prov_strtab>: New.
<ctf_str_prov_offset>: New.
<ctf_dtbyname>: Remove, redundant to the names hashes.
<ctf_dtnextid>: Remove, redundant to ctf_typemax.
(ctf_dtdef_t) <dtd_name>: Remove.
<dtd_data>: Note that the ctt_name is now populated.
(ctf_str_atom_t) <csa_offset>: This is now the strtab
offset for internal strings too.
<csa_external_offset>: New, the external strtab offset.
(CTF_INDEX_TO_TYPEPTR): Handle the LCTF_RDWR case.
(ctf_name_table): New declaration.
(ctf_lookup_by_rawname): Likewise.
(ctf_lookup_by_rawhash): Likewise.
(ctf_set_ctl_hashes): Likewise.
(ctf_serialize): Likewise.
(ctf_dtd_insert): Adjust.
(ctf_simple_open_internal): Likewise.
(ctf_bufopen_internal): Likewise.
(ctf_list_empty_p): Likewise.
(ctf_str_remove_ref): Likewise.
(ctf_str_add): Returns uint32_t now.
(ctf_str_add_ref): Likewise.
(ctf_str_add_external): Now returns a boolean (int).
* ctf-string.c (ctf_strraw_explicit): Check the ctf_prov_strtab
for strings in the appropriate range.
(ctf_str_create_atoms): Create the ctf_prov_strtab. Detect OOM
when adding the null string to the new strtab.
(ctf_str_free_atoms): Destroy the ctf_prov_strtab.
(ctf_str_add_ref_internal): Add make_provisional argument. If
make_provisional, populate the offset and fill in the
ctf_prov_strtab accordingly.
(ctf_str_add): Return the offset, not the string.
(ctf_str_add_ref): Likewise.
(ctf_str_add_external): Return a success integer.
(ctf_str_remove_ref): New, remove a single ref.
(ctf_str_count_strtab): Do not count the initial null string's
length or the existence or length of any unreferenced internal
atoms.
(ctf_str_populate_sorttab): Skip atoms with no refs.
(ctf_str_write_strtab): Populate the nullstr earlier. Add one
to the cts_len for the null string, since it is no longer done
in ctf_str_count_strtab. Adjust for csa_external_offset rename.
Populate the csa_offset for both internal and external cases.
Flush the ctf_prov_strtab afterwards, and reset the
ctf_str_prov_offset.
* ctf-create.c (ctf_grow_ptrtab): New.
(ctf_create): Call it. Initialize new fields rather than old
ones. Tell ctf_bufopen_internal that this is a writable dictionary.
Set the ctl hashes and data model.
(ctf_update): Rename to...
(ctf_serialize): ... this. Leave a compatibility function behind.
Tell ctf_simple_open_internal that this is a writable dictionary.
Pass the new fields along from the old dictionary. Drop
ctf_dtnextid and ctf_dtbyname. Use ctf_strraw, not dtd_name.
Do not zero out the DTD's ctt_name.
(ctf_prefixed_name): Rename to...
(ctf_name_table): ... this. No longer return a prefixed name: return
the applicable name table instead.
(ctf_dtd_insert): Use it, and use the right name table. Pass in the
kind we're adding. Migrate away from dtd_name.
(ctf_dtd_delete): Adjust similarly. Remove the ref to the
deleted ctt_name.
(ctf_dtd_lookup_type_by_name): Remove.
(ctf_dynamic_type): Always return NULL on read-only dictionaries.
No longer check ctf_dtnextid: check ctf_typemax instead.
(ctf_snapshot): No longer use ctf_dtnextid: use ctf_typemax instead.
(ctf_rollback): Likewise. No longer fail with ECTF_OVERROLLBACK. Use
ctf_name_table and the right name table, and migrate away from
dtd_name as in ctf_dtd_delete.
(ctf_add_generic): Pass in the kind explicitly and pass it to
ctf_dtd_insert. Use ctf_typemax, not ctf_dtnextid. Migrate away
from dtd_name to using ctf_str_add_ref to populate the ctt_name.
Grow the ptrtab if needed.
(ctf_add_encoded): Pass in the kind.
(ctf_add_slice): Likewise.
(ctf_add_array): Likewise.
(ctf_add_function): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_reftype): Likewise. Initialize the ctf_ptrtab, checking
ctt_name rather than dtd_name.
(ctf_add_struct_sized): Pass in the kind. Use
ctf_lookup_by_rawname, not ctf_hash_lookup_type /
ctf_dtd_lookup_type_by_name.
(ctf_add_union_sized): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_type): Likewise.
(ctf_compress_write): Call ctf_serialize: adjust for ctf_size not
being initialized until after the call.
(ctf_write_mem): Likewise.
(ctf_write): Likewise.
* ctf-archive.c (arc_write_one_ctf): Likewise.
* ctf-lookup.c (ctf_lookup_by_name): Use ctf_lookuup_by_rawhash, not
ctf_hash_lookup_type.
(ctf_lookup_by_id): No longer check the readonly types if the
dictionary is writable.
* ctf-open.c (init_types): Assert that this dictionary is not
writable. Adjust to use the new name hashes, ctf_name_table,
and ctf_ptrtab_len. GNU style fix for the final ptrtab scan.
(ctf_bufopen_internal): New 'writable' parameter. Flip on LCTF_RDWR
if set. Drop out early when dictionary is writable. Split the
ctf_lookups initialization into...
(ctf_set_cth_hashes): ... this new function.
(ctf_simple_open_internal): Adjust. New 'writable' parameter.
(ctf_simple_open): Adjust accordingly.
(ctf_bufopen): Likewise.
(ctf_file_close): Destroy the appropriate name hashes. No longer
destroy ctf_dtbyname, which is gone.
(ctf_getdatasect): Remove spurious "extern".
* ctf-types.c (ctf_lookup_by_rawname): New, look up types in the
specified name table, given a kind.
(ctf_lookup_by_rawhash): Likewise, given a ctf_names_t *.
(ctf_member_iter): Add support for iterating over the
dynamic type list.
(ctf_enum_iter): Likewise.
(ctf_variable_iter): Likewise.
(ctf_type_rvisit): Likewise.
(ctf_member_info): Add support for types in the dynamic type list.
(ctf_enum_name): Likewise.
(ctf_enum_value): Likewise.
(ctf_func_type_info): Likewise.
(ctf_func_type_args): Likewise.
* ctf-link.c (ctf_accumulate_archive_names): No longer call
ctf_update.
(ctf_link_write): Likewise.
(ctf_link_intern_extern_string): Adjust for new
ctf_str_add_external return value.
(ctf_link_add_strtab): Likewise.
* ctf-util.c (ctf_list_empty_p): New.
2019-08-08 00:55:09 +08:00
|
|
|
|
libctf: eliminate dtd_u, part 1: int/float/slice
This series eliminates a lot of special-case code to handle dynamic
types (types added to writable dicts and not yet serialized).
Historically, when such types have variable-length data in their final
CTF representations, libctf has always worked by adding such types to a
special union (ctf_dtdef_t.dtd_u) in the dynamic type definition
structure, then picking the members out of this structure at
serialization time and packing them into their final form.
This has the advantage that the ctf_add_* code doesn't need to know
anything about the final CTF representation, but the significant
disadvantage that all code that looks up types in any way needs two code
paths, one for dynamic types, one for all others. Historically libctf
"handled" this by not supporting most type lookups on dynamic types at
all until ctf_update was called to do a complete reserialization of the
entire dict (it didn't emit an error, it just emitted wrong results).
Since commit 676c3ecbad6e9c4, which eliminated ctf_update in favour of
the internal-only ctf_serialize function, all the type-lookup paths
grew an extra branch to handle dynamic types.
We can eliminate this branch again by dropping the dtd_u stuff and
simply writing out the vlen in (close to) its final form at ctf_add_*
time: type lookup for types using this approach is then identical for
types in writable dicts and types that are in read-only ones, and
serialization is also simplified (we just need to write out the vlen
we already created).
The only complexity lies in type kinds for which multiple
vlen representations are valid depending on properties of the type,
e.g. structures. But we can start simple, adjusting ints, floats,
and slices to work this way, and leaving everything else as is.
libctf/ChangeLog
2021-03-18 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h (ctf_dtdef_t) <dtd_u.dtu_enc>: Remove.
<dtd_u.dtu_slice>: Likewise.
<dtd_vlen>: New.
* ctf-create.c (ctf_add_generic): Perhaps allocate it. All
callers adjusted.
(ctf_dtd_delete): Free it.
(ctf_add_slice): Use the dtd_vlen, not dtu_enc.
(ctf_add_encoded): Likewise. Assert that this must be an int or
float.
* ctf-serialize.c (ctf_emit_type_sect): Just copy the dtd_vlen.
* ctf-dedup.c (ctf_dedup_rhash_type): Use the dtd_vlen, not
dtu_slice.
* ctf-types.c (ctf_type_reference): Likewise.
(ctf_type_encoding): Remove most dynamic-type-specific code: just
get the vlen from the right place. Report failure to look up the
underlying type's encoding.
2021-03-18 20:37:52 +08:00
|
|
|
if ((dtd = calloc (1, sizeof (ctf_dtdef_t))) == NULL)
|
2023-09-13 17:02:36 +08:00
|
|
|
return (ctf_set_typed_errno (fp, EAGAIN));
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
|
2021-03-18 20:37:52 +08:00
|
|
|
dtd->dtd_vlen_alloc = vlen;
|
libctf: eliminate dtd_u, part 1: int/float/slice
This series eliminates a lot of special-case code to handle dynamic
types (types added to writable dicts and not yet serialized).
Historically, when such types have variable-length data in their final
CTF representations, libctf has always worked by adding such types to a
special union (ctf_dtdef_t.dtd_u) in the dynamic type definition
structure, then picking the members out of this structure at
serialization time and packing them into their final form.
This has the advantage that the ctf_add_* code doesn't need to know
anything about the final CTF representation, but the significant
disadvantage that all code that looks up types in any way needs two code
paths, one for dynamic types, one for all others. Historically libctf
"handled" this by not supporting most type lookups on dynamic types at
all until ctf_update was called to do a complete reserialization of the
entire dict (it didn't emit an error, it just emitted wrong results).
Since commit 676c3ecbad6e9c4, which eliminated ctf_update in favour of
the internal-only ctf_serialize function, all the type-lookup paths
grew an extra branch to handle dynamic types.
We can eliminate this branch again by dropping the dtd_u stuff and
simply writing out the vlen in (close to) its final form at ctf_add_*
time: type lookup for types using this approach is then identical for
types in writable dicts and types that are in read-only ones, and
serialization is also simplified (we just need to write out the vlen
we already created).
The only complexity lies in type kinds for which multiple
vlen representations are valid depending on properties of the type,
e.g. structures. But we can start simple, adjusting ints, floats,
and slices to work this way, and leaving everything else as is.
libctf/ChangeLog
2021-03-18 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h (ctf_dtdef_t) <dtd_u.dtu_enc>: Remove.
<dtd_u.dtu_slice>: Likewise.
<dtd_vlen>: New.
* ctf-create.c (ctf_add_generic): Perhaps allocate it. All
callers adjusted.
(ctf_dtd_delete): Free it.
(ctf_add_slice): Use the dtd_vlen, not dtu_enc.
(ctf_add_encoded): Likewise. Assert that this must be an int or
float.
* ctf-serialize.c (ctf_emit_type_sect): Just copy the dtd_vlen.
* ctf-dedup.c (ctf_dedup_rhash_type): Use the dtd_vlen, not
dtu_slice.
* ctf-types.c (ctf_type_reference): Likewise.
(ctf_type_encoding): Remove most dynamic-type-specific code: just
get the vlen from the right place. Report failure to look up the
underlying type's encoding.
2021-03-18 20:37:52 +08:00
|
|
|
if (vlen > 0)
|
|
|
|
{
|
|
|
|
if ((dtd->dtd_vlen = calloc (1, vlen)) == NULL)
|
|
|
|
goto oom;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
dtd->dtd_vlen = NULL;
|
|
|
|
|
libctf: avoid the need to ever use ctf_update
The method of operation of libctf when the dictionary is writable has
before now been that types that are added land in the dynamic type
section, which is a linked list and hash of IDs -> dynamic type
definitions (and, recently a hash of names): the DTDs are a bit of CTF
representing the ctf_type_t and ad hoc C structures representing the
vlen. Historically, libctf was unable to do anything with these types,
not even look them up by ID, let alone by name: if you wanted to do that
say if you were adding a type that depended on one you just added) you
called ctf_update, which serializes all the DTDs into a CTF file and
reopens it, copying its guts over the fp it's called with. The
ctf_updated types are then frozen in amber and unchangeable: all lookups
will return the types in the static portion in preference to the dynamic
portion, and we will refuse to re-add things that already exist in the
static portion (and, of late, in the dynamic portion too). The libctf
machinery remembers the boundary between static and dynamic types and
looks in the right portion for each type. Lots of things still don't
quite work with dynamic types (e.g. getting their size), but enough
works to do a bunch of additions and then a ctf_update, most of the
time.
Except it doesn't, because ctf_add_type finds it necessary to walk the
full dynamic type definition list looking for types with matching names,
so it gets slower and slower with every type you add: fixing this
requires calling ctf_update periodically for no other reason than to
avoid massively slowing things down.
This is all clunky and very slow but kind of works, until you consider
that it is in fact possible and indeed necessary to modify one sort of
type after it has been added: forwards. These are necessarily promoted
to structs, unions or enums, and when they do so *their type ID does not
change*. So all of a sudden we are changing types that already exist in
the static portion. ctf_update gets massively confused by this and
allocates space enough for the forward (with no members), but then emits
the new dynamic type (with all the members) into it. You get an
assertion failure after that, if you're lucky, or a coredump.
So this commit rejigs things a bit and arranges to exclusively use the
dynamic type definitions in writable dictionaries, and the static type
definitions in readable dictionaries: we don't at any time have a mixture
of static and dynamic types, and you don't need to call ctf_update to
make things "appear". The ctf_dtbyname hash I introduced a few months
ago, which maps things like "struct foo" to DTDs, is removed, replaced
instead by a change of type of the four dictionaries which track names.
Rather than just being (unresizable) ctf_hash_t's populated only at
ctf_bufopen time, they are now a ctf_names_t structure, which is a pair
of ctf_hash_t and ctf_dynhash_t, with the ctf_hash_t portion being used
in readonly dictionaries, and the ctf_dynhash_t being used in writable
ones. The decision as to which to use is centralized in the new
functions ctf_lookup_by_rawname (which takes a type kind) and
ctf_lookup_by_rawhash, which it calls (which takes a ctf_names_t *.)
This change lets us switch from using static to dynamic name hashes on
the fly across the entirety of libctf without complexifying anything: in
fact, because we now centralize the knowledge about how to map from type
kind to name hash, it actually simplifies things and lets us throw out
quite a lot of now-unnecessary complexity, from ctf_dtnyname (replaced
by the dynamic half of the name tables), through to ctf_dtnextid (now
that a dictionary's static portion is never referenced if the dictionary
is writable, we can just use ctf_typemax to indicate the maximum type:
dynamic or non-dynamic does not matter, and we no longer need to track
the boundary between the types). You can now ctf_rollback() as far as
you like, even past a ctf_update or for that matter a full writeout; all
the iteration functions work just as well on writable as on read-only
dictionaries; ctf_add_type no longer needs expensive duplicated code to
run over the dynamic types hunting for ones it might be interested in;
and the linker no longer needs a hack to call ctf_update so that calling
ctf_add_type is not impossibly expensive.
There is still a bit more complexity: some new code paths in ctf-types.c
need to know how to extract information from dynamic types. This
complexity will go away again in a few months when libctf acquires a
proper intermediate representation.
You can still call ctf_update if you like (it's public API, after all),
but its only effect now is to set the point to which ctf_discard rolls
back.
Obviously *something* still needs to serialize the CTF file before
writeout, and this job is done by ctf_serialize, which does everything
ctf_update used to except set the counter used by ctf_discard. It is
automatically called by the various functions that do CTF writeout:
nobody else ever needs to call it.
With this in place, forwards that are promoted to non-forwards no longer
crash the link, even if it happens tens of thousands of types later.
v5: fix tabdamage.
libctf/
* ctf-impl.h (ctf_names_t): New.
(ctf_lookup_t) <ctf_hash>: Now a ctf_names_t, not a ctf_hash_t.
(ctf_file_t) <ctf_structs>: Likewise.
<ctf_unions>: Likewise.
<ctf_enums>: Likewise.
<ctf_names>: Likewise.
<ctf_lookups>: Improve comment.
<ctf_ptrtab_len>: New.
<ctf_prov_strtab>: New.
<ctf_str_prov_offset>: New.
<ctf_dtbyname>: Remove, redundant to the names hashes.
<ctf_dtnextid>: Remove, redundant to ctf_typemax.
(ctf_dtdef_t) <dtd_name>: Remove.
<dtd_data>: Note that the ctt_name is now populated.
(ctf_str_atom_t) <csa_offset>: This is now the strtab
offset for internal strings too.
<csa_external_offset>: New, the external strtab offset.
(CTF_INDEX_TO_TYPEPTR): Handle the LCTF_RDWR case.
(ctf_name_table): New declaration.
(ctf_lookup_by_rawname): Likewise.
(ctf_lookup_by_rawhash): Likewise.
(ctf_set_ctl_hashes): Likewise.
(ctf_serialize): Likewise.
(ctf_dtd_insert): Adjust.
(ctf_simple_open_internal): Likewise.
(ctf_bufopen_internal): Likewise.
(ctf_list_empty_p): Likewise.
(ctf_str_remove_ref): Likewise.
(ctf_str_add): Returns uint32_t now.
(ctf_str_add_ref): Likewise.
(ctf_str_add_external): Now returns a boolean (int).
* ctf-string.c (ctf_strraw_explicit): Check the ctf_prov_strtab
for strings in the appropriate range.
(ctf_str_create_atoms): Create the ctf_prov_strtab. Detect OOM
when adding the null string to the new strtab.
(ctf_str_free_atoms): Destroy the ctf_prov_strtab.
(ctf_str_add_ref_internal): Add make_provisional argument. If
make_provisional, populate the offset and fill in the
ctf_prov_strtab accordingly.
(ctf_str_add): Return the offset, not the string.
(ctf_str_add_ref): Likewise.
(ctf_str_add_external): Return a success integer.
(ctf_str_remove_ref): New, remove a single ref.
(ctf_str_count_strtab): Do not count the initial null string's
length or the existence or length of any unreferenced internal
atoms.
(ctf_str_populate_sorttab): Skip atoms with no refs.
(ctf_str_write_strtab): Populate the nullstr earlier. Add one
to the cts_len for the null string, since it is no longer done
in ctf_str_count_strtab. Adjust for csa_external_offset rename.
Populate the csa_offset for both internal and external cases.
Flush the ctf_prov_strtab afterwards, and reset the
ctf_str_prov_offset.
* ctf-create.c (ctf_grow_ptrtab): New.
(ctf_create): Call it. Initialize new fields rather than old
ones. Tell ctf_bufopen_internal that this is a writable dictionary.
Set the ctl hashes and data model.
(ctf_update): Rename to...
(ctf_serialize): ... this. Leave a compatibility function behind.
Tell ctf_simple_open_internal that this is a writable dictionary.
Pass the new fields along from the old dictionary. Drop
ctf_dtnextid and ctf_dtbyname. Use ctf_strraw, not dtd_name.
Do not zero out the DTD's ctt_name.
(ctf_prefixed_name): Rename to...
(ctf_name_table): ... this. No longer return a prefixed name: return
the applicable name table instead.
(ctf_dtd_insert): Use it, and use the right name table. Pass in the
kind we're adding. Migrate away from dtd_name.
(ctf_dtd_delete): Adjust similarly. Remove the ref to the
deleted ctt_name.
(ctf_dtd_lookup_type_by_name): Remove.
(ctf_dynamic_type): Always return NULL on read-only dictionaries.
No longer check ctf_dtnextid: check ctf_typemax instead.
(ctf_snapshot): No longer use ctf_dtnextid: use ctf_typemax instead.
(ctf_rollback): Likewise. No longer fail with ECTF_OVERROLLBACK. Use
ctf_name_table and the right name table, and migrate away from
dtd_name as in ctf_dtd_delete.
(ctf_add_generic): Pass in the kind explicitly and pass it to
ctf_dtd_insert. Use ctf_typemax, not ctf_dtnextid. Migrate away
from dtd_name to using ctf_str_add_ref to populate the ctt_name.
Grow the ptrtab if needed.
(ctf_add_encoded): Pass in the kind.
(ctf_add_slice): Likewise.
(ctf_add_array): Likewise.
(ctf_add_function): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_reftype): Likewise. Initialize the ctf_ptrtab, checking
ctt_name rather than dtd_name.
(ctf_add_struct_sized): Pass in the kind. Use
ctf_lookup_by_rawname, not ctf_hash_lookup_type /
ctf_dtd_lookup_type_by_name.
(ctf_add_union_sized): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_type): Likewise.
(ctf_compress_write): Call ctf_serialize: adjust for ctf_size not
being initialized until after the call.
(ctf_write_mem): Likewise.
(ctf_write): Likewise.
* ctf-archive.c (arc_write_one_ctf): Likewise.
* ctf-lookup.c (ctf_lookup_by_name): Use ctf_lookuup_by_rawhash, not
ctf_hash_lookup_type.
(ctf_lookup_by_id): No longer check the readonly types if the
dictionary is writable.
* ctf-open.c (init_types): Assert that this dictionary is not
writable. Adjust to use the new name hashes, ctf_name_table,
and ctf_ptrtab_len. GNU style fix for the final ptrtab scan.
(ctf_bufopen_internal): New 'writable' parameter. Flip on LCTF_RDWR
if set. Drop out early when dictionary is writable. Split the
ctf_lookups initialization into...
(ctf_set_cth_hashes): ... this new function.
(ctf_simple_open_internal): Adjust. New 'writable' parameter.
(ctf_simple_open): Adjust accordingly.
(ctf_bufopen): Likewise.
(ctf_file_close): Destroy the appropriate name hashes. No longer
destroy ctf_dtbyname, which is gone.
(ctf_getdatasect): Remove spurious "extern".
* ctf-types.c (ctf_lookup_by_rawname): New, look up types in the
specified name table, given a kind.
(ctf_lookup_by_rawhash): Likewise, given a ctf_names_t *.
(ctf_member_iter): Add support for iterating over the
dynamic type list.
(ctf_enum_iter): Likewise.
(ctf_variable_iter): Likewise.
(ctf_type_rvisit): Likewise.
(ctf_member_info): Add support for types in the dynamic type list.
(ctf_enum_name): Likewise.
(ctf_enum_value): Likewise.
(ctf_func_type_info): Likewise.
(ctf_func_type_args): Likewise.
* ctf-link.c (ctf_accumulate_archive_names): No longer call
ctf_update.
(ctf_link_write): Likewise.
(ctf_link_intern_extern_string): Adjust for new
ctf_str_add_external return value.
(ctf_link_add_strtab): Likewise.
* ctf-util.c (ctf_list_empty_p): New.
2019-08-08 00:55:09 +08:00
|
|
|
type = ++fp->ctf_typemax;
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
type = LCTF_INDEX_TO_TYPE (fp, type, (fp->ctf_flags & LCTF_CHILD));
|
|
|
|
|
2024-01-30 21:40:56 +08:00
|
|
|
dtd->dtd_data.ctt_name = ctf_str_add_ref (fp, name, &dtd->dtd_data.ctt_name);
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
dtd->dtd_type = type;
|
|
|
|
|
libctf: avoid the need to ever use ctf_update
The method of operation of libctf when the dictionary is writable has
before now been that types that are added land in the dynamic type
section, which is a linked list and hash of IDs -> dynamic type
definitions (and, recently a hash of names): the DTDs are a bit of CTF
representing the ctf_type_t and ad hoc C structures representing the
vlen. Historically, libctf was unable to do anything with these types,
not even look them up by ID, let alone by name: if you wanted to do that
say if you were adding a type that depended on one you just added) you
called ctf_update, which serializes all the DTDs into a CTF file and
reopens it, copying its guts over the fp it's called with. The
ctf_updated types are then frozen in amber and unchangeable: all lookups
will return the types in the static portion in preference to the dynamic
portion, and we will refuse to re-add things that already exist in the
static portion (and, of late, in the dynamic portion too). The libctf
machinery remembers the boundary between static and dynamic types and
looks in the right portion for each type. Lots of things still don't
quite work with dynamic types (e.g. getting their size), but enough
works to do a bunch of additions and then a ctf_update, most of the
time.
Except it doesn't, because ctf_add_type finds it necessary to walk the
full dynamic type definition list looking for types with matching names,
so it gets slower and slower with every type you add: fixing this
requires calling ctf_update periodically for no other reason than to
avoid massively slowing things down.
This is all clunky and very slow but kind of works, until you consider
that it is in fact possible and indeed necessary to modify one sort of
type after it has been added: forwards. These are necessarily promoted
to structs, unions or enums, and when they do so *their type ID does not
change*. So all of a sudden we are changing types that already exist in
the static portion. ctf_update gets massively confused by this and
allocates space enough for the forward (with no members), but then emits
the new dynamic type (with all the members) into it. You get an
assertion failure after that, if you're lucky, or a coredump.
So this commit rejigs things a bit and arranges to exclusively use the
dynamic type definitions in writable dictionaries, and the static type
definitions in readable dictionaries: we don't at any time have a mixture
of static and dynamic types, and you don't need to call ctf_update to
make things "appear". The ctf_dtbyname hash I introduced a few months
ago, which maps things like "struct foo" to DTDs, is removed, replaced
instead by a change of type of the four dictionaries which track names.
Rather than just being (unresizable) ctf_hash_t's populated only at
ctf_bufopen time, they are now a ctf_names_t structure, which is a pair
of ctf_hash_t and ctf_dynhash_t, with the ctf_hash_t portion being used
in readonly dictionaries, and the ctf_dynhash_t being used in writable
ones. The decision as to which to use is centralized in the new
functions ctf_lookup_by_rawname (which takes a type kind) and
ctf_lookup_by_rawhash, which it calls (which takes a ctf_names_t *.)
This change lets us switch from using static to dynamic name hashes on
the fly across the entirety of libctf without complexifying anything: in
fact, because we now centralize the knowledge about how to map from type
kind to name hash, it actually simplifies things and lets us throw out
quite a lot of now-unnecessary complexity, from ctf_dtnyname (replaced
by the dynamic half of the name tables), through to ctf_dtnextid (now
that a dictionary's static portion is never referenced if the dictionary
is writable, we can just use ctf_typemax to indicate the maximum type:
dynamic or non-dynamic does not matter, and we no longer need to track
the boundary between the types). You can now ctf_rollback() as far as
you like, even past a ctf_update or for that matter a full writeout; all
the iteration functions work just as well on writable as on read-only
dictionaries; ctf_add_type no longer needs expensive duplicated code to
run over the dynamic types hunting for ones it might be interested in;
and the linker no longer needs a hack to call ctf_update so that calling
ctf_add_type is not impossibly expensive.
There is still a bit more complexity: some new code paths in ctf-types.c
need to know how to extract information from dynamic types. This
complexity will go away again in a few months when libctf acquires a
proper intermediate representation.
You can still call ctf_update if you like (it's public API, after all),
but its only effect now is to set the point to which ctf_discard rolls
back.
Obviously *something* still needs to serialize the CTF file before
writeout, and this job is done by ctf_serialize, which does everything
ctf_update used to except set the counter used by ctf_discard. It is
automatically called by the various functions that do CTF writeout:
nobody else ever needs to call it.
With this in place, forwards that are promoted to non-forwards no longer
crash the link, even if it happens tens of thousands of types later.
v5: fix tabdamage.
libctf/
* ctf-impl.h (ctf_names_t): New.
(ctf_lookup_t) <ctf_hash>: Now a ctf_names_t, not a ctf_hash_t.
(ctf_file_t) <ctf_structs>: Likewise.
<ctf_unions>: Likewise.
<ctf_enums>: Likewise.
<ctf_names>: Likewise.
<ctf_lookups>: Improve comment.
<ctf_ptrtab_len>: New.
<ctf_prov_strtab>: New.
<ctf_str_prov_offset>: New.
<ctf_dtbyname>: Remove, redundant to the names hashes.
<ctf_dtnextid>: Remove, redundant to ctf_typemax.
(ctf_dtdef_t) <dtd_name>: Remove.
<dtd_data>: Note that the ctt_name is now populated.
(ctf_str_atom_t) <csa_offset>: This is now the strtab
offset for internal strings too.
<csa_external_offset>: New, the external strtab offset.
(CTF_INDEX_TO_TYPEPTR): Handle the LCTF_RDWR case.
(ctf_name_table): New declaration.
(ctf_lookup_by_rawname): Likewise.
(ctf_lookup_by_rawhash): Likewise.
(ctf_set_ctl_hashes): Likewise.
(ctf_serialize): Likewise.
(ctf_dtd_insert): Adjust.
(ctf_simple_open_internal): Likewise.
(ctf_bufopen_internal): Likewise.
(ctf_list_empty_p): Likewise.
(ctf_str_remove_ref): Likewise.
(ctf_str_add): Returns uint32_t now.
(ctf_str_add_ref): Likewise.
(ctf_str_add_external): Now returns a boolean (int).
* ctf-string.c (ctf_strraw_explicit): Check the ctf_prov_strtab
for strings in the appropriate range.
(ctf_str_create_atoms): Create the ctf_prov_strtab. Detect OOM
when adding the null string to the new strtab.
(ctf_str_free_atoms): Destroy the ctf_prov_strtab.
(ctf_str_add_ref_internal): Add make_provisional argument. If
make_provisional, populate the offset and fill in the
ctf_prov_strtab accordingly.
(ctf_str_add): Return the offset, not the string.
(ctf_str_add_ref): Likewise.
(ctf_str_add_external): Return a success integer.
(ctf_str_remove_ref): New, remove a single ref.
(ctf_str_count_strtab): Do not count the initial null string's
length or the existence or length of any unreferenced internal
atoms.
(ctf_str_populate_sorttab): Skip atoms with no refs.
(ctf_str_write_strtab): Populate the nullstr earlier. Add one
to the cts_len for the null string, since it is no longer done
in ctf_str_count_strtab. Adjust for csa_external_offset rename.
Populate the csa_offset for both internal and external cases.
Flush the ctf_prov_strtab afterwards, and reset the
ctf_str_prov_offset.
* ctf-create.c (ctf_grow_ptrtab): New.
(ctf_create): Call it. Initialize new fields rather than old
ones. Tell ctf_bufopen_internal that this is a writable dictionary.
Set the ctl hashes and data model.
(ctf_update): Rename to...
(ctf_serialize): ... this. Leave a compatibility function behind.
Tell ctf_simple_open_internal that this is a writable dictionary.
Pass the new fields along from the old dictionary. Drop
ctf_dtnextid and ctf_dtbyname. Use ctf_strraw, not dtd_name.
Do not zero out the DTD's ctt_name.
(ctf_prefixed_name): Rename to...
(ctf_name_table): ... this. No longer return a prefixed name: return
the applicable name table instead.
(ctf_dtd_insert): Use it, and use the right name table. Pass in the
kind we're adding. Migrate away from dtd_name.
(ctf_dtd_delete): Adjust similarly. Remove the ref to the
deleted ctt_name.
(ctf_dtd_lookup_type_by_name): Remove.
(ctf_dynamic_type): Always return NULL on read-only dictionaries.
No longer check ctf_dtnextid: check ctf_typemax instead.
(ctf_snapshot): No longer use ctf_dtnextid: use ctf_typemax instead.
(ctf_rollback): Likewise. No longer fail with ECTF_OVERROLLBACK. Use
ctf_name_table and the right name table, and migrate away from
dtd_name as in ctf_dtd_delete.
(ctf_add_generic): Pass in the kind explicitly and pass it to
ctf_dtd_insert. Use ctf_typemax, not ctf_dtnextid. Migrate away
from dtd_name to using ctf_str_add_ref to populate the ctt_name.
Grow the ptrtab if needed.
(ctf_add_encoded): Pass in the kind.
(ctf_add_slice): Likewise.
(ctf_add_array): Likewise.
(ctf_add_function): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_reftype): Likewise. Initialize the ctf_ptrtab, checking
ctt_name rather than dtd_name.
(ctf_add_struct_sized): Pass in the kind. Use
ctf_lookup_by_rawname, not ctf_hash_lookup_type /
ctf_dtd_lookup_type_by_name.
(ctf_add_union_sized): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_type): Likewise.
(ctf_compress_write): Call ctf_serialize: adjust for ctf_size not
being initialized until after the call.
(ctf_write_mem): Likewise.
(ctf_write): Likewise.
* ctf-archive.c (arc_write_one_ctf): Likewise.
* ctf-lookup.c (ctf_lookup_by_name): Use ctf_lookuup_by_rawhash, not
ctf_hash_lookup_type.
(ctf_lookup_by_id): No longer check the readonly types if the
dictionary is writable.
* ctf-open.c (init_types): Assert that this dictionary is not
writable. Adjust to use the new name hashes, ctf_name_table,
and ctf_ptrtab_len. GNU style fix for the final ptrtab scan.
(ctf_bufopen_internal): New 'writable' parameter. Flip on LCTF_RDWR
if set. Drop out early when dictionary is writable. Split the
ctf_lookups initialization into...
(ctf_set_cth_hashes): ... this new function.
(ctf_simple_open_internal): Adjust. New 'writable' parameter.
(ctf_simple_open): Adjust accordingly.
(ctf_bufopen): Likewise.
(ctf_file_close): Destroy the appropriate name hashes. No longer
destroy ctf_dtbyname, which is gone.
(ctf_getdatasect): Remove spurious "extern".
* ctf-types.c (ctf_lookup_by_rawname): New, look up types in the
specified name table, given a kind.
(ctf_lookup_by_rawhash): Likewise, given a ctf_names_t *.
(ctf_member_iter): Add support for iterating over the
dynamic type list.
(ctf_enum_iter): Likewise.
(ctf_variable_iter): Likewise.
(ctf_type_rvisit): Likewise.
(ctf_member_info): Add support for types in the dynamic type list.
(ctf_enum_name): Likewise.
(ctf_enum_value): Likewise.
(ctf_func_type_info): Likewise.
(ctf_func_type_args): Likewise.
* ctf-link.c (ctf_accumulate_archive_names): No longer call
ctf_update.
(ctf_link_write): Likewise.
(ctf_link_intern_extern_string): Adjust for new
ctf_str_add_external return value.
(ctf_link_add_strtab): Likewise.
* ctf-util.c (ctf_list_empty_p): New.
2019-08-08 00:55:09 +08:00
|
|
|
if (dtd->dtd_data.ctt_name == 0 && name != NULL && name[0] != '\0')
|
libctf: eliminate dtd_u, part 1: int/float/slice
This series eliminates a lot of special-case code to handle dynamic
types (types added to writable dicts and not yet serialized).
Historically, when such types have variable-length data in their final
CTF representations, libctf has always worked by adding such types to a
special union (ctf_dtdef_t.dtd_u) in the dynamic type definition
structure, then picking the members out of this structure at
serialization time and packing them into their final form.
This has the advantage that the ctf_add_* code doesn't need to know
anything about the final CTF representation, but the significant
disadvantage that all code that looks up types in any way needs two code
paths, one for dynamic types, one for all others. Historically libctf
"handled" this by not supporting most type lookups on dynamic types at
all until ctf_update was called to do a complete reserialization of the
entire dict (it didn't emit an error, it just emitted wrong results).
Since commit 676c3ecbad6e9c4, which eliminated ctf_update in favour of
the internal-only ctf_serialize function, all the type-lookup paths
grew an extra branch to handle dynamic types.
We can eliminate this branch again by dropping the dtd_u stuff and
simply writing out the vlen in (close to) its final form at ctf_add_*
time: type lookup for types using this approach is then identical for
types in writable dicts and types that are in read-only ones, and
serialization is also simplified (we just need to write out the vlen
we already created).
The only complexity lies in type kinds for which multiple
vlen representations are valid depending on properties of the type,
e.g. structures. But we can start simple, adjusting ints, floats,
and slices to work this way, and leaving everything else as is.
libctf/ChangeLog
2021-03-18 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h (ctf_dtdef_t) <dtd_u.dtu_enc>: Remove.
<dtd_u.dtu_slice>: Likewise.
<dtd_vlen>: New.
* ctf-create.c (ctf_add_generic): Perhaps allocate it. All
callers adjusted.
(ctf_dtd_delete): Free it.
(ctf_add_slice): Use the dtd_vlen, not dtu_enc.
(ctf_add_encoded): Likewise. Assert that this must be an int or
float.
* ctf-serialize.c (ctf_emit_type_sect): Just copy the dtd_vlen.
* ctf-dedup.c (ctf_dedup_rhash_type): Use the dtd_vlen, not
dtu_slice.
* ctf-types.c (ctf_type_reference): Likewise.
(ctf_type_encoding): Remove most dynamic-type-specific code: just
get the vlen from the right place. Report failure to look up the
underlying type's encoding.
2021-03-18 20:37:52 +08:00
|
|
|
goto oom;
|
libctf: avoid the need to ever use ctf_update
The method of operation of libctf when the dictionary is writable has
before now been that types that are added land in the dynamic type
section, which is a linked list and hash of IDs -> dynamic type
definitions (and, recently a hash of names): the DTDs are a bit of CTF
representing the ctf_type_t and ad hoc C structures representing the
vlen. Historically, libctf was unable to do anything with these types,
not even look them up by ID, let alone by name: if you wanted to do that
say if you were adding a type that depended on one you just added) you
called ctf_update, which serializes all the DTDs into a CTF file and
reopens it, copying its guts over the fp it's called with. The
ctf_updated types are then frozen in amber and unchangeable: all lookups
will return the types in the static portion in preference to the dynamic
portion, and we will refuse to re-add things that already exist in the
static portion (and, of late, in the dynamic portion too). The libctf
machinery remembers the boundary between static and dynamic types and
looks in the right portion for each type. Lots of things still don't
quite work with dynamic types (e.g. getting their size), but enough
works to do a bunch of additions and then a ctf_update, most of the
time.
Except it doesn't, because ctf_add_type finds it necessary to walk the
full dynamic type definition list looking for types with matching names,
so it gets slower and slower with every type you add: fixing this
requires calling ctf_update periodically for no other reason than to
avoid massively slowing things down.
This is all clunky and very slow but kind of works, until you consider
that it is in fact possible and indeed necessary to modify one sort of
type after it has been added: forwards. These are necessarily promoted
to structs, unions or enums, and when they do so *their type ID does not
change*. So all of a sudden we are changing types that already exist in
the static portion. ctf_update gets massively confused by this and
allocates space enough for the forward (with no members), but then emits
the new dynamic type (with all the members) into it. You get an
assertion failure after that, if you're lucky, or a coredump.
So this commit rejigs things a bit and arranges to exclusively use the
dynamic type definitions in writable dictionaries, and the static type
definitions in readable dictionaries: we don't at any time have a mixture
of static and dynamic types, and you don't need to call ctf_update to
make things "appear". The ctf_dtbyname hash I introduced a few months
ago, which maps things like "struct foo" to DTDs, is removed, replaced
instead by a change of type of the four dictionaries which track names.
Rather than just being (unresizable) ctf_hash_t's populated only at
ctf_bufopen time, they are now a ctf_names_t structure, which is a pair
of ctf_hash_t and ctf_dynhash_t, with the ctf_hash_t portion being used
in readonly dictionaries, and the ctf_dynhash_t being used in writable
ones. The decision as to which to use is centralized in the new
functions ctf_lookup_by_rawname (which takes a type kind) and
ctf_lookup_by_rawhash, which it calls (which takes a ctf_names_t *.)
This change lets us switch from using static to dynamic name hashes on
the fly across the entirety of libctf without complexifying anything: in
fact, because we now centralize the knowledge about how to map from type
kind to name hash, it actually simplifies things and lets us throw out
quite a lot of now-unnecessary complexity, from ctf_dtnyname (replaced
by the dynamic half of the name tables), through to ctf_dtnextid (now
that a dictionary's static portion is never referenced if the dictionary
is writable, we can just use ctf_typemax to indicate the maximum type:
dynamic or non-dynamic does not matter, and we no longer need to track
the boundary between the types). You can now ctf_rollback() as far as
you like, even past a ctf_update or for that matter a full writeout; all
the iteration functions work just as well on writable as on read-only
dictionaries; ctf_add_type no longer needs expensive duplicated code to
run over the dynamic types hunting for ones it might be interested in;
and the linker no longer needs a hack to call ctf_update so that calling
ctf_add_type is not impossibly expensive.
There is still a bit more complexity: some new code paths in ctf-types.c
need to know how to extract information from dynamic types. This
complexity will go away again in a few months when libctf acquires a
proper intermediate representation.
You can still call ctf_update if you like (it's public API, after all),
but its only effect now is to set the point to which ctf_discard rolls
back.
Obviously *something* still needs to serialize the CTF file before
writeout, and this job is done by ctf_serialize, which does everything
ctf_update used to except set the counter used by ctf_discard. It is
automatically called by the various functions that do CTF writeout:
nobody else ever needs to call it.
With this in place, forwards that are promoted to non-forwards no longer
crash the link, even if it happens tens of thousands of types later.
v5: fix tabdamage.
libctf/
* ctf-impl.h (ctf_names_t): New.
(ctf_lookup_t) <ctf_hash>: Now a ctf_names_t, not a ctf_hash_t.
(ctf_file_t) <ctf_structs>: Likewise.
<ctf_unions>: Likewise.
<ctf_enums>: Likewise.
<ctf_names>: Likewise.
<ctf_lookups>: Improve comment.
<ctf_ptrtab_len>: New.
<ctf_prov_strtab>: New.
<ctf_str_prov_offset>: New.
<ctf_dtbyname>: Remove, redundant to the names hashes.
<ctf_dtnextid>: Remove, redundant to ctf_typemax.
(ctf_dtdef_t) <dtd_name>: Remove.
<dtd_data>: Note that the ctt_name is now populated.
(ctf_str_atom_t) <csa_offset>: This is now the strtab
offset for internal strings too.
<csa_external_offset>: New, the external strtab offset.
(CTF_INDEX_TO_TYPEPTR): Handle the LCTF_RDWR case.
(ctf_name_table): New declaration.
(ctf_lookup_by_rawname): Likewise.
(ctf_lookup_by_rawhash): Likewise.
(ctf_set_ctl_hashes): Likewise.
(ctf_serialize): Likewise.
(ctf_dtd_insert): Adjust.
(ctf_simple_open_internal): Likewise.
(ctf_bufopen_internal): Likewise.
(ctf_list_empty_p): Likewise.
(ctf_str_remove_ref): Likewise.
(ctf_str_add): Returns uint32_t now.
(ctf_str_add_ref): Likewise.
(ctf_str_add_external): Now returns a boolean (int).
* ctf-string.c (ctf_strraw_explicit): Check the ctf_prov_strtab
for strings in the appropriate range.
(ctf_str_create_atoms): Create the ctf_prov_strtab. Detect OOM
when adding the null string to the new strtab.
(ctf_str_free_atoms): Destroy the ctf_prov_strtab.
(ctf_str_add_ref_internal): Add make_provisional argument. If
make_provisional, populate the offset and fill in the
ctf_prov_strtab accordingly.
(ctf_str_add): Return the offset, not the string.
(ctf_str_add_ref): Likewise.
(ctf_str_add_external): Return a success integer.
(ctf_str_remove_ref): New, remove a single ref.
(ctf_str_count_strtab): Do not count the initial null string's
length or the existence or length of any unreferenced internal
atoms.
(ctf_str_populate_sorttab): Skip atoms with no refs.
(ctf_str_write_strtab): Populate the nullstr earlier. Add one
to the cts_len for the null string, since it is no longer done
in ctf_str_count_strtab. Adjust for csa_external_offset rename.
Populate the csa_offset for both internal and external cases.
Flush the ctf_prov_strtab afterwards, and reset the
ctf_str_prov_offset.
* ctf-create.c (ctf_grow_ptrtab): New.
(ctf_create): Call it. Initialize new fields rather than old
ones. Tell ctf_bufopen_internal that this is a writable dictionary.
Set the ctl hashes and data model.
(ctf_update): Rename to...
(ctf_serialize): ... this. Leave a compatibility function behind.
Tell ctf_simple_open_internal that this is a writable dictionary.
Pass the new fields along from the old dictionary. Drop
ctf_dtnextid and ctf_dtbyname. Use ctf_strraw, not dtd_name.
Do not zero out the DTD's ctt_name.
(ctf_prefixed_name): Rename to...
(ctf_name_table): ... this. No longer return a prefixed name: return
the applicable name table instead.
(ctf_dtd_insert): Use it, and use the right name table. Pass in the
kind we're adding. Migrate away from dtd_name.
(ctf_dtd_delete): Adjust similarly. Remove the ref to the
deleted ctt_name.
(ctf_dtd_lookup_type_by_name): Remove.
(ctf_dynamic_type): Always return NULL on read-only dictionaries.
No longer check ctf_dtnextid: check ctf_typemax instead.
(ctf_snapshot): No longer use ctf_dtnextid: use ctf_typemax instead.
(ctf_rollback): Likewise. No longer fail with ECTF_OVERROLLBACK. Use
ctf_name_table and the right name table, and migrate away from
dtd_name as in ctf_dtd_delete.
(ctf_add_generic): Pass in the kind explicitly and pass it to
ctf_dtd_insert. Use ctf_typemax, not ctf_dtnextid. Migrate away
from dtd_name to using ctf_str_add_ref to populate the ctt_name.
Grow the ptrtab if needed.
(ctf_add_encoded): Pass in the kind.
(ctf_add_slice): Likewise.
(ctf_add_array): Likewise.
(ctf_add_function): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_reftype): Likewise. Initialize the ctf_ptrtab, checking
ctt_name rather than dtd_name.
(ctf_add_struct_sized): Pass in the kind. Use
ctf_lookup_by_rawname, not ctf_hash_lookup_type /
ctf_dtd_lookup_type_by_name.
(ctf_add_union_sized): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_type): Likewise.
(ctf_compress_write): Call ctf_serialize: adjust for ctf_size not
being initialized until after the call.
(ctf_write_mem): Likewise.
(ctf_write): Likewise.
* ctf-archive.c (arc_write_one_ctf): Likewise.
* ctf-lookup.c (ctf_lookup_by_name): Use ctf_lookuup_by_rawhash, not
ctf_hash_lookup_type.
(ctf_lookup_by_id): No longer check the readonly types if the
dictionary is writable.
* ctf-open.c (init_types): Assert that this dictionary is not
writable. Adjust to use the new name hashes, ctf_name_table,
and ctf_ptrtab_len. GNU style fix for the final ptrtab scan.
(ctf_bufopen_internal): New 'writable' parameter. Flip on LCTF_RDWR
if set. Drop out early when dictionary is writable. Split the
ctf_lookups initialization into...
(ctf_set_cth_hashes): ... this new function.
(ctf_simple_open_internal): Adjust. New 'writable' parameter.
(ctf_simple_open): Adjust accordingly.
(ctf_bufopen): Likewise.
(ctf_file_close): Destroy the appropriate name hashes. No longer
destroy ctf_dtbyname, which is gone.
(ctf_getdatasect): Remove spurious "extern".
* ctf-types.c (ctf_lookup_by_rawname): New, look up types in the
specified name table, given a kind.
(ctf_lookup_by_rawhash): Likewise, given a ctf_names_t *.
(ctf_member_iter): Add support for iterating over the
dynamic type list.
(ctf_enum_iter): Likewise.
(ctf_variable_iter): Likewise.
(ctf_type_rvisit): Likewise.
(ctf_member_info): Add support for types in the dynamic type list.
(ctf_enum_name): Likewise.
(ctf_enum_value): Likewise.
(ctf_func_type_info): Likewise.
(ctf_func_type_args): Likewise.
* ctf-link.c (ctf_accumulate_archive_names): No longer call
ctf_update.
(ctf_link_write): Likewise.
(ctf_link_intern_extern_string): Adjust for new
ctf_str_add_external return value.
(ctf_link_add_strtab): Likewise.
* ctf-util.c (ctf_list_empty_p): New.
2019-08-08 00:55:09 +08:00
|
|
|
|
2019-10-21 18:27:43 +08:00
|
|
|
if (ctf_dtd_insert (fp, dtd, flag, kind) < 0)
|
libctf: eliminate dtd_u, part 1: int/float/slice
This series eliminates a lot of special-case code to handle dynamic
types (types added to writable dicts and not yet serialized).
Historically, when such types have variable-length data in their final
CTF representations, libctf has always worked by adding such types to a
special union (ctf_dtdef_t.dtd_u) in the dynamic type definition
structure, then picking the members out of this structure at
serialization time and packing them into their final form.
This has the advantage that the ctf_add_* code doesn't need to know
anything about the final CTF representation, but the significant
disadvantage that all code that looks up types in any way needs two code
paths, one for dynamic types, one for all others. Historically libctf
"handled" this by not supporting most type lookups on dynamic types at
all until ctf_update was called to do a complete reserialization of the
entire dict (it didn't emit an error, it just emitted wrong results).
Since commit 676c3ecbad6e9c4, which eliminated ctf_update in favour of
the internal-only ctf_serialize function, all the type-lookup paths
grew an extra branch to handle dynamic types.
We can eliminate this branch again by dropping the dtd_u stuff and
simply writing out the vlen in (close to) its final form at ctf_add_*
time: type lookup for types using this approach is then identical for
types in writable dicts and types that are in read-only ones, and
serialization is also simplified (we just need to write out the vlen
we already created).
The only complexity lies in type kinds for which multiple
vlen representations are valid depending on properties of the type,
e.g. structures. But we can start simple, adjusting ints, floats,
and slices to work this way, and leaving everything else as is.
libctf/ChangeLog
2021-03-18 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h (ctf_dtdef_t) <dtd_u.dtu_enc>: Remove.
<dtd_u.dtu_slice>: Likewise.
<dtd_vlen>: New.
* ctf-create.c (ctf_add_generic): Perhaps allocate it. All
callers adjusted.
(ctf_dtd_delete): Free it.
(ctf_add_slice): Use the dtd_vlen, not dtu_enc.
(ctf_add_encoded): Likewise. Assert that this must be an int or
float.
* ctf-serialize.c (ctf_emit_type_sect): Just copy the dtd_vlen.
* ctf-dedup.c (ctf_dedup_rhash_type): Use the dtd_vlen, not
dtu_slice.
* ctf-types.c (ctf_type_reference): Likewise.
(ctf_type_encoding): Remove most dynamic-type-specific code: just
get the vlen from the right place. Report failure to look up the
underlying type's encoding.
2021-03-18 20:37:52 +08:00
|
|
|
goto err; /* errno is set for us. */
|
|
|
|
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
*rp = dtd;
|
|
|
|
return type;
|
libctf: eliminate dtd_u, part 1: int/float/slice
This series eliminates a lot of special-case code to handle dynamic
types (types added to writable dicts and not yet serialized).
Historically, when such types have variable-length data in their final
CTF representations, libctf has always worked by adding such types to a
special union (ctf_dtdef_t.dtd_u) in the dynamic type definition
structure, then picking the members out of this structure at
serialization time and packing them into their final form.
This has the advantage that the ctf_add_* code doesn't need to know
anything about the final CTF representation, but the significant
disadvantage that all code that looks up types in any way needs two code
paths, one for dynamic types, one for all others. Historically libctf
"handled" this by not supporting most type lookups on dynamic types at
all until ctf_update was called to do a complete reserialization of the
entire dict (it didn't emit an error, it just emitted wrong results).
Since commit 676c3ecbad6e9c4, which eliminated ctf_update in favour of
the internal-only ctf_serialize function, all the type-lookup paths
grew an extra branch to handle dynamic types.
We can eliminate this branch again by dropping the dtd_u stuff and
simply writing out the vlen in (close to) its final form at ctf_add_*
time: type lookup for types using this approach is then identical for
types in writable dicts and types that are in read-only ones, and
serialization is also simplified (we just need to write out the vlen
we already created).
The only complexity lies in type kinds for which multiple
vlen representations are valid depending on properties of the type,
e.g. structures. But we can start simple, adjusting ints, floats,
and slices to work this way, and leaving everything else as is.
libctf/ChangeLog
2021-03-18 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h (ctf_dtdef_t) <dtd_u.dtu_enc>: Remove.
<dtd_u.dtu_slice>: Likewise.
<dtd_vlen>: New.
* ctf-create.c (ctf_add_generic): Perhaps allocate it. All
callers adjusted.
(ctf_dtd_delete): Free it.
(ctf_add_slice): Use the dtd_vlen, not dtu_enc.
(ctf_add_encoded): Likewise. Assert that this must be an int or
float.
* ctf-serialize.c (ctf_emit_type_sect): Just copy the dtd_vlen.
* ctf-dedup.c (ctf_dedup_rhash_type): Use the dtd_vlen, not
dtu_slice.
* ctf-types.c (ctf_type_reference): Likewise.
(ctf_type_encoding): Remove most dynamic-type-specific code: just
get the vlen from the right place. Report failure to look up the
underlying type's encoding.
2021-03-18 20:37:52 +08:00
|
|
|
|
|
|
|
oom:
|
|
|
|
ctf_set_errno (fp, EAGAIN);
|
|
|
|
err:
|
|
|
|
free (dtd->dtd_vlen);
|
|
|
|
free (dtd);
|
|
|
|
return CTF_ERR;
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
/* When encoding integer sizes, we want to convert a byte count in the range
|
|
|
|
1-8 to the closest power of 2 (e.g. 3->4, 5->8, etc). The clp2() function
|
|
|
|
is a clever implementation from "Hacker's Delight" by Henry Warren, Jr. */
|
|
|
|
static size_t
|
|
|
|
clp2 (size_t x)
|
|
|
|
{
|
|
|
|
x--;
|
|
|
|
|
|
|
|
x |= (x >> 1);
|
|
|
|
x |= (x >> 2);
|
|
|
|
x |= (x >> 4);
|
|
|
|
x |= (x >> 8);
|
|
|
|
x |= (x >> 16);
|
|
|
|
|
|
|
|
return (x + 1);
|
|
|
|
}
|
|
|
|
|
2020-06-06 01:35:46 +08:00
|
|
|
ctf_id_t
|
libctf, include, binutils, gdb, ld: rename ctf_file_t to ctf_dict_t
The naming of the ctf_file_t type in libctf is a historical curiosity.
Back in the Solaris days, CTF dictionaries were originally generated as
a separate file and then (sometimes) merged into objects: hence the
datatype was named ctf_file_t, and known as a "CTF file". Nowadays, raw
CTF is essentially never written to a file on its own, and the datatype
changed name to a "CTF dictionary" years ago. So the term "CTF file"
refers to something that is never a file! This is at best confusing.
The type has also historically been known as a 'CTF container", which is
even more confusing now that we have CTF archives which are *also* a
sort of container (they contain CTF dictionaries), but which are never
referred to as containers in the source code.
So fix this by completing the renaming, renaming ctf_file_t to
ctf_dict_t throughout, and renaming those few functions that refer to
CTF files by name (keeping compatibility aliases) to refer to dicts
instead. Old users who still refer to ctf_file_t will see (harmless)
pointer-compatibility warnings at compile time, but the ABI is unchanged
(since C doesn't mangle names, and ctf_file_t was always an opaque type)
and things will still compile fine as long as -Werror is not specified.
All references to CTF containers and CTF files in the source code are
fixed to refer to CTF dicts instead.
Further (smaller) renamings of annoyingly-named functions to come, as
part of the process of souping up queries across whole archives at once
(needed for the function info and data object sections).
binutils/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* objdump.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_ctf): Likewise. Use ctf_dict_close, not ctf_file_close.
* readelf.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_section_as_ctf): Likewise. Use ctf_dict_close, not
ctf_file_close.
gdb/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctfread.c: Change uses of ctf_file_t to ctf_dict_t.
(ctf_fp_info::~ctf_fp_info): Call ctf_dict_close, not ctf_file_close.
include/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-api.h (ctf_file_t): Rename to...
(ctf_dict_t): ... this. Keep ctf_file_t around for compatibility.
(struct ctf_file): Likewise rename to...
(struct ctf_dict): ... this.
(ctf_file_close): Rename to...
(ctf_dict_close): ... this, keeping compatibility function.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this, keeping compatibility function.
All callers adjusted.
* ctf.h: Rename references to ctf_file_t to ctf_dict_t.
(struct ctf_archive) <ctfa_nfiles>: Rename to...
<ctfa_ndicts>: ... this.
ld/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ldlang.c (ctf_output): This is a ctf_dict_t now.
(lang_ctf_errs_warnings): Rename ctf_file_t to ctf_dict_t.
(ldlang_open_ctf): Adjust comment.
(lang_merge_ctf): Use ctf_dict_close, not ctf_file_close.
* ldelfgen.h (ldelf_examine_strtab_for_ctf): Rename ctf_file_t to
ctf_dict_t. Change opaque declaration accordingly.
* ldelfgen.c (ldelf_examine_strtab_for_ctf): Adjust.
* ldemul.h (examine_strtab_for_ctf): Likewise.
(ldemul_examine_strtab_for_ctf): Likewise.
* ldeuml.c (ldemul_examine_strtab_for_ctf): Likewise.
libctf/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h: Rename ctf_file_t to ctf_dict_t: all declarations
adjusted.
(ctf_fileops): Rename to...
(ctf_dictops): ... this.
(ctf_dedup_t) <cd_id_to_file_t>: Rename to...
<cd_id_to_dict_t>: ... this.
(ctf_file_t): Fix outdated comment.
<ctf_fileops>: Rename to...
<ctf_dictops>: ... this.
(struct ctf_archive_internal) <ctfi_file>: Rename to...
<ctfi_dict>: ... this.
* ctf-archive.c: Rename ctf_file_t to ctf_dict_t.
Rename ctf_archive.ctfa_nfiles to ctfa_ndicts.
Rename ctf_file_close to ctf_dict_close. All users adjusted.
* ctf-create.c: Likewise. Refer to CTF dicts, not CTF containers.
(ctf_bundle_t) <ctb_file>: Rename to...
<ctb_dict): ... this.
* ctf-decl.c: Rename ctf_file_t to ctf_dict_t.
* ctf-dedup.c: Likewise. Rename ctf_file_close to
ctf_dict_close. Refer to CTF dicts, not CTF containers.
* ctf-dump.c: Likewise.
* ctf-error.c: Likewise.
* ctf-hash.c: Likewise.
* ctf-inlines.h: Likewise.
* ctf-labels.c: Likewise.
* ctf-link.c: Likewise.
* ctf-lookup.c: Likewise.
* ctf-open-bfd.c: Likewise.
* ctf-string.c: Likewise.
* ctf-subr.c: Likewise.
* ctf-types.c: Likewise.
* ctf-util.c: Likewise.
* ctf-open.c: Likewise.
(ctf_file_close): Rename to...
(ctf_dict_close): ...this.
(ctf_file_close): New trivial wrapper around ctf_dict_close, for
compatibility.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this.
(ctf_parent_file): New trivial wrapper around ctf_parent_dict, for
compatibility.
* libctf.ver: Add ctf_dict_close and ctf_parent_dict.
2020-11-20 21:34:04 +08:00
|
|
|
ctf_add_encoded (ctf_dict_t *fp, uint32_t flag,
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
const char *name, const ctf_encoding_t *ep, uint32_t kind)
|
|
|
|
{
|
|
|
|
ctf_dtdef_t *dtd;
|
|
|
|
ctf_id_t type;
|
libctf: eliminate dtd_u, part 1: int/float/slice
This series eliminates a lot of special-case code to handle dynamic
types (types added to writable dicts and not yet serialized).
Historically, when such types have variable-length data in their final
CTF representations, libctf has always worked by adding such types to a
special union (ctf_dtdef_t.dtd_u) in the dynamic type definition
structure, then picking the members out of this structure at
serialization time and packing them into their final form.
This has the advantage that the ctf_add_* code doesn't need to know
anything about the final CTF representation, but the significant
disadvantage that all code that looks up types in any way needs two code
paths, one for dynamic types, one for all others. Historically libctf
"handled" this by not supporting most type lookups on dynamic types at
all until ctf_update was called to do a complete reserialization of the
entire dict (it didn't emit an error, it just emitted wrong results).
Since commit 676c3ecbad6e9c4, which eliminated ctf_update in favour of
the internal-only ctf_serialize function, all the type-lookup paths
grew an extra branch to handle dynamic types.
We can eliminate this branch again by dropping the dtd_u stuff and
simply writing out the vlen in (close to) its final form at ctf_add_*
time: type lookup for types using this approach is then identical for
types in writable dicts and types that are in read-only ones, and
serialization is also simplified (we just need to write out the vlen
we already created).
The only complexity lies in type kinds for which multiple
vlen representations are valid depending on properties of the type,
e.g. structures. But we can start simple, adjusting ints, floats,
and slices to work this way, and leaving everything else as is.
libctf/ChangeLog
2021-03-18 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h (ctf_dtdef_t) <dtd_u.dtu_enc>: Remove.
<dtd_u.dtu_slice>: Likewise.
<dtd_vlen>: New.
* ctf-create.c (ctf_add_generic): Perhaps allocate it. All
callers adjusted.
(ctf_dtd_delete): Free it.
(ctf_add_slice): Use the dtd_vlen, not dtu_enc.
(ctf_add_encoded): Likewise. Assert that this must be an int or
float.
* ctf-serialize.c (ctf_emit_type_sect): Just copy the dtd_vlen.
* ctf-dedup.c (ctf_dedup_rhash_type): Use the dtd_vlen, not
dtu_slice.
* ctf-types.c (ctf_type_reference): Likewise.
(ctf_type_encoding): Remove most dynamic-type-specific code: just
get the vlen from the right place. Report failure to look up the
underlying type's encoding.
2021-03-18 20:37:52 +08:00
|
|
|
uint32_t encoding;
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
|
|
|
|
if (ep == NULL)
|
2023-09-13 17:02:36 +08:00
|
|
|
return (ctf_set_typed_errno (fp, EINVAL));
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
|
2021-01-28 03:55:45 +08:00
|
|
|
if (name == NULL || name[0] == '\0')
|
2023-09-13 17:02:36 +08:00
|
|
|
return (ctf_set_typed_errno (fp, ECTF_NONAME));
|
2021-01-28 03:55:45 +08:00
|
|
|
|
libctf: eliminate dtd_u, part 1: int/float/slice
This series eliminates a lot of special-case code to handle dynamic
types (types added to writable dicts and not yet serialized).
Historically, when such types have variable-length data in their final
CTF representations, libctf has always worked by adding such types to a
special union (ctf_dtdef_t.dtd_u) in the dynamic type definition
structure, then picking the members out of this structure at
serialization time and packing them into their final form.
This has the advantage that the ctf_add_* code doesn't need to know
anything about the final CTF representation, but the significant
disadvantage that all code that looks up types in any way needs two code
paths, one for dynamic types, one for all others. Historically libctf
"handled" this by not supporting most type lookups on dynamic types at
all until ctf_update was called to do a complete reserialization of the
entire dict (it didn't emit an error, it just emitted wrong results).
Since commit 676c3ecbad6e9c4, which eliminated ctf_update in favour of
the internal-only ctf_serialize function, all the type-lookup paths
grew an extra branch to handle dynamic types.
We can eliminate this branch again by dropping the dtd_u stuff and
simply writing out the vlen in (close to) its final form at ctf_add_*
time: type lookup for types using this approach is then identical for
types in writable dicts and types that are in read-only ones, and
serialization is also simplified (we just need to write out the vlen
we already created).
The only complexity lies in type kinds for which multiple
vlen representations are valid depending on properties of the type,
e.g. structures. But we can start simple, adjusting ints, floats,
and slices to work this way, and leaving everything else as is.
libctf/ChangeLog
2021-03-18 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h (ctf_dtdef_t) <dtd_u.dtu_enc>: Remove.
<dtd_u.dtu_slice>: Likewise.
<dtd_vlen>: New.
* ctf-create.c (ctf_add_generic): Perhaps allocate it. All
callers adjusted.
(ctf_dtd_delete): Free it.
(ctf_add_slice): Use the dtd_vlen, not dtu_enc.
(ctf_add_encoded): Likewise. Assert that this must be an int or
float.
* ctf-serialize.c (ctf_emit_type_sect): Just copy the dtd_vlen.
* ctf-dedup.c (ctf_dedup_rhash_type): Use the dtd_vlen, not
dtu_slice.
* ctf-types.c (ctf_type_reference): Likewise.
(ctf_type_encoding): Remove most dynamic-type-specific code: just
get the vlen from the right place. Report failure to look up the
underlying type's encoding.
2021-03-18 20:37:52 +08:00
|
|
|
if (!ctf_assert (fp, kind == CTF_K_INTEGER || kind == CTF_K_FLOAT))
|
2023-09-13 17:02:36 +08:00
|
|
|
return CTF_ERR; /* errno is set for us. */
|
libctf: eliminate dtd_u, part 1: int/float/slice
This series eliminates a lot of special-case code to handle dynamic
types (types added to writable dicts and not yet serialized).
Historically, when such types have variable-length data in their final
CTF representations, libctf has always worked by adding such types to a
special union (ctf_dtdef_t.dtd_u) in the dynamic type definition
structure, then picking the members out of this structure at
serialization time and packing them into their final form.
This has the advantage that the ctf_add_* code doesn't need to know
anything about the final CTF representation, but the significant
disadvantage that all code that looks up types in any way needs two code
paths, one for dynamic types, one for all others. Historically libctf
"handled" this by not supporting most type lookups on dynamic types at
all until ctf_update was called to do a complete reserialization of the
entire dict (it didn't emit an error, it just emitted wrong results).
Since commit 676c3ecbad6e9c4, which eliminated ctf_update in favour of
the internal-only ctf_serialize function, all the type-lookup paths
grew an extra branch to handle dynamic types.
We can eliminate this branch again by dropping the dtd_u stuff and
simply writing out the vlen in (close to) its final form at ctf_add_*
time: type lookup for types using this approach is then identical for
types in writable dicts and types that are in read-only ones, and
serialization is also simplified (we just need to write out the vlen
we already created).
The only complexity lies in type kinds for which multiple
vlen representations are valid depending on properties of the type,
e.g. structures. But we can start simple, adjusting ints, floats,
and slices to work this way, and leaving everything else as is.
libctf/ChangeLog
2021-03-18 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h (ctf_dtdef_t) <dtd_u.dtu_enc>: Remove.
<dtd_u.dtu_slice>: Likewise.
<dtd_vlen>: New.
* ctf-create.c (ctf_add_generic): Perhaps allocate it. All
callers adjusted.
(ctf_dtd_delete): Free it.
(ctf_add_slice): Use the dtd_vlen, not dtu_enc.
(ctf_add_encoded): Likewise. Assert that this must be an int or
float.
* ctf-serialize.c (ctf_emit_type_sect): Just copy the dtd_vlen.
* ctf-dedup.c (ctf_dedup_rhash_type): Use the dtd_vlen, not
dtu_slice.
* ctf-types.c (ctf_type_reference): Likewise.
(ctf_type_encoding): Remove most dynamic-type-specific code: just
get the vlen from the right place. Report failure to look up the
underlying type's encoding.
2021-03-18 20:37:52 +08:00
|
|
|
|
|
|
|
if ((type = ctf_add_generic (fp, flag, name, kind, sizeof (uint32_t),
|
|
|
|
&dtd)) == CTF_ERR)
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
return CTF_ERR; /* errno is set for us. */
|
|
|
|
|
|
|
|
dtd->dtd_data.ctt_info = CTF_TYPE_INFO (kind, flag, 0);
|
Use CHAR_BIT instead of NBBY in libctf
On x86-64 Fedora 29, I tried to build a mingw-hosted gdb that targets
ppc-linux. You can do this with:
../binutils-gdb/configure --host=i686-w64-mingw32 --target=ppc-linux \
--disable-{binutils,gas,gold,gprof,ld}
The build failed with these errors in libctf:
In file included from ../../binutils-gdb/libctf/ctf-create.c:20:
../../binutils-gdb/libctf/ctf-create.c: In function 'ctf_add_encoded':
../../binutils-gdb/libctf/ctf-create.c:803:59: error: 'NBBY' undeclared (first use in this function)
dtd->dtd_data.ctt_size = clp2 (P2ROUNDUP (ep->cte_bits, NBBY) / NBBY);
^~~~
../../binutils-gdb/libctf/ctf-impl.h:254:42: note: in definition of macro 'P2ROUNDUP'
#define P2ROUNDUP(x, align) (-(-(x) & -(align)))
^~~~~
../../binutils-gdb/libctf/ctf-create.c:803:59: note: each undeclared identifier is reported only once for each function it appears in
dtd->dtd_data.ctt_size = clp2 (P2ROUNDUP (ep->cte_bits, NBBY) / NBBY);
^~~~
../../binutils-gdb/libctf/ctf-impl.h:254:42: note: in definition of macro 'P2ROUNDUP'
#define P2ROUNDUP(x, align) (-(-(x) & -(align)))
^~~~~
../../binutils-gdb/libctf/ctf-create.c: In function 'ctf_add_slice':
../../binutils-gdb/libctf/ctf-create.c:862:59: error: 'NBBY' undeclared (first use in this function)
dtd->dtd_data.ctt_size = clp2 (P2ROUNDUP (ep->cte_bits, NBBY) / NBBY);
^~~~
../../binutils-gdb/libctf/ctf-impl.h:254:42: note: in definition of macro 'P2ROUNDUP'
#define P2ROUNDUP(x, align) (-(-(x) & -(align)))
^~~~~
../../binutils-gdb/libctf/ctf-create.c: In function 'ctf_add_member_offset':
../../binutils-gdb/libctf/ctf-create.c:1341:21: error: 'NBBY' undeclared (first use in this function)
off += lsize * NBBY;
^~~~
../../binutils-gdb/libctf/ctf-create.c: In function 'ctf_add_type':
../../binutils-gdb/libctf/ctf-create.c:1822:16: warning: unknown conversion type character 'z' in format [-Wformat=]
ctf_dprintf ("Conflict for type %s against ID %lx: "
^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
../../binutils-gdb/libctf/ctf-create.c:1823:35: note: format string is defined here
"union size differs, old %zi, new %zi\n",
^
../../binutils-gdb/libctf/ctf-create.c:1822:16: warning: unknown conversion type character 'z' in format [-Wformat=]
ctf_dprintf ("Conflict for type %s against ID %lx: "
^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
../../binutils-gdb/libctf/ctf-create.c:1823:44: note: format string is defined here
"union size differs, old %zi, new %zi\n",
^
../../binutils-gdb/libctf/ctf-create.c:1822:16: warning: too many arguments for format [-Wformat-extra-args]
ctf_dprintf ("Conflict for type %s against ID %lx: "
^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
This patch fixes the actual errors in here. I did not try to fix the
printf warnings, though I think someone ought to.
Ok?
libctf/ChangeLog
2019-06-04 Tom Tromey <tromey@adacore.com>
* ctf-create.c (ctf_add_encoded, ctf_add_slice)
(ctf_add_member_offset): Use CHAR_BIT, not NBBY.
2019-06-05 02:16:57 +08:00
|
|
|
dtd->dtd_data.ctt_size = clp2 (P2ROUNDUP (ep->cte_bits, CHAR_BIT)
|
|
|
|
/ CHAR_BIT);
|
libctf: eliminate dtd_u, part 1: int/float/slice
This series eliminates a lot of special-case code to handle dynamic
types (types added to writable dicts and not yet serialized).
Historically, when such types have variable-length data in their final
CTF representations, libctf has always worked by adding such types to a
special union (ctf_dtdef_t.dtd_u) in the dynamic type definition
structure, then picking the members out of this structure at
serialization time and packing them into their final form.
This has the advantage that the ctf_add_* code doesn't need to know
anything about the final CTF representation, but the significant
disadvantage that all code that looks up types in any way needs two code
paths, one for dynamic types, one for all others. Historically libctf
"handled" this by not supporting most type lookups on dynamic types at
all until ctf_update was called to do a complete reserialization of the
entire dict (it didn't emit an error, it just emitted wrong results).
Since commit 676c3ecbad6e9c4, which eliminated ctf_update in favour of
the internal-only ctf_serialize function, all the type-lookup paths
grew an extra branch to handle dynamic types.
We can eliminate this branch again by dropping the dtd_u stuff and
simply writing out the vlen in (close to) its final form at ctf_add_*
time: type lookup for types using this approach is then identical for
types in writable dicts and types that are in read-only ones, and
serialization is also simplified (we just need to write out the vlen
we already created).
The only complexity lies in type kinds for which multiple
vlen representations are valid depending on properties of the type,
e.g. structures. But we can start simple, adjusting ints, floats,
and slices to work this way, and leaving everything else as is.
libctf/ChangeLog
2021-03-18 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h (ctf_dtdef_t) <dtd_u.dtu_enc>: Remove.
<dtd_u.dtu_slice>: Likewise.
<dtd_vlen>: New.
* ctf-create.c (ctf_add_generic): Perhaps allocate it. All
callers adjusted.
(ctf_dtd_delete): Free it.
(ctf_add_slice): Use the dtd_vlen, not dtu_enc.
(ctf_add_encoded): Likewise. Assert that this must be an int or
float.
* ctf-serialize.c (ctf_emit_type_sect): Just copy the dtd_vlen.
* ctf-dedup.c (ctf_dedup_rhash_type): Use the dtd_vlen, not
dtu_slice.
* ctf-types.c (ctf_type_reference): Likewise.
(ctf_type_encoding): Remove most dynamic-type-specific code: just
get the vlen from the right place. Report failure to look up the
underlying type's encoding.
2021-03-18 20:37:52 +08:00
|
|
|
switch (kind)
|
|
|
|
{
|
|
|
|
case CTF_K_INTEGER:
|
|
|
|
encoding = CTF_INT_DATA (ep->cte_format, ep->cte_offset, ep->cte_bits);
|
|
|
|
break;
|
|
|
|
case CTF_K_FLOAT:
|
|
|
|
encoding = CTF_FP_DATA (ep->cte_format, ep->cte_offset, ep->cte_bits);
|
|
|
|
break;
|
2024-04-09 07:23:35 +08:00
|
|
|
default:
|
|
|
|
/* ctf_assert is opaque with -fno-inline. This dead code avoids
|
|
|
|
a warning about "encoding" being used uninitialized. */
|
|
|
|
return CTF_ERR;
|
libctf: eliminate dtd_u, part 1: int/float/slice
This series eliminates a lot of special-case code to handle dynamic
types (types added to writable dicts and not yet serialized).
Historically, when such types have variable-length data in their final
CTF representations, libctf has always worked by adding such types to a
special union (ctf_dtdef_t.dtd_u) in the dynamic type definition
structure, then picking the members out of this structure at
serialization time and packing them into their final form.
This has the advantage that the ctf_add_* code doesn't need to know
anything about the final CTF representation, but the significant
disadvantage that all code that looks up types in any way needs two code
paths, one for dynamic types, one for all others. Historically libctf
"handled" this by not supporting most type lookups on dynamic types at
all until ctf_update was called to do a complete reserialization of the
entire dict (it didn't emit an error, it just emitted wrong results).
Since commit 676c3ecbad6e9c4, which eliminated ctf_update in favour of
the internal-only ctf_serialize function, all the type-lookup paths
grew an extra branch to handle dynamic types.
We can eliminate this branch again by dropping the dtd_u stuff and
simply writing out the vlen in (close to) its final form at ctf_add_*
time: type lookup for types using this approach is then identical for
types in writable dicts and types that are in read-only ones, and
serialization is also simplified (we just need to write out the vlen
we already created).
The only complexity lies in type kinds for which multiple
vlen representations are valid depending on properties of the type,
e.g. structures. But we can start simple, adjusting ints, floats,
and slices to work this way, and leaving everything else as is.
libctf/ChangeLog
2021-03-18 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h (ctf_dtdef_t) <dtd_u.dtu_enc>: Remove.
<dtd_u.dtu_slice>: Likewise.
<dtd_vlen>: New.
* ctf-create.c (ctf_add_generic): Perhaps allocate it. All
callers adjusted.
(ctf_dtd_delete): Free it.
(ctf_add_slice): Use the dtd_vlen, not dtu_enc.
(ctf_add_encoded): Likewise. Assert that this must be an int or
float.
* ctf-serialize.c (ctf_emit_type_sect): Just copy the dtd_vlen.
* ctf-dedup.c (ctf_dedup_rhash_type): Use the dtd_vlen, not
dtu_slice.
* ctf-types.c (ctf_type_reference): Likewise.
(ctf_type_encoding): Remove most dynamic-type-specific code: just
get the vlen from the right place. Report failure to look up the
underlying type's encoding.
2021-03-18 20:37:52 +08:00
|
|
|
}
|
|
|
|
memcpy (dtd->dtd_vlen, &encoding, sizeof (encoding));
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
|
|
|
|
return type;
|
|
|
|
}
|
|
|
|
|
2020-06-06 01:35:46 +08:00
|
|
|
ctf_id_t
|
libctf, include, binutils, gdb, ld: rename ctf_file_t to ctf_dict_t
The naming of the ctf_file_t type in libctf is a historical curiosity.
Back in the Solaris days, CTF dictionaries were originally generated as
a separate file and then (sometimes) merged into objects: hence the
datatype was named ctf_file_t, and known as a "CTF file". Nowadays, raw
CTF is essentially never written to a file on its own, and the datatype
changed name to a "CTF dictionary" years ago. So the term "CTF file"
refers to something that is never a file! This is at best confusing.
The type has also historically been known as a 'CTF container", which is
even more confusing now that we have CTF archives which are *also* a
sort of container (they contain CTF dictionaries), but which are never
referred to as containers in the source code.
So fix this by completing the renaming, renaming ctf_file_t to
ctf_dict_t throughout, and renaming those few functions that refer to
CTF files by name (keeping compatibility aliases) to refer to dicts
instead. Old users who still refer to ctf_file_t will see (harmless)
pointer-compatibility warnings at compile time, but the ABI is unchanged
(since C doesn't mangle names, and ctf_file_t was always an opaque type)
and things will still compile fine as long as -Werror is not specified.
All references to CTF containers and CTF files in the source code are
fixed to refer to CTF dicts instead.
Further (smaller) renamings of annoyingly-named functions to come, as
part of the process of souping up queries across whole archives at once
(needed for the function info and data object sections).
binutils/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* objdump.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_ctf): Likewise. Use ctf_dict_close, not ctf_file_close.
* readelf.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_section_as_ctf): Likewise. Use ctf_dict_close, not
ctf_file_close.
gdb/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctfread.c: Change uses of ctf_file_t to ctf_dict_t.
(ctf_fp_info::~ctf_fp_info): Call ctf_dict_close, not ctf_file_close.
include/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-api.h (ctf_file_t): Rename to...
(ctf_dict_t): ... this. Keep ctf_file_t around for compatibility.
(struct ctf_file): Likewise rename to...
(struct ctf_dict): ... this.
(ctf_file_close): Rename to...
(ctf_dict_close): ... this, keeping compatibility function.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this, keeping compatibility function.
All callers adjusted.
* ctf.h: Rename references to ctf_file_t to ctf_dict_t.
(struct ctf_archive) <ctfa_nfiles>: Rename to...
<ctfa_ndicts>: ... this.
ld/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ldlang.c (ctf_output): This is a ctf_dict_t now.
(lang_ctf_errs_warnings): Rename ctf_file_t to ctf_dict_t.
(ldlang_open_ctf): Adjust comment.
(lang_merge_ctf): Use ctf_dict_close, not ctf_file_close.
* ldelfgen.h (ldelf_examine_strtab_for_ctf): Rename ctf_file_t to
ctf_dict_t. Change opaque declaration accordingly.
* ldelfgen.c (ldelf_examine_strtab_for_ctf): Adjust.
* ldemul.h (examine_strtab_for_ctf): Likewise.
(ldemul_examine_strtab_for_ctf): Likewise.
* ldeuml.c (ldemul_examine_strtab_for_ctf): Likewise.
libctf/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h: Rename ctf_file_t to ctf_dict_t: all declarations
adjusted.
(ctf_fileops): Rename to...
(ctf_dictops): ... this.
(ctf_dedup_t) <cd_id_to_file_t>: Rename to...
<cd_id_to_dict_t>: ... this.
(ctf_file_t): Fix outdated comment.
<ctf_fileops>: Rename to...
<ctf_dictops>: ... this.
(struct ctf_archive_internal) <ctfi_file>: Rename to...
<ctfi_dict>: ... this.
* ctf-archive.c: Rename ctf_file_t to ctf_dict_t.
Rename ctf_archive.ctfa_nfiles to ctfa_ndicts.
Rename ctf_file_close to ctf_dict_close. All users adjusted.
* ctf-create.c: Likewise. Refer to CTF dicts, not CTF containers.
(ctf_bundle_t) <ctb_file>: Rename to...
<ctb_dict): ... this.
* ctf-decl.c: Rename ctf_file_t to ctf_dict_t.
* ctf-dedup.c: Likewise. Rename ctf_file_close to
ctf_dict_close. Refer to CTF dicts, not CTF containers.
* ctf-dump.c: Likewise.
* ctf-error.c: Likewise.
* ctf-hash.c: Likewise.
* ctf-inlines.h: Likewise.
* ctf-labels.c: Likewise.
* ctf-link.c: Likewise.
* ctf-lookup.c: Likewise.
* ctf-open-bfd.c: Likewise.
* ctf-string.c: Likewise.
* ctf-subr.c: Likewise.
* ctf-types.c: Likewise.
* ctf-util.c: Likewise.
* ctf-open.c: Likewise.
(ctf_file_close): Rename to...
(ctf_dict_close): ...this.
(ctf_file_close): New trivial wrapper around ctf_dict_close, for
compatibility.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this.
(ctf_parent_file): New trivial wrapper around ctf_parent_dict, for
compatibility.
* libctf.ver: Add ctf_dict_close and ctf_parent_dict.
2020-11-20 21:34:04 +08:00
|
|
|
ctf_add_reftype (ctf_dict_t *fp, uint32_t flag, ctf_id_t ref, uint32_t kind)
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
{
|
|
|
|
ctf_dtdef_t *dtd;
|
|
|
|
ctf_id_t type;
|
libctf, include, binutils, gdb, ld: rename ctf_file_t to ctf_dict_t
The naming of the ctf_file_t type in libctf is a historical curiosity.
Back in the Solaris days, CTF dictionaries were originally generated as
a separate file and then (sometimes) merged into objects: hence the
datatype was named ctf_file_t, and known as a "CTF file". Nowadays, raw
CTF is essentially never written to a file on its own, and the datatype
changed name to a "CTF dictionary" years ago. So the term "CTF file"
refers to something that is never a file! This is at best confusing.
The type has also historically been known as a 'CTF container", which is
even more confusing now that we have CTF archives which are *also* a
sort of container (they contain CTF dictionaries), but which are never
referred to as containers in the source code.
So fix this by completing the renaming, renaming ctf_file_t to
ctf_dict_t throughout, and renaming those few functions that refer to
CTF files by name (keeping compatibility aliases) to refer to dicts
instead. Old users who still refer to ctf_file_t will see (harmless)
pointer-compatibility warnings at compile time, but the ABI is unchanged
(since C doesn't mangle names, and ctf_file_t was always an opaque type)
and things will still compile fine as long as -Werror is not specified.
All references to CTF containers and CTF files in the source code are
fixed to refer to CTF dicts instead.
Further (smaller) renamings of annoyingly-named functions to come, as
part of the process of souping up queries across whole archives at once
(needed for the function info and data object sections).
binutils/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* objdump.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_ctf): Likewise. Use ctf_dict_close, not ctf_file_close.
* readelf.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_section_as_ctf): Likewise. Use ctf_dict_close, not
ctf_file_close.
gdb/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctfread.c: Change uses of ctf_file_t to ctf_dict_t.
(ctf_fp_info::~ctf_fp_info): Call ctf_dict_close, not ctf_file_close.
include/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-api.h (ctf_file_t): Rename to...
(ctf_dict_t): ... this. Keep ctf_file_t around for compatibility.
(struct ctf_file): Likewise rename to...
(struct ctf_dict): ... this.
(ctf_file_close): Rename to...
(ctf_dict_close): ... this, keeping compatibility function.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this, keeping compatibility function.
All callers adjusted.
* ctf.h: Rename references to ctf_file_t to ctf_dict_t.
(struct ctf_archive) <ctfa_nfiles>: Rename to...
<ctfa_ndicts>: ... this.
ld/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ldlang.c (ctf_output): This is a ctf_dict_t now.
(lang_ctf_errs_warnings): Rename ctf_file_t to ctf_dict_t.
(ldlang_open_ctf): Adjust comment.
(lang_merge_ctf): Use ctf_dict_close, not ctf_file_close.
* ldelfgen.h (ldelf_examine_strtab_for_ctf): Rename ctf_file_t to
ctf_dict_t. Change opaque declaration accordingly.
* ldelfgen.c (ldelf_examine_strtab_for_ctf): Adjust.
* ldemul.h (examine_strtab_for_ctf): Likewise.
(ldemul_examine_strtab_for_ctf): Likewise.
* ldeuml.c (ldemul_examine_strtab_for_ctf): Likewise.
libctf/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h: Rename ctf_file_t to ctf_dict_t: all declarations
adjusted.
(ctf_fileops): Rename to...
(ctf_dictops): ... this.
(ctf_dedup_t) <cd_id_to_file_t>: Rename to...
<cd_id_to_dict_t>: ... this.
(ctf_file_t): Fix outdated comment.
<ctf_fileops>: Rename to...
<ctf_dictops>: ... this.
(struct ctf_archive_internal) <ctfi_file>: Rename to...
<ctfi_dict>: ... this.
* ctf-archive.c: Rename ctf_file_t to ctf_dict_t.
Rename ctf_archive.ctfa_nfiles to ctfa_ndicts.
Rename ctf_file_close to ctf_dict_close. All users adjusted.
* ctf-create.c: Likewise. Refer to CTF dicts, not CTF containers.
(ctf_bundle_t) <ctb_file>: Rename to...
<ctb_dict): ... this.
* ctf-decl.c: Rename ctf_file_t to ctf_dict_t.
* ctf-dedup.c: Likewise. Rename ctf_file_close to
ctf_dict_close. Refer to CTF dicts, not CTF containers.
* ctf-dump.c: Likewise.
* ctf-error.c: Likewise.
* ctf-hash.c: Likewise.
* ctf-inlines.h: Likewise.
* ctf-labels.c: Likewise.
* ctf-link.c: Likewise.
* ctf-lookup.c: Likewise.
* ctf-open-bfd.c: Likewise.
* ctf-string.c: Likewise.
* ctf-subr.c: Likewise.
* ctf-types.c: Likewise.
* ctf-util.c: Likewise.
* ctf-open.c: Likewise.
(ctf_file_close): Rename to...
(ctf_dict_close): ...this.
(ctf_file_close): New trivial wrapper around ctf_dict_close, for
compatibility.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this.
(ctf_parent_file): New trivial wrapper around ctf_parent_dict, for
compatibility.
* libctf.ver: Add ctf_dict_close and ctf_parent_dict.
2020-11-20 21:34:04 +08:00
|
|
|
ctf_dict_t *tmp = fp;
|
libctf: avoid the need to ever use ctf_update
The method of operation of libctf when the dictionary is writable has
before now been that types that are added land in the dynamic type
section, which is a linked list and hash of IDs -> dynamic type
definitions (and, recently a hash of names): the DTDs are a bit of CTF
representing the ctf_type_t and ad hoc C structures representing the
vlen. Historically, libctf was unable to do anything with these types,
not even look them up by ID, let alone by name: if you wanted to do that
say if you were adding a type that depended on one you just added) you
called ctf_update, which serializes all the DTDs into a CTF file and
reopens it, copying its guts over the fp it's called with. The
ctf_updated types are then frozen in amber and unchangeable: all lookups
will return the types in the static portion in preference to the dynamic
portion, and we will refuse to re-add things that already exist in the
static portion (and, of late, in the dynamic portion too). The libctf
machinery remembers the boundary between static and dynamic types and
looks in the right portion for each type. Lots of things still don't
quite work with dynamic types (e.g. getting their size), but enough
works to do a bunch of additions and then a ctf_update, most of the
time.
Except it doesn't, because ctf_add_type finds it necessary to walk the
full dynamic type definition list looking for types with matching names,
so it gets slower and slower with every type you add: fixing this
requires calling ctf_update periodically for no other reason than to
avoid massively slowing things down.
This is all clunky and very slow but kind of works, until you consider
that it is in fact possible and indeed necessary to modify one sort of
type after it has been added: forwards. These are necessarily promoted
to structs, unions or enums, and when they do so *their type ID does not
change*. So all of a sudden we are changing types that already exist in
the static portion. ctf_update gets massively confused by this and
allocates space enough for the forward (with no members), but then emits
the new dynamic type (with all the members) into it. You get an
assertion failure after that, if you're lucky, or a coredump.
So this commit rejigs things a bit and arranges to exclusively use the
dynamic type definitions in writable dictionaries, and the static type
definitions in readable dictionaries: we don't at any time have a mixture
of static and dynamic types, and you don't need to call ctf_update to
make things "appear". The ctf_dtbyname hash I introduced a few months
ago, which maps things like "struct foo" to DTDs, is removed, replaced
instead by a change of type of the four dictionaries which track names.
Rather than just being (unresizable) ctf_hash_t's populated only at
ctf_bufopen time, they are now a ctf_names_t structure, which is a pair
of ctf_hash_t and ctf_dynhash_t, with the ctf_hash_t portion being used
in readonly dictionaries, and the ctf_dynhash_t being used in writable
ones. The decision as to which to use is centralized in the new
functions ctf_lookup_by_rawname (which takes a type kind) and
ctf_lookup_by_rawhash, which it calls (which takes a ctf_names_t *.)
This change lets us switch from using static to dynamic name hashes on
the fly across the entirety of libctf without complexifying anything: in
fact, because we now centralize the knowledge about how to map from type
kind to name hash, it actually simplifies things and lets us throw out
quite a lot of now-unnecessary complexity, from ctf_dtnyname (replaced
by the dynamic half of the name tables), through to ctf_dtnextid (now
that a dictionary's static portion is never referenced if the dictionary
is writable, we can just use ctf_typemax to indicate the maximum type:
dynamic or non-dynamic does not matter, and we no longer need to track
the boundary between the types). You can now ctf_rollback() as far as
you like, even past a ctf_update or for that matter a full writeout; all
the iteration functions work just as well on writable as on read-only
dictionaries; ctf_add_type no longer needs expensive duplicated code to
run over the dynamic types hunting for ones it might be interested in;
and the linker no longer needs a hack to call ctf_update so that calling
ctf_add_type is not impossibly expensive.
There is still a bit more complexity: some new code paths in ctf-types.c
need to know how to extract information from dynamic types. This
complexity will go away again in a few months when libctf acquires a
proper intermediate representation.
You can still call ctf_update if you like (it's public API, after all),
but its only effect now is to set the point to which ctf_discard rolls
back.
Obviously *something* still needs to serialize the CTF file before
writeout, and this job is done by ctf_serialize, which does everything
ctf_update used to except set the counter used by ctf_discard. It is
automatically called by the various functions that do CTF writeout:
nobody else ever needs to call it.
With this in place, forwards that are promoted to non-forwards no longer
crash the link, even if it happens tens of thousands of types later.
v5: fix tabdamage.
libctf/
* ctf-impl.h (ctf_names_t): New.
(ctf_lookup_t) <ctf_hash>: Now a ctf_names_t, not a ctf_hash_t.
(ctf_file_t) <ctf_structs>: Likewise.
<ctf_unions>: Likewise.
<ctf_enums>: Likewise.
<ctf_names>: Likewise.
<ctf_lookups>: Improve comment.
<ctf_ptrtab_len>: New.
<ctf_prov_strtab>: New.
<ctf_str_prov_offset>: New.
<ctf_dtbyname>: Remove, redundant to the names hashes.
<ctf_dtnextid>: Remove, redundant to ctf_typemax.
(ctf_dtdef_t) <dtd_name>: Remove.
<dtd_data>: Note that the ctt_name is now populated.
(ctf_str_atom_t) <csa_offset>: This is now the strtab
offset for internal strings too.
<csa_external_offset>: New, the external strtab offset.
(CTF_INDEX_TO_TYPEPTR): Handle the LCTF_RDWR case.
(ctf_name_table): New declaration.
(ctf_lookup_by_rawname): Likewise.
(ctf_lookup_by_rawhash): Likewise.
(ctf_set_ctl_hashes): Likewise.
(ctf_serialize): Likewise.
(ctf_dtd_insert): Adjust.
(ctf_simple_open_internal): Likewise.
(ctf_bufopen_internal): Likewise.
(ctf_list_empty_p): Likewise.
(ctf_str_remove_ref): Likewise.
(ctf_str_add): Returns uint32_t now.
(ctf_str_add_ref): Likewise.
(ctf_str_add_external): Now returns a boolean (int).
* ctf-string.c (ctf_strraw_explicit): Check the ctf_prov_strtab
for strings in the appropriate range.
(ctf_str_create_atoms): Create the ctf_prov_strtab. Detect OOM
when adding the null string to the new strtab.
(ctf_str_free_atoms): Destroy the ctf_prov_strtab.
(ctf_str_add_ref_internal): Add make_provisional argument. If
make_provisional, populate the offset and fill in the
ctf_prov_strtab accordingly.
(ctf_str_add): Return the offset, not the string.
(ctf_str_add_ref): Likewise.
(ctf_str_add_external): Return a success integer.
(ctf_str_remove_ref): New, remove a single ref.
(ctf_str_count_strtab): Do not count the initial null string's
length or the existence or length of any unreferenced internal
atoms.
(ctf_str_populate_sorttab): Skip atoms with no refs.
(ctf_str_write_strtab): Populate the nullstr earlier. Add one
to the cts_len for the null string, since it is no longer done
in ctf_str_count_strtab. Adjust for csa_external_offset rename.
Populate the csa_offset for both internal and external cases.
Flush the ctf_prov_strtab afterwards, and reset the
ctf_str_prov_offset.
* ctf-create.c (ctf_grow_ptrtab): New.
(ctf_create): Call it. Initialize new fields rather than old
ones. Tell ctf_bufopen_internal that this is a writable dictionary.
Set the ctl hashes and data model.
(ctf_update): Rename to...
(ctf_serialize): ... this. Leave a compatibility function behind.
Tell ctf_simple_open_internal that this is a writable dictionary.
Pass the new fields along from the old dictionary. Drop
ctf_dtnextid and ctf_dtbyname. Use ctf_strraw, not dtd_name.
Do not zero out the DTD's ctt_name.
(ctf_prefixed_name): Rename to...
(ctf_name_table): ... this. No longer return a prefixed name: return
the applicable name table instead.
(ctf_dtd_insert): Use it, and use the right name table. Pass in the
kind we're adding. Migrate away from dtd_name.
(ctf_dtd_delete): Adjust similarly. Remove the ref to the
deleted ctt_name.
(ctf_dtd_lookup_type_by_name): Remove.
(ctf_dynamic_type): Always return NULL on read-only dictionaries.
No longer check ctf_dtnextid: check ctf_typemax instead.
(ctf_snapshot): No longer use ctf_dtnextid: use ctf_typemax instead.
(ctf_rollback): Likewise. No longer fail with ECTF_OVERROLLBACK. Use
ctf_name_table and the right name table, and migrate away from
dtd_name as in ctf_dtd_delete.
(ctf_add_generic): Pass in the kind explicitly and pass it to
ctf_dtd_insert. Use ctf_typemax, not ctf_dtnextid. Migrate away
from dtd_name to using ctf_str_add_ref to populate the ctt_name.
Grow the ptrtab if needed.
(ctf_add_encoded): Pass in the kind.
(ctf_add_slice): Likewise.
(ctf_add_array): Likewise.
(ctf_add_function): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_reftype): Likewise. Initialize the ctf_ptrtab, checking
ctt_name rather than dtd_name.
(ctf_add_struct_sized): Pass in the kind. Use
ctf_lookup_by_rawname, not ctf_hash_lookup_type /
ctf_dtd_lookup_type_by_name.
(ctf_add_union_sized): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_type): Likewise.
(ctf_compress_write): Call ctf_serialize: adjust for ctf_size not
being initialized until after the call.
(ctf_write_mem): Likewise.
(ctf_write): Likewise.
* ctf-archive.c (arc_write_one_ctf): Likewise.
* ctf-lookup.c (ctf_lookup_by_name): Use ctf_lookuup_by_rawhash, not
ctf_hash_lookup_type.
(ctf_lookup_by_id): No longer check the readonly types if the
dictionary is writable.
* ctf-open.c (init_types): Assert that this dictionary is not
writable. Adjust to use the new name hashes, ctf_name_table,
and ctf_ptrtab_len. GNU style fix for the final ptrtab scan.
(ctf_bufopen_internal): New 'writable' parameter. Flip on LCTF_RDWR
if set. Drop out early when dictionary is writable. Split the
ctf_lookups initialization into...
(ctf_set_cth_hashes): ... this new function.
(ctf_simple_open_internal): Adjust. New 'writable' parameter.
(ctf_simple_open): Adjust accordingly.
(ctf_bufopen): Likewise.
(ctf_file_close): Destroy the appropriate name hashes. No longer
destroy ctf_dtbyname, which is gone.
(ctf_getdatasect): Remove spurious "extern".
* ctf-types.c (ctf_lookup_by_rawname): New, look up types in the
specified name table, given a kind.
(ctf_lookup_by_rawhash): Likewise, given a ctf_names_t *.
(ctf_member_iter): Add support for iterating over the
dynamic type list.
(ctf_enum_iter): Likewise.
(ctf_variable_iter): Likewise.
(ctf_type_rvisit): Likewise.
(ctf_member_info): Add support for types in the dynamic type list.
(ctf_enum_name): Likewise.
(ctf_enum_value): Likewise.
(ctf_func_type_info): Likewise.
(ctf_func_type_args): Likewise.
* ctf-link.c (ctf_accumulate_archive_names): No longer call
ctf_update.
(ctf_link_write): Likewise.
(ctf_link_intern_extern_string): Adjust for new
ctf_str_add_external return value.
(ctf_link_add_strtab): Likewise.
* ctf-util.c (ctf_list_empty_p): New.
2019-08-08 00:55:09 +08:00
|
|
|
int child = fp->ctf_flags & LCTF_CHILD;
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
|
libctf: fix a number of build problems found on Solaris and NetBSD
- Use of nonportable <endian.h>
- Use of qsort_r
- Use of zlib without appropriate magic to pull in the binutils zlib
- Use of off64_t without checking (fixed by dropping the unused fields
that need off64_t entirely)
- signedness problems due to long being too short a type on 32-bit
platforms: ctf_id_t is now 'unsigned long', and CTF_ERR must be
used only for functions that return ctf_id_t
- One lingering use of bzero() and of <sys/errno.h>
All fixed, using code from gnulib where possible.
Relatedly, set cts_size in a couple of places it was missed
(string table and symbol table loading upon ctf_bfdopen()).
binutils/
* objdump.c (make_ctfsect): Drop cts_type, cts_flags, and
cts_offset.
* readelf.c (shdr_to_ctf_sect): Likewise.
include/
* ctf-api.h (ctf_sect_t): Drop cts_type, cts_flags, and cts_offset.
(ctf_id_t): This is now an unsigned type.
(CTF_ERR): Cast it to ctf_id_t. Note that it should only be used
for ctf_id_t-returning functions.
libctf/
* Makefile.am (ZLIB): New.
(ZLIBINC): Likewise.
(AM_CFLAGS): Use them.
(libctf_a_LIBADD): New, for LIBOBJS.
* configure.ac: Check for zlib, endian.h, and qsort_r.
* ctf-endian.h: New, providing htole64 and le64toh.
* swap.h: Code style fixes.
(bswap_identity_64): New.
* qsort_r.c: New, from gnulib (with one added #include).
* ctf-decls.h: New, providing a conditional qsort_r declaration,
and unconditional definitions of MIN and MAX.
* ctf-impl.h: Use it. Do not use <sys/errno.h>.
(ctf_set_errno): Now returns unsigned long.
* ctf-util.c (ctf_set_errno): Adjust here too.
* ctf-archive.c: Use ctf-endian.h.
(ctf_arc_open_by_offset): Use memset, not bzero. Drop cts_type,
cts_flags and cts_offset.
(ctf_arc_write): Drop debugging dependent on the size of off_t.
* ctf-create.c: Provide a definition of roundup if not defined.
(ctf_create): Drop cts_type, cts_flags and cts_offset.
(ctf_add_reftype): Do not check if type IDs are below zero.
(ctf_add_slice): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_member_offset): Cast error-returning ssize_t's to size_t
when known error-free. Drop CTF_ERR usage for functions returning
int.
(ctf_add_member_encoded): Drop CTF_ERR usage for functions returning
int.
(ctf_add_variable): Likewise.
(enumcmp): Likewise.
(enumadd): Likewise.
(membcmp): Likewise.
(ctf_add_type): Likewise. Cast error-returning ssize_t's to size_t
when known error-free.
* ctf-dump.c (ctf_is_slice): Drop CTF_ERR usage for functions
returning int: use CTF_ERR for functions returning ctf_type_id.
(ctf_dump_label): Likewise.
(ctf_dump_objts): Likewise.
* ctf-labels.c (ctf_label_topmost): Likewise.
(ctf_label_iter): Likewise.
(ctf_label_info): Likewise.
* ctf-lookup.c (ctf_func_args): Likewise.
* ctf-open.c (upgrade_types): Cast to size_t where appropriate.
(ctf_bufopen): Likewise. Use zlib types as needed.
* ctf-types.c (ctf_member_iter): Drop CTF_ERR usage for functions
returning int.
(ctf_enum_iter): Likewise.
(ctf_type_size): Likewise.
(ctf_type_align): Likewise. Cast to size_t where appropriate.
(ctf_type_kind_unsliced): Likewise.
(ctf_type_kind): Likewise.
(ctf_type_encoding): Likewise.
(ctf_member_info): Likewise.
(ctf_array_info): Likewise.
(ctf_enum_value): Likewise.
(ctf_type_rvisit): Likewise.
* ctf-open-bfd.c (ctf_bfdopen): Drop cts_type, cts_flags and
cts_offset.
(ctf_simple_open): Likewise.
(ctf_bfdopen_ctfsect): Likewise. Set cts_size properly.
* Makefile.in: Regenerate.
* aclocal.m4: Likewise.
* config.h: Likewise.
* configure: Likewise.
2019-05-31 17:10:51 +08:00
|
|
|
if (ref == CTF_ERR || ref > CTF_MAX_TYPE)
|
2023-09-13 17:02:36 +08:00
|
|
|
return (ctf_set_typed_errno (fp, EINVAL));
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
|
2020-06-03 03:04:24 +08:00
|
|
|
if (ref != 0 && ctf_lookup_by_id (&tmp, ref) == NULL)
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
return CTF_ERR; /* errno is set for us. */
|
|
|
|
|
libctf: eliminate dtd_u, part 1: int/float/slice
This series eliminates a lot of special-case code to handle dynamic
types (types added to writable dicts and not yet serialized).
Historically, when such types have variable-length data in their final
CTF representations, libctf has always worked by adding such types to a
special union (ctf_dtdef_t.dtd_u) in the dynamic type definition
structure, then picking the members out of this structure at
serialization time and packing them into their final form.
This has the advantage that the ctf_add_* code doesn't need to know
anything about the final CTF representation, but the significant
disadvantage that all code that looks up types in any way needs two code
paths, one for dynamic types, one for all others. Historically libctf
"handled" this by not supporting most type lookups on dynamic types at
all until ctf_update was called to do a complete reserialization of the
entire dict (it didn't emit an error, it just emitted wrong results).
Since commit 676c3ecbad6e9c4, which eliminated ctf_update in favour of
the internal-only ctf_serialize function, all the type-lookup paths
grew an extra branch to handle dynamic types.
We can eliminate this branch again by dropping the dtd_u stuff and
simply writing out the vlen in (close to) its final form at ctf_add_*
time: type lookup for types using this approach is then identical for
types in writable dicts and types that are in read-only ones, and
serialization is also simplified (we just need to write out the vlen
we already created).
The only complexity lies in type kinds for which multiple
vlen representations are valid depending on properties of the type,
e.g. structures. But we can start simple, adjusting ints, floats,
and slices to work this way, and leaving everything else as is.
libctf/ChangeLog
2021-03-18 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h (ctf_dtdef_t) <dtd_u.dtu_enc>: Remove.
<dtd_u.dtu_slice>: Likewise.
<dtd_vlen>: New.
* ctf-create.c (ctf_add_generic): Perhaps allocate it. All
callers adjusted.
(ctf_dtd_delete): Free it.
(ctf_add_slice): Use the dtd_vlen, not dtu_enc.
(ctf_add_encoded): Likewise. Assert that this must be an int or
float.
* ctf-serialize.c (ctf_emit_type_sect): Just copy the dtd_vlen.
* ctf-dedup.c (ctf_dedup_rhash_type): Use the dtd_vlen, not
dtu_slice.
* ctf-types.c (ctf_type_reference): Likewise.
(ctf_type_encoding): Remove most dynamic-type-specific code: just
get the vlen from the right place. Report failure to look up the
underlying type's encoding.
2021-03-18 20:37:52 +08:00
|
|
|
if ((type = ctf_add_generic (fp, flag, NULL, kind, 0, &dtd)) == CTF_ERR)
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
return CTF_ERR; /* errno is set for us. */
|
|
|
|
|
|
|
|
dtd->dtd_data.ctt_info = CTF_TYPE_INFO (kind, flag, 0);
|
|
|
|
dtd->dtd_data.ctt_type = (uint32_t) ref;
|
|
|
|
|
libctf: avoid the need to ever use ctf_update
The method of operation of libctf when the dictionary is writable has
before now been that types that are added land in the dynamic type
section, which is a linked list and hash of IDs -> dynamic type
definitions (and, recently a hash of names): the DTDs are a bit of CTF
representing the ctf_type_t and ad hoc C structures representing the
vlen. Historically, libctf was unable to do anything with these types,
not even look them up by ID, let alone by name: if you wanted to do that
say if you were adding a type that depended on one you just added) you
called ctf_update, which serializes all the DTDs into a CTF file and
reopens it, copying its guts over the fp it's called with. The
ctf_updated types are then frozen in amber and unchangeable: all lookups
will return the types in the static portion in preference to the dynamic
portion, and we will refuse to re-add things that already exist in the
static portion (and, of late, in the dynamic portion too). The libctf
machinery remembers the boundary between static and dynamic types and
looks in the right portion for each type. Lots of things still don't
quite work with dynamic types (e.g. getting their size), but enough
works to do a bunch of additions and then a ctf_update, most of the
time.
Except it doesn't, because ctf_add_type finds it necessary to walk the
full dynamic type definition list looking for types with matching names,
so it gets slower and slower with every type you add: fixing this
requires calling ctf_update periodically for no other reason than to
avoid massively slowing things down.
This is all clunky and very slow but kind of works, until you consider
that it is in fact possible and indeed necessary to modify one sort of
type after it has been added: forwards. These are necessarily promoted
to structs, unions or enums, and when they do so *their type ID does not
change*. So all of a sudden we are changing types that already exist in
the static portion. ctf_update gets massively confused by this and
allocates space enough for the forward (with no members), but then emits
the new dynamic type (with all the members) into it. You get an
assertion failure after that, if you're lucky, or a coredump.
So this commit rejigs things a bit and arranges to exclusively use the
dynamic type definitions in writable dictionaries, and the static type
definitions in readable dictionaries: we don't at any time have a mixture
of static and dynamic types, and you don't need to call ctf_update to
make things "appear". The ctf_dtbyname hash I introduced a few months
ago, which maps things like "struct foo" to DTDs, is removed, replaced
instead by a change of type of the four dictionaries which track names.
Rather than just being (unresizable) ctf_hash_t's populated only at
ctf_bufopen time, they are now a ctf_names_t structure, which is a pair
of ctf_hash_t and ctf_dynhash_t, with the ctf_hash_t portion being used
in readonly dictionaries, and the ctf_dynhash_t being used in writable
ones. The decision as to which to use is centralized in the new
functions ctf_lookup_by_rawname (which takes a type kind) and
ctf_lookup_by_rawhash, which it calls (which takes a ctf_names_t *.)
This change lets us switch from using static to dynamic name hashes on
the fly across the entirety of libctf without complexifying anything: in
fact, because we now centralize the knowledge about how to map from type
kind to name hash, it actually simplifies things and lets us throw out
quite a lot of now-unnecessary complexity, from ctf_dtnyname (replaced
by the dynamic half of the name tables), through to ctf_dtnextid (now
that a dictionary's static portion is never referenced if the dictionary
is writable, we can just use ctf_typemax to indicate the maximum type:
dynamic or non-dynamic does not matter, and we no longer need to track
the boundary between the types). You can now ctf_rollback() as far as
you like, even past a ctf_update or for that matter a full writeout; all
the iteration functions work just as well on writable as on read-only
dictionaries; ctf_add_type no longer needs expensive duplicated code to
run over the dynamic types hunting for ones it might be interested in;
and the linker no longer needs a hack to call ctf_update so that calling
ctf_add_type is not impossibly expensive.
There is still a bit more complexity: some new code paths in ctf-types.c
need to know how to extract information from dynamic types. This
complexity will go away again in a few months when libctf acquires a
proper intermediate representation.
You can still call ctf_update if you like (it's public API, after all),
but its only effect now is to set the point to which ctf_discard rolls
back.
Obviously *something* still needs to serialize the CTF file before
writeout, and this job is done by ctf_serialize, which does everything
ctf_update used to except set the counter used by ctf_discard. It is
automatically called by the various functions that do CTF writeout:
nobody else ever needs to call it.
With this in place, forwards that are promoted to non-forwards no longer
crash the link, even if it happens tens of thousands of types later.
v5: fix tabdamage.
libctf/
* ctf-impl.h (ctf_names_t): New.
(ctf_lookup_t) <ctf_hash>: Now a ctf_names_t, not a ctf_hash_t.
(ctf_file_t) <ctf_structs>: Likewise.
<ctf_unions>: Likewise.
<ctf_enums>: Likewise.
<ctf_names>: Likewise.
<ctf_lookups>: Improve comment.
<ctf_ptrtab_len>: New.
<ctf_prov_strtab>: New.
<ctf_str_prov_offset>: New.
<ctf_dtbyname>: Remove, redundant to the names hashes.
<ctf_dtnextid>: Remove, redundant to ctf_typemax.
(ctf_dtdef_t) <dtd_name>: Remove.
<dtd_data>: Note that the ctt_name is now populated.
(ctf_str_atom_t) <csa_offset>: This is now the strtab
offset for internal strings too.
<csa_external_offset>: New, the external strtab offset.
(CTF_INDEX_TO_TYPEPTR): Handle the LCTF_RDWR case.
(ctf_name_table): New declaration.
(ctf_lookup_by_rawname): Likewise.
(ctf_lookup_by_rawhash): Likewise.
(ctf_set_ctl_hashes): Likewise.
(ctf_serialize): Likewise.
(ctf_dtd_insert): Adjust.
(ctf_simple_open_internal): Likewise.
(ctf_bufopen_internal): Likewise.
(ctf_list_empty_p): Likewise.
(ctf_str_remove_ref): Likewise.
(ctf_str_add): Returns uint32_t now.
(ctf_str_add_ref): Likewise.
(ctf_str_add_external): Now returns a boolean (int).
* ctf-string.c (ctf_strraw_explicit): Check the ctf_prov_strtab
for strings in the appropriate range.
(ctf_str_create_atoms): Create the ctf_prov_strtab. Detect OOM
when adding the null string to the new strtab.
(ctf_str_free_atoms): Destroy the ctf_prov_strtab.
(ctf_str_add_ref_internal): Add make_provisional argument. If
make_provisional, populate the offset and fill in the
ctf_prov_strtab accordingly.
(ctf_str_add): Return the offset, not the string.
(ctf_str_add_ref): Likewise.
(ctf_str_add_external): Return a success integer.
(ctf_str_remove_ref): New, remove a single ref.
(ctf_str_count_strtab): Do not count the initial null string's
length or the existence or length of any unreferenced internal
atoms.
(ctf_str_populate_sorttab): Skip atoms with no refs.
(ctf_str_write_strtab): Populate the nullstr earlier. Add one
to the cts_len for the null string, since it is no longer done
in ctf_str_count_strtab. Adjust for csa_external_offset rename.
Populate the csa_offset for both internal and external cases.
Flush the ctf_prov_strtab afterwards, and reset the
ctf_str_prov_offset.
* ctf-create.c (ctf_grow_ptrtab): New.
(ctf_create): Call it. Initialize new fields rather than old
ones. Tell ctf_bufopen_internal that this is a writable dictionary.
Set the ctl hashes and data model.
(ctf_update): Rename to...
(ctf_serialize): ... this. Leave a compatibility function behind.
Tell ctf_simple_open_internal that this is a writable dictionary.
Pass the new fields along from the old dictionary. Drop
ctf_dtnextid and ctf_dtbyname. Use ctf_strraw, not dtd_name.
Do not zero out the DTD's ctt_name.
(ctf_prefixed_name): Rename to...
(ctf_name_table): ... this. No longer return a prefixed name: return
the applicable name table instead.
(ctf_dtd_insert): Use it, and use the right name table. Pass in the
kind we're adding. Migrate away from dtd_name.
(ctf_dtd_delete): Adjust similarly. Remove the ref to the
deleted ctt_name.
(ctf_dtd_lookup_type_by_name): Remove.
(ctf_dynamic_type): Always return NULL on read-only dictionaries.
No longer check ctf_dtnextid: check ctf_typemax instead.
(ctf_snapshot): No longer use ctf_dtnextid: use ctf_typemax instead.
(ctf_rollback): Likewise. No longer fail with ECTF_OVERROLLBACK. Use
ctf_name_table and the right name table, and migrate away from
dtd_name as in ctf_dtd_delete.
(ctf_add_generic): Pass in the kind explicitly and pass it to
ctf_dtd_insert. Use ctf_typemax, not ctf_dtnextid. Migrate away
from dtd_name to using ctf_str_add_ref to populate the ctt_name.
Grow the ptrtab if needed.
(ctf_add_encoded): Pass in the kind.
(ctf_add_slice): Likewise.
(ctf_add_array): Likewise.
(ctf_add_function): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_reftype): Likewise. Initialize the ctf_ptrtab, checking
ctt_name rather than dtd_name.
(ctf_add_struct_sized): Pass in the kind. Use
ctf_lookup_by_rawname, not ctf_hash_lookup_type /
ctf_dtd_lookup_type_by_name.
(ctf_add_union_sized): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_type): Likewise.
(ctf_compress_write): Call ctf_serialize: adjust for ctf_size not
being initialized until after the call.
(ctf_write_mem): Likewise.
(ctf_write): Likewise.
* ctf-archive.c (arc_write_one_ctf): Likewise.
* ctf-lookup.c (ctf_lookup_by_name): Use ctf_lookuup_by_rawhash, not
ctf_hash_lookup_type.
(ctf_lookup_by_id): No longer check the readonly types if the
dictionary is writable.
* ctf-open.c (init_types): Assert that this dictionary is not
writable. Adjust to use the new name hashes, ctf_name_table,
and ctf_ptrtab_len. GNU style fix for the final ptrtab scan.
(ctf_bufopen_internal): New 'writable' parameter. Flip on LCTF_RDWR
if set. Drop out early when dictionary is writable. Split the
ctf_lookups initialization into...
(ctf_set_cth_hashes): ... this new function.
(ctf_simple_open_internal): Adjust. New 'writable' parameter.
(ctf_simple_open): Adjust accordingly.
(ctf_bufopen): Likewise.
(ctf_file_close): Destroy the appropriate name hashes. No longer
destroy ctf_dtbyname, which is gone.
(ctf_getdatasect): Remove spurious "extern".
* ctf-types.c (ctf_lookup_by_rawname): New, look up types in the
specified name table, given a kind.
(ctf_lookup_by_rawhash): Likewise, given a ctf_names_t *.
(ctf_member_iter): Add support for iterating over the
dynamic type list.
(ctf_enum_iter): Likewise.
(ctf_variable_iter): Likewise.
(ctf_type_rvisit): Likewise.
(ctf_member_info): Add support for types in the dynamic type list.
(ctf_enum_name): Likewise.
(ctf_enum_value): Likewise.
(ctf_func_type_info): Likewise.
(ctf_func_type_args): Likewise.
* ctf-link.c (ctf_accumulate_archive_names): No longer call
ctf_update.
(ctf_link_write): Likewise.
(ctf_link_intern_extern_string): Adjust for new
ctf_str_add_external return value.
(ctf_link_add_strtab): Likewise.
* ctf-util.c (ctf_list_empty_p): New.
2019-08-08 00:55:09 +08:00
|
|
|
if (kind != CTF_K_POINTER)
|
|
|
|
return type;
|
|
|
|
|
2021-01-28 03:41:49 +08:00
|
|
|
/* If we are adding a pointer, update the ptrtab, pointing at this type from
|
|
|
|
the type it points to. Note that ctf_typemax is at this point one higher
|
|
|
|
than we want to check against, because it's just been incremented for the
|
|
|
|
addition of this type. The pptrtab is lazily-updated as needed, so is not
|
|
|
|
touched here. */
|
libctf: avoid the need to ever use ctf_update
The method of operation of libctf when the dictionary is writable has
before now been that types that are added land in the dynamic type
section, which is a linked list and hash of IDs -> dynamic type
definitions (and, recently a hash of names): the DTDs are a bit of CTF
representing the ctf_type_t and ad hoc C structures representing the
vlen. Historically, libctf was unable to do anything with these types,
not even look them up by ID, let alone by name: if you wanted to do that
say if you were adding a type that depended on one you just added) you
called ctf_update, which serializes all the DTDs into a CTF file and
reopens it, copying its guts over the fp it's called with. The
ctf_updated types are then frozen in amber and unchangeable: all lookups
will return the types in the static portion in preference to the dynamic
portion, and we will refuse to re-add things that already exist in the
static portion (and, of late, in the dynamic portion too). The libctf
machinery remembers the boundary between static and dynamic types and
looks in the right portion for each type. Lots of things still don't
quite work with dynamic types (e.g. getting their size), but enough
works to do a bunch of additions and then a ctf_update, most of the
time.
Except it doesn't, because ctf_add_type finds it necessary to walk the
full dynamic type definition list looking for types with matching names,
so it gets slower and slower with every type you add: fixing this
requires calling ctf_update periodically for no other reason than to
avoid massively slowing things down.
This is all clunky and very slow but kind of works, until you consider
that it is in fact possible and indeed necessary to modify one sort of
type after it has been added: forwards. These are necessarily promoted
to structs, unions or enums, and when they do so *their type ID does not
change*. So all of a sudden we are changing types that already exist in
the static portion. ctf_update gets massively confused by this and
allocates space enough for the forward (with no members), but then emits
the new dynamic type (with all the members) into it. You get an
assertion failure after that, if you're lucky, or a coredump.
So this commit rejigs things a bit and arranges to exclusively use the
dynamic type definitions in writable dictionaries, and the static type
definitions in readable dictionaries: we don't at any time have a mixture
of static and dynamic types, and you don't need to call ctf_update to
make things "appear". The ctf_dtbyname hash I introduced a few months
ago, which maps things like "struct foo" to DTDs, is removed, replaced
instead by a change of type of the four dictionaries which track names.
Rather than just being (unresizable) ctf_hash_t's populated only at
ctf_bufopen time, they are now a ctf_names_t structure, which is a pair
of ctf_hash_t and ctf_dynhash_t, with the ctf_hash_t portion being used
in readonly dictionaries, and the ctf_dynhash_t being used in writable
ones. The decision as to which to use is centralized in the new
functions ctf_lookup_by_rawname (which takes a type kind) and
ctf_lookup_by_rawhash, which it calls (which takes a ctf_names_t *.)
This change lets us switch from using static to dynamic name hashes on
the fly across the entirety of libctf without complexifying anything: in
fact, because we now centralize the knowledge about how to map from type
kind to name hash, it actually simplifies things and lets us throw out
quite a lot of now-unnecessary complexity, from ctf_dtnyname (replaced
by the dynamic half of the name tables), through to ctf_dtnextid (now
that a dictionary's static portion is never referenced if the dictionary
is writable, we can just use ctf_typemax to indicate the maximum type:
dynamic or non-dynamic does not matter, and we no longer need to track
the boundary between the types). You can now ctf_rollback() as far as
you like, even past a ctf_update or for that matter a full writeout; all
the iteration functions work just as well on writable as on read-only
dictionaries; ctf_add_type no longer needs expensive duplicated code to
run over the dynamic types hunting for ones it might be interested in;
and the linker no longer needs a hack to call ctf_update so that calling
ctf_add_type is not impossibly expensive.
There is still a bit more complexity: some new code paths in ctf-types.c
need to know how to extract information from dynamic types. This
complexity will go away again in a few months when libctf acquires a
proper intermediate representation.
You can still call ctf_update if you like (it's public API, after all),
but its only effect now is to set the point to which ctf_discard rolls
back.
Obviously *something* still needs to serialize the CTF file before
writeout, and this job is done by ctf_serialize, which does everything
ctf_update used to except set the counter used by ctf_discard. It is
automatically called by the various functions that do CTF writeout:
nobody else ever needs to call it.
With this in place, forwards that are promoted to non-forwards no longer
crash the link, even if it happens tens of thousands of types later.
v5: fix tabdamage.
libctf/
* ctf-impl.h (ctf_names_t): New.
(ctf_lookup_t) <ctf_hash>: Now a ctf_names_t, not a ctf_hash_t.
(ctf_file_t) <ctf_structs>: Likewise.
<ctf_unions>: Likewise.
<ctf_enums>: Likewise.
<ctf_names>: Likewise.
<ctf_lookups>: Improve comment.
<ctf_ptrtab_len>: New.
<ctf_prov_strtab>: New.
<ctf_str_prov_offset>: New.
<ctf_dtbyname>: Remove, redundant to the names hashes.
<ctf_dtnextid>: Remove, redundant to ctf_typemax.
(ctf_dtdef_t) <dtd_name>: Remove.
<dtd_data>: Note that the ctt_name is now populated.
(ctf_str_atom_t) <csa_offset>: This is now the strtab
offset for internal strings too.
<csa_external_offset>: New, the external strtab offset.
(CTF_INDEX_TO_TYPEPTR): Handle the LCTF_RDWR case.
(ctf_name_table): New declaration.
(ctf_lookup_by_rawname): Likewise.
(ctf_lookup_by_rawhash): Likewise.
(ctf_set_ctl_hashes): Likewise.
(ctf_serialize): Likewise.
(ctf_dtd_insert): Adjust.
(ctf_simple_open_internal): Likewise.
(ctf_bufopen_internal): Likewise.
(ctf_list_empty_p): Likewise.
(ctf_str_remove_ref): Likewise.
(ctf_str_add): Returns uint32_t now.
(ctf_str_add_ref): Likewise.
(ctf_str_add_external): Now returns a boolean (int).
* ctf-string.c (ctf_strraw_explicit): Check the ctf_prov_strtab
for strings in the appropriate range.
(ctf_str_create_atoms): Create the ctf_prov_strtab. Detect OOM
when adding the null string to the new strtab.
(ctf_str_free_atoms): Destroy the ctf_prov_strtab.
(ctf_str_add_ref_internal): Add make_provisional argument. If
make_provisional, populate the offset and fill in the
ctf_prov_strtab accordingly.
(ctf_str_add): Return the offset, not the string.
(ctf_str_add_ref): Likewise.
(ctf_str_add_external): Return a success integer.
(ctf_str_remove_ref): New, remove a single ref.
(ctf_str_count_strtab): Do not count the initial null string's
length or the existence or length of any unreferenced internal
atoms.
(ctf_str_populate_sorttab): Skip atoms with no refs.
(ctf_str_write_strtab): Populate the nullstr earlier. Add one
to the cts_len for the null string, since it is no longer done
in ctf_str_count_strtab. Adjust for csa_external_offset rename.
Populate the csa_offset for both internal and external cases.
Flush the ctf_prov_strtab afterwards, and reset the
ctf_str_prov_offset.
* ctf-create.c (ctf_grow_ptrtab): New.
(ctf_create): Call it. Initialize new fields rather than old
ones. Tell ctf_bufopen_internal that this is a writable dictionary.
Set the ctl hashes and data model.
(ctf_update): Rename to...
(ctf_serialize): ... this. Leave a compatibility function behind.
Tell ctf_simple_open_internal that this is a writable dictionary.
Pass the new fields along from the old dictionary. Drop
ctf_dtnextid and ctf_dtbyname. Use ctf_strraw, not dtd_name.
Do not zero out the DTD's ctt_name.
(ctf_prefixed_name): Rename to...
(ctf_name_table): ... this. No longer return a prefixed name: return
the applicable name table instead.
(ctf_dtd_insert): Use it, and use the right name table. Pass in the
kind we're adding. Migrate away from dtd_name.
(ctf_dtd_delete): Adjust similarly. Remove the ref to the
deleted ctt_name.
(ctf_dtd_lookup_type_by_name): Remove.
(ctf_dynamic_type): Always return NULL on read-only dictionaries.
No longer check ctf_dtnextid: check ctf_typemax instead.
(ctf_snapshot): No longer use ctf_dtnextid: use ctf_typemax instead.
(ctf_rollback): Likewise. No longer fail with ECTF_OVERROLLBACK. Use
ctf_name_table and the right name table, and migrate away from
dtd_name as in ctf_dtd_delete.
(ctf_add_generic): Pass in the kind explicitly and pass it to
ctf_dtd_insert. Use ctf_typemax, not ctf_dtnextid. Migrate away
from dtd_name to using ctf_str_add_ref to populate the ctt_name.
Grow the ptrtab if needed.
(ctf_add_encoded): Pass in the kind.
(ctf_add_slice): Likewise.
(ctf_add_array): Likewise.
(ctf_add_function): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_reftype): Likewise. Initialize the ctf_ptrtab, checking
ctt_name rather than dtd_name.
(ctf_add_struct_sized): Pass in the kind. Use
ctf_lookup_by_rawname, not ctf_hash_lookup_type /
ctf_dtd_lookup_type_by_name.
(ctf_add_union_sized): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_type): Likewise.
(ctf_compress_write): Call ctf_serialize: adjust for ctf_size not
being initialized until after the call.
(ctf_write_mem): Likewise.
(ctf_write): Likewise.
* ctf-archive.c (arc_write_one_ctf): Likewise.
* ctf-lookup.c (ctf_lookup_by_name): Use ctf_lookuup_by_rawhash, not
ctf_hash_lookup_type.
(ctf_lookup_by_id): No longer check the readonly types if the
dictionary is writable.
* ctf-open.c (init_types): Assert that this dictionary is not
writable. Adjust to use the new name hashes, ctf_name_table,
and ctf_ptrtab_len. GNU style fix for the final ptrtab scan.
(ctf_bufopen_internal): New 'writable' parameter. Flip on LCTF_RDWR
if set. Drop out early when dictionary is writable. Split the
ctf_lookups initialization into...
(ctf_set_cth_hashes): ... this new function.
(ctf_simple_open_internal): Adjust. New 'writable' parameter.
(ctf_simple_open): Adjust accordingly.
(ctf_bufopen): Likewise.
(ctf_file_close): Destroy the appropriate name hashes. No longer
destroy ctf_dtbyname, which is gone.
(ctf_getdatasect): Remove spurious "extern".
* ctf-types.c (ctf_lookup_by_rawname): New, look up types in the
specified name table, given a kind.
(ctf_lookup_by_rawhash): Likewise, given a ctf_names_t *.
(ctf_member_iter): Add support for iterating over the
dynamic type list.
(ctf_enum_iter): Likewise.
(ctf_variable_iter): Likewise.
(ctf_type_rvisit): Likewise.
(ctf_member_info): Add support for types in the dynamic type list.
(ctf_enum_name): Likewise.
(ctf_enum_value): Likewise.
(ctf_func_type_info): Likewise.
(ctf_func_type_args): Likewise.
* ctf-link.c (ctf_accumulate_archive_names): No longer call
ctf_update.
(ctf_link_write): Likewise.
(ctf_link_intern_extern_string): Adjust for new
ctf_str_add_external return value.
(ctf_link_add_strtab): Likewise.
* ctf-util.c (ctf_list_empty_p): New.
2019-08-08 00:55:09 +08:00
|
|
|
|
|
|
|
uint32_t type_idx = LCTF_TYPE_TO_INDEX (fp, type);
|
|
|
|
uint32_t ref_idx = LCTF_TYPE_TO_INDEX (fp, ref);
|
|
|
|
|
|
|
|
if (LCTF_TYPE_ISCHILD (fp, ref) == child
|
|
|
|
&& ref_idx < fp->ctf_typemax)
|
2021-01-28 03:41:49 +08:00
|
|
|
fp->ctf_ptrtab[ref_idx] = type_idx;
|
libctf: avoid the need to ever use ctf_update
The method of operation of libctf when the dictionary is writable has
before now been that types that are added land in the dynamic type
section, which is a linked list and hash of IDs -> dynamic type
definitions (and, recently a hash of names): the DTDs are a bit of CTF
representing the ctf_type_t and ad hoc C structures representing the
vlen. Historically, libctf was unable to do anything with these types,
not even look them up by ID, let alone by name: if you wanted to do that
say if you were adding a type that depended on one you just added) you
called ctf_update, which serializes all the DTDs into a CTF file and
reopens it, copying its guts over the fp it's called with. The
ctf_updated types are then frozen in amber and unchangeable: all lookups
will return the types in the static portion in preference to the dynamic
portion, and we will refuse to re-add things that already exist in the
static portion (and, of late, in the dynamic portion too). The libctf
machinery remembers the boundary between static and dynamic types and
looks in the right portion for each type. Lots of things still don't
quite work with dynamic types (e.g. getting their size), but enough
works to do a bunch of additions and then a ctf_update, most of the
time.
Except it doesn't, because ctf_add_type finds it necessary to walk the
full dynamic type definition list looking for types with matching names,
so it gets slower and slower with every type you add: fixing this
requires calling ctf_update periodically for no other reason than to
avoid massively slowing things down.
This is all clunky and very slow but kind of works, until you consider
that it is in fact possible and indeed necessary to modify one sort of
type after it has been added: forwards. These are necessarily promoted
to structs, unions or enums, and when they do so *their type ID does not
change*. So all of a sudden we are changing types that already exist in
the static portion. ctf_update gets massively confused by this and
allocates space enough for the forward (with no members), but then emits
the new dynamic type (with all the members) into it. You get an
assertion failure after that, if you're lucky, or a coredump.
So this commit rejigs things a bit and arranges to exclusively use the
dynamic type definitions in writable dictionaries, and the static type
definitions in readable dictionaries: we don't at any time have a mixture
of static and dynamic types, and you don't need to call ctf_update to
make things "appear". The ctf_dtbyname hash I introduced a few months
ago, which maps things like "struct foo" to DTDs, is removed, replaced
instead by a change of type of the four dictionaries which track names.
Rather than just being (unresizable) ctf_hash_t's populated only at
ctf_bufopen time, they are now a ctf_names_t structure, which is a pair
of ctf_hash_t and ctf_dynhash_t, with the ctf_hash_t portion being used
in readonly dictionaries, and the ctf_dynhash_t being used in writable
ones. The decision as to which to use is centralized in the new
functions ctf_lookup_by_rawname (which takes a type kind) and
ctf_lookup_by_rawhash, which it calls (which takes a ctf_names_t *.)
This change lets us switch from using static to dynamic name hashes on
the fly across the entirety of libctf without complexifying anything: in
fact, because we now centralize the knowledge about how to map from type
kind to name hash, it actually simplifies things and lets us throw out
quite a lot of now-unnecessary complexity, from ctf_dtnyname (replaced
by the dynamic half of the name tables), through to ctf_dtnextid (now
that a dictionary's static portion is never referenced if the dictionary
is writable, we can just use ctf_typemax to indicate the maximum type:
dynamic or non-dynamic does not matter, and we no longer need to track
the boundary between the types). You can now ctf_rollback() as far as
you like, even past a ctf_update or for that matter a full writeout; all
the iteration functions work just as well on writable as on read-only
dictionaries; ctf_add_type no longer needs expensive duplicated code to
run over the dynamic types hunting for ones it might be interested in;
and the linker no longer needs a hack to call ctf_update so that calling
ctf_add_type is not impossibly expensive.
There is still a bit more complexity: some new code paths in ctf-types.c
need to know how to extract information from dynamic types. This
complexity will go away again in a few months when libctf acquires a
proper intermediate representation.
You can still call ctf_update if you like (it's public API, after all),
but its only effect now is to set the point to which ctf_discard rolls
back.
Obviously *something* still needs to serialize the CTF file before
writeout, and this job is done by ctf_serialize, which does everything
ctf_update used to except set the counter used by ctf_discard. It is
automatically called by the various functions that do CTF writeout:
nobody else ever needs to call it.
With this in place, forwards that are promoted to non-forwards no longer
crash the link, even if it happens tens of thousands of types later.
v5: fix tabdamage.
libctf/
* ctf-impl.h (ctf_names_t): New.
(ctf_lookup_t) <ctf_hash>: Now a ctf_names_t, not a ctf_hash_t.
(ctf_file_t) <ctf_structs>: Likewise.
<ctf_unions>: Likewise.
<ctf_enums>: Likewise.
<ctf_names>: Likewise.
<ctf_lookups>: Improve comment.
<ctf_ptrtab_len>: New.
<ctf_prov_strtab>: New.
<ctf_str_prov_offset>: New.
<ctf_dtbyname>: Remove, redundant to the names hashes.
<ctf_dtnextid>: Remove, redundant to ctf_typemax.
(ctf_dtdef_t) <dtd_name>: Remove.
<dtd_data>: Note that the ctt_name is now populated.
(ctf_str_atom_t) <csa_offset>: This is now the strtab
offset for internal strings too.
<csa_external_offset>: New, the external strtab offset.
(CTF_INDEX_TO_TYPEPTR): Handle the LCTF_RDWR case.
(ctf_name_table): New declaration.
(ctf_lookup_by_rawname): Likewise.
(ctf_lookup_by_rawhash): Likewise.
(ctf_set_ctl_hashes): Likewise.
(ctf_serialize): Likewise.
(ctf_dtd_insert): Adjust.
(ctf_simple_open_internal): Likewise.
(ctf_bufopen_internal): Likewise.
(ctf_list_empty_p): Likewise.
(ctf_str_remove_ref): Likewise.
(ctf_str_add): Returns uint32_t now.
(ctf_str_add_ref): Likewise.
(ctf_str_add_external): Now returns a boolean (int).
* ctf-string.c (ctf_strraw_explicit): Check the ctf_prov_strtab
for strings in the appropriate range.
(ctf_str_create_atoms): Create the ctf_prov_strtab. Detect OOM
when adding the null string to the new strtab.
(ctf_str_free_atoms): Destroy the ctf_prov_strtab.
(ctf_str_add_ref_internal): Add make_provisional argument. If
make_provisional, populate the offset and fill in the
ctf_prov_strtab accordingly.
(ctf_str_add): Return the offset, not the string.
(ctf_str_add_ref): Likewise.
(ctf_str_add_external): Return a success integer.
(ctf_str_remove_ref): New, remove a single ref.
(ctf_str_count_strtab): Do not count the initial null string's
length or the existence or length of any unreferenced internal
atoms.
(ctf_str_populate_sorttab): Skip atoms with no refs.
(ctf_str_write_strtab): Populate the nullstr earlier. Add one
to the cts_len for the null string, since it is no longer done
in ctf_str_count_strtab. Adjust for csa_external_offset rename.
Populate the csa_offset for both internal and external cases.
Flush the ctf_prov_strtab afterwards, and reset the
ctf_str_prov_offset.
* ctf-create.c (ctf_grow_ptrtab): New.
(ctf_create): Call it. Initialize new fields rather than old
ones. Tell ctf_bufopen_internal that this is a writable dictionary.
Set the ctl hashes and data model.
(ctf_update): Rename to...
(ctf_serialize): ... this. Leave a compatibility function behind.
Tell ctf_simple_open_internal that this is a writable dictionary.
Pass the new fields along from the old dictionary. Drop
ctf_dtnextid and ctf_dtbyname. Use ctf_strraw, not dtd_name.
Do not zero out the DTD's ctt_name.
(ctf_prefixed_name): Rename to...
(ctf_name_table): ... this. No longer return a prefixed name: return
the applicable name table instead.
(ctf_dtd_insert): Use it, and use the right name table. Pass in the
kind we're adding. Migrate away from dtd_name.
(ctf_dtd_delete): Adjust similarly. Remove the ref to the
deleted ctt_name.
(ctf_dtd_lookup_type_by_name): Remove.
(ctf_dynamic_type): Always return NULL on read-only dictionaries.
No longer check ctf_dtnextid: check ctf_typemax instead.
(ctf_snapshot): No longer use ctf_dtnextid: use ctf_typemax instead.
(ctf_rollback): Likewise. No longer fail with ECTF_OVERROLLBACK. Use
ctf_name_table and the right name table, and migrate away from
dtd_name as in ctf_dtd_delete.
(ctf_add_generic): Pass in the kind explicitly and pass it to
ctf_dtd_insert. Use ctf_typemax, not ctf_dtnextid. Migrate away
from dtd_name to using ctf_str_add_ref to populate the ctt_name.
Grow the ptrtab if needed.
(ctf_add_encoded): Pass in the kind.
(ctf_add_slice): Likewise.
(ctf_add_array): Likewise.
(ctf_add_function): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_reftype): Likewise. Initialize the ctf_ptrtab, checking
ctt_name rather than dtd_name.
(ctf_add_struct_sized): Pass in the kind. Use
ctf_lookup_by_rawname, not ctf_hash_lookup_type /
ctf_dtd_lookup_type_by_name.
(ctf_add_union_sized): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_type): Likewise.
(ctf_compress_write): Call ctf_serialize: adjust for ctf_size not
being initialized until after the call.
(ctf_write_mem): Likewise.
(ctf_write): Likewise.
* ctf-archive.c (arc_write_one_ctf): Likewise.
* ctf-lookup.c (ctf_lookup_by_name): Use ctf_lookuup_by_rawhash, not
ctf_hash_lookup_type.
(ctf_lookup_by_id): No longer check the readonly types if the
dictionary is writable.
* ctf-open.c (init_types): Assert that this dictionary is not
writable. Adjust to use the new name hashes, ctf_name_table,
and ctf_ptrtab_len. GNU style fix for the final ptrtab scan.
(ctf_bufopen_internal): New 'writable' parameter. Flip on LCTF_RDWR
if set. Drop out early when dictionary is writable. Split the
ctf_lookups initialization into...
(ctf_set_cth_hashes): ... this new function.
(ctf_simple_open_internal): Adjust. New 'writable' parameter.
(ctf_simple_open): Adjust accordingly.
(ctf_bufopen): Likewise.
(ctf_file_close): Destroy the appropriate name hashes. No longer
destroy ctf_dtbyname, which is gone.
(ctf_getdatasect): Remove spurious "extern".
* ctf-types.c (ctf_lookup_by_rawname): New, look up types in the
specified name table, given a kind.
(ctf_lookup_by_rawhash): Likewise, given a ctf_names_t *.
(ctf_member_iter): Add support for iterating over the
dynamic type list.
(ctf_enum_iter): Likewise.
(ctf_variable_iter): Likewise.
(ctf_type_rvisit): Likewise.
(ctf_member_info): Add support for types in the dynamic type list.
(ctf_enum_name): Likewise.
(ctf_enum_value): Likewise.
(ctf_func_type_info): Likewise.
(ctf_func_type_args): Likewise.
* ctf-link.c (ctf_accumulate_archive_names): No longer call
ctf_update.
(ctf_link_write): Likewise.
(ctf_link_intern_extern_string): Adjust for new
ctf_str_add_external return value.
(ctf_link_add_strtab): Likewise.
* ctf-util.c (ctf_list_empty_p): New.
2019-08-08 00:55:09 +08:00
|
|
|
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
return type;
|
|
|
|
}
|
|
|
|
|
|
|
|
ctf_id_t
|
libctf, include, binutils, gdb, ld: rename ctf_file_t to ctf_dict_t
The naming of the ctf_file_t type in libctf is a historical curiosity.
Back in the Solaris days, CTF dictionaries were originally generated as
a separate file and then (sometimes) merged into objects: hence the
datatype was named ctf_file_t, and known as a "CTF file". Nowadays, raw
CTF is essentially never written to a file on its own, and the datatype
changed name to a "CTF dictionary" years ago. So the term "CTF file"
refers to something that is never a file! This is at best confusing.
The type has also historically been known as a 'CTF container", which is
even more confusing now that we have CTF archives which are *also* a
sort of container (they contain CTF dictionaries), but which are never
referred to as containers in the source code.
So fix this by completing the renaming, renaming ctf_file_t to
ctf_dict_t throughout, and renaming those few functions that refer to
CTF files by name (keeping compatibility aliases) to refer to dicts
instead. Old users who still refer to ctf_file_t will see (harmless)
pointer-compatibility warnings at compile time, but the ABI is unchanged
(since C doesn't mangle names, and ctf_file_t was always an opaque type)
and things will still compile fine as long as -Werror is not specified.
All references to CTF containers and CTF files in the source code are
fixed to refer to CTF dicts instead.
Further (smaller) renamings of annoyingly-named functions to come, as
part of the process of souping up queries across whole archives at once
(needed for the function info and data object sections).
binutils/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* objdump.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_ctf): Likewise. Use ctf_dict_close, not ctf_file_close.
* readelf.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_section_as_ctf): Likewise. Use ctf_dict_close, not
ctf_file_close.
gdb/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctfread.c: Change uses of ctf_file_t to ctf_dict_t.
(ctf_fp_info::~ctf_fp_info): Call ctf_dict_close, not ctf_file_close.
include/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-api.h (ctf_file_t): Rename to...
(ctf_dict_t): ... this. Keep ctf_file_t around for compatibility.
(struct ctf_file): Likewise rename to...
(struct ctf_dict): ... this.
(ctf_file_close): Rename to...
(ctf_dict_close): ... this, keeping compatibility function.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this, keeping compatibility function.
All callers adjusted.
* ctf.h: Rename references to ctf_file_t to ctf_dict_t.
(struct ctf_archive) <ctfa_nfiles>: Rename to...
<ctfa_ndicts>: ... this.
ld/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ldlang.c (ctf_output): This is a ctf_dict_t now.
(lang_ctf_errs_warnings): Rename ctf_file_t to ctf_dict_t.
(ldlang_open_ctf): Adjust comment.
(lang_merge_ctf): Use ctf_dict_close, not ctf_file_close.
* ldelfgen.h (ldelf_examine_strtab_for_ctf): Rename ctf_file_t to
ctf_dict_t. Change opaque declaration accordingly.
* ldelfgen.c (ldelf_examine_strtab_for_ctf): Adjust.
* ldemul.h (examine_strtab_for_ctf): Likewise.
(ldemul_examine_strtab_for_ctf): Likewise.
* ldeuml.c (ldemul_examine_strtab_for_ctf): Likewise.
libctf/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h: Rename ctf_file_t to ctf_dict_t: all declarations
adjusted.
(ctf_fileops): Rename to...
(ctf_dictops): ... this.
(ctf_dedup_t) <cd_id_to_file_t>: Rename to...
<cd_id_to_dict_t>: ... this.
(ctf_file_t): Fix outdated comment.
<ctf_fileops>: Rename to...
<ctf_dictops>: ... this.
(struct ctf_archive_internal) <ctfi_file>: Rename to...
<ctfi_dict>: ... this.
* ctf-archive.c: Rename ctf_file_t to ctf_dict_t.
Rename ctf_archive.ctfa_nfiles to ctfa_ndicts.
Rename ctf_file_close to ctf_dict_close. All users adjusted.
* ctf-create.c: Likewise. Refer to CTF dicts, not CTF containers.
(ctf_bundle_t) <ctb_file>: Rename to...
<ctb_dict): ... this.
* ctf-decl.c: Rename ctf_file_t to ctf_dict_t.
* ctf-dedup.c: Likewise. Rename ctf_file_close to
ctf_dict_close. Refer to CTF dicts, not CTF containers.
* ctf-dump.c: Likewise.
* ctf-error.c: Likewise.
* ctf-hash.c: Likewise.
* ctf-inlines.h: Likewise.
* ctf-labels.c: Likewise.
* ctf-link.c: Likewise.
* ctf-lookup.c: Likewise.
* ctf-open-bfd.c: Likewise.
* ctf-string.c: Likewise.
* ctf-subr.c: Likewise.
* ctf-types.c: Likewise.
* ctf-util.c: Likewise.
* ctf-open.c: Likewise.
(ctf_file_close): Rename to...
(ctf_dict_close): ...this.
(ctf_file_close): New trivial wrapper around ctf_dict_close, for
compatibility.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this.
(ctf_parent_file): New trivial wrapper around ctf_parent_dict, for
compatibility.
* libctf.ver: Add ctf_dict_close and ctf_parent_dict.
2020-11-20 21:34:04 +08:00
|
|
|
ctf_add_slice (ctf_dict_t *fp, uint32_t flag, ctf_id_t ref,
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
const ctf_encoding_t *ep)
|
|
|
|
{
|
|
|
|
ctf_dtdef_t *dtd;
|
libctf: eliminate dtd_u, part 1: int/float/slice
This series eliminates a lot of special-case code to handle dynamic
types (types added to writable dicts and not yet serialized).
Historically, when such types have variable-length data in their final
CTF representations, libctf has always worked by adding such types to a
special union (ctf_dtdef_t.dtd_u) in the dynamic type definition
structure, then picking the members out of this structure at
serialization time and packing them into their final form.
This has the advantage that the ctf_add_* code doesn't need to know
anything about the final CTF representation, but the significant
disadvantage that all code that looks up types in any way needs two code
paths, one for dynamic types, one for all others. Historically libctf
"handled" this by not supporting most type lookups on dynamic types at
all until ctf_update was called to do a complete reserialization of the
entire dict (it didn't emit an error, it just emitted wrong results).
Since commit 676c3ecbad6e9c4, which eliminated ctf_update in favour of
the internal-only ctf_serialize function, all the type-lookup paths
grew an extra branch to handle dynamic types.
We can eliminate this branch again by dropping the dtd_u stuff and
simply writing out the vlen in (close to) its final form at ctf_add_*
time: type lookup for types using this approach is then identical for
types in writable dicts and types that are in read-only ones, and
serialization is also simplified (we just need to write out the vlen
we already created).
The only complexity lies in type kinds for which multiple
vlen representations are valid depending on properties of the type,
e.g. structures. But we can start simple, adjusting ints, floats,
and slices to work this way, and leaving everything else as is.
libctf/ChangeLog
2021-03-18 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h (ctf_dtdef_t) <dtd_u.dtu_enc>: Remove.
<dtd_u.dtu_slice>: Likewise.
<dtd_vlen>: New.
* ctf-create.c (ctf_add_generic): Perhaps allocate it. All
callers adjusted.
(ctf_dtd_delete): Free it.
(ctf_add_slice): Use the dtd_vlen, not dtu_enc.
(ctf_add_encoded): Likewise. Assert that this must be an int or
float.
* ctf-serialize.c (ctf_emit_type_sect): Just copy the dtd_vlen.
* ctf-dedup.c (ctf_dedup_rhash_type): Use the dtd_vlen, not
dtu_slice.
* ctf-types.c (ctf_type_reference): Likewise.
(ctf_type_encoding): Remove most dynamic-type-specific code: just
get the vlen from the right place. Report failure to look up the
underlying type's encoding.
2021-03-18 20:37:52 +08:00
|
|
|
ctf_slice_t slice;
|
2020-06-03 03:43:03 +08:00
|
|
|
ctf_id_t resolved_ref = ref;
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
ctf_id_t type;
|
|
|
|
int kind;
|
|
|
|
const ctf_type_t *tp;
|
libctf, include, binutils, gdb, ld: rename ctf_file_t to ctf_dict_t
The naming of the ctf_file_t type in libctf is a historical curiosity.
Back in the Solaris days, CTF dictionaries were originally generated as
a separate file and then (sometimes) merged into objects: hence the
datatype was named ctf_file_t, and known as a "CTF file". Nowadays, raw
CTF is essentially never written to a file on its own, and the datatype
changed name to a "CTF dictionary" years ago. So the term "CTF file"
refers to something that is never a file! This is at best confusing.
The type has also historically been known as a 'CTF container", which is
even more confusing now that we have CTF archives which are *also* a
sort of container (they contain CTF dictionaries), but which are never
referred to as containers in the source code.
So fix this by completing the renaming, renaming ctf_file_t to
ctf_dict_t throughout, and renaming those few functions that refer to
CTF files by name (keeping compatibility aliases) to refer to dicts
instead. Old users who still refer to ctf_file_t will see (harmless)
pointer-compatibility warnings at compile time, but the ABI is unchanged
(since C doesn't mangle names, and ctf_file_t was always an opaque type)
and things will still compile fine as long as -Werror is not specified.
All references to CTF containers and CTF files in the source code are
fixed to refer to CTF dicts instead.
Further (smaller) renamings of annoyingly-named functions to come, as
part of the process of souping up queries across whole archives at once
(needed for the function info and data object sections).
binutils/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* objdump.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_ctf): Likewise. Use ctf_dict_close, not ctf_file_close.
* readelf.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_section_as_ctf): Likewise. Use ctf_dict_close, not
ctf_file_close.
gdb/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctfread.c: Change uses of ctf_file_t to ctf_dict_t.
(ctf_fp_info::~ctf_fp_info): Call ctf_dict_close, not ctf_file_close.
include/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-api.h (ctf_file_t): Rename to...
(ctf_dict_t): ... this. Keep ctf_file_t around for compatibility.
(struct ctf_file): Likewise rename to...
(struct ctf_dict): ... this.
(ctf_file_close): Rename to...
(ctf_dict_close): ... this, keeping compatibility function.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this, keeping compatibility function.
All callers adjusted.
* ctf.h: Rename references to ctf_file_t to ctf_dict_t.
(struct ctf_archive) <ctfa_nfiles>: Rename to...
<ctfa_ndicts>: ... this.
ld/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ldlang.c (ctf_output): This is a ctf_dict_t now.
(lang_ctf_errs_warnings): Rename ctf_file_t to ctf_dict_t.
(ldlang_open_ctf): Adjust comment.
(lang_merge_ctf): Use ctf_dict_close, not ctf_file_close.
* ldelfgen.h (ldelf_examine_strtab_for_ctf): Rename ctf_file_t to
ctf_dict_t. Change opaque declaration accordingly.
* ldelfgen.c (ldelf_examine_strtab_for_ctf): Adjust.
* ldemul.h (examine_strtab_for_ctf): Likewise.
(ldemul_examine_strtab_for_ctf): Likewise.
* ldeuml.c (ldemul_examine_strtab_for_ctf): Likewise.
libctf/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h: Rename ctf_file_t to ctf_dict_t: all declarations
adjusted.
(ctf_fileops): Rename to...
(ctf_dictops): ... this.
(ctf_dedup_t) <cd_id_to_file_t>: Rename to...
<cd_id_to_dict_t>: ... this.
(ctf_file_t): Fix outdated comment.
<ctf_fileops>: Rename to...
<ctf_dictops>: ... this.
(struct ctf_archive_internal) <ctfi_file>: Rename to...
<ctfi_dict>: ... this.
* ctf-archive.c: Rename ctf_file_t to ctf_dict_t.
Rename ctf_archive.ctfa_nfiles to ctfa_ndicts.
Rename ctf_file_close to ctf_dict_close. All users adjusted.
* ctf-create.c: Likewise. Refer to CTF dicts, not CTF containers.
(ctf_bundle_t) <ctb_file>: Rename to...
<ctb_dict): ... this.
* ctf-decl.c: Rename ctf_file_t to ctf_dict_t.
* ctf-dedup.c: Likewise. Rename ctf_file_close to
ctf_dict_close. Refer to CTF dicts, not CTF containers.
* ctf-dump.c: Likewise.
* ctf-error.c: Likewise.
* ctf-hash.c: Likewise.
* ctf-inlines.h: Likewise.
* ctf-labels.c: Likewise.
* ctf-link.c: Likewise.
* ctf-lookup.c: Likewise.
* ctf-open-bfd.c: Likewise.
* ctf-string.c: Likewise.
* ctf-subr.c: Likewise.
* ctf-types.c: Likewise.
* ctf-util.c: Likewise.
* ctf-open.c: Likewise.
(ctf_file_close): Rename to...
(ctf_dict_close): ...this.
(ctf_file_close): New trivial wrapper around ctf_dict_close, for
compatibility.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this.
(ctf_parent_file): New trivial wrapper around ctf_parent_dict, for
compatibility.
* libctf.ver: Add ctf_dict_close and ctf_parent_dict.
2020-11-20 21:34:04 +08:00
|
|
|
ctf_dict_t *tmp = fp;
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
|
|
|
|
if (ep == NULL)
|
2023-09-13 17:02:36 +08:00
|
|
|
return (ctf_set_typed_errno (fp, EINVAL));
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
|
|
|
|
if ((ep->cte_bits > 255) || (ep->cte_offset > 255))
|
2023-09-13 17:02:36 +08:00
|
|
|
return (ctf_set_typed_errno (fp, ECTF_SLICEOVERFLOW));
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
|
libctf: fix a number of build problems found on Solaris and NetBSD
- Use of nonportable <endian.h>
- Use of qsort_r
- Use of zlib without appropriate magic to pull in the binutils zlib
- Use of off64_t without checking (fixed by dropping the unused fields
that need off64_t entirely)
- signedness problems due to long being too short a type on 32-bit
platforms: ctf_id_t is now 'unsigned long', and CTF_ERR must be
used only for functions that return ctf_id_t
- One lingering use of bzero() and of <sys/errno.h>
All fixed, using code from gnulib where possible.
Relatedly, set cts_size in a couple of places it was missed
(string table and symbol table loading upon ctf_bfdopen()).
binutils/
* objdump.c (make_ctfsect): Drop cts_type, cts_flags, and
cts_offset.
* readelf.c (shdr_to_ctf_sect): Likewise.
include/
* ctf-api.h (ctf_sect_t): Drop cts_type, cts_flags, and cts_offset.
(ctf_id_t): This is now an unsigned type.
(CTF_ERR): Cast it to ctf_id_t. Note that it should only be used
for ctf_id_t-returning functions.
libctf/
* Makefile.am (ZLIB): New.
(ZLIBINC): Likewise.
(AM_CFLAGS): Use them.
(libctf_a_LIBADD): New, for LIBOBJS.
* configure.ac: Check for zlib, endian.h, and qsort_r.
* ctf-endian.h: New, providing htole64 and le64toh.
* swap.h: Code style fixes.
(bswap_identity_64): New.
* qsort_r.c: New, from gnulib (with one added #include).
* ctf-decls.h: New, providing a conditional qsort_r declaration,
and unconditional definitions of MIN and MAX.
* ctf-impl.h: Use it. Do not use <sys/errno.h>.
(ctf_set_errno): Now returns unsigned long.
* ctf-util.c (ctf_set_errno): Adjust here too.
* ctf-archive.c: Use ctf-endian.h.
(ctf_arc_open_by_offset): Use memset, not bzero. Drop cts_type,
cts_flags and cts_offset.
(ctf_arc_write): Drop debugging dependent on the size of off_t.
* ctf-create.c: Provide a definition of roundup if not defined.
(ctf_create): Drop cts_type, cts_flags and cts_offset.
(ctf_add_reftype): Do not check if type IDs are below zero.
(ctf_add_slice): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_member_offset): Cast error-returning ssize_t's to size_t
when known error-free. Drop CTF_ERR usage for functions returning
int.
(ctf_add_member_encoded): Drop CTF_ERR usage for functions returning
int.
(ctf_add_variable): Likewise.
(enumcmp): Likewise.
(enumadd): Likewise.
(membcmp): Likewise.
(ctf_add_type): Likewise. Cast error-returning ssize_t's to size_t
when known error-free.
* ctf-dump.c (ctf_is_slice): Drop CTF_ERR usage for functions
returning int: use CTF_ERR for functions returning ctf_type_id.
(ctf_dump_label): Likewise.
(ctf_dump_objts): Likewise.
* ctf-labels.c (ctf_label_topmost): Likewise.
(ctf_label_iter): Likewise.
(ctf_label_info): Likewise.
* ctf-lookup.c (ctf_func_args): Likewise.
* ctf-open.c (upgrade_types): Cast to size_t where appropriate.
(ctf_bufopen): Likewise. Use zlib types as needed.
* ctf-types.c (ctf_member_iter): Drop CTF_ERR usage for functions
returning int.
(ctf_enum_iter): Likewise.
(ctf_type_size): Likewise.
(ctf_type_align): Likewise. Cast to size_t where appropriate.
(ctf_type_kind_unsliced): Likewise.
(ctf_type_kind): Likewise.
(ctf_type_encoding): Likewise.
(ctf_member_info): Likewise.
(ctf_array_info): Likewise.
(ctf_enum_value): Likewise.
(ctf_type_rvisit): Likewise.
* ctf-open-bfd.c (ctf_bfdopen): Drop cts_type, cts_flags and
cts_offset.
(ctf_simple_open): Likewise.
(ctf_bfdopen_ctfsect): Likewise. Set cts_size properly.
* Makefile.in: Regenerate.
* aclocal.m4: Likewise.
* config.h: Likewise.
* configure: Likewise.
2019-05-31 17:10:51 +08:00
|
|
|
if (ref == CTF_ERR || ref > CTF_MAX_TYPE)
|
2023-09-13 17:02:36 +08:00
|
|
|
return (ctf_set_typed_errno (fp, EINVAL));
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
|
2020-06-03 03:04:24 +08:00
|
|
|
if (ref != 0 && ((tp = ctf_lookup_by_id (&tmp, ref)) == NULL))
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
return CTF_ERR; /* errno is set for us. */
|
|
|
|
|
2020-06-03 03:43:03 +08:00
|
|
|
/* Make sure we ultimately point to an integral type. We also allow slices to
|
|
|
|
point to the unimplemented type, for now, because the compiler can emit
|
|
|
|
such slices, though they're not very much use. */
|
|
|
|
|
2023-04-06 00:21:32 +08:00
|
|
|
resolved_ref = ctf_type_resolve_unsliced (fp, ref);
|
|
|
|
kind = ctf_type_kind_unsliced (fp, resolved_ref);
|
2020-06-03 03:43:03 +08:00
|
|
|
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
if ((kind != CTF_K_INTEGER) && (kind != CTF_K_FLOAT) &&
|
2020-06-03 03:04:24 +08:00
|
|
|
(kind != CTF_K_ENUM)
|
|
|
|
&& (ref != 0))
|
2023-09-13 17:02:36 +08:00
|
|
|
return (ctf_set_typed_errno (fp, ECTF_NOTINTFP));
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
|
libctf: eliminate dtd_u, part 1: int/float/slice
This series eliminates a lot of special-case code to handle dynamic
types (types added to writable dicts and not yet serialized).
Historically, when such types have variable-length data in their final
CTF representations, libctf has always worked by adding such types to a
special union (ctf_dtdef_t.dtd_u) in the dynamic type definition
structure, then picking the members out of this structure at
serialization time and packing them into their final form.
This has the advantage that the ctf_add_* code doesn't need to know
anything about the final CTF representation, but the significant
disadvantage that all code that looks up types in any way needs two code
paths, one for dynamic types, one for all others. Historically libctf
"handled" this by not supporting most type lookups on dynamic types at
all until ctf_update was called to do a complete reserialization of the
entire dict (it didn't emit an error, it just emitted wrong results).
Since commit 676c3ecbad6e9c4, which eliminated ctf_update in favour of
the internal-only ctf_serialize function, all the type-lookup paths
grew an extra branch to handle dynamic types.
We can eliminate this branch again by dropping the dtd_u stuff and
simply writing out the vlen in (close to) its final form at ctf_add_*
time: type lookup for types using this approach is then identical for
types in writable dicts and types that are in read-only ones, and
serialization is also simplified (we just need to write out the vlen
we already created).
The only complexity lies in type kinds for which multiple
vlen representations are valid depending on properties of the type,
e.g. structures. But we can start simple, adjusting ints, floats,
and slices to work this way, and leaving everything else as is.
libctf/ChangeLog
2021-03-18 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h (ctf_dtdef_t) <dtd_u.dtu_enc>: Remove.
<dtd_u.dtu_slice>: Likewise.
<dtd_vlen>: New.
* ctf-create.c (ctf_add_generic): Perhaps allocate it. All
callers adjusted.
(ctf_dtd_delete): Free it.
(ctf_add_slice): Use the dtd_vlen, not dtu_enc.
(ctf_add_encoded): Likewise. Assert that this must be an int or
float.
* ctf-serialize.c (ctf_emit_type_sect): Just copy the dtd_vlen.
* ctf-dedup.c (ctf_dedup_rhash_type): Use the dtd_vlen, not
dtu_slice.
* ctf-types.c (ctf_type_reference): Likewise.
(ctf_type_encoding): Remove most dynamic-type-specific code: just
get the vlen from the right place. Report failure to look up the
underlying type's encoding.
2021-03-18 20:37:52 +08:00
|
|
|
if ((type = ctf_add_generic (fp, flag, NULL, CTF_K_SLICE,
|
|
|
|
sizeof (ctf_slice_t), &dtd)) == CTF_ERR)
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
return CTF_ERR; /* errno is set for us. */
|
|
|
|
|
libctf: eliminate dtd_u, part 1: int/float/slice
This series eliminates a lot of special-case code to handle dynamic
types (types added to writable dicts and not yet serialized).
Historically, when such types have variable-length data in their final
CTF representations, libctf has always worked by adding such types to a
special union (ctf_dtdef_t.dtd_u) in the dynamic type definition
structure, then picking the members out of this structure at
serialization time and packing them into their final form.
This has the advantage that the ctf_add_* code doesn't need to know
anything about the final CTF representation, but the significant
disadvantage that all code that looks up types in any way needs two code
paths, one for dynamic types, one for all others. Historically libctf
"handled" this by not supporting most type lookups on dynamic types at
all until ctf_update was called to do a complete reserialization of the
entire dict (it didn't emit an error, it just emitted wrong results).
Since commit 676c3ecbad6e9c4, which eliminated ctf_update in favour of
the internal-only ctf_serialize function, all the type-lookup paths
grew an extra branch to handle dynamic types.
We can eliminate this branch again by dropping the dtd_u stuff and
simply writing out the vlen in (close to) its final form at ctf_add_*
time: type lookup for types using this approach is then identical for
types in writable dicts and types that are in read-only ones, and
serialization is also simplified (we just need to write out the vlen
we already created).
The only complexity lies in type kinds for which multiple
vlen representations are valid depending on properties of the type,
e.g. structures. But we can start simple, adjusting ints, floats,
and slices to work this way, and leaving everything else as is.
libctf/ChangeLog
2021-03-18 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h (ctf_dtdef_t) <dtd_u.dtu_enc>: Remove.
<dtd_u.dtu_slice>: Likewise.
<dtd_vlen>: New.
* ctf-create.c (ctf_add_generic): Perhaps allocate it. All
callers adjusted.
(ctf_dtd_delete): Free it.
(ctf_add_slice): Use the dtd_vlen, not dtu_enc.
(ctf_add_encoded): Likewise. Assert that this must be an int or
float.
* ctf-serialize.c (ctf_emit_type_sect): Just copy the dtd_vlen.
* ctf-dedup.c (ctf_dedup_rhash_type): Use the dtd_vlen, not
dtu_slice.
* ctf-types.c (ctf_type_reference): Likewise.
(ctf_type_encoding): Remove most dynamic-type-specific code: just
get the vlen from the right place. Report failure to look up the
underlying type's encoding.
2021-03-18 20:37:52 +08:00
|
|
|
memset (&slice, 0, sizeof (ctf_slice_t));
|
|
|
|
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
dtd->dtd_data.ctt_info = CTF_TYPE_INFO (CTF_K_SLICE, flag, 0);
|
Use CHAR_BIT instead of NBBY in libctf
On x86-64 Fedora 29, I tried to build a mingw-hosted gdb that targets
ppc-linux. You can do this with:
../binutils-gdb/configure --host=i686-w64-mingw32 --target=ppc-linux \
--disable-{binutils,gas,gold,gprof,ld}
The build failed with these errors in libctf:
In file included from ../../binutils-gdb/libctf/ctf-create.c:20:
../../binutils-gdb/libctf/ctf-create.c: In function 'ctf_add_encoded':
../../binutils-gdb/libctf/ctf-create.c:803:59: error: 'NBBY' undeclared (first use in this function)
dtd->dtd_data.ctt_size = clp2 (P2ROUNDUP (ep->cte_bits, NBBY) / NBBY);
^~~~
../../binutils-gdb/libctf/ctf-impl.h:254:42: note: in definition of macro 'P2ROUNDUP'
#define P2ROUNDUP(x, align) (-(-(x) & -(align)))
^~~~~
../../binutils-gdb/libctf/ctf-create.c:803:59: note: each undeclared identifier is reported only once for each function it appears in
dtd->dtd_data.ctt_size = clp2 (P2ROUNDUP (ep->cte_bits, NBBY) / NBBY);
^~~~
../../binutils-gdb/libctf/ctf-impl.h:254:42: note: in definition of macro 'P2ROUNDUP'
#define P2ROUNDUP(x, align) (-(-(x) & -(align)))
^~~~~
../../binutils-gdb/libctf/ctf-create.c: In function 'ctf_add_slice':
../../binutils-gdb/libctf/ctf-create.c:862:59: error: 'NBBY' undeclared (first use in this function)
dtd->dtd_data.ctt_size = clp2 (P2ROUNDUP (ep->cte_bits, NBBY) / NBBY);
^~~~
../../binutils-gdb/libctf/ctf-impl.h:254:42: note: in definition of macro 'P2ROUNDUP'
#define P2ROUNDUP(x, align) (-(-(x) & -(align)))
^~~~~
../../binutils-gdb/libctf/ctf-create.c: In function 'ctf_add_member_offset':
../../binutils-gdb/libctf/ctf-create.c:1341:21: error: 'NBBY' undeclared (first use in this function)
off += lsize * NBBY;
^~~~
../../binutils-gdb/libctf/ctf-create.c: In function 'ctf_add_type':
../../binutils-gdb/libctf/ctf-create.c:1822:16: warning: unknown conversion type character 'z' in format [-Wformat=]
ctf_dprintf ("Conflict for type %s against ID %lx: "
^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
../../binutils-gdb/libctf/ctf-create.c:1823:35: note: format string is defined here
"union size differs, old %zi, new %zi\n",
^
../../binutils-gdb/libctf/ctf-create.c:1822:16: warning: unknown conversion type character 'z' in format [-Wformat=]
ctf_dprintf ("Conflict for type %s against ID %lx: "
^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
../../binutils-gdb/libctf/ctf-create.c:1823:44: note: format string is defined here
"union size differs, old %zi, new %zi\n",
^
../../binutils-gdb/libctf/ctf-create.c:1822:16: warning: too many arguments for format [-Wformat-extra-args]
ctf_dprintf ("Conflict for type %s against ID %lx: "
^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
This patch fixes the actual errors in here. I did not try to fix the
printf warnings, though I think someone ought to.
Ok?
libctf/ChangeLog
2019-06-04 Tom Tromey <tromey@adacore.com>
* ctf-create.c (ctf_add_encoded, ctf_add_slice)
(ctf_add_member_offset): Use CHAR_BIT, not NBBY.
2019-06-05 02:16:57 +08:00
|
|
|
dtd->dtd_data.ctt_size = clp2 (P2ROUNDUP (ep->cte_bits, CHAR_BIT)
|
|
|
|
/ CHAR_BIT);
|
libctf: eliminate dtd_u, part 1: int/float/slice
This series eliminates a lot of special-case code to handle dynamic
types (types added to writable dicts and not yet serialized).
Historically, when such types have variable-length data in their final
CTF representations, libctf has always worked by adding such types to a
special union (ctf_dtdef_t.dtd_u) in the dynamic type definition
structure, then picking the members out of this structure at
serialization time and packing them into their final form.
This has the advantage that the ctf_add_* code doesn't need to know
anything about the final CTF representation, but the significant
disadvantage that all code that looks up types in any way needs two code
paths, one for dynamic types, one for all others. Historically libctf
"handled" this by not supporting most type lookups on dynamic types at
all until ctf_update was called to do a complete reserialization of the
entire dict (it didn't emit an error, it just emitted wrong results).
Since commit 676c3ecbad6e9c4, which eliminated ctf_update in favour of
the internal-only ctf_serialize function, all the type-lookup paths
grew an extra branch to handle dynamic types.
We can eliminate this branch again by dropping the dtd_u stuff and
simply writing out the vlen in (close to) its final form at ctf_add_*
time: type lookup for types using this approach is then identical for
types in writable dicts and types that are in read-only ones, and
serialization is also simplified (we just need to write out the vlen
we already created).
The only complexity lies in type kinds for which multiple
vlen representations are valid depending on properties of the type,
e.g. structures. But we can start simple, adjusting ints, floats,
and slices to work this way, and leaving everything else as is.
libctf/ChangeLog
2021-03-18 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h (ctf_dtdef_t) <dtd_u.dtu_enc>: Remove.
<dtd_u.dtu_slice>: Likewise.
<dtd_vlen>: New.
* ctf-create.c (ctf_add_generic): Perhaps allocate it. All
callers adjusted.
(ctf_dtd_delete): Free it.
(ctf_add_slice): Use the dtd_vlen, not dtu_enc.
(ctf_add_encoded): Likewise. Assert that this must be an int or
float.
* ctf-serialize.c (ctf_emit_type_sect): Just copy the dtd_vlen.
* ctf-dedup.c (ctf_dedup_rhash_type): Use the dtd_vlen, not
dtu_slice.
* ctf-types.c (ctf_type_reference): Likewise.
(ctf_type_encoding): Remove most dynamic-type-specific code: just
get the vlen from the right place. Report failure to look up the
underlying type's encoding.
2021-03-18 20:37:52 +08:00
|
|
|
slice.cts_type = (uint32_t) ref;
|
|
|
|
slice.cts_bits = ep->cte_bits;
|
|
|
|
slice.cts_offset = ep->cte_offset;
|
|
|
|
memcpy (dtd->dtd_vlen, &slice, sizeof (ctf_slice_t));
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
|
|
|
|
return type;
|
|
|
|
}
|
|
|
|
|
|
|
|
ctf_id_t
|
libctf, include, binutils, gdb, ld: rename ctf_file_t to ctf_dict_t
The naming of the ctf_file_t type in libctf is a historical curiosity.
Back in the Solaris days, CTF dictionaries were originally generated as
a separate file and then (sometimes) merged into objects: hence the
datatype was named ctf_file_t, and known as a "CTF file". Nowadays, raw
CTF is essentially never written to a file on its own, and the datatype
changed name to a "CTF dictionary" years ago. So the term "CTF file"
refers to something that is never a file! This is at best confusing.
The type has also historically been known as a 'CTF container", which is
even more confusing now that we have CTF archives which are *also* a
sort of container (they contain CTF dictionaries), but which are never
referred to as containers in the source code.
So fix this by completing the renaming, renaming ctf_file_t to
ctf_dict_t throughout, and renaming those few functions that refer to
CTF files by name (keeping compatibility aliases) to refer to dicts
instead. Old users who still refer to ctf_file_t will see (harmless)
pointer-compatibility warnings at compile time, but the ABI is unchanged
(since C doesn't mangle names, and ctf_file_t was always an opaque type)
and things will still compile fine as long as -Werror is not specified.
All references to CTF containers and CTF files in the source code are
fixed to refer to CTF dicts instead.
Further (smaller) renamings of annoyingly-named functions to come, as
part of the process of souping up queries across whole archives at once
(needed for the function info and data object sections).
binutils/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* objdump.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_ctf): Likewise. Use ctf_dict_close, not ctf_file_close.
* readelf.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_section_as_ctf): Likewise. Use ctf_dict_close, not
ctf_file_close.
gdb/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctfread.c: Change uses of ctf_file_t to ctf_dict_t.
(ctf_fp_info::~ctf_fp_info): Call ctf_dict_close, not ctf_file_close.
include/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-api.h (ctf_file_t): Rename to...
(ctf_dict_t): ... this. Keep ctf_file_t around for compatibility.
(struct ctf_file): Likewise rename to...
(struct ctf_dict): ... this.
(ctf_file_close): Rename to...
(ctf_dict_close): ... this, keeping compatibility function.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this, keeping compatibility function.
All callers adjusted.
* ctf.h: Rename references to ctf_file_t to ctf_dict_t.
(struct ctf_archive) <ctfa_nfiles>: Rename to...
<ctfa_ndicts>: ... this.
ld/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ldlang.c (ctf_output): This is a ctf_dict_t now.
(lang_ctf_errs_warnings): Rename ctf_file_t to ctf_dict_t.
(ldlang_open_ctf): Adjust comment.
(lang_merge_ctf): Use ctf_dict_close, not ctf_file_close.
* ldelfgen.h (ldelf_examine_strtab_for_ctf): Rename ctf_file_t to
ctf_dict_t. Change opaque declaration accordingly.
* ldelfgen.c (ldelf_examine_strtab_for_ctf): Adjust.
* ldemul.h (examine_strtab_for_ctf): Likewise.
(ldemul_examine_strtab_for_ctf): Likewise.
* ldeuml.c (ldemul_examine_strtab_for_ctf): Likewise.
libctf/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h: Rename ctf_file_t to ctf_dict_t: all declarations
adjusted.
(ctf_fileops): Rename to...
(ctf_dictops): ... this.
(ctf_dedup_t) <cd_id_to_file_t>: Rename to...
<cd_id_to_dict_t>: ... this.
(ctf_file_t): Fix outdated comment.
<ctf_fileops>: Rename to...
<ctf_dictops>: ... this.
(struct ctf_archive_internal) <ctfi_file>: Rename to...
<ctfi_dict>: ... this.
* ctf-archive.c: Rename ctf_file_t to ctf_dict_t.
Rename ctf_archive.ctfa_nfiles to ctfa_ndicts.
Rename ctf_file_close to ctf_dict_close. All users adjusted.
* ctf-create.c: Likewise. Refer to CTF dicts, not CTF containers.
(ctf_bundle_t) <ctb_file>: Rename to...
<ctb_dict): ... this.
* ctf-decl.c: Rename ctf_file_t to ctf_dict_t.
* ctf-dedup.c: Likewise. Rename ctf_file_close to
ctf_dict_close. Refer to CTF dicts, not CTF containers.
* ctf-dump.c: Likewise.
* ctf-error.c: Likewise.
* ctf-hash.c: Likewise.
* ctf-inlines.h: Likewise.
* ctf-labels.c: Likewise.
* ctf-link.c: Likewise.
* ctf-lookup.c: Likewise.
* ctf-open-bfd.c: Likewise.
* ctf-string.c: Likewise.
* ctf-subr.c: Likewise.
* ctf-types.c: Likewise.
* ctf-util.c: Likewise.
* ctf-open.c: Likewise.
(ctf_file_close): Rename to...
(ctf_dict_close): ...this.
(ctf_file_close): New trivial wrapper around ctf_dict_close, for
compatibility.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this.
(ctf_parent_file): New trivial wrapper around ctf_parent_dict, for
compatibility.
* libctf.ver: Add ctf_dict_close and ctf_parent_dict.
2020-11-20 21:34:04 +08:00
|
|
|
ctf_add_integer (ctf_dict_t *fp, uint32_t flag,
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
const char *name, const ctf_encoding_t *ep)
|
|
|
|
{
|
|
|
|
return (ctf_add_encoded (fp, flag, name, ep, CTF_K_INTEGER));
|
|
|
|
}
|
|
|
|
|
|
|
|
ctf_id_t
|
libctf, include, binutils, gdb, ld: rename ctf_file_t to ctf_dict_t
The naming of the ctf_file_t type in libctf is a historical curiosity.
Back in the Solaris days, CTF dictionaries were originally generated as
a separate file and then (sometimes) merged into objects: hence the
datatype was named ctf_file_t, and known as a "CTF file". Nowadays, raw
CTF is essentially never written to a file on its own, and the datatype
changed name to a "CTF dictionary" years ago. So the term "CTF file"
refers to something that is never a file! This is at best confusing.
The type has also historically been known as a 'CTF container", which is
even more confusing now that we have CTF archives which are *also* a
sort of container (they contain CTF dictionaries), but which are never
referred to as containers in the source code.
So fix this by completing the renaming, renaming ctf_file_t to
ctf_dict_t throughout, and renaming those few functions that refer to
CTF files by name (keeping compatibility aliases) to refer to dicts
instead. Old users who still refer to ctf_file_t will see (harmless)
pointer-compatibility warnings at compile time, but the ABI is unchanged
(since C doesn't mangle names, and ctf_file_t was always an opaque type)
and things will still compile fine as long as -Werror is not specified.
All references to CTF containers and CTF files in the source code are
fixed to refer to CTF dicts instead.
Further (smaller) renamings of annoyingly-named functions to come, as
part of the process of souping up queries across whole archives at once
(needed for the function info and data object sections).
binutils/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* objdump.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_ctf): Likewise. Use ctf_dict_close, not ctf_file_close.
* readelf.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_section_as_ctf): Likewise. Use ctf_dict_close, not
ctf_file_close.
gdb/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctfread.c: Change uses of ctf_file_t to ctf_dict_t.
(ctf_fp_info::~ctf_fp_info): Call ctf_dict_close, not ctf_file_close.
include/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-api.h (ctf_file_t): Rename to...
(ctf_dict_t): ... this. Keep ctf_file_t around for compatibility.
(struct ctf_file): Likewise rename to...
(struct ctf_dict): ... this.
(ctf_file_close): Rename to...
(ctf_dict_close): ... this, keeping compatibility function.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this, keeping compatibility function.
All callers adjusted.
* ctf.h: Rename references to ctf_file_t to ctf_dict_t.
(struct ctf_archive) <ctfa_nfiles>: Rename to...
<ctfa_ndicts>: ... this.
ld/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ldlang.c (ctf_output): This is a ctf_dict_t now.
(lang_ctf_errs_warnings): Rename ctf_file_t to ctf_dict_t.
(ldlang_open_ctf): Adjust comment.
(lang_merge_ctf): Use ctf_dict_close, not ctf_file_close.
* ldelfgen.h (ldelf_examine_strtab_for_ctf): Rename ctf_file_t to
ctf_dict_t. Change opaque declaration accordingly.
* ldelfgen.c (ldelf_examine_strtab_for_ctf): Adjust.
* ldemul.h (examine_strtab_for_ctf): Likewise.
(ldemul_examine_strtab_for_ctf): Likewise.
* ldeuml.c (ldemul_examine_strtab_for_ctf): Likewise.
libctf/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h: Rename ctf_file_t to ctf_dict_t: all declarations
adjusted.
(ctf_fileops): Rename to...
(ctf_dictops): ... this.
(ctf_dedup_t) <cd_id_to_file_t>: Rename to...
<cd_id_to_dict_t>: ... this.
(ctf_file_t): Fix outdated comment.
<ctf_fileops>: Rename to...
<ctf_dictops>: ... this.
(struct ctf_archive_internal) <ctfi_file>: Rename to...
<ctfi_dict>: ... this.
* ctf-archive.c: Rename ctf_file_t to ctf_dict_t.
Rename ctf_archive.ctfa_nfiles to ctfa_ndicts.
Rename ctf_file_close to ctf_dict_close. All users adjusted.
* ctf-create.c: Likewise. Refer to CTF dicts, not CTF containers.
(ctf_bundle_t) <ctb_file>: Rename to...
<ctb_dict): ... this.
* ctf-decl.c: Rename ctf_file_t to ctf_dict_t.
* ctf-dedup.c: Likewise. Rename ctf_file_close to
ctf_dict_close. Refer to CTF dicts, not CTF containers.
* ctf-dump.c: Likewise.
* ctf-error.c: Likewise.
* ctf-hash.c: Likewise.
* ctf-inlines.h: Likewise.
* ctf-labels.c: Likewise.
* ctf-link.c: Likewise.
* ctf-lookup.c: Likewise.
* ctf-open-bfd.c: Likewise.
* ctf-string.c: Likewise.
* ctf-subr.c: Likewise.
* ctf-types.c: Likewise.
* ctf-util.c: Likewise.
* ctf-open.c: Likewise.
(ctf_file_close): Rename to...
(ctf_dict_close): ...this.
(ctf_file_close): New trivial wrapper around ctf_dict_close, for
compatibility.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this.
(ctf_parent_file): New trivial wrapper around ctf_parent_dict, for
compatibility.
* libctf.ver: Add ctf_dict_close and ctf_parent_dict.
2020-11-20 21:34:04 +08:00
|
|
|
ctf_add_float (ctf_dict_t *fp, uint32_t flag,
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
const char *name, const ctf_encoding_t *ep)
|
|
|
|
{
|
|
|
|
return (ctf_add_encoded (fp, flag, name, ep, CTF_K_FLOAT));
|
|
|
|
}
|
|
|
|
|
|
|
|
ctf_id_t
|
libctf, include, binutils, gdb, ld: rename ctf_file_t to ctf_dict_t
The naming of the ctf_file_t type in libctf is a historical curiosity.
Back in the Solaris days, CTF dictionaries were originally generated as
a separate file and then (sometimes) merged into objects: hence the
datatype was named ctf_file_t, and known as a "CTF file". Nowadays, raw
CTF is essentially never written to a file on its own, and the datatype
changed name to a "CTF dictionary" years ago. So the term "CTF file"
refers to something that is never a file! This is at best confusing.
The type has also historically been known as a 'CTF container", which is
even more confusing now that we have CTF archives which are *also* a
sort of container (they contain CTF dictionaries), but which are never
referred to as containers in the source code.
So fix this by completing the renaming, renaming ctf_file_t to
ctf_dict_t throughout, and renaming those few functions that refer to
CTF files by name (keeping compatibility aliases) to refer to dicts
instead. Old users who still refer to ctf_file_t will see (harmless)
pointer-compatibility warnings at compile time, but the ABI is unchanged
(since C doesn't mangle names, and ctf_file_t was always an opaque type)
and things will still compile fine as long as -Werror is not specified.
All references to CTF containers and CTF files in the source code are
fixed to refer to CTF dicts instead.
Further (smaller) renamings of annoyingly-named functions to come, as
part of the process of souping up queries across whole archives at once
(needed for the function info and data object sections).
binutils/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* objdump.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_ctf): Likewise. Use ctf_dict_close, not ctf_file_close.
* readelf.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_section_as_ctf): Likewise. Use ctf_dict_close, not
ctf_file_close.
gdb/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctfread.c: Change uses of ctf_file_t to ctf_dict_t.
(ctf_fp_info::~ctf_fp_info): Call ctf_dict_close, not ctf_file_close.
include/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-api.h (ctf_file_t): Rename to...
(ctf_dict_t): ... this. Keep ctf_file_t around for compatibility.
(struct ctf_file): Likewise rename to...
(struct ctf_dict): ... this.
(ctf_file_close): Rename to...
(ctf_dict_close): ... this, keeping compatibility function.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this, keeping compatibility function.
All callers adjusted.
* ctf.h: Rename references to ctf_file_t to ctf_dict_t.
(struct ctf_archive) <ctfa_nfiles>: Rename to...
<ctfa_ndicts>: ... this.
ld/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ldlang.c (ctf_output): This is a ctf_dict_t now.
(lang_ctf_errs_warnings): Rename ctf_file_t to ctf_dict_t.
(ldlang_open_ctf): Adjust comment.
(lang_merge_ctf): Use ctf_dict_close, not ctf_file_close.
* ldelfgen.h (ldelf_examine_strtab_for_ctf): Rename ctf_file_t to
ctf_dict_t. Change opaque declaration accordingly.
* ldelfgen.c (ldelf_examine_strtab_for_ctf): Adjust.
* ldemul.h (examine_strtab_for_ctf): Likewise.
(ldemul_examine_strtab_for_ctf): Likewise.
* ldeuml.c (ldemul_examine_strtab_for_ctf): Likewise.
libctf/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h: Rename ctf_file_t to ctf_dict_t: all declarations
adjusted.
(ctf_fileops): Rename to...
(ctf_dictops): ... this.
(ctf_dedup_t) <cd_id_to_file_t>: Rename to...
<cd_id_to_dict_t>: ... this.
(ctf_file_t): Fix outdated comment.
<ctf_fileops>: Rename to...
<ctf_dictops>: ... this.
(struct ctf_archive_internal) <ctfi_file>: Rename to...
<ctfi_dict>: ... this.
* ctf-archive.c: Rename ctf_file_t to ctf_dict_t.
Rename ctf_archive.ctfa_nfiles to ctfa_ndicts.
Rename ctf_file_close to ctf_dict_close. All users adjusted.
* ctf-create.c: Likewise. Refer to CTF dicts, not CTF containers.
(ctf_bundle_t) <ctb_file>: Rename to...
<ctb_dict): ... this.
* ctf-decl.c: Rename ctf_file_t to ctf_dict_t.
* ctf-dedup.c: Likewise. Rename ctf_file_close to
ctf_dict_close. Refer to CTF dicts, not CTF containers.
* ctf-dump.c: Likewise.
* ctf-error.c: Likewise.
* ctf-hash.c: Likewise.
* ctf-inlines.h: Likewise.
* ctf-labels.c: Likewise.
* ctf-link.c: Likewise.
* ctf-lookup.c: Likewise.
* ctf-open-bfd.c: Likewise.
* ctf-string.c: Likewise.
* ctf-subr.c: Likewise.
* ctf-types.c: Likewise.
* ctf-util.c: Likewise.
* ctf-open.c: Likewise.
(ctf_file_close): Rename to...
(ctf_dict_close): ...this.
(ctf_file_close): New trivial wrapper around ctf_dict_close, for
compatibility.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this.
(ctf_parent_file): New trivial wrapper around ctf_parent_dict, for
compatibility.
* libctf.ver: Add ctf_dict_close and ctf_parent_dict.
2020-11-20 21:34:04 +08:00
|
|
|
ctf_add_pointer (ctf_dict_t *fp, uint32_t flag, ctf_id_t ref)
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
{
|
|
|
|
return (ctf_add_reftype (fp, flag, ref, CTF_K_POINTER));
|
|
|
|
}
|
|
|
|
|
|
|
|
ctf_id_t
|
libctf, include, binutils, gdb, ld: rename ctf_file_t to ctf_dict_t
The naming of the ctf_file_t type in libctf is a historical curiosity.
Back in the Solaris days, CTF dictionaries were originally generated as
a separate file and then (sometimes) merged into objects: hence the
datatype was named ctf_file_t, and known as a "CTF file". Nowadays, raw
CTF is essentially never written to a file on its own, and the datatype
changed name to a "CTF dictionary" years ago. So the term "CTF file"
refers to something that is never a file! This is at best confusing.
The type has also historically been known as a 'CTF container", which is
even more confusing now that we have CTF archives which are *also* a
sort of container (they contain CTF dictionaries), but which are never
referred to as containers in the source code.
So fix this by completing the renaming, renaming ctf_file_t to
ctf_dict_t throughout, and renaming those few functions that refer to
CTF files by name (keeping compatibility aliases) to refer to dicts
instead. Old users who still refer to ctf_file_t will see (harmless)
pointer-compatibility warnings at compile time, but the ABI is unchanged
(since C doesn't mangle names, and ctf_file_t was always an opaque type)
and things will still compile fine as long as -Werror is not specified.
All references to CTF containers and CTF files in the source code are
fixed to refer to CTF dicts instead.
Further (smaller) renamings of annoyingly-named functions to come, as
part of the process of souping up queries across whole archives at once
(needed for the function info and data object sections).
binutils/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* objdump.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_ctf): Likewise. Use ctf_dict_close, not ctf_file_close.
* readelf.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_section_as_ctf): Likewise. Use ctf_dict_close, not
ctf_file_close.
gdb/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctfread.c: Change uses of ctf_file_t to ctf_dict_t.
(ctf_fp_info::~ctf_fp_info): Call ctf_dict_close, not ctf_file_close.
include/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-api.h (ctf_file_t): Rename to...
(ctf_dict_t): ... this. Keep ctf_file_t around for compatibility.
(struct ctf_file): Likewise rename to...
(struct ctf_dict): ... this.
(ctf_file_close): Rename to...
(ctf_dict_close): ... this, keeping compatibility function.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this, keeping compatibility function.
All callers adjusted.
* ctf.h: Rename references to ctf_file_t to ctf_dict_t.
(struct ctf_archive) <ctfa_nfiles>: Rename to...
<ctfa_ndicts>: ... this.
ld/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ldlang.c (ctf_output): This is a ctf_dict_t now.
(lang_ctf_errs_warnings): Rename ctf_file_t to ctf_dict_t.
(ldlang_open_ctf): Adjust comment.
(lang_merge_ctf): Use ctf_dict_close, not ctf_file_close.
* ldelfgen.h (ldelf_examine_strtab_for_ctf): Rename ctf_file_t to
ctf_dict_t. Change opaque declaration accordingly.
* ldelfgen.c (ldelf_examine_strtab_for_ctf): Adjust.
* ldemul.h (examine_strtab_for_ctf): Likewise.
(ldemul_examine_strtab_for_ctf): Likewise.
* ldeuml.c (ldemul_examine_strtab_for_ctf): Likewise.
libctf/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h: Rename ctf_file_t to ctf_dict_t: all declarations
adjusted.
(ctf_fileops): Rename to...
(ctf_dictops): ... this.
(ctf_dedup_t) <cd_id_to_file_t>: Rename to...
<cd_id_to_dict_t>: ... this.
(ctf_file_t): Fix outdated comment.
<ctf_fileops>: Rename to...
<ctf_dictops>: ... this.
(struct ctf_archive_internal) <ctfi_file>: Rename to...
<ctfi_dict>: ... this.
* ctf-archive.c: Rename ctf_file_t to ctf_dict_t.
Rename ctf_archive.ctfa_nfiles to ctfa_ndicts.
Rename ctf_file_close to ctf_dict_close. All users adjusted.
* ctf-create.c: Likewise. Refer to CTF dicts, not CTF containers.
(ctf_bundle_t) <ctb_file>: Rename to...
<ctb_dict): ... this.
* ctf-decl.c: Rename ctf_file_t to ctf_dict_t.
* ctf-dedup.c: Likewise. Rename ctf_file_close to
ctf_dict_close. Refer to CTF dicts, not CTF containers.
* ctf-dump.c: Likewise.
* ctf-error.c: Likewise.
* ctf-hash.c: Likewise.
* ctf-inlines.h: Likewise.
* ctf-labels.c: Likewise.
* ctf-link.c: Likewise.
* ctf-lookup.c: Likewise.
* ctf-open-bfd.c: Likewise.
* ctf-string.c: Likewise.
* ctf-subr.c: Likewise.
* ctf-types.c: Likewise.
* ctf-util.c: Likewise.
* ctf-open.c: Likewise.
(ctf_file_close): Rename to...
(ctf_dict_close): ...this.
(ctf_file_close): New trivial wrapper around ctf_dict_close, for
compatibility.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this.
(ctf_parent_file): New trivial wrapper around ctf_parent_dict, for
compatibility.
* libctf.ver: Add ctf_dict_close and ctf_parent_dict.
2020-11-20 21:34:04 +08:00
|
|
|
ctf_add_array (ctf_dict_t *fp, uint32_t flag, const ctf_arinfo_t *arp)
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
{
|
|
|
|
ctf_dtdef_t *dtd;
|
2021-03-18 20:37:52 +08:00
|
|
|
ctf_array_t cta;
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
ctf_id_t type;
|
libctf, include, binutils, gdb, ld: rename ctf_file_t to ctf_dict_t
The naming of the ctf_file_t type in libctf is a historical curiosity.
Back in the Solaris days, CTF dictionaries were originally generated as
a separate file and then (sometimes) merged into objects: hence the
datatype was named ctf_file_t, and known as a "CTF file". Nowadays, raw
CTF is essentially never written to a file on its own, and the datatype
changed name to a "CTF dictionary" years ago. So the term "CTF file"
refers to something that is never a file! This is at best confusing.
The type has also historically been known as a 'CTF container", which is
even more confusing now that we have CTF archives which are *also* a
sort of container (they contain CTF dictionaries), but which are never
referred to as containers in the source code.
So fix this by completing the renaming, renaming ctf_file_t to
ctf_dict_t throughout, and renaming those few functions that refer to
CTF files by name (keeping compatibility aliases) to refer to dicts
instead. Old users who still refer to ctf_file_t will see (harmless)
pointer-compatibility warnings at compile time, but the ABI is unchanged
(since C doesn't mangle names, and ctf_file_t was always an opaque type)
and things will still compile fine as long as -Werror is not specified.
All references to CTF containers and CTF files in the source code are
fixed to refer to CTF dicts instead.
Further (smaller) renamings of annoyingly-named functions to come, as
part of the process of souping up queries across whole archives at once
(needed for the function info and data object sections).
binutils/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* objdump.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_ctf): Likewise. Use ctf_dict_close, not ctf_file_close.
* readelf.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_section_as_ctf): Likewise. Use ctf_dict_close, not
ctf_file_close.
gdb/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctfread.c: Change uses of ctf_file_t to ctf_dict_t.
(ctf_fp_info::~ctf_fp_info): Call ctf_dict_close, not ctf_file_close.
include/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-api.h (ctf_file_t): Rename to...
(ctf_dict_t): ... this. Keep ctf_file_t around for compatibility.
(struct ctf_file): Likewise rename to...
(struct ctf_dict): ... this.
(ctf_file_close): Rename to...
(ctf_dict_close): ... this, keeping compatibility function.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this, keeping compatibility function.
All callers adjusted.
* ctf.h: Rename references to ctf_file_t to ctf_dict_t.
(struct ctf_archive) <ctfa_nfiles>: Rename to...
<ctfa_ndicts>: ... this.
ld/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ldlang.c (ctf_output): This is a ctf_dict_t now.
(lang_ctf_errs_warnings): Rename ctf_file_t to ctf_dict_t.
(ldlang_open_ctf): Adjust comment.
(lang_merge_ctf): Use ctf_dict_close, not ctf_file_close.
* ldelfgen.h (ldelf_examine_strtab_for_ctf): Rename ctf_file_t to
ctf_dict_t. Change opaque declaration accordingly.
* ldelfgen.c (ldelf_examine_strtab_for_ctf): Adjust.
* ldemul.h (examine_strtab_for_ctf): Likewise.
(ldemul_examine_strtab_for_ctf): Likewise.
* ldeuml.c (ldemul_examine_strtab_for_ctf): Likewise.
libctf/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h: Rename ctf_file_t to ctf_dict_t: all declarations
adjusted.
(ctf_fileops): Rename to...
(ctf_dictops): ... this.
(ctf_dedup_t) <cd_id_to_file_t>: Rename to...
<cd_id_to_dict_t>: ... this.
(ctf_file_t): Fix outdated comment.
<ctf_fileops>: Rename to...
<ctf_dictops>: ... this.
(struct ctf_archive_internal) <ctfi_file>: Rename to...
<ctfi_dict>: ... this.
* ctf-archive.c: Rename ctf_file_t to ctf_dict_t.
Rename ctf_archive.ctfa_nfiles to ctfa_ndicts.
Rename ctf_file_close to ctf_dict_close. All users adjusted.
* ctf-create.c: Likewise. Refer to CTF dicts, not CTF containers.
(ctf_bundle_t) <ctb_file>: Rename to...
<ctb_dict): ... this.
* ctf-decl.c: Rename ctf_file_t to ctf_dict_t.
* ctf-dedup.c: Likewise. Rename ctf_file_close to
ctf_dict_close. Refer to CTF dicts, not CTF containers.
* ctf-dump.c: Likewise.
* ctf-error.c: Likewise.
* ctf-hash.c: Likewise.
* ctf-inlines.h: Likewise.
* ctf-labels.c: Likewise.
* ctf-link.c: Likewise.
* ctf-lookup.c: Likewise.
* ctf-open-bfd.c: Likewise.
* ctf-string.c: Likewise.
* ctf-subr.c: Likewise.
* ctf-types.c: Likewise.
* ctf-util.c: Likewise.
* ctf-open.c: Likewise.
(ctf_file_close): Rename to...
(ctf_dict_close): ...this.
(ctf_file_close): New trivial wrapper around ctf_dict_close, for
compatibility.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this.
(ctf_parent_file): New trivial wrapper around ctf_parent_dict, for
compatibility.
* libctf.ver: Add ctf_dict_close and ctf_parent_dict.
2020-11-20 21:34:04 +08:00
|
|
|
ctf_dict_t *tmp = fp;
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
|
|
|
|
if (arp == NULL)
|
2023-09-13 17:02:36 +08:00
|
|
|
return (ctf_set_typed_errno (fp, EINVAL));
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
|
2020-06-03 03:04:24 +08:00
|
|
|
if (arp->ctr_contents != 0
|
|
|
|
&& ctf_lookup_by_id (&tmp, arp->ctr_contents) == NULL)
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
return CTF_ERR; /* errno is set for us. */
|
|
|
|
|
|
|
|
tmp = fp;
|
|
|
|
if (ctf_lookup_by_id (&tmp, arp->ctr_index) == NULL)
|
|
|
|
return CTF_ERR; /* errno is set for us. */
|
|
|
|
|
libctf, ld: prohibit getting the size or alignment of forwards
C allows you to do only a very few things with entities of incomplete
type (as opposed to pointers to them): make pointers to them and give
them cv-quals, roughly. In particular you can't sizeof them and you
can't get their alignment.
We cannot impose all the requirements the standard imposes on CTF users,
because the deduplicator can transform any structure type into a forward
for the purposes of breaking cycles: so CTF type graphs can easily
contain things like arrays of forward type (if you want to figure out
their size or alignment, you need to chase down the types this forward
might be a forward to in child TU dicts: we will soon add API functions
to make doing this much easier).
Nonetheless, it is still meaningless to ask for the size or alignment of
forwards: but libctf didn't prohibit this and returned nonsense from
internal implementation details when you asked (it returned the kind of
the pointed-to type as both the size and alignment, because forwards
reuse ctt_type as a type kind, and ctt_type and ctt_size overlap). So
introduce a new error, ECTF_INCOMPLETE, which is returned when you try
to get the size or alignment of forwards: we also return it when you try
to do things that require libctf itself to get the size or alignment of
a forward, notably using a forward as an array index type (which C
should never do in any case) or adding forwards to structures without
specifying their offset explicitly.
The dumper will not emit size or alignment info for forwards any more.
(This should not be an API break since ctf_type_size and ctf_type_align
could both return errors before now: any code that isn't expecting error
returns is already potentially broken.)
include/ChangeLog
2021-01-05 Nick Alcock <nick.alcock@oracle.com>
* ctf-api.h (ECTF_INCOMPLETE): New.
(ECTF_NERR): Adjust.
ld/ChangeLog
2021-01-05 Nick Alcock <nick.alcock@oracle.com>
* testsuite/ld-ctf/conflicting-cycle-1.parent.d: Adjust for dumper
changes.
* testsuite/ld-ctf/cross-tu-cyclic-conflicting.d: Likewise.
* testsuite/ld-ctf/forward.c: New test...
* testsuite/ld-ctf/forward.d: ... and results.
libctf/ChangeLog
2021-01-05 Nick Alcock <nick.alcock@oracle.com>
* ctf-types.c (ctf_type_resolve): Improve comment.
(ctf_type_size): Yield ECTF_INCOMPLETE when applied to forwards.
Emit errors into the right dict.
(ctf_type_align): Likewise.
* ctf-create.c (ctf_add_member_offset): Yield ECTF_INCOMPLETE
when adding a member without explicit offset when this member, or
the previous member, is incomplete.
* ctf-dump.c (ctf_dump_format_type): Do not try to print the size of
forwards.
(ctf_dump_member): Do not try to print their alignment.
2021-01-05 21:25:56 +08:00
|
|
|
if (ctf_type_kind (fp, arp->ctr_index) == CTF_K_FORWARD)
|
|
|
|
{
|
|
|
|
ctf_err_warn (fp, 1, ECTF_INCOMPLETE,
|
|
|
|
_("ctf_add_array: index type %lx is incomplete"),
|
|
|
|
arp->ctr_contents);
|
2023-09-13 17:02:36 +08:00
|
|
|
return (ctf_set_typed_errno (fp, ECTF_INCOMPLETE));
|
libctf, ld: prohibit getting the size or alignment of forwards
C allows you to do only a very few things with entities of incomplete
type (as opposed to pointers to them): make pointers to them and give
them cv-quals, roughly. In particular you can't sizeof them and you
can't get their alignment.
We cannot impose all the requirements the standard imposes on CTF users,
because the deduplicator can transform any structure type into a forward
for the purposes of breaking cycles: so CTF type graphs can easily
contain things like arrays of forward type (if you want to figure out
their size or alignment, you need to chase down the types this forward
might be a forward to in child TU dicts: we will soon add API functions
to make doing this much easier).
Nonetheless, it is still meaningless to ask for the size or alignment of
forwards: but libctf didn't prohibit this and returned nonsense from
internal implementation details when you asked (it returned the kind of
the pointed-to type as both the size and alignment, because forwards
reuse ctt_type as a type kind, and ctt_type and ctt_size overlap). So
introduce a new error, ECTF_INCOMPLETE, which is returned when you try
to get the size or alignment of forwards: we also return it when you try
to do things that require libctf itself to get the size or alignment of
a forward, notably using a forward as an array index type (which C
should never do in any case) or adding forwards to structures without
specifying their offset explicitly.
The dumper will not emit size or alignment info for forwards any more.
(This should not be an API break since ctf_type_size and ctf_type_align
could both return errors before now: any code that isn't expecting error
returns is already potentially broken.)
include/ChangeLog
2021-01-05 Nick Alcock <nick.alcock@oracle.com>
* ctf-api.h (ECTF_INCOMPLETE): New.
(ECTF_NERR): Adjust.
ld/ChangeLog
2021-01-05 Nick Alcock <nick.alcock@oracle.com>
* testsuite/ld-ctf/conflicting-cycle-1.parent.d: Adjust for dumper
changes.
* testsuite/ld-ctf/cross-tu-cyclic-conflicting.d: Likewise.
* testsuite/ld-ctf/forward.c: New test...
* testsuite/ld-ctf/forward.d: ... and results.
libctf/ChangeLog
2021-01-05 Nick Alcock <nick.alcock@oracle.com>
* ctf-types.c (ctf_type_resolve): Improve comment.
(ctf_type_size): Yield ECTF_INCOMPLETE when applied to forwards.
Emit errors into the right dict.
(ctf_type_align): Likewise.
* ctf-create.c (ctf_add_member_offset): Yield ECTF_INCOMPLETE
when adding a member without explicit offset when this member, or
the previous member, is incomplete.
* ctf-dump.c (ctf_dump_format_type): Do not try to print the size of
forwards.
(ctf_dump_member): Do not try to print their alignment.
2021-01-05 21:25:56 +08:00
|
|
|
}
|
|
|
|
|
libctf: eliminate dtd_u, part 1: int/float/slice
This series eliminates a lot of special-case code to handle dynamic
types (types added to writable dicts and not yet serialized).
Historically, when such types have variable-length data in their final
CTF representations, libctf has always worked by adding such types to a
special union (ctf_dtdef_t.dtd_u) in the dynamic type definition
structure, then picking the members out of this structure at
serialization time and packing them into their final form.
This has the advantage that the ctf_add_* code doesn't need to know
anything about the final CTF representation, but the significant
disadvantage that all code that looks up types in any way needs two code
paths, one for dynamic types, one for all others. Historically libctf
"handled" this by not supporting most type lookups on dynamic types at
all until ctf_update was called to do a complete reserialization of the
entire dict (it didn't emit an error, it just emitted wrong results).
Since commit 676c3ecbad6e9c4, which eliminated ctf_update in favour of
the internal-only ctf_serialize function, all the type-lookup paths
grew an extra branch to handle dynamic types.
We can eliminate this branch again by dropping the dtd_u stuff and
simply writing out the vlen in (close to) its final form at ctf_add_*
time: type lookup for types using this approach is then identical for
types in writable dicts and types that are in read-only ones, and
serialization is also simplified (we just need to write out the vlen
we already created).
The only complexity lies in type kinds for which multiple
vlen representations are valid depending on properties of the type,
e.g. structures. But we can start simple, adjusting ints, floats,
and slices to work this way, and leaving everything else as is.
libctf/ChangeLog
2021-03-18 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h (ctf_dtdef_t) <dtd_u.dtu_enc>: Remove.
<dtd_u.dtu_slice>: Likewise.
<dtd_vlen>: New.
* ctf-create.c (ctf_add_generic): Perhaps allocate it. All
callers adjusted.
(ctf_dtd_delete): Free it.
(ctf_add_slice): Use the dtd_vlen, not dtu_enc.
(ctf_add_encoded): Likewise. Assert that this must be an int or
float.
* ctf-serialize.c (ctf_emit_type_sect): Just copy the dtd_vlen.
* ctf-dedup.c (ctf_dedup_rhash_type): Use the dtd_vlen, not
dtu_slice.
* ctf-types.c (ctf_type_reference): Likewise.
(ctf_type_encoding): Remove most dynamic-type-specific code: just
get the vlen from the right place. Report failure to look up the
underlying type's encoding.
2021-03-18 20:37:52 +08:00
|
|
|
if ((type = ctf_add_generic (fp, flag, NULL, CTF_K_ARRAY,
|
2021-03-18 20:37:52 +08:00
|
|
|
sizeof (ctf_array_t), &dtd)) == CTF_ERR)
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
return CTF_ERR; /* errno is set for us. */
|
|
|
|
|
2021-03-18 20:37:52 +08:00
|
|
|
memset (&cta, 0, sizeof (ctf_array_t));
|
|
|
|
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
dtd->dtd_data.ctt_info = CTF_TYPE_INFO (CTF_K_ARRAY, flag, 0);
|
|
|
|
dtd->dtd_data.ctt_size = 0;
|
2021-03-18 20:37:52 +08:00
|
|
|
cta.cta_contents = (uint32_t) arp->ctr_contents;
|
|
|
|
cta.cta_index = (uint32_t) arp->ctr_index;
|
|
|
|
cta.cta_nelems = arp->ctr_nelems;
|
|
|
|
memcpy (dtd->dtd_vlen, &cta, sizeof (ctf_array_t));
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
|
|
|
|
return type;
|
|
|
|
}
|
|
|
|
|
|
|
|
int
|
libctf, include, binutils, gdb, ld: rename ctf_file_t to ctf_dict_t
The naming of the ctf_file_t type in libctf is a historical curiosity.
Back in the Solaris days, CTF dictionaries were originally generated as
a separate file and then (sometimes) merged into objects: hence the
datatype was named ctf_file_t, and known as a "CTF file". Nowadays, raw
CTF is essentially never written to a file on its own, and the datatype
changed name to a "CTF dictionary" years ago. So the term "CTF file"
refers to something that is never a file! This is at best confusing.
The type has also historically been known as a 'CTF container", which is
even more confusing now that we have CTF archives which are *also* a
sort of container (they contain CTF dictionaries), but which are never
referred to as containers in the source code.
So fix this by completing the renaming, renaming ctf_file_t to
ctf_dict_t throughout, and renaming those few functions that refer to
CTF files by name (keeping compatibility aliases) to refer to dicts
instead. Old users who still refer to ctf_file_t will see (harmless)
pointer-compatibility warnings at compile time, but the ABI is unchanged
(since C doesn't mangle names, and ctf_file_t was always an opaque type)
and things will still compile fine as long as -Werror is not specified.
All references to CTF containers and CTF files in the source code are
fixed to refer to CTF dicts instead.
Further (smaller) renamings of annoyingly-named functions to come, as
part of the process of souping up queries across whole archives at once
(needed for the function info and data object sections).
binutils/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* objdump.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_ctf): Likewise. Use ctf_dict_close, not ctf_file_close.
* readelf.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_section_as_ctf): Likewise. Use ctf_dict_close, not
ctf_file_close.
gdb/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctfread.c: Change uses of ctf_file_t to ctf_dict_t.
(ctf_fp_info::~ctf_fp_info): Call ctf_dict_close, not ctf_file_close.
include/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-api.h (ctf_file_t): Rename to...
(ctf_dict_t): ... this. Keep ctf_file_t around for compatibility.
(struct ctf_file): Likewise rename to...
(struct ctf_dict): ... this.
(ctf_file_close): Rename to...
(ctf_dict_close): ... this, keeping compatibility function.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this, keeping compatibility function.
All callers adjusted.
* ctf.h: Rename references to ctf_file_t to ctf_dict_t.
(struct ctf_archive) <ctfa_nfiles>: Rename to...
<ctfa_ndicts>: ... this.
ld/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ldlang.c (ctf_output): This is a ctf_dict_t now.
(lang_ctf_errs_warnings): Rename ctf_file_t to ctf_dict_t.
(ldlang_open_ctf): Adjust comment.
(lang_merge_ctf): Use ctf_dict_close, not ctf_file_close.
* ldelfgen.h (ldelf_examine_strtab_for_ctf): Rename ctf_file_t to
ctf_dict_t. Change opaque declaration accordingly.
* ldelfgen.c (ldelf_examine_strtab_for_ctf): Adjust.
* ldemul.h (examine_strtab_for_ctf): Likewise.
(ldemul_examine_strtab_for_ctf): Likewise.
* ldeuml.c (ldemul_examine_strtab_for_ctf): Likewise.
libctf/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h: Rename ctf_file_t to ctf_dict_t: all declarations
adjusted.
(ctf_fileops): Rename to...
(ctf_dictops): ... this.
(ctf_dedup_t) <cd_id_to_file_t>: Rename to...
<cd_id_to_dict_t>: ... this.
(ctf_file_t): Fix outdated comment.
<ctf_fileops>: Rename to...
<ctf_dictops>: ... this.
(struct ctf_archive_internal) <ctfi_file>: Rename to...
<ctfi_dict>: ... this.
* ctf-archive.c: Rename ctf_file_t to ctf_dict_t.
Rename ctf_archive.ctfa_nfiles to ctfa_ndicts.
Rename ctf_file_close to ctf_dict_close. All users adjusted.
* ctf-create.c: Likewise. Refer to CTF dicts, not CTF containers.
(ctf_bundle_t) <ctb_file>: Rename to...
<ctb_dict): ... this.
* ctf-decl.c: Rename ctf_file_t to ctf_dict_t.
* ctf-dedup.c: Likewise. Rename ctf_file_close to
ctf_dict_close. Refer to CTF dicts, not CTF containers.
* ctf-dump.c: Likewise.
* ctf-error.c: Likewise.
* ctf-hash.c: Likewise.
* ctf-inlines.h: Likewise.
* ctf-labels.c: Likewise.
* ctf-link.c: Likewise.
* ctf-lookup.c: Likewise.
* ctf-open-bfd.c: Likewise.
* ctf-string.c: Likewise.
* ctf-subr.c: Likewise.
* ctf-types.c: Likewise.
* ctf-util.c: Likewise.
* ctf-open.c: Likewise.
(ctf_file_close): Rename to...
(ctf_dict_close): ...this.
(ctf_file_close): New trivial wrapper around ctf_dict_close, for
compatibility.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this.
(ctf_parent_file): New trivial wrapper around ctf_parent_dict, for
compatibility.
* libctf.ver: Add ctf_dict_close and ctf_parent_dict.
2020-11-20 21:34:04 +08:00
|
|
|
ctf_set_array (ctf_dict_t *fp, ctf_id_t type, const ctf_arinfo_t *arp)
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
{
|
libctf: fix creation-time parent/child dict confusions
The fixes applied a few years ago to resolve confusions between parent and
child dicts at lookup time also apply in various forms to creation. In
general, if you have a type in a parent dict ctf_imported into a child and
you do something to it, and the parent dict is writable (created via
ctf_create, not opened via ctf_open*) it should work just the same to make
changes to that type via a child dict as it does to make the change
to the parent dict directly -- and nothing you're prohibited from doing
to the parent dict when done directly should be allowed just because
you're doing it via a child.
Specifically, the following don't work when doing things from the child, but
should:
- adding a member of a type in the parent to a struct or union in the
parent via ctf_add_member or ctf_add_member_offset: this yields
ECTF_BADID
- adding a member of a type in the parent to a struct or union in the
parent via ctf_add_member_encoded: this dumps core (!).
- adding an enumerand to an enumerator in the parent: this yields
ECTF_BADID
- setting the properties of an array in the parent via ctf_set_array;
this yields ECTF_BADID
Relatedly, some things work when doing things via a child that should fail,
yielding a CTF dictionary with invalid content (readable, but meaningless):
in particular, you can add a child type to a struct in the parent via
any of the ctf_add_member* family and nothing complains at all, even though
you should never be able to add references to children to parents (since any
given parent can be associated with many different children).
A family of tests is added to check each of these cases independently, since
some can result in coredumps and it would be nice to test the other cases
even if some dump core. They use a common library to do all the actual
work. The set of affected API calls was determined by code inspection
(auditing all calls to ctf_dtd_lookup): it's possible that I missed a few,
but I doubt it, since other cases use ctf_lookup* functions, which already
climb to the parent where appropriate.
libctf/ChangeLog:
PR libctf/30985
* ctf-create.c (ctf_dtd_lookup): Traverse to parents if necessary.
(ctf_set_array): Likewise. Report errors on the child; require
both parent and child to be writable.
(ctf_add_enumerator): Likewise.
(ctf_add_member_offset): Likewise. Prohibit addition of child types
to structs in the parent.
(ctf_add_member_encoded): Do not dereference a NULL dtd: report
ECTF_BADID instead.
* ctf-string.c (ctf_str_add_ref_internal): Report ENOMEM on the
dict if addition of a string ref fails.
* testsuite/libctf-writable/parent-child-dtd-crash-lib.c: New library.
* testsuite/libctf-writable/parent-child-dtd-enum.*: New test.
* testsuite/libctf-writable/parent-child-dtd-enumerator.*: New test.
* testsuite/libctf-writable/parent-child-dtd-member-encoded.*: New test.
* testsuite/libctf-writable/parent-child-dtd-member-offset.*: New test.
* testsuite/libctf-writable/parent-child-dtd-set-array.*: New test.
* testsuite/libctf-writable/parent-child-dtd-struct.*: New test.
* testsuite/libctf-writable/parent-child-dtd-union.*: New test.
2023-10-19 01:34:57 +08:00
|
|
|
ctf_dict_t *ofp = fp;
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
ctf_dtdef_t *dtd = ctf_dtd_lookup (fp, type);
|
2021-03-18 20:37:52 +08:00
|
|
|
ctf_array_t *vlen;
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
|
libctf: fix creation-time parent/child dict confusions
The fixes applied a few years ago to resolve confusions between parent and
child dicts at lookup time also apply in various forms to creation. In
general, if you have a type in a parent dict ctf_imported into a child and
you do something to it, and the parent dict is writable (created via
ctf_create, not opened via ctf_open*) it should work just the same to make
changes to that type via a child dict as it does to make the change
to the parent dict directly -- and nothing you're prohibited from doing
to the parent dict when done directly should be allowed just because
you're doing it via a child.
Specifically, the following don't work when doing things from the child, but
should:
- adding a member of a type in the parent to a struct or union in the
parent via ctf_add_member or ctf_add_member_offset: this yields
ECTF_BADID
- adding a member of a type in the parent to a struct or union in the
parent via ctf_add_member_encoded: this dumps core (!).
- adding an enumerand to an enumerator in the parent: this yields
ECTF_BADID
- setting the properties of an array in the parent via ctf_set_array;
this yields ECTF_BADID
Relatedly, some things work when doing things via a child that should fail,
yielding a CTF dictionary with invalid content (readable, but meaningless):
in particular, you can add a child type to a struct in the parent via
any of the ctf_add_member* family and nothing complains at all, even though
you should never be able to add references to children to parents (since any
given parent can be associated with many different children).
A family of tests is added to check each of these cases independently, since
some can result in coredumps and it would be nice to test the other cases
even if some dump core. They use a common library to do all the actual
work. The set of affected API calls was determined by code inspection
(auditing all calls to ctf_dtd_lookup): it's possible that I missed a few,
but I doubt it, since other cases use ctf_lookup* functions, which already
climb to the parent where appropriate.
libctf/ChangeLog:
PR libctf/30985
* ctf-create.c (ctf_dtd_lookup): Traverse to parents if necessary.
(ctf_set_array): Likewise. Report errors on the child; require
both parent and child to be writable.
(ctf_add_enumerator): Likewise.
(ctf_add_member_offset): Likewise. Prohibit addition of child types
to structs in the parent.
(ctf_add_member_encoded): Do not dereference a NULL dtd: report
ECTF_BADID instead.
* ctf-string.c (ctf_str_add_ref_internal): Report ENOMEM on the
dict if addition of a string ref fails.
* testsuite/libctf-writable/parent-child-dtd-crash-lib.c: New library.
* testsuite/libctf-writable/parent-child-dtd-enum.*: New test.
* testsuite/libctf-writable/parent-child-dtd-enumerator.*: New test.
* testsuite/libctf-writable/parent-child-dtd-member-encoded.*: New test.
* testsuite/libctf-writable/parent-child-dtd-member-offset.*: New test.
* testsuite/libctf-writable/parent-child-dtd-set-array.*: New test.
* testsuite/libctf-writable/parent-child-dtd-struct.*: New test.
* testsuite/libctf-writable/parent-child-dtd-union.*: New test.
2023-10-19 01:34:57 +08:00
|
|
|
if ((fp->ctf_flags & LCTF_CHILD) && LCTF_TYPE_ISPARENT (fp, type))
|
|
|
|
fp = fp->ctf_parent;
|
|
|
|
|
libctf: support addition of types to dicts read via ctf_open()
libctf has long declared deserialized dictionaries (out of files or ELF
sections or memory buffers or whatever) to be read-only: back in the
furthest prehistory this was not the case, in that you could add a
few sorts of type to such dicts, but attempting to do so often caused
horrible memory corruption, so I banned the lot.
But it turns out real consumers want it (notably DTrace, which
synthesises pointers to types that don't have them and adds them to the
ctf_open()ed dicts if it needs them). Let's bring it back again, but
without the memory corruption and without the massive code duplication
required in days of yore to distinguish between static and dynamic
types: the representation of both types has been identical for a few
years, with the only difference being that types as a whole are stored in
a big buffer for types read in via ctf_open and per-type hashtables for
newly-added types.
So we discard the internally-visible concept of "readonly dictionaries"
in favour of declaring the *range of types* that were already present
when the dict was read in to be read-only: you can't modify them (say,
by adding members to them if they're structs, or calling ctf_set_array
on them), but you can add more types and point to them. (The API
remains the same, with calls sometimes returning ECTF_RDONLY, but now
they do so less often.)
This is a fairly invasive change, mostly because code written since the
ban was introduced didn't take the possibility of a static/dynamic split
into account. Some of these irregularities were hard to define as
anything but bugs.
Notably:
- The symbol handling was assuming that symbols only needed to be
looked for in dynamic hashtabs or static linker-laid-out indexed/
nonindexed layouts, but now we want to check both in case people
added more symbols to a dict they opened.
- The code that handles type additions wasn't checking to see if types
with the same name existed *at all* (so you could do
ctf_add_typedef (fp, "foo", bar) repeatedly without error). This
seems reasonable for types you just added, but we probably *do* want
to ban addition of types with names that override names we already
used in the ctf_open()ed portion, since that would probably corrupt
existing type relationships. (Doing things this way also avoids
causing new errors for any existing code that was doing this sort of
thing.)
- ctf_lookup_variable entirely failed to work for variables just added
by ctf_add_variable: you had to write the dict out and read it back
in again before they appeared.
- The symbol handling remembered what symbols you looked up but didn't
remember their types, so you could look up an object symbol and then
find it popping up when you asked for function symbols, which seems
less than ideal. Since we had to rejig things enough to be able to
distinguish function and object symbols internally anyway (in order
to give suitable errors if you try to add a symbol with a name that
already existed in the ctf_open()ed dict), this bug suddenly became
more visible and was easily fixed.
We do not (yet) support writing out dicts that have been previously read
in via ctf_open() or other deserializer (you can look things up in them,
but not write them out a second time). This never worked, so there is
no incompatibility; if it is needed at a later date, the serializer is a
little bit closer to having it work now (the only table we don't deal
with is the types table, and that's because the upcoming CTFv4 changes
are likely to make major changes to the way that table is represented
internally, so adding more code that depends on its current form seems
like a bad idea).
There is a new testcase that tests much of this, in particular that
modification of existing types is still banned and that you can add new
ones and chase them without error.
libctf/
* ctf-impl.h (struct ctf_dict.ctf_symhash): Split into...
(ctf_dict.ctf_symhash_func): ... this and...
(ctf_dict.ctf_symhash_objt): ... this.
(ctf_dict.ctf_stypes): New, counts static types.
(LCTF_INDEX_TO_TYPEPTR): Use it instead of CTF_RDWR.
(LCTF_RDWR): Deleted.
(LCTF_DIRTY): Renumbered.
(LCTF_LINKING): Likewise.
(ctf_lookup_variable_here): New.
(ctf_lookup_by_sym_or_name): Likewise.
(ctf_symbol_next_static): Likewise.
(ctf_add_variable_forced): Likewise.
(ctf_add_funcobjt_sym_forced): Likewise.
(ctf_simple_open_internal): Adjust.
(ctf_bufopen_internal): Likewise.
* ctf-create.c (ctf_grow_ptrtab): Adjust a lot to start with.
(ctf_create): Migrate a bunch of initializations into bufopen.
Force recreation of name tables. Do not forcibly override the
model, let ctf_bufopen do it.
(ctf_static_type): New.
(ctf_update): Drop LCTF_RDWR check.
(ctf_dynamic_type): Likewise.
(ctf_add_function): Likewise.
(ctf_add_type_internal): Likewise.
(ctf_rollback): Check ctf_stypes, not LCTF_RDWR.
(ctf_set_array): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_enumerator): Likewise (only on the target dict).
(ctf_add_member_offset): Likewise.
(ctf_add_generic): Drop LCTF_RDWR check. Ban addition of types
with colliding names.
(ctf_add_forward): Note safety under the new rules.
(ctf_add_variable): Split all but the existence check into...
(ctf_add_variable_forced): ... this new function.
(ctf_add_funcobjt_sym): Likewise...
(ctf_add_funcobjt_sym_forced): ... for this new function.
* ctf-link.c (ctf_link_add_linker_symbol): Ban calling on dicts
with any stypes.
(ctf_link_add_strtab): Likewise.
(ctf_link_shuffle_syms): Likewise.
(ctf_link_intern_extern_string): Note pre-existing prohibition.
* ctf-lookup.c (ctf_lookup_by_id): Drop LCTF_RDWR check.
(ctf_lookup_variable): Split out looking in a dict but not
its parent into...
(ctf_lookup_variable_here): ... this new function.
(ctf_lookup_symbol_idx): Track whether looking up a function or
object: cache them separately.
(ctf_symbol_next): Split out looking in non-dynamic symtypetab
entries to...
(ctf_symbol_next_static): ... this new function. Don't get confused
by the simultaneous presence of static and dynamic symtypetab entries.
(ctf_try_lookup_indexed): Don't waste time looking up symbols by
index before there can be any idea how symbols are numbered.
(ctf_lookup_by_sym_or_name): Distinguish between function and
data object lookups. Drop LCTF_RDWR.
(ctf_lookup_by_symbol): Adjust.
(ctf_lookup_by_symbol_name): Likewise.
* ctf-open.c (init_types): Rename to...
(init_static_types): ... this. Drop LCTF_RDWR. Populate ctf_stypes.
(ctf_simple_open): Drop writable arg.
(ctf_simple_open_internal): Likewise.
(ctf_bufopen): Likewise.
(ctf_bufopen_internal): Populate fields only used for writable dicts.
Drop LCTF_RDWR.
(ctf_dict_close): Cater for symhash cache split.
* ctf-serialize.c (ctf_serialize): Use ctf_stypes, not LCTF_RDWR.
* ctf-types.c (ctf_variable_next): Drop LCTF_RDWR.
* testsuite/libctf-lookup/add-to-opened*: New test.
2023-12-20 00:58:19 +08:00
|
|
|
/* You can only call ctf_set_array on a type you have added, not a
|
|
|
|
type that was read in via ctf_open(). */
|
|
|
|
if (type < fp->ctf_stypes)
|
libctf: fix creation-time parent/child dict confusions
The fixes applied a few years ago to resolve confusions between parent and
child dicts at lookup time also apply in various forms to creation. In
general, if you have a type in a parent dict ctf_imported into a child and
you do something to it, and the parent dict is writable (created via
ctf_create, not opened via ctf_open*) it should work just the same to make
changes to that type via a child dict as it does to make the change
to the parent dict directly -- and nothing you're prohibited from doing
to the parent dict when done directly should be allowed just because
you're doing it via a child.
Specifically, the following don't work when doing things from the child, but
should:
- adding a member of a type in the parent to a struct or union in the
parent via ctf_add_member or ctf_add_member_offset: this yields
ECTF_BADID
- adding a member of a type in the parent to a struct or union in the
parent via ctf_add_member_encoded: this dumps core (!).
- adding an enumerand to an enumerator in the parent: this yields
ECTF_BADID
- setting the properties of an array in the parent via ctf_set_array;
this yields ECTF_BADID
Relatedly, some things work when doing things via a child that should fail,
yielding a CTF dictionary with invalid content (readable, but meaningless):
in particular, you can add a child type to a struct in the parent via
any of the ctf_add_member* family and nothing complains at all, even though
you should never be able to add references to children to parents (since any
given parent can be associated with many different children).
A family of tests is added to check each of these cases independently, since
some can result in coredumps and it would be nice to test the other cases
even if some dump core. They use a common library to do all the actual
work. The set of affected API calls was determined by code inspection
(auditing all calls to ctf_dtd_lookup): it's possible that I missed a few,
but I doubt it, since other cases use ctf_lookup* functions, which already
climb to the parent where appropriate.
libctf/ChangeLog:
PR libctf/30985
* ctf-create.c (ctf_dtd_lookup): Traverse to parents if necessary.
(ctf_set_array): Likewise. Report errors on the child; require
both parent and child to be writable.
(ctf_add_enumerator): Likewise.
(ctf_add_member_offset): Likewise. Prohibit addition of child types
to structs in the parent.
(ctf_add_member_encoded): Do not dereference a NULL dtd: report
ECTF_BADID instead.
* ctf-string.c (ctf_str_add_ref_internal): Report ENOMEM on the
dict if addition of a string ref fails.
* testsuite/libctf-writable/parent-child-dtd-crash-lib.c: New library.
* testsuite/libctf-writable/parent-child-dtd-enum.*: New test.
* testsuite/libctf-writable/parent-child-dtd-enumerator.*: New test.
* testsuite/libctf-writable/parent-child-dtd-member-encoded.*: New test.
* testsuite/libctf-writable/parent-child-dtd-member-offset.*: New test.
* testsuite/libctf-writable/parent-child-dtd-set-array.*: New test.
* testsuite/libctf-writable/parent-child-dtd-struct.*: New test.
* testsuite/libctf-writable/parent-child-dtd-union.*: New test.
2023-10-19 01:34:57 +08:00
|
|
|
return (ctf_set_errno (ofp, ECTF_RDONLY));
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
|
|
|
|
if (dtd == NULL
|
|
|
|
|| LCTF_INFO_KIND (fp, dtd->dtd_data.ctt_info) != CTF_K_ARRAY)
|
libctf: fix creation-time parent/child dict confusions
The fixes applied a few years ago to resolve confusions between parent and
child dicts at lookup time also apply in various forms to creation. In
general, if you have a type in a parent dict ctf_imported into a child and
you do something to it, and the parent dict is writable (created via
ctf_create, not opened via ctf_open*) it should work just the same to make
changes to that type via a child dict as it does to make the change
to the parent dict directly -- and nothing you're prohibited from doing
to the parent dict when done directly should be allowed just because
you're doing it via a child.
Specifically, the following don't work when doing things from the child, but
should:
- adding a member of a type in the parent to a struct or union in the
parent via ctf_add_member or ctf_add_member_offset: this yields
ECTF_BADID
- adding a member of a type in the parent to a struct or union in the
parent via ctf_add_member_encoded: this dumps core (!).
- adding an enumerand to an enumerator in the parent: this yields
ECTF_BADID
- setting the properties of an array in the parent via ctf_set_array;
this yields ECTF_BADID
Relatedly, some things work when doing things via a child that should fail,
yielding a CTF dictionary with invalid content (readable, but meaningless):
in particular, you can add a child type to a struct in the parent via
any of the ctf_add_member* family and nothing complains at all, even though
you should never be able to add references to children to parents (since any
given parent can be associated with many different children).
A family of tests is added to check each of these cases independently, since
some can result in coredumps and it would be nice to test the other cases
even if some dump core. They use a common library to do all the actual
work. The set of affected API calls was determined by code inspection
(auditing all calls to ctf_dtd_lookup): it's possible that I missed a few,
but I doubt it, since other cases use ctf_lookup* functions, which already
climb to the parent where appropriate.
libctf/ChangeLog:
PR libctf/30985
* ctf-create.c (ctf_dtd_lookup): Traverse to parents if necessary.
(ctf_set_array): Likewise. Report errors on the child; require
both parent and child to be writable.
(ctf_add_enumerator): Likewise.
(ctf_add_member_offset): Likewise. Prohibit addition of child types
to structs in the parent.
(ctf_add_member_encoded): Do not dereference a NULL dtd: report
ECTF_BADID instead.
* ctf-string.c (ctf_str_add_ref_internal): Report ENOMEM on the
dict if addition of a string ref fails.
* testsuite/libctf-writable/parent-child-dtd-crash-lib.c: New library.
* testsuite/libctf-writable/parent-child-dtd-enum.*: New test.
* testsuite/libctf-writable/parent-child-dtd-enumerator.*: New test.
* testsuite/libctf-writable/parent-child-dtd-member-encoded.*: New test.
* testsuite/libctf-writable/parent-child-dtd-member-offset.*: New test.
* testsuite/libctf-writable/parent-child-dtd-set-array.*: New test.
* testsuite/libctf-writable/parent-child-dtd-struct.*: New test.
* testsuite/libctf-writable/parent-child-dtd-union.*: New test.
2023-10-19 01:34:57 +08:00
|
|
|
return (ctf_set_errno (ofp, ECTF_BADID));
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
|
2021-03-18 20:37:52 +08:00
|
|
|
vlen = (ctf_array_t *) dtd->dtd_vlen;
|
|
|
|
vlen->cta_contents = (uint32_t) arp->ctr_contents;
|
|
|
|
vlen->cta_index = (uint32_t) arp->ctr_index;
|
|
|
|
vlen->cta_nelems = arp->ctr_nelems;
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
ctf_id_t
|
libctf, include, binutils, gdb, ld: rename ctf_file_t to ctf_dict_t
The naming of the ctf_file_t type in libctf is a historical curiosity.
Back in the Solaris days, CTF dictionaries were originally generated as
a separate file and then (sometimes) merged into objects: hence the
datatype was named ctf_file_t, and known as a "CTF file". Nowadays, raw
CTF is essentially never written to a file on its own, and the datatype
changed name to a "CTF dictionary" years ago. So the term "CTF file"
refers to something that is never a file! This is at best confusing.
The type has also historically been known as a 'CTF container", which is
even more confusing now that we have CTF archives which are *also* a
sort of container (they contain CTF dictionaries), but which are never
referred to as containers in the source code.
So fix this by completing the renaming, renaming ctf_file_t to
ctf_dict_t throughout, and renaming those few functions that refer to
CTF files by name (keeping compatibility aliases) to refer to dicts
instead. Old users who still refer to ctf_file_t will see (harmless)
pointer-compatibility warnings at compile time, but the ABI is unchanged
(since C doesn't mangle names, and ctf_file_t was always an opaque type)
and things will still compile fine as long as -Werror is not specified.
All references to CTF containers and CTF files in the source code are
fixed to refer to CTF dicts instead.
Further (smaller) renamings of annoyingly-named functions to come, as
part of the process of souping up queries across whole archives at once
(needed for the function info and data object sections).
binutils/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* objdump.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_ctf): Likewise. Use ctf_dict_close, not ctf_file_close.
* readelf.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_section_as_ctf): Likewise. Use ctf_dict_close, not
ctf_file_close.
gdb/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctfread.c: Change uses of ctf_file_t to ctf_dict_t.
(ctf_fp_info::~ctf_fp_info): Call ctf_dict_close, not ctf_file_close.
include/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-api.h (ctf_file_t): Rename to...
(ctf_dict_t): ... this. Keep ctf_file_t around for compatibility.
(struct ctf_file): Likewise rename to...
(struct ctf_dict): ... this.
(ctf_file_close): Rename to...
(ctf_dict_close): ... this, keeping compatibility function.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this, keeping compatibility function.
All callers adjusted.
* ctf.h: Rename references to ctf_file_t to ctf_dict_t.
(struct ctf_archive) <ctfa_nfiles>: Rename to...
<ctfa_ndicts>: ... this.
ld/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ldlang.c (ctf_output): This is a ctf_dict_t now.
(lang_ctf_errs_warnings): Rename ctf_file_t to ctf_dict_t.
(ldlang_open_ctf): Adjust comment.
(lang_merge_ctf): Use ctf_dict_close, not ctf_file_close.
* ldelfgen.h (ldelf_examine_strtab_for_ctf): Rename ctf_file_t to
ctf_dict_t. Change opaque declaration accordingly.
* ldelfgen.c (ldelf_examine_strtab_for_ctf): Adjust.
* ldemul.h (examine_strtab_for_ctf): Likewise.
(ldemul_examine_strtab_for_ctf): Likewise.
* ldeuml.c (ldemul_examine_strtab_for_ctf): Likewise.
libctf/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h: Rename ctf_file_t to ctf_dict_t: all declarations
adjusted.
(ctf_fileops): Rename to...
(ctf_dictops): ... this.
(ctf_dedup_t) <cd_id_to_file_t>: Rename to...
<cd_id_to_dict_t>: ... this.
(ctf_file_t): Fix outdated comment.
<ctf_fileops>: Rename to...
<ctf_dictops>: ... this.
(struct ctf_archive_internal) <ctfi_file>: Rename to...
<ctfi_dict>: ... this.
* ctf-archive.c: Rename ctf_file_t to ctf_dict_t.
Rename ctf_archive.ctfa_nfiles to ctfa_ndicts.
Rename ctf_file_close to ctf_dict_close. All users adjusted.
* ctf-create.c: Likewise. Refer to CTF dicts, not CTF containers.
(ctf_bundle_t) <ctb_file>: Rename to...
<ctb_dict): ... this.
* ctf-decl.c: Rename ctf_file_t to ctf_dict_t.
* ctf-dedup.c: Likewise. Rename ctf_file_close to
ctf_dict_close. Refer to CTF dicts, not CTF containers.
* ctf-dump.c: Likewise.
* ctf-error.c: Likewise.
* ctf-hash.c: Likewise.
* ctf-inlines.h: Likewise.
* ctf-labels.c: Likewise.
* ctf-link.c: Likewise.
* ctf-lookup.c: Likewise.
* ctf-open-bfd.c: Likewise.
* ctf-string.c: Likewise.
* ctf-subr.c: Likewise.
* ctf-types.c: Likewise.
* ctf-util.c: Likewise.
* ctf-open.c: Likewise.
(ctf_file_close): Rename to...
(ctf_dict_close): ...this.
(ctf_file_close): New trivial wrapper around ctf_dict_close, for
compatibility.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this.
(ctf_parent_file): New trivial wrapper around ctf_parent_dict, for
compatibility.
* libctf.ver: Add ctf_dict_close and ctf_parent_dict.
2020-11-20 21:34:04 +08:00
|
|
|
ctf_add_function (ctf_dict_t *fp, uint32_t flag,
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
const ctf_funcinfo_t *ctc, const ctf_id_t *argv)
|
|
|
|
{
|
|
|
|
ctf_dtdef_t *dtd;
|
|
|
|
ctf_id_t type;
|
|
|
|
uint32_t vlen;
|
2021-03-18 20:37:52 +08:00
|
|
|
uint32_t *vdat;
|
libctf, include, binutils, gdb, ld: rename ctf_file_t to ctf_dict_t
The naming of the ctf_file_t type in libctf is a historical curiosity.
Back in the Solaris days, CTF dictionaries were originally generated as
a separate file and then (sometimes) merged into objects: hence the
datatype was named ctf_file_t, and known as a "CTF file". Nowadays, raw
CTF is essentially never written to a file on its own, and the datatype
changed name to a "CTF dictionary" years ago. So the term "CTF file"
refers to something that is never a file! This is at best confusing.
The type has also historically been known as a 'CTF container", which is
even more confusing now that we have CTF archives which are *also* a
sort of container (they contain CTF dictionaries), but which are never
referred to as containers in the source code.
So fix this by completing the renaming, renaming ctf_file_t to
ctf_dict_t throughout, and renaming those few functions that refer to
CTF files by name (keeping compatibility aliases) to refer to dicts
instead. Old users who still refer to ctf_file_t will see (harmless)
pointer-compatibility warnings at compile time, but the ABI is unchanged
(since C doesn't mangle names, and ctf_file_t was always an opaque type)
and things will still compile fine as long as -Werror is not specified.
All references to CTF containers and CTF files in the source code are
fixed to refer to CTF dicts instead.
Further (smaller) renamings of annoyingly-named functions to come, as
part of the process of souping up queries across whole archives at once
(needed for the function info and data object sections).
binutils/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* objdump.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_ctf): Likewise. Use ctf_dict_close, not ctf_file_close.
* readelf.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_section_as_ctf): Likewise. Use ctf_dict_close, not
ctf_file_close.
gdb/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctfread.c: Change uses of ctf_file_t to ctf_dict_t.
(ctf_fp_info::~ctf_fp_info): Call ctf_dict_close, not ctf_file_close.
include/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-api.h (ctf_file_t): Rename to...
(ctf_dict_t): ... this. Keep ctf_file_t around for compatibility.
(struct ctf_file): Likewise rename to...
(struct ctf_dict): ... this.
(ctf_file_close): Rename to...
(ctf_dict_close): ... this, keeping compatibility function.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this, keeping compatibility function.
All callers adjusted.
* ctf.h: Rename references to ctf_file_t to ctf_dict_t.
(struct ctf_archive) <ctfa_nfiles>: Rename to...
<ctfa_ndicts>: ... this.
ld/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ldlang.c (ctf_output): This is a ctf_dict_t now.
(lang_ctf_errs_warnings): Rename ctf_file_t to ctf_dict_t.
(ldlang_open_ctf): Adjust comment.
(lang_merge_ctf): Use ctf_dict_close, not ctf_file_close.
* ldelfgen.h (ldelf_examine_strtab_for_ctf): Rename ctf_file_t to
ctf_dict_t. Change opaque declaration accordingly.
* ldelfgen.c (ldelf_examine_strtab_for_ctf): Adjust.
* ldemul.h (examine_strtab_for_ctf): Likewise.
(ldemul_examine_strtab_for_ctf): Likewise.
* ldeuml.c (ldemul_examine_strtab_for_ctf): Likewise.
libctf/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h: Rename ctf_file_t to ctf_dict_t: all declarations
adjusted.
(ctf_fileops): Rename to...
(ctf_dictops): ... this.
(ctf_dedup_t) <cd_id_to_file_t>: Rename to...
<cd_id_to_dict_t>: ... this.
(ctf_file_t): Fix outdated comment.
<ctf_fileops>: Rename to...
<ctf_dictops>: ... this.
(struct ctf_archive_internal) <ctfi_file>: Rename to...
<ctfi_dict>: ... this.
* ctf-archive.c: Rename ctf_file_t to ctf_dict_t.
Rename ctf_archive.ctfa_nfiles to ctfa_ndicts.
Rename ctf_file_close to ctf_dict_close. All users adjusted.
* ctf-create.c: Likewise. Refer to CTF dicts, not CTF containers.
(ctf_bundle_t) <ctb_file>: Rename to...
<ctb_dict): ... this.
* ctf-decl.c: Rename ctf_file_t to ctf_dict_t.
* ctf-dedup.c: Likewise. Rename ctf_file_close to
ctf_dict_close. Refer to CTF dicts, not CTF containers.
* ctf-dump.c: Likewise.
* ctf-error.c: Likewise.
* ctf-hash.c: Likewise.
* ctf-inlines.h: Likewise.
* ctf-labels.c: Likewise.
* ctf-link.c: Likewise.
* ctf-lookup.c: Likewise.
* ctf-open-bfd.c: Likewise.
* ctf-string.c: Likewise.
* ctf-subr.c: Likewise.
* ctf-types.c: Likewise.
* ctf-util.c: Likewise.
* ctf-open.c: Likewise.
(ctf_file_close): Rename to...
(ctf_dict_close): ...this.
(ctf_file_close): New trivial wrapper around ctf_dict_close, for
compatibility.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this.
(ctf_parent_file): New trivial wrapper around ctf_parent_dict, for
compatibility.
* libctf.ver: Add ctf_dict_close and ctf_parent_dict.
2020-11-20 21:34:04 +08:00
|
|
|
ctf_dict_t *tmp = fp;
|
2021-03-18 20:37:52 +08:00
|
|
|
size_t initial_vlen;
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
size_t i;
|
|
|
|
|
|
|
|
if (ctc == NULL || (ctc->ctc_flags & ~CTF_FUNC_VARARG) != 0
|
|
|
|
|| (ctc->ctc_argc != 0 && argv == NULL))
|
2023-09-13 17:02:36 +08:00
|
|
|
return (ctf_set_typed_errno (fp, EINVAL));
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
|
|
|
|
vlen = ctc->ctc_argc;
|
|
|
|
if (ctc->ctc_flags & CTF_FUNC_VARARG)
|
|
|
|
vlen++; /* Add trailing zero to indicate varargs (see below). */
|
|
|
|
|
2020-06-03 03:04:24 +08:00
|
|
|
if (ctc->ctc_return != 0
|
|
|
|
&& ctf_lookup_by_id (&tmp, ctc->ctc_return) == NULL)
|
2021-03-18 20:37:52 +08:00
|
|
|
return CTF_ERR; /* errno is set for us. */
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
|
|
|
|
if (vlen > CTF_MAX_VLEN)
|
2023-09-13 17:02:36 +08:00
|
|
|
return (ctf_set_typed_errno (fp, EOVERFLOW));
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
|
2021-03-18 20:37:52 +08:00
|
|
|
/* One word extra allocated for padding for 4-byte alignment if need be.
|
|
|
|
Not reflected in vlen: we don't want to copy anything into it, and
|
|
|
|
it's in addition to (e.g.) the trailing 0 indicating varargs. */
|
|
|
|
|
|
|
|
initial_vlen = (sizeof (uint32_t) * (vlen + (vlen & 1)));
|
|
|
|
if ((type = ctf_add_generic (fp, flag, NULL, CTF_K_FUNCTION,
|
|
|
|
initial_vlen, &dtd)) == CTF_ERR)
|
|
|
|
return CTF_ERR; /* errno is set for us. */
|
|
|
|
|
|
|
|
vdat = (uint32_t *) dtd->dtd_vlen;
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
|
libctf, create: do not corrupt function types' arglists at insertion time
ctf_add_function assumes that function types' arglists are of type
ctf_id_t. Since they are CTF IDs, they are 32 bits wide, a uint32_t:
unfortunately ctf_id_t is a forward-compatible user-facing 64 bits wide,
and should never ever reach the CTF storage level.
All the CTF code other than ctf_add_function correctly assumes that
function arglists outside dynamic containers are 32 bits wide, so the
serialization machinery ends up cutting off half the arglist, corrupting
all args but the first (a good sign is a bunch of args of ID 0, the
unimplemented type, popping up).
Fix this by copying the arglist into place item by item, casting it
properly, at the same time as we validate the arg types. Fix the type
of the dtu_argv in the dynamic container and drop the now-unnecessary
cast in the serializer.
libctf/
* ctf-impl.h (ctf_dtdef_t) <dtu_argv>: Fix type.
* ctf-create.c (ctf_add_function): Check for unimplemented type
and populate at the same time. Populate one-by-one, not via
memcpy.
(ctf_serialize): Remove unnecessary cast.
* ctf-types.c (ctf_func_type_info): Likewise.
(ctf_func_type_args): Likewise. Fix comment typo.
2020-06-03 03:17:51 +08:00
|
|
|
for (i = 0; i < ctc->ctc_argc; i++)
|
|
|
|
{
|
|
|
|
tmp = fp;
|
|
|
|
if (argv[i] != 0 && ctf_lookup_by_id (&tmp, argv[i]) == NULL)
|
2021-03-18 20:37:52 +08:00
|
|
|
return CTF_ERR; /* errno is set for us. */
|
libctf, create: do not corrupt function types' arglists at insertion time
ctf_add_function assumes that function types' arglists are of type
ctf_id_t. Since they are CTF IDs, they are 32 bits wide, a uint32_t:
unfortunately ctf_id_t is a forward-compatible user-facing 64 bits wide,
and should never ever reach the CTF storage level.
All the CTF code other than ctf_add_function correctly assumes that
function arglists outside dynamic containers are 32 bits wide, so the
serialization machinery ends up cutting off half the arglist, corrupting
all args but the first (a good sign is a bunch of args of ID 0, the
unimplemented type, popping up).
Fix this by copying the arglist into place item by item, casting it
properly, at the same time as we validate the arg types. Fix the type
of the dtu_argv in the dynamic container and drop the now-unnecessary
cast in the serializer.
libctf/
* ctf-impl.h (ctf_dtdef_t) <dtu_argv>: Fix type.
* ctf-create.c (ctf_add_function): Check for unimplemented type
and populate at the same time. Populate one-by-one, not via
memcpy.
(ctf_serialize): Remove unnecessary cast.
* ctf-types.c (ctf_func_type_info): Likewise.
(ctf_func_type_args): Likewise. Fix comment typo.
2020-06-03 03:17:51 +08:00
|
|
|
vdat[i] = (uint32_t) argv[i];
|
|
|
|
}
|
|
|
|
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
dtd->dtd_data.ctt_info = CTF_TYPE_INFO (CTF_K_FUNCTION, flag, vlen);
|
|
|
|
dtd->dtd_data.ctt_type = (uint32_t) ctc->ctc_return;
|
|
|
|
|
|
|
|
if (ctc->ctc_flags & CTF_FUNC_VARARG)
|
|
|
|
vdat[vlen - 1] = 0; /* Add trailing zero to indicate varargs. */
|
|
|
|
|
|
|
|
return type;
|
|
|
|
}
|
|
|
|
|
|
|
|
ctf_id_t
|
libctf, include, binutils, gdb, ld: rename ctf_file_t to ctf_dict_t
The naming of the ctf_file_t type in libctf is a historical curiosity.
Back in the Solaris days, CTF dictionaries were originally generated as
a separate file and then (sometimes) merged into objects: hence the
datatype was named ctf_file_t, and known as a "CTF file". Nowadays, raw
CTF is essentially never written to a file on its own, and the datatype
changed name to a "CTF dictionary" years ago. So the term "CTF file"
refers to something that is never a file! This is at best confusing.
The type has also historically been known as a 'CTF container", which is
even more confusing now that we have CTF archives which are *also* a
sort of container (they contain CTF dictionaries), but which are never
referred to as containers in the source code.
So fix this by completing the renaming, renaming ctf_file_t to
ctf_dict_t throughout, and renaming those few functions that refer to
CTF files by name (keeping compatibility aliases) to refer to dicts
instead. Old users who still refer to ctf_file_t will see (harmless)
pointer-compatibility warnings at compile time, but the ABI is unchanged
(since C doesn't mangle names, and ctf_file_t was always an opaque type)
and things will still compile fine as long as -Werror is not specified.
All references to CTF containers and CTF files in the source code are
fixed to refer to CTF dicts instead.
Further (smaller) renamings of annoyingly-named functions to come, as
part of the process of souping up queries across whole archives at once
(needed for the function info and data object sections).
binutils/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* objdump.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_ctf): Likewise. Use ctf_dict_close, not ctf_file_close.
* readelf.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_section_as_ctf): Likewise. Use ctf_dict_close, not
ctf_file_close.
gdb/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctfread.c: Change uses of ctf_file_t to ctf_dict_t.
(ctf_fp_info::~ctf_fp_info): Call ctf_dict_close, not ctf_file_close.
include/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-api.h (ctf_file_t): Rename to...
(ctf_dict_t): ... this. Keep ctf_file_t around for compatibility.
(struct ctf_file): Likewise rename to...
(struct ctf_dict): ... this.
(ctf_file_close): Rename to...
(ctf_dict_close): ... this, keeping compatibility function.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this, keeping compatibility function.
All callers adjusted.
* ctf.h: Rename references to ctf_file_t to ctf_dict_t.
(struct ctf_archive) <ctfa_nfiles>: Rename to...
<ctfa_ndicts>: ... this.
ld/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ldlang.c (ctf_output): This is a ctf_dict_t now.
(lang_ctf_errs_warnings): Rename ctf_file_t to ctf_dict_t.
(ldlang_open_ctf): Adjust comment.
(lang_merge_ctf): Use ctf_dict_close, not ctf_file_close.
* ldelfgen.h (ldelf_examine_strtab_for_ctf): Rename ctf_file_t to
ctf_dict_t. Change opaque declaration accordingly.
* ldelfgen.c (ldelf_examine_strtab_for_ctf): Adjust.
* ldemul.h (examine_strtab_for_ctf): Likewise.
(ldemul_examine_strtab_for_ctf): Likewise.
* ldeuml.c (ldemul_examine_strtab_for_ctf): Likewise.
libctf/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h: Rename ctf_file_t to ctf_dict_t: all declarations
adjusted.
(ctf_fileops): Rename to...
(ctf_dictops): ... this.
(ctf_dedup_t) <cd_id_to_file_t>: Rename to...
<cd_id_to_dict_t>: ... this.
(ctf_file_t): Fix outdated comment.
<ctf_fileops>: Rename to...
<ctf_dictops>: ... this.
(struct ctf_archive_internal) <ctfi_file>: Rename to...
<ctfi_dict>: ... this.
* ctf-archive.c: Rename ctf_file_t to ctf_dict_t.
Rename ctf_archive.ctfa_nfiles to ctfa_ndicts.
Rename ctf_file_close to ctf_dict_close. All users adjusted.
* ctf-create.c: Likewise. Refer to CTF dicts, not CTF containers.
(ctf_bundle_t) <ctb_file>: Rename to...
<ctb_dict): ... this.
* ctf-decl.c: Rename ctf_file_t to ctf_dict_t.
* ctf-dedup.c: Likewise. Rename ctf_file_close to
ctf_dict_close. Refer to CTF dicts, not CTF containers.
* ctf-dump.c: Likewise.
* ctf-error.c: Likewise.
* ctf-hash.c: Likewise.
* ctf-inlines.h: Likewise.
* ctf-labels.c: Likewise.
* ctf-link.c: Likewise.
* ctf-lookup.c: Likewise.
* ctf-open-bfd.c: Likewise.
* ctf-string.c: Likewise.
* ctf-subr.c: Likewise.
* ctf-types.c: Likewise.
* ctf-util.c: Likewise.
* ctf-open.c: Likewise.
(ctf_file_close): Rename to...
(ctf_dict_close): ...this.
(ctf_file_close): New trivial wrapper around ctf_dict_close, for
compatibility.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this.
(ctf_parent_file): New trivial wrapper around ctf_parent_dict, for
compatibility.
* libctf.ver: Add ctf_dict_close and ctf_parent_dict.
2020-11-20 21:34:04 +08:00
|
|
|
ctf_add_struct_sized (ctf_dict_t *fp, uint32_t flag, const char *name,
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
size_t size)
|
|
|
|
{
|
|
|
|
ctf_dtdef_t *dtd;
|
|
|
|
ctf_id_t type = 0;
|
libctf: eliminate dtd_u, part 5: structs / unions
Eliminate the dynamic member storage for structs and unions as we have
for other dynamic types. This is much like the previous enum
elimination, except that structs and unions are the only types for which
a full-sized ctf_type_t might be needed. Up to now, this decision has
been made in the individual ctf_add_{struct,union}_sized functions and
duplicated in ctf_add_member_offset. The vlen machinery lets us
simplify this, always allocating a ctf_lmember_t and setting the
dtd_data's ctt_size to CTF_LSIZE_SENT: we figure out whether this is
really justified and (almost always) repack things down into a
ctf_stype_t at ctf_serialize time.
This allows us to eliminate the dynamic member paths from the iterators and
query functions in ctf-types.c in favour of always using the large-structure
vlen stuff for dynamic types (the diff is ugly but that's just because of the
volume of reindentation this calls for). This also means the large-structure
vlen stuff gets more heavily tested, which is nice because it was an almost
totally unused code path before now (it only kicked in for structures of size
>4GiB, and how often do you see those?)
The only extra complexity here is ctf_add_type. Back in the days of the
nondeduplicating linker this was called a ridiculous number of times for
countless identical copies of structures: eschewing the repeated lookups of the
dtd in ctf_add_member_offset and adding the members directly saved an amazing
amount of time. Now the nondeduplicating linker is gone, this is extreme
overoptimization: we can rip out the direct addition and use ctf_member_next and
ctf_add_member_offset, just like ctf_dedup_emit does.
We augment a ctf_add_type test to try adding a self-referential struct, the only
thing the ctf_add_type part of this change really perturbs.
This completes the elimination of dtd_u.
libctf/ChangeLog
2021-03-18 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h (ctf_dtdef_t) <dtu_members>: Remove.
<dtd_u>: Likewise.
(ctf_dmdef_t): Remove.
(struct ctf_next) <u.ctn_dmd>: Remove.
* ctf-create.c (INITIAL_VLEN): New, more-or-less arbitrary initial
vlen size.
(ctf_add_enum): Use it.
(ctf_dtd_delete): Do not free the (removed) dmd; remove string
refs from the vlen on struct deletion.
(ctf_add_struct_sized): Populate the vlen: do it by hand if
promoting forwards. Always populate the full-size
lsizehi/lsizelo members.
(ctf_add_union_sized): Likewise.
(ctf_add_member_offset): Set up the vlen rather than the dmd.
Expand it as needed, repointing string refs via
ctf_str_move_pending. Add the member names as pending strings.
Always populate the full-size lsizehi/lsizelo members.
(membadd): Remove, folding back into...
(ctf_add_type_internal): ... here, adding via an ordinary
ctf_add_struct_sized and _next iteration rather than doing
everything by hand.
* ctf-serialize.c (ctf_copy_smembers): Remove this...
(ctf_copy_lmembers): ... and this...
(ctf_emit_type_sect): ... folding into here. Figure out if a
ctf_stype_t is needed here, not in ctf_add_*_sized.
(ctf_type_sect_size): Figure out the ctf_stype_t stuff the same
way here.
* ctf-types.c (ctf_member_next): Remove the dmd path and always
use the vlen. Force large-structure usage for dynamic types.
(ctf_type_align): Likewise.
(ctf_member_info): Likewise.
(ctf_type_rvisit): Likewise.
* testsuite/libctf-regression/type-add-unnamed-struct-ctf.c: Add a
self-referential type to this test.
* testsuite/libctf-regression/type-add-unnamed-struct.c: Adjusted
accordingly.
* testsuite/libctf-regression/type-add-unnamed-struct.lk: Likewise.
2021-03-18 20:37:52 +08:00
|
|
|
size_t initial_vlen = sizeof (ctf_lmember_t) * INITIAL_VLEN;
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
|
2019-10-21 18:27:43 +08:00
|
|
|
/* Promote root-visible forwards to structs. */
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
if (name != NULL)
|
libctf: avoid the need to ever use ctf_update
The method of operation of libctf when the dictionary is writable has
before now been that types that are added land in the dynamic type
section, which is a linked list and hash of IDs -> dynamic type
definitions (and, recently a hash of names): the DTDs are a bit of CTF
representing the ctf_type_t and ad hoc C structures representing the
vlen. Historically, libctf was unable to do anything with these types,
not even look them up by ID, let alone by name: if you wanted to do that
say if you were adding a type that depended on one you just added) you
called ctf_update, which serializes all the DTDs into a CTF file and
reopens it, copying its guts over the fp it's called with. The
ctf_updated types are then frozen in amber and unchangeable: all lookups
will return the types in the static portion in preference to the dynamic
portion, and we will refuse to re-add things that already exist in the
static portion (and, of late, in the dynamic portion too). The libctf
machinery remembers the boundary between static and dynamic types and
looks in the right portion for each type. Lots of things still don't
quite work with dynamic types (e.g. getting their size), but enough
works to do a bunch of additions and then a ctf_update, most of the
time.
Except it doesn't, because ctf_add_type finds it necessary to walk the
full dynamic type definition list looking for types with matching names,
so it gets slower and slower with every type you add: fixing this
requires calling ctf_update periodically for no other reason than to
avoid massively slowing things down.
This is all clunky and very slow but kind of works, until you consider
that it is in fact possible and indeed necessary to modify one sort of
type after it has been added: forwards. These are necessarily promoted
to structs, unions or enums, and when they do so *their type ID does not
change*. So all of a sudden we are changing types that already exist in
the static portion. ctf_update gets massively confused by this and
allocates space enough for the forward (with no members), but then emits
the new dynamic type (with all the members) into it. You get an
assertion failure after that, if you're lucky, or a coredump.
So this commit rejigs things a bit and arranges to exclusively use the
dynamic type definitions in writable dictionaries, and the static type
definitions in readable dictionaries: we don't at any time have a mixture
of static and dynamic types, and you don't need to call ctf_update to
make things "appear". The ctf_dtbyname hash I introduced a few months
ago, which maps things like "struct foo" to DTDs, is removed, replaced
instead by a change of type of the four dictionaries which track names.
Rather than just being (unresizable) ctf_hash_t's populated only at
ctf_bufopen time, they are now a ctf_names_t structure, which is a pair
of ctf_hash_t and ctf_dynhash_t, with the ctf_hash_t portion being used
in readonly dictionaries, and the ctf_dynhash_t being used in writable
ones. The decision as to which to use is centralized in the new
functions ctf_lookup_by_rawname (which takes a type kind) and
ctf_lookup_by_rawhash, which it calls (which takes a ctf_names_t *.)
This change lets us switch from using static to dynamic name hashes on
the fly across the entirety of libctf without complexifying anything: in
fact, because we now centralize the knowledge about how to map from type
kind to name hash, it actually simplifies things and lets us throw out
quite a lot of now-unnecessary complexity, from ctf_dtnyname (replaced
by the dynamic half of the name tables), through to ctf_dtnextid (now
that a dictionary's static portion is never referenced if the dictionary
is writable, we can just use ctf_typemax to indicate the maximum type:
dynamic or non-dynamic does not matter, and we no longer need to track
the boundary between the types). You can now ctf_rollback() as far as
you like, even past a ctf_update or for that matter a full writeout; all
the iteration functions work just as well on writable as on read-only
dictionaries; ctf_add_type no longer needs expensive duplicated code to
run over the dynamic types hunting for ones it might be interested in;
and the linker no longer needs a hack to call ctf_update so that calling
ctf_add_type is not impossibly expensive.
There is still a bit more complexity: some new code paths in ctf-types.c
need to know how to extract information from dynamic types. This
complexity will go away again in a few months when libctf acquires a
proper intermediate representation.
You can still call ctf_update if you like (it's public API, after all),
but its only effect now is to set the point to which ctf_discard rolls
back.
Obviously *something* still needs to serialize the CTF file before
writeout, and this job is done by ctf_serialize, which does everything
ctf_update used to except set the counter used by ctf_discard. It is
automatically called by the various functions that do CTF writeout:
nobody else ever needs to call it.
With this in place, forwards that are promoted to non-forwards no longer
crash the link, even if it happens tens of thousands of types later.
v5: fix tabdamage.
libctf/
* ctf-impl.h (ctf_names_t): New.
(ctf_lookup_t) <ctf_hash>: Now a ctf_names_t, not a ctf_hash_t.
(ctf_file_t) <ctf_structs>: Likewise.
<ctf_unions>: Likewise.
<ctf_enums>: Likewise.
<ctf_names>: Likewise.
<ctf_lookups>: Improve comment.
<ctf_ptrtab_len>: New.
<ctf_prov_strtab>: New.
<ctf_str_prov_offset>: New.
<ctf_dtbyname>: Remove, redundant to the names hashes.
<ctf_dtnextid>: Remove, redundant to ctf_typemax.
(ctf_dtdef_t) <dtd_name>: Remove.
<dtd_data>: Note that the ctt_name is now populated.
(ctf_str_atom_t) <csa_offset>: This is now the strtab
offset for internal strings too.
<csa_external_offset>: New, the external strtab offset.
(CTF_INDEX_TO_TYPEPTR): Handle the LCTF_RDWR case.
(ctf_name_table): New declaration.
(ctf_lookup_by_rawname): Likewise.
(ctf_lookup_by_rawhash): Likewise.
(ctf_set_ctl_hashes): Likewise.
(ctf_serialize): Likewise.
(ctf_dtd_insert): Adjust.
(ctf_simple_open_internal): Likewise.
(ctf_bufopen_internal): Likewise.
(ctf_list_empty_p): Likewise.
(ctf_str_remove_ref): Likewise.
(ctf_str_add): Returns uint32_t now.
(ctf_str_add_ref): Likewise.
(ctf_str_add_external): Now returns a boolean (int).
* ctf-string.c (ctf_strraw_explicit): Check the ctf_prov_strtab
for strings in the appropriate range.
(ctf_str_create_atoms): Create the ctf_prov_strtab. Detect OOM
when adding the null string to the new strtab.
(ctf_str_free_atoms): Destroy the ctf_prov_strtab.
(ctf_str_add_ref_internal): Add make_provisional argument. If
make_provisional, populate the offset and fill in the
ctf_prov_strtab accordingly.
(ctf_str_add): Return the offset, not the string.
(ctf_str_add_ref): Likewise.
(ctf_str_add_external): Return a success integer.
(ctf_str_remove_ref): New, remove a single ref.
(ctf_str_count_strtab): Do not count the initial null string's
length or the existence or length of any unreferenced internal
atoms.
(ctf_str_populate_sorttab): Skip atoms with no refs.
(ctf_str_write_strtab): Populate the nullstr earlier. Add one
to the cts_len for the null string, since it is no longer done
in ctf_str_count_strtab. Adjust for csa_external_offset rename.
Populate the csa_offset for both internal and external cases.
Flush the ctf_prov_strtab afterwards, and reset the
ctf_str_prov_offset.
* ctf-create.c (ctf_grow_ptrtab): New.
(ctf_create): Call it. Initialize new fields rather than old
ones. Tell ctf_bufopen_internal that this is a writable dictionary.
Set the ctl hashes and data model.
(ctf_update): Rename to...
(ctf_serialize): ... this. Leave a compatibility function behind.
Tell ctf_simple_open_internal that this is a writable dictionary.
Pass the new fields along from the old dictionary. Drop
ctf_dtnextid and ctf_dtbyname. Use ctf_strraw, not dtd_name.
Do not zero out the DTD's ctt_name.
(ctf_prefixed_name): Rename to...
(ctf_name_table): ... this. No longer return a prefixed name: return
the applicable name table instead.
(ctf_dtd_insert): Use it, and use the right name table. Pass in the
kind we're adding. Migrate away from dtd_name.
(ctf_dtd_delete): Adjust similarly. Remove the ref to the
deleted ctt_name.
(ctf_dtd_lookup_type_by_name): Remove.
(ctf_dynamic_type): Always return NULL on read-only dictionaries.
No longer check ctf_dtnextid: check ctf_typemax instead.
(ctf_snapshot): No longer use ctf_dtnextid: use ctf_typemax instead.
(ctf_rollback): Likewise. No longer fail with ECTF_OVERROLLBACK. Use
ctf_name_table and the right name table, and migrate away from
dtd_name as in ctf_dtd_delete.
(ctf_add_generic): Pass in the kind explicitly and pass it to
ctf_dtd_insert. Use ctf_typemax, not ctf_dtnextid. Migrate away
from dtd_name to using ctf_str_add_ref to populate the ctt_name.
Grow the ptrtab if needed.
(ctf_add_encoded): Pass in the kind.
(ctf_add_slice): Likewise.
(ctf_add_array): Likewise.
(ctf_add_function): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_reftype): Likewise. Initialize the ctf_ptrtab, checking
ctt_name rather than dtd_name.
(ctf_add_struct_sized): Pass in the kind. Use
ctf_lookup_by_rawname, not ctf_hash_lookup_type /
ctf_dtd_lookup_type_by_name.
(ctf_add_union_sized): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_type): Likewise.
(ctf_compress_write): Call ctf_serialize: adjust for ctf_size not
being initialized until after the call.
(ctf_write_mem): Likewise.
(ctf_write): Likewise.
* ctf-archive.c (arc_write_one_ctf): Likewise.
* ctf-lookup.c (ctf_lookup_by_name): Use ctf_lookuup_by_rawhash, not
ctf_hash_lookup_type.
(ctf_lookup_by_id): No longer check the readonly types if the
dictionary is writable.
* ctf-open.c (init_types): Assert that this dictionary is not
writable. Adjust to use the new name hashes, ctf_name_table,
and ctf_ptrtab_len. GNU style fix for the final ptrtab scan.
(ctf_bufopen_internal): New 'writable' parameter. Flip on LCTF_RDWR
if set. Drop out early when dictionary is writable. Split the
ctf_lookups initialization into...
(ctf_set_cth_hashes): ... this new function.
(ctf_simple_open_internal): Adjust. New 'writable' parameter.
(ctf_simple_open): Adjust accordingly.
(ctf_bufopen): Likewise.
(ctf_file_close): Destroy the appropriate name hashes. No longer
destroy ctf_dtbyname, which is gone.
(ctf_getdatasect): Remove spurious "extern".
* ctf-types.c (ctf_lookup_by_rawname): New, look up types in the
specified name table, given a kind.
(ctf_lookup_by_rawhash): Likewise, given a ctf_names_t *.
(ctf_member_iter): Add support for iterating over the
dynamic type list.
(ctf_enum_iter): Likewise.
(ctf_variable_iter): Likewise.
(ctf_type_rvisit): Likewise.
(ctf_member_info): Add support for types in the dynamic type list.
(ctf_enum_name): Likewise.
(ctf_enum_value): Likewise.
(ctf_func_type_info): Likewise.
(ctf_func_type_args): Likewise.
* ctf-link.c (ctf_accumulate_archive_names): No longer call
ctf_update.
(ctf_link_write): Likewise.
(ctf_link_intern_extern_string): Adjust for new
ctf_str_add_external return value.
(ctf_link_add_strtab): Likewise.
* ctf-util.c (ctf_list_empty_p): New.
2019-08-08 00:55:09 +08:00
|
|
|
type = ctf_lookup_by_rawname (fp, CTF_K_STRUCT, name);
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
|
libctf: support addition of types to dicts read via ctf_open()
libctf has long declared deserialized dictionaries (out of files or ELF
sections or memory buffers or whatever) to be read-only: back in the
furthest prehistory this was not the case, in that you could add a
few sorts of type to such dicts, but attempting to do so often caused
horrible memory corruption, so I banned the lot.
But it turns out real consumers want it (notably DTrace, which
synthesises pointers to types that don't have them and adds them to the
ctf_open()ed dicts if it needs them). Let's bring it back again, but
without the memory corruption and without the massive code duplication
required in days of yore to distinguish between static and dynamic
types: the representation of both types has been identical for a few
years, with the only difference being that types as a whole are stored in
a big buffer for types read in via ctf_open and per-type hashtables for
newly-added types.
So we discard the internally-visible concept of "readonly dictionaries"
in favour of declaring the *range of types* that were already present
when the dict was read in to be read-only: you can't modify them (say,
by adding members to them if they're structs, or calling ctf_set_array
on them), but you can add more types and point to them. (The API
remains the same, with calls sometimes returning ECTF_RDONLY, but now
they do so less often.)
This is a fairly invasive change, mostly because code written since the
ban was introduced didn't take the possibility of a static/dynamic split
into account. Some of these irregularities were hard to define as
anything but bugs.
Notably:
- The symbol handling was assuming that symbols only needed to be
looked for in dynamic hashtabs or static linker-laid-out indexed/
nonindexed layouts, but now we want to check both in case people
added more symbols to a dict they opened.
- The code that handles type additions wasn't checking to see if types
with the same name existed *at all* (so you could do
ctf_add_typedef (fp, "foo", bar) repeatedly without error). This
seems reasonable for types you just added, but we probably *do* want
to ban addition of types with names that override names we already
used in the ctf_open()ed portion, since that would probably corrupt
existing type relationships. (Doing things this way also avoids
causing new errors for any existing code that was doing this sort of
thing.)
- ctf_lookup_variable entirely failed to work for variables just added
by ctf_add_variable: you had to write the dict out and read it back
in again before they appeared.
- The symbol handling remembered what symbols you looked up but didn't
remember their types, so you could look up an object symbol and then
find it popping up when you asked for function symbols, which seems
less than ideal. Since we had to rejig things enough to be able to
distinguish function and object symbols internally anyway (in order
to give suitable errors if you try to add a symbol with a name that
already existed in the ctf_open()ed dict), this bug suddenly became
more visible and was easily fixed.
We do not (yet) support writing out dicts that have been previously read
in via ctf_open() or other deserializer (you can look things up in them,
but not write them out a second time). This never worked, so there is
no incompatibility; if it is needed at a later date, the serializer is a
little bit closer to having it work now (the only table we don't deal
with is the types table, and that's because the upcoming CTFv4 changes
are likely to make major changes to the way that table is represented
internally, so adding more code that depends on its current form seems
like a bad idea).
There is a new testcase that tests much of this, in particular that
modification of existing types is still banned and that you can add new
ones and chase them without error.
libctf/
* ctf-impl.h (struct ctf_dict.ctf_symhash): Split into...
(ctf_dict.ctf_symhash_func): ... this and...
(ctf_dict.ctf_symhash_objt): ... this.
(ctf_dict.ctf_stypes): New, counts static types.
(LCTF_INDEX_TO_TYPEPTR): Use it instead of CTF_RDWR.
(LCTF_RDWR): Deleted.
(LCTF_DIRTY): Renumbered.
(LCTF_LINKING): Likewise.
(ctf_lookup_variable_here): New.
(ctf_lookup_by_sym_or_name): Likewise.
(ctf_symbol_next_static): Likewise.
(ctf_add_variable_forced): Likewise.
(ctf_add_funcobjt_sym_forced): Likewise.
(ctf_simple_open_internal): Adjust.
(ctf_bufopen_internal): Likewise.
* ctf-create.c (ctf_grow_ptrtab): Adjust a lot to start with.
(ctf_create): Migrate a bunch of initializations into bufopen.
Force recreation of name tables. Do not forcibly override the
model, let ctf_bufopen do it.
(ctf_static_type): New.
(ctf_update): Drop LCTF_RDWR check.
(ctf_dynamic_type): Likewise.
(ctf_add_function): Likewise.
(ctf_add_type_internal): Likewise.
(ctf_rollback): Check ctf_stypes, not LCTF_RDWR.
(ctf_set_array): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_enumerator): Likewise (only on the target dict).
(ctf_add_member_offset): Likewise.
(ctf_add_generic): Drop LCTF_RDWR check. Ban addition of types
with colliding names.
(ctf_add_forward): Note safety under the new rules.
(ctf_add_variable): Split all but the existence check into...
(ctf_add_variable_forced): ... this new function.
(ctf_add_funcobjt_sym): Likewise...
(ctf_add_funcobjt_sym_forced): ... for this new function.
* ctf-link.c (ctf_link_add_linker_symbol): Ban calling on dicts
with any stypes.
(ctf_link_add_strtab): Likewise.
(ctf_link_shuffle_syms): Likewise.
(ctf_link_intern_extern_string): Note pre-existing prohibition.
* ctf-lookup.c (ctf_lookup_by_id): Drop LCTF_RDWR check.
(ctf_lookup_variable): Split out looking in a dict but not
its parent into...
(ctf_lookup_variable_here): ... this new function.
(ctf_lookup_symbol_idx): Track whether looking up a function or
object: cache them separately.
(ctf_symbol_next): Split out looking in non-dynamic symtypetab
entries to...
(ctf_symbol_next_static): ... this new function. Don't get confused
by the simultaneous presence of static and dynamic symtypetab entries.
(ctf_try_lookup_indexed): Don't waste time looking up symbols by
index before there can be any idea how symbols are numbered.
(ctf_lookup_by_sym_or_name): Distinguish between function and
data object lookups. Drop LCTF_RDWR.
(ctf_lookup_by_symbol): Adjust.
(ctf_lookup_by_symbol_name): Likewise.
* ctf-open.c (init_types): Rename to...
(init_static_types): ... this. Drop LCTF_RDWR. Populate ctf_stypes.
(ctf_simple_open): Drop writable arg.
(ctf_simple_open_internal): Likewise.
(ctf_bufopen): Likewise.
(ctf_bufopen_internal): Populate fields only used for writable dicts.
Drop LCTF_RDWR.
(ctf_dict_close): Cater for symhash cache split.
* ctf-serialize.c (ctf_serialize): Use ctf_stypes, not LCTF_RDWR.
* ctf-types.c (ctf_variable_next): Drop LCTF_RDWR.
* testsuite/libctf-lookup/add-to-opened*: New test.
2023-12-20 00:58:19 +08:00
|
|
|
/* Prohibit promotion if this type was ctf_open()ed. */
|
|
|
|
if (type > 0 && type < fp->ctf_stypes)
|
|
|
|
return (ctf_set_errno (fp, ECTF_RDONLY));
|
|
|
|
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
if (type != 0 && ctf_type_kind (fp, type) == CTF_K_FORWARD)
|
|
|
|
dtd = ctf_dtd_lookup (fp, type);
|
libctf: avoid the need to ever use ctf_update
The method of operation of libctf when the dictionary is writable has
before now been that types that are added land in the dynamic type
section, which is a linked list and hash of IDs -> dynamic type
definitions (and, recently a hash of names): the DTDs are a bit of CTF
representing the ctf_type_t and ad hoc C structures representing the
vlen. Historically, libctf was unable to do anything with these types,
not even look them up by ID, let alone by name: if you wanted to do that
say if you were adding a type that depended on one you just added) you
called ctf_update, which serializes all the DTDs into a CTF file and
reopens it, copying its guts over the fp it's called with. The
ctf_updated types are then frozen in amber and unchangeable: all lookups
will return the types in the static portion in preference to the dynamic
portion, and we will refuse to re-add things that already exist in the
static portion (and, of late, in the dynamic portion too). The libctf
machinery remembers the boundary between static and dynamic types and
looks in the right portion for each type. Lots of things still don't
quite work with dynamic types (e.g. getting their size), but enough
works to do a bunch of additions and then a ctf_update, most of the
time.
Except it doesn't, because ctf_add_type finds it necessary to walk the
full dynamic type definition list looking for types with matching names,
so it gets slower and slower with every type you add: fixing this
requires calling ctf_update periodically for no other reason than to
avoid massively slowing things down.
This is all clunky and very slow but kind of works, until you consider
that it is in fact possible and indeed necessary to modify one sort of
type after it has been added: forwards. These are necessarily promoted
to structs, unions or enums, and when they do so *their type ID does not
change*. So all of a sudden we are changing types that already exist in
the static portion. ctf_update gets massively confused by this and
allocates space enough for the forward (with no members), but then emits
the new dynamic type (with all the members) into it. You get an
assertion failure after that, if you're lucky, or a coredump.
So this commit rejigs things a bit and arranges to exclusively use the
dynamic type definitions in writable dictionaries, and the static type
definitions in readable dictionaries: we don't at any time have a mixture
of static and dynamic types, and you don't need to call ctf_update to
make things "appear". The ctf_dtbyname hash I introduced a few months
ago, which maps things like "struct foo" to DTDs, is removed, replaced
instead by a change of type of the four dictionaries which track names.
Rather than just being (unresizable) ctf_hash_t's populated only at
ctf_bufopen time, they are now a ctf_names_t structure, which is a pair
of ctf_hash_t and ctf_dynhash_t, with the ctf_hash_t portion being used
in readonly dictionaries, and the ctf_dynhash_t being used in writable
ones. The decision as to which to use is centralized in the new
functions ctf_lookup_by_rawname (which takes a type kind) and
ctf_lookup_by_rawhash, which it calls (which takes a ctf_names_t *.)
This change lets us switch from using static to dynamic name hashes on
the fly across the entirety of libctf without complexifying anything: in
fact, because we now centralize the knowledge about how to map from type
kind to name hash, it actually simplifies things and lets us throw out
quite a lot of now-unnecessary complexity, from ctf_dtnyname (replaced
by the dynamic half of the name tables), through to ctf_dtnextid (now
that a dictionary's static portion is never referenced if the dictionary
is writable, we can just use ctf_typemax to indicate the maximum type:
dynamic or non-dynamic does not matter, and we no longer need to track
the boundary between the types). You can now ctf_rollback() as far as
you like, even past a ctf_update or for that matter a full writeout; all
the iteration functions work just as well on writable as on read-only
dictionaries; ctf_add_type no longer needs expensive duplicated code to
run over the dynamic types hunting for ones it might be interested in;
and the linker no longer needs a hack to call ctf_update so that calling
ctf_add_type is not impossibly expensive.
There is still a bit more complexity: some new code paths in ctf-types.c
need to know how to extract information from dynamic types. This
complexity will go away again in a few months when libctf acquires a
proper intermediate representation.
You can still call ctf_update if you like (it's public API, after all),
but its only effect now is to set the point to which ctf_discard rolls
back.
Obviously *something* still needs to serialize the CTF file before
writeout, and this job is done by ctf_serialize, which does everything
ctf_update used to except set the counter used by ctf_discard. It is
automatically called by the various functions that do CTF writeout:
nobody else ever needs to call it.
With this in place, forwards that are promoted to non-forwards no longer
crash the link, even if it happens tens of thousands of types later.
v5: fix tabdamage.
libctf/
* ctf-impl.h (ctf_names_t): New.
(ctf_lookup_t) <ctf_hash>: Now a ctf_names_t, not a ctf_hash_t.
(ctf_file_t) <ctf_structs>: Likewise.
<ctf_unions>: Likewise.
<ctf_enums>: Likewise.
<ctf_names>: Likewise.
<ctf_lookups>: Improve comment.
<ctf_ptrtab_len>: New.
<ctf_prov_strtab>: New.
<ctf_str_prov_offset>: New.
<ctf_dtbyname>: Remove, redundant to the names hashes.
<ctf_dtnextid>: Remove, redundant to ctf_typemax.
(ctf_dtdef_t) <dtd_name>: Remove.
<dtd_data>: Note that the ctt_name is now populated.
(ctf_str_atom_t) <csa_offset>: This is now the strtab
offset for internal strings too.
<csa_external_offset>: New, the external strtab offset.
(CTF_INDEX_TO_TYPEPTR): Handle the LCTF_RDWR case.
(ctf_name_table): New declaration.
(ctf_lookup_by_rawname): Likewise.
(ctf_lookup_by_rawhash): Likewise.
(ctf_set_ctl_hashes): Likewise.
(ctf_serialize): Likewise.
(ctf_dtd_insert): Adjust.
(ctf_simple_open_internal): Likewise.
(ctf_bufopen_internal): Likewise.
(ctf_list_empty_p): Likewise.
(ctf_str_remove_ref): Likewise.
(ctf_str_add): Returns uint32_t now.
(ctf_str_add_ref): Likewise.
(ctf_str_add_external): Now returns a boolean (int).
* ctf-string.c (ctf_strraw_explicit): Check the ctf_prov_strtab
for strings in the appropriate range.
(ctf_str_create_atoms): Create the ctf_prov_strtab. Detect OOM
when adding the null string to the new strtab.
(ctf_str_free_atoms): Destroy the ctf_prov_strtab.
(ctf_str_add_ref_internal): Add make_provisional argument. If
make_provisional, populate the offset and fill in the
ctf_prov_strtab accordingly.
(ctf_str_add): Return the offset, not the string.
(ctf_str_add_ref): Likewise.
(ctf_str_add_external): Return a success integer.
(ctf_str_remove_ref): New, remove a single ref.
(ctf_str_count_strtab): Do not count the initial null string's
length or the existence or length of any unreferenced internal
atoms.
(ctf_str_populate_sorttab): Skip atoms with no refs.
(ctf_str_write_strtab): Populate the nullstr earlier. Add one
to the cts_len for the null string, since it is no longer done
in ctf_str_count_strtab. Adjust for csa_external_offset rename.
Populate the csa_offset for both internal and external cases.
Flush the ctf_prov_strtab afterwards, and reset the
ctf_str_prov_offset.
* ctf-create.c (ctf_grow_ptrtab): New.
(ctf_create): Call it. Initialize new fields rather than old
ones. Tell ctf_bufopen_internal that this is a writable dictionary.
Set the ctl hashes and data model.
(ctf_update): Rename to...
(ctf_serialize): ... this. Leave a compatibility function behind.
Tell ctf_simple_open_internal that this is a writable dictionary.
Pass the new fields along from the old dictionary. Drop
ctf_dtnextid and ctf_dtbyname. Use ctf_strraw, not dtd_name.
Do not zero out the DTD's ctt_name.
(ctf_prefixed_name): Rename to...
(ctf_name_table): ... this. No longer return a prefixed name: return
the applicable name table instead.
(ctf_dtd_insert): Use it, and use the right name table. Pass in the
kind we're adding. Migrate away from dtd_name.
(ctf_dtd_delete): Adjust similarly. Remove the ref to the
deleted ctt_name.
(ctf_dtd_lookup_type_by_name): Remove.
(ctf_dynamic_type): Always return NULL on read-only dictionaries.
No longer check ctf_dtnextid: check ctf_typemax instead.
(ctf_snapshot): No longer use ctf_dtnextid: use ctf_typemax instead.
(ctf_rollback): Likewise. No longer fail with ECTF_OVERROLLBACK. Use
ctf_name_table and the right name table, and migrate away from
dtd_name as in ctf_dtd_delete.
(ctf_add_generic): Pass in the kind explicitly and pass it to
ctf_dtd_insert. Use ctf_typemax, not ctf_dtnextid. Migrate away
from dtd_name to using ctf_str_add_ref to populate the ctt_name.
Grow the ptrtab if needed.
(ctf_add_encoded): Pass in the kind.
(ctf_add_slice): Likewise.
(ctf_add_array): Likewise.
(ctf_add_function): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_reftype): Likewise. Initialize the ctf_ptrtab, checking
ctt_name rather than dtd_name.
(ctf_add_struct_sized): Pass in the kind. Use
ctf_lookup_by_rawname, not ctf_hash_lookup_type /
ctf_dtd_lookup_type_by_name.
(ctf_add_union_sized): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_type): Likewise.
(ctf_compress_write): Call ctf_serialize: adjust for ctf_size not
being initialized until after the call.
(ctf_write_mem): Likewise.
(ctf_write): Likewise.
* ctf-archive.c (arc_write_one_ctf): Likewise.
* ctf-lookup.c (ctf_lookup_by_name): Use ctf_lookuup_by_rawhash, not
ctf_hash_lookup_type.
(ctf_lookup_by_id): No longer check the readonly types if the
dictionary is writable.
* ctf-open.c (init_types): Assert that this dictionary is not
writable. Adjust to use the new name hashes, ctf_name_table,
and ctf_ptrtab_len. GNU style fix for the final ptrtab scan.
(ctf_bufopen_internal): New 'writable' parameter. Flip on LCTF_RDWR
if set. Drop out early when dictionary is writable. Split the
ctf_lookups initialization into...
(ctf_set_cth_hashes): ... this new function.
(ctf_simple_open_internal): Adjust. New 'writable' parameter.
(ctf_simple_open): Adjust accordingly.
(ctf_bufopen): Likewise.
(ctf_file_close): Destroy the appropriate name hashes. No longer
destroy ctf_dtbyname, which is gone.
(ctf_getdatasect): Remove spurious "extern".
* ctf-types.c (ctf_lookup_by_rawname): New, look up types in the
specified name table, given a kind.
(ctf_lookup_by_rawhash): Likewise, given a ctf_names_t *.
(ctf_member_iter): Add support for iterating over the
dynamic type list.
(ctf_enum_iter): Likewise.
(ctf_variable_iter): Likewise.
(ctf_type_rvisit): Likewise.
(ctf_member_info): Add support for types in the dynamic type list.
(ctf_enum_name): Likewise.
(ctf_enum_value): Likewise.
(ctf_func_type_info): Likewise.
(ctf_func_type_args): Likewise.
* ctf-link.c (ctf_accumulate_archive_names): No longer call
ctf_update.
(ctf_link_write): Likewise.
(ctf_link_intern_extern_string): Adjust for new
ctf_str_add_external return value.
(ctf_link_add_strtab): Likewise.
* ctf-util.c (ctf_list_empty_p): New.
2019-08-08 00:55:09 +08:00
|
|
|
else if ((type = ctf_add_generic (fp, flag, name, CTF_K_STRUCT,
|
libctf: eliminate dtd_u, part 5: structs / unions
Eliminate the dynamic member storage for structs and unions as we have
for other dynamic types. This is much like the previous enum
elimination, except that structs and unions are the only types for which
a full-sized ctf_type_t might be needed. Up to now, this decision has
been made in the individual ctf_add_{struct,union}_sized functions and
duplicated in ctf_add_member_offset. The vlen machinery lets us
simplify this, always allocating a ctf_lmember_t and setting the
dtd_data's ctt_size to CTF_LSIZE_SENT: we figure out whether this is
really justified and (almost always) repack things down into a
ctf_stype_t at ctf_serialize time.
This allows us to eliminate the dynamic member paths from the iterators and
query functions in ctf-types.c in favour of always using the large-structure
vlen stuff for dynamic types (the diff is ugly but that's just because of the
volume of reindentation this calls for). This also means the large-structure
vlen stuff gets more heavily tested, which is nice because it was an almost
totally unused code path before now (it only kicked in for structures of size
>4GiB, and how often do you see those?)
The only extra complexity here is ctf_add_type. Back in the days of the
nondeduplicating linker this was called a ridiculous number of times for
countless identical copies of structures: eschewing the repeated lookups of the
dtd in ctf_add_member_offset and adding the members directly saved an amazing
amount of time. Now the nondeduplicating linker is gone, this is extreme
overoptimization: we can rip out the direct addition and use ctf_member_next and
ctf_add_member_offset, just like ctf_dedup_emit does.
We augment a ctf_add_type test to try adding a self-referential struct, the only
thing the ctf_add_type part of this change really perturbs.
This completes the elimination of dtd_u.
libctf/ChangeLog
2021-03-18 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h (ctf_dtdef_t) <dtu_members>: Remove.
<dtd_u>: Likewise.
(ctf_dmdef_t): Remove.
(struct ctf_next) <u.ctn_dmd>: Remove.
* ctf-create.c (INITIAL_VLEN): New, more-or-less arbitrary initial
vlen size.
(ctf_add_enum): Use it.
(ctf_dtd_delete): Do not free the (removed) dmd; remove string
refs from the vlen on struct deletion.
(ctf_add_struct_sized): Populate the vlen: do it by hand if
promoting forwards. Always populate the full-size
lsizehi/lsizelo members.
(ctf_add_union_sized): Likewise.
(ctf_add_member_offset): Set up the vlen rather than the dmd.
Expand it as needed, repointing string refs via
ctf_str_move_pending. Add the member names as pending strings.
Always populate the full-size lsizehi/lsizelo members.
(membadd): Remove, folding back into...
(ctf_add_type_internal): ... here, adding via an ordinary
ctf_add_struct_sized and _next iteration rather than doing
everything by hand.
* ctf-serialize.c (ctf_copy_smembers): Remove this...
(ctf_copy_lmembers): ... and this...
(ctf_emit_type_sect): ... folding into here. Figure out if a
ctf_stype_t is needed here, not in ctf_add_*_sized.
(ctf_type_sect_size): Figure out the ctf_stype_t stuff the same
way here.
* ctf-types.c (ctf_member_next): Remove the dmd path and always
use the vlen. Force large-structure usage for dynamic types.
(ctf_type_align): Likewise.
(ctf_member_info): Likewise.
(ctf_type_rvisit): Likewise.
* testsuite/libctf-regression/type-add-unnamed-struct-ctf.c: Add a
self-referential type to this test.
* testsuite/libctf-regression/type-add-unnamed-struct.c: Adjusted
accordingly.
* testsuite/libctf-regression/type-add-unnamed-struct.lk: Likewise.
2021-03-18 20:37:52 +08:00
|
|
|
initial_vlen, &dtd)) == CTF_ERR)
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
return CTF_ERR; /* errno is set for us. */
|
|
|
|
|
libctf: eliminate dtd_u, part 5: structs / unions
Eliminate the dynamic member storage for structs and unions as we have
for other dynamic types. This is much like the previous enum
elimination, except that structs and unions are the only types for which
a full-sized ctf_type_t might be needed. Up to now, this decision has
been made in the individual ctf_add_{struct,union}_sized functions and
duplicated in ctf_add_member_offset. The vlen machinery lets us
simplify this, always allocating a ctf_lmember_t and setting the
dtd_data's ctt_size to CTF_LSIZE_SENT: we figure out whether this is
really justified and (almost always) repack things down into a
ctf_stype_t at ctf_serialize time.
This allows us to eliminate the dynamic member paths from the iterators and
query functions in ctf-types.c in favour of always using the large-structure
vlen stuff for dynamic types (the diff is ugly but that's just because of the
volume of reindentation this calls for). This also means the large-structure
vlen stuff gets more heavily tested, which is nice because it was an almost
totally unused code path before now (it only kicked in for structures of size
>4GiB, and how often do you see those?)
The only extra complexity here is ctf_add_type. Back in the days of the
nondeduplicating linker this was called a ridiculous number of times for
countless identical copies of structures: eschewing the repeated lookups of the
dtd in ctf_add_member_offset and adding the members directly saved an amazing
amount of time. Now the nondeduplicating linker is gone, this is extreme
overoptimization: we can rip out the direct addition and use ctf_member_next and
ctf_add_member_offset, just like ctf_dedup_emit does.
We augment a ctf_add_type test to try adding a self-referential struct, the only
thing the ctf_add_type part of this change really perturbs.
This completes the elimination of dtd_u.
libctf/ChangeLog
2021-03-18 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h (ctf_dtdef_t) <dtu_members>: Remove.
<dtd_u>: Likewise.
(ctf_dmdef_t): Remove.
(struct ctf_next) <u.ctn_dmd>: Remove.
* ctf-create.c (INITIAL_VLEN): New, more-or-less arbitrary initial
vlen size.
(ctf_add_enum): Use it.
(ctf_dtd_delete): Do not free the (removed) dmd; remove string
refs from the vlen on struct deletion.
(ctf_add_struct_sized): Populate the vlen: do it by hand if
promoting forwards. Always populate the full-size
lsizehi/lsizelo members.
(ctf_add_union_sized): Likewise.
(ctf_add_member_offset): Set up the vlen rather than the dmd.
Expand it as needed, repointing string refs via
ctf_str_move_pending. Add the member names as pending strings.
Always populate the full-size lsizehi/lsizelo members.
(membadd): Remove, folding back into...
(ctf_add_type_internal): ... here, adding via an ordinary
ctf_add_struct_sized and _next iteration rather than doing
everything by hand.
* ctf-serialize.c (ctf_copy_smembers): Remove this...
(ctf_copy_lmembers): ... and this...
(ctf_emit_type_sect): ... folding into here. Figure out if a
ctf_stype_t is needed here, not in ctf_add_*_sized.
(ctf_type_sect_size): Figure out the ctf_stype_t stuff the same
way here.
* ctf-types.c (ctf_member_next): Remove the dmd path and always
use the vlen. Force large-structure usage for dynamic types.
(ctf_type_align): Likewise.
(ctf_member_info): Likewise.
(ctf_type_rvisit): Likewise.
* testsuite/libctf-regression/type-add-unnamed-struct-ctf.c: Add a
self-referential type to this test.
* testsuite/libctf-regression/type-add-unnamed-struct.c: Adjusted
accordingly.
* testsuite/libctf-regression/type-add-unnamed-struct.lk: Likewise.
2021-03-18 20:37:52 +08:00
|
|
|
/* Forwards won't have any vlen yet. */
|
|
|
|
if (dtd->dtd_vlen_alloc == 0)
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
{
|
libctf: eliminate dtd_u, part 5: structs / unions
Eliminate the dynamic member storage for structs and unions as we have
for other dynamic types. This is much like the previous enum
elimination, except that structs and unions are the only types for which
a full-sized ctf_type_t might be needed. Up to now, this decision has
been made in the individual ctf_add_{struct,union}_sized functions and
duplicated in ctf_add_member_offset. The vlen machinery lets us
simplify this, always allocating a ctf_lmember_t and setting the
dtd_data's ctt_size to CTF_LSIZE_SENT: we figure out whether this is
really justified and (almost always) repack things down into a
ctf_stype_t at ctf_serialize time.
This allows us to eliminate the dynamic member paths from the iterators and
query functions in ctf-types.c in favour of always using the large-structure
vlen stuff for dynamic types (the diff is ugly but that's just because of the
volume of reindentation this calls for). This also means the large-structure
vlen stuff gets more heavily tested, which is nice because it was an almost
totally unused code path before now (it only kicked in for structures of size
>4GiB, and how often do you see those?)
The only extra complexity here is ctf_add_type. Back in the days of the
nondeduplicating linker this was called a ridiculous number of times for
countless identical copies of structures: eschewing the repeated lookups of the
dtd in ctf_add_member_offset and adding the members directly saved an amazing
amount of time. Now the nondeduplicating linker is gone, this is extreme
overoptimization: we can rip out the direct addition and use ctf_member_next and
ctf_add_member_offset, just like ctf_dedup_emit does.
We augment a ctf_add_type test to try adding a self-referential struct, the only
thing the ctf_add_type part of this change really perturbs.
This completes the elimination of dtd_u.
libctf/ChangeLog
2021-03-18 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h (ctf_dtdef_t) <dtu_members>: Remove.
<dtd_u>: Likewise.
(ctf_dmdef_t): Remove.
(struct ctf_next) <u.ctn_dmd>: Remove.
* ctf-create.c (INITIAL_VLEN): New, more-or-less arbitrary initial
vlen size.
(ctf_add_enum): Use it.
(ctf_dtd_delete): Do not free the (removed) dmd; remove string
refs from the vlen on struct deletion.
(ctf_add_struct_sized): Populate the vlen: do it by hand if
promoting forwards. Always populate the full-size
lsizehi/lsizelo members.
(ctf_add_union_sized): Likewise.
(ctf_add_member_offset): Set up the vlen rather than the dmd.
Expand it as needed, repointing string refs via
ctf_str_move_pending. Add the member names as pending strings.
Always populate the full-size lsizehi/lsizelo members.
(membadd): Remove, folding back into...
(ctf_add_type_internal): ... here, adding via an ordinary
ctf_add_struct_sized and _next iteration rather than doing
everything by hand.
* ctf-serialize.c (ctf_copy_smembers): Remove this...
(ctf_copy_lmembers): ... and this...
(ctf_emit_type_sect): ... folding into here. Figure out if a
ctf_stype_t is needed here, not in ctf_add_*_sized.
(ctf_type_sect_size): Figure out the ctf_stype_t stuff the same
way here.
* ctf-types.c (ctf_member_next): Remove the dmd path and always
use the vlen. Force large-structure usage for dynamic types.
(ctf_type_align): Likewise.
(ctf_member_info): Likewise.
(ctf_type_rvisit): Likewise.
* testsuite/libctf-regression/type-add-unnamed-struct-ctf.c: Add a
self-referential type to this test.
* testsuite/libctf-regression/type-add-unnamed-struct.c: Adjusted
accordingly.
* testsuite/libctf-regression/type-add-unnamed-struct.lk: Likewise.
2021-03-18 20:37:52 +08:00
|
|
|
if ((dtd->dtd_vlen = calloc (1, initial_vlen)) == NULL)
|
2023-09-13 17:02:36 +08:00
|
|
|
return (ctf_set_typed_errno (fp, ENOMEM));
|
libctf: eliminate dtd_u, part 5: structs / unions
Eliminate the dynamic member storage for structs and unions as we have
for other dynamic types. This is much like the previous enum
elimination, except that structs and unions are the only types for which
a full-sized ctf_type_t might be needed. Up to now, this decision has
been made in the individual ctf_add_{struct,union}_sized functions and
duplicated in ctf_add_member_offset. The vlen machinery lets us
simplify this, always allocating a ctf_lmember_t and setting the
dtd_data's ctt_size to CTF_LSIZE_SENT: we figure out whether this is
really justified and (almost always) repack things down into a
ctf_stype_t at ctf_serialize time.
This allows us to eliminate the dynamic member paths from the iterators and
query functions in ctf-types.c in favour of always using the large-structure
vlen stuff for dynamic types (the diff is ugly but that's just because of the
volume of reindentation this calls for). This also means the large-structure
vlen stuff gets more heavily tested, which is nice because it was an almost
totally unused code path before now (it only kicked in for structures of size
>4GiB, and how often do you see those?)
The only extra complexity here is ctf_add_type. Back in the days of the
nondeduplicating linker this was called a ridiculous number of times for
countless identical copies of structures: eschewing the repeated lookups of the
dtd in ctf_add_member_offset and adding the members directly saved an amazing
amount of time. Now the nondeduplicating linker is gone, this is extreme
overoptimization: we can rip out the direct addition and use ctf_member_next and
ctf_add_member_offset, just like ctf_dedup_emit does.
We augment a ctf_add_type test to try adding a self-referential struct, the only
thing the ctf_add_type part of this change really perturbs.
This completes the elimination of dtd_u.
libctf/ChangeLog
2021-03-18 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h (ctf_dtdef_t) <dtu_members>: Remove.
<dtd_u>: Likewise.
(ctf_dmdef_t): Remove.
(struct ctf_next) <u.ctn_dmd>: Remove.
* ctf-create.c (INITIAL_VLEN): New, more-or-less arbitrary initial
vlen size.
(ctf_add_enum): Use it.
(ctf_dtd_delete): Do not free the (removed) dmd; remove string
refs from the vlen on struct deletion.
(ctf_add_struct_sized): Populate the vlen: do it by hand if
promoting forwards. Always populate the full-size
lsizehi/lsizelo members.
(ctf_add_union_sized): Likewise.
(ctf_add_member_offset): Set up the vlen rather than the dmd.
Expand it as needed, repointing string refs via
ctf_str_move_pending. Add the member names as pending strings.
Always populate the full-size lsizehi/lsizelo members.
(membadd): Remove, folding back into...
(ctf_add_type_internal): ... here, adding via an ordinary
ctf_add_struct_sized and _next iteration rather than doing
everything by hand.
* ctf-serialize.c (ctf_copy_smembers): Remove this...
(ctf_copy_lmembers): ... and this...
(ctf_emit_type_sect): ... folding into here. Figure out if a
ctf_stype_t is needed here, not in ctf_add_*_sized.
(ctf_type_sect_size): Figure out the ctf_stype_t stuff the same
way here.
* ctf-types.c (ctf_member_next): Remove the dmd path and always
use the vlen. Force large-structure usage for dynamic types.
(ctf_type_align): Likewise.
(ctf_member_info): Likewise.
(ctf_type_rvisit): Likewise.
* testsuite/libctf-regression/type-add-unnamed-struct-ctf.c: Add a
self-referential type to this test.
* testsuite/libctf-regression/type-add-unnamed-struct.c: Adjusted
accordingly.
* testsuite/libctf-regression/type-add-unnamed-struct.lk: Likewise.
2021-03-18 20:37:52 +08:00
|
|
|
dtd->dtd_vlen_alloc = initial_vlen;
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
}
|
libctf: eliminate dtd_u, part 5: structs / unions
Eliminate the dynamic member storage for structs and unions as we have
for other dynamic types. This is much like the previous enum
elimination, except that structs and unions are the only types for which
a full-sized ctf_type_t might be needed. Up to now, this decision has
been made in the individual ctf_add_{struct,union}_sized functions and
duplicated in ctf_add_member_offset. The vlen machinery lets us
simplify this, always allocating a ctf_lmember_t and setting the
dtd_data's ctt_size to CTF_LSIZE_SENT: we figure out whether this is
really justified and (almost always) repack things down into a
ctf_stype_t at ctf_serialize time.
This allows us to eliminate the dynamic member paths from the iterators and
query functions in ctf-types.c in favour of always using the large-structure
vlen stuff for dynamic types (the diff is ugly but that's just because of the
volume of reindentation this calls for). This also means the large-structure
vlen stuff gets more heavily tested, which is nice because it was an almost
totally unused code path before now (it only kicked in for structures of size
>4GiB, and how often do you see those?)
The only extra complexity here is ctf_add_type. Back in the days of the
nondeduplicating linker this was called a ridiculous number of times for
countless identical copies of structures: eschewing the repeated lookups of the
dtd in ctf_add_member_offset and adding the members directly saved an amazing
amount of time. Now the nondeduplicating linker is gone, this is extreme
overoptimization: we can rip out the direct addition and use ctf_member_next and
ctf_add_member_offset, just like ctf_dedup_emit does.
We augment a ctf_add_type test to try adding a self-referential struct, the only
thing the ctf_add_type part of this change really perturbs.
This completes the elimination of dtd_u.
libctf/ChangeLog
2021-03-18 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h (ctf_dtdef_t) <dtu_members>: Remove.
<dtd_u>: Likewise.
(ctf_dmdef_t): Remove.
(struct ctf_next) <u.ctn_dmd>: Remove.
* ctf-create.c (INITIAL_VLEN): New, more-or-less arbitrary initial
vlen size.
(ctf_add_enum): Use it.
(ctf_dtd_delete): Do not free the (removed) dmd; remove string
refs from the vlen on struct deletion.
(ctf_add_struct_sized): Populate the vlen: do it by hand if
promoting forwards. Always populate the full-size
lsizehi/lsizelo members.
(ctf_add_union_sized): Likewise.
(ctf_add_member_offset): Set up the vlen rather than the dmd.
Expand it as needed, repointing string refs via
ctf_str_move_pending. Add the member names as pending strings.
Always populate the full-size lsizehi/lsizelo members.
(membadd): Remove, folding back into...
(ctf_add_type_internal): ... here, adding via an ordinary
ctf_add_struct_sized and _next iteration rather than doing
everything by hand.
* ctf-serialize.c (ctf_copy_smembers): Remove this...
(ctf_copy_lmembers): ... and this...
(ctf_emit_type_sect): ... folding into here. Figure out if a
ctf_stype_t is needed here, not in ctf_add_*_sized.
(ctf_type_sect_size): Figure out the ctf_stype_t stuff the same
way here.
* ctf-types.c (ctf_member_next): Remove the dmd path and always
use the vlen. Force large-structure usage for dynamic types.
(ctf_type_align): Likewise.
(ctf_member_info): Likewise.
(ctf_type_rvisit): Likewise.
* testsuite/libctf-regression/type-add-unnamed-struct-ctf.c: Add a
self-referential type to this test.
* testsuite/libctf-regression/type-add-unnamed-struct.c: Adjusted
accordingly.
* testsuite/libctf-regression/type-add-unnamed-struct.lk: Likewise.
2021-03-18 20:37:52 +08:00
|
|
|
|
|
|
|
dtd->dtd_data.ctt_info = CTF_TYPE_INFO (CTF_K_STRUCT, flag, 0);
|
|
|
|
dtd->dtd_data.ctt_size = CTF_LSIZE_SENT;
|
|
|
|
dtd->dtd_data.ctt_lsizehi = CTF_SIZE_TO_LSIZE_HI (size);
|
|
|
|
dtd->dtd_data.ctt_lsizelo = CTF_SIZE_TO_LSIZE_LO (size);
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
|
|
|
|
return type;
|
|
|
|
}
|
|
|
|
|
|
|
|
ctf_id_t
|
libctf, include, binutils, gdb, ld: rename ctf_file_t to ctf_dict_t
The naming of the ctf_file_t type in libctf is a historical curiosity.
Back in the Solaris days, CTF dictionaries were originally generated as
a separate file and then (sometimes) merged into objects: hence the
datatype was named ctf_file_t, and known as a "CTF file". Nowadays, raw
CTF is essentially never written to a file on its own, and the datatype
changed name to a "CTF dictionary" years ago. So the term "CTF file"
refers to something that is never a file! This is at best confusing.
The type has also historically been known as a 'CTF container", which is
even more confusing now that we have CTF archives which are *also* a
sort of container (they contain CTF dictionaries), but which are never
referred to as containers in the source code.
So fix this by completing the renaming, renaming ctf_file_t to
ctf_dict_t throughout, and renaming those few functions that refer to
CTF files by name (keeping compatibility aliases) to refer to dicts
instead. Old users who still refer to ctf_file_t will see (harmless)
pointer-compatibility warnings at compile time, but the ABI is unchanged
(since C doesn't mangle names, and ctf_file_t was always an opaque type)
and things will still compile fine as long as -Werror is not specified.
All references to CTF containers and CTF files in the source code are
fixed to refer to CTF dicts instead.
Further (smaller) renamings of annoyingly-named functions to come, as
part of the process of souping up queries across whole archives at once
(needed for the function info and data object sections).
binutils/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* objdump.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_ctf): Likewise. Use ctf_dict_close, not ctf_file_close.
* readelf.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_section_as_ctf): Likewise. Use ctf_dict_close, not
ctf_file_close.
gdb/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctfread.c: Change uses of ctf_file_t to ctf_dict_t.
(ctf_fp_info::~ctf_fp_info): Call ctf_dict_close, not ctf_file_close.
include/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-api.h (ctf_file_t): Rename to...
(ctf_dict_t): ... this. Keep ctf_file_t around for compatibility.
(struct ctf_file): Likewise rename to...
(struct ctf_dict): ... this.
(ctf_file_close): Rename to...
(ctf_dict_close): ... this, keeping compatibility function.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this, keeping compatibility function.
All callers adjusted.
* ctf.h: Rename references to ctf_file_t to ctf_dict_t.
(struct ctf_archive) <ctfa_nfiles>: Rename to...
<ctfa_ndicts>: ... this.
ld/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ldlang.c (ctf_output): This is a ctf_dict_t now.
(lang_ctf_errs_warnings): Rename ctf_file_t to ctf_dict_t.
(ldlang_open_ctf): Adjust comment.
(lang_merge_ctf): Use ctf_dict_close, not ctf_file_close.
* ldelfgen.h (ldelf_examine_strtab_for_ctf): Rename ctf_file_t to
ctf_dict_t. Change opaque declaration accordingly.
* ldelfgen.c (ldelf_examine_strtab_for_ctf): Adjust.
* ldemul.h (examine_strtab_for_ctf): Likewise.
(ldemul_examine_strtab_for_ctf): Likewise.
* ldeuml.c (ldemul_examine_strtab_for_ctf): Likewise.
libctf/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h: Rename ctf_file_t to ctf_dict_t: all declarations
adjusted.
(ctf_fileops): Rename to...
(ctf_dictops): ... this.
(ctf_dedup_t) <cd_id_to_file_t>: Rename to...
<cd_id_to_dict_t>: ... this.
(ctf_file_t): Fix outdated comment.
<ctf_fileops>: Rename to...
<ctf_dictops>: ... this.
(struct ctf_archive_internal) <ctfi_file>: Rename to...
<ctfi_dict>: ... this.
* ctf-archive.c: Rename ctf_file_t to ctf_dict_t.
Rename ctf_archive.ctfa_nfiles to ctfa_ndicts.
Rename ctf_file_close to ctf_dict_close. All users adjusted.
* ctf-create.c: Likewise. Refer to CTF dicts, not CTF containers.
(ctf_bundle_t) <ctb_file>: Rename to...
<ctb_dict): ... this.
* ctf-decl.c: Rename ctf_file_t to ctf_dict_t.
* ctf-dedup.c: Likewise. Rename ctf_file_close to
ctf_dict_close. Refer to CTF dicts, not CTF containers.
* ctf-dump.c: Likewise.
* ctf-error.c: Likewise.
* ctf-hash.c: Likewise.
* ctf-inlines.h: Likewise.
* ctf-labels.c: Likewise.
* ctf-link.c: Likewise.
* ctf-lookup.c: Likewise.
* ctf-open-bfd.c: Likewise.
* ctf-string.c: Likewise.
* ctf-subr.c: Likewise.
* ctf-types.c: Likewise.
* ctf-util.c: Likewise.
* ctf-open.c: Likewise.
(ctf_file_close): Rename to...
(ctf_dict_close): ...this.
(ctf_file_close): New trivial wrapper around ctf_dict_close, for
compatibility.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this.
(ctf_parent_file): New trivial wrapper around ctf_parent_dict, for
compatibility.
* libctf.ver: Add ctf_dict_close and ctf_parent_dict.
2020-11-20 21:34:04 +08:00
|
|
|
ctf_add_struct (ctf_dict_t *fp, uint32_t flag, const char *name)
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
{
|
|
|
|
return (ctf_add_struct_sized (fp, flag, name, 0));
|
|
|
|
}
|
|
|
|
|
|
|
|
ctf_id_t
|
libctf, include, binutils, gdb, ld: rename ctf_file_t to ctf_dict_t
The naming of the ctf_file_t type in libctf is a historical curiosity.
Back in the Solaris days, CTF dictionaries were originally generated as
a separate file and then (sometimes) merged into objects: hence the
datatype was named ctf_file_t, and known as a "CTF file". Nowadays, raw
CTF is essentially never written to a file on its own, and the datatype
changed name to a "CTF dictionary" years ago. So the term "CTF file"
refers to something that is never a file! This is at best confusing.
The type has also historically been known as a 'CTF container", which is
even more confusing now that we have CTF archives which are *also* a
sort of container (they contain CTF dictionaries), but which are never
referred to as containers in the source code.
So fix this by completing the renaming, renaming ctf_file_t to
ctf_dict_t throughout, and renaming those few functions that refer to
CTF files by name (keeping compatibility aliases) to refer to dicts
instead. Old users who still refer to ctf_file_t will see (harmless)
pointer-compatibility warnings at compile time, but the ABI is unchanged
(since C doesn't mangle names, and ctf_file_t was always an opaque type)
and things will still compile fine as long as -Werror is not specified.
All references to CTF containers and CTF files in the source code are
fixed to refer to CTF dicts instead.
Further (smaller) renamings of annoyingly-named functions to come, as
part of the process of souping up queries across whole archives at once
(needed for the function info and data object sections).
binutils/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* objdump.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_ctf): Likewise. Use ctf_dict_close, not ctf_file_close.
* readelf.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_section_as_ctf): Likewise. Use ctf_dict_close, not
ctf_file_close.
gdb/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctfread.c: Change uses of ctf_file_t to ctf_dict_t.
(ctf_fp_info::~ctf_fp_info): Call ctf_dict_close, not ctf_file_close.
include/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-api.h (ctf_file_t): Rename to...
(ctf_dict_t): ... this. Keep ctf_file_t around for compatibility.
(struct ctf_file): Likewise rename to...
(struct ctf_dict): ... this.
(ctf_file_close): Rename to...
(ctf_dict_close): ... this, keeping compatibility function.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this, keeping compatibility function.
All callers adjusted.
* ctf.h: Rename references to ctf_file_t to ctf_dict_t.
(struct ctf_archive) <ctfa_nfiles>: Rename to...
<ctfa_ndicts>: ... this.
ld/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ldlang.c (ctf_output): This is a ctf_dict_t now.
(lang_ctf_errs_warnings): Rename ctf_file_t to ctf_dict_t.
(ldlang_open_ctf): Adjust comment.
(lang_merge_ctf): Use ctf_dict_close, not ctf_file_close.
* ldelfgen.h (ldelf_examine_strtab_for_ctf): Rename ctf_file_t to
ctf_dict_t. Change opaque declaration accordingly.
* ldelfgen.c (ldelf_examine_strtab_for_ctf): Adjust.
* ldemul.h (examine_strtab_for_ctf): Likewise.
(ldemul_examine_strtab_for_ctf): Likewise.
* ldeuml.c (ldemul_examine_strtab_for_ctf): Likewise.
libctf/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h: Rename ctf_file_t to ctf_dict_t: all declarations
adjusted.
(ctf_fileops): Rename to...
(ctf_dictops): ... this.
(ctf_dedup_t) <cd_id_to_file_t>: Rename to...
<cd_id_to_dict_t>: ... this.
(ctf_file_t): Fix outdated comment.
<ctf_fileops>: Rename to...
<ctf_dictops>: ... this.
(struct ctf_archive_internal) <ctfi_file>: Rename to...
<ctfi_dict>: ... this.
* ctf-archive.c: Rename ctf_file_t to ctf_dict_t.
Rename ctf_archive.ctfa_nfiles to ctfa_ndicts.
Rename ctf_file_close to ctf_dict_close. All users adjusted.
* ctf-create.c: Likewise. Refer to CTF dicts, not CTF containers.
(ctf_bundle_t) <ctb_file>: Rename to...
<ctb_dict): ... this.
* ctf-decl.c: Rename ctf_file_t to ctf_dict_t.
* ctf-dedup.c: Likewise. Rename ctf_file_close to
ctf_dict_close. Refer to CTF dicts, not CTF containers.
* ctf-dump.c: Likewise.
* ctf-error.c: Likewise.
* ctf-hash.c: Likewise.
* ctf-inlines.h: Likewise.
* ctf-labels.c: Likewise.
* ctf-link.c: Likewise.
* ctf-lookup.c: Likewise.
* ctf-open-bfd.c: Likewise.
* ctf-string.c: Likewise.
* ctf-subr.c: Likewise.
* ctf-types.c: Likewise.
* ctf-util.c: Likewise.
* ctf-open.c: Likewise.
(ctf_file_close): Rename to...
(ctf_dict_close): ...this.
(ctf_file_close): New trivial wrapper around ctf_dict_close, for
compatibility.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this.
(ctf_parent_file): New trivial wrapper around ctf_parent_dict, for
compatibility.
* libctf.ver: Add ctf_dict_close and ctf_parent_dict.
2020-11-20 21:34:04 +08:00
|
|
|
ctf_add_union_sized (ctf_dict_t *fp, uint32_t flag, const char *name,
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
size_t size)
|
|
|
|
{
|
|
|
|
ctf_dtdef_t *dtd;
|
|
|
|
ctf_id_t type = 0;
|
libctf: eliminate dtd_u, part 5: structs / unions
Eliminate the dynamic member storage for structs and unions as we have
for other dynamic types. This is much like the previous enum
elimination, except that structs and unions are the only types for which
a full-sized ctf_type_t might be needed. Up to now, this decision has
been made in the individual ctf_add_{struct,union}_sized functions and
duplicated in ctf_add_member_offset. The vlen machinery lets us
simplify this, always allocating a ctf_lmember_t and setting the
dtd_data's ctt_size to CTF_LSIZE_SENT: we figure out whether this is
really justified and (almost always) repack things down into a
ctf_stype_t at ctf_serialize time.
This allows us to eliminate the dynamic member paths from the iterators and
query functions in ctf-types.c in favour of always using the large-structure
vlen stuff for dynamic types (the diff is ugly but that's just because of the
volume of reindentation this calls for). This also means the large-structure
vlen stuff gets more heavily tested, which is nice because it was an almost
totally unused code path before now (it only kicked in for structures of size
>4GiB, and how often do you see those?)
The only extra complexity here is ctf_add_type. Back in the days of the
nondeduplicating linker this was called a ridiculous number of times for
countless identical copies of structures: eschewing the repeated lookups of the
dtd in ctf_add_member_offset and adding the members directly saved an amazing
amount of time. Now the nondeduplicating linker is gone, this is extreme
overoptimization: we can rip out the direct addition and use ctf_member_next and
ctf_add_member_offset, just like ctf_dedup_emit does.
We augment a ctf_add_type test to try adding a self-referential struct, the only
thing the ctf_add_type part of this change really perturbs.
This completes the elimination of dtd_u.
libctf/ChangeLog
2021-03-18 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h (ctf_dtdef_t) <dtu_members>: Remove.
<dtd_u>: Likewise.
(ctf_dmdef_t): Remove.
(struct ctf_next) <u.ctn_dmd>: Remove.
* ctf-create.c (INITIAL_VLEN): New, more-or-less arbitrary initial
vlen size.
(ctf_add_enum): Use it.
(ctf_dtd_delete): Do not free the (removed) dmd; remove string
refs from the vlen on struct deletion.
(ctf_add_struct_sized): Populate the vlen: do it by hand if
promoting forwards. Always populate the full-size
lsizehi/lsizelo members.
(ctf_add_union_sized): Likewise.
(ctf_add_member_offset): Set up the vlen rather than the dmd.
Expand it as needed, repointing string refs via
ctf_str_move_pending. Add the member names as pending strings.
Always populate the full-size lsizehi/lsizelo members.
(membadd): Remove, folding back into...
(ctf_add_type_internal): ... here, adding via an ordinary
ctf_add_struct_sized and _next iteration rather than doing
everything by hand.
* ctf-serialize.c (ctf_copy_smembers): Remove this...
(ctf_copy_lmembers): ... and this...
(ctf_emit_type_sect): ... folding into here. Figure out if a
ctf_stype_t is needed here, not in ctf_add_*_sized.
(ctf_type_sect_size): Figure out the ctf_stype_t stuff the same
way here.
* ctf-types.c (ctf_member_next): Remove the dmd path and always
use the vlen. Force large-structure usage for dynamic types.
(ctf_type_align): Likewise.
(ctf_member_info): Likewise.
(ctf_type_rvisit): Likewise.
* testsuite/libctf-regression/type-add-unnamed-struct-ctf.c: Add a
self-referential type to this test.
* testsuite/libctf-regression/type-add-unnamed-struct.c: Adjusted
accordingly.
* testsuite/libctf-regression/type-add-unnamed-struct.lk: Likewise.
2021-03-18 20:37:52 +08:00
|
|
|
size_t initial_vlen = sizeof (ctf_lmember_t) * INITIAL_VLEN;
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
|
2019-10-21 18:27:43 +08:00
|
|
|
/* Promote root-visible forwards to unions. */
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
if (name != NULL)
|
libctf: avoid the need to ever use ctf_update
The method of operation of libctf when the dictionary is writable has
before now been that types that are added land in the dynamic type
section, which is a linked list and hash of IDs -> dynamic type
definitions (and, recently a hash of names): the DTDs are a bit of CTF
representing the ctf_type_t and ad hoc C structures representing the
vlen. Historically, libctf was unable to do anything with these types,
not even look them up by ID, let alone by name: if you wanted to do that
say if you were adding a type that depended on one you just added) you
called ctf_update, which serializes all the DTDs into a CTF file and
reopens it, copying its guts over the fp it's called with. The
ctf_updated types are then frozen in amber and unchangeable: all lookups
will return the types in the static portion in preference to the dynamic
portion, and we will refuse to re-add things that already exist in the
static portion (and, of late, in the dynamic portion too). The libctf
machinery remembers the boundary between static and dynamic types and
looks in the right portion for each type. Lots of things still don't
quite work with dynamic types (e.g. getting their size), but enough
works to do a bunch of additions and then a ctf_update, most of the
time.
Except it doesn't, because ctf_add_type finds it necessary to walk the
full dynamic type definition list looking for types with matching names,
so it gets slower and slower with every type you add: fixing this
requires calling ctf_update periodically for no other reason than to
avoid massively slowing things down.
This is all clunky and very slow but kind of works, until you consider
that it is in fact possible and indeed necessary to modify one sort of
type after it has been added: forwards. These are necessarily promoted
to structs, unions or enums, and when they do so *their type ID does not
change*. So all of a sudden we are changing types that already exist in
the static portion. ctf_update gets massively confused by this and
allocates space enough for the forward (with no members), but then emits
the new dynamic type (with all the members) into it. You get an
assertion failure after that, if you're lucky, or a coredump.
So this commit rejigs things a bit and arranges to exclusively use the
dynamic type definitions in writable dictionaries, and the static type
definitions in readable dictionaries: we don't at any time have a mixture
of static and dynamic types, and you don't need to call ctf_update to
make things "appear". The ctf_dtbyname hash I introduced a few months
ago, which maps things like "struct foo" to DTDs, is removed, replaced
instead by a change of type of the four dictionaries which track names.
Rather than just being (unresizable) ctf_hash_t's populated only at
ctf_bufopen time, they are now a ctf_names_t structure, which is a pair
of ctf_hash_t and ctf_dynhash_t, with the ctf_hash_t portion being used
in readonly dictionaries, and the ctf_dynhash_t being used in writable
ones. The decision as to which to use is centralized in the new
functions ctf_lookup_by_rawname (which takes a type kind) and
ctf_lookup_by_rawhash, which it calls (which takes a ctf_names_t *.)
This change lets us switch from using static to dynamic name hashes on
the fly across the entirety of libctf without complexifying anything: in
fact, because we now centralize the knowledge about how to map from type
kind to name hash, it actually simplifies things and lets us throw out
quite a lot of now-unnecessary complexity, from ctf_dtnyname (replaced
by the dynamic half of the name tables), through to ctf_dtnextid (now
that a dictionary's static portion is never referenced if the dictionary
is writable, we can just use ctf_typemax to indicate the maximum type:
dynamic or non-dynamic does not matter, and we no longer need to track
the boundary between the types). You can now ctf_rollback() as far as
you like, even past a ctf_update or for that matter a full writeout; all
the iteration functions work just as well on writable as on read-only
dictionaries; ctf_add_type no longer needs expensive duplicated code to
run over the dynamic types hunting for ones it might be interested in;
and the linker no longer needs a hack to call ctf_update so that calling
ctf_add_type is not impossibly expensive.
There is still a bit more complexity: some new code paths in ctf-types.c
need to know how to extract information from dynamic types. This
complexity will go away again in a few months when libctf acquires a
proper intermediate representation.
You can still call ctf_update if you like (it's public API, after all),
but its only effect now is to set the point to which ctf_discard rolls
back.
Obviously *something* still needs to serialize the CTF file before
writeout, and this job is done by ctf_serialize, which does everything
ctf_update used to except set the counter used by ctf_discard. It is
automatically called by the various functions that do CTF writeout:
nobody else ever needs to call it.
With this in place, forwards that are promoted to non-forwards no longer
crash the link, even if it happens tens of thousands of types later.
v5: fix tabdamage.
libctf/
* ctf-impl.h (ctf_names_t): New.
(ctf_lookup_t) <ctf_hash>: Now a ctf_names_t, not a ctf_hash_t.
(ctf_file_t) <ctf_structs>: Likewise.
<ctf_unions>: Likewise.
<ctf_enums>: Likewise.
<ctf_names>: Likewise.
<ctf_lookups>: Improve comment.
<ctf_ptrtab_len>: New.
<ctf_prov_strtab>: New.
<ctf_str_prov_offset>: New.
<ctf_dtbyname>: Remove, redundant to the names hashes.
<ctf_dtnextid>: Remove, redundant to ctf_typemax.
(ctf_dtdef_t) <dtd_name>: Remove.
<dtd_data>: Note that the ctt_name is now populated.
(ctf_str_atom_t) <csa_offset>: This is now the strtab
offset for internal strings too.
<csa_external_offset>: New, the external strtab offset.
(CTF_INDEX_TO_TYPEPTR): Handle the LCTF_RDWR case.
(ctf_name_table): New declaration.
(ctf_lookup_by_rawname): Likewise.
(ctf_lookup_by_rawhash): Likewise.
(ctf_set_ctl_hashes): Likewise.
(ctf_serialize): Likewise.
(ctf_dtd_insert): Adjust.
(ctf_simple_open_internal): Likewise.
(ctf_bufopen_internal): Likewise.
(ctf_list_empty_p): Likewise.
(ctf_str_remove_ref): Likewise.
(ctf_str_add): Returns uint32_t now.
(ctf_str_add_ref): Likewise.
(ctf_str_add_external): Now returns a boolean (int).
* ctf-string.c (ctf_strraw_explicit): Check the ctf_prov_strtab
for strings in the appropriate range.
(ctf_str_create_atoms): Create the ctf_prov_strtab. Detect OOM
when adding the null string to the new strtab.
(ctf_str_free_atoms): Destroy the ctf_prov_strtab.
(ctf_str_add_ref_internal): Add make_provisional argument. If
make_provisional, populate the offset and fill in the
ctf_prov_strtab accordingly.
(ctf_str_add): Return the offset, not the string.
(ctf_str_add_ref): Likewise.
(ctf_str_add_external): Return a success integer.
(ctf_str_remove_ref): New, remove a single ref.
(ctf_str_count_strtab): Do not count the initial null string's
length or the existence or length of any unreferenced internal
atoms.
(ctf_str_populate_sorttab): Skip atoms with no refs.
(ctf_str_write_strtab): Populate the nullstr earlier. Add one
to the cts_len for the null string, since it is no longer done
in ctf_str_count_strtab. Adjust for csa_external_offset rename.
Populate the csa_offset for both internal and external cases.
Flush the ctf_prov_strtab afterwards, and reset the
ctf_str_prov_offset.
* ctf-create.c (ctf_grow_ptrtab): New.
(ctf_create): Call it. Initialize new fields rather than old
ones. Tell ctf_bufopen_internal that this is a writable dictionary.
Set the ctl hashes and data model.
(ctf_update): Rename to...
(ctf_serialize): ... this. Leave a compatibility function behind.
Tell ctf_simple_open_internal that this is a writable dictionary.
Pass the new fields along from the old dictionary. Drop
ctf_dtnextid and ctf_dtbyname. Use ctf_strraw, not dtd_name.
Do not zero out the DTD's ctt_name.
(ctf_prefixed_name): Rename to...
(ctf_name_table): ... this. No longer return a prefixed name: return
the applicable name table instead.
(ctf_dtd_insert): Use it, and use the right name table. Pass in the
kind we're adding. Migrate away from dtd_name.
(ctf_dtd_delete): Adjust similarly. Remove the ref to the
deleted ctt_name.
(ctf_dtd_lookup_type_by_name): Remove.
(ctf_dynamic_type): Always return NULL on read-only dictionaries.
No longer check ctf_dtnextid: check ctf_typemax instead.
(ctf_snapshot): No longer use ctf_dtnextid: use ctf_typemax instead.
(ctf_rollback): Likewise. No longer fail with ECTF_OVERROLLBACK. Use
ctf_name_table and the right name table, and migrate away from
dtd_name as in ctf_dtd_delete.
(ctf_add_generic): Pass in the kind explicitly and pass it to
ctf_dtd_insert. Use ctf_typemax, not ctf_dtnextid. Migrate away
from dtd_name to using ctf_str_add_ref to populate the ctt_name.
Grow the ptrtab if needed.
(ctf_add_encoded): Pass in the kind.
(ctf_add_slice): Likewise.
(ctf_add_array): Likewise.
(ctf_add_function): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_reftype): Likewise. Initialize the ctf_ptrtab, checking
ctt_name rather than dtd_name.
(ctf_add_struct_sized): Pass in the kind. Use
ctf_lookup_by_rawname, not ctf_hash_lookup_type /
ctf_dtd_lookup_type_by_name.
(ctf_add_union_sized): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_type): Likewise.
(ctf_compress_write): Call ctf_serialize: adjust for ctf_size not
being initialized until after the call.
(ctf_write_mem): Likewise.
(ctf_write): Likewise.
* ctf-archive.c (arc_write_one_ctf): Likewise.
* ctf-lookup.c (ctf_lookup_by_name): Use ctf_lookuup_by_rawhash, not
ctf_hash_lookup_type.
(ctf_lookup_by_id): No longer check the readonly types if the
dictionary is writable.
* ctf-open.c (init_types): Assert that this dictionary is not
writable. Adjust to use the new name hashes, ctf_name_table,
and ctf_ptrtab_len. GNU style fix for the final ptrtab scan.
(ctf_bufopen_internal): New 'writable' parameter. Flip on LCTF_RDWR
if set. Drop out early when dictionary is writable. Split the
ctf_lookups initialization into...
(ctf_set_cth_hashes): ... this new function.
(ctf_simple_open_internal): Adjust. New 'writable' parameter.
(ctf_simple_open): Adjust accordingly.
(ctf_bufopen): Likewise.
(ctf_file_close): Destroy the appropriate name hashes. No longer
destroy ctf_dtbyname, which is gone.
(ctf_getdatasect): Remove spurious "extern".
* ctf-types.c (ctf_lookup_by_rawname): New, look up types in the
specified name table, given a kind.
(ctf_lookup_by_rawhash): Likewise, given a ctf_names_t *.
(ctf_member_iter): Add support for iterating over the
dynamic type list.
(ctf_enum_iter): Likewise.
(ctf_variable_iter): Likewise.
(ctf_type_rvisit): Likewise.
(ctf_member_info): Add support for types in the dynamic type list.
(ctf_enum_name): Likewise.
(ctf_enum_value): Likewise.
(ctf_func_type_info): Likewise.
(ctf_func_type_args): Likewise.
* ctf-link.c (ctf_accumulate_archive_names): No longer call
ctf_update.
(ctf_link_write): Likewise.
(ctf_link_intern_extern_string): Adjust for new
ctf_str_add_external return value.
(ctf_link_add_strtab): Likewise.
* ctf-util.c (ctf_list_empty_p): New.
2019-08-08 00:55:09 +08:00
|
|
|
type = ctf_lookup_by_rawname (fp, CTF_K_UNION, name);
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
|
libctf: support addition of types to dicts read via ctf_open()
libctf has long declared deserialized dictionaries (out of files or ELF
sections or memory buffers or whatever) to be read-only: back in the
furthest prehistory this was not the case, in that you could add a
few sorts of type to such dicts, but attempting to do so often caused
horrible memory corruption, so I banned the lot.
But it turns out real consumers want it (notably DTrace, which
synthesises pointers to types that don't have them and adds them to the
ctf_open()ed dicts if it needs them). Let's bring it back again, but
without the memory corruption and without the massive code duplication
required in days of yore to distinguish between static and dynamic
types: the representation of both types has been identical for a few
years, with the only difference being that types as a whole are stored in
a big buffer for types read in via ctf_open and per-type hashtables for
newly-added types.
So we discard the internally-visible concept of "readonly dictionaries"
in favour of declaring the *range of types* that were already present
when the dict was read in to be read-only: you can't modify them (say,
by adding members to them if they're structs, or calling ctf_set_array
on them), but you can add more types and point to them. (The API
remains the same, with calls sometimes returning ECTF_RDONLY, but now
they do so less often.)
This is a fairly invasive change, mostly because code written since the
ban was introduced didn't take the possibility of a static/dynamic split
into account. Some of these irregularities were hard to define as
anything but bugs.
Notably:
- The symbol handling was assuming that symbols only needed to be
looked for in dynamic hashtabs or static linker-laid-out indexed/
nonindexed layouts, but now we want to check both in case people
added more symbols to a dict they opened.
- The code that handles type additions wasn't checking to see if types
with the same name existed *at all* (so you could do
ctf_add_typedef (fp, "foo", bar) repeatedly without error). This
seems reasonable for types you just added, but we probably *do* want
to ban addition of types with names that override names we already
used in the ctf_open()ed portion, since that would probably corrupt
existing type relationships. (Doing things this way also avoids
causing new errors for any existing code that was doing this sort of
thing.)
- ctf_lookup_variable entirely failed to work for variables just added
by ctf_add_variable: you had to write the dict out and read it back
in again before they appeared.
- The symbol handling remembered what symbols you looked up but didn't
remember their types, so you could look up an object symbol and then
find it popping up when you asked for function symbols, which seems
less than ideal. Since we had to rejig things enough to be able to
distinguish function and object symbols internally anyway (in order
to give suitable errors if you try to add a symbol with a name that
already existed in the ctf_open()ed dict), this bug suddenly became
more visible and was easily fixed.
We do not (yet) support writing out dicts that have been previously read
in via ctf_open() or other deserializer (you can look things up in them,
but not write them out a second time). This never worked, so there is
no incompatibility; if it is needed at a later date, the serializer is a
little bit closer to having it work now (the only table we don't deal
with is the types table, and that's because the upcoming CTFv4 changes
are likely to make major changes to the way that table is represented
internally, so adding more code that depends on its current form seems
like a bad idea).
There is a new testcase that tests much of this, in particular that
modification of existing types is still banned and that you can add new
ones and chase them without error.
libctf/
* ctf-impl.h (struct ctf_dict.ctf_symhash): Split into...
(ctf_dict.ctf_symhash_func): ... this and...
(ctf_dict.ctf_symhash_objt): ... this.
(ctf_dict.ctf_stypes): New, counts static types.
(LCTF_INDEX_TO_TYPEPTR): Use it instead of CTF_RDWR.
(LCTF_RDWR): Deleted.
(LCTF_DIRTY): Renumbered.
(LCTF_LINKING): Likewise.
(ctf_lookup_variable_here): New.
(ctf_lookup_by_sym_or_name): Likewise.
(ctf_symbol_next_static): Likewise.
(ctf_add_variable_forced): Likewise.
(ctf_add_funcobjt_sym_forced): Likewise.
(ctf_simple_open_internal): Adjust.
(ctf_bufopen_internal): Likewise.
* ctf-create.c (ctf_grow_ptrtab): Adjust a lot to start with.
(ctf_create): Migrate a bunch of initializations into bufopen.
Force recreation of name tables. Do not forcibly override the
model, let ctf_bufopen do it.
(ctf_static_type): New.
(ctf_update): Drop LCTF_RDWR check.
(ctf_dynamic_type): Likewise.
(ctf_add_function): Likewise.
(ctf_add_type_internal): Likewise.
(ctf_rollback): Check ctf_stypes, not LCTF_RDWR.
(ctf_set_array): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_enumerator): Likewise (only on the target dict).
(ctf_add_member_offset): Likewise.
(ctf_add_generic): Drop LCTF_RDWR check. Ban addition of types
with colliding names.
(ctf_add_forward): Note safety under the new rules.
(ctf_add_variable): Split all but the existence check into...
(ctf_add_variable_forced): ... this new function.
(ctf_add_funcobjt_sym): Likewise...
(ctf_add_funcobjt_sym_forced): ... for this new function.
* ctf-link.c (ctf_link_add_linker_symbol): Ban calling on dicts
with any stypes.
(ctf_link_add_strtab): Likewise.
(ctf_link_shuffle_syms): Likewise.
(ctf_link_intern_extern_string): Note pre-existing prohibition.
* ctf-lookup.c (ctf_lookup_by_id): Drop LCTF_RDWR check.
(ctf_lookup_variable): Split out looking in a dict but not
its parent into...
(ctf_lookup_variable_here): ... this new function.
(ctf_lookup_symbol_idx): Track whether looking up a function or
object: cache them separately.
(ctf_symbol_next): Split out looking in non-dynamic symtypetab
entries to...
(ctf_symbol_next_static): ... this new function. Don't get confused
by the simultaneous presence of static and dynamic symtypetab entries.
(ctf_try_lookup_indexed): Don't waste time looking up symbols by
index before there can be any idea how symbols are numbered.
(ctf_lookup_by_sym_or_name): Distinguish between function and
data object lookups. Drop LCTF_RDWR.
(ctf_lookup_by_symbol): Adjust.
(ctf_lookup_by_symbol_name): Likewise.
* ctf-open.c (init_types): Rename to...
(init_static_types): ... this. Drop LCTF_RDWR. Populate ctf_stypes.
(ctf_simple_open): Drop writable arg.
(ctf_simple_open_internal): Likewise.
(ctf_bufopen): Likewise.
(ctf_bufopen_internal): Populate fields only used for writable dicts.
Drop LCTF_RDWR.
(ctf_dict_close): Cater for symhash cache split.
* ctf-serialize.c (ctf_serialize): Use ctf_stypes, not LCTF_RDWR.
* ctf-types.c (ctf_variable_next): Drop LCTF_RDWR.
* testsuite/libctf-lookup/add-to-opened*: New test.
2023-12-20 00:58:19 +08:00
|
|
|
/* Prohibit promotion if this type was ctf_open()ed. */
|
|
|
|
if (type > 0 && type < fp->ctf_stypes)
|
|
|
|
return (ctf_set_errno (fp, ECTF_RDONLY));
|
|
|
|
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
if (type != 0 && ctf_type_kind (fp, type) == CTF_K_FORWARD)
|
|
|
|
dtd = ctf_dtd_lookup (fp, type);
|
libctf: avoid the need to ever use ctf_update
The method of operation of libctf when the dictionary is writable has
before now been that types that are added land in the dynamic type
section, which is a linked list and hash of IDs -> dynamic type
definitions (and, recently a hash of names): the DTDs are a bit of CTF
representing the ctf_type_t and ad hoc C structures representing the
vlen. Historically, libctf was unable to do anything with these types,
not even look them up by ID, let alone by name: if you wanted to do that
say if you were adding a type that depended on one you just added) you
called ctf_update, which serializes all the DTDs into a CTF file and
reopens it, copying its guts over the fp it's called with. The
ctf_updated types are then frozen in amber and unchangeable: all lookups
will return the types in the static portion in preference to the dynamic
portion, and we will refuse to re-add things that already exist in the
static portion (and, of late, in the dynamic portion too). The libctf
machinery remembers the boundary between static and dynamic types and
looks in the right portion for each type. Lots of things still don't
quite work with dynamic types (e.g. getting their size), but enough
works to do a bunch of additions and then a ctf_update, most of the
time.
Except it doesn't, because ctf_add_type finds it necessary to walk the
full dynamic type definition list looking for types with matching names,
so it gets slower and slower with every type you add: fixing this
requires calling ctf_update periodically for no other reason than to
avoid massively slowing things down.
This is all clunky and very slow but kind of works, until you consider
that it is in fact possible and indeed necessary to modify one sort of
type after it has been added: forwards. These are necessarily promoted
to structs, unions or enums, and when they do so *their type ID does not
change*. So all of a sudden we are changing types that already exist in
the static portion. ctf_update gets massively confused by this and
allocates space enough for the forward (with no members), but then emits
the new dynamic type (with all the members) into it. You get an
assertion failure after that, if you're lucky, or a coredump.
So this commit rejigs things a bit and arranges to exclusively use the
dynamic type definitions in writable dictionaries, and the static type
definitions in readable dictionaries: we don't at any time have a mixture
of static and dynamic types, and you don't need to call ctf_update to
make things "appear". The ctf_dtbyname hash I introduced a few months
ago, which maps things like "struct foo" to DTDs, is removed, replaced
instead by a change of type of the four dictionaries which track names.
Rather than just being (unresizable) ctf_hash_t's populated only at
ctf_bufopen time, they are now a ctf_names_t structure, which is a pair
of ctf_hash_t and ctf_dynhash_t, with the ctf_hash_t portion being used
in readonly dictionaries, and the ctf_dynhash_t being used in writable
ones. The decision as to which to use is centralized in the new
functions ctf_lookup_by_rawname (which takes a type kind) and
ctf_lookup_by_rawhash, which it calls (which takes a ctf_names_t *.)
This change lets us switch from using static to dynamic name hashes on
the fly across the entirety of libctf without complexifying anything: in
fact, because we now centralize the knowledge about how to map from type
kind to name hash, it actually simplifies things and lets us throw out
quite a lot of now-unnecessary complexity, from ctf_dtnyname (replaced
by the dynamic half of the name tables), through to ctf_dtnextid (now
that a dictionary's static portion is never referenced if the dictionary
is writable, we can just use ctf_typemax to indicate the maximum type:
dynamic or non-dynamic does not matter, and we no longer need to track
the boundary between the types). You can now ctf_rollback() as far as
you like, even past a ctf_update or for that matter a full writeout; all
the iteration functions work just as well on writable as on read-only
dictionaries; ctf_add_type no longer needs expensive duplicated code to
run over the dynamic types hunting for ones it might be interested in;
and the linker no longer needs a hack to call ctf_update so that calling
ctf_add_type is not impossibly expensive.
There is still a bit more complexity: some new code paths in ctf-types.c
need to know how to extract information from dynamic types. This
complexity will go away again in a few months when libctf acquires a
proper intermediate representation.
You can still call ctf_update if you like (it's public API, after all),
but its only effect now is to set the point to which ctf_discard rolls
back.
Obviously *something* still needs to serialize the CTF file before
writeout, and this job is done by ctf_serialize, which does everything
ctf_update used to except set the counter used by ctf_discard. It is
automatically called by the various functions that do CTF writeout:
nobody else ever needs to call it.
With this in place, forwards that are promoted to non-forwards no longer
crash the link, even if it happens tens of thousands of types later.
v5: fix tabdamage.
libctf/
* ctf-impl.h (ctf_names_t): New.
(ctf_lookup_t) <ctf_hash>: Now a ctf_names_t, not a ctf_hash_t.
(ctf_file_t) <ctf_structs>: Likewise.
<ctf_unions>: Likewise.
<ctf_enums>: Likewise.
<ctf_names>: Likewise.
<ctf_lookups>: Improve comment.
<ctf_ptrtab_len>: New.
<ctf_prov_strtab>: New.
<ctf_str_prov_offset>: New.
<ctf_dtbyname>: Remove, redundant to the names hashes.
<ctf_dtnextid>: Remove, redundant to ctf_typemax.
(ctf_dtdef_t) <dtd_name>: Remove.
<dtd_data>: Note that the ctt_name is now populated.
(ctf_str_atom_t) <csa_offset>: This is now the strtab
offset for internal strings too.
<csa_external_offset>: New, the external strtab offset.
(CTF_INDEX_TO_TYPEPTR): Handle the LCTF_RDWR case.
(ctf_name_table): New declaration.
(ctf_lookup_by_rawname): Likewise.
(ctf_lookup_by_rawhash): Likewise.
(ctf_set_ctl_hashes): Likewise.
(ctf_serialize): Likewise.
(ctf_dtd_insert): Adjust.
(ctf_simple_open_internal): Likewise.
(ctf_bufopen_internal): Likewise.
(ctf_list_empty_p): Likewise.
(ctf_str_remove_ref): Likewise.
(ctf_str_add): Returns uint32_t now.
(ctf_str_add_ref): Likewise.
(ctf_str_add_external): Now returns a boolean (int).
* ctf-string.c (ctf_strraw_explicit): Check the ctf_prov_strtab
for strings in the appropriate range.
(ctf_str_create_atoms): Create the ctf_prov_strtab. Detect OOM
when adding the null string to the new strtab.
(ctf_str_free_atoms): Destroy the ctf_prov_strtab.
(ctf_str_add_ref_internal): Add make_provisional argument. If
make_provisional, populate the offset and fill in the
ctf_prov_strtab accordingly.
(ctf_str_add): Return the offset, not the string.
(ctf_str_add_ref): Likewise.
(ctf_str_add_external): Return a success integer.
(ctf_str_remove_ref): New, remove a single ref.
(ctf_str_count_strtab): Do not count the initial null string's
length or the existence or length of any unreferenced internal
atoms.
(ctf_str_populate_sorttab): Skip atoms with no refs.
(ctf_str_write_strtab): Populate the nullstr earlier. Add one
to the cts_len for the null string, since it is no longer done
in ctf_str_count_strtab. Adjust for csa_external_offset rename.
Populate the csa_offset for both internal and external cases.
Flush the ctf_prov_strtab afterwards, and reset the
ctf_str_prov_offset.
* ctf-create.c (ctf_grow_ptrtab): New.
(ctf_create): Call it. Initialize new fields rather than old
ones. Tell ctf_bufopen_internal that this is a writable dictionary.
Set the ctl hashes and data model.
(ctf_update): Rename to...
(ctf_serialize): ... this. Leave a compatibility function behind.
Tell ctf_simple_open_internal that this is a writable dictionary.
Pass the new fields along from the old dictionary. Drop
ctf_dtnextid and ctf_dtbyname. Use ctf_strraw, not dtd_name.
Do not zero out the DTD's ctt_name.
(ctf_prefixed_name): Rename to...
(ctf_name_table): ... this. No longer return a prefixed name: return
the applicable name table instead.
(ctf_dtd_insert): Use it, and use the right name table. Pass in the
kind we're adding. Migrate away from dtd_name.
(ctf_dtd_delete): Adjust similarly. Remove the ref to the
deleted ctt_name.
(ctf_dtd_lookup_type_by_name): Remove.
(ctf_dynamic_type): Always return NULL on read-only dictionaries.
No longer check ctf_dtnextid: check ctf_typemax instead.
(ctf_snapshot): No longer use ctf_dtnextid: use ctf_typemax instead.
(ctf_rollback): Likewise. No longer fail with ECTF_OVERROLLBACK. Use
ctf_name_table and the right name table, and migrate away from
dtd_name as in ctf_dtd_delete.
(ctf_add_generic): Pass in the kind explicitly and pass it to
ctf_dtd_insert. Use ctf_typemax, not ctf_dtnextid. Migrate away
from dtd_name to using ctf_str_add_ref to populate the ctt_name.
Grow the ptrtab if needed.
(ctf_add_encoded): Pass in the kind.
(ctf_add_slice): Likewise.
(ctf_add_array): Likewise.
(ctf_add_function): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_reftype): Likewise. Initialize the ctf_ptrtab, checking
ctt_name rather than dtd_name.
(ctf_add_struct_sized): Pass in the kind. Use
ctf_lookup_by_rawname, not ctf_hash_lookup_type /
ctf_dtd_lookup_type_by_name.
(ctf_add_union_sized): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_type): Likewise.
(ctf_compress_write): Call ctf_serialize: adjust for ctf_size not
being initialized until after the call.
(ctf_write_mem): Likewise.
(ctf_write): Likewise.
* ctf-archive.c (arc_write_one_ctf): Likewise.
* ctf-lookup.c (ctf_lookup_by_name): Use ctf_lookuup_by_rawhash, not
ctf_hash_lookup_type.
(ctf_lookup_by_id): No longer check the readonly types if the
dictionary is writable.
* ctf-open.c (init_types): Assert that this dictionary is not
writable. Adjust to use the new name hashes, ctf_name_table,
and ctf_ptrtab_len. GNU style fix for the final ptrtab scan.
(ctf_bufopen_internal): New 'writable' parameter. Flip on LCTF_RDWR
if set. Drop out early when dictionary is writable. Split the
ctf_lookups initialization into...
(ctf_set_cth_hashes): ... this new function.
(ctf_simple_open_internal): Adjust. New 'writable' parameter.
(ctf_simple_open): Adjust accordingly.
(ctf_bufopen): Likewise.
(ctf_file_close): Destroy the appropriate name hashes. No longer
destroy ctf_dtbyname, which is gone.
(ctf_getdatasect): Remove spurious "extern".
* ctf-types.c (ctf_lookup_by_rawname): New, look up types in the
specified name table, given a kind.
(ctf_lookup_by_rawhash): Likewise, given a ctf_names_t *.
(ctf_member_iter): Add support for iterating over the
dynamic type list.
(ctf_enum_iter): Likewise.
(ctf_variable_iter): Likewise.
(ctf_type_rvisit): Likewise.
(ctf_member_info): Add support for types in the dynamic type list.
(ctf_enum_name): Likewise.
(ctf_enum_value): Likewise.
(ctf_func_type_info): Likewise.
(ctf_func_type_args): Likewise.
* ctf-link.c (ctf_accumulate_archive_names): No longer call
ctf_update.
(ctf_link_write): Likewise.
(ctf_link_intern_extern_string): Adjust for new
ctf_str_add_external return value.
(ctf_link_add_strtab): Likewise.
* ctf-util.c (ctf_list_empty_p): New.
2019-08-08 00:55:09 +08:00
|
|
|
else if ((type = ctf_add_generic (fp, flag, name, CTF_K_UNION,
|
libctf: eliminate dtd_u, part 5: structs / unions
Eliminate the dynamic member storage for structs and unions as we have
for other dynamic types. This is much like the previous enum
elimination, except that structs and unions are the only types for which
a full-sized ctf_type_t might be needed. Up to now, this decision has
been made in the individual ctf_add_{struct,union}_sized functions and
duplicated in ctf_add_member_offset. The vlen machinery lets us
simplify this, always allocating a ctf_lmember_t and setting the
dtd_data's ctt_size to CTF_LSIZE_SENT: we figure out whether this is
really justified and (almost always) repack things down into a
ctf_stype_t at ctf_serialize time.
This allows us to eliminate the dynamic member paths from the iterators and
query functions in ctf-types.c in favour of always using the large-structure
vlen stuff for dynamic types (the diff is ugly but that's just because of the
volume of reindentation this calls for). This also means the large-structure
vlen stuff gets more heavily tested, which is nice because it was an almost
totally unused code path before now (it only kicked in for structures of size
>4GiB, and how often do you see those?)
The only extra complexity here is ctf_add_type. Back in the days of the
nondeduplicating linker this was called a ridiculous number of times for
countless identical copies of structures: eschewing the repeated lookups of the
dtd in ctf_add_member_offset and adding the members directly saved an amazing
amount of time. Now the nondeduplicating linker is gone, this is extreme
overoptimization: we can rip out the direct addition and use ctf_member_next and
ctf_add_member_offset, just like ctf_dedup_emit does.
We augment a ctf_add_type test to try adding a self-referential struct, the only
thing the ctf_add_type part of this change really perturbs.
This completes the elimination of dtd_u.
libctf/ChangeLog
2021-03-18 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h (ctf_dtdef_t) <dtu_members>: Remove.
<dtd_u>: Likewise.
(ctf_dmdef_t): Remove.
(struct ctf_next) <u.ctn_dmd>: Remove.
* ctf-create.c (INITIAL_VLEN): New, more-or-less arbitrary initial
vlen size.
(ctf_add_enum): Use it.
(ctf_dtd_delete): Do not free the (removed) dmd; remove string
refs from the vlen on struct deletion.
(ctf_add_struct_sized): Populate the vlen: do it by hand if
promoting forwards. Always populate the full-size
lsizehi/lsizelo members.
(ctf_add_union_sized): Likewise.
(ctf_add_member_offset): Set up the vlen rather than the dmd.
Expand it as needed, repointing string refs via
ctf_str_move_pending. Add the member names as pending strings.
Always populate the full-size lsizehi/lsizelo members.
(membadd): Remove, folding back into...
(ctf_add_type_internal): ... here, adding via an ordinary
ctf_add_struct_sized and _next iteration rather than doing
everything by hand.
* ctf-serialize.c (ctf_copy_smembers): Remove this...
(ctf_copy_lmembers): ... and this...
(ctf_emit_type_sect): ... folding into here. Figure out if a
ctf_stype_t is needed here, not in ctf_add_*_sized.
(ctf_type_sect_size): Figure out the ctf_stype_t stuff the same
way here.
* ctf-types.c (ctf_member_next): Remove the dmd path and always
use the vlen. Force large-structure usage for dynamic types.
(ctf_type_align): Likewise.
(ctf_member_info): Likewise.
(ctf_type_rvisit): Likewise.
* testsuite/libctf-regression/type-add-unnamed-struct-ctf.c: Add a
self-referential type to this test.
* testsuite/libctf-regression/type-add-unnamed-struct.c: Adjusted
accordingly.
* testsuite/libctf-regression/type-add-unnamed-struct.lk: Likewise.
2021-03-18 20:37:52 +08:00
|
|
|
initial_vlen, &dtd)) == CTF_ERR)
|
libctf: support addition of types to dicts read via ctf_open()
libctf has long declared deserialized dictionaries (out of files or ELF
sections or memory buffers or whatever) to be read-only: back in the
furthest prehistory this was not the case, in that you could add a
few sorts of type to such dicts, but attempting to do so often caused
horrible memory corruption, so I banned the lot.
But it turns out real consumers want it (notably DTrace, which
synthesises pointers to types that don't have them and adds them to the
ctf_open()ed dicts if it needs them). Let's bring it back again, but
without the memory corruption and without the massive code duplication
required in days of yore to distinguish between static and dynamic
types: the representation of both types has been identical for a few
years, with the only difference being that types as a whole are stored in
a big buffer for types read in via ctf_open and per-type hashtables for
newly-added types.
So we discard the internally-visible concept of "readonly dictionaries"
in favour of declaring the *range of types* that were already present
when the dict was read in to be read-only: you can't modify them (say,
by adding members to them if they're structs, or calling ctf_set_array
on them), but you can add more types and point to them. (The API
remains the same, with calls sometimes returning ECTF_RDONLY, but now
they do so less often.)
This is a fairly invasive change, mostly because code written since the
ban was introduced didn't take the possibility of a static/dynamic split
into account. Some of these irregularities were hard to define as
anything but bugs.
Notably:
- The symbol handling was assuming that symbols only needed to be
looked for in dynamic hashtabs or static linker-laid-out indexed/
nonindexed layouts, but now we want to check both in case people
added more symbols to a dict they opened.
- The code that handles type additions wasn't checking to see if types
with the same name existed *at all* (so you could do
ctf_add_typedef (fp, "foo", bar) repeatedly without error). This
seems reasonable for types you just added, but we probably *do* want
to ban addition of types with names that override names we already
used in the ctf_open()ed portion, since that would probably corrupt
existing type relationships. (Doing things this way also avoids
causing new errors for any existing code that was doing this sort of
thing.)
- ctf_lookup_variable entirely failed to work for variables just added
by ctf_add_variable: you had to write the dict out and read it back
in again before they appeared.
- The symbol handling remembered what symbols you looked up but didn't
remember their types, so you could look up an object symbol and then
find it popping up when you asked for function symbols, which seems
less than ideal. Since we had to rejig things enough to be able to
distinguish function and object symbols internally anyway (in order
to give suitable errors if you try to add a symbol with a name that
already existed in the ctf_open()ed dict), this bug suddenly became
more visible and was easily fixed.
We do not (yet) support writing out dicts that have been previously read
in via ctf_open() or other deserializer (you can look things up in them,
but not write them out a second time). This never worked, so there is
no incompatibility; if it is needed at a later date, the serializer is a
little bit closer to having it work now (the only table we don't deal
with is the types table, and that's because the upcoming CTFv4 changes
are likely to make major changes to the way that table is represented
internally, so adding more code that depends on its current form seems
like a bad idea).
There is a new testcase that tests much of this, in particular that
modification of existing types is still banned and that you can add new
ones and chase them without error.
libctf/
* ctf-impl.h (struct ctf_dict.ctf_symhash): Split into...
(ctf_dict.ctf_symhash_func): ... this and...
(ctf_dict.ctf_symhash_objt): ... this.
(ctf_dict.ctf_stypes): New, counts static types.
(LCTF_INDEX_TO_TYPEPTR): Use it instead of CTF_RDWR.
(LCTF_RDWR): Deleted.
(LCTF_DIRTY): Renumbered.
(LCTF_LINKING): Likewise.
(ctf_lookup_variable_here): New.
(ctf_lookup_by_sym_or_name): Likewise.
(ctf_symbol_next_static): Likewise.
(ctf_add_variable_forced): Likewise.
(ctf_add_funcobjt_sym_forced): Likewise.
(ctf_simple_open_internal): Adjust.
(ctf_bufopen_internal): Likewise.
* ctf-create.c (ctf_grow_ptrtab): Adjust a lot to start with.
(ctf_create): Migrate a bunch of initializations into bufopen.
Force recreation of name tables. Do not forcibly override the
model, let ctf_bufopen do it.
(ctf_static_type): New.
(ctf_update): Drop LCTF_RDWR check.
(ctf_dynamic_type): Likewise.
(ctf_add_function): Likewise.
(ctf_add_type_internal): Likewise.
(ctf_rollback): Check ctf_stypes, not LCTF_RDWR.
(ctf_set_array): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_enumerator): Likewise (only on the target dict).
(ctf_add_member_offset): Likewise.
(ctf_add_generic): Drop LCTF_RDWR check. Ban addition of types
with colliding names.
(ctf_add_forward): Note safety under the new rules.
(ctf_add_variable): Split all but the existence check into...
(ctf_add_variable_forced): ... this new function.
(ctf_add_funcobjt_sym): Likewise...
(ctf_add_funcobjt_sym_forced): ... for this new function.
* ctf-link.c (ctf_link_add_linker_symbol): Ban calling on dicts
with any stypes.
(ctf_link_add_strtab): Likewise.
(ctf_link_shuffle_syms): Likewise.
(ctf_link_intern_extern_string): Note pre-existing prohibition.
* ctf-lookup.c (ctf_lookup_by_id): Drop LCTF_RDWR check.
(ctf_lookup_variable): Split out looking in a dict but not
its parent into...
(ctf_lookup_variable_here): ... this new function.
(ctf_lookup_symbol_idx): Track whether looking up a function or
object: cache them separately.
(ctf_symbol_next): Split out looking in non-dynamic symtypetab
entries to...
(ctf_symbol_next_static): ... this new function. Don't get confused
by the simultaneous presence of static and dynamic symtypetab entries.
(ctf_try_lookup_indexed): Don't waste time looking up symbols by
index before there can be any idea how symbols are numbered.
(ctf_lookup_by_sym_or_name): Distinguish between function and
data object lookups. Drop LCTF_RDWR.
(ctf_lookup_by_symbol): Adjust.
(ctf_lookup_by_symbol_name): Likewise.
* ctf-open.c (init_types): Rename to...
(init_static_types): ... this. Drop LCTF_RDWR. Populate ctf_stypes.
(ctf_simple_open): Drop writable arg.
(ctf_simple_open_internal): Likewise.
(ctf_bufopen): Likewise.
(ctf_bufopen_internal): Populate fields only used for writable dicts.
Drop LCTF_RDWR.
(ctf_dict_close): Cater for symhash cache split.
* ctf-serialize.c (ctf_serialize): Use ctf_stypes, not LCTF_RDWR.
* ctf-types.c (ctf_variable_next): Drop LCTF_RDWR.
* testsuite/libctf-lookup/add-to-opened*: New test.
2023-12-20 00:58:19 +08:00
|
|
|
return CTF_ERR; /* errno is set for us. */
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
|
libctf: eliminate dtd_u, part 5: structs / unions
Eliminate the dynamic member storage for structs and unions as we have
for other dynamic types. This is much like the previous enum
elimination, except that structs and unions are the only types for which
a full-sized ctf_type_t might be needed. Up to now, this decision has
been made in the individual ctf_add_{struct,union}_sized functions and
duplicated in ctf_add_member_offset. The vlen machinery lets us
simplify this, always allocating a ctf_lmember_t and setting the
dtd_data's ctt_size to CTF_LSIZE_SENT: we figure out whether this is
really justified and (almost always) repack things down into a
ctf_stype_t at ctf_serialize time.
This allows us to eliminate the dynamic member paths from the iterators and
query functions in ctf-types.c in favour of always using the large-structure
vlen stuff for dynamic types (the diff is ugly but that's just because of the
volume of reindentation this calls for). This also means the large-structure
vlen stuff gets more heavily tested, which is nice because it was an almost
totally unused code path before now (it only kicked in for structures of size
>4GiB, and how often do you see those?)
The only extra complexity here is ctf_add_type. Back in the days of the
nondeduplicating linker this was called a ridiculous number of times for
countless identical copies of structures: eschewing the repeated lookups of the
dtd in ctf_add_member_offset and adding the members directly saved an amazing
amount of time. Now the nondeduplicating linker is gone, this is extreme
overoptimization: we can rip out the direct addition and use ctf_member_next and
ctf_add_member_offset, just like ctf_dedup_emit does.
We augment a ctf_add_type test to try adding a self-referential struct, the only
thing the ctf_add_type part of this change really perturbs.
This completes the elimination of dtd_u.
libctf/ChangeLog
2021-03-18 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h (ctf_dtdef_t) <dtu_members>: Remove.
<dtd_u>: Likewise.
(ctf_dmdef_t): Remove.
(struct ctf_next) <u.ctn_dmd>: Remove.
* ctf-create.c (INITIAL_VLEN): New, more-or-less arbitrary initial
vlen size.
(ctf_add_enum): Use it.
(ctf_dtd_delete): Do not free the (removed) dmd; remove string
refs from the vlen on struct deletion.
(ctf_add_struct_sized): Populate the vlen: do it by hand if
promoting forwards. Always populate the full-size
lsizehi/lsizelo members.
(ctf_add_union_sized): Likewise.
(ctf_add_member_offset): Set up the vlen rather than the dmd.
Expand it as needed, repointing string refs via
ctf_str_move_pending. Add the member names as pending strings.
Always populate the full-size lsizehi/lsizelo members.
(membadd): Remove, folding back into...
(ctf_add_type_internal): ... here, adding via an ordinary
ctf_add_struct_sized and _next iteration rather than doing
everything by hand.
* ctf-serialize.c (ctf_copy_smembers): Remove this...
(ctf_copy_lmembers): ... and this...
(ctf_emit_type_sect): ... folding into here. Figure out if a
ctf_stype_t is needed here, not in ctf_add_*_sized.
(ctf_type_sect_size): Figure out the ctf_stype_t stuff the same
way here.
* ctf-types.c (ctf_member_next): Remove the dmd path and always
use the vlen. Force large-structure usage for dynamic types.
(ctf_type_align): Likewise.
(ctf_member_info): Likewise.
(ctf_type_rvisit): Likewise.
* testsuite/libctf-regression/type-add-unnamed-struct-ctf.c: Add a
self-referential type to this test.
* testsuite/libctf-regression/type-add-unnamed-struct.c: Adjusted
accordingly.
* testsuite/libctf-regression/type-add-unnamed-struct.lk: Likewise.
2021-03-18 20:37:52 +08:00
|
|
|
/* Forwards won't have any vlen yet. */
|
|
|
|
if (dtd->dtd_vlen_alloc == 0)
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
{
|
libctf: eliminate dtd_u, part 5: structs / unions
Eliminate the dynamic member storage for structs and unions as we have
for other dynamic types. This is much like the previous enum
elimination, except that structs and unions are the only types for which
a full-sized ctf_type_t might be needed. Up to now, this decision has
been made in the individual ctf_add_{struct,union}_sized functions and
duplicated in ctf_add_member_offset. The vlen machinery lets us
simplify this, always allocating a ctf_lmember_t and setting the
dtd_data's ctt_size to CTF_LSIZE_SENT: we figure out whether this is
really justified and (almost always) repack things down into a
ctf_stype_t at ctf_serialize time.
This allows us to eliminate the dynamic member paths from the iterators and
query functions in ctf-types.c in favour of always using the large-structure
vlen stuff for dynamic types (the diff is ugly but that's just because of the
volume of reindentation this calls for). This also means the large-structure
vlen stuff gets more heavily tested, which is nice because it was an almost
totally unused code path before now (it only kicked in for structures of size
>4GiB, and how often do you see those?)
The only extra complexity here is ctf_add_type. Back in the days of the
nondeduplicating linker this was called a ridiculous number of times for
countless identical copies of structures: eschewing the repeated lookups of the
dtd in ctf_add_member_offset and adding the members directly saved an amazing
amount of time. Now the nondeduplicating linker is gone, this is extreme
overoptimization: we can rip out the direct addition and use ctf_member_next and
ctf_add_member_offset, just like ctf_dedup_emit does.
We augment a ctf_add_type test to try adding a self-referential struct, the only
thing the ctf_add_type part of this change really perturbs.
This completes the elimination of dtd_u.
libctf/ChangeLog
2021-03-18 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h (ctf_dtdef_t) <dtu_members>: Remove.
<dtd_u>: Likewise.
(ctf_dmdef_t): Remove.
(struct ctf_next) <u.ctn_dmd>: Remove.
* ctf-create.c (INITIAL_VLEN): New, more-or-less arbitrary initial
vlen size.
(ctf_add_enum): Use it.
(ctf_dtd_delete): Do not free the (removed) dmd; remove string
refs from the vlen on struct deletion.
(ctf_add_struct_sized): Populate the vlen: do it by hand if
promoting forwards. Always populate the full-size
lsizehi/lsizelo members.
(ctf_add_union_sized): Likewise.
(ctf_add_member_offset): Set up the vlen rather than the dmd.
Expand it as needed, repointing string refs via
ctf_str_move_pending. Add the member names as pending strings.
Always populate the full-size lsizehi/lsizelo members.
(membadd): Remove, folding back into...
(ctf_add_type_internal): ... here, adding via an ordinary
ctf_add_struct_sized and _next iteration rather than doing
everything by hand.
* ctf-serialize.c (ctf_copy_smembers): Remove this...
(ctf_copy_lmembers): ... and this...
(ctf_emit_type_sect): ... folding into here. Figure out if a
ctf_stype_t is needed here, not in ctf_add_*_sized.
(ctf_type_sect_size): Figure out the ctf_stype_t stuff the same
way here.
* ctf-types.c (ctf_member_next): Remove the dmd path and always
use the vlen. Force large-structure usage for dynamic types.
(ctf_type_align): Likewise.
(ctf_member_info): Likewise.
(ctf_type_rvisit): Likewise.
* testsuite/libctf-regression/type-add-unnamed-struct-ctf.c: Add a
self-referential type to this test.
* testsuite/libctf-regression/type-add-unnamed-struct.c: Adjusted
accordingly.
* testsuite/libctf-regression/type-add-unnamed-struct.lk: Likewise.
2021-03-18 20:37:52 +08:00
|
|
|
if ((dtd->dtd_vlen = calloc (1, initial_vlen)) == NULL)
|
2023-09-13 17:02:36 +08:00
|
|
|
return (ctf_set_typed_errno (fp, ENOMEM));
|
libctf: eliminate dtd_u, part 5: structs / unions
Eliminate the dynamic member storage for structs and unions as we have
for other dynamic types. This is much like the previous enum
elimination, except that structs and unions are the only types for which
a full-sized ctf_type_t might be needed. Up to now, this decision has
been made in the individual ctf_add_{struct,union}_sized functions and
duplicated in ctf_add_member_offset. The vlen machinery lets us
simplify this, always allocating a ctf_lmember_t and setting the
dtd_data's ctt_size to CTF_LSIZE_SENT: we figure out whether this is
really justified and (almost always) repack things down into a
ctf_stype_t at ctf_serialize time.
This allows us to eliminate the dynamic member paths from the iterators and
query functions in ctf-types.c in favour of always using the large-structure
vlen stuff for dynamic types (the diff is ugly but that's just because of the
volume of reindentation this calls for). This also means the large-structure
vlen stuff gets more heavily tested, which is nice because it was an almost
totally unused code path before now (it only kicked in for structures of size
>4GiB, and how often do you see those?)
The only extra complexity here is ctf_add_type. Back in the days of the
nondeduplicating linker this was called a ridiculous number of times for
countless identical copies of structures: eschewing the repeated lookups of the
dtd in ctf_add_member_offset and adding the members directly saved an amazing
amount of time. Now the nondeduplicating linker is gone, this is extreme
overoptimization: we can rip out the direct addition and use ctf_member_next and
ctf_add_member_offset, just like ctf_dedup_emit does.
We augment a ctf_add_type test to try adding a self-referential struct, the only
thing the ctf_add_type part of this change really perturbs.
This completes the elimination of dtd_u.
libctf/ChangeLog
2021-03-18 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h (ctf_dtdef_t) <dtu_members>: Remove.
<dtd_u>: Likewise.
(ctf_dmdef_t): Remove.
(struct ctf_next) <u.ctn_dmd>: Remove.
* ctf-create.c (INITIAL_VLEN): New, more-or-less arbitrary initial
vlen size.
(ctf_add_enum): Use it.
(ctf_dtd_delete): Do not free the (removed) dmd; remove string
refs from the vlen on struct deletion.
(ctf_add_struct_sized): Populate the vlen: do it by hand if
promoting forwards. Always populate the full-size
lsizehi/lsizelo members.
(ctf_add_union_sized): Likewise.
(ctf_add_member_offset): Set up the vlen rather than the dmd.
Expand it as needed, repointing string refs via
ctf_str_move_pending. Add the member names as pending strings.
Always populate the full-size lsizehi/lsizelo members.
(membadd): Remove, folding back into...
(ctf_add_type_internal): ... here, adding via an ordinary
ctf_add_struct_sized and _next iteration rather than doing
everything by hand.
* ctf-serialize.c (ctf_copy_smembers): Remove this...
(ctf_copy_lmembers): ... and this...
(ctf_emit_type_sect): ... folding into here. Figure out if a
ctf_stype_t is needed here, not in ctf_add_*_sized.
(ctf_type_sect_size): Figure out the ctf_stype_t stuff the same
way here.
* ctf-types.c (ctf_member_next): Remove the dmd path and always
use the vlen. Force large-structure usage for dynamic types.
(ctf_type_align): Likewise.
(ctf_member_info): Likewise.
(ctf_type_rvisit): Likewise.
* testsuite/libctf-regression/type-add-unnamed-struct-ctf.c: Add a
self-referential type to this test.
* testsuite/libctf-regression/type-add-unnamed-struct.c: Adjusted
accordingly.
* testsuite/libctf-regression/type-add-unnamed-struct.lk: Likewise.
2021-03-18 20:37:52 +08:00
|
|
|
dtd->dtd_vlen_alloc = initial_vlen;
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
}
|
libctf: eliminate dtd_u, part 5: structs / unions
Eliminate the dynamic member storage for structs and unions as we have
for other dynamic types. This is much like the previous enum
elimination, except that structs and unions are the only types for which
a full-sized ctf_type_t might be needed. Up to now, this decision has
been made in the individual ctf_add_{struct,union}_sized functions and
duplicated in ctf_add_member_offset. The vlen machinery lets us
simplify this, always allocating a ctf_lmember_t and setting the
dtd_data's ctt_size to CTF_LSIZE_SENT: we figure out whether this is
really justified and (almost always) repack things down into a
ctf_stype_t at ctf_serialize time.
This allows us to eliminate the dynamic member paths from the iterators and
query functions in ctf-types.c in favour of always using the large-structure
vlen stuff for dynamic types (the diff is ugly but that's just because of the
volume of reindentation this calls for). This also means the large-structure
vlen stuff gets more heavily tested, which is nice because it was an almost
totally unused code path before now (it only kicked in for structures of size
>4GiB, and how often do you see those?)
The only extra complexity here is ctf_add_type. Back in the days of the
nondeduplicating linker this was called a ridiculous number of times for
countless identical copies of structures: eschewing the repeated lookups of the
dtd in ctf_add_member_offset and adding the members directly saved an amazing
amount of time. Now the nondeduplicating linker is gone, this is extreme
overoptimization: we can rip out the direct addition and use ctf_member_next and
ctf_add_member_offset, just like ctf_dedup_emit does.
We augment a ctf_add_type test to try adding a self-referential struct, the only
thing the ctf_add_type part of this change really perturbs.
This completes the elimination of dtd_u.
libctf/ChangeLog
2021-03-18 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h (ctf_dtdef_t) <dtu_members>: Remove.
<dtd_u>: Likewise.
(ctf_dmdef_t): Remove.
(struct ctf_next) <u.ctn_dmd>: Remove.
* ctf-create.c (INITIAL_VLEN): New, more-or-less arbitrary initial
vlen size.
(ctf_add_enum): Use it.
(ctf_dtd_delete): Do not free the (removed) dmd; remove string
refs from the vlen on struct deletion.
(ctf_add_struct_sized): Populate the vlen: do it by hand if
promoting forwards. Always populate the full-size
lsizehi/lsizelo members.
(ctf_add_union_sized): Likewise.
(ctf_add_member_offset): Set up the vlen rather than the dmd.
Expand it as needed, repointing string refs via
ctf_str_move_pending. Add the member names as pending strings.
Always populate the full-size lsizehi/lsizelo members.
(membadd): Remove, folding back into...
(ctf_add_type_internal): ... here, adding via an ordinary
ctf_add_struct_sized and _next iteration rather than doing
everything by hand.
* ctf-serialize.c (ctf_copy_smembers): Remove this...
(ctf_copy_lmembers): ... and this...
(ctf_emit_type_sect): ... folding into here. Figure out if a
ctf_stype_t is needed here, not in ctf_add_*_sized.
(ctf_type_sect_size): Figure out the ctf_stype_t stuff the same
way here.
* ctf-types.c (ctf_member_next): Remove the dmd path and always
use the vlen. Force large-structure usage for dynamic types.
(ctf_type_align): Likewise.
(ctf_member_info): Likewise.
(ctf_type_rvisit): Likewise.
* testsuite/libctf-regression/type-add-unnamed-struct-ctf.c: Add a
self-referential type to this test.
* testsuite/libctf-regression/type-add-unnamed-struct.c: Adjusted
accordingly.
* testsuite/libctf-regression/type-add-unnamed-struct.lk: Likewise.
2021-03-18 20:37:52 +08:00
|
|
|
|
|
|
|
dtd->dtd_data.ctt_info = CTF_TYPE_INFO (CTF_K_UNION, flag, 0);
|
|
|
|
dtd->dtd_data.ctt_size = CTF_LSIZE_SENT;
|
|
|
|
dtd->dtd_data.ctt_lsizehi = CTF_SIZE_TO_LSIZE_HI (size);
|
|
|
|
dtd->dtd_data.ctt_lsizelo = CTF_SIZE_TO_LSIZE_LO (size);
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
|
|
|
|
return type;
|
|
|
|
}
|
|
|
|
|
|
|
|
ctf_id_t
|
libctf, include, binutils, gdb, ld: rename ctf_file_t to ctf_dict_t
The naming of the ctf_file_t type in libctf is a historical curiosity.
Back in the Solaris days, CTF dictionaries were originally generated as
a separate file and then (sometimes) merged into objects: hence the
datatype was named ctf_file_t, and known as a "CTF file". Nowadays, raw
CTF is essentially never written to a file on its own, and the datatype
changed name to a "CTF dictionary" years ago. So the term "CTF file"
refers to something that is never a file! This is at best confusing.
The type has also historically been known as a 'CTF container", which is
even more confusing now that we have CTF archives which are *also* a
sort of container (they contain CTF dictionaries), but which are never
referred to as containers in the source code.
So fix this by completing the renaming, renaming ctf_file_t to
ctf_dict_t throughout, and renaming those few functions that refer to
CTF files by name (keeping compatibility aliases) to refer to dicts
instead. Old users who still refer to ctf_file_t will see (harmless)
pointer-compatibility warnings at compile time, but the ABI is unchanged
(since C doesn't mangle names, and ctf_file_t was always an opaque type)
and things will still compile fine as long as -Werror is not specified.
All references to CTF containers and CTF files in the source code are
fixed to refer to CTF dicts instead.
Further (smaller) renamings of annoyingly-named functions to come, as
part of the process of souping up queries across whole archives at once
(needed for the function info and data object sections).
binutils/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* objdump.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_ctf): Likewise. Use ctf_dict_close, not ctf_file_close.
* readelf.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_section_as_ctf): Likewise. Use ctf_dict_close, not
ctf_file_close.
gdb/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctfread.c: Change uses of ctf_file_t to ctf_dict_t.
(ctf_fp_info::~ctf_fp_info): Call ctf_dict_close, not ctf_file_close.
include/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-api.h (ctf_file_t): Rename to...
(ctf_dict_t): ... this. Keep ctf_file_t around for compatibility.
(struct ctf_file): Likewise rename to...
(struct ctf_dict): ... this.
(ctf_file_close): Rename to...
(ctf_dict_close): ... this, keeping compatibility function.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this, keeping compatibility function.
All callers adjusted.
* ctf.h: Rename references to ctf_file_t to ctf_dict_t.
(struct ctf_archive) <ctfa_nfiles>: Rename to...
<ctfa_ndicts>: ... this.
ld/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ldlang.c (ctf_output): This is a ctf_dict_t now.
(lang_ctf_errs_warnings): Rename ctf_file_t to ctf_dict_t.
(ldlang_open_ctf): Adjust comment.
(lang_merge_ctf): Use ctf_dict_close, not ctf_file_close.
* ldelfgen.h (ldelf_examine_strtab_for_ctf): Rename ctf_file_t to
ctf_dict_t. Change opaque declaration accordingly.
* ldelfgen.c (ldelf_examine_strtab_for_ctf): Adjust.
* ldemul.h (examine_strtab_for_ctf): Likewise.
(ldemul_examine_strtab_for_ctf): Likewise.
* ldeuml.c (ldemul_examine_strtab_for_ctf): Likewise.
libctf/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h: Rename ctf_file_t to ctf_dict_t: all declarations
adjusted.
(ctf_fileops): Rename to...
(ctf_dictops): ... this.
(ctf_dedup_t) <cd_id_to_file_t>: Rename to...
<cd_id_to_dict_t>: ... this.
(ctf_file_t): Fix outdated comment.
<ctf_fileops>: Rename to...
<ctf_dictops>: ... this.
(struct ctf_archive_internal) <ctfi_file>: Rename to...
<ctfi_dict>: ... this.
* ctf-archive.c: Rename ctf_file_t to ctf_dict_t.
Rename ctf_archive.ctfa_nfiles to ctfa_ndicts.
Rename ctf_file_close to ctf_dict_close. All users adjusted.
* ctf-create.c: Likewise. Refer to CTF dicts, not CTF containers.
(ctf_bundle_t) <ctb_file>: Rename to...
<ctb_dict): ... this.
* ctf-decl.c: Rename ctf_file_t to ctf_dict_t.
* ctf-dedup.c: Likewise. Rename ctf_file_close to
ctf_dict_close. Refer to CTF dicts, not CTF containers.
* ctf-dump.c: Likewise.
* ctf-error.c: Likewise.
* ctf-hash.c: Likewise.
* ctf-inlines.h: Likewise.
* ctf-labels.c: Likewise.
* ctf-link.c: Likewise.
* ctf-lookup.c: Likewise.
* ctf-open-bfd.c: Likewise.
* ctf-string.c: Likewise.
* ctf-subr.c: Likewise.
* ctf-types.c: Likewise.
* ctf-util.c: Likewise.
* ctf-open.c: Likewise.
(ctf_file_close): Rename to...
(ctf_dict_close): ...this.
(ctf_file_close): New trivial wrapper around ctf_dict_close, for
compatibility.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this.
(ctf_parent_file): New trivial wrapper around ctf_parent_dict, for
compatibility.
* libctf.ver: Add ctf_dict_close and ctf_parent_dict.
2020-11-20 21:34:04 +08:00
|
|
|
ctf_add_union (ctf_dict_t *fp, uint32_t flag, const char *name)
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
{
|
|
|
|
return (ctf_add_union_sized (fp, flag, name, 0));
|
|
|
|
}
|
|
|
|
|
|
|
|
ctf_id_t
|
libctf, include, binutils, gdb, ld: rename ctf_file_t to ctf_dict_t
The naming of the ctf_file_t type in libctf is a historical curiosity.
Back in the Solaris days, CTF dictionaries were originally generated as
a separate file and then (sometimes) merged into objects: hence the
datatype was named ctf_file_t, and known as a "CTF file". Nowadays, raw
CTF is essentially never written to a file on its own, and the datatype
changed name to a "CTF dictionary" years ago. So the term "CTF file"
refers to something that is never a file! This is at best confusing.
The type has also historically been known as a 'CTF container", which is
even more confusing now that we have CTF archives which are *also* a
sort of container (they contain CTF dictionaries), but which are never
referred to as containers in the source code.
So fix this by completing the renaming, renaming ctf_file_t to
ctf_dict_t throughout, and renaming those few functions that refer to
CTF files by name (keeping compatibility aliases) to refer to dicts
instead. Old users who still refer to ctf_file_t will see (harmless)
pointer-compatibility warnings at compile time, but the ABI is unchanged
(since C doesn't mangle names, and ctf_file_t was always an opaque type)
and things will still compile fine as long as -Werror is not specified.
All references to CTF containers and CTF files in the source code are
fixed to refer to CTF dicts instead.
Further (smaller) renamings of annoyingly-named functions to come, as
part of the process of souping up queries across whole archives at once
(needed for the function info and data object sections).
binutils/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* objdump.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_ctf): Likewise. Use ctf_dict_close, not ctf_file_close.
* readelf.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_section_as_ctf): Likewise. Use ctf_dict_close, not
ctf_file_close.
gdb/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctfread.c: Change uses of ctf_file_t to ctf_dict_t.
(ctf_fp_info::~ctf_fp_info): Call ctf_dict_close, not ctf_file_close.
include/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-api.h (ctf_file_t): Rename to...
(ctf_dict_t): ... this. Keep ctf_file_t around for compatibility.
(struct ctf_file): Likewise rename to...
(struct ctf_dict): ... this.
(ctf_file_close): Rename to...
(ctf_dict_close): ... this, keeping compatibility function.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this, keeping compatibility function.
All callers adjusted.
* ctf.h: Rename references to ctf_file_t to ctf_dict_t.
(struct ctf_archive) <ctfa_nfiles>: Rename to...
<ctfa_ndicts>: ... this.
ld/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ldlang.c (ctf_output): This is a ctf_dict_t now.
(lang_ctf_errs_warnings): Rename ctf_file_t to ctf_dict_t.
(ldlang_open_ctf): Adjust comment.
(lang_merge_ctf): Use ctf_dict_close, not ctf_file_close.
* ldelfgen.h (ldelf_examine_strtab_for_ctf): Rename ctf_file_t to
ctf_dict_t. Change opaque declaration accordingly.
* ldelfgen.c (ldelf_examine_strtab_for_ctf): Adjust.
* ldemul.h (examine_strtab_for_ctf): Likewise.
(ldemul_examine_strtab_for_ctf): Likewise.
* ldeuml.c (ldemul_examine_strtab_for_ctf): Likewise.
libctf/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h: Rename ctf_file_t to ctf_dict_t: all declarations
adjusted.
(ctf_fileops): Rename to...
(ctf_dictops): ... this.
(ctf_dedup_t) <cd_id_to_file_t>: Rename to...
<cd_id_to_dict_t>: ... this.
(ctf_file_t): Fix outdated comment.
<ctf_fileops>: Rename to...
<ctf_dictops>: ... this.
(struct ctf_archive_internal) <ctfi_file>: Rename to...
<ctfi_dict>: ... this.
* ctf-archive.c: Rename ctf_file_t to ctf_dict_t.
Rename ctf_archive.ctfa_nfiles to ctfa_ndicts.
Rename ctf_file_close to ctf_dict_close. All users adjusted.
* ctf-create.c: Likewise. Refer to CTF dicts, not CTF containers.
(ctf_bundle_t) <ctb_file>: Rename to...
<ctb_dict): ... this.
* ctf-decl.c: Rename ctf_file_t to ctf_dict_t.
* ctf-dedup.c: Likewise. Rename ctf_file_close to
ctf_dict_close. Refer to CTF dicts, not CTF containers.
* ctf-dump.c: Likewise.
* ctf-error.c: Likewise.
* ctf-hash.c: Likewise.
* ctf-inlines.h: Likewise.
* ctf-labels.c: Likewise.
* ctf-link.c: Likewise.
* ctf-lookup.c: Likewise.
* ctf-open-bfd.c: Likewise.
* ctf-string.c: Likewise.
* ctf-subr.c: Likewise.
* ctf-types.c: Likewise.
* ctf-util.c: Likewise.
* ctf-open.c: Likewise.
(ctf_file_close): Rename to...
(ctf_dict_close): ...this.
(ctf_file_close): New trivial wrapper around ctf_dict_close, for
compatibility.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this.
(ctf_parent_file): New trivial wrapper around ctf_parent_dict, for
compatibility.
* libctf.ver: Add ctf_dict_close and ctf_parent_dict.
2020-11-20 21:34:04 +08:00
|
|
|
ctf_add_enum (ctf_dict_t *fp, uint32_t flag, const char *name)
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
{
|
|
|
|
ctf_dtdef_t *dtd;
|
|
|
|
ctf_id_t type = 0;
|
libctf: eliminate dtd_u, part 5: structs / unions
Eliminate the dynamic member storage for structs and unions as we have
for other dynamic types. This is much like the previous enum
elimination, except that structs and unions are the only types for which
a full-sized ctf_type_t might be needed. Up to now, this decision has
been made in the individual ctf_add_{struct,union}_sized functions and
duplicated in ctf_add_member_offset. The vlen machinery lets us
simplify this, always allocating a ctf_lmember_t and setting the
dtd_data's ctt_size to CTF_LSIZE_SENT: we figure out whether this is
really justified and (almost always) repack things down into a
ctf_stype_t at ctf_serialize time.
This allows us to eliminate the dynamic member paths from the iterators and
query functions in ctf-types.c in favour of always using the large-structure
vlen stuff for dynamic types (the diff is ugly but that's just because of the
volume of reindentation this calls for). This also means the large-structure
vlen stuff gets more heavily tested, which is nice because it was an almost
totally unused code path before now (it only kicked in for structures of size
>4GiB, and how often do you see those?)
The only extra complexity here is ctf_add_type. Back in the days of the
nondeduplicating linker this was called a ridiculous number of times for
countless identical copies of structures: eschewing the repeated lookups of the
dtd in ctf_add_member_offset and adding the members directly saved an amazing
amount of time. Now the nondeduplicating linker is gone, this is extreme
overoptimization: we can rip out the direct addition and use ctf_member_next and
ctf_add_member_offset, just like ctf_dedup_emit does.
We augment a ctf_add_type test to try adding a self-referential struct, the only
thing the ctf_add_type part of this change really perturbs.
This completes the elimination of dtd_u.
libctf/ChangeLog
2021-03-18 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h (ctf_dtdef_t) <dtu_members>: Remove.
<dtd_u>: Likewise.
(ctf_dmdef_t): Remove.
(struct ctf_next) <u.ctn_dmd>: Remove.
* ctf-create.c (INITIAL_VLEN): New, more-or-less arbitrary initial
vlen size.
(ctf_add_enum): Use it.
(ctf_dtd_delete): Do not free the (removed) dmd; remove string
refs from the vlen on struct deletion.
(ctf_add_struct_sized): Populate the vlen: do it by hand if
promoting forwards. Always populate the full-size
lsizehi/lsizelo members.
(ctf_add_union_sized): Likewise.
(ctf_add_member_offset): Set up the vlen rather than the dmd.
Expand it as needed, repointing string refs via
ctf_str_move_pending. Add the member names as pending strings.
Always populate the full-size lsizehi/lsizelo members.
(membadd): Remove, folding back into...
(ctf_add_type_internal): ... here, adding via an ordinary
ctf_add_struct_sized and _next iteration rather than doing
everything by hand.
* ctf-serialize.c (ctf_copy_smembers): Remove this...
(ctf_copy_lmembers): ... and this...
(ctf_emit_type_sect): ... folding into here. Figure out if a
ctf_stype_t is needed here, not in ctf_add_*_sized.
(ctf_type_sect_size): Figure out the ctf_stype_t stuff the same
way here.
* ctf-types.c (ctf_member_next): Remove the dmd path and always
use the vlen. Force large-structure usage for dynamic types.
(ctf_type_align): Likewise.
(ctf_member_info): Likewise.
(ctf_type_rvisit): Likewise.
* testsuite/libctf-regression/type-add-unnamed-struct-ctf.c: Add a
self-referential type to this test.
* testsuite/libctf-regression/type-add-unnamed-struct.c: Adjusted
accordingly.
* testsuite/libctf-regression/type-add-unnamed-struct.lk: Likewise.
2021-03-18 20:37:52 +08:00
|
|
|
size_t initial_vlen = sizeof (ctf_enum_t) * INITIAL_VLEN;
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
|
2019-10-21 18:27:43 +08:00
|
|
|
/* Promote root-visible forwards to enums. */
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
if (name != NULL)
|
libctf: avoid the need to ever use ctf_update
The method of operation of libctf when the dictionary is writable has
before now been that types that are added land in the dynamic type
section, which is a linked list and hash of IDs -> dynamic type
definitions (and, recently a hash of names): the DTDs are a bit of CTF
representing the ctf_type_t and ad hoc C structures representing the
vlen. Historically, libctf was unable to do anything with these types,
not even look them up by ID, let alone by name: if you wanted to do that
say if you were adding a type that depended on one you just added) you
called ctf_update, which serializes all the DTDs into a CTF file and
reopens it, copying its guts over the fp it's called with. The
ctf_updated types are then frozen in amber and unchangeable: all lookups
will return the types in the static portion in preference to the dynamic
portion, and we will refuse to re-add things that already exist in the
static portion (and, of late, in the dynamic portion too). The libctf
machinery remembers the boundary between static and dynamic types and
looks in the right portion for each type. Lots of things still don't
quite work with dynamic types (e.g. getting their size), but enough
works to do a bunch of additions and then a ctf_update, most of the
time.
Except it doesn't, because ctf_add_type finds it necessary to walk the
full dynamic type definition list looking for types with matching names,
so it gets slower and slower with every type you add: fixing this
requires calling ctf_update periodically for no other reason than to
avoid massively slowing things down.
This is all clunky and very slow but kind of works, until you consider
that it is in fact possible and indeed necessary to modify one sort of
type after it has been added: forwards. These are necessarily promoted
to structs, unions or enums, and when they do so *their type ID does not
change*. So all of a sudden we are changing types that already exist in
the static portion. ctf_update gets massively confused by this and
allocates space enough for the forward (with no members), but then emits
the new dynamic type (with all the members) into it. You get an
assertion failure after that, if you're lucky, or a coredump.
So this commit rejigs things a bit and arranges to exclusively use the
dynamic type definitions in writable dictionaries, and the static type
definitions in readable dictionaries: we don't at any time have a mixture
of static and dynamic types, and you don't need to call ctf_update to
make things "appear". The ctf_dtbyname hash I introduced a few months
ago, which maps things like "struct foo" to DTDs, is removed, replaced
instead by a change of type of the four dictionaries which track names.
Rather than just being (unresizable) ctf_hash_t's populated only at
ctf_bufopen time, they are now a ctf_names_t structure, which is a pair
of ctf_hash_t and ctf_dynhash_t, with the ctf_hash_t portion being used
in readonly dictionaries, and the ctf_dynhash_t being used in writable
ones. The decision as to which to use is centralized in the new
functions ctf_lookup_by_rawname (which takes a type kind) and
ctf_lookup_by_rawhash, which it calls (which takes a ctf_names_t *.)
This change lets us switch from using static to dynamic name hashes on
the fly across the entirety of libctf without complexifying anything: in
fact, because we now centralize the knowledge about how to map from type
kind to name hash, it actually simplifies things and lets us throw out
quite a lot of now-unnecessary complexity, from ctf_dtnyname (replaced
by the dynamic half of the name tables), through to ctf_dtnextid (now
that a dictionary's static portion is never referenced if the dictionary
is writable, we can just use ctf_typemax to indicate the maximum type:
dynamic or non-dynamic does not matter, and we no longer need to track
the boundary between the types). You can now ctf_rollback() as far as
you like, even past a ctf_update or for that matter a full writeout; all
the iteration functions work just as well on writable as on read-only
dictionaries; ctf_add_type no longer needs expensive duplicated code to
run over the dynamic types hunting for ones it might be interested in;
and the linker no longer needs a hack to call ctf_update so that calling
ctf_add_type is not impossibly expensive.
There is still a bit more complexity: some new code paths in ctf-types.c
need to know how to extract information from dynamic types. This
complexity will go away again in a few months when libctf acquires a
proper intermediate representation.
You can still call ctf_update if you like (it's public API, after all),
but its only effect now is to set the point to which ctf_discard rolls
back.
Obviously *something* still needs to serialize the CTF file before
writeout, and this job is done by ctf_serialize, which does everything
ctf_update used to except set the counter used by ctf_discard. It is
automatically called by the various functions that do CTF writeout:
nobody else ever needs to call it.
With this in place, forwards that are promoted to non-forwards no longer
crash the link, even if it happens tens of thousands of types later.
v5: fix tabdamage.
libctf/
* ctf-impl.h (ctf_names_t): New.
(ctf_lookup_t) <ctf_hash>: Now a ctf_names_t, not a ctf_hash_t.
(ctf_file_t) <ctf_structs>: Likewise.
<ctf_unions>: Likewise.
<ctf_enums>: Likewise.
<ctf_names>: Likewise.
<ctf_lookups>: Improve comment.
<ctf_ptrtab_len>: New.
<ctf_prov_strtab>: New.
<ctf_str_prov_offset>: New.
<ctf_dtbyname>: Remove, redundant to the names hashes.
<ctf_dtnextid>: Remove, redundant to ctf_typemax.
(ctf_dtdef_t) <dtd_name>: Remove.
<dtd_data>: Note that the ctt_name is now populated.
(ctf_str_atom_t) <csa_offset>: This is now the strtab
offset for internal strings too.
<csa_external_offset>: New, the external strtab offset.
(CTF_INDEX_TO_TYPEPTR): Handle the LCTF_RDWR case.
(ctf_name_table): New declaration.
(ctf_lookup_by_rawname): Likewise.
(ctf_lookup_by_rawhash): Likewise.
(ctf_set_ctl_hashes): Likewise.
(ctf_serialize): Likewise.
(ctf_dtd_insert): Adjust.
(ctf_simple_open_internal): Likewise.
(ctf_bufopen_internal): Likewise.
(ctf_list_empty_p): Likewise.
(ctf_str_remove_ref): Likewise.
(ctf_str_add): Returns uint32_t now.
(ctf_str_add_ref): Likewise.
(ctf_str_add_external): Now returns a boolean (int).
* ctf-string.c (ctf_strraw_explicit): Check the ctf_prov_strtab
for strings in the appropriate range.
(ctf_str_create_atoms): Create the ctf_prov_strtab. Detect OOM
when adding the null string to the new strtab.
(ctf_str_free_atoms): Destroy the ctf_prov_strtab.
(ctf_str_add_ref_internal): Add make_provisional argument. If
make_provisional, populate the offset and fill in the
ctf_prov_strtab accordingly.
(ctf_str_add): Return the offset, not the string.
(ctf_str_add_ref): Likewise.
(ctf_str_add_external): Return a success integer.
(ctf_str_remove_ref): New, remove a single ref.
(ctf_str_count_strtab): Do not count the initial null string's
length or the existence or length of any unreferenced internal
atoms.
(ctf_str_populate_sorttab): Skip atoms with no refs.
(ctf_str_write_strtab): Populate the nullstr earlier. Add one
to the cts_len for the null string, since it is no longer done
in ctf_str_count_strtab. Adjust for csa_external_offset rename.
Populate the csa_offset for both internal and external cases.
Flush the ctf_prov_strtab afterwards, and reset the
ctf_str_prov_offset.
* ctf-create.c (ctf_grow_ptrtab): New.
(ctf_create): Call it. Initialize new fields rather than old
ones. Tell ctf_bufopen_internal that this is a writable dictionary.
Set the ctl hashes and data model.
(ctf_update): Rename to...
(ctf_serialize): ... this. Leave a compatibility function behind.
Tell ctf_simple_open_internal that this is a writable dictionary.
Pass the new fields along from the old dictionary. Drop
ctf_dtnextid and ctf_dtbyname. Use ctf_strraw, not dtd_name.
Do not zero out the DTD's ctt_name.
(ctf_prefixed_name): Rename to...
(ctf_name_table): ... this. No longer return a prefixed name: return
the applicable name table instead.
(ctf_dtd_insert): Use it, and use the right name table. Pass in the
kind we're adding. Migrate away from dtd_name.
(ctf_dtd_delete): Adjust similarly. Remove the ref to the
deleted ctt_name.
(ctf_dtd_lookup_type_by_name): Remove.
(ctf_dynamic_type): Always return NULL on read-only dictionaries.
No longer check ctf_dtnextid: check ctf_typemax instead.
(ctf_snapshot): No longer use ctf_dtnextid: use ctf_typemax instead.
(ctf_rollback): Likewise. No longer fail with ECTF_OVERROLLBACK. Use
ctf_name_table and the right name table, and migrate away from
dtd_name as in ctf_dtd_delete.
(ctf_add_generic): Pass in the kind explicitly and pass it to
ctf_dtd_insert. Use ctf_typemax, not ctf_dtnextid. Migrate away
from dtd_name to using ctf_str_add_ref to populate the ctt_name.
Grow the ptrtab if needed.
(ctf_add_encoded): Pass in the kind.
(ctf_add_slice): Likewise.
(ctf_add_array): Likewise.
(ctf_add_function): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_reftype): Likewise. Initialize the ctf_ptrtab, checking
ctt_name rather than dtd_name.
(ctf_add_struct_sized): Pass in the kind. Use
ctf_lookup_by_rawname, not ctf_hash_lookup_type /
ctf_dtd_lookup_type_by_name.
(ctf_add_union_sized): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_type): Likewise.
(ctf_compress_write): Call ctf_serialize: adjust for ctf_size not
being initialized until after the call.
(ctf_write_mem): Likewise.
(ctf_write): Likewise.
* ctf-archive.c (arc_write_one_ctf): Likewise.
* ctf-lookup.c (ctf_lookup_by_name): Use ctf_lookuup_by_rawhash, not
ctf_hash_lookup_type.
(ctf_lookup_by_id): No longer check the readonly types if the
dictionary is writable.
* ctf-open.c (init_types): Assert that this dictionary is not
writable. Adjust to use the new name hashes, ctf_name_table,
and ctf_ptrtab_len. GNU style fix for the final ptrtab scan.
(ctf_bufopen_internal): New 'writable' parameter. Flip on LCTF_RDWR
if set. Drop out early when dictionary is writable. Split the
ctf_lookups initialization into...
(ctf_set_cth_hashes): ... this new function.
(ctf_simple_open_internal): Adjust. New 'writable' parameter.
(ctf_simple_open): Adjust accordingly.
(ctf_bufopen): Likewise.
(ctf_file_close): Destroy the appropriate name hashes. No longer
destroy ctf_dtbyname, which is gone.
(ctf_getdatasect): Remove spurious "extern".
* ctf-types.c (ctf_lookup_by_rawname): New, look up types in the
specified name table, given a kind.
(ctf_lookup_by_rawhash): Likewise, given a ctf_names_t *.
(ctf_member_iter): Add support for iterating over the
dynamic type list.
(ctf_enum_iter): Likewise.
(ctf_variable_iter): Likewise.
(ctf_type_rvisit): Likewise.
(ctf_member_info): Add support for types in the dynamic type list.
(ctf_enum_name): Likewise.
(ctf_enum_value): Likewise.
(ctf_func_type_info): Likewise.
(ctf_func_type_args): Likewise.
* ctf-link.c (ctf_accumulate_archive_names): No longer call
ctf_update.
(ctf_link_write): Likewise.
(ctf_link_intern_extern_string): Adjust for new
ctf_str_add_external return value.
(ctf_link_add_strtab): Likewise.
* ctf-util.c (ctf_list_empty_p): New.
2019-08-08 00:55:09 +08:00
|
|
|
type = ctf_lookup_by_rawname (fp, CTF_K_ENUM, name);
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
|
libctf: support addition of types to dicts read via ctf_open()
libctf has long declared deserialized dictionaries (out of files or ELF
sections or memory buffers or whatever) to be read-only: back in the
furthest prehistory this was not the case, in that you could add a
few sorts of type to such dicts, but attempting to do so often caused
horrible memory corruption, so I banned the lot.
But it turns out real consumers want it (notably DTrace, which
synthesises pointers to types that don't have them and adds them to the
ctf_open()ed dicts if it needs them). Let's bring it back again, but
without the memory corruption and without the massive code duplication
required in days of yore to distinguish between static and dynamic
types: the representation of both types has been identical for a few
years, with the only difference being that types as a whole are stored in
a big buffer for types read in via ctf_open and per-type hashtables for
newly-added types.
So we discard the internally-visible concept of "readonly dictionaries"
in favour of declaring the *range of types* that were already present
when the dict was read in to be read-only: you can't modify them (say,
by adding members to them if they're structs, or calling ctf_set_array
on them), but you can add more types and point to them. (The API
remains the same, with calls sometimes returning ECTF_RDONLY, but now
they do so less often.)
This is a fairly invasive change, mostly because code written since the
ban was introduced didn't take the possibility of a static/dynamic split
into account. Some of these irregularities were hard to define as
anything but bugs.
Notably:
- The symbol handling was assuming that symbols only needed to be
looked for in dynamic hashtabs or static linker-laid-out indexed/
nonindexed layouts, but now we want to check both in case people
added more symbols to a dict they opened.
- The code that handles type additions wasn't checking to see if types
with the same name existed *at all* (so you could do
ctf_add_typedef (fp, "foo", bar) repeatedly without error). This
seems reasonable for types you just added, but we probably *do* want
to ban addition of types with names that override names we already
used in the ctf_open()ed portion, since that would probably corrupt
existing type relationships. (Doing things this way also avoids
causing new errors for any existing code that was doing this sort of
thing.)
- ctf_lookup_variable entirely failed to work for variables just added
by ctf_add_variable: you had to write the dict out and read it back
in again before they appeared.
- The symbol handling remembered what symbols you looked up but didn't
remember their types, so you could look up an object symbol and then
find it popping up when you asked for function symbols, which seems
less than ideal. Since we had to rejig things enough to be able to
distinguish function and object symbols internally anyway (in order
to give suitable errors if you try to add a symbol with a name that
already existed in the ctf_open()ed dict), this bug suddenly became
more visible and was easily fixed.
We do not (yet) support writing out dicts that have been previously read
in via ctf_open() or other deserializer (you can look things up in them,
but not write them out a second time). This never worked, so there is
no incompatibility; if it is needed at a later date, the serializer is a
little bit closer to having it work now (the only table we don't deal
with is the types table, and that's because the upcoming CTFv4 changes
are likely to make major changes to the way that table is represented
internally, so adding more code that depends on its current form seems
like a bad idea).
There is a new testcase that tests much of this, in particular that
modification of existing types is still banned and that you can add new
ones and chase them without error.
libctf/
* ctf-impl.h (struct ctf_dict.ctf_symhash): Split into...
(ctf_dict.ctf_symhash_func): ... this and...
(ctf_dict.ctf_symhash_objt): ... this.
(ctf_dict.ctf_stypes): New, counts static types.
(LCTF_INDEX_TO_TYPEPTR): Use it instead of CTF_RDWR.
(LCTF_RDWR): Deleted.
(LCTF_DIRTY): Renumbered.
(LCTF_LINKING): Likewise.
(ctf_lookup_variable_here): New.
(ctf_lookup_by_sym_or_name): Likewise.
(ctf_symbol_next_static): Likewise.
(ctf_add_variable_forced): Likewise.
(ctf_add_funcobjt_sym_forced): Likewise.
(ctf_simple_open_internal): Adjust.
(ctf_bufopen_internal): Likewise.
* ctf-create.c (ctf_grow_ptrtab): Adjust a lot to start with.
(ctf_create): Migrate a bunch of initializations into bufopen.
Force recreation of name tables. Do not forcibly override the
model, let ctf_bufopen do it.
(ctf_static_type): New.
(ctf_update): Drop LCTF_RDWR check.
(ctf_dynamic_type): Likewise.
(ctf_add_function): Likewise.
(ctf_add_type_internal): Likewise.
(ctf_rollback): Check ctf_stypes, not LCTF_RDWR.
(ctf_set_array): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_enumerator): Likewise (only on the target dict).
(ctf_add_member_offset): Likewise.
(ctf_add_generic): Drop LCTF_RDWR check. Ban addition of types
with colliding names.
(ctf_add_forward): Note safety under the new rules.
(ctf_add_variable): Split all but the existence check into...
(ctf_add_variable_forced): ... this new function.
(ctf_add_funcobjt_sym): Likewise...
(ctf_add_funcobjt_sym_forced): ... for this new function.
* ctf-link.c (ctf_link_add_linker_symbol): Ban calling on dicts
with any stypes.
(ctf_link_add_strtab): Likewise.
(ctf_link_shuffle_syms): Likewise.
(ctf_link_intern_extern_string): Note pre-existing prohibition.
* ctf-lookup.c (ctf_lookup_by_id): Drop LCTF_RDWR check.
(ctf_lookup_variable): Split out looking in a dict but not
its parent into...
(ctf_lookup_variable_here): ... this new function.
(ctf_lookup_symbol_idx): Track whether looking up a function or
object: cache them separately.
(ctf_symbol_next): Split out looking in non-dynamic symtypetab
entries to...
(ctf_symbol_next_static): ... this new function. Don't get confused
by the simultaneous presence of static and dynamic symtypetab entries.
(ctf_try_lookup_indexed): Don't waste time looking up symbols by
index before there can be any idea how symbols are numbered.
(ctf_lookup_by_sym_or_name): Distinguish between function and
data object lookups. Drop LCTF_RDWR.
(ctf_lookup_by_symbol): Adjust.
(ctf_lookup_by_symbol_name): Likewise.
* ctf-open.c (init_types): Rename to...
(init_static_types): ... this. Drop LCTF_RDWR. Populate ctf_stypes.
(ctf_simple_open): Drop writable arg.
(ctf_simple_open_internal): Likewise.
(ctf_bufopen): Likewise.
(ctf_bufopen_internal): Populate fields only used for writable dicts.
Drop LCTF_RDWR.
(ctf_dict_close): Cater for symhash cache split.
* ctf-serialize.c (ctf_serialize): Use ctf_stypes, not LCTF_RDWR.
* ctf-types.c (ctf_variable_next): Drop LCTF_RDWR.
* testsuite/libctf-lookup/add-to-opened*: New test.
2023-12-20 00:58:19 +08:00
|
|
|
/* Prohibit promotion if this type was ctf_open()ed. */
|
|
|
|
if (type > 0 && type < fp->ctf_stypes)
|
|
|
|
return (ctf_set_errno (fp, ECTF_RDONLY));
|
|
|
|
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
if (type != 0 && ctf_type_kind (fp, type) == CTF_K_FORWARD)
|
|
|
|
dtd = ctf_dtd_lookup (fp, type);
|
libctf: avoid the need to ever use ctf_update
The method of operation of libctf when the dictionary is writable has
before now been that types that are added land in the dynamic type
section, which is a linked list and hash of IDs -> dynamic type
definitions (and, recently a hash of names): the DTDs are a bit of CTF
representing the ctf_type_t and ad hoc C structures representing the
vlen. Historically, libctf was unable to do anything with these types,
not even look them up by ID, let alone by name: if you wanted to do that
say if you were adding a type that depended on one you just added) you
called ctf_update, which serializes all the DTDs into a CTF file and
reopens it, copying its guts over the fp it's called with. The
ctf_updated types are then frozen in amber and unchangeable: all lookups
will return the types in the static portion in preference to the dynamic
portion, and we will refuse to re-add things that already exist in the
static portion (and, of late, in the dynamic portion too). The libctf
machinery remembers the boundary between static and dynamic types and
looks in the right portion for each type. Lots of things still don't
quite work with dynamic types (e.g. getting their size), but enough
works to do a bunch of additions and then a ctf_update, most of the
time.
Except it doesn't, because ctf_add_type finds it necessary to walk the
full dynamic type definition list looking for types with matching names,
so it gets slower and slower with every type you add: fixing this
requires calling ctf_update periodically for no other reason than to
avoid massively slowing things down.
This is all clunky and very slow but kind of works, until you consider
that it is in fact possible and indeed necessary to modify one sort of
type after it has been added: forwards. These are necessarily promoted
to structs, unions or enums, and when they do so *their type ID does not
change*. So all of a sudden we are changing types that already exist in
the static portion. ctf_update gets massively confused by this and
allocates space enough for the forward (with no members), but then emits
the new dynamic type (with all the members) into it. You get an
assertion failure after that, if you're lucky, or a coredump.
So this commit rejigs things a bit and arranges to exclusively use the
dynamic type definitions in writable dictionaries, and the static type
definitions in readable dictionaries: we don't at any time have a mixture
of static and dynamic types, and you don't need to call ctf_update to
make things "appear". The ctf_dtbyname hash I introduced a few months
ago, which maps things like "struct foo" to DTDs, is removed, replaced
instead by a change of type of the four dictionaries which track names.
Rather than just being (unresizable) ctf_hash_t's populated only at
ctf_bufopen time, they are now a ctf_names_t structure, which is a pair
of ctf_hash_t and ctf_dynhash_t, with the ctf_hash_t portion being used
in readonly dictionaries, and the ctf_dynhash_t being used in writable
ones. The decision as to which to use is centralized in the new
functions ctf_lookup_by_rawname (which takes a type kind) and
ctf_lookup_by_rawhash, which it calls (which takes a ctf_names_t *.)
This change lets us switch from using static to dynamic name hashes on
the fly across the entirety of libctf without complexifying anything: in
fact, because we now centralize the knowledge about how to map from type
kind to name hash, it actually simplifies things and lets us throw out
quite a lot of now-unnecessary complexity, from ctf_dtnyname (replaced
by the dynamic half of the name tables), through to ctf_dtnextid (now
that a dictionary's static portion is never referenced if the dictionary
is writable, we can just use ctf_typemax to indicate the maximum type:
dynamic or non-dynamic does not matter, and we no longer need to track
the boundary between the types). You can now ctf_rollback() as far as
you like, even past a ctf_update or for that matter a full writeout; all
the iteration functions work just as well on writable as on read-only
dictionaries; ctf_add_type no longer needs expensive duplicated code to
run over the dynamic types hunting for ones it might be interested in;
and the linker no longer needs a hack to call ctf_update so that calling
ctf_add_type is not impossibly expensive.
There is still a bit more complexity: some new code paths in ctf-types.c
need to know how to extract information from dynamic types. This
complexity will go away again in a few months when libctf acquires a
proper intermediate representation.
You can still call ctf_update if you like (it's public API, after all),
but its only effect now is to set the point to which ctf_discard rolls
back.
Obviously *something* still needs to serialize the CTF file before
writeout, and this job is done by ctf_serialize, which does everything
ctf_update used to except set the counter used by ctf_discard. It is
automatically called by the various functions that do CTF writeout:
nobody else ever needs to call it.
With this in place, forwards that are promoted to non-forwards no longer
crash the link, even if it happens tens of thousands of types later.
v5: fix tabdamage.
libctf/
* ctf-impl.h (ctf_names_t): New.
(ctf_lookup_t) <ctf_hash>: Now a ctf_names_t, not a ctf_hash_t.
(ctf_file_t) <ctf_structs>: Likewise.
<ctf_unions>: Likewise.
<ctf_enums>: Likewise.
<ctf_names>: Likewise.
<ctf_lookups>: Improve comment.
<ctf_ptrtab_len>: New.
<ctf_prov_strtab>: New.
<ctf_str_prov_offset>: New.
<ctf_dtbyname>: Remove, redundant to the names hashes.
<ctf_dtnextid>: Remove, redundant to ctf_typemax.
(ctf_dtdef_t) <dtd_name>: Remove.
<dtd_data>: Note that the ctt_name is now populated.
(ctf_str_atom_t) <csa_offset>: This is now the strtab
offset for internal strings too.
<csa_external_offset>: New, the external strtab offset.
(CTF_INDEX_TO_TYPEPTR): Handle the LCTF_RDWR case.
(ctf_name_table): New declaration.
(ctf_lookup_by_rawname): Likewise.
(ctf_lookup_by_rawhash): Likewise.
(ctf_set_ctl_hashes): Likewise.
(ctf_serialize): Likewise.
(ctf_dtd_insert): Adjust.
(ctf_simple_open_internal): Likewise.
(ctf_bufopen_internal): Likewise.
(ctf_list_empty_p): Likewise.
(ctf_str_remove_ref): Likewise.
(ctf_str_add): Returns uint32_t now.
(ctf_str_add_ref): Likewise.
(ctf_str_add_external): Now returns a boolean (int).
* ctf-string.c (ctf_strraw_explicit): Check the ctf_prov_strtab
for strings in the appropriate range.
(ctf_str_create_atoms): Create the ctf_prov_strtab. Detect OOM
when adding the null string to the new strtab.
(ctf_str_free_atoms): Destroy the ctf_prov_strtab.
(ctf_str_add_ref_internal): Add make_provisional argument. If
make_provisional, populate the offset and fill in the
ctf_prov_strtab accordingly.
(ctf_str_add): Return the offset, not the string.
(ctf_str_add_ref): Likewise.
(ctf_str_add_external): Return a success integer.
(ctf_str_remove_ref): New, remove a single ref.
(ctf_str_count_strtab): Do not count the initial null string's
length or the existence or length of any unreferenced internal
atoms.
(ctf_str_populate_sorttab): Skip atoms with no refs.
(ctf_str_write_strtab): Populate the nullstr earlier. Add one
to the cts_len for the null string, since it is no longer done
in ctf_str_count_strtab. Adjust for csa_external_offset rename.
Populate the csa_offset for both internal and external cases.
Flush the ctf_prov_strtab afterwards, and reset the
ctf_str_prov_offset.
* ctf-create.c (ctf_grow_ptrtab): New.
(ctf_create): Call it. Initialize new fields rather than old
ones. Tell ctf_bufopen_internal that this is a writable dictionary.
Set the ctl hashes and data model.
(ctf_update): Rename to...
(ctf_serialize): ... this. Leave a compatibility function behind.
Tell ctf_simple_open_internal that this is a writable dictionary.
Pass the new fields along from the old dictionary. Drop
ctf_dtnextid and ctf_dtbyname. Use ctf_strraw, not dtd_name.
Do not zero out the DTD's ctt_name.
(ctf_prefixed_name): Rename to...
(ctf_name_table): ... this. No longer return a prefixed name: return
the applicable name table instead.
(ctf_dtd_insert): Use it, and use the right name table. Pass in the
kind we're adding. Migrate away from dtd_name.
(ctf_dtd_delete): Adjust similarly. Remove the ref to the
deleted ctt_name.
(ctf_dtd_lookup_type_by_name): Remove.
(ctf_dynamic_type): Always return NULL on read-only dictionaries.
No longer check ctf_dtnextid: check ctf_typemax instead.
(ctf_snapshot): No longer use ctf_dtnextid: use ctf_typemax instead.
(ctf_rollback): Likewise. No longer fail with ECTF_OVERROLLBACK. Use
ctf_name_table and the right name table, and migrate away from
dtd_name as in ctf_dtd_delete.
(ctf_add_generic): Pass in the kind explicitly and pass it to
ctf_dtd_insert. Use ctf_typemax, not ctf_dtnextid. Migrate away
from dtd_name to using ctf_str_add_ref to populate the ctt_name.
Grow the ptrtab if needed.
(ctf_add_encoded): Pass in the kind.
(ctf_add_slice): Likewise.
(ctf_add_array): Likewise.
(ctf_add_function): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_reftype): Likewise. Initialize the ctf_ptrtab, checking
ctt_name rather than dtd_name.
(ctf_add_struct_sized): Pass in the kind. Use
ctf_lookup_by_rawname, not ctf_hash_lookup_type /
ctf_dtd_lookup_type_by_name.
(ctf_add_union_sized): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_type): Likewise.
(ctf_compress_write): Call ctf_serialize: adjust for ctf_size not
being initialized until after the call.
(ctf_write_mem): Likewise.
(ctf_write): Likewise.
* ctf-archive.c (arc_write_one_ctf): Likewise.
* ctf-lookup.c (ctf_lookup_by_name): Use ctf_lookuup_by_rawhash, not
ctf_hash_lookup_type.
(ctf_lookup_by_id): No longer check the readonly types if the
dictionary is writable.
* ctf-open.c (init_types): Assert that this dictionary is not
writable. Adjust to use the new name hashes, ctf_name_table,
and ctf_ptrtab_len. GNU style fix for the final ptrtab scan.
(ctf_bufopen_internal): New 'writable' parameter. Flip on LCTF_RDWR
if set. Drop out early when dictionary is writable. Split the
ctf_lookups initialization into...
(ctf_set_cth_hashes): ... this new function.
(ctf_simple_open_internal): Adjust. New 'writable' parameter.
(ctf_simple_open): Adjust accordingly.
(ctf_bufopen): Likewise.
(ctf_file_close): Destroy the appropriate name hashes. No longer
destroy ctf_dtbyname, which is gone.
(ctf_getdatasect): Remove spurious "extern".
* ctf-types.c (ctf_lookup_by_rawname): New, look up types in the
specified name table, given a kind.
(ctf_lookup_by_rawhash): Likewise, given a ctf_names_t *.
(ctf_member_iter): Add support for iterating over the
dynamic type list.
(ctf_enum_iter): Likewise.
(ctf_variable_iter): Likewise.
(ctf_type_rvisit): Likewise.
(ctf_member_info): Add support for types in the dynamic type list.
(ctf_enum_name): Likewise.
(ctf_enum_value): Likewise.
(ctf_func_type_info): Likewise.
(ctf_func_type_args): Likewise.
* ctf-link.c (ctf_accumulate_archive_names): No longer call
ctf_update.
(ctf_link_write): Likewise.
(ctf_link_intern_extern_string): Adjust for new
ctf_str_add_external return value.
(ctf_link_add_strtab): Likewise.
* ctf-util.c (ctf_list_empty_p): New.
2019-08-08 00:55:09 +08:00
|
|
|
else if ((type = ctf_add_generic (fp, flag, name, CTF_K_ENUM,
|
2021-03-18 20:37:52 +08:00
|
|
|
initial_vlen, &dtd)) == CTF_ERR)
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
return CTF_ERR; /* errno is set for us. */
|
|
|
|
|
2021-03-18 20:37:52 +08:00
|
|
|
/* Forwards won't have any vlen yet. */
|
|
|
|
if (dtd->dtd_vlen_alloc == 0)
|
|
|
|
{
|
|
|
|
if ((dtd->dtd_vlen = calloc (1, initial_vlen)) == NULL)
|
2023-09-13 17:02:36 +08:00
|
|
|
return (ctf_set_typed_errno (fp, ENOMEM));
|
2021-03-18 20:37:52 +08:00
|
|
|
dtd->dtd_vlen_alloc = initial_vlen;
|
|
|
|
}
|
|
|
|
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
dtd->dtd_data.ctt_info = CTF_TYPE_INFO (CTF_K_ENUM, flag, 0);
|
|
|
|
dtd->dtd_data.ctt_size = fp->ctf_dmodel->ctd_int;
|
|
|
|
|
|
|
|
return type;
|
|
|
|
}
|
|
|
|
|
|
|
|
ctf_id_t
|
libctf, include, binutils, gdb, ld: rename ctf_file_t to ctf_dict_t
The naming of the ctf_file_t type in libctf is a historical curiosity.
Back in the Solaris days, CTF dictionaries were originally generated as
a separate file and then (sometimes) merged into objects: hence the
datatype was named ctf_file_t, and known as a "CTF file". Nowadays, raw
CTF is essentially never written to a file on its own, and the datatype
changed name to a "CTF dictionary" years ago. So the term "CTF file"
refers to something that is never a file! This is at best confusing.
The type has also historically been known as a 'CTF container", which is
even more confusing now that we have CTF archives which are *also* a
sort of container (they contain CTF dictionaries), but which are never
referred to as containers in the source code.
So fix this by completing the renaming, renaming ctf_file_t to
ctf_dict_t throughout, and renaming those few functions that refer to
CTF files by name (keeping compatibility aliases) to refer to dicts
instead. Old users who still refer to ctf_file_t will see (harmless)
pointer-compatibility warnings at compile time, but the ABI is unchanged
(since C doesn't mangle names, and ctf_file_t was always an opaque type)
and things will still compile fine as long as -Werror is not specified.
All references to CTF containers and CTF files in the source code are
fixed to refer to CTF dicts instead.
Further (smaller) renamings of annoyingly-named functions to come, as
part of the process of souping up queries across whole archives at once
(needed for the function info and data object sections).
binutils/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* objdump.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_ctf): Likewise. Use ctf_dict_close, not ctf_file_close.
* readelf.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_section_as_ctf): Likewise. Use ctf_dict_close, not
ctf_file_close.
gdb/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctfread.c: Change uses of ctf_file_t to ctf_dict_t.
(ctf_fp_info::~ctf_fp_info): Call ctf_dict_close, not ctf_file_close.
include/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-api.h (ctf_file_t): Rename to...
(ctf_dict_t): ... this. Keep ctf_file_t around for compatibility.
(struct ctf_file): Likewise rename to...
(struct ctf_dict): ... this.
(ctf_file_close): Rename to...
(ctf_dict_close): ... this, keeping compatibility function.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this, keeping compatibility function.
All callers adjusted.
* ctf.h: Rename references to ctf_file_t to ctf_dict_t.
(struct ctf_archive) <ctfa_nfiles>: Rename to...
<ctfa_ndicts>: ... this.
ld/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ldlang.c (ctf_output): This is a ctf_dict_t now.
(lang_ctf_errs_warnings): Rename ctf_file_t to ctf_dict_t.
(ldlang_open_ctf): Adjust comment.
(lang_merge_ctf): Use ctf_dict_close, not ctf_file_close.
* ldelfgen.h (ldelf_examine_strtab_for_ctf): Rename ctf_file_t to
ctf_dict_t. Change opaque declaration accordingly.
* ldelfgen.c (ldelf_examine_strtab_for_ctf): Adjust.
* ldemul.h (examine_strtab_for_ctf): Likewise.
(ldemul_examine_strtab_for_ctf): Likewise.
* ldeuml.c (ldemul_examine_strtab_for_ctf): Likewise.
libctf/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h: Rename ctf_file_t to ctf_dict_t: all declarations
adjusted.
(ctf_fileops): Rename to...
(ctf_dictops): ... this.
(ctf_dedup_t) <cd_id_to_file_t>: Rename to...
<cd_id_to_dict_t>: ... this.
(ctf_file_t): Fix outdated comment.
<ctf_fileops>: Rename to...
<ctf_dictops>: ... this.
(struct ctf_archive_internal) <ctfi_file>: Rename to...
<ctfi_dict>: ... this.
* ctf-archive.c: Rename ctf_file_t to ctf_dict_t.
Rename ctf_archive.ctfa_nfiles to ctfa_ndicts.
Rename ctf_file_close to ctf_dict_close. All users adjusted.
* ctf-create.c: Likewise. Refer to CTF dicts, not CTF containers.
(ctf_bundle_t) <ctb_file>: Rename to...
<ctb_dict): ... this.
* ctf-decl.c: Rename ctf_file_t to ctf_dict_t.
* ctf-dedup.c: Likewise. Rename ctf_file_close to
ctf_dict_close. Refer to CTF dicts, not CTF containers.
* ctf-dump.c: Likewise.
* ctf-error.c: Likewise.
* ctf-hash.c: Likewise.
* ctf-inlines.h: Likewise.
* ctf-labels.c: Likewise.
* ctf-link.c: Likewise.
* ctf-lookup.c: Likewise.
* ctf-open-bfd.c: Likewise.
* ctf-string.c: Likewise.
* ctf-subr.c: Likewise.
* ctf-types.c: Likewise.
* ctf-util.c: Likewise.
* ctf-open.c: Likewise.
(ctf_file_close): Rename to...
(ctf_dict_close): ...this.
(ctf_file_close): New trivial wrapper around ctf_dict_close, for
compatibility.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this.
(ctf_parent_file): New trivial wrapper around ctf_parent_dict, for
compatibility.
* libctf.ver: Add ctf_dict_close and ctf_parent_dict.
2020-11-20 21:34:04 +08:00
|
|
|
ctf_add_enum_encoded (ctf_dict_t *fp, uint32_t flag, const char *name,
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
const ctf_encoding_t *ep)
|
|
|
|
{
|
|
|
|
ctf_id_t type = 0;
|
|
|
|
|
|
|
|
/* First, create the enum if need be, using most of the same machinery as
|
|
|
|
ctf_add_enum(), to ensure that we do not allow things past that are not
|
|
|
|
enums or forwards to them. (This includes other slices: you cannot slice a
|
|
|
|
slice, which would be a useless thing to do anyway.) */
|
|
|
|
|
|
|
|
if (name != NULL)
|
libctf: avoid the need to ever use ctf_update
The method of operation of libctf when the dictionary is writable has
before now been that types that are added land in the dynamic type
section, which is a linked list and hash of IDs -> dynamic type
definitions (and, recently a hash of names): the DTDs are a bit of CTF
representing the ctf_type_t and ad hoc C structures representing the
vlen. Historically, libctf was unable to do anything with these types,
not even look them up by ID, let alone by name: if you wanted to do that
say if you were adding a type that depended on one you just added) you
called ctf_update, which serializes all the DTDs into a CTF file and
reopens it, copying its guts over the fp it's called with. The
ctf_updated types are then frozen in amber and unchangeable: all lookups
will return the types in the static portion in preference to the dynamic
portion, and we will refuse to re-add things that already exist in the
static portion (and, of late, in the dynamic portion too). The libctf
machinery remembers the boundary between static and dynamic types and
looks in the right portion for each type. Lots of things still don't
quite work with dynamic types (e.g. getting their size), but enough
works to do a bunch of additions and then a ctf_update, most of the
time.
Except it doesn't, because ctf_add_type finds it necessary to walk the
full dynamic type definition list looking for types with matching names,
so it gets slower and slower with every type you add: fixing this
requires calling ctf_update periodically for no other reason than to
avoid massively slowing things down.
This is all clunky and very slow but kind of works, until you consider
that it is in fact possible and indeed necessary to modify one sort of
type after it has been added: forwards. These are necessarily promoted
to structs, unions or enums, and when they do so *their type ID does not
change*. So all of a sudden we are changing types that already exist in
the static portion. ctf_update gets massively confused by this and
allocates space enough for the forward (with no members), but then emits
the new dynamic type (with all the members) into it. You get an
assertion failure after that, if you're lucky, or a coredump.
So this commit rejigs things a bit and arranges to exclusively use the
dynamic type definitions in writable dictionaries, and the static type
definitions in readable dictionaries: we don't at any time have a mixture
of static and dynamic types, and you don't need to call ctf_update to
make things "appear". The ctf_dtbyname hash I introduced a few months
ago, which maps things like "struct foo" to DTDs, is removed, replaced
instead by a change of type of the four dictionaries which track names.
Rather than just being (unresizable) ctf_hash_t's populated only at
ctf_bufopen time, they are now a ctf_names_t structure, which is a pair
of ctf_hash_t and ctf_dynhash_t, with the ctf_hash_t portion being used
in readonly dictionaries, and the ctf_dynhash_t being used in writable
ones. The decision as to which to use is centralized in the new
functions ctf_lookup_by_rawname (which takes a type kind) and
ctf_lookup_by_rawhash, which it calls (which takes a ctf_names_t *.)
This change lets us switch from using static to dynamic name hashes on
the fly across the entirety of libctf without complexifying anything: in
fact, because we now centralize the knowledge about how to map from type
kind to name hash, it actually simplifies things and lets us throw out
quite a lot of now-unnecessary complexity, from ctf_dtnyname (replaced
by the dynamic half of the name tables), through to ctf_dtnextid (now
that a dictionary's static portion is never referenced if the dictionary
is writable, we can just use ctf_typemax to indicate the maximum type:
dynamic or non-dynamic does not matter, and we no longer need to track
the boundary between the types). You can now ctf_rollback() as far as
you like, even past a ctf_update or for that matter a full writeout; all
the iteration functions work just as well on writable as on read-only
dictionaries; ctf_add_type no longer needs expensive duplicated code to
run over the dynamic types hunting for ones it might be interested in;
and the linker no longer needs a hack to call ctf_update so that calling
ctf_add_type is not impossibly expensive.
There is still a bit more complexity: some new code paths in ctf-types.c
need to know how to extract information from dynamic types. This
complexity will go away again in a few months when libctf acquires a
proper intermediate representation.
You can still call ctf_update if you like (it's public API, after all),
but its only effect now is to set the point to which ctf_discard rolls
back.
Obviously *something* still needs to serialize the CTF file before
writeout, and this job is done by ctf_serialize, which does everything
ctf_update used to except set the counter used by ctf_discard. It is
automatically called by the various functions that do CTF writeout:
nobody else ever needs to call it.
With this in place, forwards that are promoted to non-forwards no longer
crash the link, even if it happens tens of thousands of types later.
v5: fix tabdamage.
libctf/
* ctf-impl.h (ctf_names_t): New.
(ctf_lookup_t) <ctf_hash>: Now a ctf_names_t, not a ctf_hash_t.
(ctf_file_t) <ctf_structs>: Likewise.
<ctf_unions>: Likewise.
<ctf_enums>: Likewise.
<ctf_names>: Likewise.
<ctf_lookups>: Improve comment.
<ctf_ptrtab_len>: New.
<ctf_prov_strtab>: New.
<ctf_str_prov_offset>: New.
<ctf_dtbyname>: Remove, redundant to the names hashes.
<ctf_dtnextid>: Remove, redundant to ctf_typemax.
(ctf_dtdef_t) <dtd_name>: Remove.
<dtd_data>: Note that the ctt_name is now populated.
(ctf_str_atom_t) <csa_offset>: This is now the strtab
offset for internal strings too.
<csa_external_offset>: New, the external strtab offset.
(CTF_INDEX_TO_TYPEPTR): Handle the LCTF_RDWR case.
(ctf_name_table): New declaration.
(ctf_lookup_by_rawname): Likewise.
(ctf_lookup_by_rawhash): Likewise.
(ctf_set_ctl_hashes): Likewise.
(ctf_serialize): Likewise.
(ctf_dtd_insert): Adjust.
(ctf_simple_open_internal): Likewise.
(ctf_bufopen_internal): Likewise.
(ctf_list_empty_p): Likewise.
(ctf_str_remove_ref): Likewise.
(ctf_str_add): Returns uint32_t now.
(ctf_str_add_ref): Likewise.
(ctf_str_add_external): Now returns a boolean (int).
* ctf-string.c (ctf_strraw_explicit): Check the ctf_prov_strtab
for strings in the appropriate range.
(ctf_str_create_atoms): Create the ctf_prov_strtab. Detect OOM
when adding the null string to the new strtab.
(ctf_str_free_atoms): Destroy the ctf_prov_strtab.
(ctf_str_add_ref_internal): Add make_provisional argument. If
make_provisional, populate the offset and fill in the
ctf_prov_strtab accordingly.
(ctf_str_add): Return the offset, not the string.
(ctf_str_add_ref): Likewise.
(ctf_str_add_external): Return a success integer.
(ctf_str_remove_ref): New, remove a single ref.
(ctf_str_count_strtab): Do not count the initial null string's
length or the existence or length of any unreferenced internal
atoms.
(ctf_str_populate_sorttab): Skip atoms with no refs.
(ctf_str_write_strtab): Populate the nullstr earlier. Add one
to the cts_len for the null string, since it is no longer done
in ctf_str_count_strtab. Adjust for csa_external_offset rename.
Populate the csa_offset for both internal and external cases.
Flush the ctf_prov_strtab afterwards, and reset the
ctf_str_prov_offset.
* ctf-create.c (ctf_grow_ptrtab): New.
(ctf_create): Call it. Initialize new fields rather than old
ones. Tell ctf_bufopen_internal that this is a writable dictionary.
Set the ctl hashes and data model.
(ctf_update): Rename to...
(ctf_serialize): ... this. Leave a compatibility function behind.
Tell ctf_simple_open_internal that this is a writable dictionary.
Pass the new fields along from the old dictionary. Drop
ctf_dtnextid and ctf_dtbyname. Use ctf_strraw, not dtd_name.
Do not zero out the DTD's ctt_name.
(ctf_prefixed_name): Rename to...
(ctf_name_table): ... this. No longer return a prefixed name: return
the applicable name table instead.
(ctf_dtd_insert): Use it, and use the right name table. Pass in the
kind we're adding. Migrate away from dtd_name.
(ctf_dtd_delete): Adjust similarly. Remove the ref to the
deleted ctt_name.
(ctf_dtd_lookup_type_by_name): Remove.
(ctf_dynamic_type): Always return NULL on read-only dictionaries.
No longer check ctf_dtnextid: check ctf_typemax instead.
(ctf_snapshot): No longer use ctf_dtnextid: use ctf_typemax instead.
(ctf_rollback): Likewise. No longer fail with ECTF_OVERROLLBACK. Use
ctf_name_table and the right name table, and migrate away from
dtd_name as in ctf_dtd_delete.
(ctf_add_generic): Pass in the kind explicitly and pass it to
ctf_dtd_insert. Use ctf_typemax, not ctf_dtnextid. Migrate away
from dtd_name to using ctf_str_add_ref to populate the ctt_name.
Grow the ptrtab if needed.
(ctf_add_encoded): Pass in the kind.
(ctf_add_slice): Likewise.
(ctf_add_array): Likewise.
(ctf_add_function): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_reftype): Likewise. Initialize the ctf_ptrtab, checking
ctt_name rather than dtd_name.
(ctf_add_struct_sized): Pass in the kind. Use
ctf_lookup_by_rawname, not ctf_hash_lookup_type /
ctf_dtd_lookup_type_by_name.
(ctf_add_union_sized): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_type): Likewise.
(ctf_compress_write): Call ctf_serialize: adjust for ctf_size not
being initialized until after the call.
(ctf_write_mem): Likewise.
(ctf_write): Likewise.
* ctf-archive.c (arc_write_one_ctf): Likewise.
* ctf-lookup.c (ctf_lookup_by_name): Use ctf_lookuup_by_rawhash, not
ctf_hash_lookup_type.
(ctf_lookup_by_id): No longer check the readonly types if the
dictionary is writable.
* ctf-open.c (init_types): Assert that this dictionary is not
writable. Adjust to use the new name hashes, ctf_name_table,
and ctf_ptrtab_len. GNU style fix for the final ptrtab scan.
(ctf_bufopen_internal): New 'writable' parameter. Flip on LCTF_RDWR
if set. Drop out early when dictionary is writable. Split the
ctf_lookups initialization into...
(ctf_set_cth_hashes): ... this new function.
(ctf_simple_open_internal): Adjust. New 'writable' parameter.
(ctf_simple_open): Adjust accordingly.
(ctf_bufopen): Likewise.
(ctf_file_close): Destroy the appropriate name hashes. No longer
destroy ctf_dtbyname, which is gone.
(ctf_getdatasect): Remove spurious "extern".
* ctf-types.c (ctf_lookup_by_rawname): New, look up types in the
specified name table, given a kind.
(ctf_lookup_by_rawhash): Likewise, given a ctf_names_t *.
(ctf_member_iter): Add support for iterating over the
dynamic type list.
(ctf_enum_iter): Likewise.
(ctf_variable_iter): Likewise.
(ctf_type_rvisit): Likewise.
(ctf_member_info): Add support for types in the dynamic type list.
(ctf_enum_name): Likewise.
(ctf_enum_value): Likewise.
(ctf_func_type_info): Likewise.
(ctf_func_type_args): Likewise.
* ctf-link.c (ctf_accumulate_archive_names): No longer call
ctf_update.
(ctf_link_write): Likewise.
(ctf_link_intern_extern_string): Adjust for new
ctf_str_add_external return value.
(ctf_link_add_strtab): Likewise.
* ctf-util.c (ctf_list_empty_p): New.
2019-08-08 00:55:09 +08:00
|
|
|
type = ctf_lookup_by_rawname (fp, CTF_K_ENUM, name);
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
|
|
|
|
if (type != 0)
|
|
|
|
{
|
|
|
|
if ((ctf_type_kind (fp, type) != CTF_K_FORWARD) &&
|
|
|
|
(ctf_type_kind_unsliced (fp, type) != CTF_K_ENUM))
|
2023-09-13 17:02:36 +08:00
|
|
|
return (ctf_set_typed_errno (fp, ECTF_NOTINTFP));
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
}
|
|
|
|
else if ((type = ctf_add_enum (fp, flag, name)) == CTF_ERR)
|
|
|
|
return CTF_ERR; /* errno is set for us. */
|
|
|
|
|
|
|
|
/* Now attach a suitable slice to it. */
|
|
|
|
|
|
|
|
return ctf_add_slice (fp, flag, type, ep);
|
|
|
|
}
|
|
|
|
|
|
|
|
ctf_id_t
|
libctf, include, binutils, gdb, ld: rename ctf_file_t to ctf_dict_t
The naming of the ctf_file_t type in libctf is a historical curiosity.
Back in the Solaris days, CTF dictionaries were originally generated as
a separate file and then (sometimes) merged into objects: hence the
datatype was named ctf_file_t, and known as a "CTF file". Nowadays, raw
CTF is essentially never written to a file on its own, and the datatype
changed name to a "CTF dictionary" years ago. So the term "CTF file"
refers to something that is never a file! This is at best confusing.
The type has also historically been known as a 'CTF container", which is
even more confusing now that we have CTF archives which are *also* a
sort of container (they contain CTF dictionaries), but which are never
referred to as containers in the source code.
So fix this by completing the renaming, renaming ctf_file_t to
ctf_dict_t throughout, and renaming those few functions that refer to
CTF files by name (keeping compatibility aliases) to refer to dicts
instead. Old users who still refer to ctf_file_t will see (harmless)
pointer-compatibility warnings at compile time, but the ABI is unchanged
(since C doesn't mangle names, and ctf_file_t was always an opaque type)
and things will still compile fine as long as -Werror is not specified.
All references to CTF containers and CTF files in the source code are
fixed to refer to CTF dicts instead.
Further (smaller) renamings of annoyingly-named functions to come, as
part of the process of souping up queries across whole archives at once
(needed for the function info and data object sections).
binutils/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* objdump.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_ctf): Likewise. Use ctf_dict_close, not ctf_file_close.
* readelf.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_section_as_ctf): Likewise. Use ctf_dict_close, not
ctf_file_close.
gdb/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctfread.c: Change uses of ctf_file_t to ctf_dict_t.
(ctf_fp_info::~ctf_fp_info): Call ctf_dict_close, not ctf_file_close.
include/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-api.h (ctf_file_t): Rename to...
(ctf_dict_t): ... this. Keep ctf_file_t around for compatibility.
(struct ctf_file): Likewise rename to...
(struct ctf_dict): ... this.
(ctf_file_close): Rename to...
(ctf_dict_close): ... this, keeping compatibility function.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this, keeping compatibility function.
All callers adjusted.
* ctf.h: Rename references to ctf_file_t to ctf_dict_t.
(struct ctf_archive) <ctfa_nfiles>: Rename to...
<ctfa_ndicts>: ... this.
ld/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ldlang.c (ctf_output): This is a ctf_dict_t now.
(lang_ctf_errs_warnings): Rename ctf_file_t to ctf_dict_t.
(ldlang_open_ctf): Adjust comment.
(lang_merge_ctf): Use ctf_dict_close, not ctf_file_close.
* ldelfgen.h (ldelf_examine_strtab_for_ctf): Rename ctf_file_t to
ctf_dict_t. Change opaque declaration accordingly.
* ldelfgen.c (ldelf_examine_strtab_for_ctf): Adjust.
* ldemul.h (examine_strtab_for_ctf): Likewise.
(ldemul_examine_strtab_for_ctf): Likewise.
* ldeuml.c (ldemul_examine_strtab_for_ctf): Likewise.
libctf/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h: Rename ctf_file_t to ctf_dict_t: all declarations
adjusted.
(ctf_fileops): Rename to...
(ctf_dictops): ... this.
(ctf_dedup_t) <cd_id_to_file_t>: Rename to...
<cd_id_to_dict_t>: ... this.
(ctf_file_t): Fix outdated comment.
<ctf_fileops>: Rename to...
<ctf_dictops>: ... this.
(struct ctf_archive_internal) <ctfi_file>: Rename to...
<ctfi_dict>: ... this.
* ctf-archive.c: Rename ctf_file_t to ctf_dict_t.
Rename ctf_archive.ctfa_nfiles to ctfa_ndicts.
Rename ctf_file_close to ctf_dict_close. All users adjusted.
* ctf-create.c: Likewise. Refer to CTF dicts, not CTF containers.
(ctf_bundle_t) <ctb_file>: Rename to...
<ctb_dict): ... this.
* ctf-decl.c: Rename ctf_file_t to ctf_dict_t.
* ctf-dedup.c: Likewise. Rename ctf_file_close to
ctf_dict_close. Refer to CTF dicts, not CTF containers.
* ctf-dump.c: Likewise.
* ctf-error.c: Likewise.
* ctf-hash.c: Likewise.
* ctf-inlines.h: Likewise.
* ctf-labels.c: Likewise.
* ctf-link.c: Likewise.
* ctf-lookup.c: Likewise.
* ctf-open-bfd.c: Likewise.
* ctf-string.c: Likewise.
* ctf-subr.c: Likewise.
* ctf-types.c: Likewise.
* ctf-util.c: Likewise.
* ctf-open.c: Likewise.
(ctf_file_close): Rename to...
(ctf_dict_close): ...this.
(ctf_file_close): New trivial wrapper around ctf_dict_close, for
compatibility.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this.
(ctf_parent_file): New trivial wrapper around ctf_parent_dict, for
compatibility.
* libctf.ver: Add ctf_dict_close and ctf_parent_dict.
2020-11-20 21:34:04 +08:00
|
|
|
ctf_add_forward (ctf_dict_t *fp, uint32_t flag, const char *name,
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
uint32_t kind)
|
|
|
|
{
|
|
|
|
ctf_dtdef_t *dtd;
|
|
|
|
ctf_id_t type = 0;
|
|
|
|
|
2020-06-03 20:23:42 +08:00
|
|
|
if (!ctf_forwardable_kind (kind))
|
2023-09-13 17:02:36 +08:00
|
|
|
return (ctf_set_typed_errno (fp, ECTF_NOTSUE));
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
|
2021-01-28 03:55:45 +08:00
|
|
|
if (name == NULL || name[0] == '\0')
|
2023-09-13 17:02:36 +08:00
|
|
|
return (ctf_set_typed_errno (fp, ECTF_NONAME));
|
2021-01-28 03:55:45 +08:00
|
|
|
|
libctf: support addition of types to dicts read via ctf_open()
libctf has long declared deserialized dictionaries (out of files or ELF
sections or memory buffers or whatever) to be read-only: back in the
furthest prehistory this was not the case, in that you could add a
few sorts of type to such dicts, but attempting to do so often caused
horrible memory corruption, so I banned the lot.
But it turns out real consumers want it (notably DTrace, which
synthesises pointers to types that don't have them and adds them to the
ctf_open()ed dicts if it needs them). Let's bring it back again, but
without the memory corruption and without the massive code duplication
required in days of yore to distinguish between static and dynamic
types: the representation of both types has been identical for a few
years, with the only difference being that types as a whole are stored in
a big buffer for types read in via ctf_open and per-type hashtables for
newly-added types.
So we discard the internally-visible concept of "readonly dictionaries"
in favour of declaring the *range of types* that were already present
when the dict was read in to be read-only: you can't modify them (say,
by adding members to them if they're structs, or calling ctf_set_array
on them), but you can add more types and point to them. (The API
remains the same, with calls sometimes returning ECTF_RDONLY, but now
they do so less often.)
This is a fairly invasive change, mostly because code written since the
ban was introduced didn't take the possibility of a static/dynamic split
into account. Some of these irregularities were hard to define as
anything but bugs.
Notably:
- The symbol handling was assuming that symbols only needed to be
looked for in dynamic hashtabs or static linker-laid-out indexed/
nonindexed layouts, but now we want to check both in case people
added more symbols to a dict they opened.
- The code that handles type additions wasn't checking to see if types
with the same name existed *at all* (so you could do
ctf_add_typedef (fp, "foo", bar) repeatedly without error). This
seems reasonable for types you just added, but we probably *do* want
to ban addition of types with names that override names we already
used in the ctf_open()ed portion, since that would probably corrupt
existing type relationships. (Doing things this way also avoids
causing new errors for any existing code that was doing this sort of
thing.)
- ctf_lookup_variable entirely failed to work for variables just added
by ctf_add_variable: you had to write the dict out and read it back
in again before they appeared.
- The symbol handling remembered what symbols you looked up but didn't
remember their types, so you could look up an object symbol and then
find it popping up when you asked for function symbols, which seems
less than ideal. Since we had to rejig things enough to be able to
distinguish function and object symbols internally anyway (in order
to give suitable errors if you try to add a symbol with a name that
already existed in the ctf_open()ed dict), this bug suddenly became
more visible and was easily fixed.
We do not (yet) support writing out dicts that have been previously read
in via ctf_open() or other deserializer (you can look things up in them,
but not write them out a second time). This never worked, so there is
no incompatibility; if it is needed at a later date, the serializer is a
little bit closer to having it work now (the only table we don't deal
with is the types table, and that's because the upcoming CTFv4 changes
are likely to make major changes to the way that table is represented
internally, so adding more code that depends on its current form seems
like a bad idea).
There is a new testcase that tests much of this, in particular that
modification of existing types is still banned and that you can add new
ones and chase them without error.
libctf/
* ctf-impl.h (struct ctf_dict.ctf_symhash): Split into...
(ctf_dict.ctf_symhash_func): ... this and...
(ctf_dict.ctf_symhash_objt): ... this.
(ctf_dict.ctf_stypes): New, counts static types.
(LCTF_INDEX_TO_TYPEPTR): Use it instead of CTF_RDWR.
(LCTF_RDWR): Deleted.
(LCTF_DIRTY): Renumbered.
(LCTF_LINKING): Likewise.
(ctf_lookup_variable_here): New.
(ctf_lookup_by_sym_or_name): Likewise.
(ctf_symbol_next_static): Likewise.
(ctf_add_variable_forced): Likewise.
(ctf_add_funcobjt_sym_forced): Likewise.
(ctf_simple_open_internal): Adjust.
(ctf_bufopen_internal): Likewise.
* ctf-create.c (ctf_grow_ptrtab): Adjust a lot to start with.
(ctf_create): Migrate a bunch of initializations into bufopen.
Force recreation of name tables. Do not forcibly override the
model, let ctf_bufopen do it.
(ctf_static_type): New.
(ctf_update): Drop LCTF_RDWR check.
(ctf_dynamic_type): Likewise.
(ctf_add_function): Likewise.
(ctf_add_type_internal): Likewise.
(ctf_rollback): Check ctf_stypes, not LCTF_RDWR.
(ctf_set_array): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_enumerator): Likewise (only on the target dict).
(ctf_add_member_offset): Likewise.
(ctf_add_generic): Drop LCTF_RDWR check. Ban addition of types
with colliding names.
(ctf_add_forward): Note safety under the new rules.
(ctf_add_variable): Split all but the existence check into...
(ctf_add_variable_forced): ... this new function.
(ctf_add_funcobjt_sym): Likewise...
(ctf_add_funcobjt_sym_forced): ... for this new function.
* ctf-link.c (ctf_link_add_linker_symbol): Ban calling on dicts
with any stypes.
(ctf_link_add_strtab): Likewise.
(ctf_link_shuffle_syms): Likewise.
(ctf_link_intern_extern_string): Note pre-existing prohibition.
* ctf-lookup.c (ctf_lookup_by_id): Drop LCTF_RDWR check.
(ctf_lookup_variable): Split out looking in a dict but not
its parent into...
(ctf_lookup_variable_here): ... this new function.
(ctf_lookup_symbol_idx): Track whether looking up a function or
object: cache them separately.
(ctf_symbol_next): Split out looking in non-dynamic symtypetab
entries to...
(ctf_symbol_next_static): ... this new function. Don't get confused
by the simultaneous presence of static and dynamic symtypetab entries.
(ctf_try_lookup_indexed): Don't waste time looking up symbols by
index before there can be any idea how symbols are numbered.
(ctf_lookup_by_sym_or_name): Distinguish between function and
data object lookups. Drop LCTF_RDWR.
(ctf_lookup_by_symbol): Adjust.
(ctf_lookup_by_symbol_name): Likewise.
* ctf-open.c (init_types): Rename to...
(init_static_types): ... this. Drop LCTF_RDWR. Populate ctf_stypes.
(ctf_simple_open): Drop writable arg.
(ctf_simple_open_internal): Likewise.
(ctf_bufopen): Likewise.
(ctf_bufopen_internal): Populate fields only used for writable dicts.
Drop LCTF_RDWR.
(ctf_dict_close): Cater for symhash cache split.
* ctf-serialize.c (ctf_serialize): Use ctf_stypes, not LCTF_RDWR.
* ctf-types.c (ctf_variable_next): Drop LCTF_RDWR.
* testsuite/libctf-lookup/add-to-opened*: New test.
2023-12-20 00:58:19 +08:00
|
|
|
/* If the type is already defined or exists as a forward tag, just return
|
|
|
|
the ctf_id_t of the existing definition. Since this changes nothing,
|
|
|
|
it's safe to do even on the read-only portion of the dict. */
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
|
2021-01-28 03:55:45 +08:00
|
|
|
type = ctf_lookup_by_rawname (fp, kind, name);
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
|
2019-10-21 18:33:19 +08:00
|
|
|
if (type)
|
|
|
|
return type;
|
|
|
|
|
libctf: eliminate dtd_u, part 1: int/float/slice
This series eliminates a lot of special-case code to handle dynamic
types (types added to writable dicts and not yet serialized).
Historically, when such types have variable-length data in their final
CTF representations, libctf has always worked by adding such types to a
special union (ctf_dtdef_t.dtd_u) in the dynamic type definition
structure, then picking the members out of this structure at
serialization time and packing them into their final form.
This has the advantage that the ctf_add_* code doesn't need to know
anything about the final CTF representation, but the significant
disadvantage that all code that looks up types in any way needs two code
paths, one for dynamic types, one for all others. Historically libctf
"handled" this by not supporting most type lookups on dynamic types at
all until ctf_update was called to do a complete reserialization of the
entire dict (it didn't emit an error, it just emitted wrong results).
Since commit 676c3ecbad6e9c4, which eliminated ctf_update in favour of
the internal-only ctf_serialize function, all the type-lookup paths
grew an extra branch to handle dynamic types.
We can eliminate this branch again by dropping the dtd_u stuff and
simply writing out the vlen in (close to) its final form at ctf_add_*
time: type lookup for types using this approach is then identical for
types in writable dicts and types that are in read-only ones, and
serialization is also simplified (we just need to write out the vlen
we already created).
The only complexity lies in type kinds for which multiple
vlen representations are valid depending on properties of the type,
e.g. structures. But we can start simple, adjusting ints, floats,
and slices to work this way, and leaving everything else as is.
libctf/ChangeLog
2021-03-18 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h (ctf_dtdef_t) <dtd_u.dtu_enc>: Remove.
<dtd_u.dtu_slice>: Likewise.
<dtd_vlen>: New.
* ctf-create.c (ctf_add_generic): Perhaps allocate it. All
callers adjusted.
(ctf_dtd_delete): Free it.
(ctf_add_slice): Use the dtd_vlen, not dtu_enc.
(ctf_add_encoded): Likewise. Assert that this must be an int or
float.
* ctf-serialize.c (ctf_emit_type_sect): Just copy the dtd_vlen.
* ctf-dedup.c (ctf_dedup_rhash_type): Use the dtd_vlen, not
dtu_slice.
* ctf-types.c (ctf_type_reference): Likewise.
(ctf_type_encoding): Remove most dynamic-type-specific code: just
get the vlen from the right place. Report failure to look up the
underlying type's encoding.
2021-03-18 20:37:52 +08:00
|
|
|
if ((type = ctf_add_generic (fp, flag, name, kind, 0, &dtd)) == CTF_ERR)
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
return CTF_ERR; /* errno is set for us. */
|
|
|
|
|
|
|
|
dtd->dtd_data.ctt_info = CTF_TYPE_INFO (CTF_K_FORWARD, flag, 0);
|
|
|
|
dtd->dtd_data.ctt_type = kind;
|
|
|
|
|
|
|
|
return type;
|
|
|
|
}
|
|
|
|
|
libctf, include: support an alternative encoding for nonrepresentable types
Before now, types that could not be encoded in CTF were represented as
references to type ID 0, which does not itself appear in the
dictionary. This choice is annoying in several ways, principally that it
forces generators and consumers of CTF to grow special cases for types
that are referenced in valid dicts but don't appear.
Allow an alternative representation (which will become the only
representation in format v4) whereby nonrepresentable types are encoded
as actual types with kind CTF_K_UNKNOWN (an already-existing kind
theoretically but not in practice used for padding, with value 0).
This is backward-compatible, because CTF_K_UNKNOWN was not used anywhere
before now: it was used in old-format function symtypetabs, but these
were never emitted by any compiler and the code to handle them in libctf
likely never worked and was removed last year, in favour of new-format
symtypetabs that contain only type IDs, not type kinds.
In order to link this type, we need an API addition to let us add types
of unknown kind to the dict: we let them optionally have names so that
GCC can emit many different unknown types and those types with identical
names will be deduplicated together. There are also small tweaks to the
deduplicator to actually dedup such types, to let opening of dicts with
unknown types with names work, to return the ECTF_NONREPRESENTABLE error
on resolution of such types (like ID 0), and to print their names as
something useful but not a valid C identifier, mostly for the sake of
the dumper.
Tests added in the next commit.
include/ChangeLog
2021-05-06 Nick Alcock <nick.alcock@oracle.com>
* ctf.h (CTF_K_UNKNOWN): Document that it can be used for
nonrepresentable types, not just padding.
* ctf-api.h (ctf_add_unknown): New.
libctf/ChangeLog
2021-05-06 Nick Alcock <nick.alcock@oracle.com>
* ctf-open.c (init_types): Unknown types may have names.
* ctf-types.c (ctf_type_resolve): CTF_K_UNKNOWN is as
non-representable as type ID 0.
(ctf_type_aname): Print unknown types.
* ctf-dedup.c (ctf_dedup_hash_type): Do not early-exit for
CTF_K_UNKNOWN types: they have real hash values now.
(ctf_dedup_rwalk_one_output_mapping): Treat CTF_K_UNKNOWN types
like other types with no referents: call the callback and do not
skip them.
(ctf_dedup_emit_type): Emit via...
* ctf-create.c (ctf_add_unknown): ... this new function.
* libctf.ver (LIBCTF_1.2): Add it.
2021-05-06 16:30:58 +08:00
|
|
|
ctf_id_t
|
|
|
|
ctf_add_unknown (ctf_dict_t *fp, uint32_t flag, const char *name)
|
|
|
|
{
|
|
|
|
ctf_dtdef_t *dtd;
|
|
|
|
ctf_id_t type = 0;
|
|
|
|
|
|
|
|
/* If a type is already defined with this name, error (if not CTF_K_UNKNOWN)
|
|
|
|
or just return it. */
|
|
|
|
|
|
|
|
if (name != NULL && name[0] != '\0' && flag == CTF_ADD_ROOT
|
|
|
|
&& (type = ctf_lookup_by_rawname (fp, CTF_K_UNKNOWN, name)))
|
|
|
|
{
|
|
|
|
if (ctf_type_kind (fp, type) == CTF_K_UNKNOWN)
|
|
|
|
return type;
|
|
|
|
else
|
|
|
|
{
|
|
|
|
ctf_err_warn (fp, 1, ECTF_CONFLICT,
|
|
|
|
_("ctf_add_unknown: cannot add unknown type "
|
|
|
|
"named %s: type of this name already defined"),
|
|
|
|
name ? name : _("(unnamed type)"));
|
2023-09-13 17:02:36 +08:00
|
|
|
return (ctf_set_typed_errno (fp, ECTF_CONFLICT));
|
libctf, include: support an alternative encoding for nonrepresentable types
Before now, types that could not be encoded in CTF were represented as
references to type ID 0, which does not itself appear in the
dictionary. This choice is annoying in several ways, principally that it
forces generators and consumers of CTF to grow special cases for types
that are referenced in valid dicts but don't appear.
Allow an alternative representation (which will become the only
representation in format v4) whereby nonrepresentable types are encoded
as actual types with kind CTF_K_UNKNOWN (an already-existing kind
theoretically but not in practice used for padding, with value 0).
This is backward-compatible, because CTF_K_UNKNOWN was not used anywhere
before now: it was used in old-format function symtypetabs, but these
were never emitted by any compiler and the code to handle them in libctf
likely never worked and was removed last year, in favour of new-format
symtypetabs that contain only type IDs, not type kinds.
In order to link this type, we need an API addition to let us add types
of unknown kind to the dict: we let them optionally have names so that
GCC can emit many different unknown types and those types with identical
names will be deduplicated together. There are also small tweaks to the
deduplicator to actually dedup such types, to let opening of dicts with
unknown types with names work, to return the ECTF_NONREPRESENTABLE error
on resolution of such types (like ID 0), and to print their names as
something useful but not a valid C identifier, mostly for the sake of
the dumper.
Tests added in the next commit.
include/ChangeLog
2021-05-06 Nick Alcock <nick.alcock@oracle.com>
* ctf.h (CTF_K_UNKNOWN): Document that it can be used for
nonrepresentable types, not just padding.
* ctf-api.h (ctf_add_unknown): New.
libctf/ChangeLog
2021-05-06 Nick Alcock <nick.alcock@oracle.com>
* ctf-open.c (init_types): Unknown types may have names.
* ctf-types.c (ctf_type_resolve): CTF_K_UNKNOWN is as
non-representable as type ID 0.
(ctf_type_aname): Print unknown types.
* ctf-dedup.c (ctf_dedup_hash_type): Do not early-exit for
CTF_K_UNKNOWN types: they have real hash values now.
(ctf_dedup_rwalk_one_output_mapping): Treat CTF_K_UNKNOWN types
like other types with no referents: call the callback and do not
skip them.
(ctf_dedup_emit_type): Emit via...
* ctf-create.c (ctf_add_unknown): ... this new function.
* libctf.ver (LIBCTF_1.2): Add it.
2021-05-06 16:30:58 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if ((type = ctf_add_generic (fp, flag, name, CTF_K_UNKNOWN, 0, &dtd)) == CTF_ERR)
|
|
|
|
return CTF_ERR; /* errno is set for us. */
|
|
|
|
|
|
|
|
dtd->dtd_data.ctt_info = CTF_TYPE_INFO (CTF_K_UNKNOWN, flag, 0);
|
|
|
|
dtd->dtd_data.ctt_type = 0;
|
|
|
|
|
|
|
|
return type;
|
|
|
|
}
|
|
|
|
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
ctf_id_t
|
libctf, include, binutils, gdb, ld: rename ctf_file_t to ctf_dict_t
The naming of the ctf_file_t type in libctf is a historical curiosity.
Back in the Solaris days, CTF dictionaries were originally generated as
a separate file and then (sometimes) merged into objects: hence the
datatype was named ctf_file_t, and known as a "CTF file". Nowadays, raw
CTF is essentially never written to a file on its own, and the datatype
changed name to a "CTF dictionary" years ago. So the term "CTF file"
refers to something that is never a file! This is at best confusing.
The type has also historically been known as a 'CTF container", which is
even more confusing now that we have CTF archives which are *also* a
sort of container (they contain CTF dictionaries), but which are never
referred to as containers in the source code.
So fix this by completing the renaming, renaming ctf_file_t to
ctf_dict_t throughout, and renaming those few functions that refer to
CTF files by name (keeping compatibility aliases) to refer to dicts
instead. Old users who still refer to ctf_file_t will see (harmless)
pointer-compatibility warnings at compile time, but the ABI is unchanged
(since C doesn't mangle names, and ctf_file_t was always an opaque type)
and things will still compile fine as long as -Werror is not specified.
All references to CTF containers and CTF files in the source code are
fixed to refer to CTF dicts instead.
Further (smaller) renamings of annoyingly-named functions to come, as
part of the process of souping up queries across whole archives at once
(needed for the function info and data object sections).
binutils/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* objdump.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_ctf): Likewise. Use ctf_dict_close, not ctf_file_close.
* readelf.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_section_as_ctf): Likewise. Use ctf_dict_close, not
ctf_file_close.
gdb/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctfread.c: Change uses of ctf_file_t to ctf_dict_t.
(ctf_fp_info::~ctf_fp_info): Call ctf_dict_close, not ctf_file_close.
include/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-api.h (ctf_file_t): Rename to...
(ctf_dict_t): ... this. Keep ctf_file_t around for compatibility.
(struct ctf_file): Likewise rename to...
(struct ctf_dict): ... this.
(ctf_file_close): Rename to...
(ctf_dict_close): ... this, keeping compatibility function.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this, keeping compatibility function.
All callers adjusted.
* ctf.h: Rename references to ctf_file_t to ctf_dict_t.
(struct ctf_archive) <ctfa_nfiles>: Rename to...
<ctfa_ndicts>: ... this.
ld/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ldlang.c (ctf_output): This is a ctf_dict_t now.
(lang_ctf_errs_warnings): Rename ctf_file_t to ctf_dict_t.
(ldlang_open_ctf): Adjust comment.
(lang_merge_ctf): Use ctf_dict_close, not ctf_file_close.
* ldelfgen.h (ldelf_examine_strtab_for_ctf): Rename ctf_file_t to
ctf_dict_t. Change opaque declaration accordingly.
* ldelfgen.c (ldelf_examine_strtab_for_ctf): Adjust.
* ldemul.h (examine_strtab_for_ctf): Likewise.
(ldemul_examine_strtab_for_ctf): Likewise.
* ldeuml.c (ldemul_examine_strtab_for_ctf): Likewise.
libctf/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h: Rename ctf_file_t to ctf_dict_t: all declarations
adjusted.
(ctf_fileops): Rename to...
(ctf_dictops): ... this.
(ctf_dedup_t) <cd_id_to_file_t>: Rename to...
<cd_id_to_dict_t>: ... this.
(ctf_file_t): Fix outdated comment.
<ctf_fileops>: Rename to...
<ctf_dictops>: ... this.
(struct ctf_archive_internal) <ctfi_file>: Rename to...
<ctfi_dict>: ... this.
* ctf-archive.c: Rename ctf_file_t to ctf_dict_t.
Rename ctf_archive.ctfa_nfiles to ctfa_ndicts.
Rename ctf_file_close to ctf_dict_close. All users adjusted.
* ctf-create.c: Likewise. Refer to CTF dicts, not CTF containers.
(ctf_bundle_t) <ctb_file>: Rename to...
<ctb_dict): ... this.
* ctf-decl.c: Rename ctf_file_t to ctf_dict_t.
* ctf-dedup.c: Likewise. Rename ctf_file_close to
ctf_dict_close. Refer to CTF dicts, not CTF containers.
* ctf-dump.c: Likewise.
* ctf-error.c: Likewise.
* ctf-hash.c: Likewise.
* ctf-inlines.h: Likewise.
* ctf-labels.c: Likewise.
* ctf-link.c: Likewise.
* ctf-lookup.c: Likewise.
* ctf-open-bfd.c: Likewise.
* ctf-string.c: Likewise.
* ctf-subr.c: Likewise.
* ctf-types.c: Likewise.
* ctf-util.c: Likewise.
* ctf-open.c: Likewise.
(ctf_file_close): Rename to...
(ctf_dict_close): ...this.
(ctf_file_close): New trivial wrapper around ctf_dict_close, for
compatibility.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this.
(ctf_parent_file): New trivial wrapper around ctf_parent_dict, for
compatibility.
* libctf.ver: Add ctf_dict_close and ctf_parent_dict.
2020-11-20 21:34:04 +08:00
|
|
|
ctf_add_typedef (ctf_dict_t *fp, uint32_t flag, const char *name,
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
ctf_id_t ref)
|
|
|
|
{
|
|
|
|
ctf_dtdef_t *dtd;
|
|
|
|
ctf_id_t type;
|
libctf, include, binutils, gdb, ld: rename ctf_file_t to ctf_dict_t
The naming of the ctf_file_t type in libctf is a historical curiosity.
Back in the Solaris days, CTF dictionaries were originally generated as
a separate file and then (sometimes) merged into objects: hence the
datatype was named ctf_file_t, and known as a "CTF file". Nowadays, raw
CTF is essentially never written to a file on its own, and the datatype
changed name to a "CTF dictionary" years ago. So the term "CTF file"
refers to something that is never a file! This is at best confusing.
The type has also historically been known as a 'CTF container", which is
even more confusing now that we have CTF archives which are *also* a
sort of container (they contain CTF dictionaries), but which are never
referred to as containers in the source code.
So fix this by completing the renaming, renaming ctf_file_t to
ctf_dict_t throughout, and renaming those few functions that refer to
CTF files by name (keeping compatibility aliases) to refer to dicts
instead. Old users who still refer to ctf_file_t will see (harmless)
pointer-compatibility warnings at compile time, but the ABI is unchanged
(since C doesn't mangle names, and ctf_file_t was always an opaque type)
and things will still compile fine as long as -Werror is not specified.
All references to CTF containers and CTF files in the source code are
fixed to refer to CTF dicts instead.
Further (smaller) renamings of annoyingly-named functions to come, as
part of the process of souping up queries across whole archives at once
(needed for the function info and data object sections).
binutils/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* objdump.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_ctf): Likewise. Use ctf_dict_close, not ctf_file_close.
* readelf.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_section_as_ctf): Likewise. Use ctf_dict_close, not
ctf_file_close.
gdb/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctfread.c: Change uses of ctf_file_t to ctf_dict_t.
(ctf_fp_info::~ctf_fp_info): Call ctf_dict_close, not ctf_file_close.
include/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-api.h (ctf_file_t): Rename to...
(ctf_dict_t): ... this. Keep ctf_file_t around for compatibility.
(struct ctf_file): Likewise rename to...
(struct ctf_dict): ... this.
(ctf_file_close): Rename to...
(ctf_dict_close): ... this, keeping compatibility function.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this, keeping compatibility function.
All callers adjusted.
* ctf.h: Rename references to ctf_file_t to ctf_dict_t.
(struct ctf_archive) <ctfa_nfiles>: Rename to...
<ctfa_ndicts>: ... this.
ld/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ldlang.c (ctf_output): This is a ctf_dict_t now.
(lang_ctf_errs_warnings): Rename ctf_file_t to ctf_dict_t.
(ldlang_open_ctf): Adjust comment.
(lang_merge_ctf): Use ctf_dict_close, not ctf_file_close.
* ldelfgen.h (ldelf_examine_strtab_for_ctf): Rename ctf_file_t to
ctf_dict_t. Change opaque declaration accordingly.
* ldelfgen.c (ldelf_examine_strtab_for_ctf): Adjust.
* ldemul.h (examine_strtab_for_ctf): Likewise.
(ldemul_examine_strtab_for_ctf): Likewise.
* ldeuml.c (ldemul_examine_strtab_for_ctf): Likewise.
libctf/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h: Rename ctf_file_t to ctf_dict_t: all declarations
adjusted.
(ctf_fileops): Rename to...
(ctf_dictops): ... this.
(ctf_dedup_t) <cd_id_to_file_t>: Rename to...
<cd_id_to_dict_t>: ... this.
(ctf_file_t): Fix outdated comment.
<ctf_fileops>: Rename to...
<ctf_dictops>: ... this.
(struct ctf_archive_internal) <ctfi_file>: Rename to...
<ctfi_dict>: ... this.
* ctf-archive.c: Rename ctf_file_t to ctf_dict_t.
Rename ctf_archive.ctfa_nfiles to ctfa_ndicts.
Rename ctf_file_close to ctf_dict_close. All users adjusted.
* ctf-create.c: Likewise. Refer to CTF dicts, not CTF containers.
(ctf_bundle_t) <ctb_file>: Rename to...
<ctb_dict): ... this.
* ctf-decl.c: Rename ctf_file_t to ctf_dict_t.
* ctf-dedup.c: Likewise. Rename ctf_file_close to
ctf_dict_close. Refer to CTF dicts, not CTF containers.
* ctf-dump.c: Likewise.
* ctf-error.c: Likewise.
* ctf-hash.c: Likewise.
* ctf-inlines.h: Likewise.
* ctf-labels.c: Likewise.
* ctf-link.c: Likewise.
* ctf-lookup.c: Likewise.
* ctf-open-bfd.c: Likewise.
* ctf-string.c: Likewise.
* ctf-subr.c: Likewise.
* ctf-types.c: Likewise.
* ctf-util.c: Likewise.
* ctf-open.c: Likewise.
(ctf_file_close): Rename to...
(ctf_dict_close): ...this.
(ctf_file_close): New trivial wrapper around ctf_dict_close, for
compatibility.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this.
(ctf_parent_file): New trivial wrapper around ctf_parent_dict, for
compatibility.
* libctf.ver: Add ctf_dict_close and ctf_parent_dict.
2020-11-20 21:34:04 +08:00
|
|
|
ctf_dict_t *tmp = fp;
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
|
libctf: fix a number of build problems found on Solaris and NetBSD
- Use of nonportable <endian.h>
- Use of qsort_r
- Use of zlib without appropriate magic to pull in the binutils zlib
- Use of off64_t without checking (fixed by dropping the unused fields
that need off64_t entirely)
- signedness problems due to long being too short a type on 32-bit
platforms: ctf_id_t is now 'unsigned long', and CTF_ERR must be
used only for functions that return ctf_id_t
- One lingering use of bzero() and of <sys/errno.h>
All fixed, using code from gnulib where possible.
Relatedly, set cts_size in a couple of places it was missed
(string table and symbol table loading upon ctf_bfdopen()).
binutils/
* objdump.c (make_ctfsect): Drop cts_type, cts_flags, and
cts_offset.
* readelf.c (shdr_to_ctf_sect): Likewise.
include/
* ctf-api.h (ctf_sect_t): Drop cts_type, cts_flags, and cts_offset.
(ctf_id_t): This is now an unsigned type.
(CTF_ERR): Cast it to ctf_id_t. Note that it should only be used
for ctf_id_t-returning functions.
libctf/
* Makefile.am (ZLIB): New.
(ZLIBINC): Likewise.
(AM_CFLAGS): Use them.
(libctf_a_LIBADD): New, for LIBOBJS.
* configure.ac: Check for zlib, endian.h, and qsort_r.
* ctf-endian.h: New, providing htole64 and le64toh.
* swap.h: Code style fixes.
(bswap_identity_64): New.
* qsort_r.c: New, from gnulib (with one added #include).
* ctf-decls.h: New, providing a conditional qsort_r declaration,
and unconditional definitions of MIN and MAX.
* ctf-impl.h: Use it. Do not use <sys/errno.h>.
(ctf_set_errno): Now returns unsigned long.
* ctf-util.c (ctf_set_errno): Adjust here too.
* ctf-archive.c: Use ctf-endian.h.
(ctf_arc_open_by_offset): Use memset, not bzero. Drop cts_type,
cts_flags and cts_offset.
(ctf_arc_write): Drop debugging dependent on the size of off_t.
* ctf-create.c: Provide a definition of roundup if not defined.
(ctf_create): Drop cts_type, cts_flags and cts_offset.
(ctf_add_reftype): Do not check if type IDs are below zero.
(ctf_add_slice): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_member_offset): Cast error-returning ssize_t's to size_t
when known error-free. Drop CTF_ERR usage for functions returning
int.
(ctf_add_member_encoded): Drop CTF_ERR usage for functions returning
int.
(ctf_add_variable): Likewise.
(enumcmp): Likewise.
(enumadd): Likewise.
(membcmp): Likewise.
(ctf_add_type): Likewise. Cast error-returning ssize_t's to size_t
when known error-free.
* ctf-dump.c (ctf_is_slice): Drop CTF_ERR usage for functions
returning int: use CTF_ERR for functions returning ctf_type_id.
(ctf_dump_label): Likewise.
(ctf_dump_objts): Likewise.
* ctf-labels.c (ctf_label_topmost): Likewise.
(ctf_label_iter): Likewise.
(ctf_label_info): Likewise.
* ctf-lookup.c (ctf_func_args): Likewise.
* ctf-open.c (upgrade_types): Cast to size_t where appropriate.
(ctf_bufopen): Likewise. Use zlib types as needed.
* ctf-types.c (ctf_member_iter): Drop CTF_ERR usage for functions
returning int.
(ctf_enum_iter): Likewise.
(ctf_type_size): Likewise.
(ctf_type_align): Likewise. Cast to size_t where appropriate.
(ctf_type_kind_unsliced): Likewise.
(ctf_type_kind): Likewise.
(ctf_type_encoding): Likewise.
(ctf_member_info): Likewise.
(ctf_array_info): Likewise.
(ctf_enum_value): Likewise.
(ctf_type_rvisit): Likewise.
* ctf-open-bfd.c (ctf_bfdopen): Drop cts_type, cts_flags and
cts_offset.
(ctf_simple_open): Likewise.
(ctf_bfdopen_ctfsect): Likewise. Set cts_size properly.
* Makefile.in: Regenerate.
* aclocal.m4: Likewise.
* config.h: Likewise.
* configure: Likewise.
2019-05-31 17:10:51 +08:00
|
|
|
if (ref == CTF_ERR || ref > CTF_MAX_TYPE)
|
2023-09-13 17:02:36 +08:00
|
|
|
return (ctf_set_typed_errno (fp, EINVAL));
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
|
2021-01-28 03:55:45 +08:00
|
|
|
if (name == NULL || name[0] == '\0')
|
2023-09-13 17:02:36 +08:00
|
|
|
return (ctf_set_typed_errno (fp, ECTF_NONAME));
|
2021-01-28 03:55:45 +08:00
|
|
|
|
2020-06-03 03:04:24 +08:00
|
|
|
if (ref != 0 && ctf_lookup_by_id (&tmp, ref) == NULL)
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
return CTF_ERR; /* errno is set for us. */
|
|
|
|
|
libctf: eliminate dtd_u, part 1: int/float/slice
This series eliminates a lot of special-case code to handle dynamic
types (types added to writable dicts and not yet serialized).
Historically, when such types have variable-length data in their final
CTF representations, libctf has always worked by adding such types to a
special union (ctf_dtdef_t.dtd_u) in the dynamic type definition
structure, then picking the members out of this structure at
serialization time and packing them into their final form.
This has the advantage that the ctf_add_* code doesn't need to know
anything about the final CTF representation, but the significant
disadvantage that all code that looks up types in any way needs two code
paths, one for dynamic types, one for all others. Historically libctf
"handled" this by not supporting most type lookups on dynamic types at
all until ctf_update was called to do a complete reserialization of the
entire dict (it didn't emit an error, it just emitted wrong results).
Since commit 676c3ecbad6e9c4, which eliminated ctf_update in favour of
the internal-only ctf_serialize function, all the type-lookup paths
grew an extra branch to handle dynamic types.
We can eliminate this branch again by dropping the dtd_u stuff and
simply writing out the vlen in (close to) its final form at ctf_add_*
time: type lookup for types using this approach is then identical for
types in writable dicts and types that are in read-only ones, and
serialization is also simplified (we just need to write out the vlen
we already created).
The only complexity lies in type kinds for which multiple
vlen representations are valid depending on properties of the type,
e.g. structures. But we can start simple, adjusting ints, floats,
and slices to work this way, and leaving everything else as is.
libctf/ChangeLog
2021-03-18 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h (ctf_dtdef_t) <dtd_u.dtu_enc>: Remove.
<dtd_u.dtu_slice>: Likewise.
<dtd_vlen>: New.
* ctf-create.c (ctf_add_generic): Perhaps allocate it. All
callers adjusted.
(ctf_dtd_delete): Free it.
(ctf_add_slice): Use the dtd_vlen, not dtu_enc.
(ctf_add_encoded): Likewise. Assert that this must be an int or
float.
* ctf-serialize.c (ctf_emit_type_sect): Just copy the dtd_vlen.
* ctf-dedup.c (ctf_dedup_rhash_type): Use the dtd_vlen, not
dtu_slice.
* ctf-types.c (ctf_type_reference): Likewise.
(ctf_type_encoding): Remove most dynamic-type-specific code: just
get the vlen from the right place. Report failure to look up the
underlying type's encoding.
2021-03-18 20:37:52 +08:00
|
|
|
if ((type = ctf_add_generic (fp, flag, name, CTF_K_TYPEDEF, 0,
|
libctf: avoid the need to ever use ctf_update
The method of operation of libctf when the dictionary is writable has
before now been that types that are added land in the dynamic type
section, which is a linked list and hash of IDs -> dynamic type
definitions (and, recently a hash of names): the DTDs are a bit of CTF
representing the ctf_type_t and ad hoc C structures representing the
vlen. Historically, libctf was unable to do anything with these types,
not even look them up by ID, let alone by name: if you wanted to do that
say if you were adding a type that depended on one you just added) you
called ctf_update, which serializes all the DTDs into a CTF file and
reopens it, copying its guts over the fp it's called with. The
ctf_updated types are then frozen in amber and unchangeable: all lookups
will return the types in the static portion in preference to the dynamic
portion, and we will refuse to re-add things that already exist in the
static portion (and, of late, in the dynamic portion too). The libctf
machinery remembers the boundary between static and dynamic types and
looks in the right portion for each type. Lots of things still don't
quite work with dynamic types (e.g. getting their size), but enough
works to do a bunch of additions and then a ctf_update, most of the
time.
Except it doesn't, because ctf_add_type finds it necessary to walk the
full dynamic type definition list looking for types with matching names,
so it gets slower and slower with every type you add: fixing this
requires calling ctf_update periodically for no other reason than to
avoid massively slowing things down.
This is all clunky and very slow but kind of works, until you consider
that it is in fact possible and indeed necessary to modify one sort of
type after it has been added: forwards. These are necessarily promoted
to structs, unions or enums, and when they do so *their type ID does not
change*. So all of a sudden we are changing types that already exist in
the static portion. ctf_update gets massively confused by this and
allocates space enough for the forward (with no members), but then emits
the new dynamic type (with all the members) into it. You get an
assertion failure after that, if you're lucky, or a coredump.
So this commit rejigs things a bit and arranges to exclusively use the
dynamic type definitions in writable dictionaries, and the static type
definitions in readable dictionaries: we don't at any time have a mixture
of static and dynamic types, and you don't need to call ctf_update to
make things "appear". The ctf_dtbyname hash I introduced a few months
ago, which maps things like "struct foo" to DTDs, is removed, replaced
instead by a change of type of the four dictionaries which track names.
Rather than just being (unresizable) ctf_hash_t's populated only at
ctf_bufopen time, they are now a ctf_names_t structure, which is a pair
of ctf_hash_t and ctf_dynhash_t, with the ctf_hash_t portion being used
in readonly dictionaries, and the ctf_dynhash_t being used in writable
ones. The decision as to which to use is centralized in the new
functions ctf_lookup_by_rawname (which takes a type kind) and
ctf_lookup_by_rawhash, which it calls (which takes a ctf_names_t *.)
This change lets us switch from using static to dynamic name hashes on
the fly across the entirety of libctf without complexifying anything: in
fact, because we now centralize the knowledge about how to map from type
kind to name hash, it actually simplifies things and lets us throw out
quite a lot of now-unnecessary complexity, from ctf_dtnyname (replaced
by the dynamic half of the name tables), through to ctf_dtnextid (now
that a dictionary's static portion is never referenced if the dictionary
is writable, we can just use ctf_typemax to indicate the maximum type:
dynamic or non-dynamic does not matter, and we no longer need to track
the boundary between the types). You can now ctf_rollback() as far as
you like, even past a ctf_update or for that matter a full writeout; all
the iteration functions work just as well on writable as on read-only
dictionaries; ctf_add_type no longer needs expensive duplicated code to
run over the dynamic types hunting for ones it might be interested in;
and the linker no longer needs a hack to call ctf_update so that calling
ctf_add_type is not impossibly expensive.
There is still a bit more complexity: some new code paths in ctf-types.c
need to know how to extract information from dynamic types. This
complexity will go away again in a few months when libctf acquires a
proper intermediate representation.
You can still call ctf_update if you like (it's public API, after all),
but its only effect now is to set the point to which ctf_discard rolls
back.
Obviously *something* still needs to serialize the CTF file before
writeout, and this job is done by ctf_serialize, which does everything
ctf_update used to except set the counter used by ctf_discard. It is
automatically called by the various functions that do CTF writeout:
nobody else ever needs to call it.
With this in place, forwards that are promoted to non-forwards no longer
crash the link, even if it happens tens of thousands of types later.
v5: fix tabdamage.
libctf/
* ctf-impl.h (ctf_names_t): New.
(ctf_lookup_t) <ctf_hash>: Now a ctf_names_t, not a ctf_hash_t.
(ctf_file_t) <ctf_structs>: Likewise.
<ctf_unions>: Likewise.
<ctf_enums>: Likewise.
<ctf_names>: Likewise.
<ctf_lookups>: Improve comment.
<ctf_ptrtab_len>: New.
<ctf_prov_strtab>: New.
<ctf_str_prov_offset>: New.
<ctf_dtbyname>: Remove, redundant to the names hashes.
<ctf_dtnextid>: Remove, redundant to ctf_typemax.
(ctf_dtdef_t) <dtd_name>: Remove.
<dtd_data>: Note that the ctt_name is now populated.
(ctf_str_atom_t) <csa_offset>: This is now the strtab
offset for internal strings too.
<csa_external_offset>: New, the external strtab offset.
(CTF_INDEX_TO_TYPEPTR): Handle the LCTF_RDWR case.
(ctf_name_table): New declaration.
(ctf_lookup_by_rawname): Likewise.
(ctf_lookup_by_rawhash): Likewise.
(ctf_set_ctl_hashes): Likewise.
(ctf_serialize): Likewise.
(ctf_dtd_insert): Adjust.
(ctf_simple_open_internal): Likewise.
(ctf_bufopen_internal): Likewise.
(ctf_list_empty_p): Likewise.
(ctf_str_remove_ref): Likewise.
(ctf_str_add): Returns uint32_t now.
(ctf_str_add_ref): Likewise.
(ctf_str_add_external): Now returns a boolean (int).
* ctf-string.c (ctf_strraw_explicit): Check the ctf_prov_strtab
for strings in the appropriate range.
(ctf_str_create_atoms): Create the ctf_prov_strtab. Detect OOM
when adding the null string to the new strtab.
(ctf_str_free_atoms): Destroy the ctf_prov_strtab.
(ctf_str_add_ref_internal): Add make_provisional argument. If
make_provisional, populate the offset and fill in the
ctf_prov_strtab accordingly.
(ctf_str_add): Return the offset, not the string.
(ctf_str_add_ref): Likewise.
(ctf_str_add_external): Return a success integer.
(ctf_str_remove_ref): New, remove a single ref.
(ctf_str_count_strtab): Do not count the initial null string's
length or the existence or length of any unreferenced internal
atoms.
(ctf_str_populate_sorttab): Skip atoms with no refs.
(ctf_str_write_strtab): Populate the nullstr earlier. Add one
to the cts_len for the null string, since it is no longer done
in ctf_str_count_strtab. Adjust for csa_external_offset rename.
Populate the csa_offset for both internal and external cases.
Flush the ctf_prov_strtab afterwards, and reset the
ctf_str_prov_offset.
* ctf-create.c (ctf_grow_ptrtab): New.
(ctf_create): Call it. Initialize new fields rather than old
ones. Tell ctf_bufopen_internal that this is a writable dictionary.
Set the ctl hashes and data model.
(ctf_update): Rename to...
(ctf_serialize): ... this. Leave a compatibility function behind.
Tell ctf_simple_open_internal that this is a writable dictionary.
Pass the new fields along from the old dictionary. Drop
ctf_dtnextid and ctf_dtbyname. Use ctf_strraw, not dtd_name.
Do not zero out the DTD's ctt_name.
(ctf_prefixed_name): Rename to...
(ctf_name_table): ... this. No longer return a prefixed name: return
the applicable name table instead.
(ctf_dtd_insert): Use it, and use the right name table. Pass in the
kind we're adding. Migrate away from dtd_name.
(ctf_dtd_delete): Adjust similarly. Remove the ref to the
deleted ctt_name.
(ctf_dtd_lookup_type_by_name): Remove.
(ctf_dynamic_type): Always return NULL on read-only dictionaries.
No longer check ctf_dtnextid: check ctf_typemax instead.
(ctf_snapshot): No longer use ctf_dtnextid: use ctf_typemax instead.
(ctf_rollback): Likewise. No longer fail with ECTF_OVERROLLBACK. Use
ctf_name_table and the right name table, and migrate away from
dtd_name as in ctf_dtd_delete.
(ctf_add_generic): Pass in the kind explicitly and pass it to
ctf_dtd_insert. Use ctf_typemax, not ctf_dtnextid. Migrate away
from dtd_name to using ctf_str_add_ref to populate the ctt_name.
Grow the ptrtab if needed.
(ctf_add_encoded): Pass in the kind.
(ctf_add_slice): Likewise.
(ctf_add_array): Likewise.
(ctf_add_function): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_reftype): Likewise. Initialize the ctf_ptrtab, checking
ctt_name rather than dtd_name.
(ctf_add_struct_sized): Pass in the kind. Use
ctf_lookup_by_rawname, not ctf_hash_lookup_type /
ctf_dtd_lookup_type_by_name.
(ctf_add_union_sized): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_type): Likewise.
(ctf_compress_write): Call ctf_serialize: adjust for ctf_size not
being initialized until after the call.
(ctf_write_mem): Likewise.
(ctf_write): Likewise.
* ctf-archive.c (arc_write_one_ctf): Likewise.
* ctf-lookup.c (ctf_lookup_by_name): Use ctf_lookuup_by_rawhash, not
ctf_hash_lookup_type.
(ctf_lookup_by_id): No longer check the readonly types if the
dictionary is writable.
* ctf-open.c (init_types): Assert that this dictionary is not
writable. Adjust to use the new name hashes, ctf_name_table,
and ctf_ptrtab_len. GNU style fix for the final ptrtab scan.
(ctf_bufopen_internal): New 'writable' parameter. Flip on LCTF_RDWR
if set. Drop out early when dictionary is writable. Split the
ctf_lookups initialization into...
(ctf_set_cth_hashes): ... this new function.
(ctf_simple_open_internal): Adjust. New 'writable' parameter.
(ctf_simple_open): Adjust accordingly.
(ctf_bufopen): Likewise.
(ctf_file_close): Destroy the appropriate name hashes. No longer
destroy ctf_dtbyname, which is gone.
(ctf_getdatasect): Remove spurious "extern".
* ctf-types.c (ctf_lookup_by_rawname): New, look up types in the
specified name table, given a kind.
(ctf_lookup_by_rawhash): Likewise, given a ctf_names_t *.
(ctf_member_iter): Add support for iterating over the
dynamic type list.
(ctf_enum_iter): Likewise.
(ctf_variable_iter): Likewise.
(ctf_type_rvisit): Likewise.
(ctf_member_info): Add support for types in the dynamic type list.
(ctf_enum_name): Likewise.
(ctf_enum_value): Likewise.
(ctf_func_type_info): Likewise.
(ctf_func_type_args): Likewise.
* ctf-link.c (ctf_accumulate_archive_names): No longer call
ctf_update.
(ctf_link_write): Likewise.
(ctf_link_intern_extern_string): Adjust for new
ctf_str_add_external return value.
(ctf_link_add_strtab): Likewise.
* ctf-util.c (ctf_list_empty_p): New.
2019-08-08 00:55:09 +08:00
|
|
|
&dtd)) == CTF_ERR)
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
return CTF_ERR; /* errno is set for us. */
|
|
|
|
|
|
|
|
dtd->dtd_data.ctt_info = CTF_TYPE_INFO (CTF_K_TYPEDEF, flag, 0);
|
|
|
|
dtd->dtd_data.ctt_type = (uint32_t) ref;
|
|
|
|
|
|
|
|
return type;
|
|
|
|
}
|
|
|
|
|
|
|
|
ctf_id_t
|
libctf, include, binutils, gdb, ld: rename ctf_file_t to ctf_dict_t
The naming of the ctf_file_t type in libctf is a historical curiosity.
Back in the Solaris days, CTF dictionaries were originally generated as
a separate file and then (sometimes) merged into objects: hence the
datatype was named ctf_file_t, and known as a "CTF file". Nowadays, raw
CTF is essentially never written to a file on its own, and the datatype
changed name to a "CTF dictionary" years ago. So the term "CTF file"
refers to something that is never a file! This is at best confusing.
The type has also historically been known as a 'CTF container", which is
even more confusing now that we have CTF archives which are *also* a
sort of container (they contain CTF dictionaries), but which are never
referred to as containers in the source code.
So fix this by completing the renaming, renaming ctf_file_t to
ctf_dict_t throughout, and renaming those few functions that refer to
CTF files by name (keeping compatibility aliases) to refer to dicts
instead. Old users who still refer to ctf_file_t will see (harmless)
pointer-compatibility warnings at compile time, but the ABI is unchanged
(since C doesn't mangle names, and ctf_file_t was always an opaque type)
and things will still compile fine as long as -Werror is not specified.
All references to CTF containers and CTF files in the source code are
fixed to refer to CTF dicts instead.
Further (smaller) renamings of annoyingly-named functions to come, as
part of the process of souping up queries across whole archives at once
(needed for the function info and data object sections).
binutils/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* objdump.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_ctf): Likewise. Use ctf_dict_close, not ctf_file_close.
* readelf.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_section_as_ctf): Likewise. Use ctf_dict_close, not
ctf_file_close.
gdb/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctfread.c: Change uses of ctf_file_t to ctf_dict_t.
(ctf_fp_info::~ctf_fp_info): Call ctf_dict_close, not ctf_file_close.
include/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-api.h (ctf_file_t): Rename to...
(ctf_dict_t): ... this. Keep ctf_file_t around for compatibility.
(struct ctf_file): Likewise rename to...
(struct ctf_dict): ... this.
(ctf_file_close): Rename to...
(ctf_dict_close): ... this, keeping compatibility function.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this, keeping compatibility function.
All callers adjusted.
* ctf.h: Rename references to ctf_file_t to ctf_dict_t.
(struct ctf_archive) <ctfa_nfiles>: Rename to...
<ctfa_ndicts>: ... this.
ld/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ldlang.c (ctf_output): This is a ctf_dict_t now.
(lang_ctf_errs_warnings): Rename ctf_file_t to ctf_dict_t.
(ldlang_open_ctf): Adjust comment.
(lang_merge_ctf): Use ctf_dict_close, not ctf_file_close.
* ldelfgen.h (ldelf_examine_strtab_for_ctf): Rename ctf_file_t to
ctf_dict_t. Change opaque declaration accordingly.
* ldelfgen.c (ldelf_examine_strtab_for_ctf): Adjust.
* ldemul.h (examine_strtab_for_ctf): Likewise.
(ldemul_examine_strtab_for_ctf): Likewise.
* ldeuml.c (ldemul_examine_strtab_for_ctf): Likewise.
libctf/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h: Rename ctf_file_t to ctf_dict_t: all declarations
adjusted.
(ctf_fileops): Rename to...
(ctf_dictops): ... this.
(ctf_dedup_t) <cd_id_to_file_t>: Rename to...
<cd_id_to_dict_t>: ... this.
(ctf_file_t): Fix outdated comment.
<ctf_fileops>: Rename to...
<ctf_dictops>: ... this.
(struct ctf_archive_internal) <ctfi_file>: Rename to...
<ctfi_dict>: ... this.
* ctf-archive.c: Rename ctf_file_t to ctf_dict_t.
Rename ctf_archive.ctfa_nfiles to ctfa_ndicts.
Rename ctf_file_close to ctf_dict_close. All users adjusted.
* ctf-create.c: Likewise. Refer to CTF dicts, not CTF containers.
(ctf_bundle_t) <ctb_file>: Rename to...
<ctb_dict): ... this.
* ctf-decl.c: Rename ctf_file_t to ctf_dict_t.
* ctf-dedup.c: Likewise. Rename ctf_file_close to
ctf_dict_close. Refer to CTF dicts, not CTF containers.
* ctf-dump.c: Likewise.
* ctf-error.c: Likewise.
* ctf-hash.c: Likewise.
* ctf-inlines.h: Likewise.
* ctf-labels.c: Likewise.
* ctf-link.c: Likewise.
* ctf-lookup.c: Likewise.
* ctf-open-bfd.c: Likewise.
* ctf-string.c: Likewise.
* ctf-subr.c: Likewise.
* ctf-types.c: Likewise.
* ctf-util.c: Likewise.
* ctf-open.c: Likewise.
(ctf_file_close): Rename to...
(ctf_dict_close): ...this.
(ctf_file_close): New trivial wrapper around ctf_dict_close, for
compatibility.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this.
(ctf_parent_file): New trivial wrapper around ctf_parent_dict, for
compatibility.
* libctf.ver: Add ctf_dict_close and ctf_parent_dict.
2020-11-20 21:34:04 +08:00
|
|
|
ctf_add_volatile (ctf_dict_t *fp, uint32_t flag, ctf_id_t ref)
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
{
|
|
|
|
return (ctf_add_reftype (fp, flag, ref, CTF_K_VOLATILE));
|
|
|
|
}
|
|
|
|
|
|
|
|
ctf_id_t
|
libctf, include, binutils, gdb, ld: rename ctf_file_t to ctf_dict_t
The naming of the ctf_file_t type in libctf is a historical curiosity.
Back in the Solaris days, CTF dictionaries were originally generated as
a separate file and then (sometimes) merged into objects: hence the
datatype was named ctf_file_t, and known as a "CTF file". Nowadays, raw
CTF is essentially never written to a file on its own, and the datatype
changed name to a "CTF dictionary" years ago. So the term "CTF file"
refers to something that is never a file! This is at best confusing.
The type has also historically been known as a 'CTF container", which is
even more confusing now that we have CTF archives which are *also* a
sort of container (they contain CTF dictionaries), but which are never
referred to as containers in the source code.
So fix this by completing the renaming, renaming ctf_file_t to
ctf_dict_t throughout, and renaming those few functions that refer to
CTF files by name (keeping compatibility aliases) to refer to dicts
instead. Old users who still refer to ctf_file_t will see (harmless)
pointer-compatibility warnings at compile time, but the ABI is unchanged
(since C doesn't mangle names, and ctf_file_t was always an opaque type)
and things will still compile fine as long as -Werror is not specified.
All references to CTF containers and CTF files in the source code are
fixed to refer to CTF dicts instead.
Further (smaller) renamings of annoyingly-named functions to come, as
part of the process of souping up queries across whole archives at once
(needed for the function info and data object sections).
binutils/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* objdump.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_ctf): Likewise. Use ctf_dict_close, not ctf_file_close.
* readelf.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_section_as_ctf): Likewise. Use ctf_dict_close, not
ctf_file_close.
gdb/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctfread.c: Change uses of ctf_file_t to ctf_dict_t.
(ctf_fp_info::~ctf_fp_info): Call ctf_dict_close, not ctf_file_close.
include/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-api.h (ctf_file_t): Rename to...
(ctf_dict_t): ... this. Keep ctf_file_t around for compatibility.
(struct ctf_file): Likewise rename to...
(struct ctf_dict): ... this.
(ctf_file_close): Rename to...
(ctf_dict_close): ... this, keeping compatibility function.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this, keeping compatibility function.
All callers adjusted.
* ctf.h: Rename references to ctf_file_t to ctf_dict_t.
(struct ctf_archive) <ctfa_nfiles>: Rename to...
<ctfa_ndicts>: ... this.
ld/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ldlang.c (ctf_output): This is a ctf_dict_t now.
(lang_ctf_errs_warnings): Rename ctf_file_t to ctf_dict_t.
(ldlang_open_ctf): Adjust comment.
(lang_merge_ctf): Use ctf_dict_close, not ctf_file_close.
* ldelfgen.h (ldelf_examine_strtab_for_ctf): Rename ctf_file_t to
ctf_dict_t. Change opaque declaration accordingly.
* ldelfgen.c (ldelf_examine_strtab_for_ctf): Adjust.
* ldemul.h (examine_strtab_for_ctf): Likewise.
(ldemul_examine_strtab_for_ctf): Likewise.
* ldeuml.c (ldemul_examine_strtab_for_ctf): Likewise.
libctf/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h: Rename ctf_file_t to ctf_dict_t: all declarations
adjusted.
(ctf_fileops): Rename to...
(ctf_dictops): ... this.
(ctf_dedup_t) <cd_id_to_file_t>: Rename to...
<cd_id_to_dict_t>: ... this.
(ctf_file_t): Fix outdated comment.
<ctf_fileops>: Rename to...
<ctf_dictops>: ... this.
(struct ctf_archive_internal) <ctfi_file>: Rename to...
<ctfi_dict>: ... this.
* ctf-archive.c: Rename ctf_file_t to ctf_dict_t.
Rename ctf_archive.ctfa_nfiles to ctfa_ndicts.
Rename ctf_file_close to ctf_dict_close. All users adjusted.
* ctf-create.c: Likewise. Refer to CTF dicts, not CTF containers.
(ctf_bundle_t) <ctb_file>: Rename to...
<ctb_dict): ... this.
* ctf-decl.c: Rename ctf_file_t to ctf_dict_t.
* ctf-dedup.c: Likewise. Rename ctf_file_close to
ctf_dict_close. Refer to CTF dicts, not CTF containers.
* ctf-dump.c: Likewise.
* ctf-error.c: Likewise.
* ctf-hash.c: Likewise.
* ctf-inlines.h: Likewise.
* ctf-labels.c: Likewise.
* ctf-link.c: Likewise.
* ctf-lookup.c: Likewise.
* ctf-open-bfd.c: Likewise.
* ctf-string.c: Likewise.
* ctf-subr.c: Likewise.
* ctf-types.c: Likewise.
* ctf-util.c: Likewise.
* ctf-open.c: Likewise.
(ctf_file_close): Rename to...
(ctf_dict_close): ...this.
(ctf_file_close): New trivial wrapper around ctf_dict_close, for
compatibility.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this.
(ctf_parent_file): New trivial wrapper around ctf_parent_dict, for
compatibility.
* libctf.ver: Add ctf_dict_close and ctf_parent_dict.
2020-11-20 21:34:04 +08:00
|
|
|
ctf_add_const (ctf_dict_t *fp, uint32_t flag, ctf_id_t ref)
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
{
|
|
|
|
return (ctf_add_reftype (fp, flag, ref, CTF_K_CONST));
|
|
|
|
}
|
|
|
|
|
|
|
|
ctf_id_t
|
libctf, include, binutils, gdb, ld: rename ctf_file_t to ctf_dict_t
The naming of the ctf_file_t type in libctf is a historical curiosity.
Back in the Solaris days, CTF dictionaries were originally generated as
a separate file and then (sometimes) merged into objects: hence the
datatype was named ctf_file_t, and known as a "CTF file". Nowadays, raw
CTF is essentially never written to a file on its own, and the datatype
changed name to a "CTF dictionary" years ago. So the term "CTF file"
refers to something that is never a file! This is at best confusing.
The type has also historically been known as a 'CTF container", which is
even more confusing now that we have CTF archives which are *also* a
sort of container (they contain CTF dictionaries), but which are never
referred to as containers in the source code.
So fix this by completing the renaming, renaming ctf_file_t to
ctf_dict_t throughout, and renaming those few functions that refer to
CTF files by name (keeping compatibility aliases) to refer to dicts
instead. Old users who still refer to ctf_file_t will see (harmless)
pointer-compatibility warnings at compile time, but the ABI is unchanged
(since C doesn't mangle names, and ctf_file_t was always an opaque type)
and things will still compile fine as long as -Werror is not specified.
All references to CTF containers and CTF files in the source code are
fixed to refer to CTF dicts instead.
Further (smaller) renamings of annoyingly-named functions to come, as
part of the process of souping up queries across whole archives at once
(needed for the function info and data object sections).
binutils/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* objdump.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_ctf): Likewise. Use ctf_dict_close, not ctf_file_close.
* readelf.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_section_as_ctf): Likewise. Use ctf_dict_close, not
ctf_file_close.
gdb/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctfread.c: Change uses of ctf_file_t to ctf_dict_t.
(ctf_fp_info::~ctf_fp_info): Call ctf_dict_close, not ctf_file_close.
include/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-api.h (ctf_file_t): Rename to...
(ctf_dict_t): ... this. Keep ctf_file_t around for compatibility.
(struct ctf_file): Likewise rename to...
(struct ctf_dict): ... this.
(ctf_file_close): Rename to...
(ctf_dict_close): ... this, keeping compatibility function.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this, keeping compatibility function.
All callers adjusted.
* ctf.h: Rename references to ctf_file_t to ctf_dict_t.
(struct ctf_archive) <ctfa_nfiles>: Rename to...
<ctfa_ndicts>: ... this.
ld/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ldlang.c (ctf_output): This is a ctf_dict_t now.
(lang_ctf_errs_warnings): Rename ctf_file_t to ctf_dict_t.
(ldlang_open_ctf): Adjust comment.
(lang_merge_ctf): Use ctf_dict_close, not ctf_file_close.
* ldelfgen.h (ldelf_examine_strtab_for_ctf): Rename ctf_file_t to
ctf_dict_t. Change opaque declaration accordingly.
* ldelfgen.c (ldelf_examine_strtab_for_ctf): Adjust.
* ldemul.h (examine_strtab_for_ctf): Likewise.
(ldemul_examine_strtab_for_ctf): Likewise.
* ldeuml.c (ldemul_examine_strtab_for_ctf): Likewise.
libctf/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h: Rename ctf_file_t to ctf_dict_t: all declarations
adjusted.
(ctf_fileops): Rename to...
(ctf_dictops): ... this.
(ctf_dedup_t) <cd_id_to_file_t>: Rename to...
<cd_id_to_dict_t>: ... this.
(ctf_file_t): Fix outdated comment.
<ctf_fileops>: Rename to...
<ctf_dictops>: ... this.
(struct ctf_archive_internal) <ctfi_file>: Rename to...
<ctfi_dict>: ... this.
* ctf-archive.c: Rename ctf_file_t to ctf_dict_t.
Rename ctf_archive.ctfa_nfiles to ctfa_ndicts.
Rename ctf_file_close to ctf_dict_close. All users adjusted.
* ctf-create.c: Likewise. Refer to CTF dicts, not CTF containers.
(ctf_bundle_t) <ctb_file>: Rename to...
<ctb_dict): ... this.
* ctf-decl.c: Rename ctf_file_t to ctf_dict_t.
* ctf-dedup.c: Likewise. Rename ctf_file_close to
ctf_dict_close. Refer to CTF dicts, not CTF containers.
* ctf-dump.c: Likewise.
* ctf-error.c: Likewise.
* ctf-hash.c: Likewise.
* ctf-inlines.h: Likewise.
* ctf-labels.c: Likewise.
* ctf-link.c: Likewise.
* ctf-lookup.c: Likewise.
* ctf-open-bfd.c: Likewise.
* ctf-string.c: Likewise.
* ctf-subr.c: Likewise.
* ctf-types.c: Likewise.
* ctf-util.c: Likewise.
* ctf-open.c: Likewise.
(ctf_file_close): Rename to...
(ctf_dict_close): ...this.
(ctf_file_close): New trivial wrapper around ctf_dict_close, for
compatibility.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this.
(ctf_parent_file): New trivial wrapper around ctf_parent_dict, for
compatibility.
* libctf.ver: Add ctf_dict_close and ctf_parent_dict.
2020-11-20 21:34:04 +08:00
|
|
|
ctf_add_restrict (ctf_dict_t *fp, uint32_t flag, ctf_id_t ref)
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
{
|
|
|
|
return (ctf_add_reftype (fp, flag, ref, CTF_K_RESTRICT));
|
|
|
|
}
|
|
|
|
|
|
|
|
int
|
libctf, include, binutils, gdb, ld: rename ctf_file_t to ctf_dict_t
The naming of the ctf_file_t type in libctf is a historical curiosity.
Back in the Solaris days, CTF dictionaries were originally generated as
a separate file and then (sometimes) merged into objects: hence the
datatype was named ctf_file_t, and known as a "CTF file". Nowadays, raw
CTF is essentially never written to a file on its own, and the datatype
changed name to a "CTF dictionary" years ago. So the term "CTF file"
refers to something that is never a file! This is at best confusing.
The type has also historically been known as a 'CTF container", which is
even more confusing now that we have CTF archives which are *also* a
sort of container (they contain CTF dictionaries), but which are never
referred to as containers in the source code.
So fix this by completing the renaming, renaming ctf_file_t to
ctf_dict_t throughout, and renaming those few functions that refer to
CTF files by name (keeping compatibility aliases) to refer to dicts
instead. Old users who still refer to ctf_file_t will see (harmless)
pointer-compatibility warnings at compile time, but the ABI is unchanged
(since C doesn't mangle names, and ctf_file_t was always an opaque type)
and things will still compile fine as long as -Werror is not specified.
All references to CTF containers and CTF files in the source code are
fixed to refer to CTF dicts instead.
Further (smaller) renamings of annoyingly-named functions to come, as
part of the process of souping up queries across whole archives at once
(needed for the function info and data object sections).
binutils/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* objdump.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_ctf): Likewise. Use ctf_dict_close, not ctf_file_close.
* readelf.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_section_as_ctf): Likewise. Use ctf_dict_close, not
ctf_file_close.
gdb/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctfread.c: Change uses of ctf_file_t to ctf_dict_t.
(ctf_fp_info::~ctf_fp_info): Call ctf_dict_close, not ctf_file_close.
include/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-api.h (ctf_file_t): Rename to...
(ctf_dict_t): ... this. Keep ctf_file_t around for compatibility.
(struct ctf_file): Likewise rename to...
(struct ctf_dict): ... this.
(ctf_file_close): Rename to...
(ctf_dict_close): ... this, keeping compatibility function.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this, keeping compatibility function.
All callers adjusted.
* ctf.h: Rename references to ctf_file_t to ctf_dict_t.
(struct ctf_archive) <ctfa_nfiles>: Rename to...
<ctfa_ndicts>: ... this.
ld/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ldlang.c (ctf_output): This is a ctf_dict_t now.
(lang_ctf_errs_warnings): Rename ctf_file_t to ctf_dict_t.
(ldlang_open_ctf): Adjust comment.
(lang_merge_ctf): Use ctf_dict_close, not ctf_file_close.
* ldelfgen.h (ldelf_examine_strtab_for_ctf): Rename ctf_file_t to
ctf_dict_t. Change opaque declaration accordingly.
* ldelfgen.c (ldelf_examine_strtab_for_ctf): Adjust.
* ldemul.h (examine_strtab_for_ctf): Likewise.
(ldemul_examine_strtab_for_ctf): Likewise.
* ldeuml.c (ldemul_examine_strtab_for_ctf): Likewise.
libctf/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h: Rename ctf_file_t to ctf_dict_t: all declarations
adjusted.
(ctf_fileops): Rename to...
(ctf_dictops): ... this.
(ctf_dedup_t) <cd_id_to_file_t>: Rename to...
<cd_id_to_dict_t>: ... this.
(ctf_file_t): Fix outdated comment.
<ctf_fileops>: Rename to...
<ctf_dictops>: ... this.
(struct ctf_archive_internal) <ctfi_file>: Rename to...
<ctfi_dict>: ... this.
* ctf-archive.c: Rename ctf_file_t to ctf_dict_t.
Rename ctf_archive.ctfa_nfiles to ctfa_ndicts.
Rename ctf_file_close to ctf_dict_close. All users adjusted.
* ctf-create.c: Likewise. Refer to CTF dicts, not CTF containers.
(ctf_bundle_t) <ctb_file>: Rename to...
<ctb_dict): ... this.
* ctf-decl.c: Rename ctf_file_t to ctf_dict_t.
* ctf-dedup.c: Likewise. Rename ctf_file_close to
ctf_dict_close. Refer to CTF dicts, not CTF containers.
* ctf-dump.c: Likewise.
* ctf-error.c: Likewise.
* ctf-hash.c: Likewise.
* ctf-inlines.h: Likewise.
* ctf-labels.c: Likewise.
* ctf-link.c: Likewise.
* ctf-lookup.c: Likewise.
* ctf-open-bfd.c: Likewise.
* ctf-string.c: Likewise.
* ctf-subr.c: Likewise.
* ctf-types.c: Likewise.
* ctf-util.c: Likewise.
* ctf-open.c: Likewise.
(ctf_file_close): Rename to...
(ctf_dict_close): ...this.
(ctf_file_close): New trivial wrapper around ctf_dict_close, for
compatibility.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this.
(ctf_parent_file): New trivial wrapper around ctf_parent_dict, for
compatibility.
* libctf.ver: Add ctf_dict_close and ctf_parent_dict.
2020-11-20 21:34:04 +08:00
|
|
|
ctf_add_enumerator (ctf_dict_t *fp, ctf_id_t enid, const char *name,
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
int value)
|
|
|
|
{
|
libctf: fix creation-time parent/child dict confusions
The fixes applied a few years ago to resolve confusions between parent and
child dicts at lookup time also apply in various forms to creation. In
general, if you have a type in a parent dict ctf_imported into a child and
you do something to it, and the parent dict is writable (created via
ctf_create, not opened via ctf_open*) it should work just the same to make
changes to that type via a child dict as it does to make the change
to the parent dict directly -- and nothing you're prohibited from doing
to the parent dict when done directly should be allowed just because
you're doing it via a child.
Specifically, the following don't work when doing things from the child, but
should:
- adding a member of a type in the parent to a struct or union in the
parent via ctf_add_member or ctf_add_member_offset: this yields
ECTF_BADID
- adding a member of a type in the parent to a struct or union in the
parent via ctf_add_member_encoded: this dumps core (!).
- adding an enumerand to an enumerator in the parent: this yields
ECTF_BADID
- setting the properties of an array in the parent via ctf_set_array;
this yields ECTF_BADID
Relatedly, some things work when doing things via a child that should fail,
yielding a CTF dictionary with invalid content (readable, but meaningless):
in particular, you can add a child type to a struct in the parent via
any of the ctf_add_member* family and nothing complains at all, even though
you should never be able to add references to children to parents (since any
given parent can be associated with many different children).
A family of tests is added to check each of these cases independently, since
some can result in coredumps and it would be nice to test the other cases
even if some dump core. They use a common library to do all the actual
work. The set of affected API calls was determined by code inspection
(auditing all calls to ctf_dtd_lookup): it's possible that I missed a few,
but I doubt it, since other cases use ctf_lookup* functions, which already
climb to the parent where appropriate.
libctf/ChangeLog:
PR libctf/30985
* ctf-create.c (ctf_dtd_lookup): Traverse to parents if necessary.
(ctf_set_array): Likewise. Report errors on the child; require
both parent and child to be writable.
(ctf_add_enumerator): Likewise.
(ctf_add_member_offset): Likewise. Prohibit addition of child types
to structs in the parent.
(ctf_add_member_encoded): Do not dereference a NULL dtd: report
ECTF_BADID instead.
* ctf-string.c (ctf_str_add_ref_internal): Report ENOMEM on the
dict if addition of a string ref fails.
* testsuite/libctf-writable/parent-child-dtd-crash-lib.c: New library.
* testsuite/libctf-writable/parent-child-dtd-enum.*: New test.
* testsuite/libctf-writable/parent-child-dtd-enumerator.*: New test.
* testsuite/libctf-writable/parent-child-dtd-member-encoded.*: New test.
* testsuite/libctf-writable/parent-child-dtd-member-offset.*: New test.
* testsuite/libctf-writable/parent-child-dtd-set-array.*: New test.
* testsuite/libctf-writable/parent-child-dtd-struct.*: New test.
* testsuite/libctf-writable/parent-child-dtd-union.*: New test.
2023-10-19 01:34:57 +08:00
|
|
|
ctf_dict_t *ofp = fp;
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
ctf_dtdef_t *dtd = ctf_dtd_lookup (fp, enid);
|
2021-03-18 20:37:52 +08:00
|
|
|
unsigned char *old_vlen;
|
|
|
|
ctf_enum_t *en;
|
|
|
|
size_t i;
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
|
|
|
|
uint32_t kind, vlen, root;
|
|
|
|
|
|
|
|
if (name == NULL)
|
|
|
|
return (ctf_set_errno (fp, EINVAL));
|
|
|
|
|
libctf: fix creation-time parent/child dict confusions
The fixes applied a few years ago to resolve confusions between parent and
child dicts at lookup time also apply in various forms to creation. In
general, if you have a type in a parent dict ctf_imported into a child and
you do something to it, and the parent dict is writable (created via
ctf_create, not opened via ctf_open*) it should work just the same to make
changes to that type via a child dict as it does to make the change
to the parent dict directly -- and nothing you're prohibited from doing
to the parent dict when done directly should be allowed just because
you're doing it via a child.
Specifically, the following don't work when doing things from the child, but
should:
- adding a member of a type in the parent to a struct or union in the
parent via ctf_add_member or ctf_add_member_offset: this yields
ECTF_BADID
- adding a member of a type in the parent to a struct or union in the
parent via ctf_add_member_encoded: this dumps core (!).
- adding an enumerand to an enumerator in the parent: this yields
ECTF_BADID
- setting the properties of an array in the parent via ctf_set_array;
this yields ECTF_BADID
Relatedly, some things work when doing things via a child that should fail,
yielding a CTF dictionary with invalid content (readable, but meaningless):
in particular, you can add a child type to a struct in the parent via
any of the ctf_add_member* family and nothing complains at all, even though
you should never be able to add references to children to parents (since any
given parent can be associated with many different children).
A family of tests is added to check each of these cases independently, since
some can result in coredumps and it would be nice to test the other cases
even if some dump core. They use a common library to do all the actual
work. The set of affected API calls was determined by code inspection
(auditing all calls to ctf_dtd_lookup): it's possible that I missed a few,
but I doubt it, since other cases use ctf_lookup* functions, which already
climb to the parent where appropriate.
libctf/ChangeLog:
PR libctf/30985
* ctf-create.c (ctf_dtd_lookup): Traverse to parents if necessary.
(ctf_set_array): Likewise. Report errors on the child; require
both parent and child to be writable.
(ctf_add_enumerator): Likewise.
(ctf_add_member_offset): Likewise. Prohibit addition of child types
to structs in the parent.
(ctf_add_member_encoded): Do not dereference a NULL dtd: report
ECTF_BADID instead.
* ctf-string.c (ctf_str_add_ref_internal): Report ENOMEM on the
dict if addition of a string ref fails.
* testsuite/libctf-writable/parent-child-dtd-crash-lib.c: New library.
* testsuite/libctf-writable/parent-child-dtd-enum.*: New test.
* testsuite/libctf-writable/parent-child-dtd-enumerator.*: New test.
* testsuite/libctf-writable/parent-child-dtd-member-encoded.*: New test.
* testsuite/libctf-writable/parent-child-dtd-member-offset.*: New test.
* testsuite/libctf-writable/parent-child-dtd-set-array.*: New test.
* testsuite/libctf-writable/parent-child-dtd-struct.*: New test.
* testsuite/libctf-writable/parent-child-dtd-union.*: New test.
2023-10-19 01:34:57 +08:00
|
|
|
if ((fp->ctf_flags & LCTF_CHILD) && LCTF_TYPE_ISPARENT (fp, enid))
|
|
|
|
fp = fp->ctf_parent;
|
|
|
|
|
libctf: support addition of types to dicts read via ctf_open()
libctf has long declared deserialized dictionaries (out of files or ELF
sections or memory buffers or whatever) to be read-only: back in the
furthest prehistory this was not the case, in that you could add a
few sorts of type to such dicts, but attempting to do so often caused
horrible memory corruption, so I banned the lot.
But it turns out real consumers want it (notably DTrace, which
synthesises pointers to types that don't have them and adds them to the
ctf_open()ed dicts if it needs them). Let's bring it back again, but
without the memory corruption and without the massive code duplication
required in days of yore to distinguish between static and dynamic
types: the representation of both types has been identical for a few
years, with the only difference being that types as a whole are stored in
a big buffer for types read in via ctf_open and per-type hashtables for
newly-added types.
So we discard the internally-visible concept of "readonly dictionaries"
in favour of declaring the *range of types* that were already present
when the dict was read in to be read-only: you can't modify them (say,
by adding members to them if they're structs, or calling ctf_set_array
on them), but you can add more types and point to them. (The API
remains the same, with calls sometimes returning ECTF_RDONLY, but now
they do so less often.)
This is a fairly invasive change, mostly because code written since the
ban was introduced didn't take the possibility of a static/dynamic split
into account. Some of these irregularities were hard to define as
anything but bugs.
Notably:
- The symbol handling was assuming that symbols only needed to be
looked for in dynamic hashtabs or static linker-laid-out indexed/
nonindexed layouts, but now we want to check both in case people
added more symbols to a dict they opened.
- The code that handles type additions wasn't checking to see if types
with the same name existed *at all* (so you could do
ctf_add_typedef (fp, "foo", bar) repeatedly without error). This
seems reasonable for types you just added, but we probably *do* want
to ban addition of types with names that override names we already
used in the ctf_open()ed portion, since that would probably corrupt
existing type relationships. (Doing things this way also avoids
causing new errors for any existing code that was doing this sort of
thing.)
- ctf_lookup_variable entirely failed to work for variables just added
by ctf_add_variable: you had to write the dict out and read it back
in again before they appeared.
- The symbol handling remembered what symbols you looked up but didn't
remember their types, so you could look up an object symbol and then
find it popping up when you asked for function symbols, which seems
less than ideal. Since we had to rejig things enough to be able to
distinguish function and object symbols internally anyway (in order
to give suitable errors if you try to add a symbol with a name that
already existed in the ctf_open()ed dict), this bug suddenly became
more visible and was easily fixed.
We do not (yet) support writing out dicts that have been previously read
in via ctf_open() or other deserializer (you can look things up in them,
but not write them out a second time). This never worked, so there is
no incompatibility; if it is needed at a later date, the serializer is a
little bit closer to having it work now (the only table we don't deal
with is the types table, and that's because the upcoming CTFv4 changes
are likely to make major changes to the way that table is represented
internally, so adding more code that depends on its current form seems
like a bad idea).
There is a new testcase that tests much of this, in particular that
modification of existing types is still banned and that you can add new
ones and chase them without error.
libctf/
* ctf-impl.h (struct ctf_dict.ctf_symhash): Split into...
(ctf_dict.ctf_symhash_func): ... this and...
(ctf_dict.ctf_symhash_objt): ... this.
(ctf_dict.ctf_stypes): New, counts static types.
(LCTF_INDEX_TO_TYPEPTR): Use it instead of CTF_RDWR.
(LCTF_RDWR): Deleted.
(LCTF_DIRTY): Renumbered.
(LCTF_LINKING): Likewise.
(ctf_lookup_variable_here): New.
(ctf_lookup_by_sym_or_name): Likewise.
(ctf_symbol_next_static): Likewise.
(ctf_add_variable_forced): Likewise.
(ctf_add_funcobjt_sym_forced): Likewise.
(ctf_simple_open_internal): Adjust.
(ctf_bufopen_internal): Likewise.
* ctf-create.c (ctf_grow_ptrtab): Adjust a lot to start with.
(ctf_create): Migrate a bunch of initializations into bufopen.
Force recreation of name tables. Do not forcibly override the
model, let ctf_bufopen do it.
(ctf_static_type): New.
(ctf_update): Drop LCTF_RDWR check.
(ctf_dynamic_type): Likewise.
(ctf_add_function): Likewise.
(ctf_add_type_internal): Likewise.
(ctf_rollback): Check ctf_stypes, not LCTF_RDWR.
(ctf_set_array): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_enumerator): Likewise (only on the target dict).
(ctf_add_member_offset): Likewise.
(ctf_add_generic): Drop LCTF_RDWR check. Ban addition of types
with colliding names.
(ctf_add_forward): Note safety under the new rules.
(ctf_add_variable): Split all but the existence check into...
(ctf_add_variable_forced): ... this new function.
(ctf_add_funcobjt_sym): Likewise...
(ctf_add_funcobjt_sym_forced): ... for this new function.
* ctf-link.c (ctf_link_add_linker_symbol): Ban calling on dicts
with any stypes.
(ctf_link_add_strtab): Likewise.
(ctf_link_shuffle_syms): Likewise.
(ctf_link_intern_extern_string): Note pre-existing prohibition.
* ctf-lookup.c (ctf_lookup_by_id): Drop LCTF_RDWR check.
(ctf_lookup_variable): Split out looking in a dict but not
its parent into...
(ctf_lookup_variable_here): ... this new function.
(ctf_lookup_symbol_idx): Track whether looking up a function or
object: cache them separately.
(ctf_symbol_next): Split out looking in non-dynamic symtypetab
entries to...
(ctf_symbol_next_static): ... this new function. Don't get confused
by the simultaneous presence of static and dynamic symtypetab entries.
(ctf_try_lookup_indexed): Don't waste time looking up symbols by
index before there can be any idea how symbols are numbered.
(ctf_lookup_by_sym_or_name): Distinguish between function and
data object lookups. Drop LCTF_RDWR.
(ctf_lookup_by_symbol): Adjust.
(ctf_lookup_by_symbol_name): Likewise.
* ctf-open.c (init_types): Rename to...
(init_static_types): ... this. Drop LCTF_RDWR. Populate ctf_stypes.
(ctf_simple_open): Drop writable arg.
(ctf_simple_open_internal): Likewise.
(ctf_bufopen): Likewise.
(ctf_bufopen_internal): Populate fields only used for writable dicts.
Drop LCTF_RDWR.
(ctf_dict_close): Cater for symhash cache split.
* ctf-serialize.c (ctf_serialize): Use ctf_stypes, not LCTF_RDWR.
* ctf-types.c (ctf_variable_next): Drop LCTF_RDWR.
* testsuite/libctf-lookup/add-to-opened*: New test.
2023-12-20 00:58:19 +08:00
|
|
|
if (enid < fp->ctf_stypes)
|
libctf: fix creation-time parent/child dict confusions
The fixes applied a few years ago to resolve confusions between parent and
child dicts at lookup time also apply in various forms to creation. In
general, if you have a type in a parent dict ctf_imported into a child and
you do something to it, and the parent dict is writable (created via
ctf_create, not opened via ctf_open*) it should work just the same to make
changes to that type via a child dict as it does to make the change
to the parent dict directly -- and nothing you're prohibited from doing
to the parent dict when done directly should be allowed just because
you're doing it via a child.
Specifically, the following don't work when doing things from the child, but
should:
- adding a member of a type in the parent to a struct or union in the
parent via ctf_add_member or ctf_add_member_offset: this yields
ECTF_BADID
- adding a member of a type in the parent to a struct or union in the
parent via ctf_add_member_encoded: this dumps core (!).
- adding an enumerand to an enumerator in the parent: this yields
ECTF_BADID
- setting the properties of an array in the parent via ctf_set_array;
this yields ECTF_BADID
Relatedly, some things work when doing things via a child that should fail,
yielding a CTF dictionary with invalid content (readable, but meaningless):
in particular, you can add a child type to a struct in the parent via
any of the ctf_add_member* family and nothing complains at all, even though
you should never be able to add references to children to parents (since any
given parent can be associated with many different children).
A family of tests is added to check each of these cases independently, since
some can result in coredumps and it would be nice to test the other cases
even if some dump core. They use a common library to do all the actual
work. The set of affected API calls was determined by code inspection
(auditing all calls to ctf_dtd_lookup): it's possible that I missed a few,
but I doubt it, since other cases use ctf_lookup* functions, which already
climb to the parent where appropriate.
libctf/ChangeLog:
PR libctf/30985
* ctf-create.c (ctf_dtd_lookup): Traverse to parents if necessary.
(ctf_set_array): Likewise. Report errors on the child; require
both parent and child to be writable.
(ctf_add_enumerator): Likewise.
(ctf_add_member_offset): Likewise. Prohibit addition of child types
to structs in the parent.
(ctf_add_member_encoded): Do not dereference a NULL dtd: report
ECTF_BADID instead.
* ctf-string.c (ctf_str_add_ref_internal): Report ENOMEM on the
dict if addition of a string ref fails.
* testsuite/libctf-writable/parent-child-dtd-crash-lib.c: New library.
* testsuite/libctf-writable/parent-child-dtd-enum.*: New test.
* testsuite/libctf-writable/parent-child-dtd-enumerator.*: New test.
* testsuite/libctf-writable/parent-child-dtd-member-encoded.*: New test.
* testsuite/libctf-writable/parent-child-dtd-member-offset.*: New test.
* testsuite/libctf-writable/parent-child-dtd-set-array.*: New test.
* testsuite/libctf-writable/parent-child-dtd-struct.*: New test.
* testsuite/libctf-writable/parent-child-dtd-union.*: New test.
2023-10-19 01:34:57 +08:00
|
|
|
return (ctf_set_errno (ofp, ECTF_RDONLY));
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
|
|
|
|
if (dtd == NULL)
|
libctf: fix creation-time parent/child dict confusions
The fixes applied a few years ago to resolve confusions between parent and
child dicts at lookup time also apply in various forms to creation. In
general, if you have a type in a parent dict ctf_imported into a child and
you do something to it, and the parent dict is writable (created via
ctf_create, not opened via ctf_open*) it should work just the same to make
changes to that type via a child dict as it does to make the change
to the parent dict directly -- and nothing you're prohibited from doing
to the parent dict when done directly should be allowed just because
you're doing it via a child.
Specifically, the following don't work when doing things from the child, but
should:
- adding a member of a type in the parent to a struct or union in the
parent via ctf_add_member or ctf_add_member_offset: this yields
ECTF_BADID
- adding a member of a type in the parent to a struct or union in the
parent via ctf_add_member_encoded: this dumps core (!).
- adding an enumerand to an enumerator in the parent: this yields
ECTF_BADID
- setting the properties of an array in the parent via ctf_set_array;
this yields ECTF_BADID
Relatedly, some things work when doing things via a child that should fail,
yielding a CTF dictionary with invalid content (readable, but meaningless):
in particular, you can add a child type to a struct in the parent via
any of the ctf_add_member* family and nothing complains at all, even though
you should never be able to add references to children to parents (since any
given parent can be associated with many different children).
A family of tests is added to check each of these cases independently, since
some can result in coredumps and it would be nice to test the other cases
even if some dump core. They use a common library to do all the actual
work. The set of affected API calls was determined by code inspection
(auditing all calls to ctf_dtd_lookup): it's possible that I missed a few,
but I doubt it, since other cases use ctf_lookup* functions, which already
climb to the parent where appropriate.
libctf/ChangeLog:
PR libctf/30985
* ctf-create.c (ctf_dtd_lookup): Traverse to parents if necessary.
(ctf_set_array): Likewise. Report errors on the child; require
both parent and child to be writable.
(ctf_add_enumerator): Likewise.
(ctf_add_member_offset): Likewise. Prohibit addition of child types
to structs in the parent.
(ctf_add_member_encoded): Do not dereference a NULL dtd: report
ECTF_BADID instead.
* ctf-string.c (ctf_str_add_ref_internal): Report ENOMEM on the
dict if addition of a string ref fails.
* testsuite/libctf-writable/parent-child-dtd-crash-lib.c: New library.
* testsuite/libctf-writable/parent-child-dtd-enum.*: New test.
* testsuite/libctf-writable/parent-child-dtd-enumerator.*: New test.
* testsuite/libctf-writable/parent-child-dtd-member-encoded.*: New test.
* testsuite/libctf-writable/parent-child-dtd-member-offset.*: New test.
* testsuite/libctf-writable/parent-child-dtd-set-array.*: New test.
* testsuite/libctf-writable/parent-child-dtd-struct.*: New test.
* testsuite/libctf-writable/parent-child-dtd-union.*: New test.
2023-10-19 01:34:57 +08:00
|
|
|
return (ctf_set_errno (ofp, ECTF_BADID));
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
|
|
|
|
kind = LCTF_INFO_KIND (fp, dtd->dtd_data.ctt_info);
|
|
|
|
root = LCTF_INFO_ISROOT (fp, dtd->dtd_data.ctt_info);
|
|
|
|
vlen = LCTF_INFO_VLEN (fp, dtd->dtd_data.ctt_info);
|
|
|
|
|
|
|
|
if (kind != CTF_K_ENUM)
|
libctf: fix creation-time parent/child dict confusions
The fixes applied a few years ago to resolve confusions between parent and
child dicts at lookup time also apply in various forms to creation. In
general, if you have a type in a parent dict ctf_imported into a child and
you do something to it, and the parent dict is writable (created via
ctf_create, not opened via ctf_open*) it should work just the same to make
changes to that type via a child dict as it does to make the change
to the parent dict directly -- and nothing you're prohibited from doing
to the parent dict when done directly should be allowed just because
you're doing it via a child.
Specifically, the following don't work when doing things from the child, but
should:
- adding a member of a type in the parent to a struct or union in the
parent via ctf_add_member or ctf_add_member_offset: this yields
ECTF_BADID
- adding a member of a type in the parent to a struct or union in the
parent via ctf_add_member_encoded: this dumps core (!).
- adding an enumerand to an enumerator in the parent: this yields
ECTF_BADID
- setting the properties of an array in the parent via ctf_set_array;
this yields ECTF_BADID
Relatedly, some things work when doing things via a child that should fail,
yielding a CTF dictionary with invalid content (readable, but meaningless):
in particular, you can add a child type to a struct in the parent via
any of the ctf_add_member* family and nothing complains at all, even though
you should never be able to add references to children to parents (since any
given parent can be associated with many different children).
A family of tests is added to check each of these cases independently, since
some can result in coredumps and it would be nice to test the other cases
even if some dump core. They use a common library to do all the actual
work. The set of affected API calls was determined by code inspection
(auditing all calls to ctf_dtd_lookup): it's possible that I missed a few,
but I doubt it, since other cases use ctf_lookup* functions, which already
climb to the parent where appropriate.
libctf/ChangeLog:
PR libctf/30985
* ctf-create.c (ctf_dtd_lookup): Traverse to parents if necessary.
(ctf_set_array): Likewise. Report errors on the child; require
both parent and child to be writable.
(ctf_add_enumerator): Likewise.
(ctf_add_member_offset): Likewise. Prohibit addition of child types
to structs in the parent.
(ctf_add_member_encoded): Do not dereference a NULL dtd: report
ECTF_BADID instead.
* ctf-string.c (ctf_str_add_ref_internal): Report ENOMEM on the
dict if addition of a string ref fails.
* testsuite/libctf-writable/parent-child-dtd-crash-lib.c: New library.
* testsuite/libctf-writable/parent-child-dtd-enum.*: New test.
* testsuite/libctf-writable/parent-child-dtd-enumerator.*: New test.
* testsuite/libctf-writable/parent-child-dtd-member-encoded.*: New test.
* testsuite/libctf-writable/parent-child-dtd-member-offset.*: New test.
* testsuite/libctf-writable/parent-child-dtd-set-array.*: New test.
* testsuite/libctf-writable/parent-child-dtd-struct.*: New test.
* testsuite/libctf-writable/parent-child-dtd-union.*: New test.
2023-10-19 01:34:57 +08:00
|
|
|
return (ctf_set_errno (ofp, ECTF_NOTENUM));
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
|
|
|
|
if (vlen == CTF_MAX_VLEN)
|
libctf: fix creation-time parent/child dict confusions
The fixes applied a few years ago to resolve confusions between parent and
child dicts at lookup time also apply in various forms to creation. In
general, if you have a type in a parent dict ctf_imported into a child and
you do something to it, and the parent dict is writable (created via
ctf_create, not opened via ctf_open*) it should work just the same to make
changes to that type via a child dict as it does to make the change
to the parent dict directly -- and nothing you're prohibited from doing
to the parent dict when done directly should be allowed just because
you're doing it via a child.
Specifically, the following don't work when doing things from the child, but
should:
- adding a member of a type in the parent to a struct or union in the
parent via ctf_add_member or ctf_add_member_offset: this yields
ECTF_BADID
- adding a member of a type in the parent to a struct or union in the
parent via ctf_add_member_encoded: this dumps core (!).
- adding an enumerand to an enumerator in the parent: this yields
ECTF_BADID
- setting the properties of an array in the parent via ctf_set_array;
this yields ECTF_BADID
Relatedly, some things work when doing things via a child that should fail,
yielding a CTF dictionary with invalid content (readable, but meaningless):
in particular, you can add a child type to a struct in the parent via
any of the ctf_add_member* family and nothing complains at all, even though
you should never be able to add references to children to parents (since any
given parent can be associated with many different children).
A family of tests is added to check each of these cases independently, since
some can result in coredumps and it would be nice to test the other cases
even if some dump core. They use a common library to do all the actual
work. The set of affected API calls was determined by code inspection
(auditing all calls to ctf_dtd_lookup): it's possible that I missed a few,
but I doubt it, since other cases use ctf_lookup* functions, which already
climb to the parent where appropriate.
libctf/ChangeLog:
PR libctf/30985
* ctf-create.c (ctf_dtd_lookup): Traverse to parents if necessary.
(ctf_set_array): Likewise. Report errors on the child; require
both parent and child to be writable.
(ctf_add_enumerator): Likewise.
(ctf_add_member_offset): Likewise. Prohibit addition of child types
to structs in the parent.
(ctf_add_member_encoded): Do not dereference a NULL dtd: report
ECTF_BADID instead.
* ctf-string.c (ctf_str_add_ref_internal): Report ENOMEM on the
dict if addition of a string ref fails.
* testsuite/libctf-writable/parent-child-dtd-crash-lib.c: New library.
* testsuite/libctf-writable/parent-child-dtd-enum.*: New test.
* testsuite/libctf-writable/parent-child-dtd-enumerator.*: New test.
* testsuite/libctf-writable/parent-child-dtd-member-encoded.*: New test.
* testsuite/libctf-writable/parent-child-dtd-member-offset.*: New test.
* testsuite/libctf-writable/parent-child-dtd-set-array.*: New test.
* testsuite/libctf-writable/parent-child-dtd-struct.*: New test.
* testsuite/libctf-writable/parent-child-dtd-union.*: New test.
2023-10-19 01:34:57 +08:00
|
|
|
return (ctf_set_errno (ofp, ECTF_DTFULL));
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
|
2021-03-18 20:37:52 +08:00
|
|
|
old_vlen = dtd->dtd_vlen;
|
|
|
|
if (ctf_grow_vlen (fp, dtd, sizeof (ctf_enum_t) * (vlen + 1)) < 0)
|
|
|
|
return -1; /* errno is set for us. */
|
|
|
|
en = (ctf_enum_t *) dtd->dtd_vlen;
|
|
|
|
|
libctf: replace 'pending refs' abstraction
A few years ago we introduced a 'pending refs' abstraction to fix one
problem: serializing a dict, then changing it would tend to corrupt the dict
because the strtab sort we do on strtab writeout (to improve compression
efficiency) would modify the offset of any strings that sorted
lexicographically earlier in the strtab: so we added a new restriction that
all strings are added only at serialization time, and maintained a set of
'pending' refs that were added earlier, whose offsets we could update (like
other refs) at writeout time.
This was in hindsight seriously problematic for maintenance (because
serialization has to traverse all strings in all datatypes in the entire
dict), and has become impossible to sustain now that we can read in existing
dicts, modify them, and reserialize them again. We really don't want to
have to dig through the entire dict we jut read in just in order to dig out
all its strtab offsets, then *change* it, just for the sake of a sort that
adds a frankly trivial amount of compression efficiency.
Sorting *is* still worthwhile -- but it sacrifices very little to only sort
newly-added portions of the strtab, reusing older portions as necessary.
As a first stage in this, discard the whole "pending refs" abstraction and
replace it with "movable" refs, which are exactly like all other refs
(addresses containing the strtab offset of some string, which are updated
wiht the final strtab offset on serialization) except that we track them in
a reverse dict so that we can move the refs around (which we do whenever we
realloc() a buffer containing a bunch of structure members or something when
we add members to the structure).
libctf/
* ctf-create.c (ctf_add_enumerator): Call ctf_str_move_refs; add
a movable ref.
(ctf_add_member_offset): Likewise.
* ctf-util.c (ctf_realloc): Delete.
* ctf-serialize.c (ctf_serialize): No longer use it. Adjust to
new fields.
* ctf-string.c (ctf_str_purge_atom_refs): Purge movable refs.
(ctf_str_free_atom): Free freeable atoms' strings.
(ctf_str_create_atoms): Create the movable refs dynhash if needed.
(ctf_str_free_atoms): Destroy it.
(CTF_STR_MOVABLE): Switch (back) from ints to flags (see previous
reversion). Add new flag.
(aref_create): New, populate movable refs if need be.
(ctf_str_add_ref_internal): Switch back to flags, update refs
directly for nonprovisional strings (with already-known fixed offsets);
create refs via aref_create. Allocate strings only if not within an
mmapped strtab.
(ctf_str_add_movable_ref): New.
(ctf_str_add): Adjust to CTF_STR_* reintroduction.
(ctf_str_add_external): LIkewise.
(ctf_str_move_refs): New, move refs via ctf_str_movable_refs
backpointer.
(ctf_str_purge_refs): Drop ctf_str_num_refs.
(ctf_str_update_refs): Fix indentation.
* ctf-impl.h (struct ctf_str_atom_movable): New.
(struct ctf_dict.ctf_str_num_refs): Drop.
(struct ctf_dict.ctf_str_movable_refs): New.
(ctf_str_add_movable_ref): Declare.
(ctf_str_move_refs): Likewise.
(ctf_realloc): Drop.
2024-03-26 00:39:02 +08:00
|
|
|
/* Remove refs in the old vlen region and reapply them. */
|
|
|
|
|
|
|
|
ctf_str_move_refs (fp, old_vlen, sizeof (ctf_enum_t) * vlen, dtd->dtd_vlen);
|
|
|
|
|
2021-03-18 20:37:52 +08:00
|
|
|
for (i = 0; i < vlen; i++)
|
|
|
|
if (strcmp (ctf_strptr (fp, en[i].cte_name), name) == 0)
|
libctf: fix creation-time parent/child dict confusions
The fixes applied a few years ago to resolve confusions between parent and
child dicts at lookup time also apply in various forms to creation. In
general, if you have a type in a parent dict ctf_imported into a child and
you do something to it, and the parent dict is writable (created via
ctf_create, not opened via ctf_open*) it should work just the same to make
changes to that type via a child dict as it does to make the change
to the parent dict directly -- and nothing you're prohibited from doing
to the parent dict when done directly should be allowed just because
you're doing it via a child.
Specifically, the following don't work when doing things from the child, but
should:
- adding a member of a type in the parent to a struct or union in the
parent via ctf_add_member or ctf_add_member_offset: this yields
ECTF_BADID
- adding a member of a type in the parent to a struct or union in the
parent via ctf_add_member_encoded: this dumps core (!).
- adding an enumerand to an enumerator in the parent: this yields
ECTF_BADID
- setting the properties of an array in the parent via ctf_set_array;
this yields ECTF_BADID
Relatedly, some things work when doing things via a child that should fail,
yielding a CTF dictionary with invalid content (readable, but meaningless):
in particular, you can add a child type to a struct in the parent via
any of the ctf_add_member* family and nothing complains at all, even though
you should never be able to add references to children to parents (since any
given parent can be associated with many different children).
A family of tests is added to check each of these cases independently, since
some can result in coredumps and it would be nice to test the other cases
even if some dump core. They use a common library to do all the actual
work. The set of affected API calls was determined by code inspection
(auditing all calls to ctf_dtd_lookup): it's possible that I missed a few,
but I doubt it, since other cases use ctf_lookup* functions, which already
climb to the parent where appropriate.
libctf/ChangeLog:
PR libctf/30985
* ctf-create.c (ctf_dtd_lookup): Traverse to parents if necessary.
(ctf_set_array): Likewise. Report errors on the child; require
both parent and child to be writable.
(ctf_add_enumerator): Likewise.
(ctf_add_member_offset): Likewise. Prohibit addition of child types
to structs in the parent.
(ctf_add_member_encoded): Do not dereference a NULL dtd: report
ECTF_BADID instead.
* ctf-string.c (ctf_str_add_ref_internal): Report ENOMEM on the
dict if addition of a string ref fails.
* testsuite/libctf-writable/parent-child-dtd-crash-lib.c: New library.
* testsuite/libctf-writable/parent-child-dtd-enum.*: New test.
* testsuite/libctf-writable/parent-child-dtd-enumerator.*: New test.
* testsuite/libctf-writable/parent-child-dtd-member-encoded.*: New test.
* testsuite/libctf-writable/parent-child-dtd-member-offset.*: New test.
* testsuite/libctf-writable/parent-child-dtd-set-array.*: New test.
* testsuite/libctf-writable/parent-child-dtd-struct.*: New test.
* testsuite/libctf-writable/parent-child-dtd-union.*: New test.
2023-10-19 01:34:57 +08:00
|
|
|
return (ctf_set_errno (ofp, ECTF_DUPLICATE));
|
2021-03-18 20:37:52 +08:00
|
|
|
|
libctf: replace 'pending refs' abstraction
A few years ago we introduced a 'pending refs' abstraction to fix one
problem: serializing a dict, then changing it would tend to corrupt the dict
because the strtab sort we do on strtab writeout (to improve compression
efficiency) would modify the offset of any strings that sorted
lexicographically earlier in the strtab: so we added a new restriction that
all strings are added only at serialization time, and maintained a set of
'pending' refs that were added earlier, whose offsets we could update (like
other refs) at writeout time.
This was in hindsight seriously problematic for maintenance (because
serialization has to traverse all strings in all datatypes in the entire
dict), and has become impossible to sustain now that we can read in existing
dicts, modify them, and reserialize them again. We really don't want to
have to dig through the entire dict we jut read in just in order to dig out
all its strtab offsets, then *change* it, just for the sake of a sort that
adds a frankly trivial amount of compression efficiency.
Sorting *is* still worthwhile -- but it sacrifices very little to only sort
newly-added portions of the strtab, reusing older portions as necessary.
As a first stage in this, discard the whole "pending refs" abstraction and
replace it with "movable" refs, which are exactly like all other refs
(addresses containing the strtab offset of some string, which are updated
wiht the final strtab offset on serialization) except that we track them in
a reverse dict so that we can move the refs around (which we do whenever we
realloc() a buffer containing a bunch of structure members or something when
we add members to the structure).
libctf/
* ctf-create.c (ctf_add_enumerator): Call ctf_str_move_refs; add
a movable ref.
(ctf_add_member_offset): Likewise.
* ctf-util.c (ctf_realloc): Delete.
* ctf-serialize.c (ctf_serialize): No longer use it. Adjust to
new fields.
* ctf-string.c (ctf_str_purge_atom_refs): Purge movable refs.
(ctf_str_free_atom): Free freeable atoms' strings.
(ctf_str_create_atoms): Create the movable refs dynhash if needed.
(ctf_str_free_atoms): Destroy it.
(CTF_STR_MOVABLE): Switch (back) from ints to flags (see previous
reversion). Add new flag.
(aref_create): New, populate movable refs if need be.
(ctf_str_add_ref_internal): Switch back to flags, update refs
directly for nonprovisional strings (with already-known fixed offsets);
create refs via aref_create. Allocate strings only if not within an
mmapped strtab.
(ctf_str_add_movable_ref): New.
(ctf_str_add): Adjust to CTF_STR_* reintroduction.
(ctf_str_add_external): LIkewise.
(ctf_str_move_refs): New, move refs via ctf_str_movable_refs
backpointer.
(ctf_str_purge_refs): Drop ctf_str_num_refs.
(ctf_str_update_refs): Fix indentation.
* ctf-impl.h (struct ctf_str_atom_movable): New.
(struct ctf_dict.ctf_str_num_refs): Drop.
(struct ctf_dict.ctf_str_movable_refs): New.
(ctf_str_add_movable_ref): Declare.
(ctf_str_move_refs): Likewise.
(ctf_realloc): Drop.
2024-03-26 00:39:02 +08:00
|
|
|
en[i].cte_name = ctf_str_add_movable_ref (fp, name, &en[i].cte_name);
|
2021-03-18 20:37:52 +08:00
|
|
|
en[i].cte_value = value;
|
|
|
|
|
|
|
|
if (en[i].cte_name == 0 && name != NULL && name[0] != '\0')
|
libctf: fix creation-time parent/child dict confusions
The fixes applied a few years ago to resolve confusions between parent and
child dicts at lookup time also apply in various forms to creation. In
general, if you have a type in a parent dict ctf_imported into a child and
you do something to it, and the parent dict is writable (created via
ctf_create, not opened via ctf_open*) it should work just the same to make
changes to that type via a child dict as it does to make the change
to the parent dict directly -- and nothing you're prohibited from doing
to the parent dict when done directly should be allowed just because
you're doing it via a child.
Specifically, the following don't work when doing things from the child, but
should:
- adding a member of a type in the parent to a struct or union in the
parent via ctf_add_member or ctf_add_member_offset: this yields
ECTF_BADID
- adding a member of a type in the parent to a struct or union in the
parent via ctf_add_member_encoded: this dumps core (!).
- adding an enumerand to an enumerator in the parent: this yields
ECTF_BADID
- setting the properties of an array in the parent via ctf_set_array;
this yields ECTF_BADID
Relatedly, some things work when doing things via a child that should fail,
yielding a CTF dictionary with invalid content (readable, but meaningless):
in particular, you can add a child type to a struct in the parent via
any of the ctf_add_member* family and nothing complains at all, even though
you should never be able to add references to children to parents (since any
given parent can be associated with many different children).
A family of tests is added to check each of these cases independently, since
some can result in coredumps and it would be nice to test the other cases
even if some dump core. They use a common library to do all the actual
work. The set of affected API calls was determined by code inspection
(auditing all calls to ctf_dtd_lookup): it's possible that I missed a few,
but I doubt it, since other cases use ctf_lookup* functions, which already
climb to the parent where appropriate.
libctf/ChangeLog:
PR libctf/30985
* ctf-create.c (ctf_dtd_lookup): Traverse to parents if necessary.
(ctf_set_array): Likewise. Report errors on the child; require
both parent and child to be writable.
(ctf_add_enumerator): Likewise.
(ctf_add_member_offset): Likewise. Prohibit addition of child types
to structs in the parent.
(ctf_add_member_encoded): Do not dereference a NULL dtd: report
ECTF_BADID instead.
* ctf-string.c (ctf_str_add_ref_internal): Report ENOMEM on the
dict if addition of a string ref fails.
* testsuite/libctf-writable/parent-child-dtd-crash-lib.c: New library.
* testsuite/libctf-writable/parent-child-dtd-enum.*: New test.
* testsuite/libctf-writable/parent-child-dtd-enumerator.*: New test.
* testsuite/libctf-writable/parent-child-dtd-member-encoded.*: New test.
* testsuite/libctf-writable/parent-child-dtd-member-offset.*: New test.
* testsuite/libctf-writable/parent-child-dtd-set-array.*: New test.
* testsuite/libctf-writable/parent-child-dtd-struct.*: New test.
* testsuite/libctf-writable/parent-child-dtd-union.*: New test.
2023-10-19 01:34:57 +08:00
|
|
|
return (ctf_set_errno (ofp, ctf_errno (fp)));
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
|
|
|
|
dtd->dtd_data.ctt_info = CTF_TYPE_INFO (kind, root, vlen + 1);
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
int
|
libctf, include, binutils, gdb, ld: rename ctf_file_t to ctf_dict_t
The naming of the ctf_file_t type in libctf is a historical curiosity.
Back in the Solaris days, CTF dictionaries were originally generated as
a separate file and then (sometimes) merged into objects: hence the
datatype was named ctf_file_t, and known as a "CTF file". Nowadays, raw
CTF is essentially never written to a file on its own, and the datatype
changed name to a "CTF dictionary" years ago. So the term "CTF file"
refers to something that is never a file! This is at best confusing.
The type has also historically been known as a 'CTF container", which is
even more confusing now that we have CTF archives which are *also* a
sort of container (they contain CTF dictionaries), but which are never
referred to as containers in the source code.
So fix this by completing the renaming, renaming ctf_file_t to
ctf_dict_t throughout, and renaming those few functions that refer to
CTF files by name (keeping compatibility aliases) to refer to dicts
instead. Old users who still refer to ctf_file_t will see (harmless)
pointer-compatibility warnings at compile time, but the ABI is unchanged
(since C doesn't mangle names, and ctf_file_t was always an opaque type)
and things will still compile fine as long as -Werror is not specified.
All references to CTF containers and CTF files in the source code are
fixed to refer to CTF dicts instead.
Further (smaller) renamings of annoyingly-named functions to come, as
part of the process of souping up queries across whole archives at once
(needed for the function info and data object sections).
binutils/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* objdump.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_ctf): Likewise. Use ctf_dict_close, not ctf_file_close.
* readelf.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_section_as_ctf): Likewise. Use ctf_dict_close, not
ctf_file_close.
gdb/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctfread.c: Change uses of ctf_file_t to ctf_dict_t.
(ctf_fp_info::~ctf_fp_info): Call ctf_dict_close, not ctf_file_close.
include/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-api.h (ctf_file_t): Rename to...
(ctf_dict_t): ... this. Keep ctf_file_t around for compatibility.
(struct ctf_file): Likewise rename to...
(struct ctf_dict): ... this.
(ctf_file_close): Rename to...
(ctf_dict_close): ... this, keeping compatibility function.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this, keeping compatibility function.
All callers adjusted.
* ctf.h: Rename references to ctf_file_t to ctf_dict_t.
(struct ctf_archive) <ctfa_nfiles>: Rename to...
<ctfa_ndicts>: ... this.
ld/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ldlang.c (ctf_output): This is a ctf_dict_t now.
(lang_ctf_errs_warnings): Rename ctf_file_t to ctf_dict_t.
(ldlang_open_ctf): Adjust comment.
(lang_merge_ctf): Use ctf_dict_close, not ctf_file_close.
* ldelfgen.h (ldelf_examine_strtab_for_ctf): Rename ctf_file_t to
ctf_dict_t. Change opaque declaration accordingly.
* ldelfgen.c (ldelf_examine_strtab_for_ctf): Adjust.
* ldemul.h (examine_strtab_for_ctf): Likewise.
(ldemul_examine_strtab_for_ctf): Likewise.
* ldeuml.c (ldemul_examine_strtab_for_ctf): Likewise.
libctf/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h: Rename ctf_file_t to ctf_dict_t: all declarations
adjusted.
(ctf_fileops): Rename to...
(ctf_dictops): ... this.
(ctf_dedup_t) <cd_id_to_file_t>: Rename to...
<cd_id_to_dict_t>: ... this.
(ctf_file_t): Fix outdated comment.
<ctf_fileops>: Rename to...
<ctf_dictops>: ... this.
(struct ctf_archive_internal) <ctfi_file>: Rename to...
<ctfi_dict>: ... this.
* ctf-archive.c: Rename ctf_file_t to ctf_dict_t.
Rename ctf_archive.ctfa_nfiles to ctfa_ndicts.
Rename ctf_file_close to ctf_dict_close. All users adjusted.
* ctf-create.c: Likewise. Refer to CTF dicts, not CTF containers.
(ctf_bundle_t) <ctb_file>: Rename to...
<ctb_dict): ... this.
* ctf-decl.c: Rename ctf_file_t to ctf_dict_t.
* ctf-dedup.c: Likewise. Rename ctf_file_close to
ctf_dict_close. Refer to CTF dicts, not CTF containers.
* ctf-dump.c: Likewise.
* ctf-error.c: Likewise.
* ctf-hash.c: Likewise.
* ctf-inlines.h: Likewise.
* ctf-labels.c: Likewise.
* ctf-link.c: Likewise.
* ctf-lookup.c: Likewise.
* ctf-open-bfd.c: Likewise.
* ctf-string.c: Likewise.
* ctf-subr.c: Likewise.
* ctf-types.c: Likewise.
* ctf-util.c: Likewise.
* ctf-open.c: Likewise.
(ctf_file_close): Rename to...
(ctf_dict_close): ...this.
(ctf_file_close): New trivial wrapper around ctf_dict_close, for
compatibility.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this.
(ctf_parent_file): New trivial wrapper around ctf_parent_dict, for
compatibility.
* libctf.ver: Add ctf_dict_close and ctf_parent_dict.
2020-11-20 21:34:04 +08:00
|
|
|
ctf_add_member_offset (ctf_dict_t *fp, ctf_id_t souid, const char *name,
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
ctf_id_t type, unsigned long bit_offset)
|
|
|
|
{
|
libctf: fix creation-time parent/child dict confusions
The fixes applied a few years ago to resolve confusions between parent and
child dicts at lookup time also apply in various forms to creation. In
general, if you have a type in a parent dict ctf_imported into a child and
you do something to it, and the parent dict is writable (created via
ctf_create, not opened via ctf_open*) it should work just the same to make
changes to that type via a child dict as it does to make the change
to the parent dict directly -- and nothing you're prohibited from doing
to the parent dict when done directly should be allowed just because
you're doing it via a child.
Specifically, the following don't work when doing things from the child, but
should:
- adding a member of a type in the parent to a struct or union in the
parent via ctf_add_member or ctf_add_member_offset: this yields
ECTF_BADID
- adding a member of a type in the parent to a struct or union in the
parent via ctf_add_member_encoded: this dumps core (!).
- adding an enumerand to an enumerator in the parent: this yields
ECTF_BADID
- setting the properties of an array in the parent via ctf_set_array;
this yields ECTF_BADID
Relatedly, some things work when doing things via a child that should fail,
yielding a CTF dictionary with invalid content (readable, but meaningless):
in particular, you can add a child type to a struct in the parent via
any of the ctf_add_member* family and nothing complains at all, even though
you should never be able to add references to children to parents (since any
given parent can be associated with many different children).
A family of tests is added to check each of these cases independently, since
some can result in coredumps and it would be nice to test the other cases
even if some dump core. They use a common library to do all the actual
work. The set of affected API calls was determined by code inspection
(auditing all calls to ctf_dtd_lookup): it's possible that I missed a few,
but I doubt it, since other cases use ctf_lookup* functions, which already
climb to the parent where appropriate.
libctf/ChangeLog:
PR libctf/30985
* ctf-create.c (ctf_dtd_lookup): Traverse to parents if necessary.
(ctf_set_array): Likewise. Report errors on the child; require
both parent and child to be writable.
(ctf_add_enumerator): Likewise.
(ctf_add_member_offset): Likewise. Prohibit addition of child types
to structs in the parent.
(ctf_add_member_encoded): Do not dereference a NULL dtd: report
ECTF_BADID instead.
* ctf-string.c (ctf_str_add_ref_internal): Report ENOMEM on the
dict if addition of a string ref fails.
* testsuite/libctf-writable/parent-child-dtd-crash-lib.c: New library.
* testsuite/libctf-writable/parent-child-dtd-enum.*: New test.
* testsuite/libctf-writable/parent-child-dtd-enumerator.*: New test.
* testsuite/libctf-writable/parent-child-dtd-member-encoded.*: New test.
* testsuite/libctf-writable/parent-child-dtd-member-offset.*: New test.
* testsuite/libctf-writable/parent-child-dtd-set-array.*: New test.
* testsuite/libctf-writable/parent-child-dtd-struct.*: New test.
* testsuite/libctf-writable/parent-child-dtd-union.*: New test.
2023-10-19 01:34:57 +08:00
|
|
|
ctf_dict_t *ofp = fp;
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
ctf_dtdef_t *dtd = ctf_dtd_lookup (fp, souid);
|
|
|
|
|
|
|
|
ssize_t msize, malign, ssize;
|
|
|
|
uint32_t kind, vlen, root;
|
libctf: eliminate dtd_u, part 5: structs / unions
Eliminate the dynamic member storage for structs and unions as we have
for other dynamic types. This is much like the previous enum
elimination, except that structs and unions are the only types for which
a full-sized ctf_type_t might be needed. Up to now, this decision has
been made in the individual ctf_add_{struct,union}_sized functions and
duplicated in ctf_add_member_offset. The vlen machinery lets us
simplify this, always allocating a ctf_lmember_t and setting the
dtd_data's ctt_size to CTF_LSIZE_SENT: we figure out whether this is
really justified and (almost always) repack things down into a
ctf_stype_t at ctf_serialize time.
This allows us to eliminate the dynamic member paths from the iterators and
query functions in ctf-types.c in favour of always using the large-structure
vlen stuff for dynamic types (the diff is ugly but that's just because of the
volume of reindentation this calls for). This also means the large-structure
vlen stuff gets more heavily tested, which is nice because it was an almost
totally unused code path before now (it only kicked in for structures of size
>4GiB, and how often do you see those?)
The only extra complexity here is ctf_add_type. Back in the days of the
nondeduplicating linker this was called a ridiculous number of times for
countless identical copies of structures: eschewing the repeated lookups of the
dtd in ctf_add_member_offset and adding the members directly saved an amazing
amount of time. Now the nondeduplicating linker is gone, this is extreme
overoptimization: we can rip out the direct addition and use ctf_member_next and
ctf_add_member_offset, just like ctf_dedup_emit does.
We augment a ctf_add_type test to try adding a self-referential struct, the only
thing the ctf_add_type part of this change really perturbs.
This completes the elimination of dtd_u.
libctf/ChangeLog
2021-03-18 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h (ctf_dtdef_t) <dtu_members>: Remove.
<dtd_u>: Likewise.
(ctf_dmdef_t): Remove.
(struct ctf_next) <u.ctn_dmd>: Remove.
* ctf-create.c (INITIAL_VLEN): New, more-or-less arbitrary initial
vlen size.
(ctf_add_enum): Use it.
(ctf_dtd_delete): Do not free the (removed) dmd; remove string
refs from the vlen on struct deletion.
(ctf_add_struct_sized): Populate the vlen: do it by hand if
promoting forwards. Always populate the full-size
lsizehi/lsizelo members.
(ctf_add_union_sized): Likewise.
(ctf_add_member_offset): Set up the vlen rather than the dmd.
Expand it as needed, repointing string refs via
ctf_str_move_pending. Add the member names as pending strings.
Always populate the full-size lsizehi/lsizelo members.
(membadd): Remove, folding back into...
(ctf_add_type_internal): ... here, adding via an ordinary
ctf_add_struct_sized and _next iteration rather than doing
everything by hand.
* ctf-serialize.c (ctf_copy_smembers): Remove this...
(ctf_copy_lmembers): ... and this...
(ctf_emit_type_sect): ... folding into here. Figure out if a
ctf_stype_t is needed here, not in ctf_add_*_sized.
(ctf_type_sect_size): Figure out the ctf_stype_t stuff the same
way here.
* ctf-types.c (ctf_member_next): Remove the dmd path and always
use the vlen. Force large-structure usage for dynamic types.
(ctf_type_align): Likewise.
(ctf_member_info): Likewise.
(ctf_type_rvisit): Likewise.
* testsuite/libctf-regression/type-add-unnamed-struct-ctf.c: Add a
self-referential type to this test.
* testsuite/libctf-regression/type-add-unnamed-struct.c: Adjusted
accordingly.
* testsuite/libctf-regression/type-add-unnamed-struct.lk: Likewise.
2021-03-18 20:37:52 +08:00
|
|
|
size_t i;
|
libctf, ld: prohibit getting the size or alignment of forwards
C allows you to do only a very few things with entities of incomplete
type (as opposed to pointers to them): make pointers to them and give
them cv-quals, roughly. In particular you can't sizeof them and you
can't get their alignment.
We cannot impose all the requirements the standard imposes on CTF users,
because the deduplicator can transform any structure type into a forward
for the purposes of breaking cycles: so CTF type graphs can easily
contain things like arrays of forward type (if you want to figure out
their size or alignment, you need to chase down the types this forward
might be a forward to in child TU dicts: we will soon add API functions
to make doing this much easier).
Nonetheless, it is still meaningless to ask for the size or alignment of
forwards: but libctf didn't prohibit this and returned nonsense from
internal implementation details when you asked (it returned the kind of
the pointed-to type as both the size and alignment, because forwards
reuse ctt_type as a type kind, and ctt_type and ctt_size overlap). So
introduce a new error, ECTF_INCOMPLETE, which is returned when you try
to get the size or alignment of forwards: we also return it when you try
to do things that require libctf itself to get the size or alignment of
a forward, notably using a forward as an array index type (which C
should never do in any case) or adding forwards to structures without
specifying their offset explicitly.
The dumper will not emit size or alignment info for forwards any more.
(This should not be an API break since ctf_type_size and ctf_type_align
could both return errors before now: any code that isn't expecting error
returns is already potentially broken.)
include/ChangeLog
2021-01-05 Nick Alcock <nick.alcock@oracle.com>
* ctf-api.h (ECTF_INCOMPLETE): New.
(ECTF_NERR): Adjust.
ld/ChangeLog
2021-01-05 Nick Alcock <nick.alcock@oracle.com>
* testsuite/ld-ctf/conflicting-cycle-1.parent.d: Adjust for dumper
changes.
* testsuite/ld-ctf/cross-tu-cyclic-conflicting.d: Likewise.
* testsuite/ld-ctf/forward.c: New test...
* testsuite/ld-ctf/forward.d: ... and results.
libctf/ChangeLog
2021-01-05 Nick Alcock <nick.alcock@oracle.com>
* ctf-types.c (ctf_type_resolve): Improve comment.
(ctf_type_size): Yield ECTF_INCOMPLETE when applied to forwards.
Emit errors into the right dict.
(ctf_type_align): Likewise.
* ctf-create.c (ctf_add_member_offset): Yield ECTF_INCOMPLETE
when adding a member without explicit offset when this member, or
the previous member, is incomplete.
* ctf-dump.c (ctf_dump_format_type): Do not try to print the size of
forwards.
(ctf_dump_member): Do not try to print their alignment.
2021-01-05 21:25:56 +08:00
|
|
|
int is_incomplete = 0;
|
libctf: eliminate dtd_u, part 5: structs / unions
Eliminate the dynamic member storage for structs and unions as we have
for other dynamic types. This is much like the previous enum
elimination, except that structs and unions are the only types for which
a full-sized ctf_type_t might be needed. Up to now, this decision has
been made in the individual ctf_add_{struct,union}_sized functions and
duplicated in ctf_add_member_offset. The vlen machinery lets us
simplify this, always allocating a ctf_lmember_t and setting the
dtd_data's ctt_size to CTF_LSIZE_SENT: we figure out whether this is
really justified and (almost always) repack things down into a
ctf_stype_t at ctf_serialize time.
This allows us to eliminate the dynamic member paths from the iterators and
query functions in ctf-types.c in favour of always using the large-structure
vlen stuff for dynamic types (the diff is ugly but that's just because of the
volume of reindentation this calls for). This also means the large-structure
vlen stuff gets more heavily tested, which is nice because it was an almost
totally unused code path before now (it only kicked in for structures of size
>4GiB, and how often do you see those?)
The only extra complexity here is ctf_add_type. Back in the days of the
nondeduplicating linker this was called a ridiculous number of times for
countless identical copies of structures: eschewing the repeated lookups of the
dtd in ctf_add_member_offset and adding the members directly saved an amazing
amount of time. Now the nondeduplicating linker is gone, this is extreme
overoptimization: we can rip out the direct addition and use ctf_member_next and
ctf_add_member_offset, just like ctf_dedup_emit does.
We augment a ctf_add_type test to try adding a self-referential struct, the only
thing the ctf_add_type part of this change really perturbs.
This completes the elimination of dtd_u.
libctf/ChangeLog
2021-03-18 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h (ctf_dtdef_t) <dtu_members>: Remove.
<dtd_u>: Likewise.
(ctf_dmdef_t): Remove.
(struct ctf_next) <u.ctn_dmd>: Remove.
* ctf-create.c (INITIAL_VLEN): New, more-or-less arbitrary initial
vlen size.
(ctf_add_enum): Use it.
(ctf_dtd_delete): Do not free the (removed) dmd; remove string
refs from the vlen on struct deletion.
(ctf_add_struct_sized): Populate the vlen: do it by hand if
promoting forwards. Always populate the full-size
lsizehi/lsizelo members.
(ctf_add_union_sized): Likewise.
(ctf_add_member_offset): Set up the vlen rather than the dmd.
Expand it as needed, repointing string refs via
ctf_str_move_pending. Add the member names as pending strings.
Always populate the full-size lsizehi/lsizelo members.
(membadd): Remove, folding back into...
(ctf_add_type_internal): ... here, adding via an ordinary
ctf_add_struct_sized and _next iteration rather than doing
everything by hand.
* ctf-serialize.c (ctf_copy_smembers): Remove this...
(ctf_copy_lmembers): ... and this...
(ctf_emit_type_sect): ... folding into here. Figure out if a
ctf_stype_t is needed here, not in ctf_add_*_sized.
(ctf_type_sect_size): Figure out the ctf_stype_t stuff the same
way here.
* ctf-types.c (ctf_member_next): Remove the dmd path and always
use the vlen. Force large-structure usage for dynamic types.
(ctf_type_align): Likewise.
(ctf_member_info): Likewise.
(ctf_type_rvisit): Likewise.
* testsuite/libctf-regression/type-add-unnamed-struct-ctf.c: Add a
self-referential type to this test.
* testsuite/libctf-regression/type-add-unnamed-struct.c: Adjusted
accordingly.
* testsuite/libctf-regression/type-add-unnamed-struct.lk: Likewise.
2021-03-18 20:37:52 +08:00
|
|
|
unsigned char *old_vlen;
|
|
|
|
ctf_lmember_t *memb;
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
|
libctf: fix creation-time parent/child dict confusions
The fixes applied a few years ago to resolve confusions between parent and
child dicts at lookup time also apply in various forms to creation. In
general, if you have a type in a parent dict ctf_imported into a child and
you do something to it, and the parent dict is writable (created via
ctf_create, not opened via ctf_open*) it should work just the same to make
changes to that type via a child dict as it does to make the change
to the parent dict directly -- and nothing you're prohibited from doing
to the parent dict when done directly should be allowed just because
you're doing it via a child.
Specifically, the following don't work when doing things from the child, but
should:
- adding a member of a type in the parent to a struct or union in the
parent via ctf_add_member or ctf_add_member_offset: this yields
ECTF_BADID
- adding a member of a type in the parent to a struct or union in the
parent via ctf_add_member_encoded: this dumps core (!).
- adding an enumerand to an enumerator in the parent: this yields
ECTF_BADID
- setting the properties of an array in the parent via ctf_set_array;
this yields ECTF_BADID
Relatedly, some things work when doing things via a child that should fail,
yielding a CTF dictionary with invalid content (readable, but meaningless):
in particular, you can add a child type to a struct in the parent via
any of the ctf_add_member* family and nothing complains at all, even though
you should never be able to add references to children to parents (since any
given parent can be associated with many different children).
A family of tests is added to check each of these cases independently, since
some can result in coredumps and it would be nice to test the other cases
even if some dump core. They use a common library to do all the actual
work. The set of affected API calls was determined by code inspection
(auditing all calls to ctf_dtd_lookup): it's possible that I missed a few,
but I doubt it, since other cases use ctf_lookup* functions, which already
climb to the parent where appropriate.
libctf/ChangeLog:
PR libctf/30985
* ctf-create.c (ctf_dtd_lookup): Traverse to parents if necessary.
(ctf_set_array): Likewise. Report errors on the child; require
both parent and child to be writable.
(ctf_add_enumerator): Likewise.
(ctf_add_member_offset): Likewise. Prohibit addition of child types
to structs in the parent.
(ctf_add_member_encoded): Do not dereference a NULL dtd: report
ECTF_BADID instead.
* ctf-string.c (ctf_str_add_ref_internal): Report ENOMEM on the
dict if addition of a string ref fails.
* testsuite/libctf-writable/parent-child-dtd-crash-lib.c: New library.
* testsuite/libctf-writable/parent-child-dtd-enum.*: New test.
* testsuite/libctf-writable/parent-child-dtd-enumerator.*: New test.
* testsuite/libctf-writable/parent-child-dtd-member-encoded.*: New test.
* testsuite/libctf-writable/parent-child-dtd-member-offset.*: New test.
* testsuite/libctf-writable/parent-child-dtd-set-array.*: New test.
* testsuite/libctf-writable/parent-child-dtd-struct.*: New test.
* testsuite/libctf-writable/parent-child-dtd-union.*: New test.
2023-10-19 01:34:57 +08:00
|
|
|
if ((fp->ctf_flags & LCTF_CHILD) && LCTF_TYPE_ISPARENT (fp, souid))
|
|
|
|
{
|
|
|
|
/* Adding a child type to a parent, even via the child, is prohibited.
|
|
|
|
Otherwise, climb to the parent and do all work there. */
|
|
|
|
|
|
|
|
if (LCTF_TYPE_ISCHILD (fp, type))
|
|
|
|
return (ctf_set_errno (ofp, ECTF_BADID));
|
|
|
|
|
|
|
|
fp = fp->ctf_parent;
|
|
|
|
}
|
|
|
|
|
libctf: support addition of types to dicts read via ctf_open()
libctf has long declared deserialized dictionaries (out of files or ELF
sections or memory buffers or whatever) to be read-only: back in the
furthest prehistory this was not the case, in that you could add a
few sorts of type to such dicts, but attempting to do so often caused
horrible memory corruption, so I banned the lot.
But it turns out real consumers want it (notably DTrace, which
synthesises pointers to types that don't have them and adds them to the
ctf_open()ed dicts if it needs them). Let's bring it back again, but
without the memory corruption and without the massive code duplication
required in days of yore to distinguish between static and dynamic
types: the representation of both types has been identical for a few
years, with the only difference being that types as a whole are stored in
a big buffer for types read in via ctf_open and per-type hashtables for
newly-added types.
So we discard the internally-visible concept of "readonly dictionaries"
in favour of declaring the *range of types* that were already present
when the dict was read in to be read-only: you can't modify them (say,
by adding members to them if they're structs, or calling ctf_set_array
on them), but you can add more types and point to them. (The API
remains the same, with calls sometimes returning ECTF_RDONLY, but now
they do so less often.)
This is a fairly invasive change, mostly because code written since the
ban was introduced didn't take the possibility of a static/dynamic split
into account. Some of these irregularities were hard to define as
anything but bugs.
Notably:
- The symbol handling was assuming that symbols only needed to be
looked for in dynamic hashtabs or static linker-laid-out indexed/
nonindexed layouts, but now we want to check both in case people
added more symbols to a dict they opened.
- The code that handles type additions wasn't checking to see if types
with the same name existed *at all* (so you could do
ctf_add_typedef (fp, "foo", bar) repeatedly without error). This
seems reasonable for types you just added, but we probably *do* want
to ban addition of types with names that override names we already
used in the ctf_open()ed portion, since that would probably corrupt
existing type relationships. (Doing things this way also avoids
causing new errors for any existing code that was doing this sort of
thing.)
- ctf_lookup_variable entirely failed to work for variables just added
by ctf_add_variable: you had to write the dict out and read it back
in again before they appeared.
- The symbol handling remembered what symbols you looked up but didn't
remember their types, so you could look up an object symbol and then
find it popping up when you asked for function symbols, which seems
less than ideal. Since we had to rejig things enough to be able to
distinguish function and object symbols internally anyway (in order
to give suitable errors if you try to add a symbol with a name that
already existed in the ctf_open()ed dict), this bug suddenly became
more visible and was easily fixed.
We do not (yet) support writing out dicts that have been previously read
in via ctf_open() or other deserializer (you can look things up in them,
but not write them out a second time). This never worked, so there is
no incompatibility; if it is needed at a later date, the serializer is a
little bit closer to having it work now (the only table we don't deal
with is the types table, and that's because the upcoming CTFv4 changes
are likely to make major changes to the way that table is represented
internally, so adding more code that depends on its current form seems
like a bad idea).
There is a new testcase that tests much of this, in particular that
modification of existing types is still banned and that you can add new
ones and chase them without error.
libctf/
* ctf-impl.h (struct ctf_dict.ctf_symhash): Split into...
(ctf_dict.ctf_symhash_func): ... this and...
(ctf_dict.ctf_symhash_objt): ... this.
(ctf_dict.ctf_stypes): New, counts static types.
(LCTF_INDEX_TO_TYPEPTR): Use it instead of CTF_RDWR.
(LCTF_RDWR): Deleted.
(LCTF_DIRTY): Renumbered.
(LCTF_LINKING): Likewise.
(ctf_lookup_variable_here): New.
(ctf_lookup_by_sym_or_name): Likewise.
(ctf_symbol_next_static): Likewise.
(ctf_add_variable_forced): Likewise.
(ctf_add_funcobjt_sym_forced): Likewise.
(ctf_simple_open_internal): Adjust.
(ctf_bufopen_internal): Likewise.
* ctf-create.c (ctf_grow_ptrtab): Adjust a lot to start with.
(ctf_create): Migrate a bunch of initializations into bufopen.
Force recreation of name tables. Do not forcibly override the
model, let ctf_bufopen do it.
(ctf_static_type): New.
(ctf_update): Drop LCTF_RDWR check.
(ctf_dynamic_type): Likewise.
(ctf_add_function): Likewise.
(ctf_add_type_internal): Likewise.
(ctf_rollback): Check ctf_stypes, not LCTF_RDWR.
(ctf_set_array): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_enumerator): Likewise (only on the target dict).
(ctf_add_member_offset): Likewise.
(ctf_add_generic): Drop LCTF_RDWR check. Ban addition of types
with colliding names.
(ctf_add_forward): Note safety under the new rules.
(ctf_add_variable): Split all but the existence check into...
(ctf_add_variable_forced): ... this new function.
(ctf_add_funcobjt_sym): Likewise...
(ctf_add_funcobjt_sym_forced): ... for this new function.
* ctf-link.c (ctf_link_add_linker_symbol): Ban calling on dicts
with any stypes.
(ctf_link_add_strtab): Likewise.
(ctf_link_shuffle_syms): Likewise.
(ctf_link_intern_extern_string): Note pre-existing prohibition.
* ctf-lookup.c (ctf_lookup_by_id): Drop LCTF_RDWR check.
(ctf_lookup_variable): Split out looking in a dict but not
its parent into...
(ctf_lookup_variable_here): ... this new function.
(ctf_lookup_symbol_idx): Track whether looking up a function or
object: cache them separately.
(ctf_symbol_next): Split out looking in non-dynamic symtypetab
entries to...
(ctf_symbol_next_static): ... this new function. Don't get confused
by the simultaneous presence of static and dynamic symtypetab entries.
(ctf_try_lookup_indexed): Don't waste time looking up symbols by
index before there can be any idea how symbols are numbered.
(ctf_lookup_by_sym_or_name): Distinguish between function and
data object lookups. Drop LCTF_RDWR.
(ctf_lookup_by_symbol): Adjust.
(ctf_lookup_by_symbol_name): Likewise.
* ctf-open.c (init_types): Rename to...
(init_static_types): ... this. Drop LCTF_RDWR. Populate ctf_stypes.
(ctf_simple_open): Drop writable arg.
(ctf_simple_open_internal): Likewise.
(ctf_bufopen): Likewise.
(ctf_bufopen_internal): Populate fields only used for writable dicts.
Drop LCTF_RDWR.
(ctf_dict_close): Cater for symhash cache split.
* ctf-serialize.c (ctf_serialize): Use ctf_stypes, not LCTF_RDWR.
* ctf-types.c (ctf_variable_next): Drop LCTF_RDWR.
* testsuite/libctf-lookup/add-to-opened*: New test.
2023-12-20 00:58:19 +08:00
|
|
|
if (souid < fp->ctf_stypes)
|
libctf: fix creation-time parent/child dict confusions
The fixes applied a few years ago to resolve confusions between parent and
child dicts at lookup time also apply in various forms to creation. In
general, if you have a type in a parent dict ctf_imported into a child and
you do something to it, and the parent dict is writable (created via
ctf_create, not opened via ctf_open*) it should work just the same to make
changes to that type via a child dict as it does to make the change
to the parent dict directly -- and nothing you're prohibited from doing
to the parent dict when done directly should be allowed just because
you're doing it via a child.
Specifically, the following don't work when doing things from the child, but
should:
- adding a member of a type in the parent to a struct or union in the
parent via ctf_add_member or ctf_add_member_offset: this yields
ECTF_BADID
- adding a member of a type in the parent to a struct or union in the
parent via ctf_add_member_encoded: this dumps core (!).
- adding an enumerand to an enumerator in the parent: this yields
ECTF_BADID
- setting the properties of an array in the parent via ctf_set_array;
this yields ECTF_BADID
Relatedly, some things work when doing things via a child that should fail,
yielding a CTF dictionary with invalid content (readable, but meaningless):
in particular, you can add a child type to a struct in the parent via
any of the ctf_add_member* family and nothing complains at all, even though
you should never be able to add references to children to parents (since any
given parent can be associated with many different children).
A family of tests is added to check each of these cases independently, since
some can result in coredumps and it would be nice to test the other cases
even if some dump core. They use a common library to do all the actual
work. The set of affected API calls was determined by code inspection
(auditing all calls to ctf_dtd_lookup): it's possible that I missed a few,
but I doubt it, since other cases use ctf_lookup* functions, which already
climb to the parent where appropriate.
libctf/ChangeLog:
PR libctf/30985
* ctf-create.c (ctf_dtd_lookup): Traverse to parents if necessary.
(ctf_set_array): Likewise. Report errors on the child; require
both parent and child to be writable.
(ctf_add_enumerator): Likewise.
(ctf_add_member_offset): Likewise. Prohibit addition of child types
to structs in the parent.
(ctf_add_member_encoded): Do not dereference a NULL dtd: report
ECTF_BADID instead.
* ctf-string.c (ctf_str_add_ref_internal): Report ENOMEM on the
dict if addition of a string ref fails.
* testsuite/libctf-writable/parent-child-dtd-crash-lib.c: New library.
* testsuite/libctf-writable/parent-child-dtd-enum.*: New test.
* testsuite/libctf-writable/parent-child-dtd-enumerator.*: New test.
* testsuite/libctf-writable/parent-child-dtd-member-encoded.*: New test.
* testsuite/libctf-writable/parent-child-dtd-member-offset.*: New test.
* testsuite/libctf-writable/parent-child-dtd-set-array.*: New test.
* testsuite/libctf-writable/parent-child-dtd-struct.*: New test.
* testsuite/libctf-writable/parent-child-dtd-union.*: New test.
2023-10-19 01:34:57 +08:00
|
|
|
return (ctf_set_errno (ofp, ECTF_RDONLY));
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
|
|
|
|
if (dtd == NULL)
|
libctf: fix creation-time parent/child dict confusions
The fixes applied a few years ago to resolve confusions between parent and
child dicts at lookup time also apply in various forms to creation. In
general, if you have a type in a parent dict ctf_imported into a child and
you do something to it, and the parent dict is writable (created via
ctf_create, not opened via ctf_open*) it should work just the same to make
changes to that type via a child dict as it does to make the change
to the parent dict directly -- and nothing you're prohibited from doing
to the parent dict when done directly should be allowed just because
you're doing it via a child.
Specifically, the following don't work when doing things from the child, but
should:
- adding a member of a type in the parent to a struct or union in the
parent via ctf_add_member or ctf_add_member_offset: this yields
ECTF_BADID
- adding a member of a type in the parent to a struct or union in the
parent via ctf_add_member_encoded: this dumps core (!).
- adding an enumerand to an enumerator in the parent: this yields
ECTF_BADID
- setting the properties of an array in the parent via ctf_set_array;
this yields ECTF_BADID
Relatedly, some things work when doing things via a child that should fail,
yielding a CTF dictionary with invalid content (readable, but meaningless):
in particular, you can add a child type to a struct in the parent via
any of the ctf_add_member* family and nothing complains at all, even though
you should never be able to add references to children to parents (since any
given parent can be associated with many different children).
A family of tests is added to check each of these cases independently, since
some can result in coredumps and it would be nice to test the other cases
even if some dump core. They use a common library to do all the actual
work. The set of affected API calls was determined by code inspection
(auditing all calls to ctf_dtd_lookup): it's possible that I missed a few,
but I doubt it, since other cases use ctf_lookup* functions, which already
climb to the parent where appropriate.
libctf/ChangeLog:
PR libctf/30985
* ctf-create.c (ctf_dtd_lookup): Traverse to parents if necessary.
(ctf_set_array): Likewise. Report errors on the child; require
both parent and child to be writable.
(ctf_add_enumerator): Likewise.
(ctf_add_member_offset): Likewise. Prohibit addition of child types
to structs in the parent.
(ctf_add_member_encoded): Do not dereference a NULL dtd: report
ECTF_BADID instead.
* ctf-string.c (ctf_str_add_ref_internal): Report ENOMEM on the
dict if addition of a string ref fails.
* testsuite/libctf-writable/parent-child-dtd-crash-lib.c: New library.
* testsuite/libctf-writable/parent-child-dtd-enum.*: New test.
* testsuite/libctf-writable/parent-child-dtd-enumerator.*: New test.
* testsuite/libctf-writable/parent-child-dtd-member-encoded.*: New test.
* testsuite/libctf-writable/parent-child-dtd-member-offset.*: New test.
* testsuite/libctf-writable/parent-child-dtd-set-array.*: New test.
* testsuite/libctf-writable/parent-child-dtd-struct.*: New test.
* testsuite/libctf-writable/parent-child-dtd-union.*: New test.
2023-10-19 01:34:57 +08:00
|
|
|
return (ctf_set_errno (ofp, ECTF_BADID));
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
|
2020-06-03 03:28:16 +08:00
|
|
|
if (name != NULL && name[0] == '\0')
|
|
|
|
name = NULL;
|
|
|
|
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
kind = LCTF_INFO_KIND (fp, dtd->dtd_data.ctt_info);
|
|
|
|
root = LCTF_INFO_ISROOT (fp, dtd->dtd_data.ctt_info);
|
|
|
|
vlen = LCTF_INFO_VLEN (fp, dtd->dtd_data.ctt_info);
|
|
|
|
|
|
|
|
if (kind != CTF_K_STRUCT && kind != CTF_K_UNION)
|
libctf: fix creation-time parent/child dict confusions
The fixes applied a few years ago to resolve confusions between parent and
child dicts at lookup time also apply in various forms to creation. In
general, if you have a type in a parent dict ctf_imported into a child and
you do something to it, and the parent dict is writable (created via
ctf_create, not opened via ctf_open*) it should work just the same to make
changes to that type via a child dict as it does to make the change
to the parent dict directly -- and nothing you're prohibited from doing
to the parent dict when done directly should be allowed just because
you're doing it via a child.
Specifically, the following don't work when doing things from the child, but
should:
- adding a member of a type in the parent to a struct or union in the
parent via ctf_add_member or ctf_add_member_offset: this yields
ECTF_BADID
- adding a member of a type in the parent to a struct or union in the
parent via ctf_add_member_encoded: this dumps core (!).
- adding an enumerand to an enumerator in the parent: this yields
ECTF_BADID
- setting the properties of an array in the parent via ctf_set_array;
this yields ECTF_BADID
Relatedly, some things work when doing things via a child that should fail,
yielding a CTF dictionary with invalid content (readable, but meaningless):
in particular, you can add a child type to a struct in the parent via
any of the ctf_add_member* family and nothing complains at all, even though
you should never be able to add references to children to parents (since any
given parent can be associated with many different children).
A family of tests is added to check each of these cases independently, since
some can result in coredumps and it would be nice to test the other cases
even if some dump core. They use a common library to do all the actual
work. The set of affected API calls was determined by code inspection
(auditing all calls to ctf_dtd_lookup): it's possible that I missed a few,
but I doubt it, since other cases use ctf_lookup* functions, which already
climb to the parent where appropriate.
libctf/ChangeLog:
PR libctf/30985
* ctf-create.c (ctf_dtd_lookup): Traverse to parents if necessary.
(ctf_set_array): Likewise. Report errors on the child; require
both parent and child to be writable.
(ctf_add_enumerator): Likewise.
(ctf_add_member_offset): Likewise. Prohibit addition of child types
to structs in the parent.
(ctf_add_member_encoded): Do not dereference a NULL dtd: report
ECTF_BADID instead.
* ctf-string.c (ctf_str_add_ref_internal): Report ENOMEM on the
dict if addition of a string ref fails.
* testsuite/libctf-writable/parent-child-dtd-crash-lib.c: New library.
* testsuite/libctf-writable/parent-child-dtd-enum.*: New test.
* testsuite/libctf-writable/parent-child-dtd-enumerator.*: New test.
* testsuite/libctf-writable/parent-child-dtd-member-encoded.*: New test.
* testsuite/libctf-writable/parent-child-dtd-member-offset.*: New test.
* testsuite/libctf-writable/parent-child-dtd-set-array.*: New test.
* testsuite/libctf-writable/parent-child-dtd-struct.*: New test.
* testsuite/libctf-writable/parent-child-dtd-union.*: New test.
2023-10-19 01:34:57 +08:00
|
|
|
return (ctf_set_errno (ofp, ECTF_NOTSOU));
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
|
|
|
|
if (vlen == CTF_MAX_VLEN)
|
libctf: fix creation-time parent/child dict confusions
The fixes applied a few years ago to resolve confusions between parent and
child dicts at lookup time also apply in various forms to creation. In
general, if you have a type in a parent dict ctf_imported into a child and
you do something to it, and the parent dict is writable (created via
ctf_create, not opened via ctf_open*) it should work just the same to make
changes to that type via a child dict as it does to make the change
to the parent dict directly -- and nothing you're prohibited from doing
to the parent dict when done directly should be allowed just because
you're doing it via a child.
Specifically, the following don't work when doing things from the child, but
should:
- adding a member of a type in the parent to a struct or union in the
parent via ctf_add_member or ctf_add_member_offset: this yields
ECTF_BADID
- adding a member of a type in the parent to a struct or union in the
parent via ctf_add_member_encoded: this dumps core (!).
- adding an enumerand to an enumerator in the parent: this yields
ECTF_BADID
- setting the properties of an array in the parent via ctf_set_array;
this yields ECTF_BADID
Relatedly, some things work when doing things via a child that should fail,
yielding a CTF dictionary with invalid content (readable, but meaningless):
in particular, you can add a child type to a struct in the parent via
any of the ctf_add_member* family and nothing complains at all, even though
you should never be able to add references to children to parents (since any
given parent can be associated with many different children).
A family of tests is added to check each of these cases independently, since
some can result in coredumps and it would be nice to test the other cases
even if some dump core. They use a common library to do all the actual
work. The set of affected API calls was determined by code inspection
(auditing all calls to ctf_dtd_lookup): it's possible that I missed a few,
but I doubt it, since other cases use ctf_lookup* functions, which already
climb to the parent where appropriate.
libctf/ChangeLog:
PR libctf/30985
* ctf-create.c (ctf_dtd_lookup): Traverse to parents if necessary.
(ctf_set_array): Likewise. Report errors on the child; require
both parent and child to be writable.
(ctf_add_enumerator): Likewise.
(ctf_add_member_offset): Likewise. Prohibit addition of child types
to structs in the parent.
(ctf_add_member_encoded): Do not dereference a NULL dtd: report
ECTF_BADID instead.
* ctf-string.c (ctf_str_add_ref_internal): Report ENOMEM on the
dict if addition of a string ref fails.
* testsuite/libctf-writable/parent-child-dtd-crash-lib.c: New library.
* testsuite/libctf-writable/parent-child-dtd-enum.*: New test.
* testsuite/libctf-writable/parent-child-dtd-enumerator.*: New test.
* testsuite/libctf-writable/parent-child-dtd-member-encoded.*: New test.
* testsuite/libctf-writable/parent-child-dtd-member-offset.*: New test.
* testsuite/libctf-writable/parent-child-dtd-set-array.*: New test.
* testsuite/libctf-writable/parent-child-dtd-struct.*: New test.
* testsuite/libctf-writable/parent-child-dtd-union.*: New test.
2023-10-19 01:34:57 +08:00
|
|
|
return (ctf_set_errno (ofp, ECTF_DTFULL));
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
|
libctf: eliminate dtd_u, part 5: structs / unions
Eliminate the dynamic member storage for structs and unions as we have
for other dynamic types. This is much like the previous enum
elimination, except that structs and unions are the only types for which
a full-sized ctf_type_t might be needed. Up to now, this decision has
been made in the individual ctf_add_{struct,union}_sized functions and
duplicated in ctf_add_member_offset. The vlen machinery lets us
simplify this, always allocating a ctf_lmember_t and setting the
dtd_data's ctt_size to CTF_LSIZE_SENT: we figure out whether this is
really justified and (almost always) repack things down into a
ctf_stype_t at ctf_serialize time.
This allows us to eliminate the dynamic member paths from the iterators and
query functions in ctf-types.c in favour of always using the large-structure
vlen stuff for dynamic types (the diff is ugly but that's just because of the
volume of reindentation this calls for). This also means the large-structure
vlen stuff gets more heavily tested, which is nice because it was an almost
totally unused code path before now (it only kicked in for structures of size
>4GiB, and how often do you see those?)
The only extra complexity here is ctf_add_type. Back in the days of the
nondeduplicating linker this was called a ridiculous number of times for
countless identical copies of structures: eschewing the repeated lookups of the
dtd in ctf_add_member_offset and adding the members directly saved an amazing
amount of time. Now the nondeduplicating linker is gone, this is extreme
overoptimization: we can rip out the direct addition and use ctf_member_next and
ctf_add_member_offset, just like ctf_dedup_emit does.
We augment a ctf_add_type test to try adding a self-referential struct, the only
thing the ctf_add_type part of this change really perturbs.
This completes the elimination of dtd_u.
libctf/ChangeLog
2021-03-18 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h (ctf_dtdef_t) <dtu_members>: Remove.
<dtd_u>: Likewise.
(ctf_dmdef_t): Remove.
(struct ctf_next) <u.ctn_dmd>: Remove.
* ctf-create.c (INITIAL_VLEN): New, more-or-less arbitrary initial
vlen size.
(ctf_add_enum): Use it.
(ctf_dtd_delete): Do not free the (removed) dmd; remove string
refs from the vlen on struct deletion.
(ctf_add_struct_sized): Populate the vlen: do it by hand if
promoting forwards. Always populate the full-size
lsizehi/lsizelo members.
(ctf_add_union_sized): Likewise.
(ctf_add_member_offset): Set up the vlen rather than the dmd.
Expand it as needed, repointing string refs via
ctf_str_move_pending. Add the member names as pending strings.
Always populate the full-size lsizehi/lsizelo members.
(membadd): Remove, folding back into...
(ctf_add_type_internal): ... here, adding via an ordinary
ctf_add_struct_sized and _next iteration rather than doing
everything by hand.
* ctf-serialize.c (ctf_copy_smembers): Remove this...
(ctf_copy_lmembers): ... and this...
(ctf_emit_type_sect): ... folding into here. Figure out if a
ctf_stype_t is needed here, not in ctf_add_*_sized.
(ctf_type_sect_size): Figure out the ctf_stype_t stuff the same
way here.
* ctf-types.c (ctf_member_next): Remove the dmd path and always
use the vlen. Force large-structure usage for dynamic types.
(ctf_type_align): Likewise.
(ctf_member_info): Likewise.
(ctf_type_rvisit): Likewise.
* testsuite/libctf-regression/type-add-unnamed-struct-ctf.c: Add a
self-referential type to this test.
* testsuite/libctf-regression/type-add-unnamed-struct.c: Adjusted
accordingly.
* testsuite/libctf-regression/type-add-unnamed-struct.lk: Likewise.
2021-03-18 20:37:52 +08:00
|
|
|
old_vlen = dtd->dtd_vlen;
|
|
|
|
if (ctf_grow_vlen (fp, dtd, sizeof (ctf_lmember_t) * (vlen + 1)) < 0)
|
libctf: fix creation-time parent/child dict confusions
The fixes applied a few years ago to resolve confusions between parent and
child dicts at lookup time also apply in various forms to creation. In
general, if you have a type in a parent dict ctf_imported into a child and
you do something to it, and the parent dict is writable (created via
ctf_create, not opened via ctf_open*) it should work just the same to make
changes to that type via a child dict as it does to make the change
to the parent dict directly -- and nothing you're prohibited from doing
to the parent dict when done directly should be allowed just because
you're doing it via a child.
Specifically, the following don't work when doing things from the child, but
should:
- adding a member of a type in the parent to a struct or union in the
parent via ctf_add_member or ctf_add_member_offset: this yields
ECTF_BADID
- adding a member of a type in the parent to a struct or union in the
parent via ctf_add_member_encoded: this dumps core (!).
- adding an enumerand to an enumerator in the parent: this yields
ECTF_BADID
- setting the properties of an array in the parent via ctf_set_array;
this yields ECTF_BADID
Relatedly, some things work when doing things via a child that should fail,
yielding a CTF dictionary with invalid content (readable, but meaningless):
in particular, you can add a child type to a struct in the parent via
any of the ctf_add_member* family and nothing complains at all, even though
you should never be able to add references to children to parents (since any
given parent can be associated with many different children).
A family of tests is added to check each of these cases independently, since
some can result in coredumps and it would be nice to test the other cases
even if some dump core. They use a common library to do all the actual
work. The set of affected API calls was determined by code inspection
(auditing all calls to ctf_dtd_lookup): it's possible that I missed a few,
but I doubt it, since other cases use ctf_lookup* functions, which already
climb to the parent where appropriate.
libctf/ChangeLog:
PR libctf/30985
* ctf-create.c (ctf_dtd_lookup): Traverse to parents if necessary.
(ctf_set_array): Likewise. Report errors on the child; require
both parent and child to be writable.
(ctf_add_enumerator): Likewise.
(ctf_add_member_offset): Likewise. Prohibit addition of child types
to structs in the parent.
(ctf_add_member_encoded): Do not dereference a NULL dtd: report
ECTF_BADID instead.
* ctf-string.c (ctf_str_add_ref_internal): Report ENOMEM on the
dict if addition of a string ref fails.
* testsuite/libctf-writable/parent-child-dtd-crash-lib.c: New library.
* testsuite/libctf-writable/parent-child-dtd-enum.*: New test.
* testsuite/libctf-writable/parent-child-dtd-enumerator.*: New test.
* testsuite/libctf-writable/parent-child-dtd-member-encoded.*: New test.
* testsuite/libctf-writable/parent-child-dtd-member-offset.*: New test.
* testsuite/libctf-writable/parent-child-dtd-set-array.*: New test.
* testsuite/libctf-writable/parent-child-dtd-struct.*: New test.
* testsuite/libctf-writable/parent-child-dtd-union.*: New test.
2023-10-19 01:34:57 +08:00
|
|
|
return (ctf_set_errno (ofp, ctf_errno (fp)));
|
libctf: eliminate dtd_u, part 5: structs / unions
Eliminate the dynamic member storage for structs and unions as we have
for other dynamic types. This is much like the previous enum
elimination, except that structs and unions are the only types for which
a full-sized ctf_type_t might be needed. Up to now, this decision has
been made in the individual ctf_add_{struct,union}_sized functions and
duplicated in ctf_add_member_offset. The vlen machinery lets us
simplify this, always allocating a ctf_lmember_t and setting the
dtd_data's ctt_size to CTF_LSIZE_SENT: we figure out whether this is
really justified and (almost always) repack things down into a
ctf_stype_t at ctf_serialize time.
This allows us to eliminate the dynamic member paths from the iterators and
query functions in ctf-types.c in favour of always using the large-structure
vlen stuff for dynamic types (the diff is ugly but that's just because of the
volume of reindentation this calls for). This also means the large-structure
vlen stuff gets more heavily tested, which is nice because it was an almost
totally unused code path before now (it only kicked in for structures of size
>4GiB, and how often do you see those?)
The only extra complexity here is ctf_add_type. Back in the days of the
nondeduplicating linker this was called a ridiculous number of times for
countless identical copies of structures: eschewing the repeated lookups of the
dtd in ctf_add_member_offset and adding the members directly saved an amazing
amount of time. Now the nondeduplicating linker is gone, this is extreme
overoptimization: we can rip out the direct addition and use ctf_member_next and
ctf_add_member_offset, just like ctf_dedup_emit does.
We augment a ctf_add_type test to try adding a self-referential struct, the only
thing the ctf_add_type part of this change really perturbs.
This completes the elimination of dtd_u.
libctf/ChangeLog
2021-03-18 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h (ctf_dtdef_t) <dtu_members>: Remove.
<dtd_u>: Likewise.
(ctf_dmdef_t): Remove.
(struct ctf_next) <u.ctn_dmd>: Remove.
* ctf-create.c (INITIAL_VLEN): New, more-or-less arbitrary initial
vlen size.
(ctf_add_enum): Use it.
(ctf_dtd_delete): Do not free the (removed) dmd; remove string
refs from the vlen on struct deletion.
(ctf_add_struct_sized): Populate the vlen: do it by hand if
promoting forwards. Always populate the full-size
lsizehi/lsizelo members.
(ctf_add_union_sized): Likewise.
(ctf_add_member_offset): Set up the vlen rather than the dmd.
Expand it as needed, repointing string refs via
ctf_str_move_pending. Add the member names as pending strings.
Always populate the full-size lsizehi/lsizelo members.
(membadd): Remove, folding back into...
(ctf_add_type_internal): ... here, adding via an ordinary
ctf_add_struct_sized and _next iteration rather than doing
everything by hand.
* ctf-serialize.c (ctf_copy_smembers): Remove this...
(ctf_copy_lmembers): ... and this...
(ctf_emit_type_sect): ... folding into here. Figure out if a
ctf_stype_t is needed here, not in ctf_add_*_sized.
(ctf_type_sect_size): Figure out the ctf_stype_t stuff the same
way here.
* ctf-types.c (ctf_member_next): Remove the dmd path and always
use the vlen. Force large-structure usage for dynamic types.
(ctf_type_align): Likewise.
(ctf_member_info): Likewise.
(ctf_type_rvisit): Likewise.
* testsuite/libctf-regression/type-add-unnamed-struct-ctf.c: Add a
self-referential type to this test.
* testsuite/libctf-regression/type-add-unnamed-struct.c: Adjusted
accordingly.
* testsuite/libctf-regression/type-add-unnamed-struct.lk: Likewise.
2021-03-18 20:37:52 +08:00
|
|
|
memb = (ctf_lmember_t *) dtd->dtd_vlen;
|
|
|
|
|
libctf: replace 'pending refs' abstraction
A few years ago we introduced a 'pending refs' abstraction to fix one
problem: serializing a dict, then changing it would tend to corrupt the dict
because the strtab sort we do on strtab writeout (to improve compression
efficiency) would modify the offset of any strings that sorted
lexicographically earlier in the strtab: so we added a new restriction that
all strings are added only at serialization time, and maintained a set of
'pending' refs that were added earlier, whose offsets we could update (like
other refs) at writeout time.
This was in hindsight seriously problematic for maintenance (because
serialization has to traverse all strings in all datatypes in the entire
dict), and has become impossible to sustain now that we can read in existing
dicts, modify them, and reserialize them again. We really don't want to
have to dig through the entire dict we jut read in just in order to dig out
all its strtab offsets, then *change* it, just for the sake of a sort that
adds a frankly trivial amount of compression efficiency.
Sorting *is* still worthwhile -- but it sacrifices very little to only sort
newly-added portions of the strtab, reusing older portions as necessary.
As a first stage in this, discard the whole "pending refs" abstraction and
replace it with "movable" refs, which are exactly like all other refs
(addresses containing the strtab offset of some string, which are updated
wiht the final strtab offset on serialization) except that we track them in
a reverse dict so that we can move the refs around (which we do whenever we
realloc() a buffer containing a bunch of structure members or something when
we add members to the structure).
libctf/
* ctf-create.c (ctf_add_enumerator): Call ctf_str_move_refs; add
a movable ref.
(ctf_add_member_offset): Likewise.
* ctf-util.c (ctf_realloc): Delete.
* ctf-serialize.c (ctf_serialize): No longer use it. Adjust to
new fields.
* ctf-string.c (ctf_str_purge_atom_refs): Purge movable refs.
(ctf_str_free_atom): Free freeable atoms' strings.
(ctf_str_create_atoms): Create the movable refs dynhash if needed.
(ctf_str_free_atoms): Destroy it.
(CTF_STR_MOVABLE): Switch (back) from ints to flags (see previous
reversion). Add new flag.
(aref_create): New, populate movable refs if need be.
(ctf_str_add_ref_internal): Switch back to flags, update refs
directly for nonprovisional strings (with already-known fixed offsets);
create refs via aref_create. Allocate strings only if not within an
mmapped strtab.
(ctf_str_add_movable_ref): New.
(ctf_str_add): Adjust to CTF_STR_* reintroduction.
(ctf_str_add_external): LIkewise.
(ctf_str_move_refs): New, move refs via ctf_str_movable_refs
backpointer.
(ctf_str_purge_refs): Drop ctf_str_num_refs.
(ctf_str_update_refs): Fix indentation.
* ctf-impl.h (struct ctf_str_atom_movable): New.
(struct ctf_dict.ctf_str_num_refs): Drop.
(struct ctf_dict.ctf_str_movable_refs): New.
(ctf_str_add_movable_ref): Declare.
(ctf_str_move_refs): Likewise.
(ctf_realloc): Drop.
2024-03-26 00:39:02 +08:00
|
|
|
/* Remove pending refs in the old vlen region and reapply them. */
|
|
|
|
|
|
|
|
ctf_str_move_refs (fp, old_vlen, sizeof (ctf_lmember_t) * vlen, dtd->dtd_vlen);
|
|
|
|
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
if (name != NULL)
|
|
|
|
{
|
libctf: eliminate dtd_u, part 5: structs / unions
Eliminate the dynamic member storage for structs and unions as we have
for other dynamic types. This is much like the previous enum
elimination, except that structs and unions are the only types for which
a full-sized ctf_type_t might be needed. Up to now, this decision has
been made in the individual ctf_add_{struct,union}_sized functions and
duplicated in ctf_add_member_offset. The vlen machinery lets us
simplify this, always allocating a ctf_lmember_t and setting the
dtd_data's ctt_size to CTF_LSIZE_SENT: we figure out whether this is
really justified and (almost always) repack things down into a
ctf_stype_t at ctf_serialize time.
This allows us to eliminate the dynamic member paths from the iterators and
query functions in ctf-types.c in favour of always using the large-structure
vlen stuff for dynamic types (the diff is ugly but that's just because of the
volume of reindentation this calls for). This also means the large-structure
vlen stuff gets more heavily tested, which is nice because it was an almost
totally unused code path before now (it only kicked in for structures of size
>4GiB, and how often do you see those?)
The only extra complexity here is ctf_add_type. Back in the days of the
nondeduplicating linker this was called a ridiculous number of times for
countless identical copies of structures: eschewing the repeated lookups of the
dtd in ctf_add_member_offset and adding the members directly saved an amazing
amount of time. Now the nondeduplicating linker is gone, this is extreme
overoptimization: we can rip out the direct addition and use ctf_member_next and
ctf_add_member_offset, just like ctf_dedup_emit does.
We augment a ctf_add_type test to try adding a self-referential struct, the only
thing the ctf_add_type part of this change really perturbs.
This completes the elimination of dtd_u.
libctf/ChangeLog
2021-03-18 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h (ctf_dtdef_t) <dtu_members>: Remove.
<dtd_u>: Likewise.
(ctf_dmdef_t): Remove.
(struct ctf_next) <u.ctn_dmd>: Remove.
* ctf-create.c (INITIAL_VLEN): New, more-or-less arbitrary initial
vlen size.
(ctf_add_enum): Use it.
(ctf_dtd_delete): Do not free the (removed) dmd; remove string
refs from the vlen on struct deletion.
(ctf_add_struct_sized): Populate the vlen: do it by hand if
promoting forwards. Always populate the full-size
lsizehi/lsizelo members.
(ctf_add_union_sized): Likewise.
(ctf_add_member_offset): Set up the vlen rather than the dmd.
Expand it as needed, repointing string refs via
ctf_str_move_pending. Add the member names as pending strings.
Always populate the full-size lsizehi/lsizelo members.
(membadd): Remove, folding back into...
(ctf_add_type_internal): ... here, adding via an ordinary
ctf_add_struct_sized and _next iteration rather than doing
everything by hand.
* ctf-serialize.c (ctf_copy_smembers): Remove this...
(ctf_copy_lmembers): ... and this...
(ctf_emit_type_sect): ... folding into here. Figure out if a
ctf_stype_t is needed here, not in ctf_add_*_sized.
(ctf_type_sect_size): Figure out the ctf_stype_t stuff the same
way here.
* ctf-types.c (ctf_member_next): Remove the dmd path and always
use the vlen. Force large-structure usage for dynamic types.
(ctf_type_align): Likewise.
(ctf_member_info): Likewise.
(ctf_type_rvisit): Likewise.
* testsuite/libctf-regression/type-add-unnamed-struct-ctf.c: Add a
self-referential type to this test.
* testsuite/libctf-regression/type-add-unnamed-struct.c: Adjusted
accordingly.
* testsuite/libctf-regression/type-add-unnamed-struct.lk: Likewise.
2021-03-18 20:37:52 +08:00
|
|
|
for (i = 0; i < vlen; i++)
|
|
|
|
if (strcmp (ctf_strptr (fp, memb[i].ctlm_name), name) == 0)
|
libctf: fix creation-time parent/child dict confusions
The fixes applied a few years ago to resolve confusions between parent and
child dicts at lookup time also apply in various forms to creation. In
general, if you have a type in a parent dict ctf_imported into a child and
you do something to it, and the parent dict is writable (created via
ctf_create, not opened via ctf_open*) it should work just the same to make
changes to that type via a child dict as it does to make the change
to the parent dict directly -- and nothing you're prohibited from doing
to the parent dict when done directly should be allowed just because
you're doing it via a child.
Specifically, the following don't work when doing things from the child, but
should:
- adding a member of a type in the parent to a struct or union in the
parent via ctf_add_member or ctf_add_member_offset: this yields
ECTF_BADID
- adding a member of a type in the parent to a struct or union in the
parent via ctf_add_member_encoded: this dumps core (!).
- adding an enumerand to an enumerator in the parent: this yields
ECTF_BADID
- setting the properties of an array in the parent via ctf_set_array;
this yields ECTF_BADID
Relatedly, some things work when doing things via a child that should fail,
yielding a CTF dictionary with invalid content (readable, but meaningless):
in particular, you can add a child type to a struct in the parent via
any of the ctf_add_member* family and nothing complains at all, even though
you should never be able to add references to children to parents (since any
given parent can be associated with many different children).
A family of tests is added to check each of these cases independently, since
some can result in coredumps and it would be nice to test the other cases
even if some dump core. They use a common library to do all the actual
work. The set of affected API calls was determined by code inspection
(auditing all calls to ctf_dtd_lookup): it's possible that I missed a few,
but I doubt it, since other cases use ctf_lookup* functions, which already
climb to the parent where appropriate.
libctf/ChangeLog:
PR libctf/30985
* ctf-create.c (ctf_dtd_lookup): Traverse to parents if necessary.
(ctf_set_array): Likewise. Report errors on the child; require
both parent and child to be writable.
(ctf_add_enumerator): Likewise.
(ctf_add_member_offset): Likewise. Prohibit addition of child types
to structs in the parent.
(ctf_add_member_encoded): Do not dereference a NULL dtd: report
ECTF_BADID instead.
* ctf-string.c (ctf_str_add_ref_internal): Report ENOMEM on the
dict if addition of a string ref fails.
* testsuite/libctf-writable/parent-child-dtd-crash-lib.c: New library.
* testsuite/libctf-writable/parent-child-dtd-enum.*: New test.
* testsuite/libctf-writable/parent-child-dtd-enumerator.*: New test.
* testsuite/libctf-writable/parent-child-dtd-member-encoded.*: New test.
* testsuite/libctf-writable/parent-child-dtd-member-offset.*: New test.
* testsuite/libctf-writable/parent-child-dtd-set-array.*: New test.
* testsuite/libctf-writable/parent-child-dtd-struct.*: New test.
* testsuite/libctf-writable/parent-child-dtd-union.*: New test.
2023-10-19 01:34:57 +08:00
|
|
|
return (ctf_set_errno (ofp, ECTF_DUPLICATE));
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
}
|
|
|
|
|
libctf: fix a number of build problems found on Solaris and NetBSD
- Use of nonportable <endian.h>
- Use of qsort_r
- Use of zlib without appropriate magic to pull in the binutils zlib
- Use of off64_t without checking (fixed by dropping the unused fields
that need off64_t entirely)
- signedness problems due to long being too short a type on 32-bit
platforms: ctf_id_t is now 'unsigned long', and CTF_ERR must be
used only for functions that return ctf_id_t
- One lingering use of bzero() and of <sys/errno.h>
All fixed, using code from gnulib where possible.
Relatedly, set cts_size in a couple of places it was missed
(string table and symbol table loading upon ctf_bfdopen()).
binutils/
* objdump.c (make_ctfsect): Drop cts_type, cts_flags, and
cts_offset.
* readelf.c (shdr_to_ctf_sect): Likewise.
include/
* ctf-api.h (ctf_sect_t): Drop cts_type, cts_flags, and cts_offset.
(ctf_id_t): This is now an unsigned type.
(CTF_ERR): Cast it to ctf_id_t. Note that it should only be used
for ctf_id_t-returning functions.
libctf/
* Makefile.am (ZLIB): New.
(ZLIBINC): Likewise.
(AM_CFLAGS): Use them.
(libctf_a_LIBADD): New, for LIBOBJS.
* configure.ac: Check for zlib, endian.h, and qsort_r.
* ctf-endian.h: New, providing htole64 and le64toh.
* swap.h: Code style fixes.
(bswap_identity_64): New.
* qsort_r.c: New, from gnulib (with one added #include).
* ctf-decls.h: New, providing a conditional qsort_r declaration,
and unconditional definitions of MIN and MAX.
* ctf-impl.h: Use it. Do not use <sys/errno.h>.
(ctf_set_errno): Now returns unsigned long.
* ctf-util.c (ctf_set_errno): Adjust here too.
* ctf-archive.c: Use ctf-endian.h.
(ctf_arc_open_by_offset): Use memset, not bzero. Drop cts_type,
cts_flags and cts_offset.
(ctf_arc_write): Drop debugging dependent on the size of off_t.
* ctf-create.c: Provide a definition of roundup if not defined.
(ctf_create): Drop cts_type, cts_flags and cts_offset.
(ctf_add_reftype): Do not check if type IDs are below zero.
(ctf_add_slice): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_member_offset): Cast error-returning ssize_t's to size_t
when known error-free. Drop CTF_ERR usage for functions returning
int.
(ctf_add_member_encoded): Drop CTF_ERR usage for functions returning
int.
(ctf_add_variable): Likewise.
(enumcmp): Likewise.
(enumadd): Likewise.
(membcmp): Likewise.
(ctf_add_type): Likewise. Cast error-returning ssize_t's to size_t
when known error-free.
* ctf-dump.c (ctf_is_slice): Drop CTF_ERR usage for functions
returning int: use CTF_ERR for functions returning ctf_type_id.
(ctf_dump_label): Likewise.
(ctf_dump_objts): Likewise.
* ctf-labels.c (ctf_label_topmost): Likewise.
(ctf_label_iter): Likewise.
(ctf_label_info): Likewise.
* ctf-lookup.c (ctf_func_args): Likewise.
* ctf-open.c (upgrade_types): Cast to size_t where appropriate.
(ctf_bufopen): Likewise. Use zlib types as needed.
* ctf-types.c (ctf_member_iter): Drop CTF_ERR usage for functions
returning int.
(ctf_enum_iter): Likewise.
(ctf_type_size): Likewise.
(ctf_type_align): Likewise. Cast to size_t where appropriate.
(ctf_type_kind_unsliced): Likewise.
(ctf_type_kind): Likewise.
(ctf_type_encoding): Likewise.
(ctf_member_info): Likewise.
(ctf_array_info): Likewise.
(ctf_enum_value): Likewise.
(ctf_type_rvisit): Likewise.
* ctf-open-bfd.c (ctf_bfdopen): Drop cts_type, cts_flags and
cts_offset.
(ctf_simple_open): Likewise.
(ctf_bfdopen_ctfsect): Likewise. Set cts_size properly.
* Makefile.in: Regenerate.
* aclocal.m4: Likewise.
* config.h: Likewise.
* configure: Likewise.
2019-05-31 17:10:51 +08:00
|
|
|
if ((msize = ctf_type_size (fp, type)) < 0 ||
|
|
|
|
(malign = ctf_type_align (fp, type)) < 0)
|
2020-06-03 03:04:24 +08:00
|
|
|
{
|
|
|
|
/* The unimplemented type, and any type that resolves to it, has no size
|
|
|
|
and no alignment: it can correspond to any number of compiler-inserted
|
libctf, ld: prohibit getting the size or alignment of forwards
C allows you to do only a very few things with entities of incomplete
type (as opposed to pointers to them): make pointers to them and give
them cv-quals, roughly. In particular you can't sizeof them and you
can't get their alignment.
We cannot impose all the requirements the standard imposes on CTF users,
because the deduplicator can transform any structure type into a forward
for the purposes of breaking cycles: so CTF type graphs can easily
contain things like arrays of forward type (if you want to figure out
their size or alignment, you need to chase down the types this forward
might be a forward to in child TU dicts: we will soon add API functions
to make doing this much easier).
Nonetheless, it is still meaningless to ask for the size or alignment of
forwards: but libctf didn't prohibit this and returned nonsense from
internal implementation details when you asked (it returned the kind of
the pointed-to type as both the size and alignment, because forwards
reuse ctt_type as a type kind, and ctt_type and ctt_size overlap). So
introduce a new error, ECTF_INCOMPLETE, which is returned when you try
to get the size or alignment of forwards: we also return it when you try
to do things that require libctf itself to get the size or alignment of
a forward, notably using a forward as an array index type (which C
should never do in any case) or adding forwards to structures without
specifying their offset explicitly.
The dumper will not emit size or alignment info for forwards any more.
(This should not be an API break since ctf_type_size and ctf_type_align
could both return errors before now: any code that isn't expecting error
returns is already potentially broken.)
include/ChangeLog
2021-01-05 Nick Alcock <nick.alcock@oracle.com>
* ctf-api.h (ECTF_INCOMPLETE): New.
(ECTF_NERR): Adjust.
ld/ChangeLog
2021-01-05 Nick Alcock <nick.alcock@oracle.com>
* testsuite/ld-ctf/conflicting-cycle-1.parent.d: Adjust for dumper
changes.
* testsuite/ld-ctf/cross-tu-cyclic-conflicting.d: Likewise.
* testsuite/ld-ctf/forward.c: New test...
* testsuite/ld-ctf/forward.d: ... and results.
libctf/ChangeLog
2021-01-05 Nick Alcock <nick.alcock@oracle.com>
* ctf-types.c (ctf_type_resolve): Improve comment.
(ctf_type_size): Yield ECTF_INCOMPLETE when applied to forwards.
Emit errors into the right dict.
(ctf_type_align): Likewise.
* ctf-create.c (ctf_add_member_offset): Yield ECTF_INCOMPLETE
when adding a member without explicit offset when this member, or
the previous member, is incomplete.
* ctf-dump.c (ctf_dump_format_type): Do not try to print the size of
forwards.
(ctf_dump_member): Do not try to print their alignment.
2021-01-05 21:25:56 +08:00
|
|
|
types. We allow incomplete types through since they are routinely
|
|
|
|
added to the ends of structures, and can even be added elsewhere in
|
|
|
|
structures by the deduplicator. They are assumed to be zero-size with
|
|
|
|
no alignment: this is often wrong, but problems can be avoided in this
|
|
|
|
case by explicitly specifying the size of the structure via the _sized
|
|
|
|
functions. The deduplicator always does this. */
|
|
|
|
|
|
|
|
msize = 0;
|
|
|
|
malign = 0;
|
2020-06-03 03:04:24 +08:00
|
|
|
if (ctf_errno (fp) == ECTF_NONREPRESENTABLE)
|
libctf, ld: prohibit getting the size or alignment of forwards
C allows you to do only a very few things with entities of incomplete
type (as opposed to pointers to them): make pointers to them and give
them cv-quals, roughly. In particular you can't sizeof them and you
can't get their alignment.
We cannot impose all the requirements the standard imposes on CTF users,
because the deduplicator can transform any structure type into a forward
for the purposes of breaking cycles: so CTF type graphs can easily
contain things like arrays of forward type (if you want to figure out
their size or alignment, you need to chase down the types this forward
might be a forward to in child TU dicts: we will soon add API functions
to make doing this much easier).
Nonetheless, it is still meaningless to ask for the size or alignment of
forwards: but libctf didn't prohibit this and returned nonsense from
internal implementation details when you asked (it returned the kind of
the pointed-to type as both the size and alignment, because forwards
reuse ctt_type as a type kind, and ctt_type and ctt_size overlap). So
introduce a new error, ECTF_INCOMPLETE, which is returned when you try
to get the size or alignment of forwards: we also return it when you try
to do things that require libctf itself to get the size or alignment of
a forward, notably using a forward as an array index type (which C
should never do in any case) or adding forwards to structures without
specifying their offset explicitly.
The dumper will not emit size or alignment info for forwards any more.
(This should not be an API break since ctf_type_size and ctf_type_align
could both return errors before now: any code that isn't expecting error
returns is already potentially broken.)
include/ChangeLog
2021-01-05 Nick Alcock <nick.alcock@oracle.com>
* ctf-api.h (ECTF_INCOMPLETE): New.
(ECTF_NERR): Adjust.
ld/ChangeLog
2021-01-05 Nick Alcock <nick.alcock@oracle.com>
* testsuite/ld-ctf/conflicting-cycle-1.parent.d: Adjust for dumper
changes.
* testsuite/ld-ctf/cross-tu-cyclic-conflicting.d: Likewise.
* testsuite/ld-ctf/forward.c: New test...
* testsuite/ld-ctf/forward.d: ... and results.
libctf/ChangeLog
2021-01-05 Nick Alcock <nick.alcock@oracle.com>
* ctf-types.c (ctf_type_resolve): Improve comment.
(ctf_type_size): Yield ECTF_INCOMPLETE when applied to forwards.
Emit errors into the right dict.
(ctf_type_align): Likewise.
* ctf-create.c (ctf_add_member_offset): Yield ECTF_INCOMPLETE
when adding a member without explicit offset when this member, or
the previous member, is incomplete.
* ctf-dump.c (ctf_dump_format_type): Do not try to print the size of
forwards.
(ctf_dump_member): Do not try to print their alignment.
2021-01-05 21:25:56 +08:00
|
|
|
ctf_set_errno (fp, 0);
|
|
|
|
else if (ctf_errno (fp) == ECTF_INCOMPLETE)
|
|
|
|
is_incomplete = 1;
|
2020-06-03 03:04:24 +08:00
|
|
|
else
|
|
|
|
return -1; /* errno is set for us. */
|
|
|
|
}
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
|
libctf: replace 'pending refs' abstraction
A few years ago we introduced a 'pending refs' abstraction to fix one
problem: serializing a dict, then changing it would tend to corrupt the dict
because the strtab sort we do on strtab writeout (to improve compression
efficiency) would modify the offset of any strings that sorted
lexicographically earlier in the strtab: so we added a new restriction that
all strings are added only at serialization time, and maintained a set of
'pending' refs that were added earlier, whose offsets we could update (like
other refs) at writeout time.
This was in hindsight seriously problematic for maintenance (because
serialization has to traverse all strings in all datatypes in the entire
dict), and has become impossible to sustain now that we can read in existing
dicts, modify them, and reserialize them again. We really don't want to
have to dig through the entire dict we jut read in just in order to dig out
all its strtab offsets, then *change* it, just for the sake of a sort that
adds a frankly trivial amount of compression efficiency.
Sorting *is* still worthwhile -- but it sacrifices very little to only sort
newly-added portions of the strtab, reusing older portions as necessary.
As a first stage in this, discard the whole "pending refs" abstraction and
replace it with "movable" refs, which are exactly like all other refs
(addresses containing the strtab offset of some string, which are updated
wiht the final strtab offset on serialization) except that we track them in
a reverse dict so that we can move the refs around (which we do whenever we
realloc() a buffer containing a bunch of structure members or something when
we add members to the structure).
libctf/
* ctf-create.c (ctf_add_enumerator): Call ctf_str_move_refs; add
a movable ref.
(ctf_add_member_offset): Likewise.
* ctf-util.c (ctf_realloc): Delete.
* ctf-serialize.c (ctf_serialize): No longer use it. Adjust to
new fields.
* ctf-string.c (ctf_str_purge_atom_refs): Purge movable refs.
(ctf_str_free_atom): Free freeable atoms' strings.
(ctf_str_create_atoms): Create the movable refs dynhash if needed.
(ctf_str_free_atoms): Destroy it.
(CTF_STR_MOVABLE): Switch (back) from ints to flags (see previous
reversion). Add new flag.
(aref_create): New, populate movable refs if need be.
(ctf_str_add_ref_internal): Switch back to flags, update refs
directly for nonprovisional strings (with already-known fixed offsets);
create refs via aref_create. Allocate strings only if not within an
mmapped strtab.
(ctf_str_add_movable_ref): New.
(ctf_str_add): Adjust to CTF_STR_* reintroduction.
(ctf_str_add_external): LIkewise.
(ctf_str_move_refs): New, move refs via ctf_str_movable_refs
backpointer.
(ctf_str_purge_refs): Drop ctf_str_num_refs.
(ctf_str_update_refs): Fix indentation.
* ctf-impl.h (struct ctf_str_atom_movable): New.
(struct ctf_dict.ctf_str_num_refs): Drop.
(struct ctf_dict.ctf_str_movable_refs): New.
(ctf_str_add_movable_ref): Declare.
(ctf_str_move_refs): Likewise.
(ctf_realloc): Drop.
2024-03-26 00:39:02 +08:00
|
|
|
memb[vlen].ctlm_name = ctf_str_add_movable_ref (fp, name, &memb[vlen].ctlm_name);
|
libctf: eliminate dtd_u, part 5: structs / unions
Eliminate the dynamic member storage for structs and unions as we have
for other dynamic types. This is much like the previous enum
elimination, except that structs and unions are the only types for which
a full-sized ctf_type_t might be needed. Up to now, this decision has
been made in the individual ctf_add_{struct,union}_sized functions and
duplicated in ctf_add_member_offset. The vlen machinery lets us
simplify this, always allocating a ctf_lmember_t and setting the
dtd_data's ctt_size to CTF_LSIZE_SENT: we figure out whether this is
really justified and (almost always) repack things down into a
ctf_stype_t at ctf_serialize time.
This allows us to eliminate the dynamic member paths from the iterators and
query functions in ctf-types.c in favour of always using the large-structure
vlen stuff for dynamic types (the diff is ugly but that's just because of the
volume of reindentation this calls for). This also means the large-structure
vlen stuff gets more heavily tested, which is nice because it was an almost
totally unused code path before now (it only kicked in for structures of size
>4GiB, and how often do you see those?)
The only extra complexity here is ctf_add_type. Back in the days of the
nondeduplicating linker this was called a ridiculous number of times for
countless identical copies of structures: eschewing the repeated lookups of the
dtd in ctf_add_member_offset and adding the members directly saved an amazing
amount of time. Now the nondeduplicating linker is gone, this is extreme
overoptimization: we can rip out the direct addition and use ctf_member_next and
ctf_add_member_offset, just like ctf_dedup_emit does.
We augment a ctf_add_type test to try adding a self-referential struct, the only
thing the ctf_add_type part of this change really perturbs.
This completes the elimination of dtd_u.
libctf/ChangeLog
2021-03-18 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h (ctf_dtdef_t) <dtu_members>: Remove.
<dtd_u>: Likewise.
(ctf_dmdef_t): Remove.
(struct ctf_next) <u.ctn_dmd>: Remove.
* ctf-create.c (INITIAL_VLEN): New, more-or-less arbitrary initial
vlen size.
(ctf_add_enum): Use it.
(ctf_dtd_delete): Do not free the (removed) dmd; remove string
refs from the vlen on struct deletion.
(ctf_add_struct_sized): Populate the vlen: do it by hand if
promoting forwards. Always populate the full-size
lsizehi/lsizelo members.
(ctf_add_union_sized): Likewise.
(ctf_add_member_offset): Set up the vlen rather than the dmd.
Expand it as needed, repointing string refs via
ctf_str_move_pending. Add the member names as pending strings.
Always populate the full-size lsizehi/lsizelo members.
(membadd): Remove, folding back into...
(ctf_add_type_internal): ... here, adding via an ordinary
ctf_add_struct_sized and _next iteration rather than doing
everything by hand.
* ctf-serialize.c (ctf_copy_smembers): Remove this...
(ctf_copy_lmembers): ... and this...
(ctf_emit_type_sect): ... folding into here. Figure out if a
ctf_stype_t is needed here, not in ctf_add_*_sized.
(ctf_type_sect_size): Figure out the ctf_stype_t stuff the same
way here.
* ctf-types.c (ctf_member_next): Remove the dmd path and always
use the vlen. Force large-structure usage for dynamic types.
(ctf_type_align): Likewise.
(ctf_member_info): Likewise.
(ctf_type_rvisit): Likewise.
* testsuite/libctf-regression/type-add-unnamed-struct-ctf.c: Add a
self-referential type to this test.
* testsuite/libctf-regression/type-add-unnamed-struct.c: Adjusted
accordingly.
* testsuite/libctf-regression/type-add-unnamed-struct.lk: Likewise.
2021-03-18 20:37:52 +08:00
|
|
|
memb[vlen].ctlm_type = type;
|
|
|
|
if (memb[vlen].ctlm_name == 0 && name != NULL && name[0] != '\0')
|
|
|
|
return -1; /* errno is set for us. */
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
|
|
|
|
if (kind == CTF_K_STRUCT && vlen != 0)
|
|
|
|
{
|
|
|
|
if (bit_offset == (unsigned long) - 1)
|
|
|
|
{
|
|
|
|
/* Natural alignment. */
|
|
|
|
|
libctf: eliminate dtd_u, part 5: structs / unions
Eliminate the dynamic member storage for structs and unions as we have
for other dynamic types. This is much like the previous enum
elimination, except that structs and unions are the only types for which
a full-sized ctf_type_t might be needed. Up to now, this decision has
been made in the individual ctf_add_{struct,union}_sized functions and
duplicated in ctf_add_member_offset. The vlen machinery lets us
simplify this, always allocating a ctf_lmember_t and setting the
dtd_data's ctt_size to CTF_LSIZE_SENT: we figure out whether this is
really justified and (almost always) repack things down into a
ctf_stype_t at ctf_serialize time.
This allows us to eliminate the dynamic member paths from the iterators and
query functions in ctf-types.c in favour of always using the large-structure
vlen stuff for dynamic types (the diff is ugly but that's just because of the
volume of reindentation this calls for). This also means the large-structure
vlen stuff gets more heavily tested, which is nice because it was an almost
totally unused code path before now (it only kicked in for structures of size
>4GiB, and how often do you see those?)
The only extra complexity here is ctf_add_type. Back in the days of the
nondeduplicating linker this was called a ridiculous number of times for
countless identical copies of structures: eschewing the repeated lookups of the
dtd in ctf_add_member_offset and adding the members directly saved an amazing
amount of time. Now the nondeduplicating linker is gone, this is extreme
overoptimization: we can rip out the direct addition and use ctf_member_next and
ctf_add_member_offset, just like ctf_dedup_emit does.
We augment a ctf_add_type test to try adding a self-referential struct, the only
thing the ctf_add_type part of this change really perturbs.
This completes the elimination of dtd_u.
libctf/ChangeLog
2021-03-18 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h (ctf_dtdef_t) <dtu_members>: Remove.
<dtd_u>: Likewise.
(ctf_dmdef_t): Remove.
(struct ctf_next) <u.ctn_dmd>: Remove.
* ctf-create.c (INITIAL_VLEN): New, more-or-less arbitrary initial
vlen size.
(ctf_add_enum): Use it.
(ctf_dtd_delete): Do not free the (removed) dmd; remove string
refs from the vlen on struct deletion.
(ctf_add_struct_sized): Populate the vlen: do it by hand if
promoting forwards. Always populate the full-size
lsizehi/lsizelo members.
(ctf_add_union_sized): Likewise.
(ctf_add_member_offset): Set up the vlen rather than the dmd.
Expand it as needed, repointing string refs via
ctf_str_move_pending. Add the member names as pending strings.
Always populate the full-size lsizehi/lsizelo members.
(membadd): Remove, folding back into...
(ctf_add_type_internal): ... here, adding via an ordinary
ctf_add_struct_sized and _next iteration rather than doing
everything by hand.
* ctf-serialize.c (ctf_copy_smembers): Remove this...
(ctf_copy_lmembers): ... and this...
(ctf_emit_type_sect): ... folding into here. Figure out if a
ctf_stype_t is needed here, not in ctf_add_*_sized.
(ctf_type_sect_size): Figure out the ctf_stype_t stuff the same
way here.
* ctf-types.c (ctf_member_next): Remove the dmd path and always
use the vlen. Force large-structure usage for dynamic types.
(ctf_type_align): Likewise.
(ctf_member_info): Likewise.
(ctf_type_rvisit): Likewise.
* testsuite/libctf-regression/type-add-unnamed-struct-ctf.c: Add a
self-referential type to this test.
* testsuite/libctf-regression/type-add-unnamed-struct.c: Adjusted
accordingly.
* testsuite/libctf-regression/type-add-unnamed-struct.lk: Likewise.
2021-03-18 20:37:52 +08:00
|
|
|
ctf_id_t ltype = ctf_type_resolve (fp, memb[vlen - 1].ctlm_type);
|
|
|
|
size_t off = CTF_LMEM_OFFSET(&memb[vlen - 1]);
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
|
|
|
|
ctf_encoding_t linfo;
|
|
|
|
ssize_t lsize;
|
|
|
|
|
2020-06-03 03:04:24 +08:00
|
|
|
/* Propagate any error from ctf_type_resolve. If the last member was
|
|
|
|
of unimplemented type, this may be -ECTF_NONREPRESENTABLE: we
|
|
|
|
cannot insert right after such a member without explicit offset
|
|
|
|
specification, because its alignment and size is not known. */
|
|
|
|
if (ltype == CTF_ERR)
|
libctf: eliminate dtd_u, part 5: structs / unions
Eliminate the dynamic member storage for structs and unions as we have
for other dynamic types. This is much like the previous enum
elimination, except that structs and unions are the only types for which
a full-sized ctf_type_t might be needed. Up to now, this decision has
been made in the individual ctf_add_{struct,union}_sized functions and
duplicated in ctf_add_member_offset. The vlen machinery lets us
simplify this, always allocating a ctf_lmember_t and setting the
dtd_data's ctt_size to CTF_LSIZE_SENT: we figure out whether this is
really justified and (almost always) repack things down into a
ctf_stype_t at ctf_serialize time.
This allows us to eliminate the dynamic member paths from the iterators and
query functions in ctf-types.c in favour of always using the large-structure
vlen stuff for dynamic types (the diff is ugly but that's just because of the
volume of reindentation this calls for). This also means the large-structure
vlen stuff gets more heavily tested, which is nice because it was an almost
totally unused code path before now (it only kicked in for structures of size
>4GiB, and how often do you see those?)
The only extra complexity here is ctf_add_type. Back in the days of the
nondeduplicating linker this was called a ridiculous number of times for
countless identical copies of structures: eschewing the repeated lookups of the
dtd in ctf_add_member_offset and adding the members directly saved an amazing
amount of time. Now the nondeduplicating linker is gone, this is extreme
overoptimization: we can rip out the direct addition and use ctf_member_next and
ctf_add_member_offset, just like ctf_dedup_emit does.
We augment a ctf_add_type test to try adding a self-referential struct, the only
thing the ctf_add_type part of this change really perturbs.
This completes the elimination of dtd_u.
libctf/ChangeLog
2021-03-18 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h (ctf_dtdef_t) <dtu_members>: Remove.
<dtd_u>: Likewise.
(ctf_dmdef_t): Remove.
(struct ctf_next) <u.ctn_dmd>: Remove.
* ctf-create.c (INITIAL_VLEN): New, more-or-less arbitrary initial
vlen size.
(ctf_add_enum): Use it.
(ctf_dtd_delete): Do not free the (removed) dmd; remove string
refs from the vlen on struct deletion.
(ctf_add_struct_sized): Populate the vlen: do it by hand if
promoting forwards. Always populate the full-size
lsizehi/lsizelo members.
(ctf_add_union_sized): Likewise.
(ctf_add_member_offset): Set up the vlen rather than the dmd.
Expand it as needed, repointing string refs via
ctf_str_move_pending. Add the member names as pending strings.
Always populate the full-size lsizehi/lsizelo members.
(membadd): Remove, folding back into...
(ctf_add_type_internal): ... here, adding via an ordinary
ctf_add_struct_sized and _next iteration rather than doing
everything by hand.
* ctf-serialize.c (ctf_copy_smembers): Remove this...
(ctf_copy_lmembers): ... and this...
(ctf_emit_type_sect): ... folding into here. Figure out if a
ctf_stype_t is needed here, not in ctf_add_*_sized.
(ctf_type_sect_size): Figure out the ctf_stype_t stuff the same
way here.
* ctf-types.c (ctf_member_next): Remove the dmd path and always
use the vlen. Force large-structure usage for dynamic types.
(ctf_type_align): Likewise.
(ctf_member_info): Likewise.
(ctf_type_rvisit): Likewise.
* testsuite/libctf-regression/type-add-unnamed-struct-ctf.c: Add a
self-referential type to this test.
* testsuite/libctf-regression/type-add-unnamed-struct.c: Adjusted
accordingly.
* testsuite/libctf-regression/type-add-unnamed-struct.lk: Likewise.
2021-03-18 20:37:52 +08:00
|
|
|
return -1; /* errno is set for us. */
|
2020-06-03 03:04:24 +08:00
|
|
|
|
libctf, ld: prohibit getting the size or alignment of forwards
C allows you to do only a very few things with entities of incomplete
type (as opposed to pointers to them): make pointers to them and give
them cv-quals, roughly. In particular you can't sizeof them and you
can't get their alignment.
We cannot impose all the requirements the standard imposes on CTF users,
because the deduplicator can transform any structure type into a forward
for the purposes of breaking cycles: so CTF type graphs can easily
contain things like arrays of forward type (if you want to figure out
their size or alignment, you need to chase down the types this forward
might be a forward to in child TU dicts: we will soon add API functions
to make doing this much easier).
Nonetheless, it is still meaningless to ask for the size or alignment of
forwards: but libctf didn't prohibit this and returned nonsense from
internal implementation details when you asked (it returned the kind of
the pointed-to type as both the size and alignment, because forwards
reuse ctt_type as a type kind, and ctt_type and ctt_size overlap). So
introduce a new error, ECTF_INCOMPLETE, which is returned when you try
to get the size or alignment of forwards: we also return it when you try
to do things that require libctf itself to get the size or alignment of
a forward, notably using a forward as an array index type (which C
should never do in any case) or adding forwards to structures without
specifying their offset explicitly.
The dumper will not emit size or alignment info for forwards any more.
(This should not be an API break since ctf_type_size and ctf_type_align
could both return errors before now: any code that isn't expecting error
returns is already potentially broken.)
include/ChangeLog
2021-01-05 Nick Alcock <nick.alcock@oracle.com>
* ctf-api.h (ECTF_INCOMPLETE): New.
(ECTF_NERR): Adjust.
ld/ChangeLog
2021-01-05 Nick Alcock <nick.alcock@oracle.com>
* testsuite/ld-ctf/conflicting-cycle-1.parent.d: Adjust for dumper
changes.
* testsuite/ld-ctf/cross-tu-cyclic-conflicting.d: Likewise.
* testsuite/ld-ctf/forward.c: New test...
* testsuite/ld-ctf/forward.d: ... and results.
libctf/ChangeLog
2021-01-05 Nick Alcock <nick.alcock@oracle.com>
* ctf-types.c (ctf_type_resolve): Improve comment.
(ctf_type_size): Yield ECTF_INCOMPLETE when applied to forwards.
Emit errors into the right dict.
(ctf_type_align): Likewise.
* ctf-create.c (ctf_add_member_offset): Yield ECTF_INCOMPLETE
when adding a member without explicit offset when this member, or
the previous member, is incomplete.
* ctf-dump.c (ctf_dump_format_type): Do not try to print the size of
forwards.
(ctf_dump_member): Do not try to print their alignment.
2021-01-05 21:25:56 +08:00
|
|
|
if (is_incomplete)
|
|
|
|
{
|
libctf: fix creation-time parent/child dict confusions
The fixes applied a few years ago to resolve confusions between parent and
child dicts at lookup time also apply in various forms to creation. In
general, if you have a type in a parent dict ctf_imported into a child and
you do something to it, and the parent dict is writable (created via
ctf_create, not opened via ctf_open*) it should work just the same to make
changes to that type via a child dict as it does to make the change
to the parent dict directly -- and nothing you're prohibited from doing
to the parent dict when done directly should be allowed just because
you're doing it via a child.
Specifically, the following don't work when doing things from the child, but
should:
- adding a member of a type in the parent to a struct or union in the
parent via ctf_add_member or ctf_add_member_offset: this yields
ECTF_BADID
- adding a member of a type in the parent to a struct or union in the
parent via ctf_add_member_encoded: this dumps core (!).
- adding an enumerand to an enumerator in the parent: this yields
ECTF_BADID
- setting the properties of an array in the parent via ctf_set_array;
this yields ECTF_BADID
Relatedly, some things work when doing things via a child that should fail,
yielding a CTF dictionary with invalid content (readable, but meaningless):
in particular, you can add a child type to a struct in the parent via
any of the ctf_add_member* family and nothing complains at all, even though
you should never be able to add references to children to parents (since any
given parent can be associated with many different children).
A family of tests is added to check each of these cases independently, since
some can result in coredumps and it would be nice to test the other cases
even if some dump core. They use a common library to do all the actual
work. The set of affected API calls was determined by code inspection
(auditing all calls to ctf_dtd_lookup): it's possible that I missed a few,
but I doubt it, since other cases use ctf_lookup* functions, which already
climb to the parent where appropriate.
libctf/ChangeLog:
PR libctf/30985
* ctf-create.c (ctf_dtd_lookup): Traverse to parents if necessary.
(ctf_set_array): Likewise. Report errors on the child; require
both parent and child to be writable.
(ctf_add_enumerator): Likewise.
(ctf_add_member_offset): Likewise. Prohibit addition of child types
to structs in the parent.
(ctf_add_member_encoded): Do not dereference a NULL dtd: report
ECTF_BADID instead.
* ctf-string.c (ctf_str_add_ref_internal): Report ENOMEM on the
dict if addition of a string ref fails.
* testsuite/libctf-writable/parent-child-dtd-crash-lib.c: New library.
* testsuite/libctf-writable/parent-child-dtd-enum.*: New test.
* testsuite/libctf-writable/parent-child-dtd-enumerator.*: New test.
* testsuite/libctf-writable/parent-child-dtd-member-encoded.*: New test.
* testsuite/libctf-writable/parent-child-dtd-member-offset.*: New test.
* testsuite/libctf-writable/parent-child-dtd-set-array.*: New test.
* testsuite/libctf-writable/parent-child-dtd-struct.*: New test.
* testsuite/libctf-writable/parent-child-dtd-union.*: New test.
2023-10-19 01:34:57 +08:00
|
|
|
ctf_err_warn (ofp, 1, ECTF_INCOMPLETE,
|
libctf, ld: prohibit getting the size or alignment of forwards
C allows you to do only a very few things with entities of incomplete
type (as opposed to pointers to them): make pointers to them and give
them cv-quals, roughly. In particular you can't sizeof them and you
can't get their alignment.
We cannot impose all the requirements the standard imposes on CTF users,
because the deduplicator can transform any structure type into a forward
for the purposes of breaking cycles: so CTF type graphs can easily
contain things like arrays of forward type (if you want to figure out
their size or alignment, you need to chase down the types this forward
might be a forward to in child TU dicts: we will soon add API functions
to make doing this much easier).
Nonetheless, it is still meaningless to ask for the size or alignment of
forwards: but libctf didn't prohibit this and returned nonsense from
internal implementation details when you asked (it returned the kind of
the pointed-to type as both the size and alignment, because forwards
reuse ctt_type as a type kind, and ctt_type and ctt_size overlap). So
introduce a new error, ECTF_INCOMPLETE, which is returned when you try
to get the size or alignment of forwards: we also return it when you try
to do things that require libctf itself to get the size or alignment of
a forward, notably using a forward as an array index type (which C
should never do in any case) or adding forwards to structures without
specifying their offset explicitly.
The dumper will not emit size or alignment info for forwards any more.
(This should not be an API break since ctf_type_size and ctf_type_align
could both return errors before now: any code that isn't expecting error
returns is already potentially broken.)
include/ChangeLog
2021-01-05 Nick Alcock <nick.alcock@oracle.com>
* ctf-api.h (ECTF_INCOMPLETE): New.
(ECTF_NERR): Adjust.
ld/ChangeLog
2021-01-05 Nick Alcock <nick.alcock@oracle.com>
* testsuite/ld-ctf/conflicting-cycle-1.parent.d: Adjust for dumper
changes.
* testsuite/ld-ctf/cross-tu-cyclic-conflicting.d: Likewise.
* testsuite/ld-ctf/forward.c: New test...
* testsuite/ld-ctf/forward.d: ... and results.
libctf/ChangeLog
2021-01-05 Nick Alcock <nick.alcock@oracle.com>
* ctf-types.c (ctf_type_resolve): Improve comment.
(ctf_type_size): Yield ECTF_INCOMPLETE when applied to forwards.
Emit errors into the right dict.
(ctf_type_align): Likewise.
* ctf-create.c (ctf_add_member_offset): Yield ECTF_INCOMPLETE
when adding a member without explicit offset when this member, or
the previous member, is incomplete.
* ctf-dump.c (ctf_dump_format_type): Do not try to print the size of
forwards.
(ctf_dump_member): Do not try to print their alignment.
2021-01-05 21:25:56 +08:00
|
|
|
_("ctf_add_member_offset: cannot add member %s of "
|
|
|
|
"incomplete type %lx to struct %lx without "
|
|
|
|
"specifying explicit offset\n"),
|
|
|
|
name ? name : _("(unnamed member)"), type, souid);
|
libctf: fix creation-time parent/child dict confusions
The fixes applied a few years ago to resolve confusions between parent and
child dicts at lookup time also apply in various forms to creation. In
general, if you have a type in a parent dict ctf_imported into a child and
you do something to it, and the parent dict is writable (created via
ctf_create, not opened via ctf_open*) it should work just the same to make
changes to that type via a child dict as it does to make the change
to the parent dict directly -- and nothing you're prohibited from doing
to the parent dict when done directly should be allowed just because
you're doing it via a child.
Specifically, the following don't work when doing things from the child, but
should:
- adding a member of a type in the parent to a struct or union in the
parent via ctf_add_member or ctf_add_member_offset: this yields
ECTF_BADID
- adding a member of a type in the parent to a struct or union in the
parent via ctf_add_member_encoded: this dumps core (!).
- adding an enumerand to an enumerator in the parent: this yields
ECTF_BADID
- setting the properties of an array in the parent via ctf_set_array;
this yields ECTF_BADID
Relatedly, some things work when doing things via a child that should fail,
yielding a CTF dictionary with invalid content (readable, but meaningless):
in particular, you can add a child type to a struct in the parent via
any of the ctf_add_member* family and nothing complains at all, even though
you should never be able to add references to children to parents (since any
given parent can be associated with many different children).
A family of tests is added to check each of these cases independently, since
some can result in coredumps and it would be nice to test the other cases
even if some dump core. They use a common library to do all the actual
work. The set of affected API calls was determined by code inspection
(auditing all calls to ctf_dtd_lookup): it's possible that I missed a few,
but I doubt it, since other cases use ctf_lookup* functions, which already
climb to the parent where appropriate.
libctf/ChangeLog:
PR libctf/30985
* ctf-create.c (ctf_dtd_lookup): Traverse to parents if necessary.
(ctf_set_array): Likewise. Report errors on the child; require
both parent and child to be writable.
(ctf_add_enumerator): Likewise.
(ctf_add_member_offset): Likewise. Prohibit addition of child types
to structs in the parent.
(ctf_add_member_encoded): Do not dereference a NULL dtd: report
ECTF_BADID instead.
* ctf-string.c (ctf_str_add_ref_internal): Report ENOMEM on the
dict if addition of a string ref fails.
* testsuite/libctf-writable/parent-child-dtd-crash-lib.c: New library.
* testsuite/libctf-writable/parent-child-dtd-enum.*: New test.
* testsuite/libctf-writable/parent-child-dtd-enumerator.*: New test.
* testsuite/libctf-writable/parent-child-dtd-member-encoded.*: New test.
* testsuite/libctf-writable/parent-child-dtd-member-offset.*: New test.
* testsuite/libctf-writable/parent-child-dtd-set-array.*: New test.
* testsuite/libctf-writable/parent-child-dtd-struct.*: New test.
* testsuite/libctf-writable/parent-child-dtd-union.*: New test.
2023-10-19 01:34:57 +08:00
|
|
|
return (ctf_set_errno (ofp, ECTF_INCOMPLETE));
|
libctf, ld: prohibit getting the size or alignment of forwards
C allows you to do only a very few things with entities of incomplete
type (as opposed to pointers to them): make pointers to them and give
them cv-quals, roughly. In particular you can't sizeof them and you
can't get their alignment.
We cannot impose all the requirements the standard imposes on CTF users,
because the deduplicator can transform any structure type into a forward
for the purposes of breaking cycles: so CTF type graphs can easily
contain things like arrays of forward type (if you want to figure out
their size or alignment, you need to chase down the types this forward
might be a forward to in child TU dicts: we will soon add API functions
to make doing this much easier).
Nonetheless, it is still meaningless to ask for the size or alignment of
forwards: but libctf didn't prohibit this and returned nonsense from
internal implementation details when you asked (it returned the kind of
the pointed-to type as both the size and alignment, because forwards
reuse ctt_type as a type kind, and ctt_type and ctt_size overlap). So
introduce a new error, ECTF_INCOMPLETE, which is returned when you try
to get the size or alignment of forwards: we also return it when you try
to do things that require libctf itself to get the size or alignment of
a forward, notably using a forward as an array index type (which C
should never do in any case) or adding forwards to structures without
specifying their offset explicitly.
The dumper will not emit size or alignment info for forwards any more.
(This should not be an API break since ctf_type_size and ctf_type_align
could both return errors before now: any code that isn't expecting error
returns is already potentially broken.)
include/ChangeLog
2021-01-05 Nick Alcock <nick.alcock@oracle.com>
* ctf-api.h (ECTF_INCOMPLETE): New.
(ECTF_NERR): Adjust.
ld/ChangeLog
2021-01-05 Nick Alcock <nick.alcock@oracle.com>
* testsuite/ld-ctf/conflicting-cycle-1.parent.d: Adjust for dumper
changes.
* testsuite/ld-ctf/cross-tu-cyclic-conflicting.d: Likewise.
* testsuite/ld-ctf/forward.c: New test...
* testsuite/ld-ctf/forward.d: ... and results.
libctf/ChangeLog
2021-01-05 Nick Alcock <nick.alcock@oracle.com>
* ctf-types.c (ctf_type_resolve): Improve comment.
(ctf_type_size): Yield ECTF_INCOMPLETE when applied to forwards.
Emit errors into the right dict.
(ctf_type_align): Likewise.
* ctf-create.c (ctf_add_member_offset): Yield ECTF_INCOMPLETE
when adding a member without explicit offset when this member, or
the previous member, is incomplete.
* ctf-dump.c (ctf_dump_format_type): Do not try to print the size of
forwards.
(ctf_dump_member): Do not try to print their alignment.
2021-01-05 21:25:56 +08:00
|
|
|
}
|
|
|
|
|
libctf: fix a number of build problems found on Solaris and NetBSD
- Use of nonportable <endian.h>
- Use of qsort_r
- Use of zlib without appropriate magic to pull in the binutils zlib
- Use of off64_t without checking (fixed by dropping the unused fields
that need off64_t entirely)
- signedness problems due to long being too short a type on 32-bit
platforms: ctf_id_t is now 'unsigned long', and CTF_ERR must be
used only for functions that return ctf_id_t
- One lingering use of bzero() and of <sys/errno.h>
All fixed, using code from gnulib where possible.
Relatedly, set cts_size in a couple of places it was missed
(string table and symbol table loading upon ctf_bfdopen()).
binutils/
* objdump.c (make_ctfsect): Drop cts_type, cts_flags, and
cts_offset.
* readelf.c (shdr_to_ctf_sect): Likewise.
include/
* ctf-api.h (ctf_sect_t): Drop cts_type, cts_flags, and cts_offset.
(ctf_id_t): This is now an unsigned type.
(CTF_ERR): Cast it to ctf_id_t. Note that it should only be used
for ctf_id_t-returning functions.
libctf/
* Makefile.am (ZLIB): New.
(ZLIBINC): Likewise.
(AM_CFLAGS): Use them.
(libctf_a_LIBADD): New, for LIBOBJS.
* configure.ac: Check for zlib, endian.h, and qsort_r.
* ctf-endian.h: New, providing htole64 and le64toh.
* swap.h: Code style fixes.
(bswap_identity_64): New.
* qsort_r.c: New, from gnulib (with one added #include).
* ctf-decls.h: New, providing a conditional qsort_r declaration,
and unconditional definitions of MIN and MAX.
* ctf-impl.h: Use it. Do not use <sys/errno.h>.
(ctf_set_errno): Now returns unsigned long.
* ctf-util.c (ctf_set_errno): Adjust here too.
* ctf-archive.c: Use ctf-endian.h.
(ctf_arc_open_by_offset): Use memset, not bzero. Drop cts_type,
cts_flags and cts_offset.
(ctf_arc_write): Drop debugging dependent on the size of off_t.
* ctf-create.c: Provide a definition of roundup if not defined.
(ctf_create): Drop cts_type, cts_flags and cts_offset.
(ctf_add_reftype): Do not check if type IDs are below zero.
(ctf_add_slice): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_member_offset): Cast error-returning ssize_t's to size_t
when known error-free. Drop CTF_ERR usage for functions returning
int.
(ctf_add_member_encoded): Drop CTF_ERR usage for functions returning
int.
(ctf_add_variable): Likewise.
(enumcmp): Likewise.
(enumadd): Likewise.
(membcmp): Likewise.
(ctf_add_type): Likewise. Cast error-returning ssize_t's to size_t
when known error-free.
* ctf-dump.c (ctf_is_slice): Drop CTF_ERR usage for functions
returning int: use CTF_ERR for functions returning ctf_type_id.
(ctf_dump_label): Likewise.
(ctf_dump_objts): Likewise.
* ctf-labels.c (ctf_label_topmost): Likewise.
(ctf_label_iter): Likewise.
(ctf_label_info): Likewise.
* ctf-lookup.c (ctf_func_args): Likewise.
* ctf-open.c (upgrade_types): Cast to size_t where appropriate.
(ctf_bufopen): Likewise. Use zlib types as needed.
* ctf-types.c (ctf_member_iter): Drop CTF_ERR usage for functions
returning int.
(ctf_enum_iter): Likewise.
(ctf_type_size): Likewise.
(ctf_type_align): Likewise. Cast to size_t where appropriate.
(ctf_type_kind_unsliced): Likewise.
(ctf_type_kind): Likewise.
(ctf_type_encoding): Likewise.
(ctf_member_info): Likewise.
(ctf_array_info): Likewise.
(ctf_enum_value): Likewise.
(ctf_type_rvisit): Likewise.
* ctf-open-bfd.c (ctf_bfdopen): Drop cts_type, cts_flags and
cts_offset.
(ctf_simple_open): Likewise.
(ctf_bfdopen_ctfsect): Likewise. Set cts_size properly.
* Makefile.in: Regenerate.
* aclocal.m4: Likewise.
* config.h: Likewise.
* configure: Likewise.
2019-05-31 17:10:51 +08:00
|
|
|
if (ctf_type_encoding (fp, ltype, &linfo) == 0)
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
off += linfo.cte_bits;
|
libctf: fix a number of build problems found on Solaris and NetBSD
- Use of nonportable <endian.h>
- Use of qsort_r
- Use of zlib without appropriate magic to pull in the binutils zlib
- Use of off64_t without checking (fixed by dropping the unused fields
that need off64_t entirely)
- signedness problems due to long being too short a type on 32-bit
platforms: ctf_id_t is now 'unsigned long', and CTF_ERR must be
used only for functions that return ctf_id_t
- One lingering use of bzero() and of <sys/errno.h>
All fixed, using code from gnulib where possible.
Relatedly, set cts_size in a couple of places it was missed
(string table and symbol table loading upon ctf_bfdopen()).
binutils/
* objdump.c (make_ctfsect): Drop cts_type, cts_flags, and
cts_offset.
* readelf.c (shdr_to_ctf_sect): Likewise.
include/
* ctf-api.h (ctf_sect_t): Drop cts_type, cts_flags, and cts_offset.
(ctf_id_t): This is now an unsigned type.
(CTF_ERR): Cast it to ctf_id_t. Note that it should only be used
for ctf_id_t-returning functions.
libctf/
* Makefile.am (ZLIB): New.
(ZLIBINC): Likewise.
(AM_CFLAGS): Use them.
(libctf_a_LIBADD): New, for LIBOBJS.
* configure.ac: Check for zlib, endian.h, and qsort_r.
* ctf-endian.h: New, providing htole64 and le64toh.
* swap.h: Code style fixes.
(bswap_identity_64): New.
* qsort_r.c: New, from gnulib (with one added #include).
* ctf-decls.h: New, providing a conditional qsort_r declaration,
and unconditional definitions of MIN and MAX.
* ctf-impl.h: Use it. Do not use <sys/errno.h>.
(ctf_set_errno): Now returns unsigned long.
* ctf-util.c (ctf_set_errno): Adjust here too.
* ctf-archive.c: Use ctf-endian.h.
(ctf_arc_open_by_offset): Use memset, not bzero. Drop cts_type,
cts_flags and cts_offset.
(ctf_arc_write): Drop debugging dependent on the size of off_t.
* ctf-create.c: Provide a definition of roundup if not defined.
(ctf_create): Drop cts_type, cts_flags and cts_offset.
(ctf_add_reftype): Do not check if type IDs are below zero.
(ctf_add_slice): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_member_offset): Cast error-returning ssize_t's to size_t
when known error-free. Drop CTF_ERR usage for functions returning
int.
(ctf_add_member_encoded): Drop CTF_ERR usage for functions returning
int.
(ctf_add_variable): Likewise.
(enumcmp): Likewise.
(enumadd): Likewise.
(membcmp): Likewise.
(ctf_add_type): Likewise. Cast error-returning ssize_t's to size_t
when known error-free.
* ctf-dump.c (ctf_is_slice): Drop CTF_ERR usage for functions
returning int: use CTF_ERR for functions returning ctf_type_id.
(ctf_dump_label): Likewise.
(ctf_dump_objts): Likewise.
* ctf-labels.c (ctf_label_topmost): Likewise.
(ctf_label_iter): Likewise.
(ctf_label_info): Likewise.
* ctf-lookup.c (ctf_func_args): Likewise.
* ctf-open.c (upgrade_types): Cast to size_t where appropriate.
(ctf_bufopen): Likewise. Use zlib types as needed.
* ctf-types.c (ctf_member_iter): Drop CTF_ERR usage for functions
returning int.
(ctf_enum_iter): Likewise.
(ctf_type_size): Likewise.
(ctf_type_align): Likewise. Cast to size_t where appropriate.
(ctf_type_kind_unsliced): Likewise.
(ctf_type_kind): Likewise.
(ctf_type_encoding): Likewise.
(ctf_member_info): Likewise.
(ctf_array_info): Likewise.
(ctf_enum_value): Likewise.
(ctf_type_rvisit): Likewise.
* ctf-open-bfd.c (ctf_bfdopen): Drop cts_type, cts_flags and
cts_offset.
(ctf_simple_open): Likewise.
(ctf_bfdopen_ctfsect): Likewise. Set cts_size properly.
* Makefile.in: Regenerate.
* aclocal.m4: Likewise.
* config.h: Likewise.
* configure: Likewise.
2019-05-31 17:10:51 +08:00
|
|
|
else if ((lsize = ctf_type_size (fp, ltype)) > 0)
|
Use CHAR_BIT instead of NBBY in libctf
On x86-64 Fedora 29, I tried to build a mingw-hosted gdb that targets
ppc-linux. You can do this with:
../binutils-gdb/configure --host=i686-w64-mingw32 --target=ppc-linux \
--disable-{binutils,gas,gold,gprof,ld}
The build failed with these errors in libctf:
In file included from ../../binutils-gdb/libctf/ctf-create.c:20:
../../binutils-gdb/libctf/ctf-create.c: In function 'ctf_add_encoded':
../../binutils-gdb/libctf/ctf-create.c:803:59: error: 'NBBY' undeclared (first use in this function)
dtd->dtd_data.ctt_size = clp2 (P2ROUNDUP (ep->cte_bits, NBBY) / NBBY);
^~~~
../../binutils-gdb/libctf/ctf-impl.h:254:42: note: in definition of macro 'P2ROUNDUP'
#define P2ROUNDUP(x, align) (-(-(x) & -(align)))
^~~~~
../../binutils-gdb/libctf/ctf-create.c:803:59: note: each undeclared identifier is reported only once for each function it appears in
dtd->dtd_data.ctt_size = clp2 (P2ROUNDUP (ep->cte_bits, NBBY) / NBBY);
^~~~
../../binutils-gdb/libctf/ctf-impl.h:254:42: note: in definition of macro 'P2ROUNDUP'
#define P2ROUNDUP(x, align) (-(-(x) & -(align)))
^~~~~
../../binutils-gdb/libctf/ctf-create.c: In function 'ctf_add_slice':
../../binutils-gdb/libctf/ctf-create.c:862:59: error: 'NBBY' undeclared (first use in this function)
dtd->dtd_data.ctt_size = clp2 (P2ROUNDUP (ep->cte_bits, NBBY) / NBBY);
^~~~
../../binutils-gdb/libctf/ctf-impl.h:254:42: note: in definition of macro 'P2ROUNDUP'
#define P2ROUNDUP(x, align) (-(-(x) & -(align)))
^~~~~
../../binutils-gdb/libctf/ctf-create.c: In function 'ctf_add_member_offset':
../../binutils-gdb/libctf/ctf-create.c:1341:21: error: 'NBBY' undeclared (first use in this function)
off += lsize * NBBY;
^~~~
../../binutils-gdb/libctf/ctf-create.c: In function 'ctf_add_type':
../../binutils-gdb/libctf/ctf-create.c:1822:16: warning: unknown conversion type character 'z' in format [-Wformat=]
ctf_dprintf ("Conflict for type %s against ID %lx: "
^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
../../binutils-gdb/libctf/ctf-create.c:1823:35: note: format string is defined here
"union size differs, old %zi, new %zi\n",
^
../../binutils-gdb/libctf/ctf-create.c:1822:16: warning: unknown conversion type character 'z' in format [-Wformat=]
ctf_dprintf ("Conflict for type %s against ID %lx: "
^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
../../binutils-gdb/libctf/ctf-create.c:1823:44: note: format string is defined here
"union size differs, old %zi, new %zi\n",
^
../../binutils-gdb/libctf/ctf-create.c:1822:16: warning: too many arguments for format [-Wformat-extra-args]
ctf_dprintf ("Conflict for type %s against ID %lx: "
^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
This patch fixes the actual errors in here. I did not try to fix the
printf warnings, though I think someone ought to.
Ok?
libctf/ChangeLog
2019-06-04 Tom Tromey <tromey@adacore.com>
* ctf-create.c (ctf_add_encoded, ctf_add_slice)
(ctf_add_member_offset): Use CHAR_BIT, not NBBY.
2019-06-05 02:16:57 +08:00
|
|
|
off += lsize * CHAR_BIT;
|
libctf, ld: prohibit getting the size or alignment of forwards
C allows you to do only a very few things with entities of incomplete
type (as opposed to pointers to them): make pointers to them and give
them cv-quals, roughly. In particular you can't sizeof them and you
can't get their alignment.
We cannot impose all the requirements the standard imposes on CTF users,
because the deduplicator can transform any structure type into a forward
for the purposes of breaking cycles: so CTF type graphs can easily
contain things like arrays of forward type (if you want to figure out
their size or alignment, you need to chase down the types this forward
might be a forward to in child TU dicts: we will soon add API functions
to make doing this much easier).
Nonetheless, it is still meaningless to ask for the size or alignment of
forwards: but libctf didn't prohibit this and returned nonsense from
internal implementation details when you asked (it returned the kind of
the pointed-to type as both the size and alignment, because forwards
reuse ctt_type as a type kind, and ctt_type and ctt_size overlap). So
introduce a new error, ECTF_INCOMPLETE, which is returned when you try
to get the size or alignment of forwards: we also return it when you try
to do things that require libctf itself to get the size or alignment of
a forward, notably using a forward as an array index type (which C
should never do in any case) or adding forwards to structures without
specifying their offset explicitly.
The dumper will not emit size or alignment info for forwards any more.
(This should not be an API break since ctf_type_size and ctf_type_align
could both return errors before now: any code that isn't expecting error
returns is already potentially broken.)
include/ChangeLog
2021-01-05 Nick Alcock <nick.alcock@oracle.com>
* ctf-api.h (ECTF_INCOMPLETE): New.
(ECTF_NERR): Adjust.
ld/ChangeLog
2021-01-05 Nick Alcock <nick.alcock@oracle.com>
* testsuite/ld-ctf/conflicting-cycle-1.parent.d: Adjust for dumper
changes.
* testsuite/ld-ctf/cross-tu-cyclic-conflicting.d: Likewise.
* testsuite/ld-ctf/forward.c: New test...
* testsuite/ld-ctf/forward.d: ... and results.
libctf/ChangeLog
2021-01-05 Nick Alcock <nick.alcock@oracle.com>
* ctf-types.c (ctf_type_resolve): Improve comment.
(ctf_type_size): Yield ECTF_INCOMPLETE when applied to forwards.
Emit errors into the right dict.
(ctf_type_align): Likewise.
* ctf-create.c (ctf_add_member_offset): Yield ECTF_INCOMPLETE
when adding a member without explicit offset when this member, or
the previous member, is incomplete.
* ctf-dump.c (ctf_dump_format_type): Do not try to print the size of
forwards.
(ctf_dump_member): Do not try to print their alignment.
2021-01-05 21:25:56 +08:00
|
|
|
else if (lsize == -1 && ctf_errno (fp) == ECTF_INCOMPLETE)
|
|
|
|
{
|
libctf: eliminate dtd_u, part 5: structs / unions
Eliminate the dynamic member storage for structs and unions as we have
for other dynamic types. This is much like the previous enum
elimination, except that structs and unions are the only types for which
a full-sized ctf_type_t might be needed. Up to now, this decision has
been made in the individual ctf_add_{struct,union}_sized functions and
duplicated in ctf_add_member_offset. The vlen machinery lets us
simplify this, always allocating a ctf_lmember_t and setting the
dtd_data's ctt_size to CTF_LSIZE_SENT: we figure out whether this is
really justified and (almost always) repack things down into a
ctf_stype_t at ctf_serialize time.
This allows us to eliminate the dynamic member paths from the iterators and
query functions in ctf-types.c in favour of always using the large-structure
vlen stuff for dynamic types (the diff is ugly but that's just because of the
volume of reindentation this calls for). This also means the large-structure
vlen stuff gets more heavily tested, which is nice because it was an almost
totally unused code path before now (it only kicked in for structures of size
>4GiB, and how often do you see those?)
The only extra complexity here is ctf_add_type. Back in the days of the
nondeduplicating linker this was called a ridiculous number of times for
countless identical copies of structures: eschewing the repeated lookups of the
dtd in ctf_add_member_offset and adding the members directly saved an amazing
amount of time. Now the nondeduplicating linker is gone, this is extreme
overoptimization: we can rip out the direct addition and use ctf_member_next and
ctf_add_member_offset, just like ctf_dedup_emit does.
We augment a ctf_add_type test to try adding a self-referential struct, the only
thing the ctf_add_type part of this change really perturbs.
This completes the elimination of dtd_u.
libctf/ChangeLog
2021-03-18 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h (ctf_dtdef_t) <dtu_members>: Remove.
<dtd_u>: Likewise.
(ctf_dmdef_t): Remove.
(struct ctf_next) <u.ctn_dmd>: Remove.
* ctf-create.c (INITIAL_VLEN): New, more-or-less arbitrary initial
vlen size.
(ctf_add_enum): Use it.
(ctf_dtd_delete): Do not free the (removed) dmd; remove string
refs from the vlen on struct deletion.
(ctf_add_struct_sized): Populate the vlen: do it by hand if
promoting forwards. Always populate the full-size
lsizehi/lsizelo members.
(ctf_add_union_sized): Likewise.
(ctf_add_member_offset): Set up the vlen rather than the dmd.
Expand it as needed, repointing string refs via
ctf_str_move_pending. Add the member names as pending strings.
Always populate the full-size lsizehi/lsizelo members.
(membadd): Remove, folding back into...
(ctf_add_type_internal): ... here, adding via an ordinary
ctf_add_struct_sized and _next iteration rather than doing
everything by hand.
* ctf-serialize.c (ctf_copy_smembers): Remove this...
(ctf_copy_lmembers): ... and this...
(ctf_emit_type_sect): ... folding into here. Figure out if a
ctf_stype_t is needed here, not in ctf_add_*_sized.
(ctf_type_sect_size): Figure out the ctf_stype_t stuff the same
way here.
* ctf-types.c (ctf_member_next): Remove the dmd path and always
use the vlen. Force large-structure usage for dynamic types.
(ctf_type_align): Likewise.
(ctf_member_info): Likewise.
(ctf_type_rvisit): Likewise.
* testsuite/libctf-regression/type-add-unnamed-struct-ctf.c: Add a
self-referential type to this test.
* testsuite/libctf-regression/type-add-unnamed-struct.c: Adjusted
accordingly.
* testsuite/libctf-regression/type-add-unnamed-struct.lk: Likewise.
2021-03-18 20:37:52 +08:00
|
|
|
const char *lname = ctf_strraw (fp, memb[vlen - 1].ctlm_name);
|
|
|
|
|
libctf: fix creation-time parent/child dict confusions
The fixes applied a few years ago to resolve confusions between parent and
child dicts at lookup time also apply in various forms to creation. In
general, if you have a type in a parent dict ctf_imported into a child and
you do something to it, and the parent dict is writable (created via
ctf_create, not opened via ctf_open*) it should work just the same to make
changes to that type via a child dict as it does to make the change
to the parent dict directly -- and nothing you're prohibited from doing
to the parent dict when done directly should be allowed just because
you're doing it via a child.
Specifically, the following don't work when doing things from the child, but
should:
- adding a member of a type in the parent to a struct or union in the
parent via ctf_add_member or ctf_add_member_offset: this yields
ECTF_BADID
- adding a member of a type in the parent to a struct or union in the
parent via ctf_add_member_encoded: this dumps core (!).
- adding an enumerand to an enumerator in the parent: this yields
ECTF_BADID
- setting the properties of an array in the parent via ctf_set_array;
this yields ECTF_BADID
Relatedly, some things work when doing things via a child that should fail,
yielding a CTF dictionary with invalid content (readable, but meaningless):
in particular, you can add a child type to a struct in the parent via
any of the ctf_add_member* family and nothing complains at all, even though
you should never be able to add references to children to parents (since any
given parent can be associated with many different children).
A family of tests is added to check each of these cases independently, since
some can result in coredumps and it would be nice to test the other cases
even if some dump core. They use a common library to do all the actual
work. The set of affected API calls was determined by code inspection
(auditing all calls to ctf_dtd_lookup): it's possible that I missed a few,
but I doubt it, since other cases use ctf_lookup* functions, which already
climb to the parent where appropriate.
libctf/ChangeLog:
PR libctf/30985
* ctf-create.c (ctf_dtd_lookup): Traverse to parents if necessary.
(ctf_set_array): Likewise. Report errors on the child; require
both parent and child to be writable.
(ctf_add_enumerator): Likewise.
(ctf_add_member_offset): Likewise. Prohibit addition of child types
to structs in the parent.
(ctf_add_member_encoded): Do not dereference a NULL dtd: report
ECTF_BADID instead.
* ctf-string.c (ctf_str_add_ref_internal): Report ENOMEM on the
dict if addition of a string ref fails.
* testsuite/libctf-writable/parent-child-dtd-crash-lib.c: New library.
* testsuite/libctf-writable/parent-child-dtd-enum.*: New test.
* testsuite/libctf-writable/parent-child-dtd-enumerator.*: New test.
* testsuite/libctf-writable/parent-child-dtd-member-encoded.*: New test.
* testsuite/libctf-writable/parent-child-dtd-member-offset.*: New test.
* testsuite/libctf-writable/parent-child-dtd-set-array.*: New test.
* testsuite/libctf-writable/parent-child-dtd-struct.*: New test.
* testsuite/libctf-writable/parent-child-dtd-union.*: New test.
2023-10-19 01:34:57 +08:00
|
|
|
ctf_err_warn (ofp, 1, ECTF_INCOMPLETE,
|
libctf, ld: prohibit getting the size or alignment of forwards
C allows you to do only a very few things with entities of incomplete
type (as opposed to pointers to them): make pointers to them and give
them cv-quals, roughly. In particular you can't sizeof them and you
can't get their alignment.
We cannot impose all the requirements the standard imposes on CTF users,
because the deduplicator can transform any structure type into a forward
for the purposes of breaking cycles: so CTF type graphs can easily
contain things like arrays of forward type (if you want to figure out
their size or alignment, you need to chase down the types this forward
might be a forward to in child TU dicts: we will soon add API functions
to make doing this much easier).
Nonetheless, it is still meaningless to ask for the size or alignment of
forwards: but libctf didn't prohibit this and returned nonsense from
internal implementation details when you asked (it returned the kind of
the pointed-to type as both the size and alignment, because forwards
reuse ctt_type as a type kind, and ctt_type and ctt_size overlap). So
introduce a new error, ECTF_INCOMPLETE, which is returned when you try
to get the size or alignment of forwards: we also return it when you try
to do things that require libctf itself to get the size or alignment of
a forward, notably using a forward as an array index type (which C
should never do in any case) or adding forwards to structures without
specifying their offset explicitly.
The dumper will not emit size or alignment info for forwards any more.
(This should not be an API break since ctf_type_size and ctf_type_align
could both return errors before now: any code that isn't expecting error
returns is already potentially broken.)
include/ChangeLog
2021-01-05 Nick Alcock <nick.alcock@oracle.com>
* ctf-api.h (ECTF_INCOMPLETE): New.
(ECTF_NERR): Adjust.
ld/ChangeLog
2021-01-05 Nick Alcock <nick.alcock@oracle.com>
* testsuite/ld-ctf/conflicting-cycle-1.parent.d: Adjust for dumper
changes.
* testsuite/ld-ctf/cross-tu-cyclic-conflicting.d: Likewise.
* testsuite/ld-ctf/forward.c: New test...
* testsuite/ld-ctf/forward.d: ... and results.
libctf/ChangeLog
2021-01-05 Nick Alcock <nick.alcock@oracle.com>
* ctf-types.c (ctf_type_resolve): Improve comment.
(ctf_type_size): Yield ECTF_INCOMPLETE when applied to forwards.
Emit errors into the right dict.
(ctf_type_align): Likewise.
* ctf-create.c (ctf_add_member_offset): Yield ECTF_INCOMPLETE
when adding a member without explicit offset when this member, or
the previous member, is incomplete.
* ctf-dump.c (ctf_dump_format_type): Do not try to print the size of
forwards.
(ctf_dump_member): Do not try to print their alignment.
2021-01-05 21:25:56 +08:00
|
|
|
_("ctf_add_member_offset: cannot add member %s of "
|
|
|
|
"type %lx to struct %lx without specifying "
|
|
|
|
"explicit offset after member %s of type %lx, "
|
|
|
|
"which is an incomplete type\n"),
|
|
|
|
name ? name : _("(unnamed member)"), type, souid,
|
libctf: eliminate dtd_u, part 5: structs / unions
Eliminate the dynamic member storage for structs and unions as we have
for other dynamic types. This is much like the previous enum
elimination, except that structs and unions are the only types for which
a full-sized ctf_type_t might be needed. Up to now, this decision has
been made in the individual ctf_add_{struct,union}_sized functions and
duplicated in ctf_add_member_offset. The vlen machinery lets us
simplify this, always allocating a ctf_lmember_t and setting the
dtd_data's ctt_size to CTF_LSIZE_SENT: we figure out whether this is
really justified and (almost always) repack things down into a
ctf_stype_t at ctf_serialize time.
This allows us to eliminate the dynamic member paths from the iterators and
query functions in ctf-types.c in favour of always using the large-structure
vlen stuff for dynamic types (the diff is ugly but that's just because of the
volume of reindentation this calls for). This also means the large-structure
vlen stuff gets more heavily tested, which is nice because it was an almost
totally unused code path before now (it only kicked in for structures of size
>4GiB, and how often do you see those?)
The only extra complexity here is ctf_add_type. Back in the days of the
nondeduplicating linker this was called a ridiculous number of times for
countless identical copies of structures: eschewing the repeated lookups of the
dtd in ctf_add_member_offset and adding the members directly saved an amazing
amount of time. Now the nondeduplicating linker is gone, this is extreme
overoptimization: we can rip out the direct addition and use ctf_member_next and
ctf_add_member_offset, just like ctf_dedup_emit does.
We augment a ctf_add_type test to try adding a self-referential struct, the only
thing the ctf_add_type part of this change really perturbs.
This completes the elimination of dtd_u.
libctf/ChangeLog
2021-03-18 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h (ctf_dtdef_t) <dtu_members>: Remove.
<dtd_u>: Likewise.
(ctf_dmdef_t): Remove.
(struct ctf_next) <u.ctn_dmd>: Remove.
* ctf-create.c (INITIAL_VLEN): New, more-or-less arbitrary initial
vlen size.
(ctf_add_enum): Use it.
(ctf_dtd_delete): Do not free the (removed) dmd; remove string
refs from the vlen on struct deletion.
(ctf_add_struct_sized): Populate the vlen: do it by hand if
promoting forwards. Always populate the full-size
lsizehi/lsizelo members.
(ctf_add_union_sized): Likewise.
(ctf_add_member_offset): Set up the vlen rather than the dmd.
Expand it as needed, repointing string refs via
ctf_str_move_pending. Add the member names as pending strings.
Always populate the full-size lsizehi/lsizelo members.
(membadd): Remove, folding back into...
(ctf_add_type_internal): ... here, adding via an ordinary
ctf_add_struct_sized and _next iteration rather than doing
everything by hand.
* ctf-serialize.c (ctf_copy_smembers): Remove this...
(ctf_copy_lmembers): ... and this...
(ctf_emit_type_sect): ... folding into here. Figure out if a
ctf_stype_t is needed here, not in ctf_add_*_sized.
(ctf_type_sect_size): Figure out the ctf_stype_t stuff the same
way here.
* ctf-types.c (ctf_member_next): Remove the dmd path and always
use the vlen. Force large-structure usage for dynamic types.
(ctf_type_align): Likewise.
(ctf_member_info): Likewise.
(ctf_type_rvisit): Likewise.
* testsuite/libctf-regression/type-add-unnamed-struct-ctf.c: Add a
self-referential type to this test.
* testsuite/libctf-regression/type-add-unnamed-struct.c: Adjusted
accordingly.
* testsuite/libctf-regression/type-add-unnamed-struct.lk: Likewise.
2021-03-18 20:37:52 +08:00
|
|
|
lname ? lname : _("(unnamed member)"), ltype);
|
libctf: fix creation-time parent/child dict confusions
The fixes applied a few years ago to resolve confusions between parent and
child dicts at lookup time also apply in various forms to creation. In
general, if you have a type in a parent dict ctf_imported into a child and
you do something to it, and the parent dict is writable (created via
ctf_create, not opened via ctf_open*) it should work just the same to make
changes to that type via a child dict as it does to make the change
to the parent dict directly -- and nothing you're prohibited from doing
to the parent dict when done directly should be allowed just because
you're doing it via a child.
Specifically, the following don't work when doing things from the child, but
should:
- adding a member of a type in the parent to a struct or union in the
parent via ctf_add_member or ctf_add_member_offset: this yields
ECTF_BADID
- adding a member of a type in the parent to a struct or union in the
parent via ctf_add_member_encoded: this dumps core (!).
- adding an enumerand to an enumerator in the parent: this yields
ECTF_BADID
- setting the properties of an array in the parent via ctf_set_array;
this yields ECTF_BADID
Relatedly, some things work when doing things via a child that should fail,
yielding a CTF dictionary with invalid content (readable, but meaningless):
in particular, you can add a child type to a struct in the parent via
any of the ctf_add_member* family and nothing complains at all, even though
you should never be able to add references to children to parents (since any
given parent can be associated with many different children).
A family of tests is added to check each of these cases independently, since
some can result in coredumps and it would be nice to test the other cases
even if some dump core. They use a common library to do all the actual
work. The set of affected API calls was determined by code inspection
(auditing all calls to ctf_dtd_lookup): it's possible that I missed a few,
but I doubt it, since other cases use ctf_lookup* functions, which already
climb to the parent where appropriate.
libctf/ChangeLog:
PR libctf/30985
* ctf-create.c (ctf_dtd_lookup): Traverse to parents if necessary.
(ctf_set_array): Likewise. Report errors on the child; require
both parent and child to be writable.
(ctf_add_enumerator): Likewise.
(ctf_add_member_offset): Likewise. Prohibit addition of child types
to structs in the parent.
(ctf_add_member_encoded): Do not dereference a NULL dtd: report
ECTF_BADID instead.
* ctf-string.c (ctf_str_add_ref_internal): Report ENOMEM on the
dict if addition of a string ref fails.
* testsuite/libctf-writable/parent-child-dtd-crash-lib.c: New library.
* testsuite/libctf-writable/parent-child-dtd-enum.*: New test.
* testsuite/libctf-writable/parent-child-dtd-enumerator.*: New test.
* testsuite/libctf-writable/parent-child-dtd-member-encoded.*: New test.
* testsuite/libctf-writable/parent-child-dtd-member-offset.*: New test.
* testsuite/libctf-writable/parent-child-dtd-set-array.*: New test.
* testsuite/libctf-writable/parent-child-dtd-struct.*: New test.
* testsuite/libctf-writable/parent-child-dtd-union.*: New test.
2023-10-19 01:34:57 +08:00
|
|
|
return (ctf_set_errno (ofp, ECTF_INCOMPLETE));
|
libctf, ld: prohibit getting the size or alignment of forwards
C allows you to do only a very few things with entities of incomplete
type (as opposed to pointers to them): make pointers to them and give
them cv-quals, roughly. In particular you can't sizeof them and you
can't get their alignment.
We cannot impose all the requirements the standard imposes on CTF users,
because the deduplicator can transform any structure type into a forward
for the purposes of breaking cycles: so CTF type graphs can easily
contain things like arrays of forward type (if you want to figure out
their size or alignment, you need to chase down the types this forward
might be a forward to in child TU dicts: we will soon add API functions
to make doing this much easier).
Nonetheless, it is still meaningless to ask for the size or alignment of
forwards: but libctf didn't prohibit this and returned nonsense from
internal implementation details when you asked (it returned the kind of
the pointed-to type as both the size and alignment, because forwards
reuse ctt_type as a type kind, and ctt_type and ctt_size overlap). So
introduce a new error, ECTF_INCOMPLETE, which is returned when you try
to get the size or alignment of forwards: we also return it when you try
to do things that require libctf itself to get the size or alignment of
a forward, notably using a forward as an array index type (which C
should never do in any case) or adding forwards to structures without
specifying their offset explicitly.
The dumper will not emit size or alignment info for forwards any more.
(This should not be an API break since ctf_type_size and ctf_type_align
could both return errors before now: any code that isn't expecting error
returns is already potentially broken.)
include/ChangeLog
2021-01-05 Nick Alcock <nick.alcock@oracle.com>
* ctf-api.h (ECTF_INCOMPLETE): New.
(ECTF_NERR): Adjust.
ld/ChangeLog
2021-01-05 Nick Alcock <nick.alcock@oracle.com>
* testsuite/ld-ctf/conflicting-cycle-1.parent.d: Adjust for dumper
changes.
* testsuite/ld-ctf/cross-tu-cyclic-conflicting.d: Likewise.
* testsuite/ld-ctf/forward.c: New test...
* testsuite/ld-ctf/forward.d: ... and results.
libctf/ChangeLog
2021-01-05 Nick Alcock <nick.alcock@oracle.com>
* ctf-types.c (ctf_type_resolve): Improve comment.
(ctf_type_size): Yield ECTF_INCOMPLETE when applied to forwards.
Emit errors into the right dict.
(ctf_type_align): Likewise.
* ctf-create.c (ctf_add_member_offset): Yield ECTF_INCOMPLETE
when adding a member without explicit offset when this member, or
the previous member, is incomplete.
* ctf-dump.c (ctf_dump_format_type): Do not try to print the size of
forwards.
(ctf_dump_member): Do not try to print their alignment.
2021-01-05 21:25:56 +08:00
|
|
|
}
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
|
|
|
|
/* Round up the offset of the end of the last member to
|
|
|
|
the next byte boundary, convert 'off' to bytes, and
|
|
|
|
then round it up again to the next multiple of the
|
|
|
|
alignment required by the new member. Finally,
|
|
|
|
convert back to bits and store the result in
|
|
|
|
dmd_offset. Technically we could do more efficient
|
|
|
|
packing if the new member is a bit-field, but we're
|
|
|
|
the "compiler" and ANSI says we can do as we choose. */
|
|
|
|
|
Use CHAR_BIT instead of NBBY in libctf
On x86-64 Fedora 29, I tried to build a mingw-hosted gdb that targets
ppc-linux. You can do this with:
../binutils-gdb/configure --host=i686-w64-mingw32 --target=ppc-linux \
--disable-{binutils,gas,gold,gprof,ld}
The build failed with these errors in libctf:
In file included from ../../binutils-gdb/libctf/ctf-create.c:20:
../../binutils-gdb/libctf/ctf-create.c: In function 'ctf_add_encoded':
../../binutils-gdb/libctf/ctf-create.c:803:59: error: 'NBBY' undeclared (first use in this function)
dtd->dtd_data.ctt_size = clp2 (P2ROUNDUP (ep->cte_bits, NBBY) / NBBY);
^~~~
../../binutils-gdb/libctf/ctf-impl.h:254:42: note: in definition of macro 'P2ROUNDUP'
#define P2ROUNDUP(x, align) (-(-(x) & -(align)))
^~~~~
../../binutils-gdb/libctf/ctf-create.c:803:59: note: each undeclared identifier is reported only once for each function it appears in
dtd->dtd_data.ctt_size = clp2 (P2ROUNDUP (ep->cte_bits, NBBY) / NBBY);
^~~~
../../binutils-gdb/libctf/ctf-impl.h:254:42: note: in definition of macro 'P2ROUNDUP'
#define P2ROUNDUP(x, align) (-(-(x) & -(align)))
^~~~~
../../binutils-gdb/libctf/ctf-create.c: In function 'ctf_add_slice':
../../binutils-gdb/libctf/ctf-create.c:862:59: error: 'NBBY' undeclared (first use in this function)
dtd->dtd_data.ctt_size = clp2 (P2ROUNDUP (ep->cte_bits, NBBY) / NBBY);
^~~~
../../binutils-gdb/libctf/ctf-impl.h:254:42: note: in definition of macro 'P2ROUNDUP'
#define P2ROUNDUP(x, align) (-(-(x) & -(align)))
^~~~~
../../binutils-gdb/libctf/ctf-create.c: In function 'ctf_add_member_offset':
../../binutils-gdb/libctf/ctf-create.c:1341:21: error: 'NBBY' undeclared (first use in this function)
off += lsize * NBBY;
^~~~
../../binutils-gdb/libctf/ctf-create.c: In function 'ctf_add_type':
../../binutils-gdb/libctf/ctf-create.c:1822:16: warning: unknown conversion type character 'z' in format [-Wformat=]
ctf_dprintf ("Conflict for type %s against ID %lx: "
^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
../../binutils-gdb/libctf/ctf-create.c:1823:35: note: format string is defined here
"union size differs, old %zi, new %zi\n",
^
../../binutils-gdb/libctf/ctf-create.c:1822:16: warning: unknown conversion type character 'z' in format [-Wformat=]
ctf_dprintf ("Conflict for type %s against ID %lx: "
^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
../../binutils-gdb/libctf/ctf-create.c:1823:44: note: format string is defined here
"union size differs, old %zi, new %zi\n",
^
../../binutils-gdb/libctf/ctf-create.c:1822:16: warning: too many arguments for format [-Wformat-extra-args]
ctf_dprintf ("Conflict for type %s against ID %lx: "
^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
This patch fixes the actual errors in here. I did not try to fix the
printf warnings, though I think someone ought to.
Ok?
libctf/ChangeLog
2019-06-04 Tom Tromey <tromey@adacore.com>
* ctf-create.c (ctf_add_encoded, ctf_add_slice)
(ctf_add_member_offset): Use CHAR_BIT, not NBBY.
2019-06-05 02:16:57 +08:00
|
|
|
off = roundup (off, CHAR_BIT) / CHAR_BIT;
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
off = roundup (off, MAX (malign, 1));
|
libctf: eliminate dtd_u, part 5: structs / unions
Eliminate the dynamic member storage for structs and unions as we have
for other dynamic types. This is much like the previous enum
elimination, except that structs and unions are the only types for which
a full-sized ctf_type_t might be needed. Up to now, this decision has
been made in the individual ctf_add_{struct,union}_sized functions and
duplicated in ctf_add_member_offset. The vlen machinery lets us
simplify this, always allocating a ctf_lmember_t and setting the
dtd_data's ctt_size to CTF_LSIZE_SENT: we figure out whether this is
really justified and (almost always) repack things down into a
ctf_stype_t at ctf_serialize time.
This allows us to eliminate the dynamic member paths from the iterators and
query functions in ctf-types.c in favour of always using the large-structure
vlen stuff for dynamic types (the diff is ugly but that's just because of the
volume of reindentation this calls for). This also means the large-structure
vlen stuff gets more heavily tested, which is nice because it was an almost
totally unused code path before now (it only kicked in for structures of size
>4GiB, and how often do you see those?)
The only extra complexity here is ctf_add_type. Back in the days of the
nondeduplicating linker this was called a ridiculous number of times for
countless identical copies of structures: eschewing the repeated lookups of the
dtd in ctf_add_member_offset and adding the members directly saved an amazing
amount of time. Now the nondeduplicating linker is gone, this is extreme
overoptimization: we can rip out the direct addition and use ctf_member_next and
ctf_add_member_offset, just like ctf_dedup_emit does.
We augment a ctf_add_type test to try adding a self-referential struct, the only
thing the ctf_add_type part of this change really perturbs.
This completes the elimination of dtd_u.
libctf/ChangeLog
2021-03-18 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h (ctf_dtdef_t) <dtu_members>: Remove.
<dtd_u>: Likewise.
(ctf_dmdef_t): Remove.
(struct ctf_next) <u.ctn_dmd>: Remove.
* ctf-create.c (INITIAL_VLEN): New, more-or-less arbitrary initial
vlen size.
(ctf_add_enum): Use it.
(ctf_dtd_delete): Do not free the (removed) dmd; remove string
refs from the vlen on struct deletion.
(ctf_add_struct_sized): Populate the vlen: do it by hand if
promoting forwards. Always populate the full-size
lsizehi/lsizelo members.
(ctf_add_union_sized): Likewise.
(ctf_add_member_offset): Set up the vlen rather than the dmd.
Expand it as needed, repointing string refs via
ctf_str_move_pending. Add the member names as pending strings.
Always populate the full-size lsizehi/lsizelo members.
(membadd): Remove, folding back into...
(ctf_add_type_internal): ... here, adding via an ordinary
ctf_add_struct_sized and _next iteration rather than doing
everything by hand.
* ctf-serialize.c (ctf_copy_smembers): Remove this...
(ctf_copy_lmembers): ... and this...
(ctf_emit_type_sect): ... folding into here. Figure out if a
ctf_stype_t is needed here, not in ctf_add_*_sized.
(ctf_type_sect_size): Figure out the ctf_stype_t stuff the same
way here.
* ctf-types.c (ctf_member_next): Remove the dmd path and always
use the vlen. Force large-structure usage for dynamic types.
(ctf_type_align): Likewise.
(ctf_member_info): Likewise.
(ctf_type_rvisit): Likewise.
* testsuite/libctf-regression/type-add-unnamed-struct-ctf.c: Add a
self-referential type to this test.
* testsuite/libctf-regression/type-add-unnamed-struct.c: Adjusted
accordingly.
* testsuite/libctf-regression/type-add-unnamed-struct.lk: Likewise.
2021-03-18 20:37:52 +08:00
|
|
|
memb[vlen].ctlm_offsethi = CTF_OFFSET_TO_LMEMHI (off * CHAR_BIT);
|
|
|
|
memb[vlen].ctlm_offsetlo = CTF_OFFSET_TO_LMEMLO (off * CHAR_BIT);
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
ssize = off + msize;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
/* Specified offset in bits. */
|
|
|
|
|
libctf: eliminate dtd_u, part 5: structs / unions
Eliminate the dynamic member storage for structs and unions as we have
for other dynamic types. This is much like the previous enum
elimination, except that structs and unions are the only types for which
a full-sized ctf_type_t might be needed. Up to now, this decision has
been made in the individual ctf_add_{struct,union}_sized functions and
duplicated in ctf_add_member_offset. The vlen machinery lets us
simplify this, always allocating a ctf_lmember_t and setting the
dtd_data's ctt_size to CTF_LSIZE_SENT: we figure out whether this is
really justified and (almost always) repack things down into a
ctf_stype_t at ctf_serialize time.
This allows us to eliminate the dynamic member paths from the iterators and
query functions in ctf-types.c in favour of always using the large-structure
vlen stuff for dynamic types (the diff is ugly but that's just because of the
volume of reindentation this calls for). This also means the large-structure
vlen stuff gets more heavily tested, which is nice because it was an almost
totally unused code path before now (it only kicked in for structures of size
>4GiB, and how often do you see those?)
The only extra complexity here is ctf_add_type. Back in the days of the
nondeduplicating linker this was called a ridiculous number of times for
countless identical copies of structures: eschewing the repeated lookups of the
dtd in ctf_add_member_offset and adding the members directly saved an amazing
amount of time. Now the nondeduplicating linker is gone, this is extreme
overoptimization: we can rip out the direct addition and use ctf_member_next and
ctf_add_member_offset, just like ctf_dedup_emit does.
We augment a ctf_add_type test to try adding a self-referential struct, the only
thing the ctf_add_type part of this change really perturbs.
This completes the elimination of dtd_u.
libctf/ChangeLog
2021-03-18 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h (ctf_dtdef_t) <dtu_members>: Remove.
<dtd_u>: Likewise.
(ctf_dmdef_t): Remove.
(struct ctf_next) <u.ctn_dmd>: Remove.
* ctf-create.c (INITIAL_VLEN): New, more-or-less arbitrary initial
vlen size.
(ctf_add_enum): Use it.
(ctf_dtd_delete): Do not free the (removed) dmd; remove string
refs from the vlen on struct deletion.
(ctf_add_struct_sized): Populate the vlen: do it by hand if
promoting forwards. Always populate the full-size
lsizehi/lsizelo members.
(ctf_add_union_sized): Likewise.
(ctf_add_member_offset): Set up the vlen rather than the dmd.
Expand it as needed, repointing string refs via
ctf_str_move_pending. Add the member names as pending strings.
Always populate the full-size lsizehi/lsizelo members.
(membadd): Remove, folding back into...
(ctf_add_type_internal): ... here, adding via an ordinary
ctf_add_struct_sized and _next iteration rather than doing
everything by hand.
* ctf-serialize.c (ctf_copy_smembers): Remove this...
(ctf_copy_lmembers): ... and this...
(ctf_emit_type_sect): ... folding into here. Figure out if a
ctf_stype_t is needed here, not in ctf_add_*_sized.
(ctf_type_sect_size): Figure out the ctf_stype_t stuff the same
way here.
* ctf-types.c (ctf_member_next): Remove the dmd path and always
use the vlen. Force large-structure usage for dynamic types.
(ctf_type_align): Likewise.
(ctf_member_info): Likewise.
(ctf_type_rvisit): Likewise.
* testsuite/libctf-regression/type-add-unnamed-struct-ctf.c: Add a
self-referential type to this test.
* testsuite/libctf-regression/type-add-unnamed-struct.c: Adjusted
accordingly.
* testsuite/libctf-regression/type-add-unnamed-struct.lk: Likewise.
2021-03-18 20:37:52 +08:00
|
|
|
memb[vlen].ctlm_offsethi = CTF_OFFSET_TO_LMEMHI (bit_offset);
|
|
|
|
memb[vlen].ctlm_offsetlo = CTF_OFFSET_TO_LMEMLO (bit_offset);
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
ssize = ctf_get_ctt_size (fp, &dtd->dtd_data, NULL, NULL);
|
Use CHAR_BIT instead of NBBY in libctf
On x86-64 Fedora 29, I tried to build a mingw-hosted gdb that targets
ppc-linux. You can do this with:
../binutils-gdb/configure --host=i686-w64-mingw32 --target=ppc-linux \
--disable-{binutils,gas,gold,gprof,ld}
The build failed with these errors in libctf:
In file included from ../../binutils-gdb/libctf/ctf-create.c:20:
../../binutils-gdb/libctf/ctf-create.c: In function 'ctf_add_encoded':
../../binutils-gdb/libctf/ctf-create.c:803:59: error: 'NBBY' undeclared (first use in this function)
dtd->dtd_data.ctt_size = clp2 (P2ROUNDUP (ep->cte_bits, NBBY) / NBBY);
^~~~
../../binutils-gdb/libctf/ctf-impl.h:254:42: note: in definition of macro 'P2ROUNDUP'
#define P2ROUNDUP(x, align) (-(-(x) & -(align)))
^~~~~
../../binutils-gdb/libctf/ctf-create.c:803:59: note: each undeclared identifier is reported only once for each function it appears in
dtd->dtd_data.ctt_size = clp2 (P2ROUNDUP (ep->cte_bits, NBBY) / NBBY);
^~~~
../../binutils-gdb/libctf/ctf-impl.h:254:42: note: in definition of macro 'P2ROUNDUP'
#define P2ROUNDUP(x, align) (-(-(x) & -(align)))
^~~~~
../../binutils-gdb/libctf/ctf-create.c: In function 'ctf_add_slice':
../../binutils-gdb/libctf/ctf-create.c:862:59: error: 'NBBY' undeclared (first use in this function)
dtd->dtd_data.ctt_size = clp2 (P2ROUNDUP (ep->cte_bits, NBBY) / NBBY);
^~~~
../../binutils-gdb/libctf/ctf-impl.h:254:42: note: in definition of macro 'P2ROUNDUP'
#define P2ROUNDUP(x, align) (-(-(x) & -(align)))
^~~~~
../../binutils-gdb/libctf/ctf-create.c: In function 'ctf_add_member_offset':
../../binutils-gdb/libctf/ctf-create.c:1341:21: error: 'NBBY' undeclared (first use in this function)
off += lsize * NBBY;
^~~~
../../binutils-gdb/libctf/ctf-create.c: In function 'ctf_add_type':
../../binutils-gdb/libctf/ctf-create.c:1822:16: warning: unknown conversion type character 'z' in format [-Wformat=]
ctf_dprintf ("Conflict for type %s against ID %lx: "
^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
../../binutils-gdb/libctf/ctf-create.c:1823:35: note: format string is defined here
"union size differs, old %zi, new %zi\n",
^
../../binutils-gdb/libctf/ctf-create.c:1822:16: warning: unknown conversion type character 'z' in format [-Wformat=]
ctf_dprintf ("Conflict for type %s against ID %lx: "
^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
../../binutils-gdb/libctf/ctf-create.c:1823:44: note: format string is defined here
"union size differs, old %zi, new %zi\n",
^
../../binutils-gdb/libctf/ctf-create.c:1822:16: warning: too many arguments for format [-Wformat-extra-args]
ctf_dprintf ("Conflict for type %s against ID %lx: "
^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
This patch fixes the actual errors in here. I did not try to fix the
printf warnings, though I think someone ought to.
Ok?
libctf/ChangeLog
2019-06-04 Tom Tromey <tromey@adacore.com>
* ctf-create.c (ctf_add_encoded, ctf_add_slice)
(ctf_add_member_offset): Use CHAR_BIT, not NBBY.
2019-06-05 02:16:57 +08:00
|
|
|
ssize = MAX (ssize, ((signed) bit_offset / CHAR_BIT) + msize);
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
libctf: eliminate dtd_u, part 5: structs / unions
Eliminate the dynamic member storage for structs and unions as we have
for other dynamic types. This is much like the previous enum
elimination, except that structs and unions are the only types for which
a full-sized ctf_type_t might be needed. Up to now, this decision has
been made in the individual ctf_add_{struct,union}_sized functions and
duplicated in ctf_add_member_offset. The vlen machinery lets us
simplify this, always allocating a ctf_lmember_t and setting the
dtd_data's ctt_size to CTF_LSIZE_SENT: we figure out whether this is
really justified and (almost always) repack things down into a
ctf_stype_t at ctf_serialize time.
This allows us to eliminate the dynamic member paths from the iterators and
query functions in ctf-types.c in favour of always using the large-structure
vlen stuff for dynamic types (the diff is ugly but that's just because of the
volume of reindentation this calls for). This also means the large-structure
vlen stuff gets more heavily tested, which is nice because it was an almost
totally unused code path before now (it only kicked in for structures of size
>4GiB, and how often do you see those?)
The only extra complexity here is ctf_add_type. Back in the days of the
nondeduplicating linker this was called a ridiculous number of times for
countless identical copies of structures: eschewing the repeated lookups of the
dtd in ctf_add_member_offset and adding the members directly saved an amazing
amount of time. Now the nondeduplicating linker is gone, this is extreme
overoptimization: we can rip out the direct addition and use ctf_member_next and
ctf_add_member_offset, just like ctf_dedup_emit does.
We augment a ctf_add_type test to try adding a self-referential struct, the only
thing the ctf_add_type part of this change really perturbs.
This completes the elimination of dtd_u.
libctf/ChangeLog
2021-03-18 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h (ctf_dtdef_t) <dtu_members>: Remove.
<dtd_u>: Likewise.
(ctf_dmdef_t): Remove.
(struct ctf_next) <u.ctn_dmd>: Remove.
* ctf-create.c (INITIAL_VLEN): New, more-or-less arbitrary initial
vlen size.
(ctf_add_enum): Use it.
(ctf_dtd_delete): Do not free the (removed) dmd; remove string
refs from the vlen on struct deletion.
(ctf_add_struct_sized): Populate the vlen: do it by hand if
promoting forwards. Always populate the full-size
lsizehi/lsizelo members.
(ctf_add_union_sized): Likewise.
(ctf_add_member_offset): Set up the vlen rather than the dmd.
Expand it as needed, repointing string refs via
ctf_str_move_pending. Add the member names as pending strings.
Always populate the full-size lsizehi/lsizelo members.
(membadd): Remove, folding back into...
(ctf_add_type_internal): ... here, adding via an ordinary
ctf_add_struct_sized and _next iteration rather than doing
everything by hand.
* ctf-serialize.c (ctf_copy_smembers): Remove this...
(ctf_copy_lmembers): ... and this...
(ctf_emit_type_sect): ... folding into here. Figure out if a
ctf_stype_t is needed here, not in ctf_add_*_sized.
(ctf_type_sect_size): Figure out the ctf_stype_t stuff the same
way here.
* ctf-types.c (ctf_member_next): Remove the dmd path and always
use the vlen. Force large-structure usage for dynamic types.
(ctf_type_align): Likewise.
(ctf_member_info): Likewise.
(ctf_type_rvisit): Likewise.
* testsuite/libctf-regression/type-add-unnamed-struct-ctf.c: Add a
self-referential type to this test.
* testsuite/libctf-regression/type-add-unnamed-struct.c: Adjusted
accordingly.
* testsuite/libctf-regression/type-add-unnamed-struct.lk: Likewise.
2021-03-18 20:37:52 +08:00
|
|
|
memb[vlen].ctlm_offsethi = 0;
|
|
|
|
memb[vlen].ctlm_offsetlo = 0;
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
ssize = ctf_get_ctt_size (fp, &dtd->dtd_data, NULL, NULL);
|
|
|
|
ssize = MAX (ssize, msize);
|
|
|
|
}
|
|
|
|
|
libctf: eliminate dtd_u, part 5: structs / unions
Eliminate the dynamic member storage for structs and unions as we have
for other dynamic types. This is much like the previous enum
elimination, except that structs and unions are the only types for which
a full-sized ctf_type_t might be needed. Up to now, this decision has
been made in the individual ctf_add_{struct,union}_sized functions and
duplicated in ctf_add_member_offset. The vlen machinery lets us
simplify this, always allocating a ctf_lmember_t and setting the
dtd_data's ctt_size to CTF_LSIZE_SENT: we figure out whether this is
really justified and (almost always) repack things down into a
ctf_stype_t at ctf_serialize time.
This allows us to eliminate the dynamic member paths from the iterators and
query functions in ctf-types.c in favour of always using the large-structure
vlen stuff for dynamic types (the diff is ugly but that's just because of the
volume of reindentation this calls for). This also means the large-structure
vlen stuff gets more heavily tested, which is nice because it was an almost
totally unused code path before now (it only kicked in for structures of size
>4GiB, and how often do you see those?)
The only extra complexity here is ctf_add_type. Back in the days of the
nondeduplicating linker this was called a ridiculous number of times for
countless identical copies of structures: eschewing the repeated lookups of the
dtd in ctf_add_member_offset and adding the members directly saved an amazing
amount of time. Now the nondeduplicating linker is gone, this is extreme
overoptimization: we can rip out the direct addition and use ctf_member_next and
ctf_add_member_offset, just like ctf_dedup_emit does.
We augment a ctf_add_type test to try adding a self-referential struct, the only
thing the ctf_add_type part of this change really perturbs.
This completes the elimination of dtd_u.
libctf/ChangeLog
2021-03-18 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h (ctf_dtdef_t) <dtu_members>: Remove.
<dtd_u>: Likewise.
(ctf_dmdef_t): Remove.
(struct ctf_next) <u.ctn_dmd>: Remove.
* ctf-create.c (INITIAL_VLEN): New, more-or-less arbitrary initial
vlen size.
(ctf_add_enum): Use it.
(ctf_dtd_delete): Do not free the (removed) dmd; remove string
refs from the vlen on struct deletion.
(ctf_add_struct_sized): Populate the vlen: do it by hand if
promoting forwards. Always populate the full-size
lsizehi/lsizelo members.
(ctf_add_union_sized): Likewise.
(ctf_add_member_offset): Set up the vlen rather than the dmd.
Expand it as needed, repointing string refs via
ctf_str_move_pending. Add the member names as pending strings.
Always populate the full-size lsizehi/lsizelo members.
(membadd): Remove, folding back into...
(ctf_add_type_internal): ... here, adding via an ordinary
ctf_add_struct_sized and _next iteration rather than doing
everything by hand.
* ctf-serialize.c (ctf_copy_smembers): Remove this...
(ctf_copy_lmembers): ... and this...
(ctf_emit_type_sect): ... folding into here. Figure out if a
ctf_stype_t is needed here, not in ctf_add_*_sized.
(ctf_type_sect_size): Figure out the ctf_stype_t stuff the same
way here.
* ctf-types.c (ctf_member_next): Remove the dmd path and always
use the vlen. Force large-structure usage for dynamic types.
(ctf_type_align): Likewise.
(ctf_member_info): Likewise.
(ctf_type_rvisit): Likewise.
* testsuite/libctf-regression/type-add-unnamed-struct-ctf.c: Add a
self-referential type to this test.
* testsuite/libctf-regression/type-add-unnamed-struct.c: Adjusted
accordingly.
* testsuite/libctf-regression/type-add-unnamed-struct.lk: Likewise.
2021-03-18 20:37:52 +08:00
|
|
|
dtd->dtd_data.ctt_size = CTF_LSIZE_SENT;
|
|
|
|
dtd->dtd_data.ctt_lsizehi = CTF_SIZE_TO_LSIZE_HI (ssize);
|
|
|
|
dtd->dtd_data.ctt_lsizelo = CTF_SIZE_TO_LSIZE_LO (ssize);
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
dtd->dtd_data.ctt_info = CTF_TYPE_INFO (kind, root, vlen + 1);
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
int
|
libctf, include, binutils, gdb, ld: rename ctf_file_t to ctf_dict_t
The naming of the ctf_file_t type in libctf is a historical curiosity.
Back in the Solaris days, CTF dictionaries were originally generated as
a separate file and then (sometimes) merged into objects: hence the
datatype was named ctf_file_t, and known as a "CTF file". Nowadays, raw
CTF is essentially never written to a file on its own, and the datatype
changed name to a "CTF dictionary" years ago. So the term "CTF file"
refers to something that is never a file! This is at best confusing.
The type has also historically been known as a 'CTF container", which is
even more confusing now that we have CTF archives which are *also* a
sort of container (they contain CTF dictionaries), but which are never
referred to as containers in the source code.
So fix this by completing the renaming, renaming ctf_file_t to
ctf_dict_t throughout, and renaming those few functions that refer to
CTF files by name (keeping compatibility aliases) to refer to dicts
instead. Old users who still refer to ctf_file_t will see (harmless)
pointer-compatibility warnings at compile time, but the ABI is unchanged
(since C doesn't mangle names, and ctf_file_t was always an opaque type)
and things will still compile fine as long as -Werror is not specified.
All references to CTF containers and CTF files in the source code are
fixed to refer to CTF dicts instead.
Further (smaller) renamings of annoyingly-named functions to come, as
part of the process of souping up queries across whole archives at once
(needed for the function info and data object sections).
binutils/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* objdump.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_ctf): Likewise. Use ctf_dict_close, not ctf_file_close.
* readelf.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_section_as_ctf): Likewise. Use ctf_dict_close, not
ctf_file_close.
gdb/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctfread.c: Change uses of ctf_file_t to ctf_dict_t.
(ctf_fp_info::~ctf_fp_info): Call ctf_dict_close, not ctf_file_close.
include/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-api.h (ctf_file_t): Rename to...
(ctf_dict_t): ... this. Keep ctf_file_t around for compatibility.
(struct ctf_file): Likewise rename to...
(struct ctf_dict): ... this.
(ctf_file_close): Rename to...
(ctf_dict_close): ... this, keeping compatibility function.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this, keeping compatibility function.
All callers adjusted.
* ctf.h: Rename references to ctf_file_t to ctf_dict_t.
(struct ctf_archive) <ctfa_nfiles>: Rename to...
<ctfa_ndicts>: ... this.
ld/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ldlang.c (ctf_output): This is a ctf_dict_t now.
(lang_ctf_errs_warnings): Rename ctf_file_t to ctf_dict_t.
(ldlang_open_ctf): Adjust comment.
(lang_merge_ctf): Use ctf_dict_close, not ctf_file_close.
* ldelfgen.h (ldelf_examine_strtab_for_ctf): Rename ctf_file_t to
ctf_dict_t. Change opaque declaration accordingly.
* ldelfgen.c (ldelf_examine_strtab_for_ctf): Adjust.
* ldemul.h (examine_strtab_for_ctf): Likewise.
(ldemul_examine_strtab_for_ctf): Likewise.
* ldeuml.c (ldemul_examine_strtab_for_ctf): Likewise.
libctf/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h: Rename ctf_file_t to ctf_dict_t: all declarations
adjusted.
(ctf_fileops): Rename to...
(ctf_dictops): ... this.
(ctf_dedup_t) <cd_id_to_file_t>: Rename to...
<cd_id_to_dict_t>: ... this.
(ctf_file_t): Fix outdated comment.
<ctf_fileops>: Rename to...
<ctf_dictops>: ... this.
(struct ctf_archive_internal) <ctfi_file>: Rename to...
<ctfi_dict>: ... this.
* ctf-archive.c: Rename ctf_file_t to ctf_dict_t.
Rename ctf_archive.ctfa_nfiles to ctfa_ndicts.
Rename ctf_file_close to ctf_dict_close. All users adjusted.
* ctf-create.c: Likewise. Refer to CTF dicts, not CTF containers.
(ctf_bundle_t) <ctb_file>: Rename to...
<ctb_dict): ... this.
* ctf-decl.c: Rename ctf_file_t to ctf_dict_t.
* ctf-dedup.c: Likewise. Rename ctf_file_close to
ctf_dict_close. Refer to CTF dicts, not CTF containers.
* ctf-dump.c: Likewise.
* ctf-error.c: Likewise.
* ctf-hash.c: Likewise.
* ctf-inlines.h: Likewise.
* ctf-labels.c: Likewise.
* ctf-link.c: Likewise.
* ctf-lookup.c: Likewise.
* ctf-open-bfd.c: Likewise.
* ctf-string.c: Likewise.
* ctf-subr.c: Likewise.
* ctf-types.c: Likewise.
* ctf-util.c: Likewise.
* ctf-open.c: Likewise.
(ctf_file_close): Rename to...
(ctf_dict_close): ...this.
(ctf_file_close): New trivial wrapper around ctf_dict_close, for
compatibility.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this.
(ctf_parent_file): New trivial wrapper around ctf_parent_dict, for
compatibility.
* libctf.ver: Add ctf_dict_close and ctf_parent_dict.
2020-11-20 21:34:04 +08:00
|
|
|
ctf_add_member_encoded (ctf_dict_t *fp, ctf_id_t souid, const char *name,
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
ctf_id_t type, unsigned long bit_offset,
|
|
|
|
const ctf_encoding_t encoding)
|
|
|
|
{
|
|
|
|
ctf_dtdef_t *dtd = ctf_dtd_lookup (fp, type);
|
libctf: fix creation-time parent/child dict confusions
The fixes applied a few years ago to resolve confusions between parent and
child dicts at lookup time also apply in various forms to creation. In
general, if you have a type in a parent dict ctf_imported into a child and
you do something to it, and the parent dict is writable (created via
ctf_create, not opened via ctf_open*) it should work just the same to make
changes to that type via a child dict as it does to make the change
to the parent dict directly -- and nothing you're prohibited from doing
to the parent dict when done directly should be allowed just because
you're doing it via a child.
Specifically, the following don't work when doing things from the child, but
should:
- adding a member of a type in the parent to a struct or union in the
parent via ctf_add_member or ctf_add_member_offset: this yields
ECTF_BADID
- adding a member of a type in the parent to a struct or union in the
parent via ctf_add_member_encoded: this dumps core (!).
- adding an enumerand to an enumerator in the parent: this yields
ECTF_BADID
- setting the properties of an array in the parent via ctf_set_array;
this yields ECTF_BADID
Relatedly, some things work when doing things via a child that should fail,
yielding a CTF dictionary with invalid content (readable, but meaningless):
in particular, you can add a child type to a struct in the parent via
any of the ctf_add_member* family and nothing complains at all, even though
you should never be able to add references to children to parents (since any
given parent can be associated with many different children).
A family of tests is added to check each of these cases independently, since
some can result in coredumps and it would be nice to test the other cases
even if some dump core. They use a common library to do all the actual
work. The set of affected API calls was determined by code inspection
(auditing all calls to ctf_dtd_lookup): it's possible that I missed a few,
but I doubt it, since other cases use ctf_lookup* functions, which already
climb to the parent where appropriate.
libctf/ChangeLog:
PR libctf/30985
* ctf-create.c (ctf_dtd_lookup): Traverse to parents if necessary.
(ctf_set_array): Likewise. Report errors on the child; require
both parent and child to be writable.
(ctf_add_enumerator): Likewise.
(ctf_add_member_offset): Likewise. Prohibit addition of child types
to structs in the parent.
(ctf_add_member_encoded): Do not dereference a NULL dtd: report
ECTF_BADID instead.
* ctf-string.c (ctf_str_add_ref_internal): Report ENOMEM on the
dict if addition of a string ref fails.
* testsuite/libctf-writable/parent-child-dtd-crash-lib.c: New library.
* testsuite/libctf-writable/parent-child-dtd-enum.*: New test.
* testsuite/libctf-writable/parent-child-dtd-enumerator.*: New test.
* testsuite/libctf-writable/parent-child-dtd-member-encoded.*: New test.
* testsuite/libctf-writable/parent-child-dtd-member-offset.*: New test.
* testsuite/libctf-writable/parent-child-dtd-set-array.*: New test.
* testsuite/libctf-writable/parent-child-dtd-struct.*: New test.
* testsuite/libctf-writable/parent-child-dtd-union.*: New test.
2023-10-19 01:34:57 +08:00
|
|
|
int kind;
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
int otype = type;
|
|
|
|
|
libctf: fix creation-time parent/child dict confusions
The fixes applied a few years ago to resolve confusions between parent and
child dicts at lookup time also apply in various forms to creation. In
general, if you have a type in a parent dict ctf_imported into a child and
you do something to it, and the parent dict is writable (created via
ctf_create, not opened via ctf_open*) it should work just the same to make
changes to that type via a child dict as it does to make the change
to the parent dict directly -- and nothing you're prohibited from doing
to the parent dict when done directly should be allowed just because
you're doing it via a child.
Specifically, the following don't work when doing things from the child, but
should:
- adding a member of a type in the parent to a struct or union in the
parent via ctf_add_member or ctf_add_member_offset: this yields
ECTF_BADID
- adding a member of a type in the parent to a struct or union in the
parent via ctf_add_member_encoded: this dumps core (!).
- adding an enumerand to an enumerator in the parent: this yields
ECTF_BADID
- setting the properties of an array in the parent via ctf_set_array;
this yields ECTF_BADID
Relatedly, some things work when doing things via a child that should fail,
yielding a CTF dictionary with invalid content (readable, but meaningless):
in particular, you can add a child type to a struct in the parent via
any of the ctf_add_member* family and nothing complains at all, even though
you should never be able to add references to children to parents (since any
given parent can be associated with many different children).
A family of tests is added to check each of these cases independently, since
some can result in coredumps and it would be nice to test the other cases
even if some dump core. They use a common library to do all the actual
work. The set of affected API calls was determined by code inspection
(auditing all calls to ctf_dtd_lookup): it's possible that I missed a few,
but I doubt it, since other cases use ctf_lookup* functions, which already
climb to the parent where appropriate.
libctf/ChangeLog:
PR libctf/30985
* ctf-create.c (ctf_dtd_lookup): Traverse to parents if necessary.
(ctf_set_array): Likewise. Report errors on the child; require
both parent and child to be writable.
(ctf_add_enumerator): Likewise.
(ctf_add_member_offset): Likewise. Prohibit addition of child types
to structs in the parent.
(ctf_add_member_encoded): Do not dereference a NULL dtd: report
ECTF_BADID instead.
* ctf-string.c (ctf_str_add_ref_internal): Report ENOMEM on the
dict if addition of a string ref fails.
* testsuite/libctf-writable/parent-child-dtd-crash-lib.c: New library.
* testsuite/libctf-writable/parent-child-dtd-enum.*: New test.
* testsuite/libctf-writable/parent-child-dtd-enumerator.*: New test.
* testsuite/libctf-writable/parent-child-dtd-member-encoded.*: New test.
* testsuite/libctf-writable/parent-child-dtd-member-offset.*: New test.
* testsuite/libctf-writable/parent-child-dtd-set-array.*: New test.
* testsuite/libctf-writable/parent-child-dtd-struct.*: New test.
* testsuite/libctf-writable/parent-child-dtd-union.*: New test.
2023-10-19 01:34:57 +08:00
|
|
|
if (dtd == NULL)
|
|
|
|
return (ctf_set_errno (fp, ECTF_BADID));
|
|
|
|
|
|
|
|
kind = LCTF_INFO_KIND (fp, dtd->dtd_data.ctt_info);
|
|
|
|
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
if ((kind != CTF_K_INTEGER) && (kind != CTF_K_FLOAT) && (kind != CTF_K_ENUM))
|
|
|
|
return (ctf_set_errno (fp, ECTF_NOTINTFP));
|
|
|
|
|
|
|
|
if ((type = ctf_add_slice (fp, CTF_ADD_NONROOT, otype, &encoding)) == CTF_ERR)
|
libctf: fix a number of build problems found on Solaris and NetBSD
- Use of nonportable <endian.h>
- Use of qsort_r
- Use of zlib without appropriate magic to pull in the binutils zlib
- Use of off64_t without checking (fixed by dropping the unused fields
that need off64_t entirely)
- signedness problems due to long being too short a type on 32-bit
platforms: ctf_id_t is now 'unsigned long', and CTF_ERR must be
used only for functions that return ctf_id_t
- One lingering use of bzero() and of <sys/errno.h>
All fixed, using code from gnulib where possible.
Relatedly, set cts_size in a couple of places it was missed
(string table and symbol table loading upon ctf_bfdopen()).
binutils/
* objdump.c (make_ctfsect): Drop cts_type, cts_flags, and
cts_offset.
* readelf.c (shdr_to_ctf_sect): Likewise.
include/
* ctf-api.h (ctf_sect_t): Drop cts_type, cts_flags, and cts_offset.
(ctf_id_t): This is now an unsigned type.
(CTF_ERR): Cast it to ctf_id_t. Note that it should only be used
for ctf_id_t-returning functions.
libctf/
* Makefile.am (ZLIB): New.
(ZLIBINC): Likewise.
(AM_CFLAGS): Use them.
(libctf_a_LIBADD): New, for LIBOBJS.
* configure.ac: Check for zlib, endian.h, and qsort_r.
* ctf-endian.h: New, providing htole64 and le64toh.
* swap.h: Code style fixes.
(bswap_identity_64): New.
* qsort_r.c: New, from gnulib (with one added #include).
* ctf-decls.h: New, providing a conditional qsort_r declaration,
and unconditional definitions of MIN and MAX.
* ctf-impl.h: Use it. Do not use <sys/errno.h>.
(ctf_set_errno): Now returns unsigned long.
* ctf-util.c (ctf_set_errno): Adjust here too.
* ctf-archive.c: Use ctf-endian.h.
(ctf_arc_open_by_offset): Use memset, not bzero. Drop cts_type,
cts_flags and cts_offset.
(ctf_arc_write): Drop debugging dependent on the size of off_t.
* ctf-create.c: Provide a definition of roundup if not defined.
(ctf_create): Drop cts_type, cts_flags and cts_offset.
(ctf_add_reftype): Do not check if type IDs are below zero.
(ctf_add_slice): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_member_offset): Cast error-returning ssize_t's to size_t
when known error-free. Drop CTF_ERR usage for functions returning
int.
(ctf_add_member_encoded): Drop CTF_ERR usage for functions returning
int.
(ctf_add_variable): Likewise.
(enumcmp): Likewise.
(enumadd): Likewise.
(membcmp): Likewise.
(ctf_add_type): Likewise. Cast error-returning ssize_t's to size_t
when known error-free.
* ctf-dump.c (ctf_is_slice): Drop CTF_ERR usage for functions
returning int: use CTF_ERR for functions returning ctf_type_id.
(ctf_dump_label): Likewise.
(ctf_dump_objts): Likewise.
* ctf-labels.c (ctf_label_topmost): Likewise.
(ctf_label_iter): Likewise.
(ctf_label_info): Likewise.
* ctf-lookup.c (ctf_func_args): Likewise.
* ctf-open.c (upgrade_types): Cast to size_t where appropriate.
(ctf_bufopen): Likewise. Use zlib types as needed.
* ctf-types.c (ctf_member_iter): Drop CTF_ERR usage for functions
returning int.
(ctf_enum_iter): Likewise.
(ctf_type_size): Likewise.
(ctf_type_align): Likewise. Cast to size_t where appropriate.
(ctf_type_kind_unsliced): Likewise.
(ctf_type_kind): Likewise.
(ctf_type_encoding): Likewise.
(ctf_member_info): Likewise.
(ctf_array_info): Likewise.
(ctf_enum_value): Likewise.
(ctf_type_rvisit): Likewise.
* ctf-open-bfd.c (ctf_bfdopen): Drop cts_type, cts_flags and
cts_offset.
(ctf_simple_open): Likewise.
(ctf_bfdopen_ctfsect): Likewise. Set cts_size properly.
* Makefile.in: Regenerate.
* aclocal.m4: Likewise.
* config.h: Likewise.
* configure: Likewise.
2019-05-31 17:10:51 +08:00
|
|
|
return -1; /* errno is set for us. */
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
|
|
|
|
return ctf_add_member_offset (fp, souid, name, type, bit_offset);
|
|
|
|
}
|
|
|
|
|
|
|
|
int
|
libctf, include, binutils, gdb, ld: rename ctf_file_t to ctf_dict_t
The naming of the ctf_file_t type in libctf is a historical curiosity.
Back in the Solaris days, CTF dictionaries were originally generated as
a separate file and then (sometimes) merged into objects: hence the
datatype was named ctf_file_t, and known as a "CTF file". Nowadays, raw
CTF is essentially never written to a file on its own, and the datatype
changed name to a "CTF dictionary" years ago. So the term "CTF file"
refers to something that is never a file! This is at best confusing.
The type has also historically been known as a 'CTF container", which is
even more confusing now that we have CTF archives which are *also* a
sort of container (they contain CTF dictionaries), but which are never
referred to as containers in the source code.
So fix this by completing the renaming, renaming ctf_file_t to
ctf_dict_t throughout, and renaming those few functions that refer to
CTF files by name (keeping compatibility aliases) to refer to dicts
instead. Old users who still refer to ctf_file_t will see (harmless)
pointer-compatibility warnings at compile time, but the ABI is unchanged
(since C doesn't mangle names, and ctf_file_t was always an opaque type)
and things will still compile fine as long as -Werror is not specified.
All references to CTF containers and CTF files in the source code are
fixed to refer to CTF dicts instead.
Further (smaller) renamings of annoyingly-named functions to come, as
part of the process of souping up queries across whole archives at once
(needed for the function info and data object sections).
binutils/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* objdump.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_ctf): Likewise. Use ctf_dict_close, not ctf_file_close.
* readelf.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_section_as_ctf): Likewise. Use ctf_dict_close, not
ctf_file_close.
gdb/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctfread.c: Change uses of ctf_file_t to ctf_dict_t.
(ctf_fp_info::~ctf_fp_info): Call ctf_dict_close, not ctf_file_close.
include/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-api.h (ctf_file_t): Rename to...
(ctf_dict_t): ... this. Keep ctf_file_t around for compatibility.
(struct ctf_file): Likewise rename to...
(struct ctf_dict): ... this.
(ctf_file_close): Rename to...
(ctf_dict_close): ... this, keeping compatibility function.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this, keeping compatibility function.
All callers adjusted.
* ctf.h: Rename references to ctf_file_t to ctf_dict_t.
(struct ctf_archive) <ctfa_nfiles>: Rename to...
<ctfa_ndicts>: ... this.
ld/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ldlang.c (ctf_output): This is a ctf_dict_t now.
(lang_ctf_errs_warnings): Rename ctf_file_t to ctf_dict_t.
(ldlang_open_ctf): Adjust comment.
(lang_merge_ctf): Use ctf_dict_close, not ctf_file_close.
* ldelfgen.h (ldelf_examine_strtab_for_ctf): Rename ctf_file_t to
ctf_dict_t. Change opaque declaration accordingly.
* ldelfgen.c (ldelf_examine_strtab_for_ctf): Adjust.
* ldemul.h (examine_strtab_for_ctf): Likewise.
(ldemul_examine_strtab_for_ctf): Likewise.
* ldeuml.c (ldemul_examine_strtab_for_ctf): Likewise.
libctf/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h: Rename ctf_file_t to ctf_dict_t: all declarations
adjusted.
(ctf_fileops): Rename to...
(ctf_dictops): ... this.
(ctf_dedup_t) <cd_id_to_file_t>: Rename to...
<cd_id_to_dict_t>: ... this.
(ctf_file_t): Fix outdated comment.
<ctf_fileops>: Rename to...
<ctf_dictops>: ... this.
(struct ctf_archive_internal) <ctfi_file>: Rename to...
<ctfi_dict>: ... this.
* ctf-archive.c: Rename ctf_file_t to ctf_dict_t.
Rename ctf_archive.ctfa_nfiles to ctfa_ndicts.
Rename ctf_file_close to ctf_dict_close. All users adjusted.
* ctf-create.c: Likewise. Refer to CTF dicts, not CTF containers.
(ctf_bundle_t) <ctb_file>: Rename to...
<ctb_dict): ... this.
* ctf-decl.c: Rename ctf_file_t to ctf_dict_t.
* ctf-dedup.c: Likewise. Rename ctf_file_close to
ctf_dict_close. Refer to CTF dicts, not CTF containers.
* ctf-dump.c: Likewise.
* ctf-error.c: Likewise.
* ctf-hash.c: Likewise.
* ctf-inlines.h: Likewise.
* ctf-labels.c: Likewise.
* ctf-link.c: Likewise.
* ctf-lookup.c: Likewise.
* ctf-open-bfd.c: Likewise.
* ctf-string.c: Likewise.
* ctf-subr.c: Likewise.
* ctf-types.c: Likewise.
* ctf-util.c: Likewise.
* ctf-open.c: Likewise.
(ctf_file_close): Rename to...
(ctf_dict_close): ...this.
(ctf_file_close): New trivial wrapper around ctf_dict_close, for
compatibility.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this.
(ctf_parent_file): New trivial wrapper around ctf_parent_dict, for
compatibility.
* libctf.ver: Add ctf_dict_close and ctf_parent_dict.
2020-11-20 21:34:04 +08:00
|
|
|
ctf_add_member (ctf_dict_t *fp, ctf_id_t souid, const char *name,
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
ctf_id_t type)
|
|
|
|
{
|
|
|
|
return ctf_add_member_offset (fp, souid, name, type, (unsigned long) - 1);
|
|
|
|
}
|
|
|
|
|
libctf: support addition of types to dicts read via ctf_open()
libctf has long declared deserialized dictionaries (out of files or ELF
sections or memory buffers or whatever) to be read-only: back in the
furthest prehistory this was not the case, in that you could add a
few sorts of type to such dicts, but attempting to do so often caused
horrible memory corruption, so I banned the lot.
But it turns out real consumers want it (notably DTrace, which
synthesises pointers to types that don't have them and adds them to the
ctf_open()ed dicts if it needs them). Let's bring it back again, but
without the memory corruption and without the massive code duplication
required in days of yore to distinguish between static and dynamic
types: the representation of both types has been identical for a few
years, with the only difference being that types as a whole are stored in
a big buffer for types read in via ctf_open and per-type hashtables for
newly-added types.
So we discard the internally-visible concept of "readonly dictionaries"
in favour of declaring the *range of types* that were already present
when the dict was read in to be read-only: you can't modify them (say,
by adding members to them if they're structs, or calling ctf_set_array
on them), but you can add more types and point to them. (The API
remains the same, with calls sometimes returning ECTF_RDONLY, but now
they do so less often.)
This is a fairly invasive change, mostly because code written since the
ban was introduced didn't take the possibility of a static/dynamic split
into account. Some of these irregularities were hard to define as
anything but bugs.
Notably:
- The symbol handling was assuming that symbols only needed to be
looked for in dynamic hashtabs or static linker-laid-out indexed/
nonindexed layouts, but now we want to check both in case people
added more symbols to a dict they opened.
- The code that handles type additions wasn't checking to see if types
with the same name existed *at all* (so you could do
ctf_add_typedef (fp, "foo", bar) repeatedly without error). This
seems reasonable for types you just added, but we probably *do* want
to ban addition of types with names that override names we already
used in the ctf_open()ed portion, since that would probably corrupt
existing type relationships. (Doing things this way also avoids
causing new errors for any existing code that was doing this sort of
thing.)
- ctf_lookup_variable entirely failed to work for variables just added
by ctf_add_variable: you had to write the dict out and read it back
in again before they appeared.
- The symbol handling remembered what symbols you looked up but didn't
remember their types, so you could look up an object symbol and then
find it popping up when you asked for function symbols, which seems
less than ideal. Since we had to rejig things enough to be able to
distinguish function and object symbols internally anyway (in order
to give suitable errors if you try to add a symbol with a name that
already existed in the ctf_open()ed dict), this bug suddenly became
more visible and was easily fixed.
We do not (yet) support writing out dicts that have been previously read
in via ctf_open() or other deserializer (you can look things up in them,
but not write them out a second time). This never worked, so there is
no incompatibility; if it is needed at a later date, the serializer is a
little bit closer to having it work now (the only table we don't deal
with is the types table, and that's because the upcoming CTFv4 changes
are likely to make major changes to the way that table is represented
internally, so adding more code that depends on its current form seems
like a bad idea).
There is a new testcase that tests much of this, in particular that
modification of existing types is still banned and that you can add new
ones and chase them without error.
libctf/
* ctf-impl.h (struct ctf_dict.ctf_symhash): Split into...
(ctf_dict.ctf_symhash_func): ... this and...
(ctf_dict.ctf_symhash_objt): ... this.
(ctf_dict.ctf_stypes): New, counts static types.
(LCTF_INDEX_TO_TYPEPTR): Use it instead of CTF_RDWR.
(LCTF_RDWR): Deleted.
(LCTF_DIRTY): Renumbered.
(LCTF_LINKING): Likewise.
(ctf_lookup_variable_here): New.
(ctf_lookup_by_sym_or_name): Likewise.
(ctf_symbol_next_static): Likewise.
(ctf_add_variable_forced): Likewise.
(ctf_add_funcobjt_sym_forced): Likewise.
(ctf_simple_open_internal): Adjust.
(ctf_bufopen_internal): Likewise.
* ctf-create.c (ctf_grow_ptrtab): Adjust a lot to start with.
(ctf_create): Migrate a bunch of initializations into bufopen.
Force recreation of name tables. Do not forcibly override the
model, let ctf_bufopen do it.
(ctf_static_type): New.
(ctf_update): Drop LCTF_RDWR check.
(ctf_dynamic_type): Likewise.
(ctf_add_function): Likewise.
(ctf_add_type_internal): Likewise.
(ctf_rollback): Check ctf_stypes, not LCTF_RDWR.
(ctf_set_array): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_enumerator): Likewise (only on the target dict).
(ctf_add_member_offset): Likewise.
(ctf_add_generic): Drop LCTF_RDWR check. Ban addition of types
with colliding names.
(ctf_add_forward): Note safety under the new rules.
(ctf_add_variable): Split all but the existence check into...
(ctf_add_variable_forced): ... this new function.
(ctf_add_funcobjt_sym): Likewise...
(ctf_add_funcobjt_sym_forced): ... for this new function.
* ctf-link.c (ctf_link_add_linker_symbol): Ban calling on dicts
with any stypes.
(ctf_link_add_strtab): Likewise.
(ctf_link_shuffle_syms): Likewise.
(ctf_link_intern_extern_string): Note pre-existing prohibition.
* ctf-lookup.c (ctf_lookup_by_id): Drop LCTF_RDWR check.
(ctf_lookup_variable): Split out looking in a dict but not
its parent into...
(ctf_lookup_variable_here): ... this new function.
(ctf_lookup_symbol_idx): Track whether looking up a function or
object: cache them separately.
(ctf_symbol_next): Split out looking in non-dynamic symtypetab
entries to...
(ctf_symbol_next_static): ... this new function. Don't get confused
by the simultaneous presence of static and dynamic symtypetab entries.
(ctf_try_lookup_indexed): Don't waste time looking up symbols by
index before there can be any idea how symbols are numbered.
(ctf_lookup_by_sym_or_name): Distinguish between function and
data object lookups. Drop LCTF_RDWR.
(ctf_lookup_by_symbol): Adjust.
(ctf_lookup_by_symbol_name): Likewise.
* ctf-open.c (init_types): Rename to...
(init_static_types): ... this. Drop LCTF_RDWR. Populate ctf_stypes.
(ctf_simple_open): Drop writable arg.
(ctf_simple_open_internal): Likewise.
(ctf_bufopen): Likewise.
(ctf_bufopen_internal): Populate fields only used for writable dicts.
Drop LCTF_RDWR.
(ctf_dict_close): Cater for symhash cache split.
* ctf-serialize.c (ctf_serialize): Use ctf_stypes, not LCTF_RDWR.
* ctf-types.c (ctf_variable_next): Drop LCTF_RDWR.
* testsuite/libctf-lookup/add-to-opened*: New test.
2023-12-20 00:58:19 +08:00
|
|
|
/* Add a variable regardless of whether or not it is already present.
|
|
|
|
|
|
|
|
Internal use only. */
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
int
|
libctf: support addition of types to dicts read via ctf_open()
libctf has long declared deserialized dictionaries (out of files or ELF
sections or memory buffers or whatever) to be read-only: back in the
furthest prehistory this was not the case, in that you could add a
few sorts of type to such dicts, but attempting to do so often caused
horrible memory corruption, so I banned the lot.
But it turns out real consumers want it (notably DTrace, which
synthesises pointers to types that don't have them and adds them to the
ctf_open()ed dicts if it needs them). Let's bring it back again, but
without the memory corruption and without the massive code duplication
required in days of yore to distinguish between static and dynamic
types: the representation of both types has been identical for a few
years, with the only difference being that types as a whole are stored in
a big buffer for types read in via ctf_open and per-type hashtables for
newly-added types.
So we discard the internally-visible concept of "readonly dictionaries"
in favour of declaring the *range of types* that were already present
when the dict was read in to be read-only: you can't modify them (say,
by adding members to them if they're structs, or calling ctf_set_array
on them), but you can add more types and point to them. (The API
remains the same, with calls sometimes returning ECTF_RDONLY, but now
they do so less often.)
This is a fairly invasive change, mostly because code written since the
ban was introduced didn't take the possibility of a static/dynamic split
into account. Some of these irregularities were hard to define as
anything but bugs.
Notably:
- The symbol handling was assuming that symbols only needed to be
looked for in dynamic hashtabs or static linker-laid-out indexed/
nonindexed layouts, but now we want to check both in case people
added more symbols to a dict they opened.
- The code that handles type additions wasn't checking to see if types
with the same name existed *at all* (so you could do
ctf_add_typedef (fp, "foo", bar) repeatedly without error). This
seems reasonable for types you just added, but we probably *do* want
to ban addition of types with names that override names we already
used in the ctf_open()ed portion, since that would probably corrupt
existing type relationships. (Doing things this way also avoids
causing new errors for any existing code that was doing this sort of
thing.)
- ctf_lookup_variable entirely failed to work for variables just added
by ctf_add_variable: you had to write the dict out and read it back
in again before they appeared.
- The symbol handling remembered what symbols you looked up but didn't
remember their types, so you could look up an object symbol and then
find it popping up when you asked for function symbols, which seems
less than ideal. Since we had to rejig things enough to be able to
distinguish function and object symbols internally anyway (in order
to give suitable errors if you try to add a symbol with a name that
already existed in the ctf_open()ed dict), this bug suddenly became
more visible and was easily fixed.
We do not (yet) support writing out dicts that have been previously read
in via ctf_open() or other deserializer (you can look things up in them,
but not write them out a second time). This never worked, so there is
no incompatibility; if it is needed at a later date, the serializer is a
little bit closer to having it work now (the only table we don't deal
with is the types table, and that's because the upcoming CTFv4 changes
are likely to make major changes to the way that table is represented
internally, so adding more code that depends on its current form seems
like a bad idea).
There is a new testcase that tests much of this, in particular that
modification of existing types is still banned and that you can add new
ones and chase them without error.
libctf/
* ctf-impl.h (struct ctf_dict.ctf_symhash): Split into...
(ctf_dict.ctf_symhash_func): ... this and...
(ctf_dict.ctf_symhash_objt): ... this.
(ctf_dict.ctf_stypes): New, counts static types.
(LCTF_INDEX_TO_TYPEPTR): Use it instead of CTF_RDWR.
(LCTF_RDWR): Deleted.
(LCTF_DIRTY): Renumbered.
(LCTF_LINKING): Likewise.
(ctf_lookup_variable_here): New.
(ctf_lookup_by_sym_or_name): Likewise.
(ctf_symbol_next_static): Likewise.
(ctf_add_variable_forced): Likewise.
(ctf_add_funcobjt_sym_forced): Likewise.
(ctf_simple_open_internal): Adjust.
(ctf_bufopen_internal): Likewise.
* ctf-create.c (ctf_grow_ptrtab): Adjust a lot to start with.
(ctf_create): Migrate a bunch of initializations into bufopen.
Force recreation of name tables. Do not forcibly override the
model, let ctf_bufopen do it.
(ctf_static_type): New.
(ctf_update): Drop LCTF_RDWR check.
(ctf_dynamic_type): Likewise.
(ctf_add_function): Likewise.
(ctf_add_type_internal): Likewise.
(ctf_rollback): Check ctf_stypes, not LCTF_RDWR.
(ctf_set_array): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_enumerator): Likewise (only on the target dict).
(ctf_add_member_offset): Likewise.
(ctf_add_generic): Drop LCTF_RDWR check. Ban addition of types
with colliding names.
(ctf_add_forward): Note safety under the new rules.
(ctf_add_variable): Split all but the existence check into...
(ctf_add_variable_forced): ... this new function.
(ctf_add_funcobjt_sym): Likewise...
(ctf_add_funcobjt_sym_forced): ... for this new function.
* ctf-link.c (ctf_link_add_linker_symbol): Ban calling on dicts
with any stypes.
(ctf_link_add_strtab): Likewise.
(ctf_link_shuffle_syms): Likewise.
(ctf_link_intern_extern_string): Note pre-existing prohibition.
* ctf-lookup.c (ctf_lookup_by_id): Drop LCTF_RDWR check.
(ctf_lookup_variable): Split out looking in a dict but not
its parent into...
(ctf_lookup_variable_here): ... this new function.
(ctf_lookup_symbol_idx): Track whether looking up a function or
object: cache them separately.
(ctf_symbol_next): Split out looking in non-dynamic symtypetab
entries to...
(ctf_symbol_next_static): ... this new function. Don't get confused
by the simultaneous presence of static and dynamic symtypetab entries.
(ctf_try_lookup_indexed): Don't waste time looking up symbols by
index before there can be any idea how symbols are numbered.
(ctf_lookup_by_sym_or_name): Distinguish between function and
data object lookups. Drop LCTF_RDWR.
(ctf_lookup_by_symbol): Adjust.
(ctf_lookup_by_symbol_name): Likewise.
* ctf-open.c (init_types): Rename to...
(init_static_types): ... this. Drop LCTF_RDWR. Populate ctf_stypes.
(ctf_simple_open): Drop writable arg.
(ctf_simple_open_internal): Likewise.
(ctf_bufopen): Likewise.
(ctf_bufopen_internal): Populate fields only used for writable dicts.
Drop LCTF_RDWR.
(ctf_dict_close): Cater for symhash cache split.
* ctf-serialize.c (ctf_serialize): Use ctf_stypes, not LCTF_RDWR.
* ctf-types.c (ctf_variable_next): Drop LCTF_RDWR.
* testsuite/libctf-lookup/add-to-opened*: New test.
2023-12-20 00:58:19 +08:00
|
|
|
ctf_add_variable_forced (ctf_dict_t *fp, const char *name, ctf_id_t ref)
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
{
|
|
|
|
ctf_dvdef_t *dvd;
|
libctf, include, binutils, gdb, ld: rename ctf_file_t to ctf_dict_t
The naming of the ctf_file_t type in libctf is a historical curiosity.
Back in the Solaris days, CTF dictionaries were originally generated as
a separate file and then (sometimes) merged into objects: hence the
datatype was named ctf_file_t, and known as a "CTF file". Nowadays, raw
CTF is essentially never written to a file on its own, and the datatype
changed name to a "CTF dictionary" years ago. So the term "CTF file"
refers to something that is never a file! This is at best confusing.
The type has also historically been known as a 'CTF container", which is
even more confusing now that we have CTF archives which are *also* a
sort of container (they contain CTF dictionaries), but which are never
referred to as containers in the source code.
So fix this by completing the renaming, renaming ctf_file_t to
ctf_dict_t throughout, and renaming those few functions that refer to
CTF files by name (keeping compatibility aliases) to refer to dicts
instead. Old users who still refer to ctf_file_t will see (harmless)
pointer-compatibility warnings at compile time, but the ABI is unchanged
(since C doesn't mangle names, and ctf_file_t was always an opaque type)
and things will still compile fine as long as -Werror is not specified.
All references to CTF containers and CTF files in the source code are
fixed to refer to CTF dicts instead.
Further (smaller) renamings of annoyingly-named functions to come, as
part of the process of souping up queries across whole archives at once
(needed for the function info and data object sections).
binutils/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* objdump.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_ctf): Likewise. Use ctf_dict_close, not ctf_file_close.
* readelf.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_section_as_ctf): Likewise. Use ctf_dict_close, not
ctf_file_close.
gdb/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctfread.c: Change uses of ctf_file_t to ctf_dict_t.
(ctf_fp_info::~ctf_fp_info): Call ctf_dict_close, not ctf_file_close.
include/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-api.h (ctf_file_t): Rename to...
(ctf_dict_t): ... this. Keep ctf_file_t around for compatibility.
(struct ctf_file): Likewise rename to...
(struct ctf_dict): ... this.
(ctf_file_close): Rename to...
(ctf_dict_close): ... this, keeping compatibility function.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this, keeping compatibility function.
All callers adjusted.
* ctf.h: Rename references to ctf_file_t to ctf_dict_t.
(struct ctf_archive) <ctfa_nfiles>: Rename to...
<ctfa_ndicts>: ... this.
ld/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ldlang.c (ctf_output): This is a ctf_dict_t now.
(lang_ctf_errs_warnings): Rename ctf_file_t to ctf_dict_t.
(ldlang_open_ctf): Adjust comment.
(lang_merge_ctf): Use ctf_dict_close, not ctf_file_close.
* ldelfgen.h (ldelf_examine_strtab_for_ctf): Rename ctf_file_t to
ctf_dict_t. Change opaque declaration accordingly.
* ldelfgen.c (ldelf_examine_strtab_for_ctf): Adjust.
* ldemul.h (examine_strtab_for_ctf): Likewise.
(ldemul_examine_strtab_for_ctf): Likewise.
* ldeuml.c (ldemul_examine_strtab_for_ctf): Likewise.
libctf/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h: Rename ctf_file_t to ctf_dict_t: all declarations
adjusted.
(ctf_fileops): Rename to...
(ctf_dictops): ... this.
(ctf_dedup_t) <cd_id_to_file_t>: Rename to...
<cd_id_to_dict_t>: ... this.
(ctf_file_t): Fix outdated comment.
<ctf_fileops>: Rename to...
<ctf_dictops>: ... this.
(struct ctf_archive_internal) <ctfi_file>: Rename to...
<ctfi_dict>: ... this.
* ctf-archive.c: Rename ctf_file_t to ctf_dict_t.
Rename ctf_archive.ctfa_nfiles to ctfa_ndicts.
Rename ctf_file_close to ctf_dict_close. All users adjusted.
* ctf-create.c: Likewise. Refer to CTF dicts, not CTF containers.
(ctf_bundle_t) <ctb_file>: Rename to...
<ctb_dict): ... this.
* ctf-decl.c: Rename ctf_file_t to ctf_dict_t.
* ctf-dedup.c: Likewise. Rename ctf_file_close to
ctf_dict_close. Refer to CTF dicts, not CTF containers.
* ctf-dump.c: Likewise.
* ctf-error.c: Likewise.
* ctf-hash.c: Likewise.
* ctf-inlines.h: Likewise.
* ctf-labels.c: Likewise.
* ctf-link.c: Likewise.
* ctf-lookup.c: Likewise.
* ctf-open-bfd.c: Likewise.
* ctf-string.c: Likewise.
* ctf-subr.c: Likewise.
* ctf-types.c: Likewise.
* ctf-util.c: Likewise.
* ctf-open.c: Likewise.
(ctf_file_close): Rename to...
(ctf_dict_close): ...this.
(ctf_file_close): New trivial wrapper around ctf_dict_close, for
compatibility.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this.
(ctf_parent_file): New trivial wrapper around ctf_parent_dict, for
compatibility.
* libctf.ver: Add ctf_dict_close and ctf_parent_dict.
2020-11-20 21:34:04 +08:00
|
|
|
ctf_dict_t *tmp = fp;
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
|
|
|
|
if (ctf_lookup_by_id (&tmp, ref) == NULL)
|
libctf: fix a number of build problems found on Solaris and NetBSD
- Use of nonportable <endian.h>
- Use of qsort_r
- Use of zlib without appropriate magic to pull in the binutils zlib
- Use of off64_t without checking (fixed by dropping the unused fields
that need off64_t entirely)
- signedness problems due to long being too short a type on 32-bit
platforms: ctf_id_t is now 'unsigned long', and CTF_ERR must be
used only for functions that return ctf_id_t
- One lingering use of bzero() and of <sys/errno.h>
All fixed, using code from gnulib where possible.
Relatedly, set cts_size in a couple of places it was missed
(string table and symbol table loading upon ctf_bfdopen()).
binutils/
* objdump.c (make_ctfsect): Drop cts_type, cts_flags, and
cts_offset.
* readelf.c (shdr_to_ctf_sect): Likewise.
include/
* ctf-api.h (ctf_sect_t): Drop cts_type, cts_flags, and cts_offset.
(ctf_id_t): This is now an unsigned type.
(CTF_ERR): Cast it to ctf_id_t. Note that it should only be used
for ctf_id_t-returning functions.
libctf/
* Makefile.am (ZLIB): New.
(ZLIBINC): Likewise.
(AM_CFLAGS): Use them.
(libctf_a_LIBADD): New, for LIBOBJS.
* configure.ac: Check for zlib, endian.h, and qsort_r.
* ctf-endian.h: New, providing htole64 and le64toh.
* swap.h: Code style fixes.
(bswap_identity_64): New.
* qsort_r.c: New, from gnulib (with one added #include).
* ctf-decls.h: New, providing a conditional qsort_r declaration,
and unconditional definitions of MIN and MAX.
* ctf-impl.h: Use it. Do not use <sys/errno.h>.
(ctf_set_errno): Now returns unsigned long.
* ctf-util.c (ctf_set_errno): Adjust here too.
* ctf-archive.c: Use ctf-endian.h.
(ctf_arc_open_by_offset): Use memset, not bzero. Drop cts_type,
cts_flags and cts_offset.
(ctf_arc_write): Drop debugging dependent on the size of off_t.
* ctf-create.c: Provide a definition of roundup if not defined.
(ctf_create): Drop cts_type, cts_flags and cts_offset.
(ctf_add_reftype): Do not check if type IDs are below zero.
(ctf_add_slice): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_member_offset): Cast error-returning ssize_t's to size_t
when known error-free. Drop CTF_ERR usage for functions returning
int.
(ctf_add_member_encoded): Drop CTF_ERR usage for functions returning
int.
(ctf_add_variable): Likewise.
(enumcmp): Likewise.
(enumadd): Likewise.
(membcmp): Likewise.
(ctf_add_type): Likewise. Cast error-returning ssize_t's to size_t
when known error-free.
* ctf-dump.c (ctf_is_slice): Drop CTF_ERR usage for functions
returning int: use CTF_ERR for functions returning ctf_type_id.
(ctf_dump_label): Likewise.
(ctf_dump_objts): Likewise.
* ctf-labels.c (ctf_label_topmost): Likewise.
(ctf_label_iter): Likewise.
(ctf_label_info): Likewise.
* ctf-lookup.c (ctf_func_args): Likewise.
* ctf-open.c (upgrade_types): Cast to size_t where appropriate.
(ctf_bufopen): Likewise. Use zlib types as needed.
* ctf-types.c (ctf_member_iter): Drop CTF_ERR usage for functions
returning int.
(ctf_enum_iter): Likewise.
(ctf_type_size): Likewise.
(ctf_type_align): Likewise. Cast to size_t where appropriate.
(ctf_type_kind_unsliced): Likewise.
(ctf_type_kind): Likewise.
(ctf_type_encoding): Likewise.
(ctf_member_info): Likewise.
(ctf_array_info): Likewise.
(ctf_enum_value): Likewise.
(ctf_type_rvisit): Likewise.
* ctf-open-bfd.c (ctf_bfdopen): Drop cts_type, cts_flags and
cts_offset.
(ctf_simple_open): Likewise.
(ctf_bfdopen_ctfsect): Likewise. Set cts_size properly.
* Makefile.in: Regenerate.
* aclocal.m4: Likewise.
* config.h: Likewise.
* configure: Likewise.
2019-05-31 17:10:51 +08:00
|
|
|
return -1; /* errno is set for us. */
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
|
libctf: handle nonrepresentable types at link time
GCC can emit references to type 0 to indicate that this type is one that
is not representable in the version of CTF it emits (for instance,
version 3 cannot encode vector types). Type 0 is already used in the
function section to indicate padding inserted to skip functions we do
not want to encode the type of, so using zero in this way is a good
extension of the format: but libctf reports such types as ECTF_BADID,
which is indistinguishable from file corruption via links to truly
nonexistent types with IDs like 0xDEADBEEF etc, which we really do want
to stop for.
In particular, this stops all traversals of types dead at this point,
preventing us from even dumping CTF files containing unrepresentable
types to see what's going on!
So add a new error, ECTF_NONREPRESENTABLE, which is returned by
recursive type resolution when a reference to a zero type is found. (No
zero type is ever emitted into the CTF file by GCC, only references to
one). We can't do much with types that are ultimately nonrepresentable,
but we can do enough to keep functioning.
Adjust ctf_add_type to ensure that top-level types of type zero and
structure and union members of ultimate type zero are simply skipped
without reporting an error, so we can copy structures and unions that
contain nonrepresentable members (skipping them and leaving a hole where
they would be, so no consumers downstream of the linker need to worry
about this): adjust the dumper so that we dump members of
nonrepresentable types in a simple form that indicates
nonrepresentability rather than terminating the dump, and do not falsely
assume all errors to be -ENOMEM: adjust the linker so that types that
fail to get added are simply skipped, so that both nonrepresentable
types and outright errors do not terminate the type addition, which
could skip many valid types and cause further errors when variables of
those types are added.
In future, when we gain the ability to call back to the linker to report
link-time type resolution errors, we should report failures to add all
but nonrepresentable types. But we can't do that yet.
v5: Fix tabdamage.
include/
* ctf-api.h (ECTF_NONREPRESENTABLE): New.
libctf/
* ctf-types.c (ctf_type_resolve): Return ECTF_NONREPRESENTABLE on
type zero.
* ctf-create.c (ctf_add_type): Detect and skip nonrepresentable
members and types.
(ctf_add_variable): Likewise for variables pointing to them.
* ctf-link.c (ctf_link_one_type): Do not warn for nonrepresentable
type link failure, but do warn for others.
* ctf-dump.c (ctf_dump_format_type): Likewise. Do not assume all
errors to be ENOMEM.
(ctf_dump_member): Likewise.
(ctf_dump_type): Likewise.
(ctf_dump_header_strfield): Do not assume all errors to be ENOMEM.
(ctf_dump_header_sectfield): Do not assume all errors to be ENOMEM.
(ctf_dump_header): Likewise.
(ctf_dump_label): likewise.
(ctf_dump_objts): likewise.
(ctf_dump_funcs): likewise.
(ctf_dump_var): likewise.
(ctf_dump_str): Likewise.
2019-08-05 18:40:33 +08:00
|
|
|
/* Make sure this type is representable. */
|
|
|
|
if ((ctf_type_resolve (fp, ref) == CTF_ERR)
|
|
|
|
&& (ctf_errno (fp) == ECTF_NONREPRESENTABLE))
|
|
|
|
return -1;
|
|
|
|
|
libctf: remove ctf_malloc, ctf_free and ctf_strdup
These just get in the way of auditing for erroneous usage of strdup and
add a huge irregular surface of "ctf_malloc or malloc? ctf_free or free?
ctf_strdup or strdup?"
ctf_malloc and ctf_free usage has not reliably matched up for many
years, if ever, making the whole game pointless.
Go back to malloc, free, and strdup like everyone else: while we're at
it, fix a bunch of places where we weren't properly checking for OOM.
This changes the interface of ctf_cuname_set and ctf_parent_name_set,
which could strdup but could not return errors (like ENOMEM).
New in v4.
include/
* ctf-api.h (ctf_cuname_set): Can now fail, returning int.
(ctf_parent_name_set): Likewise.
libctf/
* ctf-impl.h (ctf_alloc): Remove.
(ctf_free): Likewise.
(ctf_strdup): Likewise.
* ctf-subr.c (ctf_alloc): Remove.
(ctf_free): Likewise.
* ctf-util.c (ctf_strdup): Remove.
* ctf-create.c (ctf_serialize): Use malloc, not ctf_alloc; free, not
ctf_free; strdup, not ctf_strdup.
(ctf_dtd_delete): Likewise.
(ctf_dvd_delete): Likewise.
(ctf_add_generic): Likewise.
(ctf_add_function): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_variable): Likewise.
(membadd): Likewise.
(ctf_compress_write): Likewise.
(ctf_write_mem): Likewise.
* ctf-decl.c (ctf_decl_push): Likewise.
(ctf_decl_fini): Likewise.
(ctf_decl_sprintf): Likewise. Check for OOM.
* ctf-dump.c (ctf_dump_append): Use malloc, not ctf_alloc; free, not
ctf_free; strdup, not ctf_strdup.
(ctf_dump_free): Likewise.
(ctf_dump): Likewise.
* ctf-open.c (upgrade_types_v1): Likewise.
(init_types): Likewise.
(ctf_file_close): Likewise.
(ctf_bufopen_internal): Likewise. Check for OOM.
(ctf_parent_name_set): Likewise: report the OOM to the caller.
(ctf_cuname_set): Likewise.
(ctf_import): Likewise.
* ctf-string.c (ctf_str_purge_atom_refs): Use malloc, not ctf_alloc;
free, not ctf_free; strdup, not ctf_strdup.
(ctf_str_free_atom): Likewise.
(ctf_str_create_atoms): Likewise.
(ctf_str_add_ref_internal): Likewise.
(ctf_str_remove_ref): Likewise.
(ctf_str_write_strtab): Likewise.
2019-09-17 13:54:23 +08:00
|
|
|
if ((dvd = malloc (sizeof (ctf_dvdef_t))) == NULL)
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
return (ctf_set_errno (fp, EAGAIN));
|
|
|
|
|
libctf: remove ctf_malloc, ctf_free and ctf_strdup
These just get in the way of auditing for erroneous usage of strdup and
add a huge irregular surface of "ctf_malloc or malloc? ctf_free or free?
ctf_strdup or strdup?"
ctf_malloc and ctf_free usage has not reliably matched up for many
years, if ever, making the whole game pointless.
Go back to malloc, free, and strdup like everyone else: while we're at
it, fix a bunch of places where we weren't properly checking for OOM.
This changes the interface of ctf_cuname_set and ctf_parent_name_set,
which could strdup but could not return errors (like ENOMEM).
New in v4.
include/
* ctf-api.h (ctf_cuname_set): Can now fail, returning int.
(ctf_parent_name_set): Likewise.
libctf/
* ctf-impl.h (ctf_alloc): Remove.
(ctf_free): Likewise.
(ctf_strdup): Likewise.
* ctf-subr.c (ctf_alloc): Remove.
(ctf_free): Likewise.
* ctf-util.c (ctf_strdup): Remove.
* ctf-create.c (ctf_serialize): Use malloc, not ctf_alloc; free, not
ctf_free; strdup, not ctf_strdup.
(ctf_dtd_delete): Likewise.
(ctf_dvd_delete): Likewise.
(ctf_add_generic): Likewise.
(ctf_add_function): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_variable): Likewise.
(membadd): Likewise.
(ctf_compress_write): Likewise.
(ctf_write_mem): Likewise.
* ctf-decl.c (ctf_decl_push): Likewise.
(ctf_decl_fini): Likewise.
(ctf_decl_sprintf): Likewise. Check for OOM.
* ctf-dump.c (ctf_dump_append): Use malloc, not ctf_alloc; free, not
ctf_free; strdup, not ctf_strdup.
(ctf_dump_free): Likewise.
(ctf_dump): Likewise.
* ctf-open.c (upgrade_types_v1): Likewise.
(init_types): Likewise.
(ctf_file_close): Likewise.
(ctf_bufopen_internal): Likewise. Check for OOM.
(ctf_parent_name_set): Likewise: report the OOM to the caller.
(ctf_cuname_set): Likewise.
(ctf_import): Likewise.
* ctf-string.c (ctf_str_purge_atom_refs): Use malloc, not ctf_alloc;
free, not ctf_free; strdup, not ctf_strdup.
(ctf_str_free_atom): Likewise.
(ctf_str_create_atoms): Likewise.
(ctf_str_add_ref_internal): Likewise.
(ctf_str_remove_ref): Likewise.
(ctf_str_write_strtab): Likewise.
2019-09-17 13:54:23 +08:00
|
|
|
if (name != NULL && (dvd->dvd_name = strdup (name)) == NULL)
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
{
|
libctf: remove ctf_malloc, ctf_free and ctf_strdup
These just get in the way of auditing for erroneous usage of strdup and
add a huge irregular surface of "ctf_malloc or malloc? ctf_free or free?
ctf_strdup or strdup?"
ctf_malloc and ctf_free usage has not reliably matched up for many
years, if ever, making the whole game pointless.
Go back to malloc, free, and strdup like everyone else: while we're at
it, fix a bunch of places where we weren't properly checking for OOM.
This changes the interface of ctf_cuname_set and ctf_parent_name_set,
which could strdup but could not return errors (like ENOMEM).
New in v4.
include/
* ctf-api.h (ctf_cuname_set): Can now fail, returning int.
(ctf_parent_name_set): Likewise.
libctf/
* ctf-impl.h (ctf_alloc): Remove.
(ctf_free): Likewise.
(ctf_strdup): Likewise.
* ctf-subr.c (ctf_alloc): Remove.
(ctf_free): Likewise.
* ctf-util.c (ctf_strdup): Remove.
* ctf-create.c (ctf_serialize): Use malloc, not ctf_alloc; free, not
ctf_free; strdup, not ctf_strdup.
(ctf_dtd_delete): Likewise.
(ctf_dvd_delete): Likewise.
(ctf_add_generic): Likewise.
(ctf_add_function): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_variable): Likewise.
(membadd): Likewise.
(ctf_compress_write): Likewise.
(ctf_write_mem): Likewise.
* ctf-decl.c (ctf_decl_push): Likewise.
(ctf_decl_fini): Likewise.
(ctf_decl_sprintf): Likewise. Check for OOM.
* ctf-dump.c (ctf_dump_append): Use malloc, not ctf_alloc; free, not
ctf_free; strdup, not ctf_strdup.
(ctf_dump_free): Likewise.
(ctf_dump): Likewise.
* ctf-open.c (upgrade_types_v1): Likewise.
(init_types): Likewise.
(ctf_file_close): Likewise.
(ctf_bufopen_internal): Likewise. Check for OOM.
(ctf_parent_name_set): Likewise: report the OOM to the caller.
(ctf_cuname_set): Likewise.
(ctf_import): Likewise.
* ctf-string.c (ctf_str_purge_atom_refs): Use malloc, not ctf_alloc;
free, not ctf_free; strdup, not ctf_strdup.
(ctf_str_free_atom): Likewise.
(ctf_str_create_atoms): Likewise.
(ctf_str_add_ref_internal): Likewise.
(ctf_str_remove_ref): Likewise.
(ctf_str_write_strtab): Likewise.
2019-09-17 13:54:23 +08:00
|
|
|
free (dvd);
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
return (ctf_set_errno (fp, EAGAIN));
|
|
|
|
}
|
|
|
|
dvd->dvd_type = ref;
|
|
|
|
dvd->dvd_snapshots = fp->ctf_snapshots;
|
|
|
|
|
2019-06-19 19:14:16 +08:00
|
|
|
if (ctf_dvd_insert (fp, dvd) < 0)
|
|
|
|
{
|
libctf: remove ctf_malloc, ctf_free and ctf_strdup
These just get in the way of auditing for erroneous usage of strdup and
add a huge irregular surface of "ctf_malloc or malloc? ctf_free or free?
ctf_strdup or strdup?"
ctf_malloc and ctf_free usage has not reliably matched up for many
years, if ever, making the whole game pointless.
Go back to malloc, free, and strdup like everyone else: while we're at
it, fix a bunch of places where we weren't properly checking for OOM.
This changes the interface of ctf_cuname_set and ctf_parent_name_set,
which could strdup but could not return errors (like ENOMEM).
New in v4.
include/
* ctf-api.h (ctf_cuname_set): Can now fail, returning int.
(ctf_parent_name_set): Likewise.
libctf/
* ctf-impl.h (ctf_alloc): Remove.
(ctf_free): Likewise.
(ctf_strdup): Likewise.
* ctf-subr.c (ctf_alloc): Remove.
(ctf_free): Likewise.
* ctf-util.c (ctf_strdup): Remove.
* ctf-create.c (ctf_serialize): Use malloc, not ctf_alloc; free, not
ctf_free; strdup, not ctf_strdup.
(ctf_dtd_delete): Likewise.
(ctf_dvd_delete): Likewise.
(ctf_add_generic): Likewise.
(ctf_add_function): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_variable): Likewise.
(membadd): Likewise.
(ctf_compress_write): Likewise.
(ctf_write_mem): Likewise.
* ctf-decl.c (ctf_decl_push): Likewise.
(ctf_decl_fini): Likewise.
(ctf_decl_sprintf): Likewise. Check for OOM.
* ctf-dump.c (ctf_dump_append): Use malloc, not ctf_alloc; free, not
ctf_free; strdup, not ctf_strdup.
(ctf_dump_free): Likewise.
(ctf_dump): Likewise.
* ctf-open.c (upgrade_types_v1): Likewise.
(init_types): Likewise.
(ctf_file_close): Likewise.
(ctf_bufopen_internal): Likewise. Check for OOM.
(ctf_parent_name_set): Likewise: report the OOM to the caller.
(ctf_cuname_set): Likewise.
(ctf_import): Likewise.
* ctf-string.c (ctf_str_purge_atom_refs): Use malloc, not ctf_alloc;
free, not ctf_free; strdup, not ctf_strdup.
(ctf_str_free_atom): Likewise.
(ctf_str_create_atoms): Likewise.
(ctf_str_add_ref_internal): Likewise.
(ctf_str_remove_ref): Likewise.
(ctf_str_write_strtab): Likewise.
2019-09-17 13:54:23 +08:00
|
|
|
free (dvd->dvd_name);
|
|
|
|
free (dvd);
|
2019-06-19 19:14:16 +08:00
|
|
|
return -1; /* errno is set for us. */
|
|
|
|
}
|
libctf: creation functions
The CTF creation process looks roughly like (error handling elided):
int err;
ctf_file_t *foo = ctf_create (&err);
ctf_id_t type = ctf_add_THING (foo, ...);
ctf_update (foo);
ctf_*write (...);
Some ctf_add_THING functions accept other type IDs as arguments,
depending on the type: cv-quals, pointers, and structure and union
members all take other types as arguments. So do 'slices', which
let you take an existing integral type and recast it as a type
with a different bitness or offset within a byte, for bitfields.
One class of THING is not a type: "variables", which are mappings
of names (in the internal string table) to types. These are mostly
useful when encoding variables that do not appear in a symbol table
but which some external user has some other way to figure out the
address of at runtime (dynamic symbol lookup or querying a VM
interpreter or something).
You can snapshot the creation process at any point: rolling back to a
snapshot deletes all types and variables added since that point.
You can make arbitrary type queries on the CTF container during the
creation process, but you must call ctf_update() first, which
translates the growing dynamic container into a static one (this uses
the CTF opening machinery, added in a later commit), which is quite
expensive. This function must also be called after adding types
and before writing the container out.
Because addition of types involves looking up existing types, we add a
little of the type lookup machinery here, as well: only enough to
look up types in dynamic containers under construction.
libctf/
* ctf-create.c: New file.
* ctf-lookup.c: New file.
include/
* ctf-api.h (zlib.h): New include.
(ctf_sect_t): New.
(ctf_sect_names_t): Likewise.
(ctf_encoding_t): Likewise.
(ctf_membinfo_t): Likewise.
(ctf_arinfo_t): Likewise.
(ctf_funcinfo_t): Likewise.
(ctf_lblinfo_t): Likewise.
(ctf_snapshot_id_t): Likewise.
(CTF_FUNC_VARARG): Likewise.
(ctf_simple_open): Likewise.
(ctf_bufopen): Likewise.
(ctf_create): Likewise.
(ctf_add_array): Likewise.
(ctf_add_const): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_float): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_function): Likewise.
(ctf_add_integer): Likewise.
(ctf_add_slice): Likewise.
(ctf_add_pointer): Likewise.
(ctf_add_type): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_restrict): Likewise.
(ctf_add_struct): Likewise.
(ctf_add_union): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_volatile): Likewise.
(ctf_add_enumerator): Likewise.
(ctf_add_member): Likewise.
(ctf_add_member_offset): Likewise.
(ctf_add_member_encoded): Likewise.
(ctf_add_variable): Likewise.
(ctf_set_array): Likewise.
(ctf_update): Likewise.
(ctf_snapshot): Likewise.
(ctf_rollback): Likewise.
(ctf_discard): Likewise.
(ctf_write): Likewise.
(ctf_gzwrite): Likewise.
(ctf_compress_write): Likewise.
2019-04-24 05:45:46 +08:00
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
libctf: symbol type linking support
This adds facilities to write out the function info and data object
sections, which efficiently map from entries in the symbol table to
types. The write-side code is entirely new: the read-side code was
merely significantly changed and support for indexed tables added
(pointed to by the no-longer-unused cth_objtidxoff and cth_funcidxoff
header fields).
With this in place, you can use ctf_lookup_by_symbol to look up the
types of symbols of function and object type (and, as before, you can
use ctf_lookup_variable to look up types of file-scope variables not
present in the symbol table, as long as you know their name: but
variables that are also data objects are now found in the data object
section instead.)
(Compatible) file format change:
The CTF spec has always said that the function info section looks much
like the CTF_K_FUNCTIONs in the type section: an info word (including an
argument count) followed by a return type and N argument types. This
format is suboptimal: it means function symbols cannot be deduplicated
and it causes a lot of ugly code duplication in libctf. But
conveniently the compiler has never emitted this! Because it has always
emitted a rather different format that libctf has never accepted, we can
be sure that there are no instances of this function info section in the
wild, and can freely change its format without compatibility concerns or
a file format version bump. (And since it has never been emitted in any
code that generated any older file format version, either, we need keep
no code to read the format as specified at all!)
So the function info section is now specified as an array of uint32_t,
exactly like the object data section: each entry is a type ID in the
type section which must be of kind CTF_K_FUNCTION, the prototype of
this function.
This allows function types to be deduplicated and also correctly encodes
the fact that all functions declared in C really are types available to
the program: so they should be stored in the type section like all other
types. (In format v4, we will be able to represent the types of static
functions as well, but that really does require a file format change.)
We introduce a new header flag, CTF_F_NEWFUNCINFO, which is set if the
new function info format is in use. A sufficiently new compiler will
always set this flag. New libctf will always set this flag: old libctf
will refuse to open any CTF dicts that have this flag set. If the flag
is not set on a dict being read in, new libctf will disregard the
function info section. Format v4 will remove this flag (or, rather, the
flag has no meaning there and the bit position may be recycled for some
other purpose).
New API:
Symbol addition:
ctf_add_func_sym: Add a symbol with a given name and type. The
type must be of kind CTF_K_FUNCTION (a function
pointer). Internally this adds a name -> type
mapping to the ctf_funchash in the ctf_dict.
ctf_add_objt_sym: Add a symbol with a given name and type. The type
kind can be anything, including function pointers.
This adds to ctf_objthash.
These both treat symbols as name -> type mappings: the linker associates
symbol names with symbol indexes via the ctf_link_shuffle_syms callback,
which sets up the ctf_dynsyms/ctf_dynsymidx/ctf_dynsymmax fields in the
ctf_dict. Repeated relinks can add more symbols.
Variables that are also exposed as symbols are removed from the variable
section at serialization time.
CTF symbol type sections which have enough pads, defined by
CTF_INDEX_PAD_THRESHOLD (whether because they are in dicts with symbols
where most types are unknown, or in archive where most types are defined
in some child or parent dict, not in this specific dict) are sorted by
name rather than symidx and accompanied by an index which associates
each symbol type entry with a name: the existing ctf_lookup_by_symbol
will map symbol indexes to symbol names and look the names up in the
index automatically. (This is currently ELF-symbol-table-dependent, but
there is almost nothing specific to ELF in here and we can add support
for other symbol table formats easily).
The compiler also uses index sections to communicate the contents of
object file symbol tables without relying on any specific ordering of
symbols: it doesn't need to sort them, and libctf will detect an
unsorted index section via the absence of the new CTF_F_IDXSORTED header
flag, and sort it if needed.
Iteration:
ctf_symbol_next: Iterator which returns the types and names of symbols
one by one, either for function or data symbols.
This does not require any sorting: the ctf_link machinery uses it to
pull in all the compiler-provided symbols cheaply, but it is not
restricted to that use.
(Compatible) changes in API:
ctf_lookup_by_symbol: can now be called for object and function
symbols: never returns ECTF_NOTDATA (which is
now not thrown by anything, but is kept for
compatibility and because it is a plausible
error that we might start throwing again at some
later date).
Internally we also have changes to the ctf-string functionality so that
"external" strings (those where we track a string -> offset mapping, but
only write out an offset) can be consulted via the usual means
(ctf_strptr) before the strtab is written out. This is important
because ctf_link_add_linker_symbol can now be handed symbols named via
strtab offsets, and ctf_link_shuffle_syms must figure out their actual
names by looking in the external symtab we have just been fed by the
ctf_link_add_strtab callback, long before that strtab is written out.
include/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-api.h (ctf_symbol_next): New.
(ctf_add_objt_sym): Likewise.
(ctf_add_func_sym): Likewise.
* ctf.h: Document new function info section format.
(CTF_F_NEWFUNCINFO): New.
(CTF_F_IDXSORTED): New.
(CTF_F_MAX): Adjust accordingly.
libctf/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h (CTF_INDEX_PAD_THRESHOLD): New.
(_libctf_nonnull_): Likewise.
(ctf_in_flight_dynsym_t): New.
(ctf_dict_t) <ctf_funcidx_names>: Likewise.
<ctf_objtidx_names>: Likewise.
<ctf_nfuncidx>: Likewise.
<ctf_nobjtidx>: Likewise.
<ctf_funcidx_sxlate>: Likewise.
<ctf_objtidx_sxlate>: Likewise.
<ctf_objthash>: Likewise.
<ctf_funchash>: Likewise.
<ctf_dynsyms>: Likewise.
<ctf_dynsymidx>: Likewise.
<ctf_dynsymmax>: Likewise.
<ctf_in_flight_dynsym>: Likewise.
(struct ctf_next) <u.ctn_next>: Likewise.
(ctf_symtab_skippable): New prototype.
(ctf_add_funcobjt_sym): Likewise.
(ctf_dynhash_sort_by_name): Likewise.
(ctf_sym_to_elf64): Rename to...
(ctf_elf32_to_link_sym): ... this, and...
(ctf_elf64_to_link_sym): ... this.
* ctf-open.c (init_symtab): Check for lack of CTF_F_NEWFUNCINFO
flag, and presence of index sections. Refactor out
ctf_symtab_skippable and ctf_elf*_to_link_sym, and use them. Use
ctf_link_sym_t, not Elf64_Sym. Skip initializing objt or func
sxlate sections if corresponding index section is present. Adjust
for new func info section format.
(ctf_bufopen_internal): Add ctf_err_warn to corrupt-file error
handling. Report incorrect-length index sections. Always do an
init_symtab, even if there is no symtab section (there may be index
sections still).
(flip_objts): Adjust comment: func and objt sections are actually
identical in structure now, no need to caveat.
(ctf_dict_close): Free newly-added data structures.
* ctf-create.c (ctf_create): Initialize them.
(ctf_symtab_skippable): New, refactored out of
init_symtab, with st_nameidx_set check added.
(ctf_add_funcobjt_sym): New, add a function or object symbol to the
ctf_objthash or ctf_funchash, by name.
(ctf_add_objt_sym): Call it.
(ctf_add_func_sym): Likewise.
(symtypetab_delete_nonstatic_vars): New, delete vars also present as
data objects.
(CTF_SYMTYPETAB_EMIT_FUNCTION): New flag to symtypetab emitters:
this is a function emission, not a data object emission.
(CTF_SYMTYPETAB_EMIT_PAD): New flag to symtypetab emitters: emit
pads for symbols with no type (only set for unindexed sections).
(CTF_SYMTYPETAB_FORCE_INDEXED): New flag to symtypetab emitters:
always emit indexed.
(symtypetab_density): New, figure out section sizes.
(emit_symtypetab): New, emit a symtypetab.
(emit_symtypetab_index): New, emit a symtypetab index.
(ctf_serialize): Call them, emitting suitably sorted symtypetab
sections and indexes. Set suitable header flags. Copy over new
fields.
* ctf-hash.c (ctf_dynhash_sort_by_name): New, used to impose an
order on symtypetab index sections.
* ctf-link.c (ctf_add_type_mapping): Delete erroneous comment
relating to code that was never committed.
(ctf_link_one_variable): Improve variable name.
(check_sym): New, symtypetab analogue of check_variable.
(ctf_link_deduplicating_one_symtypetab): New.
(ctf_link_deduplicating_syms): Likewise.
(ctf_link_deduplicating): Call them.
(ctf_link_deduplicating_per_cu): Note that we don't call them in
this case (yet).
(ctf_link_add_strtab): Set the error on the fp correctly.
(ctf_link_add_linker_symbol): New (no longer a do-nothing stub), add
a linker symbol to the in-flight list.
(ctf_link_shuffle_syms): New (no longer a do-nothing stub), turn the
in-flight list into a mapping we can use, now its names are
resolvable in the external strtab.
* ctf-string.c (ctf_str_rollback_atom): Don't roll back atoms with
external strtab offsets.
(ctf_str_rollback): Adjust comment.
(ctf_str_write_strtab): Migrate ctf_syn_ext_strtab population from
writeout time...
(ctf_str_add_external): ... to string addition time.
* ctf-lookup.c (ctf_lookup_var_key_t): Rename to...
(ctf_lookup_idx_key_t): ... this, now we use it for syms too.
<clik_names>: New member, a name table.
(ctf_lookup_var): Adjust accordingly.
(ctf_lookup_variable): Likewise.
(ctf_lookup_by_id): Shuffle further up in the file.
(ctf_symidx_sort_arg_cb): New, callback for...
(sort_symidx_by_name): ... this new function to sort a symidx
found to be unsorted (likely originating from the compiler).
(ctf_symidx_sort): New, sort a symidx.
(ctf_lookup_symbol_name): Support dynamic symbols with indexes
provided by the linker. Use ctf_link_sym_t, not Elf64_Sym.
Check the parent if a child lookup fails.
(ctf_lookup_by_symbol): Likewise. Work for function symbols too.
(ctf_symbol_next): New, iterate over symbols with types (without
sorting).
(ctf_lookup_idx_name): New, bsearch for symbol names in indexes.
(ctf_try_lookup_indexed): New, attempt an indexed lookup.
(ctf_func_info): Reimplement in terms of ctf_lookup_by_symbol.
(ctf_func_args): Likewise.
(ctf_get_dict): Move...
* ctf-types.c (ctf_get_dict): ... here.
* ctf-util.c (ctf_sym_to_elf64): Re-express as...
(ctf_elf64_to_link_sym): ... this. Add new st_symidx field, and
st_nameidx_set (always 0, so st_nameidx can be ignored). Look in
the ELF strtab for names.
(ctf_elf32_to_link_sym): Likewise, for Elf32_Sym.
(ctf_next_destroy): Destroy ctf_next_t.u.ctn_next if need be.
* libctf.ver: Add ctf_symbol_next, ctf_add_objt_sym and
ctf_add_func_sym.
2020-11-20 21:34:04 +08:00
|
|
|
int
|
libctf: support addition of types to dicts read via ctf_open()
libctf has long declared deserialized dictionaries (out of files or ELF
sections or memory buffers or whatever) to be read-only: back in the
furthest prehistory this was not the case, in that you could add a
few sorts of type to such dicts, but attempting to do so often caused
horrible memory corruption, so I banned the lot.
But it turns out real consumers want it (notably DTrace, which
synthesises pointers to types that don't have them and adds them to the
ctf_open()ed dicts if it needs them). Let's bring it back again, but
without the memory corruption and without the massive code duplication
required in days of yore to distinguish between static and dynamic
types: the representation of both types has been identical for a few
years, with the only difference being that types as a whole are stored in
a big buffer for types read in via ctf_open and per-type hashtables for
newly-added types.
So we discard the internally-visible concept of "readonly dictionaries"
in favour of declaring the *range of types* that were already present
when the dict was read in to be read-only: you can't modify them (say,
by adding members to them if they're structs, or calling ctf_set_array
on them), but you can add more types and point to them. (The API
remains the same, with calls sometimes returning ECTF_RDONLY, but now
they do so less often.)
This is a fairly invasive change, mostly because code written since the
ban was introduced didn't take the possibility of a static/dynamic split
into account. Some of these irregularities were hard to define as
anything but bugs.
Notably:
- The symbol handling was assuming that symbols only needed to be
looked for in dynamic hashtabs or static linker-laid-out indexed/
nonindexed layouts, but now we want to check both in case people
added more symbols to a dict they opened.
- The code that handles type additions wasn't checking to see if types
with the same name existed *at all* (so you could do
ctf_add_typedef (fp, "foo", bar) repeatedly without error). This
seems reasonable for types you just added, but we probably *do* want
to ban addition of types with names that override names we already
used in the ctf_open()ed portion, since that would probably corrupt
existing type relationships. (Doing things this way also avoids
causing new errors for any existing code that was doing this sort of
thing.)
- ctf_lookup_variable entirely failed to work for variables just added
by ctf_add_variable: you had to write the dict out and read it back
in again before they appeared.
- The symbol handling remembered what symbols you looked up but didn't
remember their types, so you could look up an object symbol and then
find it popping up when you asked for function symbols, which seems
less than ideal. Since we had to rejig things enough to be able to
distinguish function and object symbols internally anyway (in order
to give suitable errors if you try to add a symbol with a name that
already existed in the ctf_open()ed dict), this bug suddenly became
more visible and was easily fixed.
We do not (yet) support writing out dicts that have been previously read
in via ctf_open() or other deserializer (you can look things up in them,
but not write them out a second time). This never worked, so there is
no incompatibility; if it is needed at a later date, the serializer is a
little bit closer to having it work now (the only table we don't deal
with is the types table, and that's because the upcoming CTFv4 changes
are likely to make major changes to the way that table is represented
internally, so adding more code that depends on its current form seems
like a bad idea).
There is a new testcase that tests much of this, in particular that
modification of existing types is still banned and that you can add new
ones and chase them without error.
libctf/
* ctf-impl.h (struct ctf_dict.ctf_symhash): Split into...
(ctf_dict.ctf_symhash_func): ... this and...
(ctf_dict.ctf_symhash_objt): ... this.
(ctf_dict.ctf_stypes): New, counts static types.
(LCTF_INDEX_TO_TYPEPTR): Use it instead of CTF_RDWR.
(LCTF_RDWR): Deleted.
(LCTF_DIRTY): Renumbered.
(LCTF_LINKING): Likewise.
(ctf_lookup_variable_here): New.
(ctf_lookup_by_sym_or_name): Likewise.
(ctf_symbol_next_static): Likewise.
(ctf_add_variable_forced): Likewise.
(ctf_add_funcobjt_sym_forced): Likewise.
(ctf_simple_open_internal): Adjust.
(ctf_bufopen_internal): Likewise.
* ctf-create.c (ctf_grow_ptrtab): Adjust a lot to start with.
(ctf_create): Migrate a bunch of initializations into bufopen.
Force recreation of name tables. Do not forcibly override the
model, let ctf_bufopen do it.
(ctf_static_type): New.
(ctf_update): Drop LCTF_RDWR check.
(ctf_dynamic_type): Likewise.
(ctf_add_function): Likewise.
(ctf_add_type_internal): Likewise.
(ctf_rollback): Check ctf_stypes, not LCTF_RDWR.
(ctf_set_array): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_enumerator): Likewise (only on the target dict).
(ctf_add_member_offset): Likewise.
(ctf_add_generic): Drop LCTF_RDWR check. Ban addition of types
with colliding names.
(ctf_add_forward): Note safety under the new rules.
(ctf_add_variable): Split all but the existence check into...
(ctf_add_variable_forced): ... this new function.
(ctf_add_funcobjt_sym): Likewise...
(ctf_add_funcobjt_sym_forced): ... for this new function.
* ctf-link.c (ctf_link_add_linker_symbol): Ban calling on dicts
with any stypes.
(ctf_link_add_strtab): Likewise.
(ctf_link_shuffle_syms): Likewise.
(ctf_link_intern_extern_string): Note pre-existing prohibition.
* ctf-lookup.c (ctf_lookup_by_id): Drop LCTF_RDWR check.
(ctf_lookup_variable): Split out looking in a dict but not
its parent into...
(ctf_lookup_variable_here): ... this new function.
(ctf_lookup_symbol_idx): Track whether looking up a function or
object: cache them separately.
(ctf_symbol_next): Split out looking in non-dynamic symtypetab
entries to...
(ctf_symbol_next_static): ... this new function. Don't get confused
by the simultaneous presence of static and dynamic symtypetab entries.
(ctf_try_lookup_indexed): Don't waste time looking up symbols by
index before there can be any idea how symbols are numbered.
(ctf_lookup_by_sym_or_name): Distinguish between function and
data object lookups. Drop LCTF_RDWR.
(ctf_lookup_by_symbol): Adjust.
(ctf_lookup_by_symbol_name): Likewise.
* ctf-open.c (init_types): Rename to...
(init_static_types): ... this. Drop LCTF_RDWR. Populate ctf_stypes.
(ctf_simple_open): Drop writable arg.
(ctf_simple_open_internal): Likewise.
(ctf_bufopen): Likewise.
(ctf_bufopen_internal): Populate fields only used for writable dicts.
Drop LCTF_RDWR.
(ctf_dict_close): Cater for symhash cache split.
* ctf-serialize.c (ctf_serialize): Use ctf_stypes, not LCTF_RDWR.
* ctf-types.c (ctf_variable_next): Drop LCTF_RDWR.
* testsuite/libctf-lookup/add-to-opened*: New test.
2023-12-20 00:58:19 +08:00
|
|
|
ctf_add_variable (ctf_dict_t *fp, const char *name, ctf_id_t ref)
|
|
|
|
{
|
|
|
|
if (ctf_lookup_variable_here (fp, name) != CTF_ERR)
|
|
|
|
return (ctf_set_errno (fp, ECTF_DUPLICATE));
|
|
|
|
|
|
|
|
if (ctf_errno (fp) != ECTF_NOTYPEDAT)
|
|
|
|
return -1; /* errno is set for us. */
|
|
|
|
|
|
|
|
return ctf_add_variable_forced (fp, name, ref);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Add a function or object symbol regardless of whether or not it is already
|
|
|
|
present (already existing symbols are silently overwritten).
|
|
|
|
|
|
|
|
Internal use only. */
|
|
|
|
int
|
|
|
|
ctf_add_funcobjt_sym_forced (ctf_dict_t *fp, int is_function, const char *name, ctf_id_t id)
|
libctf: symbol type linking support
This adds facilities to write out the function info and data object
sections, which efficiently map from entries in the symbol table to
types. The write-side code is entirely new: the read-side code was
merely significantly changed and support for indexed tables added
(pointed to by the no-longer-unused cth_objtidxoff and cth_funcidxoff
header fields).
With this in place, you can use ctf_lookup_by_symbol to look up the
types of symbols of function and object type (and, as before, you can
use ctf_lookup_variable to look up types of file-scope variables not
present in the symbol table, as long as you know their name: but
variables that are also data objects are now found in the data object
section instead.)
(Compatible) file format change:
The CTF spec has always said that the function info section looks much
like the CTF_K_FUNCTIONs in the type section: an info word (including an
argument count) followed by a return type and N argument types. This
format is suboptimal: it means function symbols cannot be deduplicated
and it causes a lot of ugly code duplication in libctf. But
conveniently the compiler has never emitted this! Because it has always
emitted a rather different format that libctf has never accepted, we can
be sure that there are no instances of this function info section in the
wild, and can freely change its format without compatibility concerns or
a file format version bump. (And since it has never been emitted in any
code that generated any older file format version, either, we need keep
no code to read the format as specified at all!)
So the function info section is now specified as an array of uint32_t,
exactly like the object data section: each entry is a type ID in the
type section which must be of kind CTF_K_FUNCTION, the prototype of
this function.
This allows function types to be deduplicated and also correctly encodes
the fact that all functions declared in C really are types available to
the program: so they should be stored in the type section like all other
types. (In format v4, we will be able to represent the types of static
functions as well, but that really does require a file format change.)
We introduce a new header flag, CTF_F_NEWFUNCINFO, which is set if the
new function info format is in use. A sufficiently new compiler will
always set this flag. New libctf will always set this flag: old libctf
will refuse to open any CTF dicts that have this flag set. If the flag
is not set on a dict being read in, new libctf will disregard the
function info section. Format v4 will remove this flag (or, rather, the
flag has no meaning there and the bit position may be recycled for some
other purpose).
New API:
Symbol addition:
ctf_add_func_sym: Add a symbol with a given name and type. The
type must be of kind CTF_K_FUNCTION (a function
pointer). Internally this adds a name -> type
mapping to the ctf_funchash in the ctf_dict.
ctf_add_objt_sym: Add a symbol with a given name and type. The type
kind can be anything, including function pointers.
This adds to ctf_objthash.
These both treat symbols as name -> type mappings: the linker associates
symbol names with symbol indexes via the ctf_link_shuffle_syms callback,
which sets up the ctf_dynsyms/ctf_dynsymidx/ctf_dynsymmax fields in the
ctf_dict. Repeated relinks can add more symbols.
Variables that are also exposed as symbols are removed from the variable
section at serialization time.
CTF symbol type sections which have enough pads, defined by
CTF_INDEX_PAD_THRESHOLD (whether because they are in dicts with symbols
where most types are unknown, or in archive where most types are defined
in some child or parent dict, not in this specific dict) are sorted by
name rather than symidx and accompanied by an index which associates
each symbol type entry with a name: the existing ctf_lookup_by_symbol
will map symbol indexes to symbol names and look the names up in the
index automatically. (This is currently ELF-symbol-table-dependent, but
there is almost nothing specific to ELF in here and we can add support
for other symbol table formats easily).
The compiler also uses index sections to communicate the contents of
object file symbol tables without relying on any specific ordering of
symbols: it doesn't need to sort them, and libctf will detect an
unsorted index section via the absence of the new CTF_F_IDXSORTED header
flag, and sort it if needed.
Iteration:
ctf_symbol_next: Iterator which returns the types and names of symbols
one by one, either for function or data symbols.
This does not require any sorting: the ctf_link machinery uses it to
pull in all the compiler-provided symbols cheaply, but it is not
restricted to that use.
(Compatible) changes in API:
ctf_lookup_by_symbol: can now be called for object and function
symbols: never returns ECTF_NOTDATA (which is
now not thrown by anything, but is kept for
compatibility and because it is a plausible
error that we might start throwing again at some
later date).
Internally we also have changes to the ctf-string functionality so that
"external" strings (those where we track a string -> offset mapping, but
only write out an offset) can be consulted via the usual means
(ctf_strptr) before the strtab is written out. This is important
because ctf_link_add_linker_symbol can now be handed symbols named via
strtab offsets, and ctf_link_shuffle_syms must figure out their actual
names by looking in the external symtab we have just been fed by the
ctf_link_add_strtab callback, long before that strtab is written out.
include/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-api.h (ctf_symbol_next): New.
(ctf_add_objt_sym): Likewise.
(ctf_add_func_sym): Likewise.
* ctf.h: Document new function info section format.
(CTF_F_NEWFUNCINFO): New.
(CTF_F_IDXSORTED): New.
(CTF_F_MAX): Adjust accordingly.
libctf/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h (CTF_INDEX_PAD_THRESHOLD): New.
(_libctf_nonnull_): Likewise.
(ctf_in_flight_dynsym_t): New.
(ctf_dict_t) <ctf_funcidx_names>: Likewise.
<ctf_objtidx_names>: Likewise.
<ctf_nfuncidx>: Likewise.
<ctf_nobjtidx>: Likewise.
<ctf_funcidx_sxlate>: Likewise.
<ctf_objtidx_sxlate>: Likewise.
<ctf_objthash>: Likewise.
<ctf_funchash>: Likewise.
<ctf_dynsyms>: Likewise.
<ctf_dynsymidx>: Likewise.
<ctf_dynsymmax>: Likewise.
<ctf_in_flight_dynsym>: Likewise.
(struct ctf_next) <u.ctn_next>: Likewise.
(ctf_symtab_skippable): New prototype.
(ctf_add_funcobjt_sym): Likewise.
(ctf_dynhash_sort_by_name): Likewise.
(ctf_sym_to_elf64): Rename to...
(ctf_elf32_to_link_sym): ... this, and...
(ctf_elf64_to_link_sym): ... this.
* ctf-open.c (init_symtab): Check for lack of CTF_F_NEWFUNCINFO
flag, and presence of index sections. Refactor out
ctf_symtab_skippable and ctf_elf*_to_link_sym, and use them. Use
ctf_link_sym_t, not Elf64_Sym. Skip initializing objt or func
sxlate sections if corresponding index section is present. Adjust
for new func info section format.
(ctf_bufopen_internal): Add ctf_err_warn to corrupt-file error
handling. Report incorrect-length index sections. Always do an
init_symtab, even if there is no symtab section (there may be index
sections still).
(flip_objts): Adjust comment: func and objt sections are actually
identical in structure now, no need to caveat.
(ctf_dict_close): Free newly-added data structures.
* ctf-create.c (ctf_create): Initialize them.
(ctf_symtab_skippable): New, refactored out of
init_symtab, with st_nameidx_set check added.
(ctf_add_funcobjt_sym): New, add a function or object symbol to the
ctf_objthash or ctf_funchash, by name.
(ctf_add_objt_sym): Call it.
(ctf_add_func_sym): Likewise.
(symtypetab_delete_nonstatic_vars): New, delete vars also present as
data objects.
(CTF_SYMTYPETAB_EMIT_FUNCTION): New flag to symtypetab emitters:
this is a function emission, not a data object emission.
(CTF_SYMTYPETAB_EMIT_PAD): New flag to symtypetab emitters: emit
pads for symbols with no type (only set for unindexed sections).
(CTF_SYMTYPETAB_FORCE_INDEXED): New flag to symtypetab emitters:
always emit indexed.
(symtypetab_density): New, figure out section sizes.
(emit_symtypetab): New, emit a symtypetab.
(emit_symtypetab_index): New, emit a symtypetab index.
(ctf_serialize): Call them, emitting suitably sorted symtypetab
sections and indexes. Set suitable header flags. Copy over new
fields.
* ctf-hash.c (ctf_dynhash_sort_by_name): New, used to impose an
order on symtypetab index sections.
* ctf-link.c (ctf_add_type_mapping): Delete erroneous comment
relating to code that was never committed.
(ctf_link_one_variable): Improve variable name.
(check_sym): New, symtypetab analogue of check_variable.
(ctf_link_deduplicating_one_symtypetab): New.
(ctf_link_deduplicating_syms): Likewise.
(ctf_link_deduplicating): Call them.
(ctf_link_deduplicating_per_cu): Note that we don't call them in
this case (yet).
(ctf_link_add_strtab): Set the error on the fp correctly.
(ctf_link_add_linker_symbol): New (no longer a do-nothing stub), add
a linker symbol to the in-flight list.
(ctf_link_shuffle_syms): New (no longer a do-nothing stub), turn the
in-flight list into a mapping we can use, now its names are
resolvable in the external strtab.
* ctf-string.c (ctf_str_rollback_atom): Don't roll back atoms with
external strtab offsets.
(ctf_str_rollback): Adjust comment.
(ctf_str_write_strtab): Migrate ctf_syn_ext_strtab population from
writeout time...
(ctf_str_add_external): ... to string addition time.
* ctf-lookup.c (ctf_lookup_var_key_t): Rename to...
(ctf_lookup_idx_key_t): ... this, now we use it for syms too.
<clik_names>: New member, a name table.
(ctf_lookup_var): Adjust accordingly.
(ctf_lookup_variable): Likewise.
(ctf_lookup_by_id): Shuffle further up in the file.
(ctf_symidx_sort_arg_cb): New, callback for...
(sort_symidx_by_name): ... this new function to sort a symidx
found to be unsorted (likely originating from the compiler).
(ctf_symidx_sort): New, sort a symidx.
(ctf_lookup_symbol_name): Support dynamic symbols with indexes
provided by the linker. Use ctf_link_sym_t, not Elf64_Sym.
Check the parent if a child lookup fails.
(ctf_lookup_by_symbol): Likewise. Work for function symbols too.
(ctf_symbol_next): New, iterate over symbols with types (without
sorting).
(ctf_lookup_idx_name): New, bsearch for symbol names in indexes.
(ctf_try_lookup_indexed): New, attempt an indexed lookup.
(ctf_func_info): Reimplement in terms of ctf_lookup_by_symbol.
(ctf_func_args): Likewise.
(ctf_get_dict): Move...
* ctf-types.c (ctf_get_dict): ... here.
* ctf-util.c (ctf_sym_to_elf64): Re-express as...
(ctf_elf64_to_link_sym): ... this. Add new st_symidx field, and
st_nameidx_set (always 0, so st_nameidx can be ignored). Look in
the ELF strtab for names.
(ctf_elf32_to_link_sym): Likewise, for Elf32_Sym.
(ctf_next_destroy): Destroy ctf_next_t.u.ctn_next if need be.
* libctf.ver: Add ctf_symbol_next, ctf_add_objt_sym and
ctf_add_func_sym.
2020-11-20 21:34:04 +08:00
|
|
|
{
|
|
|
|
ctf_dict_t *tmp = fp;
|
|
|
|
char *dupname;
|
|
|
|
ctf_dynhash_t *h = is_function ? fp->ctf_funchash : fp->ctf_objthash;
|
|
|
|
|
|
|
|
if (ctf_lookup_by_id (&tmp, id) == NULL)
|
libctf: support addition of types to dicts read via ctf_open()
libctf has long declared deserialized dictionaries (out of files or ELF
sections or memory buffers or whatever) to be read-only: back in the
furthest prehistory this was not the case, in that you could add a
few sorts of type to such dicts, but attempting to do so often caused
horrible memory corruption, so I banned the lot.
But it turns out real consumers want it (notably DTrace, which
synthesises pointers to types that don't have them and adds them to the
ctf_open()ed dicts if it needs them). Let's bring it back again, but
without the memory corruption and without the massive code duplication
required in days of yore to distinguish between static and dynamic
types: the representation of both types has been identical for a few
years, with the only difference being that types as a whole are stored in
a big buffer for types read in via ctf_open and per-type hashtables for
newly-added types.
So we discard the internally-visible concept of "readonly dictionaries"
in favour of declaring the *range of types* that were already present
when the dict was read in to be read-only: you can't modify them (say,
by adding members to them if they're structs, or calling ctf_set_array
on them), but you can add more types and point to them. (The API
remains the same, with calls sometimes returning ECTF_RDONLY, but now
they do so less often.)
This is a fairly invasive change, mostly because code written since the
ban was introduced didn't take the possibility of a static/dynamic split
into account. Some of these irregularities were hard to define as
anything but bugs.
Notably:
- The symbol handling was assuming that symbols only needed to be
looked for in dynamic hashtabs or static linker-laid-out indexed/
nonindexed layouts, but now we want to check both in case people
added more symbols to a dict they opened.
- The code that handles type additions wasn't checking to see if types
with the same name existed *at all* (so you could do
ctf_add_typedef (fp, "foo", bar) repeatedly without error). This
seems reasonable for types you just added, but we probably *do* want
to ban addition of types with names that override names we already
used in the ctf_open()ed portion, since that would probably corrupt
existing type relationships. (Doing things this way also avoids
causing new errors for any existing code that was doing this sort of
thing.)
- ctf_lookup_variable entirely failed to work for variables just added
by ctf_add_variable: you had to write the dict out and read it back
in again before they appeared.
- The symbol handling remembered what symbols you looked up but didn't
remember their types, so you could look up an object symbol and then
find it popping up when you asked for function symbols, which seems
less than ideal. Since we had to rejig things enough to be able to
distinguish function and object symbols internally anyway (in order
to give suitable errors if you try to add a symbol with a name that
already existed in the ctf_open()ed dict), this bug suddenly became
more visible and was easily fixed.
We do not (yet) support writing out dicts that have been previously read
in via ctf_open() or other deserializer (you can look things up in them,
but not write them out a second time). This never worked, so there is
no incompatibility; if it is needed at a later date, the serializer is a
little bit closer to having it work now (the only table we don't deal
with is the types table, and that's because the upcoming CTFv4 changes
are likely to make major changes to the way that table is represented
internally, so adding more code that depends on its current form seems
like a bad idea).
There is a new testcase that tests much of this, in particular that
modification of existing types is still banned and that you can add new
ones and chase them without error.
libctf/
* ctf-impl.h (struct ctf_dict.ctf_symhash): Split into...
(ctf_dict.ctf_symhash_func): ... this and...
(ctf_dict.ctf_symhash_objt): ... this.
(ctf_dict.ctf_stypes): New, counts static types.
(LCTF_INDEX_TO_TYPEPTR): Use it instead of CTF_RDWR.
(LCTF_RDWR): Deleted.
(LCTF_DIRTY): Renumbered.
(LCTF_LINKING): Likewise.
(ctf_lookup_variable_here): New.
(ctf_lookup_by_sym_or_name): Likewise.
(ctf_symbol_next_static): Likewise.
(ctf_add_variable_forced): Likewise.
(ctf_add_funcobjt_sym_forced): Likewise.
(ctf_simple_open_internal): Adjust.
(ctf_bufopen_internal): Likewise.
* ctf-create.c (ctf_grow_ptrtab): Adjust a lot to start with.
(ctf_create): Migrate a bunch of initializations into bufopen.
Force recreation of name tables. Do not forcibly override the
model, let ctf_bufopen do it.
(ctf_static_type): New.
(ctf_update): Drop LCTF_RDWR check.
(ctf_dynamic_type): Likewise.
(ctf_add_function): Likewise.
(ctf_add_type_internal): Likewise.
(ctf_rollback): Check ctf_stypes, not LCTF_RDWR.
(ctf_set_array): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_enumerator): Likewise (only on the target dict).
(ctf_add_member_offset): Likewise.
(ctf_add_generic): Drop LCTF_RDWR check. Ban addition of types
with colliding names.
(ctf_add_forward): Note safety under the new rules.
(ctf_add_variable): Split all but the existence check into...
(ctf_add_variable_forced): ... this new function.
(ctf_add_funcobjt_sym): Likewise...
(ctf_add_funcobjt_sym_forced): ... for this new function.
* ctf-link.c (ctf_link_add_linker_symbol): Ban calling on dicts
with any stypes.
(ctf_link_add_strtab): Likewise.
(ctf_link_shuffle_syms): Likewise.
(ctf_link_intern_extern_string): Note pre-existing prohibition.
* ctf-lookup.c (ctf_lookup_by_id): Drop LCTF_RDWR check.
(ctf_lookup_variable): Split out looking in a dict but not
its parent into...
(ctf_lookup_variable_here): ... this new function.
(ctf_lookup_symbol_idx): Track whether looking up a function or
object: cache them separately.
(ctf_symbol_next): Split out looking in non-dynamic symtypetab
entries to...
(ctf_symbol_next_static): ... this new function. Don't get confused
by the simultaneous presence of static and dynamic symtypetab entries.
(ctf_try_lookup_indexed): Don't waste time looking up symbols by
index before there can be any idea how symbols are numbered.
(ctf_lookup_by_sym_or_name): Distinguish between function and
data object lookups. Drop LCTF_RDWR.
(ctf_lookup_by_symbol): Adjust.
(ctf_lookup_by_symbol_name): Likewise.
* ctf-open.c (init_types): Rename to...
(init_static_types): ... this. Drop LCTF_RDWR. Populate ctf_stypes.
(ctf_simple_open): Drop writable arg.
(ctf_simple_open_internal): Likewise.
(ctf_bufopen): Likewise.
(ctf_bufopen_internal): Populate fields only used for writable dicts.
Drop LCTF_RDWR.
(ctf_dict_close): Cater for symhash cache split.
* ctf-serialize.c (ctf_serialize): Use ctf_stypes, not LCTF_RDWR.
* ctf-types.c (ctf_variable_next): Drop LCTF_RDWR.
* testsuite/libctf-lookup/add-to-opened*: New test.
2023-12-20 00:58:19 +08:00
|
|
|
return -1; /* errno is set for us. */
|
libctf: symbol type linking support
This adds facilities to write out the function info and data object
sections, which efficiently map from entries in the symbol table to
types. The write-side code is entirely new: the read-side code was
merely significantly changed and support for indexed tables added
(pointed to by the no-longer-unused cth_objtidxoff and cth_funcidxoff
header fields).
With this in place, you can use ctf_lookup_by_symbol to look up the
types of symbols of function and object type (and, as before, you can
use ctf_lookup_variable to look up types of file-scope variables not
present in the symbol table, as long as you know their name: but
variables that are also data objects are now found in the data object
section instead.)
(Compatible) file format change:
The CTF spec has always said that the function info section looks much
like the CTF_K_FUNCTIONs in the type section: an info word (including an
argument count) followed by a return type and N argument types. This
format is suboptimal: it means function symbols cannot be deduplicated
and it causes a lot of ugly code duplication in libctf. But
conveniently the compiler has never emitted this! Because it has always
emitted a rather different format that libctf has never accepted, we can
be sure that there are no instances of this function info section in the
wild, and can freely change its format without compatibility concerns or
a file format version bump. (And since it has never been emitted in any
code that generated any older file format version, either, we need keep
no code to read the format as specified at all!)
So the function info section is now specified as an array of uint32_t,
exactly like the object data section: each entry is a type ID in the
type section which must be of kind CTF_K_FUNCTION, the prototype of
this function.
This allows function types to be deduplicated and also correctly encodes
the fact that all functions declared in C really are types available to
the program: so they should be stored in the type section like all other
types. (In format v4, we will be able to represent the types of static
functions as well, but that really does require a file format change.)
We introduce a new header flag, CTF_F_NEWFUNCINFO, which is set if the
new function info format is in use. A sufficiently new compiler will
always set this flag. New libctf will always set this flag: old libctf
will refuse to open any CTF dicts that have this flag set. If the flag
is not set on a dict being read in, new libctf will disregard the
function info section. Format v4 will remove this flag (or, rather, the
flag has no meaning there and the bit position may be recycled for some
other purpose).
New API:
Symbol addition:
ctf_add_func_sym: Add a symbol with a given name and type. The
type must be of kind CTF_K_FUNCTION (a function
pointer). Internally this adds a name -> type
mapping to the ctf_funchash in the ctf_dict.
ctf_add_objt_sym: Add a symbol with a given name and type. The type
kind can be anything, including function pointers.
This adds to ctf_objthash.
These both treat symbols as name -> type mappings: the linker associates
symbol names with symbol indexes via the ctf_link_shuffle_syms callback,
which sets up the ctf_dynsyms/ctf_dynsymidx/ctf_dynsymmax fields in the
ctf_dict. Repeated relinks can add more symbols.
Variables that are also exposed as symbols are removed from the variable
section at serialization time.
CTF symbol type sections which have enough pads, defined by
CTF_INDEX_PAD_THRESHOLD (whether because they are in dicts with symbols
where most types are unknown, or in archive where most types are defined
in some child or parent dict, not in this specific dict) are sorted by
name rather than symidx and accompanied by an index which associates
each symbol type entry with a name: the existing ctf_lookup_by_symbol
will map symbol indexes to symbol names and look the names up in the
index automatically. (This is currently ELF-symbol-table-dependent, but
there is almost nothing specific to ELF in here and we can add support
for other symbol table formats easily).
The compiler also uses index sections to communicate the contents of
object file symbol tables without relying on any specific ordering of
symbols: it doesn't need to sort them, and libctf will detect an
unsorted index section via the absence of the new CTF_F_IDXSORTED header
flag, and sort it if needed.
Iteration:
ctf_symbol_next: Iterator which returns the types and names of symbols
one by one, either for function or data symbols.
This does not require any sorting: the ctf_link machinery uses it to
pull in all the compiler-provided symbols cheaply, but it is not
restricted to that use.
(Compatible) changes in API:
ctf_lookup_by_symbol: can now be called for object and function
symbols: never returns ECTF_NOTDATA (which is
now not thrown by anything, but is kept for
compatibility and because it is a plausible
error that we might start throwing again at some
later date).
Internally we also have changes to the ctf-string functionality so that
"external" strings (those where we track a string -> offset mapping, but
only write out an offset) can be consulted via the usual means
(ctf_strptr) before the strtab is written out. This is important
because ctf_link_add_linker_symbol can now be handed symbols named via
strtab offsets, and ctf_link_shuffle_syms must figure out their actual
names by looking in the external symtab we have just been fed by the
ctf_link_add_strtab callback, long before that strtab is written out.
include/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-api.h (ctf_symbol_next): New.
(ctf_add_objt_sym): Likewise.
(ctf_add_func_sym): Likewise.
* ctf.h: Document new function info section format.
(CTF_F_NEWFUNCINFO): New.
(CTF_F_IDXSORTED): New.
(CTF_F_MAX): Adjust accordingly.
libctf/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h (CTF_INDEX_PAD_THRESHOLD): New.
(_libctf_nonnull_): Likewise.
(ctf_in_flight_dynsym_t): New.
(ctf_dict_t) <ctf_funcidx_names>: Likewise.
<ctf_objtidx_names>: Likewise.
<ctf_nfuncidx>: Likewise.
<ctf_nobjtidx>: Likewise.
<ctf_funcidx_sxlate>: Likewise.
<ctf_objtidx_sxlate>: Likewise.
<ctf_objthash>: Likewise.
<ctf_funchash>: Likewise.
<ctf_dynsyms>: Likewise.
<ctf_dynsymidx>: Likewise.
<ctf_dynsymmax>: Likewise.
<ctf_in_flight_dynsym>: Likewise.
(struct ctf_next) <u.ctn_next>: Likewise.
(ctf_symtab_skippable): New prototype.
(ctf_add_funcobjt_sym): Likewise.
(ctf_dynhash_sort_by_name): Likewise.
(ctf_sym_to_elf64): Rename to...
(ctf_elf32_to_link_sym): ... this, and...
(ctf_elf64_to_link_sym): ... this.
* ctf-open.c (init_symtab): Check for lack of CTF_F_NEWFUNCINFO
flag, and presence of index sections. Refactor out
ctf_symtab_skippable and ctf_elf*_to_link_sym, and use them. Use
ctf_link_sym_t, not Elf64_Sym. Skip initializing objt or func
sxlate sections if corresponding index section is present. Adjust
for new func info section format.
(ctf_bufopen_internal): Add ctf_err_warn to corrupt-file error
handling. Report incorrect-length index sections. Always do an
init_symtab, even if there is no symtab section (there may be index
sections still).
(flip_objts): Adjust comment: func and objt sections are actually
identical in structure now, no need to caveat.
(ctf_dict_close): Free newly-added data structures.
* ctf-create.c (ctf_create): Initialize them.
(ctf_symtab_skippable): New, refactored out of
init_symtab, with st_nameidx_set check added.
(ctf_add_funcobjt_sym): New, add a function or object symbol to the
ctf_objthash or ctf_funchash, by name.
(ctf_add_objt_sym): Call it.
(ctf_add_func_sym): Likewise.
(symtypetab_delete_nonstatic_vars): New, delete vars also present as
data objects.
(CTF_SYMTYPETAB_EMIT_FUNCTION): New flag to symtypetab emitters:
this is a function emission, not a data object emission.
(CTF_SYMTYPETAB_EMIT_PAD): New flag to symtypetab emitters: emit
pads for symbols with no type (only set for unindexed sections).
(CTF_SYMTYPETAB_FORCE_INDEXED): New flag to symtypetab emitters:
always emit indexed.
(symtypetab_density): New, figure out section sizes.
(emit_symtypetab): New, emit a symtypetab.
(emit_symtypetab_index): New, emit a symtypetab index.
(ctf_serialize): Call them, emitting suitably sorted symtypetab
sections and indexes. Set suitable header flags. Copy over new
fields.
* ctf-hash.c (ctf_dynhash_sort_by_name): New, used to impose an
order on symtypetab index sections.
* ctf-link.c (ctf_add_type_mapping): Delete erroneous comment
relating to code that was never committed.
(ctf_link_one_variable): Improve variable name.
(check_sym): New, symtypetab analogue of check_variable.
(ctf_link_deduplicating_one_symtypetab): New.
(ctf_link_deduplicating_syms): Likewise.
(ctf_link_deduplicating): Call them.
(ctf_link_deduplicating_per_cu): Note that we don't call them in
this case (yet).
(ctf_link_add_strtab): Set the error on the fp correctly.
(ctf_link_add_linker_symbol): New (no longer a do-nothing stub), add
a linker symbol to the in-flight list.
(ctf_link_shuffle_syms): New (no longer a do-nothing stub), turn the
in-flight list into a mapping we can use, now its names are
resolvable in the external strtab.
* ctf-string.c (ctf_str_rollback_atom): Don't roll back atoms with
external strtab offsets.
(ctf_str_rollback): Adjust comment.
(ctf_str_write_strtab): Migrate ctf_syn_ext_strtab population from
writeout time...
(ctf_str_add_external): ... to string addition time.
* ctf-lookup.c (ctf_lookup_var_key_t): Rename to...
(ctf_lookup_idx_key_t): ... this, now we use it for syms too.
<clik_names>: New member, a name table.
(ctf_lookup_var): Adjust accordingly.
(ctf_lookup_variable): Likewise.
(ctf_lookup_by_id): Shuffle further up in the file.
(ctf_symidx_sort_arg_cb): New, callback for...
(sort_symidx_by_name): ... this new function to sort a symidx
found to be unsorted (likely originating from the compiler).
(ctf_symidx_sort): New, sort a symidx.
(ctf_lookup_symbol_name): Support dynamic symbols with indexes
provided by the linker. Use ctf_link_sym_t, not Elf64_Sym.
Check the parent if a child lookup fails.
(ctf_lookup_by_symbol): Likewise. Work for function symbols too.
(ctf_symbol_next): New, iterate over symbols with types (without
sorting).
(ctf_lookup_idx_name): New, bsearch for symbol names in indexes.
(ctf_try_lookup_indexed): New, attempt an indexed lookup.
(ctf_func_info): Reimplement in terms of ctf_lookup_by_symbol.
(ctf_func_args): Likewise.
(ctf_get_dict): Move...
* ctf-types.c (ctf_get_dict): ... here.
* ctf-util.c (ctf_sym_to_elf64): Re-express as...
(ctf_elf64_to_link_sym): ... this. Add new st_symidx field, and
st_nameidx_set (always 0, so st_nameidx can be ignored). Look in
the ELF strtab for names.
(ctf_elf32_to_link_sym): Likewise, for Elf32_Sym.
(ctf_next_destroy): Destroy ctf_next_t.u.ctn_next if need be.
* libctf.ver: Add ctf_symbol_next, ctf_add_objt_sym and
ctf_add_func_sym.
2020-11-20 21:34:04 +08:00
|
|
|
|
|
|
|
if (is_function && ctf_type_kind (fp, id) != CTF_K_FUNCTION)
|
|
|
|
return (ctf_set_errno (fp, ECTF_NOTFUNC));
|
|
|
|
|
|
|
|
if ((dupname = strdup (name)) == NULL)
|
|
|
|
return (ctf_set_errno (fp, ENOMEM));
|
|
|
|
|
|
|
|
if (ctf_dynhash_insert (h, dupname, (void *) (uintptr_t) id) < 0)
|
|
|
|
{
|
|
|
|
free (dupname);
|
|
|
|
return (ctf_set_errno (fp, ENOMEM));
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
libctf: support addition of types to dicts read via ctf_open()
libctf has long declared deserialized dictionaries (out of files or ELF
sections or memory buffers or whatever) to be read-only: back in the
furthest prehistory this was not the case, in that you could add a
few sorts of type to such dicts, but attempting to do so often caused
horrible memory corruption, so I banned the lot.
But it turns out real consumers want it (notably DTrace, which
synthesises pointers to types that don't have them and adds them to the
ctf_open()ed dicts if it needs them). Let's bring it back again, but
without the memory corruption and without the massive code duplication
required in days of yore to distinguish between static and dynamic
types: the representation of both types has been identical for a few
years, with the only difference being that types as a whole are stored in
a big buffer for types read in via ctf_open and per-type hashtables for
newly-added types.
So we discard the internally-visible concept of "readonly dictionaries"
in favour of declaring the *range of types* that were already present
when the dict was read in to be read-only: you can't modify them (say,
by adding members to them if they're structs, or calling ctf_set_array
on them), but you can add more types and point to them. (The API
remains the same, with calls sometimes returning ECTF_RDONLY, but now
they do so less often.)
This is a fairly invasive change, mostly because code written since the
ban was introduced didn't take the possibility of a static/dynamic split
into account. Some of these irregularities were hard to define as
anything but bugs.
Notably:
- The symbol handling was assuming that symbols only needed to be
looked for in dynamic hashtabs or static linker-laid-out indexed/
nonindexed layouts, but now we want to check both in case people
added more symbols to a dict they opened.
- The code that handles type additions wasn't checking to see if types
with the same name existed *at all* (so you could do
ctf_add_typedef (fp, "foo", bar) repeatedly without error). This
seems reasonable for types you just added, but we probably *do* want
to ban addition of types with names that override names we already
used in the ctf_open()ed portion, since that would probably corrupt
existing type relationships. (Doing things this way also avoids
causing new errors for any existing code that was doing this sort of
thing.)
- ctf_lookup_variable entirely failed to work for variables just added
by ctf_add_variable: you had to write the dict out and read it back
in again before they appeared.
- The symbol handling remembered what symbols you looked up but didn't
remember their types, so you could look up an object symbol and then
find it popping up when you asked for function symbols, which seems
less than ideal. Since we had to rejig things enough to be able to
distinguish function and object symbols internally anyway (in order
to give suitable errors if you try to add a symbol with a name that
already existed in the ctf_open()ed dict), this bug suddenly became
more visible and was easily fixed.
We do not (yet) support writing out dicts that have been previously read
in via ctf_open() or other deserializer (you can look things up in them,
but not write them out a second time). This never worked, so there is
no incompatibility; if it is needed at a later date, the serializer is a
little bit closer to having it work now (the only table we don't deal
with is the types table, and that's because the upcoming CTFv4 changes
are likely to make major changes to the way that table is represented
internally, so adding more code that depends on its current form seems
like a bad idea).
There is a new testcase that tests much of this, in particular that
modification of existing types is still banned and that you can add new
ones and chase them without error.
libctf/
* ctf-impl.h (struct ctf_dict.ctf_symhash): Split into...
(ctf_dict.ctf_symhash_func): ... this and...
(ctf_dict.ctf_symhash_objt): ... this.
(ctf_dict.ctf_stypes): New, counts static types.
(LCTF_INDEX_TO_TYPEPTR): Use it instead of CTF_RDWR.
(LCTF_RDWR): Deleted.
(LCTF_DIRTY): Renumbered.
(LCTF_LINKING): Likewise.
(ctf_lookup_variable_here): New.
(ctf_lookup_by_sym_or_name): Likewise.
(ctf_symbol_next_static): Likewise.
(ctf_add_variable_forced): Likewise.
(ctf_add_funcobjt_sym_forced): Likewise.
(ctf_simple_open_internal): Adjust.
(ctf_bufopen_internal): Likewise.
* ctf-create.c (ctf_grow_ptrtab): Adjust a lot to start with.
(ctf_create): Migrate a bunch of initializations into bufopen.
Force recreation of name tables. Do not forcibly override the
model, let ctf_bufopen do it.
(ctf_static_type): New.
(ctf_update): Drop LCTF_RDWR check.
(ctf_dynamic_type): Likewise.
(ctf_add_function): Likewise.
(ctf_add_type_internal): Likewise.
(ctf_rollback): Check ctf_stypes, not LCTF_RDWR.
(ctf_set_array): Likewise.
(ctf_add_struct_sized): Likewise.
(ctf_add_union_sized): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_enumerator): Likewise (only on the target dict).
(ctf_add_member_offset): Likewise.
(ctf_add_generic): Drop LCTF_RDWR check. Ban addition of types
with colliding names.
(ctf_add_forward): Note safety under the new rules.
(ctf_add_variable): Split all but the existence check into...
(ctf_add_variable_forced): ... this new function.
(ctf_add_funcobjt_sym): Likewise...
(ctf_add_funcobjt_sym_forced): ... for this new function.
* ctf-link.c (ctf_link_add_linker_symbol): Ban calling on dicts
with any stypes.
(ctf_link_add_strtab): Likewise.
(ctf_link_shuffle_syms): Likewise.
(ctf_link_intern_extern_string): Note pre-existing prohibition.
* ctf-lookup.c (ctf_lookup_by_id): Drop LCTF_RDWR check.
(ctf_lookup_variable): Split out looking in a dict but not
its parent into...
(ctf_lookup_variable_here): ... this new function.
(ctf_lookup_symbol_idx): Track whether looking up a function or
object: cache them separately.
(ctf_symbol_next): Split out looking in non-dynamic symtypetab
entries to...
(ctf_symbol_next_static): ... this new function. Don't get confused
by the simultaneous presence of static and dynamic symtypetab entries.
(ctf_try_lookup_indexed): Don't waste time looking up symbols by
index before there can be any idea how symbols are numbered.
(ctf_lookup_by_sym_or_name): Distinguish between function and
data object lookups. Drop LCTF_RDWR.
(ctf_lookup_by_symbol): Adjust.
(ctf_lookup_by_symbol_name): Likewise.
* ctf-open.c (init_types): Rename to...
(init_static_types): ... this. Drop LCTF_RDWR. Populate ctf_stypes.
(ctf_simple_open): Drop writable arg.
(ctf_simple_open_internal): Likewise.
(ctf_bufopen): Likewise.
(ctf_bufopen_internal): Populate fields only used for writable dicts.
Drop LCTF_RDWR.
(ctf_dict_close): Cater for symhash cache split.
* ctf-serialize.c (ctf_serialize): Use ctf_stypes, not LCTF_RDWR.
* ctf-types.c (ctf_variable_next): Drop LCTF_RDWR.
* testsuite/libctf-lookup/add-to-opened*: New test.
2023-12-20 00:58:19 +08:00
|
|
|
int
|
|
|
|
ctf_add_funcobjt_sym (ctf_dict_t *fp, int is_function, const char *name, ctf_id_t id)
|
|
|
|
{
|
|
|
|
if (ctf_lookup_by_sym_or_name (fp, 0, name, 0, is_function) != CTF_ERR)
|
|
|
|
return (ctf_set_errno (fp, ECTF_DUPLICATE));
|
|
|
|
|
|
|
|
return ctf_add_funcobjt_sym_forced (fp, is_function, name, id);
|
|
|
|
}
|
|
|
|
|
libctf: symbol type linking support
This adds facilities to write out the function info and data object
sections, which efficiently map from entries in the symbol table to
types. The write-side code is entirely new: the read-side code was
merely significantly changed and support for indexed tables added
(pointed to by the no-longer-unused cth_objtidxoff and cth_funcidxoff
header fields).
With this in place, you can use ctf_lookup_by_symbol to look up the
types of symbols of function and object type (and, as before, you can
use ctf_lookup_variable to look up types of file-scope variables not
present in the symbol table, as long as you know their name: but
variables that are also data objects are now found in the data object
section instead.)
(Compatible) file format change:
The CTF spec has always said that the function info section looks much
like the CTF_K_FUNCTIONs in the type section: an info word (including an
argument count) followed by a return type and N argument types. This
format is suboptimal: it means function symbols cannot be deduplicated
and it causes a lot of ugly code duplication in libctf. But
conveniently the compiler has never emitted this! Because it has always
emitted a rather different format that libctf has never accepted, we can
be sure that there are no instances of this function info section in the
wild, and can freely change its format without compatibility concerns or
a file format version bump. (And since it has never been emitted in any
code that generated any older file format version, either, we need keep
no code to read the format as specified at all!)
So the function info section is now specified as an array of uint32_t,
exactly like the object data section: each entry is a type ID in the
type section which must be of kind CTF_K_FUNCTION, the prototype of
this function.
This allows function types to be deduplicated and also correctly encodes
the fact that all functions declared in C really are types available to
the program: so they should be stored in the type section like all other
types. (In format v4, we will be able to represent the types of static
functions as well, but that really does require a file format change.)
We introduce a new header flag, CTF_F_NEWFUNCINFO, which is set if the
new function info format is in use. A sufficiently new compiler will
always set this flag. New libctf will always set this flag: old libctf
will refuse to open any CTF dicts that have this flag set. If the flag
is not set on a dict being read in, new libctf will disregard the
function info section. Format v4 will remove this flag (or, rather, the
flag has no meaning there and the bit position may be recycled for some
other purpose).
New API:
Symbol addition:
ctf_add_func_sym: Add a symbol with a given name and type. The
type must be of kind CTF_K_FUNCTION (a function
pointer). Internally this adds a name -> type
mapping to the ctf_funchash in the ctf_dict.
ctf_add_objt_sym: Add a symbol with a given name and type. The type
kind can be anything, including function pointers.
This adds to ctf_objthash.
These both treat symbols as name -> type mappings: the linker associates
symbol names with symbol indexes via the ctf_link_shuffle_syms callback,
which sets up the ctf_dynsyms/ctf_dynsymidx/ctf_dynsymmax fields in the
ctf_dict. Repeated relinks can add more symbols.
Variables that are also exposed as symbols are removed from the variable
section at serialization time.
CTF symbol type sections which have enough pads, defined by
CTF_INDEX_PAD_THRESHOLD (whether because they are in dicts with symbols
where most types are unknown, or in archive where most types are defined
in some child or parent dict, not in this specific dict) are sorted by
name rather than symidx and accompanied by an index which associates
each symbol type entry with a name: the existing ctf_lookup_by_symbol
will map symbol indexes to symbol names and look the names up in the
index automatically. (This is currently ELF-symbol-table-dependent, but
there is almost nothing specific to ELF in here and we can add support
for other symbol table formats easily).
The compiler also uses index sections to communicate the contents of
object file symbol tables without relying on any specific ordering of
symbols: it doesn't need to sort them, and libctf will detect an
unsorted index section via the absence of the new CTF_F_IDXSORTED header
flag, and sort it if needed.
Iteration:
ctf_symbol_next: Iterator which returns the types and names of symbols
one by one, either for function or data symbols.
This does not require any sorting: the ctf_link machinery uses it to
pull in all the compiler-provided symbols cheaply, but it is not
restricted to that use.
(Compatible) changes in API:
ctf_lookup_by_symbol: can now be called for object and function
symbols: never returns ECTF_NOTDATA (which is
now not thrown by anything, but is kept for
compatibility and because it is a plausible
error that we might start throwing again at some
later date).
Internally we also have changes to the ctf-string functionality so that
"external" strings (those where we track a string -> offset mapping, but
only write out an offset) can be consulted via the usual means
(ctf_strptr) before the strtab is written out. This is important
because ctf_link_add_linker_symbol can now be handed symbols named via
strtab offsets, and ctf_link_shuffle_syms must figure out their actual
names by looking in the external symtab we have just been fed by the
ctf_link_add_strtab callback, long before that strtab is written out.
include/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-api.h (ctf_symbol_next): New.
(ctf_add_objt_sym): Likewise.
(ctf_add_func_sym): Likewise.
* ctf.h: Document new function info section format.
(CTF_F_NEWFUNCINFO): New.
(CTF_F_IDXSORTED): New.
(CTF_F_MAX): Adjust accordingly.
libctf/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h (CTF_INDEX_PAD_THRESHOLD): New.
(_libctf_nonnull_): Likewise.
(ctf_in_flight_dynsym_t): New.
(ctf_dict_t) <ctf_funcidx_names>: Likewise.
<ctf_objtidx_names>: Likewise.
<ctf_nfuncidx>: Likewise.
<ctf_nobjtidx>: Likewise.
<ctf_funcidx_sxlate>: Likewise.
<ctf_objtidx_sxlate>: Likewise.
<ctf_objthash>: Likewise.
<ctf_funchash>: Likewise.
<ctf_dynsyms>: Likewise.
<ctf_dynsymidx>: Likewise.
<ctf_dynsymmax>: Likewise.
<ctf_in_flight_dynsym>: Likewise.
(struct ctf_next) <u.ctn_next>: Likewise.
(ctf_symtab_skippable): New prototype.
(ctf_add_funcobjt_sym): Likewise.
(ctf_dynhash_sort_by_name): Likewise.
(ctf_sym_to_elf64): Rename to...
(ctf_elf32_to_link_sym): ... this, and...
(ctf_elf64_to_link_sym): ... this.
* ctf-open.c (init_symtab): Check for lack of CTF_F_NEWFUNCINFO
flag, and presence of index sections. Refactor out
ctf_symtab_skippable and ctf_elf*_to_link_sym, and use them. Use
ctf_link_sym_t, not Elf64_Sym. Skip initializing objt or func
sxlate sections if corresponding index section is present. Adjust
for new func info section format.
(ctf_bufopen_internal): Add ctf_err_warn to corrupt-file error
handling. Report incorrect-length index sections. Always do an
init_symtab, even if there is no symtab section (there may be index
sections still).
(flip_objts): Adjust comment: func and objt sections are actually
identical in structure now, no need to caveat.
(ctf_dict_close): Free newly-added data structures.
* ctf-create.c (ctf_create): Initialize them.
(ctf_symtab_skippable): New, refactored out of
init_symtab, with st_nameidx_set check added.
(ctf_add_funcobjt_sym): New, add a function or object symbol to the
ctf_objthash or ctf_funchash, by name.
(ctf_add_objt_sym): Call it.
(ctf_add_func_sym): Likewise.
(symtypetab_delete_nonstatic_vars): New, delete vars also present as
data objects.
(CTF_SYMTYPETAB_EMIT_FUNCTION): New flag to symtypetab emitters:
this is a function emission, not a data object emission.
(CTF_SYMTYPETAB_EMIT_PAD): New flag to symtypetab emitters: emit
pads for symbols with no type (only set for unindexed sections).
(CTF_SYMTYPETAB_FORCE_INDEXED): New flag to symtypetab emitters:
always emit indexed.
(symtypetab_density): New, figure out section sizes.
(emit_symtypetab): New, emit a symtypetab.
(emit_symtypetab_index): New, emit a symtypetab index.
(ctf_serialize): Call them, emitting suitably sorted symtypetab
sections and indexes. Set suitable header flags. Copy over new
fields.
* ctf-hash.c (ctf_dynhash_sort_by_name): New, used to impose an
order on symtypetab index sections.
* ctf-link.c (ctf_add_type_mapping): Delete erroneous comment
relating to code that was never committed.
(ctf_link_one_variable): Improve variable name.
(check_sym): New, symtypetab analogue of check_variable.
(ctf_link_deduplicating_one_symtypetab): New.
(ctf_link_deduplicating_syms): Likewise.
(ctf_link_deduplicating): Call them.
(ctf_link_deduplicating_per_cu): Note that we don't call them in
this case (yet).
(ctf_link_add_strtab): Set the error on the fp correctly.
(ctf_link_add_linker_symbol): New (no longer a do-nothing stub), add
a linker symbol to the in-flight list.
(ctf_link_shuffle_syms): New (no longer a do-nothing stub), turn the
in-flight list into a mapping we can use, now its names are
resolvable in the external strtab.
* ctf-string.c (ctf_str_rollback_atom): Don't roll back atoms with
external strtab offsets.
(ctf_str_rollback): Adjust comment.
(ctf_str_write_strtab): Migrate ctf_syn_ext_strtab population from
writeout time...
(ctf_str_add_external): ... to string addition time.
* ctf-lookup.c (ctf_lookup_var_key_t): Rename to...
(ctf_lookup_idx_key_t): ... this, now we use it for syms too.
<clik_names>: New member, a name table.
(ctf_lookup_var): Adjust accordingly.
(ctf_lookup_variable): Likewise.
(ctf_lookup_by_id): Shuffle further up in the file.
(ctf_symidx_sort_arg_cb): New, callback for...
(sort_symidx_by_name): ... this new function to sort a symidx
found to be unsorted (likely originating from the compiler).
(ctf_symidx_sort): New, sort a symidx.
(ctf_lookup_symbol_name): Support dynamic symbols with indexes
provided by the linker. Use ctf_link_sym_t, not Elf64_Sym.
Check the parent if a child lookup fails.
(ctf_lookup_by_symbol): Likewise. Work for function symbols too.
(ctf_symbol_next): New, iterate over symbols with types (without
sorting).
(ctf_lookup_idx_name): New, bsearch for symbol names in indexes.
(ctf_try_lookup_indexed): New, attempt an indexed lookup.
(ctf_func_info): Reimplement in terms of ctf_lookup_by_symbol.
(ctf_func_args): Likewise.
(ctf_get_dict): Move...
* ctf-types.c (ctf_get_dict): ... here.
* ctf-util.c (ctf_sym_to_elf64): Re-express as...
(ctf_elf64_to_link_sym): ... this. Add new st_symidx field, and
st_nameidx_set (always 0, so st_nameidx can be ignored). Look in
the ELF strtab for names.
(ctf_elf32_to_link_sym): Likewise, for Elf32_Sym.
(ctf_next_destroy): Destroy ctf_next_t.u.ctn_next if need be.
* libctf.ver: Add ctf_symbol_next, ctf_add_objt_sym and
ctf_add_func_sym.
2020-11-20 21:34:04 +08:00
|
|
|
int
|
|
|
|
ctf_add_objt_sym (ctf_dict_t *fp, const char *name, ctf_id_t id)
|
|
|
|
{
|
|
|
|
return (ctf_add_funcobjt_sym (fp, 0, name, id));
|
|
|
|
}
|
|
|
|
|
|
|
|
int
|
|
|
|
ctf_add_func_sym (ctf_dict_t *fp, const char *name, ctf_id_t id)
|
|
|
|
{
|
|
|
|
return (ctf_add_funcobjt_sym (fp, 1, name, id));
|
|
|
|
}
|
|
|
|
|
libctf, binutils, include, ld: gettextize and improve error handling
This commit follows on from the earlier commit "libctf, ld, binutils:
add textual error/warning reporting for libctf" and converts every error
in libctf that was reported using ctf_dprintf to use ctf_err_warn
instead, gettextizing them in the process, using N_() where necessary to
avoid doing gettext calls unless an error message is actually generated,
and rephrasing some error messages for ease of translation.
This requires a slight change in the ctf_errwarning_next API: this API
is public but has not been in a release yet, so can still change freely.
The problem is that many errors are emitted at open time (whether
opening of a CTF dict, or opening of a CTF archive): the former of these
throws away its incompletely-initialized ctf_file_t rather than return
it, and the latter has no ctf_file_t at all. So errors and warnings
emitted at open time cannot be stored in the ctf_file_t, and have to go
elsewhere.
We put them in a static local in ctf-subr.c (which is not very
thread-safe: a later commit will improve things here): ctf_err_warn with
a NULL fp adds to this list, and the public interface
ctf_errwarning_next with a NULL fp retrieves from it.
We need a slight exception from the usual iterator rules in this case:
with a NULL fp, there is nowhere to store the ECTF_NEXT_END "error"
which signifies the end of iteration, so we add a new err parameter to
ctf_errwarning_next which is used to report such iteration-related
errors. (If an fp is provided -- i.e., if not reporting open errors --
this is optional, but even if it's optional it's still an API change.
This is actually useful from a usability POV as well, since
ctf_errwarning_next is usually called when there's been an error, so
overwriting the error code with ECTF_NEXT_END is not very helpful!
So, unusually, ctf_errwarning_next now uses the passed fp for its
error code *only* if no errp pointer is passed in, and leaves it
untouched otherwise.)
ld, objdump and readelf are adapted to call ctf_errwarning_next with a
NULL fp to report open errors where appropriate.
The ctf_err_warn API also has to change, gaining a new error-number
parameter which is used to add the error message corresponding to that
error number into the debug stream when LIBCTF_DEBUG is enabled:
changing this API is easy at this point since we are already touching
all existing calls to gettextize them. We need this because the debug
stream should contain the errno's message, but the error reported in the
error/warning stream should *not*, because the caller will probably
report it themselves at failure time regardless, and reporting it in
every error message that leads up to it leads to a ridiculous chattering
on failure, which is likely to end up as ridiculous chattering on stderr
(trimmed a bit):
CTF error: `ld/testsuite/ld-ctf/A.c (0): lookup failure for type 3: flags 1: The parent CTF dictionary is unavailable'
CTF error: `ld/testsuite/ld-ctf/A.c (0): struct/union member type hashing error during type hashing for type 80000001, kind 6: The parent CTF dictionary is unavailable'
CTF error: `deduplicating link variable emission failed for ld/testsuite/ld-ctf/A.c: The parent CTF dictionary is unavailable'
ld/.libs/lt-ld-new: warning: CTF linking failed; output will have no CTF section: `The parent CTF dictionary is unavailable'
We only need to be told that the parent CTF dictionary is unavailable
*once*, not over and over again!
errmsgs are still emitted on warning generation, because warnings do not
usually lead to a failure propagated up to the caller and reported
there.
Debug-stream messages are not translated. If translation is turned on,
there will be a mixture of English and translated messages in the debug
stream, but rather that than burden the translators with debug-only
output.
binutils/ChangeLog
2020-08-27 Nick Alcock <nick.alcock@oracle.com>
* objdump.c (dump_ctf_archive_member): Move error-
reporting...
(dump_ctf_errs): ... into this separate function.
(dump_ctf): Call it on open errors.
* readelf.c (dump_ctf_archive_member): Move error-
reporting...
(dump_ctf_errs): ... into this separate function. Support
calls with NULL fp. Adjust for new err parameter to
ctf_errwarning_next.
(dump_section_as_ctf): Call it on open errors.
include/ChangeLog
2020-08-27 Nick Alcock <nick.alcock@oracle.com>
* ctf-api.h (ctf_errwarning_next): New err parameter.
ld/ChangeLog
2020-08-27 Nick Alcock <nick.alcock@oracle.com>
* ldlang.c (lang_ctf_errs_warnings): Support calls with NULL fp.
Adjust for new err parameter to ctf_errwarning_next. Only
check for assertion failures when fp is non-NULL.
(ldlang_open_ctf): Call it on open errors.
* testsuite/ld-ctf/ctf.exp: Always use the C locale to avoid
breaking the diags tests.
libctf/ChangeLog
2020-08-27 Nick Alcock <nick.alcock@oracle.com>
* ctf-subr.c (open_errors): New list.
(ctf_err_warn): Calls with NULL fp append to open_errors. Add err
parameter, and use it to decorate the debug stream with errmsgs.
(ctf_err_warn_to_open): Splice errors from a CTF dict into the
open_errors.
(ctf_errwarning_next): Calls with NULL fp report from open_errors.
New err param to report iteration errors (including end-of-iteration)
when fp is NULL.
(ctf_assert_fail_internal): Adjust ctf_err_warn call for new err
parameter: gettextize.
* ctf-impl.h (ctfo_get_vbytes): Add ctf_file_t parameter.
(LCTF_VBYTES): Adjust.
(ctf_err_warn_to_open): New.
(ctf_err_warn): Adjust.
(ctf_bundle): Used in only one place: move...
* ctf-create.c: ... here.
(enumcmp): Use ctf_err_warn, not ctf_dprintf, passing the err number
down as needed. Don't emit the errmsg. Gettextize.
(membcmp): Likewise.
(ctf_add_type_internal): Likewise.
(ctf_write_mem): Likewise.
(ctf_compress_write): Likewise. Report errors writing the header or
body.
(ctf_write): Likewise.
* ctf-archive.c (ctf_arc_write_fd): Use ctf_err_warn, not
ctf_dprintf, and gettextize, as above.
(ctf_arc_write): Likewise.
(ctf_arc_bufopen): Likewise.
(ctf_arc_open_internal): Likewise.
* ctf-labels.c (ctf_label_iter): Likewise.
* ctf-open-bfd.c (ctf_bfdclose): Likewise.
(ctf_bfdopen): Likewise.
(ctf_bfdopen_ctfsect): Likewise.
(ctf_fdopen): Likewise.
* ctf-string.c (ctf_str_write_strtab): Likewise.
* ctf-types.c (ctf_type_resolve): Likewise.
* ctf-open.c (get_vbytes_common): Likewise. Pass down the ctf dict.
(get_vbytes_v1): Pass down the ctf dict.
(get_vbytes_v2): Likewise.
(flip_ctf): Likewise.
(flip_types): Likewise. Use ctf_err_warn, not ctf_dprintf, and
gettextize, as above.
(upgrade_types_v1): Adjust calls.
(init_types): Use ctf_err_warn, not ctf_dprintf, as above.
(ctf_bufopen_internal): Likewise. Adjust calls. Transplant errors
emitted into individual dicts into the open errors if this turns
out to be a failed open in the end.
* ctf-dump.c (ctf_dump_format_type): Adjust ctf_err_warn for new err
argument. Gettextize. Don't emit the errmsg.
(ctf_dump_funcs): Likewise. Collapse err label into its only case.
(ctf_dump_type): Likewise.
* ctf-link.c (ctf_create_per_cu): Adjust ctf_err_warn for new err
argument. Gettextize. Don't emit the errmsg.
(ctf_link_one_type): Likewise.
(ctf_link_lazy_open): Likewise.
(ctf_link_one_input_archive): Likewise.
(ctf_link_deduplicating_count_inputs): Likewise.
(ctf_link_deduplicating_open_inputs): Likewise.
(ctf_link_deduplicating_close_inputs): Likewise.
(ctf_link_deduplicating): Likewise.
(ctf_link): Likewise.
(ctf_link_deduplicating_per_cu): Likewise. Add some missed
ctf_set_errnos to obscure error cases.
* ctf-dedup.c (ctf_dedup_rhash_type): Adjust ctf_err_warn for new
err argument. Gettextize. Don't emit the errmsg.
(ctf_dedup_populate_mappings): Likewise.
(ctf_dedup_detect_name_ambiguity): Likewise.
(ctf_dedup_init): Likewise.
(ctf_dedup_multiple_input_dicts): Likewise.
(ctf_dedup_conflictify_unshared): Likewise.
(ctf_dedup): Likewise.
(ctf_dedup_rwalk_one_output_mapping): Likewise.
(ctf_dedup_id_to_target): Likewise.
(ctf_dedup_emit_type): Likewise.
(ctf_dedup_emit_struct_members): Likewise.
(ctf_dedup_populate_type_mapping): Likewise.
(ctf_dedup_populate_type_mappings): Likewise.
(ctf_dedup_emit): Likewise.
(ctf_dedup_hash_type): Likewise. Fix a bit of messed-up error
status setting.
(ctf_dedup_rwalk_one_output_mapping): Likewise. Don't hide
unknown-type-kind messages (which signify file corruption).
2020-07-27 23:45:15 +08:00
|
|
|
typedef struct ctf_bundle
|
|
|
|
{
|
libctf, include, binutils, gdb, ld: rename ctf_file_t to ctf_dict_t
The naming of the ctf_file_t type in libctf is a historical curiosity.
Back in the Solaris days, CTF dictionaries were originally generated as
a separate file and then (sometimes) merged into objects: hence the
datatype was named ctf_file_t, and known as a "CTF file". Nowadays, raw
CTF is essentially never written to a file on its own, and the datatype
changed name to a "CTF dictionary" years ago. So the term "CTF file"
refers to something that is never a file! This is at best confusing.
The type has also historically been known as a 'CTF container", which is
even more confusing now that we have CTF archives which are *also* a
sort of container (they contain CTF dictionaries), but which are never
referred to as containers in the source code.
So fix this by completing the renaming, renaming ctf_file_t to
ctf_dict_t throughout, and renaming those few functions that refer to
CTF files by name (keeping compatibility aliases) to refer to dicts
instead. Old users who still refer to ctf_file_t will see (harmless)
pointer-compatibility warnings at compile time, but the ABI is unchanged
(since C doesn't mangle names, and ctf_file_t was always an opaque type)
and things will still compile fine as long as -Werror is not specified.
All references to CTF containers and CTF files in the source code are
fixed to refer to CTF dicts instead.
Further (smaller) renamings of annoyingly-named functions to come, as
part of the process of souping up queries across whole archives at once
(needed for the function info and data object sections).
binutils/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* objdump.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_ctf): Likewise. Use ctf_dict_close, not ctf_file_close.
* readelf.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_section_as_ctf): Likewise. Use ctf_dict_close, not
ctf_file_close.
gdb/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctfread.c: Change uses of ctf_file_t to ctf_dict_t.
(ctf_fp_info::~ctf_fp_info): Call ctf_dict_close, not ctf_file_close.
include/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-api.h (ctf_file_t): Rename to...
(ctf_dict_t): ... this. Keep ctf_file_t around for compatibility.
(struct ctf_file): Likewise rename to...
(struct ctf_dict): ... this.
(ctf_file_close): Rename to...
(ctf_dict_close): ... this, keeping compatibility function.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this, keeping compatibility function.
All callers adjusted.
* ctf.h: Rename references to ctf_file_t to ctf_dict_t.
(struct ctf_archive) <ctfa_nfiles>: Rename to...
<ctfa_ndicts>: ... this.
ld/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ldlang.c (ctf_output): This is a ctf_dict_t now.
(lang_ctf_errs_warnings): Rename ctf_file_t to ctf_dict_t.
(ldlang_open_ctf): Adjust comment.
(lang_merge_ctf): Use ctf_dict_close, not ctf_file_close.
* ldelfgen.h (ldelf_examine_strtab_for_ctf): Rename ctf_file_t to
ctf_dict_t. Change opaque declaration accordingly.
* ldelfgen.c (ldelf_examine_strtab_for_ctf): Adjust.
* ldemul.h (examine_strtab_for_ctf): Likewise.
(ldemul_examine_strtab_for_ctf): Likewise.
* ldeuml.c (ldemul_examine_strtab_for_ctf): Likewise.
libctf/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h: Rename ctf_file_t to ctf_dict_t: all declarations
adjusted.
(ctf_fileops): Rename to...
(ctf_dictops): ... this.
(ctf_dedup_t) <cd_id_to_file_t>: Rename to...
<cd_id_to_dict_t>: ... this.
(ctf_file_t): Fix outdated comment.
<ctf_fileops>: Rename to...
<ctf_dictops>: ... this.
(struct ctf_archive_internal) <ctfi_file>: Rename to...
<ctfi_dict>: ... this.
* ctf-archive.c: Rename ctf_file_t to ctf_dict_t.
Rename ctf_archive.ctfa_nfiles to ctfa_ndicts.
Rename ctf_file_close to ctf_dict_close. All users adjusted.
* ctf-create.c: Likewise. Refer to CTF dicts, not CTF containers.
(ctf_bundle_t) <ctb_file>: Rename to...
<ctb_dict): ... this.
* ctf-decl.c: Rename ctf_file_t to ctf_dict_t.
* ctf-dedup.c: Likewise. Rename ctf_file_close to
ctf_dict_close. Refer to CTF dicts, not CTF containers.
* ctf-dump.c: Likewise.
* ctf-error.c: Likewise.
* ctf-hash.c: Likewise.
* ctf-inlines.h: Likewise.
* ctf-labels.c: Likewise.
* ctf-link.c: Likewise.
* ctf-lookup.c: Likewise.
* ctf-open-bfd.c: Likewise.
* ctf-string.c: Likewise.
* ctf-subr.c: Likewise.
* ctf-types.c: Likewise.
* ctf-util.c: Likewise.
* ctf-open.c: Likewise.
(ctf_file_close): Rename to...
(ctf_dict_close): ...this.
(ctf_file_close): New trivial wrapper around ctf_dict_close, for
compatibility.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this.
(ctf_parent_file): New trivial wrapper around ctf_parent_dict, for
compatibility.
* libctf.ver: Add ctf_dict_close and ctf_parent_dict.
2020-11-20 21:34:04 +08:00
|
|
|
ctf_dict_t *ctb_dict; /* CTF dict handle. */
|
libctf, binutils, include, ld: gettextize and improve error handling
This commit follows on from the earlier commit "libctf, ld, binutils:
add textual error/warning reporting for libctf" and converts every error
in libctf that was reported using ctf_dprintf to use ctf_err_warn
instead, gettextizing them in the process, using N_() where necessary to
avoid doing gettext calls unless an error message is actually generated,
and rephrasing some error messages for ease of translation.
This requires a slight change in the ctf_errwarning_next API: this API
is public but has not been in a release yet, so can still change freely.
The problem is that many errors are emitted at open time (whether
opening of a CTF dict, or opening of a CTF archive): the former of these
throws away its incompletely-initialized ctf_file_t rather than return
it, and the latter has no ctf_file_t at all. So errors and warnings
emitted at open time cannot be stored in the ctf_file_t, and have to go
elsewhere.
We put them in a static local in ctf-subr.c (which is not very
thread-safe: a later commit will improve things here): ctf_err_warn with
a NULL fp adds to this list, and the public interface
ctf_errwarning_next with a NULL fp retrieves from it.
We need a slight exception from the usual iterator rules in this case:
with a NULL fp, there is nowhere to store the ECTF_NEXT_END "error"
which signifies the end of iteration, so we add a new err parameter to
ctf_errwarning_next which is used to report such iteration-related
errors. (If an fp is provided -- i.e., if not reporting open errors --
this is optional, but even if it's optional it's still an API change.
This is actually useful from a usability POV as well, since
ctf_errwarning_next is usually called when there's been an error, so
overwriting the error code with ECTF_NEXT_END is not very helpful!
So, unusually, ctf_errwarning_next now uses the passed fp for its
error code *only* if no errp pointer is passed in, and leaves it
untouched otherwise.)
ld, objdump and readelf are adapted to call ctf_errwarning_next with a
NULL fp to report open errors where appropriate.
The ctf_err_warn API also has to change, gaining a new error-number
parameter which is used to add the error message corresponding to that
error number into the debug stream when LIBCTF_DEBUG is enabled:
changing this API is easy at this point since we are already touching
all existing calls to gettextize them. We need this because the debug
stream should contain the errno's message, but the error reported in the
error/warning stream should *not*, because the caller will probably
report it themselves at failure time regardless, and reporting it in
every error message that leads up to it leads to a ridiculous chattering
on failure, which is likely to end up as ridiculous chattering on stderr
(trimmed a bit):
CTF error: `ld/testsuite/ld-ctf/A.c (0): lookup failure for type 3: flags 1: The parent CTF dictionary is unavailable'
CTF error: `ld/testsuite/ld-ctf/A.c (0): struct/union member type hashing error during type hashing for type 80000001, kind 6: The parent CTF dictionary is unavailable'
CTF error: `deduplicating link variable emission failed for ld/testsuite/ld-ctf/A.c: The parent CTF dictionary is unavailable'
ld/.libs/lt-ld-new: warning: CTF linking failed; output will have no CTF section: `The parent CTF dictionary is unavailable'
We only need to be told that the parent CTF dictionary is unavailable
*once*, not over and over again!
errmsgs are still emitted on warning generation, because warnings do not
usually lead to a failure propagated up to the caller and reported
there.
Debug-stream messages are not translated. If translation is turned on,
there will be a mixture of English and translated messages in the debug
stream, but rather that than burden the translators with debug-only
output.
binutils/ChangeLog
2020-08-27 Nick Alcock <nick.alcock@oracle.com>
* objdump.c (dump_ctf_archive_member): Move error-
reporting...
(dump_ctf_errs): ... into this separate function.
(dump_ctf): Call it on open errors.
* readelf.c (dump_ctf_archive_member): Move error-
reporting...
(dump_ctf_errs): ... into this separate function. Support
calls with NULL fp. Adjust for new err parameter to
ctf_errwarning_next.
(dump_section_as_ctf): Call it on open errors.
include/ChangeLog
2020-08-27 Nick Alcock <nick.alcock@oracle.com>
* ctf-api.h (ctf_errwarning_next): New err parameter.
ld/ChangeLog
2020-08-27 Nick Alcock <nick.alcock@oracle.com>
* ldlang.c (lang_ctf_errs_warnings): Support calls with NULL fp.
Adjust for new err parameter to ctf_errwarning_next. Only
check for assertion failures when fp is non-NULL.
(ldlang_open_ctf): Call it on open errors.
* testsuite/ld-ctf/ctf.exp: Always use the C locale to avoid
breaking the diags tests.
libctf/ChangeLog
2020-08-27 Nick Alcock <nick.alcock@oracle.com>
* ctf-subr.c (open_errors): New list.
(ctf_err_warn): Calls with NULL fp append to open_errors. Add err
parameter, and use it to decorate the debug stream with errmsgs.
(ctf_err_warn_to_open): Splice errors from a CTF dict into the
open_errors.
(ctf_errwarning_next): Calls with NULL fp report from open_errors.
New err param to report iteration errors (including end-of-iteration)
when fp is NULL.
(ctf_assert_fail_internal): Adjust ctf_err_warn call for new err
parameter: gettextize.
* ctf-impl.h (ctfo_get_vbytes): Add ctf_file_t parameter.
(LCTF_VBYTES): Adjust.
(ctf_err_warn_to_open): New.
(ctf_err_warn): Adjust.
(ctf_bundle): Used in only one place: move...
* ctf-create.c: ... here.
(enumcmp): Use ctf_err_warn, not ctf_dprintf, passing the err number
down as needed. Don't emit the errmsg. Gettextize.
(membcmp): Likewise.
(ctf_add_type_internal): Likewise.
(ctf_write_mem): Likewise.
(ctf_compress_write): Likewise. Report errors writing the header or
body.
(ctf_write): Likewise.
* ctf-archive.c (ctf_arc_write_fd): Use ctf_err_warn, not
ctf_dprintf, and gettextize, as above.
(ctf_arc_write): Likewise.
(ctf_arc_bufopen): Likewise.
(ctf_arc_open_internal): Likewise.
* ctf-labels.c (ctf_label_iter): Likewise.
* ctf-open-bfd.c (ctf_bfdclose): Likewise.
(ctf_bfdopen): Likewise.
(ctf_bfdopen_ctfsect): Likewise.
(ctf_fdopen): Likewise.
* ctf-string.c (ctf_str_write_strtab): Likewise.
* ctf-types.c (ctf_type_resolve): Likewise.
* ctf-open.c (get_vbytes_common): Likewise. Pass down the ctf dict.
(get_vbytes_v1): Pass down the ctf dict.
(get_vbytes_v2): Likewise.
(flip_ctf): Likewise.
(flip_types): Likewise. Use ctf_err_warn, not ctf_dprintf, and
gettextize, as above.
(upgrade_types_v1): Adjust calls.
(init_types): Use ctf_err_warn, not ctf_dprintf, as above.
(ctf_bufopen_internal): Likewise. Adjust calls. Transplant errors
emitted into individual dicts into the open errors if this turns
out to be a failed open in the end.
* ctf-dump.c (ctf_dump_format_type): Adjust ctf_err_warn for new err
argument. Gettextize. Don't emit the errmsg.
(ctf_dump_funcs): Likewise. Collapse err label into its only case.
(ctf_dump_type): Likewise.
* ctf-link.c (ctf_create_per_cu): Adjust ctf_err_warn for new err
argument. Gettextize. Don't emit the errmsg.
(ctf_link_one_type): Likewise.
(ctf_link_lazy_open): Likewise.
(ctf_link_one_input_archive): Likewise.
(ctf_link_deduplicating_count_inputs): Likewise.
(ctf_link_deduplicating_open_inputs): Likewise.
(ctf_link_deduplicating_close_inputs): Likewise.
(ctf_link_deduplicating): Likewise.
(ctf_link): Likewise.
(ctf_link_deduplicating_per_cu): Likewise. Add some missed
ctf_set_errnos to obscure error cases.
* ctf-dedup.c (ctf_dedup_rhash_type): Adjust ctf_err_warn for new
err argument. Gettextize. Don't emit the errmsg.
(ctf_dedup_populate_mappings): Likewise.
(ctf_dedup_detect_name_ambiguity): Likewise.
(ctf_dedup_init): Likewise.
(ctf_dedup_multiple_input_dicts): Likewise.
(ctf_dedup_conflictify_unshared): Likewise.
(ctf_dedup): Likewise.
(ctf_dedup_rwalk_one_output_mapping): Likewise.
(ctf_dedup_id_to_target): Likewise.
(ctf_dedup_emit_type): Likewise.
(ctf_dedup_emit_struct_members): Likewise.
(ctf_dedup_populate_type_mapping): Likewise.
(ctf_dedup_populate_type_mappings): Likewise.
(ctf_dedup_emit): Likewise.
(ctf_dedup_hash_type): Likewise. Fix a bit of messed-up error
status setting.
(ctf_dedup_rwalk_one_output_mapping): Likewise. Don't hide
unknown-type-kind messages (which signify file corruption).
2020-07-27 23:45:15 +08:00
|
|
|
ctf_id_t ctb_type; /* CTF type identifier. */
|
|
|
|
ctf_dtdef_t *ctb_dtd; /* CTF dynamic type definition (if any). */
|
|
|
|
} ctf_bundle_t;
|
|
|
|
|
2019-04-24 18:22:03 +08:00
|
|
|
static int
|
|
|
|
enumcmp (const char *name, int value, void *arg)
|
|
|
|
{
|
|
|
|
ctf_bundle_t *ctb = arg;
|
|
|
|
int bvalue;
|
|
|
|
|
libctf, include, binutils, gdb, ld: rename ctf_file_t to ctf_dict_t
The naming of the ctf_file_t type in libctf is a historical curiosity.
Back in the Solaris days, CTF dictionaries were originally generated as
a separate file and then (sometimes) merged into objects: hence the
datatype was named ctf_file_t, and known as a "CTF file". Nowadays, raw
CTF is essentially never written to a file on its own, and the datatype
changed name to a "CTF dictionary" years ago. So the term "CTF file"
refers to something that is never a file! This is at best confusing.
The type has also historically been known as a 'CTF container", which is
even more confusing now that we have CTF archives which are *also* a
sort of container (they contain CTF dictionaries), but which are never
referred to as containers in the source code.
So fix this by completing the renaming, renaming ctf_file_t to
ctf_dict_t throughout, and renaming those few functions that refer to
CTF files by name (keeping compatibility aliases) to refer to dicts
instead. Old users who still refer to ctf_file_t will see (harmless)
pointer-compatibility warnings at compile time, but the ABI is unchanged
(since C doesn't mangle names, and ctf_file_t was always an opaque type)
and things will still compile fine as long as -Werror is not specified.
All references to CTF containers and CTF files in the source code are
fixed to refer to CTF dicts instead.
Further (smaller) renamings of annoyingly-named functions to come, as
part of the process of souping up queries across whole archives at once
(needed for the function info and data object sections).
binutils/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* objdump.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_ctf): Likewise. Use ctf_dict_close, not ctf_file_close.
* readelf.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_section_as_ctf): Likewise. Use ctf_dict_close, not
ctf_file_close.
gdb/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctfread.c: Change uses of ctf_file_t to ctf_dict_t.
(ctf_fp_info::~ctf_fp_info): Call ctf_dict_close, not ctf_file_close.
include/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-api.h (ctf_file_t): Rename to...
(ctf_dict_t): ... this. Keep ctf_file_t around for compatibility.
(struct ctf_file): Likewise rename to...
(struct ctf_dict): ... this.
(ctf_file_close): Rename to...
(ctf_dict_close): ... this, keeping compatibility function.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this, keeping compatibility function.
All callers adjusted.
* ctf.h: Rename references to ctf_file_t to ctf_dict_t.
(struct ctf_archive) <ctfa_nfiles>: Rename to...
<ctfa_ndicts>: ... this.
ld/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ldlang.c (ctf_output): This is a ctf_dict_t now.
(lang_ctf_errs_warnings): Rename ctf_file_t to ctf_dict_t.
(ldlang_open_ctf): Adjust comment.
(lang_merge_ctf): Use ctf_dict_close, not ctf_file_close.
* ldelfgen.h (ldelf_examine_strtab_for_ctf): Rename ctf_file_t to
ctf_dict_t. Change opaque declaration accordingly.
* ldelfgen.c (ldelf_examine_strtab_for_ctf): Adjust.
* ldemul.h (examine_strtab_for_ctf): Likewise.
(ldemul_examine_strtab_for_ctf): Likewise.
* ldeuml.c (ldemul_examine_strtab_for_ctf): Likewise.
libctf/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h: Rename ctf_file_t to ctf_dict_t: all declarations
adjusted.
(ctf_fileops): Rename to...
(ctf_dictops): ... this.
(ctf_dedup_t) <cd_id_to_file_t>: Rename to...
<cd_id_to_dict_t>: ... this.
(ctf_file_t): Fix outdated comment.
<ctf_fileops>: Rename to...
<ctf_dictops>: ... this.
(struct ctf_archive_internal) <ctfi_file>: Rename to...
<ctfi_dict>: ... this.
* ctf-archive.c: Rename ctf_file_t to ctf_dict_t.
Rename ctf_archive.ctfa_nfiles to ctfa_ndicts.
Rename ctf_file_close to ctf_dict_close. All users adjusted.
* ctf-create.c: Likewise. Refer to CTF dicts, not CTF containers.
(ctf_bundle_t) <ctb_file>: Rename to...
<ctb_dict): ... this.
* ctf-decl.c: Rename ctf_file_t to ctf_dict_t.
* ctf-dedup.c: Likewise. Rename ctf_file_close to
ctf_dict_close. Refer to CTF dicts, not CTF containers.
* ctf-dump.c: Likewise.
* ctf-error.c: Likewise.
* ctf-hash.c: Likewise.
* ctf-inlines.h: Likewise.
* ctf-labels.c: Likewise.
* ctf-link.c: Likewise.
* ctf-lookup.c: Likewise.
* ctf-open-bfd.c: Likewise.
* ctf-string.c: Likewise.
* ctf-subr.c: Likewise.
* ctf-types.c: Likewise.
* ctf-util.c: Likewise.
* ctf-open.c: Likewise.
(ctf_file_close): Rename to...
(ctf_dict_close): ...this.
(ctf_file_close): New trivial wrapper around ctf_dict_close, for
compatibility.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this.
(ctf_parent_file): New trivial wrapper around ctf_parent_dict, for
compatibility.
* libctf.ver: Add ctf_dict_close and ctf_parent_dict.
2020-11-20 21:34:04 +08:00
|
|
|
if (ctf_enum_value (ctb->ctb_dict, ctb->ctb_type, name, &bvalue) < 0)
|
2019-04-24 18:22:03 +08:00
|
|
|
{
|
libctf, include, binutils, gdb, ld: rename ctf_file_t to ctf_dict_t
The naming of the ctf_file_t type in libctf is a historical curiosity.
Back in the Solaris days, CTF dictionaries were originally generated as
a separate file and then (sometimes) merged into objects: hence the
datatype was named ctf_file_t, and known as a "CTF file". Nowadays, raw
CTF is essentially never written to a file on its own, and the datatype
changed name to a "CTF dictionary" years ago. So the term "CTF file"
refers to something that is never a file! This is at best confusing.
The type has also historically been known as a 'CTF container", which is
even more confusing now that we have CTF archives which are *also* a
sort of container (they contain CTF dictionaries), but which are never
referred to as containers in the source code.
So fix this by completing the renaming, renaming ctf_file_t to
ctf_dict_t throughout, and renaming those few functions that refer to
CTF files by name (keeping compatibility aliases) to refer to dicts
instead. Old users who still refer to ctf_file_t will see (harmless)
pointer-compatibility warnings at compile time, but the ABI is unchanged
(since C doesn't mangle names, and ctf_file_t was always an opaque type)
and things will still compile fine as long as -Werror is not specified.
All references to CTF containers and CTF files in the source code are
fixed to refer to CTF dicts instead.
Further (smaller) renamings of annoyingly-named functions to come, as
part of the process of souping up queries across whole archives at once
(needed for the function info and data object sections).
binutils/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* objdump.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_ctf): Likewise. Use ctf_dict_close, not ctf_file_close.
* readelf.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_section_as_ctf): Likewise. Use ctf_dict_close, not
ctf_file_close.
gdb/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctfread.c: Change uses of ctf_file_t to ctf_dict_t.
(ctf_fp_info::~ctf_fp_info): Call ctf_dict_close, not ctf_file_close.
include/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-api.h (ctf_file_t): Rename to...
(ctf_dict_t): ... this. Keep ctf_file_t around for compatibility.
(struct ctf_file): Likewise rename to...
(struct ctf_dict): ... this.
(ctf_file_close): Rename to...
(ctf_dict_close): ... this, keeping compatibility function.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this, keeping compatibility function.
All callers adjusted.
* ctf.h: Rename references to ctf_file_t to ctf_dict_t.
(struct ctf_archive) <ctfa_nfiles>: Rename to...
<ctfa_ndicts>: ... this.
ld/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ldlang.c (ctf_output): This is a ctf_dict_t now.
(lang_ctf_errs_warnings): Rename ctf_file_t to ctf_dict_t.
(ldlang_open_ctf): Adjust comment.
(lang_merge_ctf): Use ctf_dict_close, not ctf_file_close.
* ldelfgen.h (ldelf_examine_strtab_for_ctf): Rename ctf_file_t to
ctf_dict_t. Change opaque declaration accordingly.
* ldelfgen.c (ldelf_examine_strtab_for_ctf): Adjust.
* ldemul.h (examine_strtab_for_ctf): Likewise.
(ldemul_examine_strtab_for_ctf): Likewise.
* ldeuml.c (ldemul_examine_strtab_for_ctf): Likewise.
libctf/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h: Rename ctf_file_t to ctf_dict_t: all declarations
adjusted.
(ctf_fileops): Rename to...
(ctf_dictops): ... this.
(ctf_dedup_t) <cd_id_to_file_t>: Rename to...
<cd_id_to_dict_t>: ... this.
(ctf_file_t): Fix outdated comment.
<ctf_fileops>: Rename to...
<ctf_dictops>: ... this.
(struct ctf_archive_internal) <ctfi_file>: Rename to...
<ctfi_dict>: ... this.
* ctf-archive.c: Rename ctf_file_t to ctf_dict_t.
Rename ctf_archive.ctfa_nfiles to ctfa_ndicts.
Rename ctf_file_close to ctf_dict_close. All users adjusted.
* ctf-create.c: Likewise. Refer to CTF dicts, not CTF containers.
(ctf_bundle_t) <ctb_file>: Rename to...
<ctb_dict): ... this.
* ctf-decl.c: Rename ctf_file_t to ctf_dict_t.
* ctf-dedup.c: Likewise. Rename ctf_file_close to
ctf_dict_close. Refer to CTF dicts, not CTF containers.
* ctf-dump.c: Likewise.
* ctf-error.c: Likewise.
* ctf-hash.c: Likewise.
* ctf-inlines.h: Likewise.
* ctf-labels.c: Likewise.
* ctf-link.c: Likewise.
* ctf-lookup.c: Likewise.
* ctf-open-bfd.c: Likewise.
* ctf-string.c: Likewise.
* ctf-subr.c: Likewise.
* ctf-types.c: Likewise.
* ctf-util.c: Likewise.
* ctf-open.c: Likewise.
(ctf_file_close): Rename to...
(ctf_dict_close): ...this.
(ctf_file_close): New trivial wrapper around ctf_dict_close, for
compatibility.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this.
(ctf_parent_file): New trivial wrapper around ctf_parent_dict, for
compatibility.
* libctf.ver: Add ctf_dict_close and ctf_parent_dict.
2020-11-20 21:34:04 +08:00
|
|
|
ctf_err_warn (ctb->ctb_dict, 0, 0,
|
libctf, binutils, include, ld: gettextize and improve error handling
This commit follows on from the earlier commit "libctf, ld, binutils:
add textual error/warning reporting for libctf" and converts every error
in libctf that was reported using ctf_dprintf to use ctf_err_warn
instead, gettextizing them in the process, using N_() where necessary to
avoid doing gettext calls unless an error message is actually generated,
and rephrasing some error messages for ease of translation.
This requires a slight change in the ctf_errwarning_next API: this API
is public but has not been in a release yet, so can still change freely.
The problem is that many errors are emitted at open time (whether
opening of a CTF dict, or opening of a CTF archive): the former of these
throws away its incompletely-initialized ctf_file_t rather than return
it, and the latter has no ctf_file_t at all. So errors and warnings
emitted at open time cannot be stored in the ctf_file_t, and have to go
elsewhere.
We put them in a static local in ctf-subr.c (which is not very
thread-safe: a later commit will improve things here): ctf_err_warn with
a NULL fp adds to this list, and the public interface
ctf_errwarning_next with a NULL fp retrieves from it.
We need a slight exception from the usual iterator rules in this case:
with a NULL fp, there is nowhere to store the ECTF_NEXT_END "error"
which signifies the end of iteration, so we add a new err parameter to
ctf_errwarning_next which is used to report such iteration-related
errors. (If an fp is provided -- i.e., if not reporting open errors --
this is optional, but even if it's optional it's still an API change.
This is actually useful from a usability POV as well, since
ctf_errwarning_next is usually called when there's been an error, so
overwriting the error code with ECTF_NEXT_END is not very helpful!
So, unusually, ctf_errwarning_next now uses the passed fp for its
error code *only* if no errp pointer is passed in, and leaves it
untouched otherwise.)
ld, objdump and readelf are adapted to call ctf_errwarning_next with a
NULL fp to report open errors where appropriate.
The ctf_err_warn API also has to change, gaining a new error-number
parameter which is used to add the error message corresponding to that
error number into the debug stream when LIBCTF_DEBUG is enabled:
changing this API is easy at this point since we are already touching
all existing calls to gettextize them. We need this because the debug
stream should contain the errno's message, but the error reported in the
error/warning stream should *not*, because the caller will probably
report it themselves at failure time regardless, and reporting it in
every error message that leads up to it leads to a ridiculous chattering
on failure, which is likely to end up as ridiculous chattering on stderr
(trimmed a bit):
CTF error: `ld/testsuite/ld-ctf/A.c (0): lookup failure for type 3: flags 1: The parent CTF dictionary is unavailable'
CTF error: `ld/testsuite/ld-ctf/A.c (0): struct/union member type hashing error during type hashing for type 80000001, kind 6: The parent CTF dictionary is unavailable'
CTF error: `deduplicating link variable emission failed for ld/testsuite/ld-ctf/A.c: The parent CTF dictionary is unavailable'
ld/.libs/lt-ld-new: warning: CTF linking failed; output will have no CTF section: `The parent CTF dictionary is unavailable'
We only need to be told that the parent CTF dictionary is unavailable
*once*, not over and over again!
errmsgs are still emitted on warning generation, because warnings do not
usually lead to a failure propagated up to the caller and reported
there.
Debug-stream messages are not translated. If translation is turned on,
there will be a mixture of English and translated messages in the debug
stream, but rather that than burden the translators with debug-only
output.
binutils/ChangeLog
2020-08-27 Nick Alcock <nick.alcock@oracle.com>
* objdump.c (dump_ctf_archive_member): Move error-
reporting...
(dump_ctf_errs): ... into this separate function.
(dump_ctf): Call it on open errors.
* readelf.c (dump_ctf_archive_member): Move error-
reporting...
(dump_ctf_errs): ... into this separate function. Support
calls with NULL fp. Adjust for new err parameter to
ctf_errwarning_next.
(dump_section_as_ctf): Call it on open errors.
include/ChangeLog
2020-08-27 Nick Alcock <nick.alcock@oracle.com>
* ctf-api.h (ctf_errwarning_next): New err parameter.
ld/ChangeLog
2020-08-27 Nick Alcock <nick.alcock@oracle.com>
* ldlang.c (lang_ctf_errs_warnings): Support calls with NULL fp.
Adjust for new err parameter to ctf_errwarning_next. Only
check for assertion failures when fp is non-NULL.
(ldlang_open_ctf): Call it on open errors.
* testsuite/ld-ctf/ctf.exp: Always use the C locale to avoid
breaking the diags tests.
libctf/ChangeLog
2020-08-27 Nick Alcock <nick.alcock@oracle.com>
* ctf-subr.c (open_errors): New list.
(ctf_err_warn): Calls with NULL fp append to open_errors. Add err
parameter, and use it to decorate the debug stream with errmsgs.
(ctf_err_warn_to_open): Splice errors from a CTF dict into the
open_errors.
(ctf_errwarning_next): Calls with NULL fp report from open_errors.
New err param to report iteration errors (including end-of-iteration)
when fp is NULL.
(ctf_assert_fail_internal): Adjust ctf_err_warn call for new err
parameter: gettextize.
* ctf-impl.h (ctfo_get_vbytes): Add ctf_file_t parameter.
(LCTF_VBYTES): Adjust.
(ctf_err_warn_to_open): New.
(ctf_err_warn): Adjust.
(ctf_bundle): Used in only one place: move...
* ctf-create.c: ... here.
(enumcmp): Use ctf_err_warn, not ctf_dprintf, passing the err number
down as needed. Don't emit the errmsg. Gettextize.
(membcmp): Likewise.
(ctf_add_type_internal): Likewise.
(ctf_write_mem): Likewise.
(ctf_compress_write): Likewise. Report errors writing the header or
body.
(ctf_write): Likewise.
* ctf-archive.c (ctf_arc_write_fd): Use ctf_err_warn, not
ctf_dprintf, and gettextize, as above.
(ctf_arc_write): Likewise.
(ctf_arc_bufopen): Likewise.
(ctf_arc_open_internal): Likewise.
* ctf-labels.c (ctf_label_iter): Likewise.
* ctf-open-bfd.c (ctf_bfdclose): Likewise.
(ctf_bfdopen): Likewise.
(ctf_bfdopen_ctfsect): Likewise.
(ctf_fdopen): Likewise.
* ctf-string.c (ctf_str_write_strtab): Likewise.
* ctf-types.c (ctf_type_resolve): Likewise.
* ctf-open.c (get_vbytes_common): Likewise. Pass down the ctf dict.
(get_vbytes_v1): Pass down the ctf dict.
(get_vbytes_v2): Likewise.
(flip_ctf): Likewise.
(flip_types): Likewise. Use ctf_err_warn, not ctf_dprintf, and
gettextize, as above.
(upgrade_types_v1): Adjust calls.
(init_types): Use ctf_err_warn, not ctf_dprintf, as above.
(ctf_bufopen_internal): Likewise. Adjust calls. Transplant errors
emitted into individual dicts into the open errors if this turns
out to be a failed open in the end.
* ctf-dump.c (ctf_dump_format_type): Adjust ctf_err_warn for new err
argument. Gettextize. Don't emit the errmsg.
(ctf_dump_funcs): Likewise. Collapse err label into its only case.
(ctf_dump_type): Likewise.
* ctf-link.c (ctf_create_per_cu): Adjust ctf_err_warn for new err
argument. Gettextize. Don't emit the errmsg.
(ctf_link_one_type): Likewise.
(ctf_link_lazy_open): Likewise.
(ctf_link_one_input_archive): Likewise.
(ctf_link_deduplicating_count_inputs): Likewise.
(ctf_link_deduplicating_open_inputs): Likewise.
(ctf_link_deduplicating_close_inputs): Likewise.
(ctf_link_deduplicating): Likewise.
(ctf_link): Likewise.
(ctf_link_deduplicating_per_cu): Likewise. Add some missed
ctf_set_errnos to obscure error cases.
* ctf-dedup.c (ctf_dedup_rhash_type): Adjust ctf_err_warn for new
err argument. Gettextize. Don't emit the errmsg.
(ctf_dedup_populate_mappings): Likewise.
(ctf_dedup_detect_name_ambiguity): Likewise.
(ctf_dedup_init): Likewise.
(ctf_dedup_multiple_input_dicts): Likewise.
(ctf_dedup_conflictify_unshared): Likewise.
(ctf_dedup): Likewise.
(ctf_dedup_rwalk_one_output_mapping): Likewise.
(ctf_dedup_id_to_target): Likewise.
(ctf_dedup_emit_type): Likewise.
(ctf_dedup_emit_struct_members): Likewise.
(ctf_dedup_populate_type_mapping): Likewise.
(ctf_dedup_populate_type_mappings): Likewise.
(ctf_dedup_emit): Likewise.
(ctf_dedup_hash_type): Likewise. Fix a bit of messed-up error
status setting.
(ctf_dedup_rwalk_one_output_mapping): Likewise. Don't hide
unknown-type-kind messages (which signify file corruption).
2020-07-27 23:45:15 +08:00
|
|
|
_("conflict due to enum %s iteration error"), name);
|
2019-04-24 18:22:03 +08:00
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
if (value != bvalue)
|
|
|
|
{
|
libctf, include, binutils, gdb, ld: rename ctf_file_t to ctf_dict_t
The naming of the ctf_file_t type in libctf is a historical curiosity.
Back in the Solaris days, CTF dictionaries were originally generated as
a separate file and then (sometimes) merged into objects: hence the
datatype was named ctf_file_t, and known as a "CTF file". Nowadays, raw
CTF is essentially never written to a file on its own, and the datatype
changed name to a "CTF dictionary" years ago. So the term "CTF file"
refers to something that is never a file! This is at best confusing.
The type has also historically been known as a 'CTF container", which is
even more confusing now that we have CTF archives which are *also* a
sort of container (they contain CTF dictionaries), but which are never
referred to as containers in the source code.
So fix this by completing the renaming, renaming ctf_file_t to
ctf_dict_t throughout, and renaming those few functions that refer to
CTF files by name (keeping compatibility aliases) to refer to dicts
instead. Old users who still refer to ctf_file_t will see (harmless)
pointer-compatibility warnings at compile time, but the ABI is unchanged
(since C doesn't mangle names, and ctf_file_t was always an opaque type)
and things will still compile fine as long as -Werror is not specified.
All references to CTF containers and CTF files in the source code are
fixed to refer to CTF dicts instead.
Further (smaller) renamings of annoyingly-named functions to come, as
part of the process of souping up queries across whole archives at once
(needed for the function info and data object sections).
binutils/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* objdump.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_ctf): Likewise. Use ctf_dict_close, not ctf_file_close.
* readelf.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_section_as_ctf): Likewise. Use ctf_dict_close, not
ctf_file_close.
gdb/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctfread.c: Change uses of ctf_file_t to ctf_dict_t.
(ctf_fp_info::~ctf_fp_info): Call ctf_dict_close, not ctf_file_close.
include/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-api.h (ctf_file_t): Rename to...
(ctf_dict_t): ... this. Keep ctf_file_t around for compatibility.
(struct ctf_file): Likewise rename to...
(struct ctf_dict): ... this.
(ctf_file_close): Rename to...
(ctf_dict_close): ... this, keeping compatibility function.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this, keeping compatibility function.
All callers adjusted.
* ctf.h: Rename references to ctf_file_t to ctf_dict_t.
(struct ctf_archive) <ctfa_nfiles>: Rename to...
<ctfa_ndicts>: ... this.
ld/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ldlang.c (ctf_output): This is a ctf_dict_t now.
(lang_ctf_errs_warnings): Rename ctf_file_t to ctf_dict_t.
(ldlang_open_ctf): Adjust comment.
(lang_merge_ctf): Use ctf_dict_close, not ctf_file_close.
* ldelfgen.h (ldelf_examine_strtab_for_ctf): Rename ctf_file_t to
ctf_dict_t. Change opaque declaration accordingly.
* ldelfgen.c (ldelf_examine_strtab_for_ctf): Adjust.
* ldemul.h (examine_strtab_for_ctf): Likewise.
(ldemul_examine_strtab_for_ctf): Likewise.
* ldeuml.c (ldemul_examine_strtab_for_ctf): Likewise.
libctf/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h: Rename ctf_file_t to ctf_dict_t: all declarations
adjusted.
(ctf_fileops): Rename to...
(ctf_dictops): ... this.
(ctf_dedup_t) <cd_id_to_file_t>: Rename to...
<cd_id_to_dict_t>: ... this.
(ctf_file_t): Fix outdated comment.
<ctf_fileops>: Rename to...
<ctf_dictops>: ... this.
(struct ctf_archive_internal) <ctfi_file>: Rename to...
<ctfi_dict>: ... this.
* ctf-archive.c: Rename ctf_file_t to ctf_dict_t.
Rename ctf_archive.ctfa_nfiles to ctfa_ndicts.
Rename ctf_file_close to ctf_dict_close. All users adjusted.
* ctf-create.c: Likewise. Refer to CTF dicts, not CTF containers.
(ctf_bundle_t) <ctb_file>: Rename to...
<ctb_dict): ... this.
* ctf-decl.c: Rename ctf_file_t to ctf_dict_t.
* ctf-dedup.c: Likewise. Rename ctf_file_close to
ctf_dict_close. Refer to CTF dicts, not CTF containers.
* ctf-dump.c: Likewise.
* ctf-error.c: Likewise.
* ctf-hash.c: Likewise.
* ctf-inlines.h: Likewise.
* ctf-labels.c: Likewise.
* ctf-link.c: Likewise.
* ctf-lookup.c: Likewise.
* ctf-open-bfd.c: Likewise.
* ctf-string.c: Likewise.
* ctf-subr.c: Likewise.
* ctf-types.c: Likewise.
* ctf-util.c: Likewise.
* ctf-open.c: Likewise.
(ctf_file_close): Rename to...
(ctf_dict_close): ...this.
(ctf_file_close): New trivial wrapper around ctf_dict_close, for
compatibility.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this.
(ctf_parent_file): New trivial wrapper around ctf_parent_dict, for
compatibility.
* libctf.ver: Add ctf_dict_close and ctf_parent_dict.
2020-11-20 21:34:04 +08:00
|
|
|
ctf_err_warn (ctb->ctb_dict, 1, ECTF_CONFLICT,
|
libctf, binutils, include, ld: gettextize and improve error handling
This commit follows on from the earlier commit "libctf, ld, binutils:
add textual error/warning reporting for libctf" and converts every error
in libctf that was reported using ctf_dprintf to use ctf_err_warn
instead, gettextizing them in the process, using N_() where necessary to
avoid doing gettext calls unless an error message is actually generated,
and rephrasing some error messages for ease of translation.
This requires a slight change in the ctf_errwarning_next API: this API
is public but has not been in a release yet, so can still change freely.
The problem is that many errors are emitted at open time (whether
opening of a CTF dict, or opening of a CTF archive): the former of these
throws away its incompletely-initialized ctf_file_t rather than return
it, and the latter has no ctf_file_t at all. So errors and warnings
emitted at open time cannot be stored in the ctf_file_t, and have to go
elsewhere.
We put them in a static local in ctf-subr.c (which is not very
thread-safe: a later commit will improve things here): ctf_err_warn with
a NULL fp adds to this list, and the public interface
ctf_errwarning_next with a NULL fp retrieves from it.
We need a slight exception from the usual iterator rules in this case:
with a NULL fp, there is nowhere to store the ECTF_NEXT_END "error"
which signifies the end of iteration, so we add a new err parameter to
ctf_errwarning_next which is used to report such iteration-related
errors. (If an fp is provided -- i.e., if not reporting open errors --
this is optional, but even if it's optional it's still an API change.
This is actually useful from a usability POV as well, since
ctf_errwarning_next is usually called when there's been an error, so
overwriting the error code with ECTF_NEXT_END is not very helpful!
So, unusually, ctf_errwarning_next now uses the passed fp for its
error code *only* if no errp pointer is passed in, and leaves it
untouched otherwise.)
ld, objdump and readelf are adapted to call ctf_errwarning_next with a
NULL fp to report open errors where appropriate.
The ctf_err_warn API also has to change, gaining a new error-number
parameter which is used to add the error message corresponding to that
error number into the debug stream when LIBCTF_DEBUG is enabled:
changing this API is easy at this point since we are already touching
all existing calls to gettextize them. We need this because the debug
stream should contain the errno's message, but the error reported in the
error/warning stream should *not*, because the caller will probably
report it themselves at failure time regardless, and reporting it in
every error message that leads up to it leads to a ridiculous chattering
on failure, which is likely to end up as ridiculous chattering on stderr
(trimmed a bit):
CTF error: `ld/testsuite/ld-ctf/A.c (0): lookup failure for type 3: flags 1: The parent CTF dictionary is unavailable'
CTF error: `ld/testsuite/ld-ctf/A.c (0): struct/union member type hashing error during type hashing for type 80000001, kind 6: The parent CTF dictionary is unavailable'
CTF error: `deduplicating link variable emission failed for ld/testsuite/ld-ctf/A.c: The parent CTF dictionary is unavailable'
ld/.libs/lt-ld-new: warning: CTF linking failed; output will have no CTF section: `The parent CTF dictionary is unavailable'
We only need to be told that the parent CTF dictionary is unavailable
*once*, not over and over again!
errmsgs are still emitted on warning generation, because warnings do not
usually lead to a failure propagated up to the caller and reported
there.
Debug-stream messages are not translated. If translation is turned on,
there will be a mixture of English and translated messages in the debug
stream, but rather that than burden the translators with debug-only
output.
binutils/ChangeLog
2020-08-27 Nick Alcock <nick.alcock@oracle.com>
* objdump.c (dump_ctf_archive_member): Move error-
reporting...
(dump_ctf_errs): ... into this separate function.
(dump_ctf): Call it on open errors.
* readelf.c (dump_ctf_archive_member): Move error-
reporting...
(dump_ctf_errs): ... into this separate function. Support
calls with NULL fp. Adjust for new err parameter to
ctf_errwarning_next.
(dump_section_as_ctf): Call it on open errors.
include/ChangeLog
2020-08-27 Nick Alcock <nick.alcock@oracle.com>
* ctf-api.h (ctf_errwarning_next): New err parameter.
ld/ChangeLog
2020-08-27 Nick Alcock <nick.alcock@oracle.com>
* ldlang.c (lang_ctf_errs_warnings): Support calls with NULL fp.
Adjust for new err parameter to ctf_errwarning_next. Only
check for assertion failures when fp is non-NULL.
(ldlang_open_ctf): Call it on open errors.
* testsuite/ld-ctf/ctf.exp: Always use the C locale to avoid
breaking the diags tests.
libctf/ChangeLog
2020-08-27 Nick Alcock <nick.alcock@oracle.com>
* ctf-subr.c (open_errors): New list.
(ctf_err_warn): Calls with NULL fp append to open_errors. Add err
parameter, and use it to decorate the debug stream with errmsgs.
(ctf_err_warn_to_open): Splice errors from a CTF dict into the
open_errors.
(ctf_errwarning_next): Calls with NULL fp report from open_errors.
New err param to report iteration errors (including end-of-iteration)
when fp is NULL.
(ctf_assert_fail_internal): Adjust ctf_err_warn call for new err
parameter: gettextize.
* ctf-impl.h (ctfo_get_vbytes): Add ctf_file_t parameter.
(LCTF_VBYTES): Adjust.
(ctf_err_warn_to_open): New.
(ctf_err_warn): Adjust.
(ctf_bundle): Used in only one place: move...
* ctf-create.c: ... here.
(enumcmp): Use ctf_err_warn, not ctf_dprintf, passing the err number
down as needed. Don't emit the errmsg. Gettextize.
(membcmp): Likewise.
(ctf_add_type_internal): Likewise.
(ctf_write_mem): Likewise.
(ctf_compress_write): Likewise. Report errors writing the header or
body.
(ctf_write): Likewise.
* ctf-archive.c (ctf_arc_write_fd): Use ctf_err_warn, not
ctf_dprintf, and gettextize, as above.
(ctf_arc_write): Likewise.
(ctf_arc_bufopen): Likewise.
(ctf_arc_open_internal): Likewise.
* ctf-labels.c (ctf_label_iter): Likewise.
* ctf-open-bfd.c (ctf_bfdclose): Likewise.
(ctf_bfdopen): Likewise.
(ctf_bfdopen_ctfsect): Likewise.
(ctf_fdopen): Likewise.
* ctf-string.c (ctf_str_write_strtab): Likewise.
* ctf-types.c (ctf_type_resolve): Likewise.
* ctf-open.c (get_vbytes_common): Likewise. Pass down the ctf dict.
(get_vbytes_v1): Pass down the ctf dict.
(get_vbytes_v2): Likewise.
(flip_ctf): Likewise.
(flip_types): Likewise. Use ctf_err_warn, not ctf_dprintf, and
gettextize, as above.
(upgrade_types_v1): Adjust calls.
(init_types): Use ctf_err_warn, not ctf_dprintf, as above.
(ctf_bufopen_internal): Likewise. Adjust calls. Transplant errors
emitted into individual dicts into the open errors if this turns
out to be a failed open in the end.
* ctf-dump.c (ctf_dump_format_type): Adjust ctf_err_warn for new err
argument. Gettextize. Don't emit the errmsg.
(ctf_dump_funcs): Likewise. Collapse err label into its only case.
(ctf_dump_type): Likewise.
* ctf-link.c (ctf_create_per_cu): Adjust ctf_err_warn for new err
argument. Gettextize. Don't emit the errmsg.
(ctf_link_one_type): Likewise.
(ctf_link_lazy_open): Likewise.
(ctf_link_one_input_archive): Likewise.
(ctf_link_deduplicating_count_inputs): Likewise.
(ctf_link_deduplicating_open_inputs): Likewise.
(ctf_link_deduplicating_close_inputs): Likewise.
(ctf_link_deduplicating): Likewise.
(ctf_link): Likewise.
(ctf_link_deduplicating_per_cu): Likewise. Add some missed
ctf_set_errnos to obscure error cases.
* ctf-dedup.c (ctf_dedup_rhash_type): Adjust ctf_err_warn for new
err argument. Gettextize. Don't emit the errmsg.
(ctf_dedup_populate_mappings): Likewise.
(ctf_dedup_detect_name_ambiguity): Likewise.
(ctf_dedup_init): Likewise.
(ctf_dedup_multiple_input_dicts): Likewise.
(ctf_dedup_conflictify_unshared): Likewise.
(ctf_dedup): Likewise.
(ctf_dedup_rwalk_one_output_mapping): Likewise.
(ctf_dedup_id_to_target): Likewise.
(ctf_dedup_emit_type): Likewise.
(ctf_dedup_emit_struct_members): Likewise.
(ctf_dedup_populate_type_mapping): Likewise.
(ctf_dedup_populate_type_mappings): Likewise.
(ctf_dedup_emit): Likewise.
(ctf_dedup_hash_type): Likewise. Fix a bit of messed-up error
status setting.
(ctf_dedup_rwalk_one_output_mapping): Likewise. Don't hide
unknown-type-kind messages (which signify file corruption).
2020-07-27 23:45:15 +08:00
|
|
|
_("conflict due to enum value change: %i versus %i"),
|
|
|
|
value, bvalue);
|
2019-04-24 18:22:03 +08:00
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
enumadd (const char *name, int value, void *arg)
|
|
|
|
{
|
|
|
|
ctf_bundle_t *ctb = arg;
|
|
|
|
|
libctf, include, binutils, gdb, ld: rename ctf_file_t to ctf_dict_t
The naming of the ctf_file_t type in libctf is a historical curiosity.
Back in the Solaris days, CTF dictionaries were originally generated as
a separate file and then (sometimes) merged into objects: hence the
datatype was named ctf_file_t, and known as a "CTF file". Nowadays, raw
CTF is essentially never written to a file on its own, and the datatype
changed name to a "CTF dictionary" years ago. So the term "CTF file"
refers to something that is never a file! This is at best confusing.
The type has also historically been known as a 'CTF container", which is
even more confusing now that we have CTF archives which are *also* a
sort of container (they contain CTF dictionaries), but which are never
referred to as containers in the source code.
So fix this by completing the renaming, renaming ctf_file_t to
ctf_dict_t throughout, and renaming those few functions that refer to
CTF files by name (keeping compatibility aliases) to refer to dicts
instead. Old users who still refer to ctf_file_t will see (harmless)
pointer-compatibility warnings at compile time, but the ABI is unchanged
(since C doesn't mangle names, and ctf_file_t was always an opaque type)
and things will still compile fine as long as -Werror is not specified.
All references to CTF containers and CTF files in the source code are
fixed to refer to CTF dicts instead.
Further (smaller) renamings of annoyingly-named functions to come, as
part of the process of souping up queries across whole archives at once
(needed for the function info and data object sections).
binutils/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* objdump.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_ctf): Likewise. Use ctf_dict_close, not ctf_file_close.
* readelf.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_section_as_ctf): Likewise. Use ctf_dict_close, not
ctf_file_close.
gdb/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctfread.c: Change uses of ctf_file_t to ctf_dict_t.
(ctf_fp_info::~ctf_fp_info): Call ctf_dict_close, not ctf_file_close.
include/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-api.h (ctf_file_t): Rename to...
(ctf_dict_t): ... this. Keep ctf_file_t around for compatibility.
(struct ctf_file): Likewise rename to...
(struct ctf_dict): ... this.
(ctf_file_close): Rename to...
(ctf_dict_close): ... this, keeping compatibility function.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this, keeping compatibility function.
All callers adjusted.
* ctf.h: Rename references to ctf_file_t to ctf_dict_t.
(struct ctf_archive) <ctfa_nfiles>: Rename to...
<ctfa_ndicts>: ... this.
ld/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ldlang.c (ctf_output): This is a ctf_dict_t now.
(lang_ctf_errs_warnings): Rename ctf_file_t to ctf_dict_t.
(ldlang_open_ctf): Adjust comment.
(lang_merge_ctf): Use ctf_dict_close, not ctf_file_close.
* ldelfgen.h (ldelf_examine_strtab_for_ctf): Rename ctf_file_t to
ctf_dict_t. Change opaque declaration accordingly.
* ldelfgen.c (ldelf_examine_strtab_for_ctf): Adjust.
* ldemul.h (examine_strtab_for_ctf): Likewise.
(ldemul_examine_strtab_for_ctf): Likewise.
* ldeuml.c (ldemul_examine_strtab_for_ctf): Likewise.
libctf/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h: Rename ctf_file_t to ctf_dict_t: all declarations
adjusted.
(ctf_fileops): Rename to...
(ctf_dictops): ... this.
(ctf_dedup_t) <cd_id_to_file_t>: Rename to...
<cd_id_to_dict_t>: ... this.
(ctf_file_t): Fix outdated comment.
<ctf_fileops>: Rename to...
<ctf_dictops>: ... this.
(struct ctf_archive_internal) <ctfi_file>: Rename to...
<ctfi_dict>: ... this.
* ctf-archive.c: Rename ctf_file_t to ctf_dict_t.
Rename ctf_archive.ctfa_nfiles to ctfa_ndicts.
Rename ctf_file_close to ctf_dict_close. All users adjusted.
* ctf-create.c: Likewise. Refer to CTF dicts, not CTF containers.
(ctf_bundle_t) <ctb_file>: Rename to...
<ctb_dict): ... this.
* ctf-decl.c: Rename ctf_file_t to ctf_dict_t.
* ctf-dedup.c: Likewise. Rename ctf_file_close to
ctf_dict_close. Refer to CTF dicts, not CTF containers.
* ctf-dump.c: Likewise.
* ctf-error.c: Likewise.
* ctf-hash.c: Likewise.
* ctf-inlines.h: Likewise.
* ctf-labels.c: Likewise.
* ctf-link.c: Likewise.
* ctf-lookup.c: Likewise.
* ctf-open-bfd.c: Likewise.
* ctf-string.c: Likewise.
* ctf-subr.c: Likewise.
* ctf-types.c: Likewise.
* ctf-util.c: Likewise.
* ctf-open.c: Likewise.
(ctf_file_close): Rename to...
(ctf_dict_close): ...this.
(ctf_file_close): New trivial wrapper around ctf_dict_close, for
compatibility.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this.
(ctf_parent_file): New trivial wrapper around ctf_parent_dict, for
compatibility.
* libctf.ver: Add ctf_dict_close and ctf_parent_dict.
2020-11-20 21:34:04 +08:00
|
|
|
return (ctf_add_enumerator (ctb->ctb_dict, ctb->ctb_type,
|
libctf: fix a number of build problems found on Solaris and NetBSD
- Use of nonportable <endian.h>
- Use of qsort_r
- Use of zlib without appropriate magic to pull in the binutils zlib
- Use of off64_t without checking (fixed by dropping the unused fields
that need off64_t entirely)
- signedness problems due to long being too short a type on 32-bit
platforms: ctf_id_t is now 'unsigned long', and CTF_ERR must be
used only for functions that return ctf_id_t
- One lingering use of bzero() and of <sys/errno.h>
All fixed, using code from gnulib where possible.
Relatedly, set cts_size in a couple of places it was missed
(string table and symbol table loading upon ctf_bfdopen()).
binutils/
* objdump.c (make_ctfsect): Drop cts_type, cts_flags, and
cts_offset.
* readelf.c (shdr_to_ctf_sect): Likewise.
include/
* ctf-api.h (ctf_sect_t): Drop cts_type, cts_flags, and cts_offset.
(ctf_id_t): This is now an unsigned type.
(CTF_ERR): Cast it to ctf_id_t. Note that it should only be used
for ctf_id_t-returning functions.
libctf/
* Makefile.am (ZLIB): New.
(ZLIBINC): Likewise.
(AM_CFLAGS): Use them.
(libctf_a_LIBADD): New, for LIBOBJS.
* configure.ac: Check for zlib, endian.h, and qsort_r.
* ctf-endian.h: New, providing htole64 and le64toh.
* swap.h: Code style fixes.
(bswap_identity_64): New.
* qsort_r.c: New, from gnulib (with one added #include).
* ctf-decls.h: New, providing a conditional qsort_r declaration,
and unconditional definitions of MIN and MAX.
* ctf-impl.h: Use it. Do not use <sys/errno.h>.
(ctf_set_errno): Now returns unsigned long.
* ctf-util.c (ctf_set_errno): Adjust here too.
* ctf-archive.c: Use ctf-endian.h.
(ctf_arc_open_by_offset): Use memset, not bzero. Drop cts_type,
cts_flags and cts_offset.
(ctf_arc_write): Drop debugging dependent on the size of off_t.
* ctf-create.c: Provide a definition of roundup if not defined.
(ctf_create): Drop cts_type, cts_flags and cts_offset.
(ctf_add_reftype): Do not check if type IDs are below zero.
(ctf_add_slice): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_member_offset): Cast error-returning ssize_t's to size_t
when known error-free. Drop CTF_ERR usage for functions returning
int.
(ctf_add_member_encoded): Drop CTF_ERR usage for functions returning
int.
(ctf_add_variable): Likewise.
(enumcmp): Likewise.
(enumadd): Likewise.
(membcmp): Likewise.
(ctf_add_type): Likewise. Cast error-returning ssize_t's to size_t
when known error-free.
* ctf-dump.c (ctf_is_slice): Drop CTF_ERR usage for functions
returning int: use CTF_ERR for functions returning ctf_type_id.
(ctf_dump_label): Likewise.
(ctf_dump_objts): Likewise.
* ctf-labels.c (ctf_label_topmost): Likewise.
(ctf_label_iter): Likewise.
(ctf_label_info): Likewise.
* ctf-lookup.c (ctf_func_args): Likewise.
* ctf-open.c (upgrade_types): Cast to size_t where appropriate.
(ctf_bufopen): Likewise. Use zlib types as needed.
* ctf-types.c (ctf_member_iter): Drop CTF_ERR usage for functions
returning int.
(ctf_enum_iter): Likewise.
(ctf_type_size): Likewise.
(ctf_type_align): Likewise. Cast to size_t where appropriate.
(ctf_type_kind_unsliced): Likewise.
(ctf_type_kind): Likewise.
(ctf_type_encoding): Likewise.
(ctf_member_info): Likewise.
(ctf_array_info): Likewise.
(ctf_enum_value): Likewise.
(ctf_type_rvisit): Likewise.
* ctf-open-bfd.c (ctf_bfdopen): Drop cts_type, cts_flags and
cts_offset.
(ctf_simple_open): Likewise.
(ctf_bfdopen_ctfsect): Likewise. Set cts_size properly.
* Makefile.in: Regenerate.
* aclocal.m4: Likewise.
* config.h: Likewise.
* configure: Likewise.
2019-05-31 17:10:51 +08:00
|
|
|
name, value) < 0);
|
2019-04-24 18:22:03 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
membcmp (const char *name, ctf_id_t type _libctf_unused_, unsigned long offset,
|
|
|
|
void *arg)
|
|
|
|
{
|
|
|
|
ctf_bundle_t *ctb = arg;
|
|
|
|
ctf_membinfo_t ctm;
|
|
|
|
|
2020-06-03 03:38:17 +08:00
|
|
|
/* Don't check nameless members (e.g. anonymous structs/unions) against each
|
|
|
|
other. */
|
|
|
|
if (name[0] == 0)
|
|
|
|
return 0;
|
|
|
|
|
libctf, include, binutils, gdb, ld: rename ctf_file_t to ctf_dict_t
The naming of the ctf_file_t type in libctf is a historical curiosity.
Back in the Solaris days, CTF dictionaries were originally generated as
a separate file and then (sometimes) merged into objects: hence the
datatype was named ctf_file_t, and known as a "CTF file". Nowadays, raw
CTF is essentially never written to a file on its own, and the datatype
changed name to a "CTF dictionary" years ago. So the term "CTF file"
refers to something that is never a file! This is at best confusing.
The type has also historically been known as a 'CTF container", which is
even more confusing now that we have CTF archives which are *also* a
sort of container (they contain CTF dictionaries), but which are never
referred to as containers in the source code.
So fix this by completing the renaming, renaming ctf_file_t to
ctf_dict_t throughout, and renaming those few functions that refer to
CTF files by name (keeping compatibility aliases) to refer to dicts
instead. Old users who still refer to ctf_file_t will see (harmless)
pointer-compatibility warnings at compile time, but the ABI is unchanged
(since C doesn't mangle names, and ctf_file_t was always an opaque type)
and things will still compile fine as long as -Werror is not specified.
All references to CTF containers and CTF files in the source code are
fixed to refer to CTF dicts instead.
Further (smaller) renamings of annoyingly-named functions to come, as
part of the process of souping up queries across whole archives at once
(needed for the function info and data object sections).
binutils/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* objdump.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_ctf): Likewise. Use ctf_dict_close, not ctf_file_close.
* readelf.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_section_as_ctf): Likewise. Use ctf_dict_close, not
ctf_file_close.
gdb/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctfread.c: Change uses of ctf_file_t to ctf_dict_t.
(ctf_fp_info::~ctf_fp_info): Call ctf_dict_close, not ctf_file_close.
include/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-api.h (ctf_file_t): Rename to...
(ctf_dict_t): ... this. Keep ctf_file_t around for compatibility.
(struct ctf_file): Likewise rename to...
(struct ctf_dict): ... this.
(ctf_file_close): Rename to...
(ctf_dict_close): ... this, keeping compatibility function.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this, keeping compatibility function.
All callers adjusted.
* ctf.h: Rename references to ctf_file_t to ctf_dict_t.
(struct ctf_archive) <ctfa_nfiles>: Rename to...
<ctfa_ndicts>: ... this.
ld/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ldlang.c (ctf_output): This is a ctf_dict_t now.
(lang_ctf_errs_warnings): Rename ctf_file_t to ctf_dict_t.
(ldlang_open_ctf): Adjust comment.
(lang_merge_ctf): Use ctf_dict_close, not ctf_file_close.
* ldelfgen.h (ldelf_examine_strtab_for_ctf): Rename ctf_file_t to
ctf_dict_t. Change opaque declaration accordingly.
* ldelfgen.c (ldelf_examine_strtab_for_ctf): Adjust.
* ldemul.h (examine_strtab_for_ctf): Likewise.
(ldemul_examine_strtab_for_ctf): Likewise.
* ldeuml.c (ldemul_examine_strtab_for_ctf): Likewise.
libctf/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h: Rename ctf_file_t to ctf_dict_t: all declarations
adjusted.
(ctf_fileops): Rename to...
(ctf_dictops): ... this.
(ctf_dedup_t) <cd_id_to_file_t>: Rename to...
<cd_id_to_dict_t>: ... this.
(ctf_file_t): Fix outdated comment.
<ctf_fileops>: Rename to...
<ctf_dictops>: ... this.
(struct ctf_archive_internal) <ctfi_file>: Rename to...
<ctfi_dict>: ... this.
* ctf-archive.c: Rename ctf_file_t to ctf_dict_t.
Rename ctf_archive.ctfa_nfiles to ctfa_ndicts.
Rename ctf_file_close to ctf_dict_close. All users adjusted.
* ctf-create.c: Likewise. Refer to CTF dicts, not CTF containers.
(ctf_bundle_t) <ctb_file>: Rename to...
<ctb_dict): ... this.
* ctf-decl.c: Rename ctf_file_t to ctf_dict_t.
* ctf-dedup.c: Likewise. Rename ctf_file_close to
ctf_dict_close. Refer to CTF dicts, not CTF containers.
* ctf-dump.c: Likewise.
* ctf-error.c: Likewise.
* ctf-hash.c: Likewise.
* ctf-inlines.h: Likewise.
* ctf-labels.c: Likewise.
* ctf-link.c: Likewise.
* ctf-lookup.c: Likewise.
* ctf-open-bfd.c: Likewise.
* ctf-string.c: Likewise.
* ctf-subr.c: Likewise.
* ctf-types.c: Likewise.
* ctf-util.c: Likewise.
* ctf-open.c: Likewise.
(ctf_file_close): Rename to...
(ctf_dict_close): ...this.
(ctf_file_close): New trivial wrapper around ctf_dict_close, for
compatibility.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this.
(ctf_parent_file): New trivial wrapper around ctf_parent_dict, for
compatibility.
* libctf.ver: Add ctf_dict_close and ctf_parent_dict.
2020-11-20 21:34:04 +08:00
|
|
|
if (ctf_member_info (ctb->ctb_dict, ctb->ctb_type, name, &ctm) < 0)
|
2019-04-24 18:22:03 +08:00
|
|
|
{
|
libctf, include, binutils, gdb, ld: rename ctf_file_t to ctf_dict_t
The naming of the ctf_file_t type in libctf is a historical curiosity.
Back in the Solaris days, CTF dictionaries were originally generated as
a separate file and then (sometimes) merged into objects: hence the
datatype was named ctf_file_t, and known as a "CTF file". Nowadays, raw
CTF is essentially never written to a file on its own, and the datatype
changed name to a "CTF dictionary" years ago. So the term "CTF file"
refers to something that is never a file! This is at best confusing.
The type has also historically been known as a 'CTF container", which is
even more confusing now that we have CTF archives which are *also* a
sort of container (they contain CTF dictionaries), but which are never
referred to as containers in the source code.
So fix this by completing the renaming, renaming ctf_file_t to
ctf_dict_t throughout, and renaming those few functions that refer to
CTF files by name (keeping compatibility aliases) to refer to dicts
instead. Old users who still refer to ctf_file_t will see (harmless)
pointer-compatibility warnings at compile time, but the ABI is unchanged
(since C doesn't mangle names, and ctf_file_t was always an opaque type)
and things will still compile fine as long as -Werror is not specified.
All references to CTF containers and CTF files in the source code are
fixed to refer to CTF dicts instead.
Further (smaller) renamings of annoyingly-named functions to come, as
part of the process of souping up queries across whole archives at once
(needed for the function info and data object sections).
binutils/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* objdump.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_ctf): Likewise. Use ctf_dict_close, not ctf_file_close.
* readelf.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_section_as_ctf): Likewise. Use ctf_dict_close, not
ctf_file_close.
gdb/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctfread.c: Change uses of ctf_file_t to ctf_dict_t.
(ctf_fp_info::~ctf_fp_info): Call ctf_dict_close, not ctf_file_close.
include/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-api.h (ctf_file_t): Rename to...
(ctf_dict_t): ... this. Keep ctf_file_t around for compatibility.
(struct ctf_file): Likewise rename to...
(struct ctf_dict): ... this.
(ctf_file_close): Rename to...
(ctf_dict_close): ... this, keeping compatibility function.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this, keeping compatibility function.
All callers adjusted.
* ctf.h: Rename references to ctf_file_t to ctf_dict_t.
(struct ctf_archive) <ctfa_nfiles>: Rename to...
<ctfa_ndicts>: ... this.
ld/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ldlang.c (ctf_output): This is a ctf_dict_t now.
(lang_ctf_errs_warnings): Rename ctf_file_t to ctf_dict_t.
(ldlang_open_ctf): Adjust comment.
(lang_merge_ctf): Use ctf_dict_close, not ctf_file_close.
* ldelfgen.h (ldelf_examine_strtab_for_ctf): Rename ctf_file_t to
ctf_dict_t. Change opaque declaration accordingly.
* ldelfgen.c (ldelf_examine_strtab_for_ctf): Adjust.
* ldemul.h (examine_strtab_for_ctf): Likewise.
(ldemul_examine_strtab_for_ctf): Likewise.
* ldeuml.c (ldemul_examine_strtab_for_ctf): Likewise.
libctf/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h: Rename ctf_file_t to ctf_dict_t: all declarations
adjusted.
(ctf_fileops): Rename to...
(ctf_dictops): ... this.
(ctf_dedup_t) <cd_id_to_file_t>: Rename to...
<cd_id_to_dict_t>: ... this.
(ctf_file_t): Fix outdated comment.
<ctf_fileops>: Rename to...
<ctf_dictops>: ... this.
(struct ctf_archive_internal) <ctfi_file>: Rename to...
<ctfi_dict>: ... this.
* ctf-archive.c: Rename ctf_file_t to ctf_dict_t.
Rename ctf_archive.ctfa_nfiles to ctfa_ndicts.
Rename ctf_file_close to ctf_dict_close. All users adjusted.
* ctf-create.c: Likewise. Refer to CTF dicts, not CTF containers.
(ctf_bundle_t) <ctb_file>: Rename to...
<ctb_dict): ... this.
* ctf-decl.c: Rename ctf_file_t to ctf_dict_t.
* ctf-dedup.c: Likewise. Rename ctf_file_close to
ctf_dict_close. Refer to CTF dicts, not CTF containers.
* ctf-dump.c: Likewise.
* ctf-error.c: Likewise.
* ctf-hash.c: Likewise.
* ctf-inlines.h: Likewise.
* ctf-labels.c: Likewise.
* ctf-link.c: Likewise.
* ctf-lookup.c: Likewise.
* ctf-open-bfd.c: Likewise.
* ctf-string.c: Likewise.
* ctf-subr.c: Likewise.
* ctf-types.c: Likewise.
* ctf-util.c: Likewise.
* ctf-open.c: Likewise.
(ctf_file_close): Rename to...
(ctf_dict_close): ...this.
(ctf_file_close): New trivial wrapper around ctf_dict_close, for
compatibility.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this.
(ctf_parent_file): New trivial wrapper around ctf_parent_dict, for
compatibility.
* libctf.ver: Add ctf_dict_close and ctf_parent_dict.
2020-11-20 21:34:04 +08:00
|
|
|
ctf_err_warn (ctb->ctb_dict, 0, 0,
|
libctf, binutils, include, ld: gettextize and improve error handling
This commit follows on from the earlier commit "libctf, ld, binutils:
add textual error/warning reporting for libctf" and converts every error
in libctf that was reported using ctf_dprintf to use ctf_err_warn
instead, gettextizing them in the process, using N_() where necessary to
avoid doing gettext calls unless an error message is actually generated,
and rephrasing some error messages for ease of translation.
This requires a slight change in the ctf_errwarning_next API: this API
is public but has not been in a release yet, so can still change freely.
The problem is that many errors are emitted at open time (whether
opening of a CTF dict, or opening of a CTF archive): the former of these
throws away its incompletely-initialized ctf_file_t rather than return
it, and the latter has no ctf_file_t at all. So errors and warnings
emitted at open time cannot be stored in the ctf_file_t, and have to go
elsewhere.
We put them in a static local in ctf-subr.c (which is not very
thread-safe: a later commit will improve things here): ctf_err_warn with
a NULL fp adds to this list, and the public interface
ctf_errwarning_next with a NULL fp retrieves from it.
We need a slight exception from the usual iterator rules in this case:
with a NULL fp, there is nowhere to store the ECTF_NEXT_END "error"
which signifies the end of iteration, so we add a new err parameter to
ctf_errwarning_next which is used to report such iteration-related
errors. (If an fp is provided -- i.e., if not reporting open errors --
this is optional, but even if it's optional it's still an API change.
This is actually useful from a usability POV as well, since
ctf_errwarning_next is usually called when there's been an error, so
overwriting the error code with ECTF_NEXT_END is not very helpful!
So, unusually, ctf_errwarning_next now uses the passed fp for its
error code *only* if no errp pointer is passed in, and leaves it
untouched otherwise.)
ld, objdump and readelf are adapted to call ctf_errwarning_next with a
NULL fp to report open errors where appropriate.
The ctf_err_warn API also has to change, gaining a new error-number
parameter which is used to add the error message corresponding to that
error number into the debug stream when LIBCTF_DEBUG is enabled:
changing this API is easy at this point since we are already touching
all existing calls to gettextize them. We need this because the debug
stream should contain the errno's message, but the error reported in the
error/warning stream should *not*, because the caller will probably
report it themselves at failure time regardless, and reporting it in
every error message that leads up to it leads to a ridiculous chattering
on failure, which is likely to end up as ridiculous chattering on stderr
(trimmed a bit):
CTF error: `ld/testsuite/ld-ctf/A.c (0): lookup failure for type 3: flags 1: The parent CTF dictionary is unavailable'
CTF error: `ld/testsuite/ld-ctf/A.c (0): struct/union member type hashing error during type hashing for type 80000001, kind 6: The parent CTF dictionary is unavailable'
CTF error: `deduplicating link variable emission failed for ld/testsuite/ld-ctf/A.c: The parent CTF dictionary is unavailable'
ld/.libs/lt-ld-new: warning: CTF linking failed; output will have no CTF section: `The parent CTF dictionary is unavailable'
We only need to be told that the parent CTF dictionary is unavailable
*once*, not over and over again!
errmsgs are still emitted on warning generation, because warnings do not
usually lead to a failure propagated up to the caller and reported
there.
Debug-stream messages are not translated. If translation is turned on,
there will be a mixture of English and translated messages in the debug
stream, but rather that than burden the translators with debug-only
output.
binutils/ChangeLog
2020-08-27 Nick Alcock <nick.alcock@oracle.com>
* objdump.c (dump_ctf_archive_member): Move error-
reporting...
(dump_ctf_errs): ... into this separate function.
(dump_ctf): Call it on open errors.
* readelf.c (dump_ctf_archive_member): Move error-
reporting...
(dump_ctf_errs): ... into this separate function. Support
calls with NULL fp. Adjust for new err parameter to
ctf_errwarning_next.
(dump_section_as_ctf): Call it on open errors.
include/ChangeLog
2020-08-27 Nick Alcock <nick.alcock@oracle.com>
* ctf-api.h (ctf_errwarning_next): New err parameter.
ld/ChangeLog
2020-08-27 Nick Alcock <nick.alcock@oracle.com>
* ldlang.c (lang_ctf_errs_warnings): Support calls with NULL fp.
Adjust for new err parameter to ctf_errwarning_next. Only
check for assertion failures when fp is non-NULL.
(ldlang_open_ctf): Call it on open errors.
* testsuite/ld-ctf/ctf.exp: Always use the C locale to avoid
breaking the diags tests.
libctf/ChangeLog
2020-08-27 Nick Alcock <nick.alcock@oracle.com>
* ctf-subr.c (open_errors): New list.
(ctf_err_warn): Calls with NULL fp append to open_errors. Add err
parameter, and use it to decorate the debug stream with errmsgs.
(ctf_err_warn_to_open): Splice errors from a CTF dict into the
open_errors.
(ctf_errwarning_next): Calls with NULL fp report from open_errors.
New err param to report iteration errors (including end-of-iteration)
when fp is NULL.
(ctf_assert_fail_internal): Adjust ctf_err_warn call for new err
parameter: gettextize.
* ctf-impl.h (ctfo_get_vbytes): Add ctf_file_t parameter.
(LCTF_VBYTES): Adjust.
(ctf_err_warn_to_open): New.
(ctf_err_warn): Adjust.
(ctf_bundle): Used in only one place: move...
* ctf-create.c: ... here.
(enumcmp): Use ctf_err_warn, not ctf_dprintf, passing the err number
down as needed. Don't emit the errmsg. Gettextize.
(membcmp): Likewise.
(ctf_add_type_internal): Likewise.
(ctf_write_mem): Likewise.
(ctf_compress_write): Likewise. Report errors writing the header or
body.
(ctf_write): Likewise.
* ctf-archive.c (ctf_arc_write_fd): Use ctf_err_warn, not
ctf_dprintf, and gettextize, as above.
(ctf_arc_write): Likewise.
(ctf_arc_bufopen): Likewise.
(ctf_arc_open_internal): Likewise.
* ctf-labels.c (ctf_label_iter): Likewise.
* ctf-open-bfd.c (ctf_bfdclose): Likewise.
(ctf_bfdopen): Likewise.
(ctf_bfdopen_ctfsect): Likewise.
(ctf_fdopen): Likewise.
* ctf-string.c (ctf_str_write_strtab): Likewise.
* ctf-types.c (ctf_type_resolve): Likewise.
* ctf-open.c (get_vbytes_common): Likewise. Pass down the ctf dict.
(get_vbytes_v1): Pass down the ctf dict.
(get_vbytes_v2): Likewise.
(flip_ctf): Likewise.
(flip_types): Likewise. Use ctf_err_warn, not ctf_dprintf, and
gettextize, as above.
(upgrade_types_v1): Adjust calls.
(init_types): Use ctf_err_warn, not ctf_dprintf, as above.
(ctf_bufopen_internal): Likewise. Adjust calls. Transplant errors
emitted into individual dicts into the open errors if this turns
out to be a failed open in the end.
* ctf-dump.c (ctf_dump_format_type): Adjust ctf_err_warn for new err
argument. Gettextize. Don't emit the errmsg.
(ctf_dump_funcs): Likewise. Collapse err label into its only case.
(ctf_dump_type): Likewise.
* ctf-link.c (ctf_create_per_cu): Adjust ctf_err_warn for new err
argument. Gettextize. Don't emit the errmsg.
(ctf_link_one_type): Likewise.
(ctf_link_lazy_open): Likewise.
(ctf_link_one_input_archive): Likewise.
(ctf_link_deduplicating_count_inputs): Likewise.
(ctf_link_deduplicating_open_inputs): Likewise.
(ctf_link_deduplicating_close_inputs): Likewise.
(ctf_link_deduplicating): Likewise.
(ctf_link): Likewise.
(ctf_link_deduplicating_per_cu): Likewise. Add some missed
ctf_set_errnos to obscure error cases.
* ctf-dedup.c (ctf_dedup_rhash_type): Adjust ctf_err_warn for new
err argument. Gettextize. Don't emit the errmsg.
(ctf_dedup_populate_mappings): Likewise.
(ctf_dedup_detect_name_ambiguity): Likewise.
(ctf_dedup_init): Likewise.
(ctf_dedup_multiple_input_dicts): Likewise.
(ctf_dedup_conflictify_unshared): Likewise.
(ctf_dedup): Likewise.
(ctf_dedup_rwalk_one_output_mapping): Likewise.
(ctf_dedup_id_to_target): Likewise.
(ctf_dedup_emit_type): Likewise.
(ctf_dedup_emit_struct_members): Likewise.
(ctf_dedup_populate_type_mapping): Likewise.
(ctf_dedup_populate_type_mappings): Likewise.
(ctf_dedup_emit): Likewise.
(ctf_dedup_hash_type): Likewise. Fix a bit of messed-up error
status setting.
(ctf_dedup_rwalk_one_output_mapping): Likewise. Don't hide
unknown-type-kind messages (which signify file corruption).
2020-07-27 23:45:15 +08:00
|
|
|
_("conflict due to struct member %s iteration error"),
|
|
|
|
name);
|
2019-04-24 18:22:03 +08:00
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
if (ctm.ctm_offset != offset)
|
|
|
|
{
|
libctf, include, binutils, gdb, ld: rename ctf_file_t to ctf_dict_t
The naming of the ctf_file_t type in libctf is a historical curiosity.
Back in the Solaris days, CTF dictionaries were originally generated as
a separate file and then (sometimes) merged into objects: hence the
datatype was named ctf_file_t, and known as a "CTF file". Nowadays, raw
CTF is essentially never written to a file on its own, and the datatype
changed name to a "CTF dictionary" years ago. So the term "CTF file"
refers to something that is never a file! This is at best confusing.
The type has also historically been known as a 'CTF container", which is
even more confusing now that we have CTF archives which are *also* a
sort of container (they contain CTF dictionaries), but which are never
referred to as containers in the source code.
So fix this by completing the renaming, renaming ctf_file_t to
ctf_dict_t throughout, and renaming those few functions that refer to
CTF files by name (keeping compatibility aliases) to refer to dicts
instead. Old users who still refer to ctf_file_t will see (harmless)
pointer-compatibility warnings at compile time, but the ABI is unchanged
(since C doesn't mangle names, and ctf_file_t was always an opaque type)
and things will still compile fine as long as -Werror is not specified.
All references to CTF containers and CTF files in the source code are
fixed to refer to CTF dicts instead.
Further (smaller) renamings of annoyingly-named functions to come, as
part of the process of souping up queries across whole archives at once
(needed for the function info and data object sections).
binutils/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* objdump.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_ctf): Likewise. Use ctf_dict_close, not ctf_file_close.
* readelf.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_section_as_ctf): Likewise. Use ctf_dict_close, not
ctf_file_close.
gdb/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctfread.c: Change uses of ctf_file_t to ctf_dict_t.
(ctf_fp_info::~ctf_fp_info): Call ctf_dict_close, not ctf_file_close.
include/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-api.h (ctf_file_t): Rename to...
(ctf_dict_t): ... this. Keep ctf_file_t around for compatibility.
(struct ctf_file): Likewise rename to...
(struct ctf_dict): ... this.
(ctf_file_close): Rename to...
(ctf_dict_close): ... this, keeping compatibility function.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this, keeping compatibility function.
All callers adjusted.
* ctf.h: Rename references to ctf_file_t to ctf_dict_t.
(struct ctf_archive) <ctfa_nfiles>: Rename to...
<ctfa_ndicts>: ... this.
ld/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ldlang.c (ctf_output): This is a ctf_dict_t now.
(lang_ctf_errs_warnings): Rename ctf_file_t to ctf_dict_t.
(ldlang_open_ctf): Adjust comment.
(lang_merge_ctf): Use ctf_dict_close, not ctf_file_close.
* ldelfgen.h (ldelf_examine_strtab_for_ctf): Rename ctf_file_t to
ctf_dict_t. Change opaque declaration accordingly.
* ldelfgen.c (ldelf_examine_strtab_for_ctf): Adjust.
* ldemul.h (examine_strtab_for_ctf): Likewise.
(ldemul_examine_strtab_for_ctf): Likewise.
* ldeuml.c (ldemul_examine_strtab_for_ctf): Likewise.
libctf/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h: Rename ctf_file_t to ctf_dict_t: all declarations
adjusted.
(ctf_fileops): Rename to...
(ctf_dictops): ... this.
(ctf_dedup_t) <cd_id_to_file_t>: Rename to...
<cd_id_to_dict_t>: ... this.
(ctf_file_t): Fix outdated comment.
<ctf_fileops>: Rename to...
<ctf_dictops>: ... this.
(struct ctf_archive_internal) <ctfi_file>: Rename to...
<ctfi_dict>: ... this.
* ctf-archive.c: Rename ctf_file_t to ctf_dict_t.
Rename ctf_archive.ctfa_nfiles to ctfa_ndicts.
Rename ctf_file_close to ctf_dict_close. All users adjusted.
* ctf-create.c: Likewise. Refer to CTF dicts, not CTF containers.
(ctf_bundle_t) <ctb_file>: Rename to...
<ctb_dict): ... this.
* ctf-decl.c: Rename ctf_file_t to ctf_dict_t.
* ctf-dedup.c: Likewise. Rename ctf_file_close to
ctf_dict_close. Refer to CTF dicts, not CTF containers.
* ctf-dump.c: Likewise.
* ctf-error.c: Likewise.
* ctf-hash.c: Likewise.
* ctf-inlines.h: Likewise.
* ctf-labels.c: Likewise.
* ctf-link.c: Likewise.
* ctf-lookup.c: Likewise.
* ctf-open-bfd.c: Likewise.
* ctf-string.c: Likewise.
* ctf-subr.c: Likewise.
* ctf-types.c: Likewise.
* ctf-util.c: Likewise.
* ctf-open.c: Likewise.
(ctf_file_close): Rename to...
(ctf_dict_close): ...this.
(ctf_file_close): New trivial wrapper around ctf_dict_close, for
compatibility.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this.
(ctf_parent_file): New trivial wrapper around ctf_parent_dict, for
compatibility.
* libctf.ver: Add ctf_dict_close and ctf_parent_dict.
2020-11-20 21:34:04 +08:00
|
|
|
ctf_err_warn (ctb->ctb_dict, 1, ECTF_CONFLICT,
|
libctf, binutils, include, ld: gettextize and improve error handling
This commit follows on from the earlier commit "libctf, ld, binutils:
add textual error/warning reporting for libctf" and converts every error
in libctf that was reported using ctf_dprintf to use ctf_err_warn
instead, gettextizing them in the process, using N_() where necessary to
avoid doing gettext calls unless an error message is actually generated,
and rephrasing some error messages for ease of translation.
This requires a slight change in the ctf_errwarning_next API: this API
is public but has not been in a release yet, so can still change freely.
The problem is that many errors are emitted at open time (whether
opening of a CTF dict, or opening of a CTF archive): the former of these
throws away its incompletely-initialized ctf_file_t rather than return
it, and the latter has no ctf_file_t at all. So errors and warnings
emitted at open time cannot be stored in the ctf_file_t, and have to go
elsewhere.
We put them in a static local in ctf-subr.c (which is not very
thread-safe: a later commit will improve things here): ctf_err_warn with
a NULL fp adds to this list, and the public interface
ctf_errwarning_next with a NULL fp retrieves from it.
We need a slight exception from the usual iterator rules in this case:
with a NULL fp, there is nowhere to store the ECTF_NEXT_END "error"
which signifies the end of iteration, so we add a new err parameter to
ctf_errwarning_next which is used to report such iteration-related
errors. (If an fp is provided -- i.e., if not reporting open errors --
this is optional, but even if it's optional it's still an API change.
This is actually useful from a usability POV as well, since
ctf_errwarning_next is usually called when there's been an error, so
overwriting the error code with ECTF_NEXT_END is not very helpful!
So, unusually, ctf_errwarning_next now uses the passed fp for its
error code *only* if no errp pointer is passed in, and leaves it
untouched otherwise.)
ld, objdump and readelf are adapted to call ctf_errwarning_next with a
NULL fp to report open errors where appropriate.
The ctf_err_warn API also has to change, gaining a new error-number
parameter which is used to add the error message corresponding to that
error number into the debug stream when LIBCTF_DEBUG is enabled:
changing this API is easy at this point since we are already touching
all existing calls to gettextize them. We need this because the debug
stream should contain the errno's message, but the error reported in the
error/warning stream should *not*, because the caller will probably
report it themselves at failure time regardless, and reporting it in
every error message that leads up to it leads to a ridiculous chattering
on failure, which is likely to end up as ridiculous chattering on stderr
(trimmed a bit):
CTF error: `ld/testsuite/ld-ctf/A.c (0): lookup failure for type 3: flags 1: The parent CTF dictionary is unavailable'
CTF error: `ld/testsuite/ld-ctf/A.c (0): struct/union member type hashing error during type hashing for type 80000001, kind 6: The parent CTF dictionary is unavailable'
CTF error: `deduplicating link variable emission failed for ld/testsuite/ld-ctf/A.c: The parent CTF dictionary is unavailable'
ld/.libs/lt-ld-new: warning: CTF linking failed; output will have no CTF section: `The parent CTF dictionary is unavailable'
We only need to be told that the parent CTF dictionary is unavailable
*once*, not over and over again!
errmsgs are still emitted on warning generation, because warnings do not
usually lead to a failure propagated up to the caller and reported
there.
Debug-stream messages are not translated. If translation is turned on,
there will be a mixture of English and translated messages in the debug
stream, but rather that than burden the translators with debug-only
output.
binutils/ChangeLog
2020-08-27 Nick Alcock <nick.alcock@oracle.com>
* objdump.c (dump_ctf_archive_member): Move error-
reporting...
(dump_ctf_errs): ... into this separate function.
(dump_ctf): Call it on open errors.
* readelf.c (dump_ctf_archive_member): Move error-
reporting...
(dump_ctf_errs): ... into this separate function. Support
calls with NULL fp. Adjust for new err parameter to
ctf_errwarning_next.
(dump_section_as_ctf): Call it on open errors.
include/ChangeLog
2020-08-27 Nick Alcock <nick.alcock@oracle.com>
* ctf-api.h (ctf_errwarning_next): New err parameter.
ld/ChangeLog
2020-08-27 Nick Alcock <nick.alcock@oracle.com>
* ldlang.c (lang_ctf_errs_warnings): Support calls with NULL fp.
Adjust for new err parameter to ctf_errwarning_next. Only
check for assertion failures when fp is non-NULL.
(ldlang_open_ctf): Call it on open errors.
* testsuite/ld-ctf/ctf.exp: Always use the C locale to avoid
breaking the diags tests.
libctf/ChangeLog
2020-08-27 Nick Alcock <nick.alcock@oracle.com>
* ctf-subr.c (open_errors): New list.
(ctf_err_warn): Calls with NULL fp append to open_errors. Add err
parameter, and use it to decorate the debug stream with errmsgs.
(ctf_err_warn_to_open): Splice errors from a CTF dict into the
open_errors.
(ctf_errwarning_next): Calls with NULL fp report from open_errors.
New err param to report iteration errors (including end-of-iteration)
when fp is NULL.
(ctf_assert_fail_internal): Adjust ctf_err_warn call for new err
parameter: gettextize.
* ctf-impl.h (ctfo_get_vbytes): Add ctf_file_t parameter.
(LCTF_VBYTES): Adjust.
(ctf_err_warn_to_open): New.
(ctf_err_warn): Adjust.
(ctf_bundle): Used in only one place: move...
* ctf-create.c: ... here.
(enumcmp): Use ctf_err_warn, not ctf_dprintf, passing the err number
down as needed. Don't emit the errmsg. Gettextize.
(membcmp): Likewise.
(ctf_add_type_internal): Likewise.
(ctf_write_mem): Likewise.
(ctf_compress_write): Likewise. Report errors writing the header or
body.
(ctf_write): Likewise.
* ctf-archive.c (ctf_arc_write_fd): Use ctf_err_warn, not
ctf_dprintf, and gettextize, as above.
(ctf_arc_write): Likewise.
(ctf_arc_bufopen): Likewise.
(ctf_arc_open_internal): Likewise.
* ctf-labels.c (ctf_label_iter): Likewise.
* ctf-open-bfd.c (ctf_bfdclose): Likewise.
(ctf_bfdopen): Likewise.
(ctf_bfdopen_ctfsect): Likewise.
(ctf_fdopen): Likewise.
* ctf-string.c (ctf_str_write_strtab): Likewise.
* ctf-types.c (ctf_type_resolve): Likewise.
* ctf-open.c (get_vbytes_common): Likewise. Pass down the ctf dict.
(get_vbytes_v1): Pass down the ctf dict.
(get_vbytes_v2): Likewise.
(flip_ctf): Likewise.
(flip_types): Likewise. Use ctf_err_warn, not ctf_dprintf, and
gettextize, as above.
(upgrade_types_v1): Adjust calls.
(init_types): Use ctf_err_warn, not ctf_dprintf, as above.
(ctf_bufopen_internal): Likewise. Adjust calls. Transplant errors
emitted into individual dicts into the open errors if this turns
out to be a failed open in the end.
* ctf-dump.c (ctf_dump_format_type): Adjust ctf_err_warn for new err
argument. Gettextize. Don't emit the errmsg.
(ctf_dump_funcs): Likewise. Collapse err label into its only case.
(ctf_dump_type): Likewise.
* ctf-link.c (ctf_create_per_cu): Adjust ctf_err_warn for new err
argument. Gettextize. Don't emit the errmsg.
(ctf_link_one_type): Likewise.
(ctf_link_lazy_open): Likewise.
(ctf_link_one_input_archive): Likewise.
(ctf_link_deduplicating_count_inputs): Likewise.
(ctf_link_deduplicating_open_inputs): Likewise.
(ctf_link_deduplicating_close_inputs): Likewise.
(ctf_link_deduplicating): Likewise.
(ctf_link): Likewise.
(ctf_link_deduplicating_per_cu): Likewise. Add some missed
ctf_set_errnos to obscure error cases.
* ctf-dedup.c (ctf_dedup_rhash_type): Adjust ctf_err_warn for new
err argument. Gettextize. Don't emit the errmsg.
(ctf_dedup_populate_mappings): Likewise.
(ctf_dedup_detect_name_ambiguity): Likewise.
(ctf_dedup_init): Likewise.
(ctf_dedup_multiple_input_dicts): Likewise.
(ctf_dedup_conflictify_unshared): Likewise.
(ctf_dedup): Likewise.
(ctf_dedup_rwalk_one_output_mapping): Likewise.
(ctf_dedup_id_to_target): Likewise.
(ctf_dedup_emit_type): Likewise.
(ctf_dedup_emit_struct_members): Likewise.
(ctf_dedup_populate_type_mapping): Likewise.
(ctf_dedup_populate_type_mappings): Likewise.
(ctf_dedup_emit): Likewise.
(ctf_dedup_hash_type): Likewise. Fix a bit of messed-up error
status setting.
(ctf_dedup_rwalk_one_output_mapping): Likewise. Don't hide
unknown-type-kind messages (which signify file corruption).
2020-07-27 23:45:15 +08:00
|
|
|
_("conflict due to struct member %s offset change: "
|
|
|
|
"%lx versus %lx"),
|
|
|
|
name, ctm.ctm_offset, offset);
|
2019-04-24 18:22:03 +08:00
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
libctf: add a deduplicator-specific type mapping table
When CTF linking is done, the linker has to track the association
between types in the inputs and types in the outputs. The deduplicator
does this via the cd_output_emission_hashes, which maps from hashes of
types (valid in both the input and output) to the IDs of types in the
specific dict in which the cd_emission_hashes is held. However, the
nondeduplicating linker and ctf_add_type used a different mechanism, a
dedicated hashtab stored in the ctf_link_type_mapping, populated via
ctf_add_type_mapping and queried via the ctf_type_mapping function. To
allow the same functions to be used for variable and symbol population
in both the deduplicating and nondeduplicating linker, the deduplicator
carefully transferred all its input->output mappings into this hashtab
before returning.
This is *expensive*. The number of entries in this hashtab scales as the
number of input types, and unlike the hashing machinery the type mapping
machinery (the only other thing which scales that way) has not been much
optimized.
Now the nondeduplicating linker is gone, we can throw this out, move
the existing type mapping machinery to ctf-create.c and dedicate it to
ctf_add_type alone, and add a new function ctf_dedup_type_mapping which
uses the deduplicator's built-in knowledge of type mappings directly,
without requiring an expensive repopulation phase.
This speeds up a test link of nouveau.ko (a good worst-case candidate
with a lot of types in each of a lot of input files) from 9.11s to 7.15s
in my testing, a speedup of over 20%.
libctf/ChangeLog
2021-03-02 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h (ctf_dict_t) <ctf_link_type_mapping>: No longer used
by the nondeduplicating linker.
(ctf_add_type_mapping): Removed, now static.
(ctf_type_mapping): Likewise.
(ctf_dedup_type_mapping): New.
(ctf_dedup_t) <cd_input_nums>: New.
* ctf-dedup.c (ctf_dedup_init): Populate it.
(ctf_dedup_fini): Free it again. Emphasise that this has to be
the last thing called.
(ctf_dedup): Populate it.
(ctf_dedup_populate_type_mapping): Removed.
(ctf_dedup_populate_type_mappings): Likewise.
(ctf_dedup_emit): No longer call it. No longer call
ctf_dedup_fini either.
(ctf_dedup_type_mapping): New.
* ctf-link.c (ctf_unnamed_cuname): New.
(ctf_create_per_cu): Arguments must be non-null now.
(ctf_in_member_cb_arg): Removed.
(ctf_link): No longer populate it. No longer discard the
mapping table.
(ctf_link_deduplicating_one_symtypetab): Use
ctf_dedup_type_mapping, not ctf_type_mapping. Use
ctf_unnamed_cuname.
(ctf_link_one_variable): Likewise. Pass in args individually: no
longer a ctf_variable_iter callback.
(empty_link_type_mapping): Removed.
(ctf_link_deduplicating_variables): Use ctf_variable_next, not
ctf_variable_iter. No longer pack arguments to
ctf_link_one_variable into a struct.
(ctf_link_deduplicating_per_cu): Call ctf_dedup_fini once
all link phases are done.
(ctf_link_deduplicating): Likewise.
(ctf_link_intern_extern_string): Improve comment.
(ctf_add_type_mapping): Migrate...
(ctf_type_mapping): ... these functions...
* ctf-create.c (ctf_add_type_mapping): ... here...
(ctf_type_mapping): ... and make static, for the sole use of
ctf_add_type.
2021-03-02 23:10:05 +08:00
|
|
|
/* Record the correspondence between a source and ctf_add_type()-added
|
|
|
|
destination type: both types are translated into parent type IDs if need be,
|
|
|
|
so they relate to the actual dictionary they are in. Outside controlled
|
|
|
|
circumstances (like linking) it is probably not useful to do more than
|
|
|
|
compare these pointers, since there is nothing stopping the user closing the
|
|
|
|
source dict whenever they want to.
|
|
|
|
|
|
|
|
Our OOM handling here is just to not do anything, because this is called deep
|
|
|
|
enough in the call stack that doing anything useful is painfully difficult:
|
|
|
|
the worst consequence if we do OOM is a bit of type duplication anyway. */
|
|
|
|
|
|
|
|
static void
|
|
|
|
ctf_add_type_mapping (ctf_dict_t *src_fp, ctf_id_t src_type,
|
|
|
|
ctf_dict_t *dst_fp, ctf_id_t dst_type)
|
|
|
|
{
|
|
|
|
if (LCTF_TYPE_ISPARENT (src_fp, src_type) && src_fp->ctf_parent)
|
|
|
|
src_fp = src_fp->ctf_parent;
|
|
|
|
|
|
|
|
src_type = LCTF_TYPE_TO_INDEX(src_fp, src_type);
|
|
|
|
|
|
|
|
if (LCTF_TYPE_ISPARENT (dst_fp, dst_type) && dst_fp->ctf_parent)
|
|
|
|
dst_fp = dst_fp->ctf_parent;
|
|
|
|
|
|
|
|
dst_type = LCTF_TYPE_TO_INDEX(dst_fp, dst_type);
|
|
|
|
|
|
|
|
if (dst_fp->ctf_link_type_mapping == NULL)
|
|
|
|
{
|
|
|
|
ctf_hash_fun f = ctf_hash_type_key;
|
|
|
|
ctf_hash_eq_fun e = ctf_hash_eq_type_key;
|
|
|
|
|
|
|
|
if ((dst_fp->ctf_link_type_mapping = ctf_dynhash_create (f, e, free,
|
|
|
|
NULL)) == NULL)
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
ctf_link_type_key_t *key;
|
|
|
|
key = calloc (1, sizeof (struct ctf_link_type_key));
|
|
|
|
if (!key)
|
|
|
|
return;
|
|
|
|
|
|
|
|
key->cltk_fp = src_fp;
|
|
|
|
key->cltk_idx = src_type;
|
|
|
|
|
|
|
|
/* No OOM checking needed, because if this doesn't work the worst we'll do is
|
|
|
|
add a few more duplicate types (which will probably run out of memory
|
|
|
|
anyway). */
|
|
|
|
ctf_dynhash_insert (dst_fp->ctf_link_type_mapping, key,
|
|
|
|
(void *) (uintptr_t) dst_type);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Look up a type mapping: return 0 if none. The DST_FP is modified to point to
|
|
|
|
the parent if need be. The ID returned is from the dst_fp's perspective. */
|
|
|
|
static ctf_id_t
|
|
|
|
ctf_type_mapping (ctf_dict_t *src_fp, ctf_id_t src_type, ctf_dict_t **dst_fp)
|
|
|
|
{
|
|
|
|
ctf_link_type_key_t key;
|
|
|
|
ctf_dict_t *target_fp = *dst_fp;
|
|
|
|
ctf_id_t dst_type = 0;
|
|
|
|
|
|
|
|
if (LCTF_TYPE_ISPARENT (src_fp, src_type) && src_fp->ctf_parent)
|
|
|
|
src_fp = src_fp->ctf_parent;
|
|
|
|
|
|
|
|
src_type = LCTF_TYPE_TO_INDEX(src_fp, src_type);
|
|
|
|
key.cltk_fp = src_fp;
|
|
|
|
key.cltk_idx = src_type;
|
|
|
|
|
|
|
|
if (target_fp->ctf_link_type_mapping)
|
|
|
|
dst_type = (uintptr_t) ctf_dynhash_lookup (target_fp->ctf_link_type_mapping,
|
|
|
|
&key);
|
|
|
|
|
|
|
|
if (dst_type != 0)
|
|
|
|
{
|
|
|
|
dst_type = LCTF_INDEX_TO_TYPE (target_fp, dst_type,
|
|
|
|
target_fp->ctf_parent != NULL);
|
|
|
|
*dst_fp = target_fp;
|
|
|
|
return dst_type;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (target_fp->ctf_parent)
|
|
|
|
target_fp = target_fp->ctf_parent;
|
|
|
|
else
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
if (target_fp->ctf_link_type_mapping)
|
|
|
|
dst_type = (uintptr_t) ctf_dynhash_lookup (target_fp->ctf_link_type_mapping,
|
|
|
|
&key);
|
|
|
|
|
|
|
|
if (dst_type)
|
|
|
|
dst_type = LCTF_INDEX_TO_TYPE (target_fp, dst_type,
|
|
|
|
target_fp->ctf_parent != NULL);
|
|
|
|
|
|
|
|
*dst_fp = target_fp;
|
|
|
|
return dst_type;
|
|
|
|
}
|
|
|
|
|
libctf, include, binutils, gdb, ld: rename ctf_file_t to ctf_dict_t
The naming of the ctf_file_t type in libctf is a historical curiosity.
Back in the Solaris days, CTF dictionaries were originally generated as
a separate file and then (sometimes) merged into objects: hence the
datatype was named ctf_file_t, and known as a "CTF file". Nowadays, raw
CTF is essentially never written to a file on its own, and the datatype
changed name to a "CTF dictionary" years ago. So the term "CTF file"
refers to something that is never a file! This is at best confusing.
The type has also historically been known as a 'CTF container", which is
even more confusing now that we have CTF archives which are *also* a
sort of container (they contain CTF dictionaries), but which are never
referred to as containers in the source code.
So fix this by completing the renaming, renaming ctf_file_t to
ctf_dict_t throughout, and renaming those few functions that refer to
CTF files by name (keeping compatibility aliases) to refer to dicts
instead. Old users who still refer to ctf_file_t will see (harmless)
pointer-compatibility warnings at compile time, but the ABI is unchanged
(since C doesn't mangle names, and ctf_file_t was always an opaque type)
and things will still compile fine as long as -Werror is not specified.
All references to CTF containers and CTF files in the source code are
fixed to refer to CTF dicts instead.
Further (smaller) renamings of annoyingly-named functions to come, as
part of the process of souping up queries across whole archives at once
(needed for the function info and data object sections).
binutils/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* objdump.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_ctf): Likewise. Use ctf_dict_close, not ctf_file_close.
* readelf.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_section_as_ctf): Likewise. Use ctf_dict_close, not
ctf_file_close.
gdb/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctfread.c: Change uses of ctf_file_t to ctf_dict_t.
(ctf_fp_info::~ctf_fp_info): Call ctf_dict_close, not ctf_file_close.
include/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-api.h (ctf_file_t): Rename to...
(ctf_dict_t): ... this. Keep ctf_file_t around for compatibility.
(struct ctf_file): Likewise rename to...
(struct ctf_dict): ... this.
(ctf_file_close): Rename to...
(ctf_dict_close): ... this, keeping compatibility function.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this, keeping compatibility function.
All callers adjusted.
* ctf.h: Rename references to ctf_file_t to ctf_dict_t.
(struct ctf_archive) <ctfa_nfiles>: Rename to...
<ctfa_ndicts>: ... this.
ld/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ldlang.c (ctf_output): This is a ctf_dict_t now.
(lang_ctf_errs_warnings): Rename ctf_file_t to ctf_dict_t.
(ldlang_open_ctf): Adjust comment.
(lang_merge_ctf): Use ctf_dict_close, not ctf_file_close.
* ldelfgen.h (ldelf_examine_strtab_for_ctf): Rename ctf_file_t to
ctf_dict_t. Change opaque declaration accordingly.
* ldelfgen.c (ldelf_examine_strtab_for_ctf): Adjust.
* ldemul.h (examine_strtab_for_ctf): Likewise.
(ldemul_examine_strtab_for_ctf): Likewise.
* ldeuml.c (ldemul_examine_strtab_for_ctf): Likewise.
libctf/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h: Rename ctf_file_t to ctf_dict_t: all declarations
adjusted.
(ctf_fileops): Rename to...
(ctf_dictops): ... this.
(ctf_dedup_t) <cd_id_to_file_t>: Rename to...
<cd_id_to_dict_t>: ... this.
(ctf_file_t): Fix outdated comment.
<ctf_fileops>: Rename to...
<ctf_dictops>: ... this.
(struct ctf_archive_internal) <ctfi_file>: Rename to...
<ctfi_dict>: ... this.
* ctf-archive.c: Rename ctf_file_t to ctf_dict_t.
Rename ctf_archive.ctfa_nfiles to ctfa_ndicts.
Rename ctf_file_close to ctf_dict_close. All users adjusted.
* ctf-create.c: Likewise. Refer to CTF dicts, not CTF containers.
(ctf_bundle_t) <ctb_file>: Rename to...
<ctb_dict): ... this.
* ctf-decl.c: Rename ctf_file_t to ctf_dict_t.
* ctf-dedup.c: Likewise. Rename ctf_file_close to
ctf_dict_close. Refer to CTF dicts, not CTF containers.
* ctf-dump.c: Likewise.
* ctf-error.c: Likewise.
* ctf-hash.c: Likewise.
* ctf-inlines.h: Likewise.
* ctf-labels.c: Likewise.
* ctf-link.c: Likewise.
* ctf-lookup.c: Likewise.
* ctf-open-bfd.c: Likewise.
* ctf-string.c: Likewise.
* ctf-subr.c: Likewise.
* ctf-types.c: Likewise.
* ctf-util.c: Likewise.
* ctf-open.c: Likewise.
(ctf_file_close): Rename to...
(ctf_dict_close): ...this.
(ctf_file_close): New trivial wrapper around ctf_dict_close, for
compatibility.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this.
(ctf_parent_file): New trivial wrapper around ctf_parent_dict, for
compatibility.
* libctf.ver: Add ctf_dict_close and ctf_parent_dict.
2020-11-20 21:34:04 +08:00
|
|
|
/* The ctf_add_type routine is used to copy a type from a source CTF dictionary
|
|
|
|
to a dynamic destination dictionary. This routine operates recursively by
|
2019-04-24 18:22:03 +08:00
|
|
|
following the source type's links and embedded member types. If the
|
libctf, include, binutils, gdb, ld: rename ctf_file_t to ctf_dict_t
The naming of the ctf_file_t type in libctf is a historical curiosity.
Back in the Solaris days, CTF dictionaries were originally generated as
a separate file and then (sometimes) merged into objects: hence the
datatype was named ctf_file_t, and known as a "CTF file". Nowadays, raw
CTF is essentially never written to a file on its own, and the datatype
changed name to a "CTF dictionary" years ago. So the term "CTF file"
refers to something that is never a file! This is at best confusing.
The type has also historically been known as a 'CTF container", which is
even more confusing now that we have CTF archives which are *also* a
sort of container (they contain CTF dictionaries), but which are never
referred to as containers in the source code.
So fix this by completing the renaming, renaming ctf_file_t to
ctf_dict_t throughout, and renaming those few functions that refer to
CTF files by name (keeping compatibility aliases) to refer to dicts
instead. Old users who still refer to ctf_file_t will see (harmless)
pointer-compatibility warnings at compile time, but the ABI is unchanged
(since C doesn't mangle names, and ctf_file_t was always an opaque type)
and things will still compile fine as long as -Werror is not specified.
All references to CTF containers and CTF files in the source code are
fixed to refer to CTF dicts instead.
Further (smaller) renamings of annoyingly-named functions to come, as
part of the process of souping up queries across whole archives at once
(needed for the function info and data object sections).
binutils/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* objdump.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_ctf): Likewise. Use ctf_dict_close, not ctf_file_close.
* readelf.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_section_as_ctf): Likewise. Use ctf_dict_close, not
ctf_file_close.
gdb/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctfread.c: Change uses of ctf_file_t to ctf_dict_t.
(ctf_fp_info::~ctf_fp_info): Call ctf_dict_close, not ctf_file_close.
include/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-api.h (ctf_file_t): Rename to...
(ctf_dict_t): ... this. Keep ctf_file_t around for compatibility.
(struct ctf_file): Likewise rename to...
(struct ctf_dict): ... this.
(ctf_file_close): Rename to...
(ctf_dict_close): ... this, keeping compatibility function.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this, keeping compatibility function.
All callers adjusted.
* ctf.h: Rename references to ctf_file_t to ctf_dict_t.
(struct ctf_archive) <ctfa_nfiles>: Rename to...
<ctfa_ndicts>: ... this.
ld/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ldlang.c (ctf_output): This is a ctf_dict_t now.
(lang_ctf_errs_warnings): Rename ctf_file_t to ctf_dict_t.
(ldlang_open_ctf): Adjust comment.
(lang_merge_ctf): Use ctf_dict_close, not ctf_file_close.
* ldelfgen.h (ldelf_examine_strtab_for_ctf): Rename ctf_file_t to
ctf_dict_t. Change opaque declaration accordingly.
* ldelfgen.c (ldelf_examine_strtab_for_ctf): Adjust.
* ldemul.h (examine_strtab_for_ctf): Likewise.
(ldemul_examine_strtab_for_ctf): Likewise.
* ldeuml.c (ldemul_examine_strtab_for_ctf): Likewise.
libctf/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h: Rename ctf_file_t to ctf_dict_t: all declarations
adjusted.
(ctf_fileops): Rename to...
(ctf_dictops): ... this.
(ctf_dedup_t) <cd_id_to_file_t>: Rename to...
<cd_id_to_dict_t>: ... this.
(ctf_file_t): Fix outdated comment.
<ctf_fileops>: Rename to...
<ctf_dictops>: ... this.
(struct ctf_archive_internal) <ctfi_file>: Rename to...
<ctfi_dict>: ... this.
* ctf-archive.c: Rename ctf_file_t to ctf_dict_t.
Rename ctf_archive.ctfa_nfiles to ctfa_ndicts.
Rename ctf_file_close to ctf_dict_close. All users adjusted.
* ctf-create.c: Likewise. Refer to CTF dicts, not CTF containers.
(ctf_bundle_t) <ctb_file>: Rename to...
<ctb_dict): ... this.
* ctf-decl.c: Rename ctf_file_t to ctf_dict_t.
* ctf-dedup.c: Likewise. Rename ctf_file_close to
ctf_dict_close. Refer to CTF dicts, not CTF containers.
* ctf-dump.c: Likewise.
* ctf-error.c: Likewise.
* ctf-hash.c: Likewise.
* ctf-inlines.h: Likewise.
* ctf-labels.c: Likewise.
* ctf-link.c: Likewise.
* ctf-lookup.c: Likewise.
* ctf-open-bfd.c: Likewise.
* ctf-string.c: Likewise.
* ctf-subr.c: Likewise.
* ctf-types.c: Likewise.
* ctf-util.c: Likewise.
* ctf-open.c: Likewise.
(ctf_file_close): Rename to...
(ctf_dict_close): ...this.
(ctf_file_close): New trivial wrapper around ctf_dict_close, for
compatibility.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this.
(ctf_parent_file): New trivial wrapper around ctf_parent_dict, for
compatibility.
* libctf.ver: Add ctf_dict_close and ctf_parent_dict.
2020-11-20 21:34:04 +08:00
|
|
|
destination dict already contains a named type which has the same attributes,
|
|
|
|
then we succeed and return this type but no changes occur. */
|
libctf: properly handle ctf_add_type of forwards and self-reffing structs
The code to handle structures (and unions) that refer to themselves in
ctf_add_type is extremely dodgy. It works by looking through the list
of not-yet-committed types for a structure with the same name as the
structure in question and assuming, if it finds it, that this must be a
reference to the same type. This is a linear search that gets ever
slower as the dictionary grows, requiring you to call ctf_update at
intervals to keep performance tolerable: but if you do that, you run
into the problem that if a forward declared before the ctf_update is
changed to a structure afterwards, ctf_update explodes.
The last commit fixed most of this: this commit can use it, adding a new
ctf_add_processing hash that tracks source type IDs that are currently
being processed and uses it to avoid infinite recursion rather than the
dynamic type list: we split ctf_add_type into a ctf_add_type_internal,
so that ctf_add_type itself can become a wrapper that empties out this
being-processed hash once the entire recursive type addition is over.
Structure additions themselves avoid adding their dependent types
quite so much by checking the type mapping and avoiding re-adding types
we already know we have added.
We also add support for adding forwards to dictionaries that already
contain the thing they are a forward to: we just silently return the
original type.
v4: return existing struct/union/enum types properly, rather than using
an uninitialized variable: shrinks sizes of CTF sections back down
to roughly where they were in v1/v2 of this patch series.
v5: fix tabdamage.
libctf/
* ctf-impl.h (ctf_file_t) <ctf_add_processing>: New.
* ctf-open.c (ctf_file_close): Free it.
* ctf-create.c (ctf_serialize): Adjust.
(membcmp): When reporting a conflict due to an error, report the
error.
(ctf_add_type): Turn into a ctf_add_processing wrapper. Rename to...
(ctf_add_type_internal): ... this. Hand back types we are already
in the middle of adding immediately. Hand back structs/unions with
the same number of members immediately. Do not walk the dynamic
list. Call ctf_add_type_internal, not ctf_add_type. Handle
forwards promoted to other types and the inverse case identically.
Add structs to the mapping as soon as we intern them, before they
gain any members.
2019-08-08 01:01:08 +08:00
|
|
|
static ctf_id_t
|
libctf, include, binutils, gdb, ld: rename ctf_file_t to ctf_dict_t
The naming of the ctf_file_t type in libctf is a historical curiosity.
Back in the Solaris days, CTF dictionaries were originally generated as
a separate file and then (sometimes) merged into objects: hence the
datatype was named ctf_file_t, and known as a "CTF file". Nowadays, raw
CTF is essentially never written to a file on its own, and the datatype
changed name to a "CTF dictionary" years ago. So the term "CTF file"
refers to something that is never a file! This is at best confusing.
The type has also historically been known as a 'CTF container", which is
even more confusing now that we have CTF archives which are *also* a
sort of container (they contain CTF dictionaries), but which are never
referred to as containers in the source code.
So fix this by completing the renaming, renaming ctf_file_t to
ctf_dict_t throughout, and renaming those few functions that refer to
CTF files by name (keeping compatibility aliases) to refer to dicts
instead. Old users who still refer to ctf_file_t will see (harmless)
pointer-compatibility warnings at compile time, but the ABI is unchanged
(since C doesn't mangle names, and ctf_file_t was always an opaque type)
and things will still compile fine as long as -Werror is not specified.
All references to CTF containers and CTF files in the source code are
fixed to refer to CTF dicts instead.
Further (smaller) renamings of annoyingly-named functions to come, as
part of the process of souping up queries across whole archives at once
(needed for the function info and data object sections).
binutils/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* objdump.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_ctf): Likewise. Use ctf_dict_close, not ctf_file_close.
* readelf.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_section_as_ctf): Likewise. Use ctf_dict_close, not
ctf_file_close.
gdb/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctfread.c: Change uses of ctf_file_t to ctf_dict_t.
(ctf_fp_info::~ctf_fp_info): Call ctf_dict_close, not ctf_file_close.
include/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-api.h (ctf_file_t): Rename to...
(ctf_dict_t): ... this. Keep ctf_file_t around for compatibility.
(struct ctf_file): Likewise rename to...
(struct ctf_dict): ... this.
(ctf_file_close): Rename to...
(ctf_dict_close): ... this, keeping compatibility function.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this, keeping compatibility function.
All callers adjusted.
* ctf.h: Rename references to ctf_file_t to ctf_dict_t.
(struct ctf_archive) <ctfa_nfiles>: Rename to...
<ctfa_ndicts>: ... this.
ld/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ldlang.c (ctf_output): This is a ctf_dict_t now.
(lang_ctf_errs_warnings): Rename ctf_file_t to ctf_dict_t.
(ldlang_open_ctf): Adjust comment.
(lang_merge_ctf): Use ctf_dict_close, not ctf_file_close.
* ldelfgen.h (ldelf_examine_strtab_for_ctf): Rename ctf_file_t to
ctf_dict_t. Change opaque declaration accordingly.
* ldelfgen.c (ldelf_examine_strtab_for_ctf): Adjust.
* ldemul.h (examine_strtab_for_ctf): Likewise.
(ldemul_examine_strtab_for_ctf): Likewise.
* ldeuml.c (ldemul_examine_strtab_for_ctf): Likewise.
libctf/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h: Rename ctf_file_t to ctf_dict_t: all declarations
adjusted.
(ctf_fileops): Rename to...
(ctf_dictops): ... this.
(ctf_dedup_t) <cd_id_to_file_t>: Rename to...
<cd_id_to_dict_t>: ... this.
(ctf_file_t): Fix outdated comment.
<ctf_fileops>: Rename to...
<ctf_dictops>: ... this.
(struct ctf_archive_internal) <ctfi_file>: Rename to...
<ctfi_dict>: ... this.
* ctf-archive.c: Rename ctf_file_t to ctf_dict_t.
Rename ctf_archive.ctfa_nfiles to ctfa_ndicts.
Rename ctf_file_close to ctf_dict_close. All users adjusted.
* ctf-create.c: Likewise. Refer to CTF dicts, not CTF containers.
(ctf_bundle_t) <ctb_file>: Rename to...
<ctb_dict): ... this.
* ctf-decl.c: Rename ctf_file_t to ctf_dict_t.
* ctf-dedup.c: Likewise. Rename ctf_file_close to
ctf_dict_close. Refer to CTF dicts, not CTF containers.
* ctf-dump.c: Likewise.
* ctf-error.c: Likewise.
* ctf-hash.c: Likewise.
* ctf-inlines.h: Likewise.
* ctf-labels.c: Likewise.
* ctf-link.c: Likewise.
* ctf-lookup.c: Likewise.
* ctf-open-bfd.c: Likewise.
* ctf-string.c: Likewise.
* ctf-subr.c: Likewise.
* ctf-types.c: Likewise.
* ctf-util.c: Likewise.
* ctf-open.c: Likewise.
(ctf_file_close): Rename to...
(ctf_dict_close): ...this.
(ctf_file_close): New trivial wrapper around ctf_dict_close, for
compatibility.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this.
(ctf_parent_file): New trivial wrapper around ctf_parent_dict, for
compatibility.
* libctf.ver: Add ctf_dict_close and ctf_parent_dict.
2020-11-20 21:34:04 +08:00
|
|
|
ctf_add_type_internal (ctf_dict_t *dst_fp, ctf_dict_t *src_fp, ctf_id_t src_type,
|
|
|
|
ctf_dict_t *proc_tracking_fp)
|
2019-04-24 18:22:03 +08:00
|
|
|
{
|
|
|
|
ctf_id_t dst_type = CTF_ERR;
|
|
|
|
uint32_t dst_kind = CTF_K_UNKNOWN;
|
libctf, include, binutils, gdb, ld: rename ctf_file_t to ctf_dict_t
The naming of the ctf_file_t type in libctf is a historical curiosity.
Back in the Solaris days, CTF dictionaries were originally generated as
a separate file and then (sometimes) merged into objects: hence the
datatype was named ctf_file_t, and known as a "CTF file". Nowadays, raw
CTF is essentially never written to a file on its own, and the datatype
changed name to a "CTF dictionary" years ago. So the term "CTF file"
refers to something that is never a file! This is at best confusing.
The type has also historically been known as a 'CTF container", which is
even more confusing now that we have CTF archives which are *also* a
sort of container (they contain CTF dictionaries), but which are never
referred to as containers in the source code.
So fix this by completing the renaming, renaming ctf_file_t to
ctf_dict_t throughout, and renaming those few functions that refer to
CTF files by name (keeping compatibility aliases) to refer to dicts
instead. Old users who still refer to ctf_file_t will see (harmless)
pointer-compatibility warnings at compile time, but the ABI is unchanged
(since C doesn't mangle names, and ctf_file_t was always an opaque type)
and things will still compile fine as long as -Werror is not specified.
All references to CTF containers and CTF files in the source code are
fixed to refer to CTF dicts instead.
Further (smaller) renamings of annoyingly-named functions to come, as
part of the process of souping up queries across whole archives at once
(needed for the function info and data object sections).
binutils/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* objdump.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_ctf): Likewise. Use ctf_dict_close, not ctf_file_close.
* readelf.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_section_as_ctf): Likewise. Use ctf_dict_close, not
ctf_file_close.
gdb/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctfread.c: Change uses of ctf_file_t to ctf_dict_t.
(ctf_fp_info::~ctf_fp_info): Call ctf_dict_close, not ctf_file_close.
include/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-api.h (ctf_file_t): Rename to...
(ctf_dict_t): ... this. Keep ctf_file_t around for compatibility.
(struct ctf_file): Likewise rename to...
(struct ctf_dict): ... this.
(ctf_file_close): Rename to...
(ctf_dict_close): ... this, keeping compatibility function.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this, keeping compatibility function.
All callers adjusted.
* ctf.h: Rename references to ctf_file_t to ctf_dict_t.
(struct ctf_archive) <ctfa_nfiles>: Rename to...
<ctfa_ndicts>: ... this.
ld/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ldlang.c (ctf_output): This is a ctf_dict_t now.
(lang_ctf_errs_warnings): Rename ctf_file_t to ctf_dict_t.
(ldlang_open_ctf): Adjust comment.
(lang_merge_ctf): Use ctf_dict_close, not ctf_file_close.
* ldelfgen.h (ldelf_examine_strtab_for_ctf): Rename ctf_file_t to
ctf_dict_t. Change opaque declaration accordingly.
* ldelfgen.c (ldelf_examine_strtab_for_ctf): Adjust.
* ldemul.h (examine_strtab_for_ctf): Likewise.
(ldemul_examine_strtab_for_ctf): Likewise.
* ldeuml.c (ldemul_examine_strtab_for_ctf): Likewise.
libctf/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h: Rename ctf_file_t to ctf_dict_t: all declarations
adjusted.
(ctf_fileops): Rename to...
(ctf_dictops): ... this.
(ctf_dedup_t) <cd_id_to_file_t>: Rename to...
<cd_id_to_dict_t>: ... this.
(ctf_file_t): Fix outdated comment.
<ctf_fileops>: Rename to...
<ctf_dictops>: ... this.
(struct ctf_archive_internal) <ctfi_file>: Rename to...
<ctfi_dict>: ... this.
* ctf-archive.c: Rename ctf_file_t to ctf_dict_t.
Rename ctf_archive.ctfa_nfiles to ctfa_ndicts.
Rename ctf_file_close to ctf_dict_close. All users adjusted.
* ctf-create.c: Likewise. Refer to CTF dicts, not CTF containers.
(ctf_bundle_t) <ctb_file>: Rename to...
<ctb_dict): ... this.
* ctf-decl.c: Rename ctf_file_t to ctf_dict_t.
* ctf-dedup.c: Likewise. Rename ctf_file_close to
ctf_dict_close. Refer to CTF dicts, not CTF containers.
* ctf-dump.c: Likewise.
* ctf-error.c: Likewise.
* ctf-hash.c: Likewise.
* ctf-inlines.h: Likewise.
* ctf-labels.c: Likewise.
* ctf-link.c: Likewise.
* ctf-lookup.c: Likewise.
* ctf-open-bfd.c: Likewise.
* ctf-string.c: Likewise.
* ctf-subr.c: Likewise.
* ctf-types.c: Likewise.
* ctf-util.c: Likewise.
* ctf-open.c: Likewise.
(ctf_file_close): Rename to...
(ctf_dict_close): ...this.
(ctf_file_close): New trivial wrapper around ctf_dict_close, for
compatibility.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this.
(ctf_parent_file): New trivial wrapper around ctf_parent_dict, for
compatibility.
* libctf.ver: Add ctf_dict_close and ctf_parent_dict.
2020-11-20 21:34:04 +08:00
|
|
|
ctf_dict_t *tmp_fp = dst_fp;
|
2019-04-24 18:22:03 +08:00
|
|
|
ctf_id_t tmp;
|
|
|
|
|
|
|
|
const char *name;
|
libctf: teach ctf_add_type how forwards work
This machinery has been broken for as long as Solaris has existed.
Forwards are meant to encode "struct foo;", "enum foo;" or "union
foo;". Obviously these all exist in distinct namespaces, so forwards
store the type kind they forward to in their ctt_type member
(which makes conceptual sense if you squint at it). The addition
machinery uses this to promote forwards to the appropriate type as
needed.
Unfortunately ctf_add_type does not: it checks the global namespace
(which is always wrong), and so fails with a spurious conflict if you
have, say, a typedef and then a forward comes along with the same name,
even if it's a forward to something like a struct. (This was observed
with <libio.h>, which has "struct _IO_FILE;" and also
"typedef struct _IO_FILE _IO_FILE"). We should look at the recorded
type kind and look in the appropriate namespace. We should also,
when creating the forward in the new container, use that type kind,
rather than just defaulting to CTF_K_STRUCT and hoping that what
eventually comes along is a struct.
This bug is as old as the first implementation of ctf_add_type in
Solaris. But we also want a new feature for the linker, closely-related
and touching the same code so we add it here: not only do we want a
forward followed by a struct/union/enum to promote the forward, but
we want want a struct/union/enum followed by a forward to act as a NOP
and return the existing type, because when we're adding many files
in succession to a target link, there will often be already-promoted
forwards (in the shape of a struct/union/enum) that want to unify
with duplicate forwards coming from other object files.
v5: fix tabdamage.
libctf/
* ctf-create.c (ctf_add_type): Look up and use the forwarded-to
type kind. Allow forwards to unify with pre-existing structs/
unions/enums.
2019-08-03 07:46:01 +08:00
|
|
|
uint32_t kind, forward_kind, flag, vlen;
|
2019-04-24 18:22:03 +08:00
|
|
|
|
|
|
|
const ctf_type_t *src_tp, *dst_tp;
|
|
|
|
ctf_bundle_t src, dst;
|
|
|
|
ctf_encoding_t src_en, dst_en;
|
|
|
|
ctf_arinfo_t src_ar, dst_ar;
|
|
|
|
|
|
|
|
ctf_funcinfo_t ctc;
|
|
|
|
|
2019-07-14 04:31:26 +08:00
|
|
|
ctf_id_t orig_src_type = src_type;
|
2019-04-24 18:22:03 +08:00
|
|
|
|
|
|
|
if ((src_tp = ctf_lookup_by_id (&src_fp, src_type)) == NULL)
|
2023-09-13 17:02:36 +08:00
|
|
|
return (ctf_set_typed_errno (dst_fp, ctf_errno (src_fp)));
|
2019-04-24 18:22:03 +08:00
|
|
|
|
libctf: handle nonrepresentable types at link time
GCC can emit references to type 0 to indicate that this type is one that
is not representable in the version of CTF it emits (for instance,
version 3 cannot encode vector types). Type 0 is already used in the
function section to indicate padding inserted to skip functions we do
not want to encode the type of, so using zero in this way is a good
extension of the format: but libctf reports such types as ECTF_BADID,
which is indistinguishable from file corruption via links to truly
nonexistent types with IDs like 0xDEADBEEF etc, which we really do want
to stop for.
In particular, this stops all traversals of types dead at this point,
preventing us from even dumping CTF files containing unrepresentable
types to see what's going on!
So add a new error, ECTF_NONREPRESENTABLE, which is returned by
recursive type resolution when a reference to a zero type is found. (No
zero type is ever emitted into the CTF file by GCC, only references to
one). We can't do much with types that are ultimately nonrepresentable,
but we can do enough to keep functioning.
Adjust ctf_add_type to ensure that top-level types of type zero and
structure and union members of ultimate type zero are simply skipped
without reporting an error, so we can copy structures and unions that
contain nonrepresentable members (skipping them and leaving a hole where
they would be, so no consumers downstream of the linker need to worry
about this): adjust the dumper so that we dump members of
nonrepresentable types in a simple form that indicates
nonrepresentability rather than terminating the dump, and do not falsely
assume all errors to be -ENOMEM: adjust the linker so that types that
fail to get added are simply skipped, so that both nonrepresentable
types and outright errors do not terminate the type addition, which
could skip many valid types and cause further errors when variables of
those types are added.
In future, when we gain the ability to call back to the linker to report
link-time type resolution errors, we should report failures to add all
but nonrepresentable types. But we can't do that yet.
v5: Fix tabdamage.
include/
* ctf-api.h (ECTF_NONREPRESENTABLE): New.
libctf/
* ctf-types.c (ctf_type_resolve): Return ECTF_NONREPRESENTABLE on
type zero.
* ctf-create.c (ctf_add_type): Detect and skip nonrepresentable
members and types.
(ctf_add_variable): Likewise for variables pointing to them.
* ctf-link.c (ctf_link_one_type): Do not warn for nonrepresentable
type link failure, but do warn for others.
* ctf-dump.c (ctf_dump_format_type): Likewise. Do not assume all
errors to be ENOMEM.
(ctf_dump_member): Likewise.
(ctf_dump_type): Likewise.
(ctf_dump_header_strfield): Do not assume all errors to be ENOMEM.
(ctf_dump_header_sectfield): Do not assume all errors to be ENOMEM.
(ctf_dump_header): Likewise.
(ctf_dump_label): likewise.
(ctf_dump_objts): likewise.
(ctf_dump_funcs): likewise.
(ctf_dump_var): likewise.
(ctf_dump_str): Likewise.
2019-08-05 18:40:33 +08:00
|
|
|
if ((ctf_type_resolve (src_fp, src_type) == CTF_ERR)
|
|
|
|
&& (ctf_errno (src_fp) == ECTF_NONREPRESENTABLE))
|
2023-09-13 17:02:36 +08:00
|
|
|
return (ctf_set_typed_errno (dst_fp, ECTF_NONREPRESENTABLE));
|
libctf: handle nonrepresentable types at link time
GCC can emit references to type 0 to indicate that this type is one that
is not representable in the version of CTF it emits (for instance,
version 3 cannot encode vector types). Type 0 is already used in the
function section to indicate padding inserted to skip functions we do
not want to encode the type of, so using zero in this way is a good
extension of the format: but libctf reports such types as ECTF_BADID,
which is indistinguishable from file corruption via links to truly
nonexistent types with IDs like 0xDEADBEEF etc, which we really do want
to stop for.
In particular, this stops all traversals of types dead at this point,
preventing us from even dumping CTF files containing unrepresentable
types to see what's going on!
So add a new error, ECTF_NONREPRESENTABLE, which is returned by
recursive type resolution when a reference to a zero type is found. (No
zero type is ever emitted into the CTF file by GCC, only references to
one). We can't do much with types that are ultimately nonrepresentable,
but we can do enough to keep functioning.
Adjust ctf_add_type to ensure that top-level types of type zero and
structure and union members of ultimate type zero are simply skipped
without reporting an error, so we can copy structures and unions that
contain nonrepresentable members (skipping them and leaving a hole where
they would be, so no consumers downstream of the linker need to worry
about this): adjust the dumper so that we dump members of
nonrepresentable types in a simple form that indicates
nonrepresentability rather than terminating the dump, and do not falsely
assume all errors to be -ENOMEM: adjust the linker so that types that
fail to get added are simply skipped, so that both nonrepresentable
types and outright errors do not terminate the type addition, which
could skip many valid types and cause further errors when variables of
those types are added.
In future, when we gain the ability to call back to the linker to report
link-time type resolution errors, we should report failures to add all
but nonrepresentable types. But we can't do that yet.
v5: Fix tabdamage.
include/
* ctf-api.h (ECTF_NONREPRESENTABLE): New.
libctf/
* ctf-types.c (ctf_type_resolve): Return ECTF_NONREPRESENTABLE on
type zero.
* ctf-create.c (ctf_add_type): Detect and skip nonrepresentable
members and types.
(ctf_add_variable): Likewise for variables pointing to them.
* ctf-link.c (ctf_link_one_type): Do not warn for nonrepresentable
type link failure, but do warn for others.
* ctf-dump.c (ctf_dump_format_type): Likewise. Do not assume all
errors to be ENOMEM.
(ctf_dump_member): Likewise.
(ctf_dump_type): Likewise.
(ctf_dump_header_strfield): Do not assume all errors to be ENOMEM.
(ctf_dump_header_sectfield): Do not assume all errors to be ENOMEM.
(ctf_dump_header): Likewise.
(ctf_dump_label): likewise.
(ctf_dump_objts): likewise.
(ctf_dump_funcs): likewise.
(ctf_dump_var): likewise.
(ctf_dump_str): Likewise.
2019-08-05 18:40:33 +08:00
|
|
|
|
2019-04-24 18:22:03 +08:00
|
|
|
name = ctf_strptr (src_fp, src_tp->ctt_name);
|
|
|
|
kind = LCTF_INFO_KIND (src_fp, src_tp->ctt_info);
|
|
|
|
flag = LCTF_INFO_ISROOT (src_fp, src_tp->ctt_info);
|
|
|
|
vlen = LCTF_INFO_VLEN (src_fp, src_tp->ctt_info);
|
|
|
|
|
libctf: properly handle ctf_add_type of forwards and self-reffing structs
The code to handle structures (and unions) that refer to themselves in
ctf_add_type is extremely dodgy. It works by looking through the list
of not-yet-committed types for a structure with the same name as the
structure in question and assuming, if it finds it, that this must be a
reference to the same type. This is a linear search that gets ever
slower as the dictionary grows, requiring you to call ctf_update at
intervals to keep performance tolerable: but if you do that, you run
into the problem that if a forward declared before the ctf_update is
changed to a structure afterwards, ctf_update explodes.
The last commit fixed most of this: this commit can use it, adding a new
ctf_add_processing hash that tracks source type IDs that are currently
being processed and uses it to avoid infinite recursion rather than the
dynamic type list: we split ctf_add_type into a ctf_add_type_internal,
so that ctf_add_type itself can become a wrapper that empties out this
being-processed hash once the entire recursive type addition is over.
Structure additions themselves avoid adding their dependent types
quite so much by checking the type mapping and avoiding re-adding types
we already know we have added.
We also add support for adding forwards to dictionaries that already
contain the thing they are a forward to: we just silently return the
original type.
v4: return existing struct/union/enum types properly, rather than using
an uninitialized variable: shrinks sizes of CTF sections back down
to roughly where they were in v1/v2 of this patch series.
v5: fix tabdamage.
libctf/
* ctf-impl.h (ctf_file_t) <ctf_add_processing>: New.
* ctf-open.c (ctf_file_close): Free it.
* ctf-create.c (ctf_serialize): Adjust.
(membcmp): When reporting a conflict due to an error, report the
error.
(ctf_add_type): Turn into a ctf_add_processing wrapper. Rename to...
(ctf_add_type_internal): ... this. Hand back types we are already
in the middle of adding immediately. Hand back structs/unions with
the same number of members immediately. Do not walk the dynamic
list. Call ctf_add_type_internal, not ctf_add_type. Handle
forwards promoted to other types and the inverse case identically.
Add structs to the mapping as soon as we intern them, before they
gain any members.
2019-08-08 01:01:08 +08:00
|
|
|
/* If this is a type we are currently in the middle of adding, hand it
|
|
|
|
straight back. (This lets us handle self-referential structures without
|
|
|
|
considering forwards and empty structures the same as their completed
|
|
|
|
forms.) */
|
|
|
|
|
|
|
|
tmp = ctf_type_mapping (src_fp, src_type, &tmp_fp);
|
|
|
|
|
|
|
|
if (tmp != 0)
|
|
|
|
{
|
|
|
|
if (ctf_dynhash_lookup (proc_tracking_fp->ctf_add_processing,
|
|
|
|
(void *) (uintptr_t) src_type))
|
|
|
|
return tmp;
|
|
|
|
|
libctf, include, binutils, gdb, ld: rename ctf_file_t to ctf_dict_t
The naming of the ctf_file_t type in libctf is a historical curiosity.
Back in the Solaris days, CTF dictionaries were originally generated as
a separate file and then (sometimes) merged into objects: hence the
datatype was named ctf_file_t, and known as a "CTF file". Nowadays, raw
CTF is essentially never written to a file on its own, and the datatype
changed name to a "CTF dictionary" years ago. So the term "CTF file"
refers to something that is never a file! This is at best confusing.
The type has also historically been known as a 'CTF container", which is
even more confusing now that we have CTF archives which are *also* a
sort of container (they contain CTF dictionaries), but which are never
referred to as containers in the source code.
So fix this by completing the renaming, renaming ctf_file_t to
ctf_dict_t throughout, and renaming those few functions that refer to
CTF files by name (keeping compatibility aliases) to refer to dicts
instead. Old users who still refer to ctf_file_t will see (harmless)
pointer-compatibility warnings at compile time, but the ABI is unchanged
(since C doesn't mangle names, and ctf_file_t was always an opaque type)
and things will still compile fine as long as -Werror is not specified.
All references to CTF containers and CTF files in the source code are
fixed to refer to CTF dicts instead.
Further (smaller) renamings of annoyingly-named functions to come, as
part of the process of souping up queries across whole archives at once
(needed for the function info and data object sections).
binutils/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* objdump.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_ctf): Likewise. Use ctf_dict_close, not ctf_file_close.
* readelf.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_section_as_ctf): Likewise. Use ctf_dict_close, not
ctf_file_close.
gdb/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctfread.c: Change uses of ctf_file_t to ctf_dict_t.
(ctf_fp_info::~ctf_fp_info): Call ctf_dict_close, not ctf_file_close.
include/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-api.h (ctf_file_t): Rename to...
(ctf_dict_t): ... this. Keep ctf_file_t around for compatibility.
(struct ctf_file): Likewise rename to...
(struct ctf_dict): ... this.
(ctf_file_close): Rename to...
(ctf_dict_close): ... this, keeping compatibility function.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this, keeping compatibility function.
All callers adjusted.
* ctf.h: Rename references to ctf_file_t to ctf_dict_t.
(struct ctf_archive) <ctfa_nfiles>: Rename to...
<ctfa_ndicts>: ... this.
ld/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ldlang.c (ctf_output): This is a ctf_dict_t now.
(lang_ctf_errs_warnings): Rename ctf_file_t to ctf_dict_t.
(ldlang_open_ctf): Adjust comment.
(lang_merge_ctf): Use ctf_dict_close, not ctf_file_close.
* ldelfgen.h (ldelf_examine_strtab_for_ctf): Rename ctf_file_t to
ctf_dict_t. Change opaque declaration accordingly.
* ldelfgen.c (ldelf_examine_strtab_for_ctf): Adjust.
* ldemul.h (examine_strtab_for_ctf): Likewise.
(ldemul_examine_strtab_for_ctf): Likewise.
* ldeuml.c (ldemul_examine_strtab_for_ctf): Likewise.
libctf/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h: Rename ctf_file_t to ctf_dict_t: all declarations
adjusted.
(ctf_fileops): Rename to...
(ctf_dictops): ... this.
(ctf_dedup_t) <cd_id_to_file_t>: Rename to...
<cd_id_to_dict_t>: ... this.
(ctf_file_t): Fix outdated comment.
<ctf_fileops>: Rename to...
<ctf_dictops>: ... this.
(struct ctf_archive_internal) <ctfi_file>: Rename to...
<ctfi_dict>: ... this.
* ctf-archive.c: Rename ctf_file_t to ctf_dict_t.
Rename ctf_archive.ctfa_nfiles to ctfa_ndicts.
Rename ctf_file_close to ctf_dict_close. All users adjusted.
* ctf-create.c: Likewise. Refer to CTF dicts, not CTF containers.
(ctf_bundle_t) <ctb_file>: Rename to...
<ctb_dict): ... this.
* ctf-decl.c: Rename ctf_file_t to ctf_dict_t.
* ctf-dedup.c: Likewise. Rename ctf_file_close to
ctf_dict_close. Refer to CTF dicts, not CTF containers.
* ctf-dump.c: Likewise.
* ctf-error.c: Likewise.
* ctf-hash.c: Likewise.
* ctf-inlines.h: Likewise.
* ctf-labels.c: Likewise.
* ctf-link.c: Likewise.
* ctf-lookup.c: Likewise.
* ctf-open-bfd.c: Likewise.
* ctf-string.c: Likewise.
* ctf-subr.c: Likewise.
* ctf-types.c: Likewise.
* ctf-util.c: Likewise.
* ctf-open.c: Likewise.
(ctf_file_close): Rename to...
(ctf_dict_close): ...this.
(ctf_file_close): New trivial wrapper around ctf_dict_close, for
compatibility.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this.
(ctf_parent_file): New trivial wrapper around ctf_parent_dict, for
compatibility.
* libctf.ver: Add ctf_dict_close and ctf_parent_dict.
2020-11-20 21:34:04 +08:00
|
|
|
/* If this type has already been added from this dictionary, and is the
|
|
|
|
same kind and (if a struct or union) has the same number of members,
|
|
|
|
hand it straight back. */
|
libctf: properly handle ctf_add_type of forwards and self-reffing structs
The code to handle structures (and unions) that refer to themselves in
ctf_add_type is extremely dodgy. It works by looking through the list
of not-yet-committed types for a structure with the same name as the
structure in question and assuming, if it finds it, that this must be a
reference to the same type. This is a linear search that gets ever
slower as the dictionary grows, requiring you to call ctf_update at
intervals to keep performance tolerable: but if you do that, you run
into the problem that if a forward declared before the ctf_update is
changed to a structure afterwards, ctf_update explodes.
The last commit fixed most of this: this commit can use it, adding a new
ctf_add_processing hash that tracks source type IDs that are currently
being processed and uses it to avoid infinite recursion rather than the
dynamic type list: we split ctf_add_type into a ctf_add_type_internal,
so that ctf_add_type itself can become a wrapper that empties out this
being-processed hash once the entire recursive type addition is over.
Structure additions themselves avoid adding their dependent types
quite so much by checking the type mapping and avoiding re-adding types
we already know we have added.
We also add support for adding forwards to dictionaries that already
contain the thing they are a forward to: we just silently return the
original type.
v4: return existing struct/union/enum types properly, rather than using
an uninitialized variable: shrinks sizes of CTF sections back down
to roughly where they were in v1/v2 of this patch series.
v5: fix tabdamage.
libctf/
* ctf-impl.h (ctf_file_t) <ctf_add_processing>: New.
* ctf-open.c (ctf_file_close): Free it.
* ctf-create.c (ctf_serialize): Adjust.
(membcmp): When reporting a conflict due to an error, report the
error.
(ctf_add_type): Turn into a ctf_add_processing wrapper. Rename to...
(ctf_add_type_internal): ... this. Hand back types we are already
in the middle of adding immediately. Hand back structs/unions with
the same number of members immediately. Do not walk the dynamic
list. Call ctf_add_type_internal, not ctf_add_type. Handle
forwards promoted to other types and the inverse case identically.
Add structs to the mapping as soon as we intern them, before they
gain any members.
2019-08-08 01:01:08 +08:00
|
|
|
|
2019-11-05 21:09:57 +08:00
|
|
|
if (ctf_type_kind_unsliced (tmp_fp, tmp) == (int) kind)
|
libctf: properly handle ctf_add_type of forwards and self-reffing structs
The code to handle structures (and unions) that refer to themselves in
ctf_add_type is extremely dodgy. It works by looking through the list
of not-yet-committed types for a structure with the same name as the
structure in question and assuming, if it finds it, that this must be a
reference to the same type. This is a linear search that gets ever
slower as the dictionary grows, requiring you to call ctf_update at
intervals to keep performance tolerable: but if you do that, you run
into the problem that if a forward declared before the ctf_update is
changed to a structure afterwards, ctf_update explodes.
The last commit fixed most of this: this commit can use it, adding a new
ctf_add_processing hash that tracks source type IDs that are currently
being processed and uses it to avoid infinite recursion rather than the
dynamic type list: we split ctf_add_type into a ctf_add_type_internal,
so that ctf_add_type itself can become a wrapper that empties out this
being-processed hash once the entire recursive type addition is over.
Structure additions themselves avoid adding their dependent types
quite so much by checking the type mapping and avoiding re-adding types
we already know we have added.
We also add support for adding forwards to dictionaries that already
contain the thing they are a forward to: we just silently return the
original type.
v4: return existing struct/union/enum types properly, rather than using
an uninitialized variable: shrinks sizes of CTF sections back down
to roughly where they were in v1/v2 of this patch series.
v5: fix tabdamage.
libctf/
* ctf-impl.h (ctf_file_t) <ctf_add_processing>: New.
* ctf-open.c (ctf_file_close): Free it.
* ctf-create.c (ctf_serialize): Adjust.
(membcmp): When reporting a conflict due to an error, report the
error.
(ctf_add_type): Turn into a ctf_add_processing wrapper. Rename to...
(ctf_add_type_internal): ... this. Hand back types we are already
in the middle of adding immediately. Hand back structs/unions with
the same number of members immediately. Do not walk the dynamic
list. Call ctf_add_type_internal, not ctf_add_type. Handle
forwards promoted to other types and the inverse case identically.
Add structs to the mapping as soon as we intern them, before they
gain any members.
2019-08-08 01:01:08 +08:00
|
|
|
{
|
2019-11-05 21:09:57 +08:00
|
|
|
if (kind == CTF_K_STRUCT || kind == CTF_K_UNION
|
|
|
|
|| kind == CTF_K_ENUM)
|
|
|
|
{
|
|
|
|
if ((dst_tp = ctf_lookup_by_id (&tmp_fp, dst_type)) != NULL)
|
|
|
|
if (vlen == LCTF_INFO_VLEN (tmp_fp, dst_tp->ctt_info))
|
|
|
|
return tmp;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
return tmp;
|
libctf: properly handle ctf_add_type of forwards and self-reffing structs
The code to handle structures (and unions) that refer to themselves in
ctf_add_type is extremely dodgy. It works by looking through the list
of not-yet-committed types for a structure with the same name as the
structure in question and assuming, if it finds it, that this must be a
reference to the same type. This is a linear search that gets ever
slower as the dictionary grows, requiring you to call ctf_update at
intervals to keep performance tolerable: but if you do that, you run
into the problem that if a forward declared before the ctf_update is
changed to a structure afterwards, ctf_update explodes.
The last commit fixed most of this: this commit can use it, adding a new
ctf_add_processing hash that tracks source type IDs that are currently
being processed and uses it to avoid infinite recursion rather than the
dynamic type list: we split ctf_add_type into a ctf_add_type_internal,
so that ctf_add_type itself can become a wrapper that empties out this
being-processed hash once the entire recursive type addition is over.
Structure additions themselves avoid adding their dependent types
quite so much by checking the type mapping and avoiding re-adding types
we already know we have added.
We also add support for adding forwards to dictionaries that already
contain the thing they are a forward to: we just silently return the
original type.
v4: return existing struct/union/enum types properly, rather than using
an uninitialized variable: shrinks sizes of CTF sections back down
to roughly where they were in v1/v2 of this patch series.
v5: fix tabdamage.
libctf/
* ctf-impl.h (ctf_file_t) <ctf_add_processing>: New.
* ctf-open.c (ctf_file_close): Free it.
* ctf-create.c (ctf_serialize): Adjust.
(membcmp): When reporting a conflict due to an error, report the
error.
(ctf_add_type): Turn into a ctf_add_processing wrapper. Rename to...
(ctf_add_type_internal): ... this. Hand back types we are already
in the middle of adding immediately. Hand back structs/unions with
the same number of members immediately. Do not walk the dynamic
list. Call ctf_add_type_internal, not ctf_add_type. Handle
forwards promoted to other types and the inverse case identically.
Add structs to the mapping as soon as we intern them, before they
gain any members.
2019-08-08 01:01:08 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
libctf: teach ctf_add_type how forwards work
This machinery has been broken for as long as Solaris has existed.
Forwards are meant to encode "struct foo;", "enum foo;" or "union
foo;". Obviously these all exist in distinct namespaces, so forwards
store the type kind they forward to in their ctt_type member
(which makes conceptual sense if you squint at it). The addition
machinery uses this to promote forwards to the appropriate type as
needed.
Unfortunately ctf_add_type does not: it checks the global namespace
(which is always wrong), and so fails with a spurious conflict if you
have, say, a typedef and then a forward comes along with the same name,
even if it's a forward to something like a struct. (This was observed
with <libio.h>, which has "struct _IO_FILE;" and also
"typedef struct _IO_FILE _IO_FILE"). We should look at the recorded
type kind and look in the appropriate namespace. We should also,
when creating the forward in the new container, use that type kind,
rather than just defaulting to CTF_K_STRUCT and hoping that what
eventually comes along is a struct.
This bug is as old as the first implementation of ctf_add_type in
Solaris. But we also want a new feature for the linker, closely-related
and touching the same code so we add it here: not only do we want a
forward followed by a struct/union/enum to promote the forward, but
we want want a struct/union/enum followed by a forward to act as a NOP
and return the existing type, because when we're adding many files
in succession to a target link, there will often be already-promoted
forwards (in the shape of a struct/union/enum) that want to unify
with duplicate forwards coming from other object files.
v5: fix tabdamage.
libctf/
* ctf-create.c (ctf_add_type): Look up and use the forwarded-to
type kind. Allow forwards to unify with pre-existing structs/
unions/enums.
2019-08-03 07:46:01 +08:00
|
|
|
forward_kind = kind;
|
|
|
|
if (kind == CTF_K_FORWARD)
|
|
|
|
forward_kind = src_tp->ctt_type;
|
|
|
|
|
libctf, include, binutils, gdb, ld: rename ctf_file_t to ctf_dict_t
The naming of the ctf_file_t type in libctf is a historical curiosity.
Back in the Solaris days, CTF dictionaries were originally generated as
a separate file and then (sometimes) merged into objects: hence the
datatype was named ctf_file_t, and known as a "CTF file". Nowadays, raw
CTF is essentially never written to a file on its own, and the datatype
changed name to a "CTF dictionary" years ago. So the term "CTF file"
refers to something that is never a file! This is at best confusing.
The type has also historically been known as a 'CTF container", which is
even more confusing now that we have CTF archives which are *also* a
sort of container (they contain CTF dictionaries), but which are never
referred to as containers in the source code.
So fix this by completing the renaming, renaming ctf_file_t to
ctf_dict_t throughout, and renaming those few functions that refer to
CTF files by name (keeping compatibility aliases) to refer to dicts
instead. Old users who still refer to ctf_file_t will see (harmless)
pointer-compatibility warnings at compile time, but the ABI is unchanged
(since C doesn't mangle names, and ctf_file_t was always an opaque type)
and things will still compile fine as long as -Werror is not specified.
All references to CTF containers and CTF files in the source code are
fixed to refer to CTF dicts instead.
Further (smaller) renamings of annoyingly-named functions to come, as
part of the process of souping up queries across whole archives at once
(needed for the function info and data object sections).
binutils/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* objdump.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_ctf): Likewise. Use ctf_dict_close, not ctf_file_close.
* readelf.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_section_as_ctf): Likewise. Use ctf_dict_close, not
ctf_file_close.
gdb/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctfread.c: Change uses of ctf_file_t to ctf_dict_t.
(ctf_fp_info::~ctf_fp_info): Call ctf_dict_close, not ctf_file_close.
include/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-api.h (ctf_file_t): Rename to...
(ctf_dict_t): ... this. Keep ctf_file_t around for compatibility.
(struct ctf_file): Likewise rename to...
(struct ctf_dict): ... this.
(ctf_file_close): Rename to...
(ctf_dict_close): ... this, keeping compatibility function.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this, keeping compatibility function.
All callers adjusted.
* ctf.h: Rename references to ctf_file_t to ctf_dict_t.
(struct ctf_archive) <ctfa_nfiles>: Rename to...
<ctfa_ndicts>: ... this.
ld/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ldlang.c (ctf_output): This is a ctf_dict_t now.
(lang_ctf_errs_warnings): Rename ctf_file_t to ctf_dict_t.
(ldlang_open_ctf): Adjust comment.
(lang_merge_ctf): Use ctf_dict_close, not ctf_file_close.
* ldelfgen.h (ldelf_examine_strtab_for_ctf): Rename ctf_file_t to
ctf_dict_t. Change opaque declaration accordingly.
* ldelfgen.c (ldelf_examine_strtab_for_ctf): Adjust.
* ldemul.h (examine_strtab_for_ctf): Likewise.
(ldemul_examine_strtab_for_ctf): Likewise.
* ldeuml.c (ldemul_examine_strtab_for_ctf): Likewise.
libctf/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h: Rename ctf_file_t to ctf_dict_t: all declarations
adjusted.
(ctf_fileops): Rename to...
(ctf_dictops): ... this.
(ctf_dedup_t) <cd_id_to_file_t>: Rename to...
<cd_id_to_dict_t>: ... this.
(ctf_file_t): Fix outdated comment.
<ctf_fileops>: Rename to...
<ctf_dictops>: ... this.
(struct ctf_archive_internal) <ctfi_file>: Rename to...
<ctfi_dict>: ... this.
* ctf-archive.c: Rename ctf_file_t to ctf_dict_t.
Rename ctf_archive.ctfa_nfiles to ctfa_ndicts.
Rename ctf_file_close to ctf_dict_close. All users adjusted.
* ctf-create.c: Likewise. Refer to CTF dicts, not CTF containers.
(ctf_bundle_t) <ctb_file>: Rename to...
<ctb_dict): ... this.
* ctf-decl.c: Rename ctf_file_t to ctf_dict_t.
* ctf-dedup.c: Likewise. Rename ctf_file_close to
ctf_dict_close. Refer to CTF dicts, not CTF containers.
* ctf-dump.c: Likewise.
* ctf-error.c: Likewise.
* ctf-hash.c: Likewise.
* ctf-inlines.h: Likewise.
* ctf-labels.c: Likewise.
* ctf-link.c: Likewise.
* ctf-lookup.c: Likewise.
* ctf-open-bfd.c: Likewise.
* ctf-string.c: Likewise.
* ctf-subr.c: Likewise.
* ctf-types.c: Likewise.
* ctf-util.c: Likewise.
* ctf-open.c: Likewise.
(ctf_file_close): Rename to...
(ctf_dict_close): ...this.
(ctf_file_close): New trivial wrapper around ctf_dict_close, for
compatibility.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this.
(ctf_parent_file): New trivial wrapper around ctf_parent_dict, for
compatibility.
* libctf.ver: Add ctf_dict_close and ctf_parent_dict.
2020-11-20 21:34:04 +08:00
|
|
|
/* If the source type has a name and is a root type (visible at the top-level
|
|
|
|
scope), lookup the name in the destination dictionary and verify that it is
|
|
|
|
of the same kind before we do anything else. */
|
2019-04-24 18:22:03 +08:00
|
|
|
|
|
|
|
if ((flag & CTF_ADD_ROOT) && name[0] != '\0'
|
libctf: avoid the need to ever use ctf_update
The method of operation of libctf when the dictionary is writable has
before now been that types that are added land in the dynamic type
section, which is a linked list and hash of IDs -> dynamic type
definitions (and, recently a hash of names): the DTDs are a bit of CTF
representing the ctf_type_t and ad hoc C structures representing the
vlen. Historically, libctf was unable to do anything with these types,
not even look them up by ID, let alone by name: if you wanted to do that
say if you were adding a type that depended on one you just added) you
called ctf_update, which serializes all the DTDs into a CTF file and
reopens it, copying its guts over the fp it's called with. The
ctf_updated types are then frozen in amber and unchangeable: all lookups
will return the types in the static portion in preference to the dynamic
portion, and we will refuse to re-add things that already exist in the
static portion (and, of late, in the dynamic portion too). The libctf
machinery remembers the boundary between static and dynamic types and
looks in the right portion for each type. Lots of things still don't
quite work with dynamic types (e.g. getting their size), but enough
works to do a bunch of additions and then a ctf_update, most of the
time.
Except it doesn't, because ctf_add_type finds it necessary to walk the
full dynamic type definition list looking for types with matching names,
so it gets slower and slower with every type you add: fixing this
requires calling ctf_update periodically for no other reason than to
avoid massively slowing things down.
This is all clunky and very slow but kind of works, until you consider
that it is in fact possible and indeed necessary to modify one sort of
type after it has been added: forwards. These are necessarily promoted
to structs, unions or enums, and when they do so *their type ID does not
change*. So all of a sudden we are changing types that already exist in
the static portion. ctf_update gets massively confused by this and
allocates space enough for the forward (with no members), but then emits
the new dynamic type (with all the members) into it. You get an
assertion failure after that, if you're lucky, or a coredump.
So this commit rejigs things a bit and arranges to exclusively use the
dynamic type definitions in writable dictionaries, and the static type
definitions in readable dictionaries: we don't at any time have a mixture
of static and dynamic types, and you don't need to call ctf_update to
make things "appear". The ctf_dtbyname hash I introduced a few months
ago, which maps things like "struct foo" to DTDs, is removed, replaced
instead by a change of type of the four dictionaries which track names.
Rather than just being (unresizable) ctf_hash_t's populated only at
ctf_bufopen time, they are now a ctf_names_t structure, which is a pair
of ctf_hash_t and ctf_dynhash_t, with the ctf_hash_t portion being used
in readonly dictionaries, and the ctf_dynhash_t being used in writable
ones. The decision as to which to use is centralized in the new
functions ctf_lookup_by_rawname (which takes a type kind) and
ctf_lookup_by_rawhash, which it calls (which takes a ctf_names_t *.)
This change lets us switch from using static to dynamic name hashes on
the fly across the entirety of libctf without complexifying anything: in
fact, because we now centralize the knowledge about how to map from type
kind to name hash, it actually simplifies things and lets us throw out
quite a lot of now-unnecessary complexity, from ctf_dtnyname (replaced
by the dynamic half of the name tables), through to ctf_dtnextid (now
that a dictionary's static portion is never referenced if the dictionary
is writable, we can just use ctf_typemax to indicate the maximum type:
dynamic or non-dynamic does not matter, and we no longer need to track
the boundary between the types). You can now ctf_rollback() as far as
you like, even past a ctf_update or for that matter a full writeout; all
the iteration functions work just as well on writable as on read-only
dictionaries; ctf_add_type no longer needs expensive duplicated code to
run over the dynamic types hunting for ones it might be interested in;
and the linker no longer needs a hack to call ctf_update so that calling
ctf_add_type is not impossibly expensive.
There is still a bit more complexity: some new code paths in ctf-types.c
need to know how to extract information from dynamic types. This
complexity will go away again in a few months when libctf acquires a
proper intermediate representation.
You can still call ctf_update if you like (it's public API, after all),
but its only effect now is to set the point to which ctf_discard rolls
back.
Obviously *something* still needs to serialize the CTF file before
writeout, and this job is done by ctf_serialize, which does everything
ctf_update used to except set the counter used by ctf_discard. It is
automatically called by the various functions that do CTF writeout:
nobody else ever needs to call it.
With this in place, forwards that are promoted to non-forwards no longer
crash the link, even if it happens tens of thousands of types later.
v5: fix tabdamage.
libctf/
* ctf-impl.h (ctf_names_t): New.
(ctf_lookup_t) <ctf_hash>: Now a ctf_names_t, not a ctf_hash_t.
(ctf_file_t) <ctf_structs>: Likewise.
<ctf_unions>: Likewise.
<ctf_enums>: Likewise.
<ctf_names>: Likewise.
<ctf_lookups>: Improve comment.
<ctf_ptrtab_len>: New.
<ctf_prov_strtab>: New.
<ctf_str_prov_offset>: New.
<ctf_dtbyname>: Remove, redundant to the names hashes.
<ctf_dtnextid>: Remove, redundant to ctf_typemax.
(ctf_dtdef_t) <dtd_name>: Remove.
<dtd_data>: Note that the ctt_name is now populated.
(ctf_str_atom_t) <csa_offset>: This is now the strtab
offset for internal strings too.
<csa_external_offset>: New, the external strtab offset.
(CTF_INDEX_TO_TYPEPTR): Handle the LCTF_RDWR case.
(ctf_name_table): New declaration.
(ctf_lookup_by_rawname): Likewise.
(ctf_lookup_by_rawhash): Likewise.
(ctf_set_ctl_hashes): Likewise.
(ctf_serialize): Likewise.
(ctf_dtd_insert): Adjust.
(ctf_simple_open_internal): Likewise.
(ctf_bufopen_internal): Likewise.
(ctf_list_empty_p): Likewise.
(ctf_str_remove_ref): Likewise.
(ctf_str_add): Returns uint32_t now.
(ctf_str_add_ref): Likewise.
(ctf_str_add_external): Now returns a boolean (int).
* ctf-string.c (ctf_strraw_explicit): Check the ctf_prov_strtab
for strings in the appropriate range.
(ctf_str_create_atoms): Create the ctf_prov_strtab. Detect OOM
when adding the null string to the new strtab.
(ctf_str_free_atoms): Destroy the ctf_prov_strtab.
(ctf_str_add_ref_internal): Add make_provisional argument. If
make_provisional, populate the offset and fill in the
ctf_prov_strtab accordingly.
(ctf_str_add): Return the offset, not the string.
(ctf_str_add_ref): Likewise.
(ctf_str_add_external): Return a success integer.
(ctf_str_remove_ref): New, remove a single ref.
(ctf_str_count_strtab): Do not count the initial null string's
length or the existence or length of any unreferenced internal
atoms.
(ctf_str_populate_sorttab): Skip atoms with no refs.
(ctf_str_write_strtab): Populate the nullstr earlier. Add one
to the cts_len for the null string, since it is no longer done
in ctf_str_count_strtab. Adjust for csa_external_offset rename.
Populate the csa_offset for both internal and external cases.
Flush the ctf_prov_strtab afterwards, and reset the
ctf_str_prov_offset.
* ctf-create.c (ctf_grow_ptrtab): New.
(ctf_create): Call it. Initialize new fields rather than old
ones. Tell ctf_bufopen_internal that this is a writable dictionary.
Set the ctl hashes and data model.
(ctf_update): Rename to...
(ctf_serialize): ... this. Leave a compatibility function behind.
Tell ctf_simple_open_internal that this is a writable dictionary.
Pass the new fields along from the old dictionary. Drop
ctf_dtnextid and ctf_dtbyname. Use ctf_strraw, not dtd_name.
Do not zero out the DTD's ctt_name.
(ctf_prefixed_name): Rename to...
(ctf_name_table): ... this. No longer return a prefixed name: return
the applicable name table instead.
(ctf_dtd_insert): Use it, and use the right name table. Pass in the
kind we're adding. Migrate away from dtd_name.
(ctf_dtd_delete): Adjust similarly. Remove the ref to the
deleted ctt_name.
(ctf_dtd_lookup_type_by_name): Remove.
(ctf_dynamic_type): Always return NULL on read-only dictionaries.
No longer check ctf_dtnextid: check ctf_typemax instead.
(ctf_snapshot): No longer use ctf_dtnextid: use ctf_typemax instead.
(ctf_rollback): Likewise. No longer fail with ECTF_OVERROLLBACK. Use
ctf_name_table and the right name table, and migrate away from
dtd_name as in ctf_dtd_delete.
(ctf_add_generic): Pass in the kind explicitly and pass it to
ctf_dtd_insert. Use ctf_typemax, not ctf_dtnextid. Migrate away
from dtd_name to using ctf_str_add_ref to populate the ctt_name.
Grow the ptrtab if needed.
(ctf_add_encoded): Pass in the kind.
(ctf_add_slice): Likewise.
(ctf_add_array): Likewise.
(ctf_add_function): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_reftype): Likewise. Initialize the ctf_ptrtab, checking
ctt_name rather than dtd_name.
(ctf_add_struct_sized): Pass in the kind. Use
ctf_lookup_by_rawname, not ctf_hash_lookup_type /
ctf_dtd_lookup_type_by_name.
(ctf_add_union_sized): Likewise.
(ctf_add_enum): Likewise.
(ctf_add_enum_encoded): Likewise.
(ctf_add_forward): Likewise.
(ctf_add_type): Likewise.
(ctf_compress_write): Call ctf_serialize: adjust for ctf_size not
being initialized until after the call.
(ctf_write_mem): Likewise.
(ctf_write): Likewise.
* ctf-archive.c (arc_write_one_ctf): Likewise.
* ctf-lookup.c (ctf_lookup_by_name): Use ctf_lookuup_by_rawhash, not
ctf_hash_lookup_type.
(ctf_lookup_by_id): No longer check the readonly types if the
dictionary is writable.
* ctf-open.c (init_types): Assert that this dictionary is not
writable. Adjust to use the new name hashes, ctf_name_table,
and ctf_ptrtab_len. GNU style fix for the final ptrtab scan.
(ctf_bufopen_internal): New 'writable' parameter. Flip on LCTF_RDWR
if set. Drop out early when dictionary is writable. Split the
ctf_lookups initialization into...
(ctf_set_cth_hashes): ... this new function.
(ctf_simple_open_internal): Adjust. New 'writable' parameter.
(ctf_simple_open): Adjust accordingly.
(ctf_bufopen): Likewise.
(ctf_file_close): Destroy the appropriate name hashes. No longer
destroy ctf_dtbyname, which is gone.
(ctf_getdatasect): Remove spurious "extern".
* ctf-types.c (ctf_lookup_by_rawname): New, look up types in the
specified name table, given a kind.
(ctf_lookup_by_rawhash): Likewise, given a ctf_names_t *.
(ctf_member_iter): Add support for iterating over the
dynamic type list.
(ctf_enum_iter): Likewise.
(ctf_variable_iter): Likewise.
(ctf_type_rvisit): Likewise.
(ctf_member_info): Add support for types in the dynamic type list.
(ctf_enum_name): Likewise.
(ctf_enum_value): Likewise.
(ctf_func_type_info): Likewise.
(ctf_func_type_args): Likewise.
* ctf-link.c (ctf_accumulate_archive_names): No longer call
ctf_update.
(ctf_link_write): Likewise.
(ctf_link_intern_extern_string): Adjust for new
ctf_str_add_external return value.
(ctf_link_add_strtab): Likewise.
* ctf-util.c (ctf_list_empty_p): New.
2019-08-08 00:55:09 +08:00
|
|
|
&& (tmp = ctf_lookup_by_rawname (dst_fp, forward_kind, name)) != 0)
|
2019-04-24 18:22:03 +08:00
|
|
|
{
|
|
|
|
dst_type = tmp;
|
|
|
|
dst_kind = ctf_type_kind_unsliced (dst_fp, dst_type);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* If an identically named dst_type exists, fail with ECTF_CONFLICT
|
|
|
|
unless dst_type is a forward declaration and src_type is a struct,
|
libctf: teach ctf_add_type how forwards work
This machinery has been broken for as long as Solaris has existed.
Forwards are meant to encode "struct foo;", "enum foo;" or "union
foo;". Obviously these all exist in distinct namespaces, so forwards
store the type kind they forward to in their ctt_type member
(which makes conceptual sense if you squint at it). The addition
machinery uses this to promote forwards to the appropriate type as
needed.
Unfortunately ctf_add_type does not: it checks the global namespace
(which is always wrong), and so fails with a spurious conflict if you
have, say, a typedef and then a forward comes along with the same name,
even if it's a forward to something like a struct. (This was observed
with <libio.h>, which has "struct _IO_FILE;" and also
"typedef struct _IO_FILE _IO_FILE"). We should look at the recorded
type kind and look in the appropriate namespace. We should also,
when creating the forward in the new container, use that type kind,
rather than just defaulting to CTF_K_STRUCT and hoping that what
eventually comes along is a struct.
This bug is as old as the first implementation of ctf_add_type in
Solaris. But we also want a new feature for the linker, closely-related
and touching the same code so we add it here: not only do we want a
forward followed by a struct/union/enum to promote the forward, but
we want want a struct/union/enum followed by a forward to act as a NOP
and return the existing type, because when we're adding many files
in succession to a target link, there will often be already-promoted
forwards (in the shape of a struct/union/enum) that want to unify
with duplicate forwards coming from other object files.
v5: fix tabdamage.
libctf/
* ctf-create.c (ctf_add_type): Look up and use the forwarded-to
type kind. Allow forwards to unify with pre-existing structs/
unions/enums.
2019-08-03 07:46:01 +08:00
|
|
|
union, or enum (i.e. the definition of the previous forward decl).
|
2019-04-24 18:22:03 +08:00
|
|
|
|
libctf: teach ctf_add_type how forwards work
This machinery has been broken for as long as Solaris has existed.
Forwards are meant to encode "struct foo;", "enum foo;" or "union
foo;". Obviously these all exist in distinct namespaces, so forwards
store the type kind they forward to in their ctt_type member
(which makes conceptual sense if you squint at it). The addition
machinery uses this to promote forwards to the appropriate type as
needed.
Unfortunately ctf_add_type does not: it checks the global namespace
(which is always wrong), and so fails with a spurious conflict if you
have, say, a typedef and then a forward comes along with the same name,
even if it's a forward to something like a struct. (This was observed
with <libio.h>, which has "struct _IO_FILE;" and also
"typedef struct _IO_FILE _IO_FILE"). We should look at the recorded
type kind and look in the appropriate namespace. We should also,
when creating the forward in the new container, use that type kind,
rather than just defaulting to CTF_K_STRUCT and hoping that what
eventually comes along is a struct.
This bug is as old as the first implementation of ctf_add_type in
Solaris. But we also want a new feature for the linker, closely-related
and touching the same code so we add it here: not only do we want a
forward followed by a struct/union/enum to promote the forward, but
we want want a struct/union/enum followed by a forward to act as a NOP
and return the existing type, because when we're adding many files
in succession to a target link, there will often be already-promoted
forwards (in the shape of a struct/union/enum) that want to unify
with duplicate forwards coming from other object files.
v5: fix tabdamage.
libctf/
* ctf-create.c (ctf_add_type): Look up and use the forwarded-to
type kind. Allow forwards to unify with pre-existing structs/
unions/enums.
2019-08-03 07:46:01 +08:00
|
|
|
We also allow addition in the opposite order (addition of a forward when a
|
|
|
|
struct, union, or enum already exists), which is a NOP and returns the
|
|
|
|
already-present struct, union, or enum. */
|
|
|
|
|
|
|
|
if (dst_type != CTF_ERR && dst_kind != kind)
|
2019-04-24 18:22:03 +08:00
|
|
|
{
|
libctf: teach ctf_add_type how forwards work
This machinery has been broken for as long as Solaris has existed.
Forwards are meant to encode "struct foo;", "enum foo;" or "union
foo;". Obviously these all exist in distinct namespaces, so forwards
store the type kind they forward to in their ctt_type member
(which makes conceptual sense if you squint at it). The addition
machinery uses this to promote forwards to the appropriate type as
needed.
Unfortunately ctf_add_type does not: it checks the global namespace
(which is always wrong), and so fails with a spurious conflict if you
have, say, a typedef and then a forward comes along with the same name,
even if it's a forward to something like a struct. (This was observed
with <libio.h>, which has "struct _IO_FILE;" and also
"typedef struct _IO_FILE _IO_FILE"). We should look at the recorded
type kind and look in the appropriate namespace. We should also,
when creating the forward in the new container, use that type kind,
rather than just defaulting to CTF_K_STRUCT and hoping that what
eventually comes along is a struct.
This bug is as old as the first implementation of ctf_add_type in
Solaris. But we also want a new feature for the linker, closely-related
and touching the same code so we add it here: not only do we want a
forward followed by a struct/union/enum to promote the forward, but
we want want a struct/union/enum followed by a forward to act as a NOP
and return the existing type, because when we're adding many files
in succession to a target link, there will often be already-promoted
forwards (in the shape of a struct/union/enum) that want to unify
with duplicate forwards coming from other object files.
v5: fix tabdamage.
libctf/
* ctf-create.c (ctf_add_type): Look up and use the forwarded-to
type kind. Allow forwards to unify with pre-existing structs/
unions/enums.
2019-08-03 07:46:01 +08:00
|
|
|
if (kind == CTF_K_FORWARD
|
|
|
|
&& (dst_kind == CTF_K_ENUM || dst_kind == CTF_K_STRUCT
|
|
|
|
|| dst_kind == CTF_K_UNION))
|
|
|
|
{
|
|
|
|
ctf_add_type_mapping (src_fp, src_type, dst_fp, dst_type);
|
|
|
|
return dst_type;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (dst_kind != CTF_K_FORWARD
|
|
|
|
|| (kind != CTF_K_ENUM && kind != CTF_K_STRUCT
|
|
|
|
&& kind != CTF_K_UNION))
|
|
|
|
{
|
libctf, binutils, include, ld: gettextize and improve error handling
This commit follows on from the earlier commit "libctf, ld, binutils:
add textual error/warning reporting for libctf" and converts every error
in libctf that was reported using ctf_dprintf to use ctf_err_warn
instead, gettextizing them in the process, using N_() where necessary to
avoid doing gettext calls unless an error message is actually generated,
and rephrasing some error messages for ease of translation.
This requires a slight change in the ctf_errwarning_next API: this API
is public but has not been in a release yet, so can still change freely.
The problem is that many errors are emitted at open time (whether
opening of a CTF dict, or opening of a CTF archive): the former of these
throws away its incompletely-initialized ctf_file_t rather than return
it, and the latter has no ctf_file_t at all. So errors and warnings
emitted at open time cannot be stored in the ctf_file_t, and have to go
elsewhere.
We put them in a static local in ctf-subr.c (which is not very
thread-safe: a later commit will improve things here): ctf_err_warn with
a NULL fp adds to this list, and the public interface
ctf_errwarning_next with a NULL fp retrieves from it.
We need a slight exception from the usual iterator rules in this case:
with a NULL fp, there is nowhere to store the ECTF_NEXT_END "error"
which signifies the end of iteration, so we add a new err parameter to
ctf_errwarning_next which is used to report such iteration-related
errors. (If an fp is provided -- i.e., if not reporting open errors --
this is optional, but even if it's optional it's still an API change.
This is actually useful from a usability POV as well, since
ctf_errwarning_next is usually called when there's been an error, so
overwriting the error code with ECTF_NEXT_END is not very helpful!
So, unusually, ctf_errwarning_next now uses the passed fp for its
error code *only* if no errp pointer is passed in, and leaves it
untouched otherwise.)
ld, objdump and readelf are adapted to call ctf_errwarning_next with a
NULL fp to report open errors where appropriate.
The ctf_err_warn API also has to change, gaining a new error-number
parameter which is used to add the error message corresponding to that
error number into the debug stream when LIBCTF_DEBUG is enabled:
changing this API is easy at this point since we are already touching
all existing calls to gettextize them. We need this because the debug
stream should contain the errno's message, but the error reported in the
error/warning stream should *not*, because the caller will probably
report it themselves at failure time regardless, and reporting it in
every error message that leads up to it leads to a ridiculous chattering
on failure, which is likely to end up as ridiculous chattering on stderr
(trimmed a bit):
CTF error: `ld/testsuite/ld-ctf/A.c (0): lookup failure for type 3: flags 1: The parent CTF dictionary is unavailable'
CTF error: `ld/testsuite/ld-ctf/A.c (0): struct/union member type hashing error during type hashing for type 80000001, kind 6: The parent CTF dictionary is unavailable'
CTF error: `deduplicating link variable emission failed for ld/testsuite/ld-ctf/A.c: The parent CTF dictionary is unavailable'
ld/.libs/lt-ld-new: warning: CTF linking failed; output will have no CTF section: `The parent CTF dictionary is unavailable'
We only need to be told that the parent CTF dictionary is unavailable
*once*, not over and over again!
errmsgs are still emitted on warning generation, because warnings do not
usually lead to a failure propagated up to the caller and reported
there.
Debug-stream messages are not translated. If translation is turned on,
there will be a mixture of English and translated messages in the debug
stream, but rather that than burden the translators with debug-only
output.
binutils/ChangeLog
2020-08-27 Nick Alcock <nick.alcock@oracle.com>
* objdump.c (dump_ctf_archive_member): Move error-
reporting...
(dump_ctf_errs): ... into this separate function.
(dump_ctf): Call it on open errors.
* readelf.c (dump_ctf_archive_member): Move error-
reporting...
(dump_ctf_errs): ... into this separate function. Support
calls with NULL fp. Adjust for new err parameter to
ctf_errwarning_next.
(dump_section_as_ctf): Call it on open errors.
include/ChangeLog
2020-08-27 Nick Alcock <nick.alcock@oracle.com>
* ctf-api.h (ctf_errwarning_next): New err parameter.
ld/ChangeLog
2020-08-27 Nick Alcock <nick.alcock@oracle.com>
* ldlang.c (lang_ctf_errs_warnings): Support calls with NULL fp.
Adjust for new err parameter to ctf_errwarning_next. Only
check for assertion failures when fp is non-NULL.
(ldlang_open_ctf): Call it on open errors.
* testsuite/ld-ctf/ctf.exp: Always use the C locale to avoid
breaking the diags tests.
libctf/ChangeLog
2020-08-27 Nick Alcock <nick.alcock@oracle.com>
* ctf-subr.c (open_errors): New list.
(ctf_err_warn): Calls with NULL fp append to open_errors. Add err
parameter, and use it to decorate the debug stream with errmsgs.
(ctf_err_warn_to_open): Splice errors from a CTF dict into the
open_errors.
(ctf_errwarning_next): Calls with NULL fp report from open_errors.
New err param to report iteration errors (including end-of-iteration)
when fp is NULL.
(ctf_assert_fail_internal): Adjust ctf_err_warn call for new err
parameter: gettextize.
* ctf-impl.h (ctfo_get_vbytes): Add ctf_file_t parameter.
(LCTF_VBYTES): Adjust.
(ctf_err_warn_to_open): New.
(ctf_err_warn): Adjust.
(ctf_bundle): Used in only one place: move...
* ctf-create.c: ... here.
(enumcmp): Use ctf_err_warn, not ctf_dprintf, passing the err number
down as needed. Don't emit the errmsg. Gettextize.
(membcmp): Likewise.
(ctf_add_type_internal): Likewise.
(ctf_write_mem): Likewise.
(ctf_compress_write): Likewise. Report errors writing the header or
body.
(ctf_write): Likewise.
* ctf-archive.c (ctf_arc_write_fd): Use ctf_err_warn, not
ctf_dprintf, and gettextize, as above.
(ctf_arc_write): Likewise.
(ctf_arc_bufopen): Likewise.
(ctf_arc_open_internal): Likewise.
* ctf-labels.c (ctf_label_iter): Likewise.
* ctf-open-bfd.c (ctf_bfdclose): Likewise.
(ctf_bfdopen): Likewise.
(ctf_bfdopen_ctfsect): Likewise.
(ctf_fdopen): Likewise.
* ctf-string.c (ctf_str_write_strtab): Likewise.
* ctf-types.c (ctf_type_resolve): Likewise.
* ctf-open.c (get_vbytes_common): Likewise. Pass down the ctf dict.
(get_vbytes_v1): Pass down the ctf dict.
(get_vbytes_v2): Likewise.
(flip_ctf): Likewise.
(flip_types): Likewise. Use ctf_err_warn, not ctf_dprintf, and
gettextize, as above.
(upgrade_types_v1): Adjust calls.
(init_types): Use ctf_err_warn, not ctf_dprintf, as above.
(ctf_bufopen_internal): Likewise. Adjust calls. Transplant errors
emitted into individual dicts into the open errors if this turns
out to be a failed open in the end.
* ctf-dump.c (ctf_dump_format_type): Adjust ctf_err_warn for new err
argument. Gettextize. Don't emit the errmsg.
(ctf_dump_funcs): Likewise. Collapse err label into its only case.
(ctf_dump_type): Likewise.
* ctf-link.c (ctf_create_per_cu): Adjust ctf_err_warn for new err
argument. Gettextize. Don't emit the errmsg.
(ctf_link_one_type): Likewise.
(ctf_link_lazy_open): Likewise.
(ctf_link_one_input_archive): Likewise.
(ctf_link_deduplicating_count_inputs): Likewise.
(ctf_link_deduplicating_open_inputs): Likewise.
(ctf_link_deduplicating_close_inputs): Likewise.
(ctf_link_deduplicating): Likewise.
(ctf_link): Likewise.
(ctf_link_deduplicating_per_cu): Likewise. Add some missed
ctf_set_errnos to obscure error cases.
* ctf-dedup.c (ctf_dedup_rhash_type): Adjust ctf_err_warn for new
err argument. Gettextize. Don't emit the errmsg.
(ctf_dedup_populate_mappings): Likewise.
(ctf_dedup_detect_name_ambiguity): Likewise.
(ctf_dedup_init): Likewise.
(ctf_dedup_multiple_input_dicts): Likewise.
(ctf_dedup_conflictify_unshared): Likewise.
(ctf_dedup): Likewise.
(ctf_dedup_rwalk_one_output_mapping): Likewise.
(ctf_dedup_id_to_target): Likewise.
(ctf_dedup_emit_type): Likewise.
(ctf_dedup_emit_struct_members): Likewise.
(ctf_dedup_populate_type_mapping): Likewise.
(ctf_dedup_populate_type_mappings): Likewise.
(ctf_dedup_emit): Likewise.
(ctf_dedup_hash_type): Likewise. Fix a bit of messed-up error
status setting.
(ctf_dedup_rwalk_one_output_mapping): Likewise. Don't hide
unknown-type-kind messages (which signify file corruption).
2020-07-27 23:45:15 +08:00
|
|
|
ctf_err_warn (dst_fp, 1, ECTF_CONFLICT,
|
libctf, include, binutils, gdb, ld: rename ctf_file_t to ctf_dict_t
The naming of the ctf_file_t type in libctf is a historical curiosity.
Back in the Solaris days, CTF dictionaries were originally generated as
a separate file and then (sometimes) merged into objects: hence the
datatype was named ctf_file_t, and known as a "CTF file". Nowadays, raw
CTF is essentially never written to a file on its own, and the datatype
changed name to a "CTF dictionary" years ago. So the term "CTF file"
refers to something that is never a file! This is at best confusing.
The type has also historically been known as a 'CTF container", which is
even more confusing now that we have CTF archives which are *also* a
sort of container (they contain CTF dictionaries), but which are never
referred to as containers in the source code.
So fix this by completing the renaming, renaming ctf_file_t to
ctf_dict_t throughout, and renaming those few functions that refer to
CTF files by name (keeping compatibility aliases) to refer to dicts
instead. Old users who still refer to ctf_file_t will see (harmless)
pointer-compatibility warnings at compile time, but the ABI is unchanged
(since C doesn't mangle names, and ctf_file_t was always an opaque type)
and things will still compile fine as long as -Werror is not specified.
All references to CTF containers and CTF files in the source code are
fixed to refer to CTF dicts instead.
Further (smaller) renamings of annoyingly-named functions to come, as
part of the process of souping up queries across whole archives at once
(needed for the function info and data object sections).
binutils/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* objdump.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_ctf): Likewise. Use ctf_dict_close, not ctf_file_close.
* readelf.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_section_as_ctf): Likewise. Use ctf_dict_close, not
ctf_file_close.
gdb/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctfread.c: Change uses of ctf_file_t to ctf_dict_t.
(ctf_fp_info::~ctf_fp_info): Call ctf_dict_close, not ctf_file_close.
include/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-api.h (ctf_file_t): Rename to...
(ctf_dict_t): ... this. Keep ctf_file_t around for compatibility.
(struct ctf_file): Likewise rename to...
(struct ctf_dict): ... this.
(ctf_file_close): Rename to...
(ctf_dict_close): ... this, keeping compatibility function.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this, keeping compatibility function.
All callers adjusted.
* ctf.h: Rename references to ctf_file_t to ctf_dict_t.
(struct ctf_archive) <ctfa_nfiles>: Rename to...
<ctfa_ndicts>: ... this.
ld/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ldlang.c (ctf_output): This is a ctf_dict_t now.
(lang_ctf_errs_warnings): Rename ctf_file_t to ctf_dict_t.
(ldlang_open_ctf): Adjust comment.
(lang_merge_ctf): Use ctf_dict_close, not ctf_file_close.
* ldelfgen.h (ldelf_examine_strtab_for_ctf): Rename ctf_file_t to
ctf_dict_t. Change opaque declaration accordingly.
* ldelfgen.c (ldelf_examine_strtab_for_ctf): Adjust.
* ldemul.h (examine_strtab_for_ctf): Likewise.
(ldemul_examine_strtab_for_ctf): Likewise.
* ldeuml.c (ldemul_examine_strtab_for_ctf): Likewise.
libctf/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h: Rename ctf_file_t to ctf_dict_t: all declarations
adjusted.
(ctf_fileops): Rename to...
(ctf_dictops): ... this.
(ctf_dedup_t) <cd_id_to_file_t>: Rename to...
<cd_id_to_dict_t>: ... this.
(ctf_file_t): Fix outdated comment.
<ctf_fileops>: Rename to...
<ctf_dictops>: ... this.
(struct ctf_archive_internal) <ctfi_file>: Rename to...
<ctfi_dict>: ... this.
* ctf-archive.c: Rename ctf_file_t to ctf_dict_t.
Rename ctf_archive.ctfa_nfiles to ctfa_ndicts.
Rename ctf_file_close to ctf_dict_close. All users adjusted.
* ctf-create.c: Likewise. Refer to CTF dicts, not CTF containers.
(ctf_bundle_t) <ctb_file>: Rename to...
<ctb_dict): ... this.
* ctf-decl.c: Rename ctf_file_t to ctf_dict_t.
* ctf-dedup.c: Likewise. Rename ctf_file_close to
ctf_dict_close. Refer to CTF dicts, not CTF containers.
* ctf-dump.c: Likewise.
* ctf-error.c: Likewise.
* ctf-hash.c: Likewise.
* ctf-inlines.h: Likewise.
* ctf-labels.c: Likewise.
* ctf-link.c: Likewise.
* ctf-lookup.c: Likewise.
* ctf-open-bfd.c: Likewise.
* ctf-string.c: Likewise.
* ctf-subr.c: Likewise.
* ctf-types.c: Likewise.
* ctf-util.c: Likewise.
* ctf-open.c: Likewise.
(ctf_file_close): Rename to...
(ctf_dict_close): ...this.
(ctf_file_close): New trivial wrapper around ctf_dict_close, for
compatibility.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this.
(ctf_parent_file): New trivial wrapper around ctf_parent_dict, for
compatibility.
* libctf.ver: Add ctf_dict_close and ctf_parent_dict.
2020-11-20 21:34:04 +08:00
|
|
|
_("ctf_add_type: conflict for type %s: "
|
libctf, binutils, include, ld: gettextize and improve error handling
This commit follows on from the earlier commit "libctf, ld, binutils:
add textual error/warning reporting for libctf" and converts every error
in libctf that was reported using ctf_dprintf to use ctf_err_warn
instead, gettextizing them in the process, using N_() where necessary to
avoid doing gettext calls unless an error message is actually generated,
and rephrasing some error messages for ease of translation.
This requires a slight change in the ctf_errwarning_next API: this API
is public but has not been in a release yet, so can still change freely.
The problem is that many errors are emitted at open time (whether
opening of a CTF dict, or opening of a CTF archive): the former of these
throws away its incompletely-initialized ctf_file_t rather than return
it, and the latter has no ctf_file_t at all. So errors and warnings
emitted at open time cannot be stored in the ctf_file_t, and have to go
elsewhere.
We put them in a static local in ctf-subr.c (which is not very
thread-safe: a later commit will improve things here): ctf_err_warn with
a NULL fp adds to this list, and the public interface
ctf_errwarning_next with a NULL fp retrieves from it.
We need a slight exception from the usual iterator rules in this case:
with a NULL fp, there is nowhere to store the ECTF_NEXT_END "error"
which signifies the end of iteration, so we add a new err parameter to
ctf_errwarning_next which is used to report such iteration-related
errors. (If an fp is provided -- i.e., if not reporting open errors --
this is optional, but even if it's optional it's still an API change.
This is actually useful from a usability POV as well, since
ctf_errwarning_next is usually called when there's been an error, so
overwriting the error code with ECTF_NEXT_END is not very helpful!
So, unusually, ctf_errwarning_next now uses the passed fp for its
error code *only* if no errp pointer is passed in, and leaves it
untouched otherwise.)
ld, objdump and readelf are adapted to call ctf_errwarning_next with a
NULL fp to report open errors where appropriate.
The ctf_err_warn API also has to change, gaining a new error-number
parameter which is used to add the error message corresponding to that
error number into the debug stream when LIBCTF_DEBUG is enabled:
changing this API is easy at this point since we are already touching
all existing calls to gettextize them. We need this because the debug
stream should contain the errno's message, but the error reported in the
error/warning stream should *not*, because the caller will probably
report it themselves at failure time regardless, and reporting it in
every error message that leads up to it leads to a ridiculous chattering
on failure, which is likely to end up as ridiculous chattering on stderr
(trimmed a bit):
CTF error: `ld/testsuite/ld-ctf/A.c (0): lookup failure for type 3: flags 1: The parent CTF dictionary is unavailable'
CTF error: `ld/testsuite/ld-ctf/A.c (0): struct/union member type hashing error during type hashing for type 80000001, kind 6: The parent CTF dictionary is unavailable'
CTF error: `deduplicating link variable emission failed for ld/testsuite/ld-ctf/A.c: The parent CTF dictionary is unavailable'
ld/.libs/lt-ld-new: warning: CTF linking failed; output will have no CTF section: `The parent CTF dictionary is unavailable'
We only need to be told that the parent CTF dictionary is unavailable
*once*, not over and over again!
errmsgs are still emitted on warning generation, because warnings do not
usually lead to a failure propagated up to the caller and reported
there.
Debug-stream messages are not translated. If translation is turned on,
there will be a mixture of English and translated messages in the debug
stream, but rather that than burden the translators with debug-only
output.
binutils/ChangeLog
2020-08-27 Nick Alcock <nick.alcock@oracle.com>
* objdump.c (dump_ctf_archive_member): Move error-
reporting...
(dump_ctf_errs): ... into this separate function.
(dump_ctf): Call it on open errors.
* readelf.c (dump_ctf_archive_member): Move error-
reporting...
(dump_ctf_errs): ... into this separate function. Support
calls with NULL fp. Adjust for new err parameter to
ctf_errwarning_next.
(dump_section_as_ctf): Call it on open errors.
include/ChangeLog
2020-08-27 Nick Alcock <nick.alcock@oracle.com>
* ctf-api.h (ctf_errwarning_next): New err parameter.
ld/ChangeLog
2020-08-27 Nick Alcock <nick.alcock@oracle.com>
* ldlang.c (lang_ctf_errs_warnings): Support calls with NULL fp.
Adjust for new err parameter to ctf_errwarning_next. Only
check for assertion failures when fp is non-NULL.
(ldlang_open_ctf): Call it on open errors.
* testsuite/ld-ctf/ctf.exp: Always use the C locale to avoid
breaking the diags tests.
libctf/ChangeLog
2020-08-27 Nick Alcock <nick.alcock@oracle.com>
* ctf-subr.c (open_errors): New list.
(ctf_err_warn): Calls with NULL fp append to open_errors. Add err
parameter, and use it to decorate the debug stream with errmsgs.
(ctf_err_warn_to_open): Splice errors from a CTF dict into the
open_errors.
(ctf_errwarning_next): Calls with NULL fp report from open_errors.
New err param to report iteration errors (including end-of-iteration)
when fp is NULL.
(ctf_assert_fail_internal): Adjust ctf_err_warn call for new err
parameter: gettextize.
* ctf-impl.h (ctfo_get_vbytes): Add ctf_file_t parameter.
(LCTF_VBYTES): Adjust.
(ctf_err_warn_to_open): New.
(ctf_err_warn): Adjust.
(ctf_bundle): Used in only one place: move...
* ctf-create.c: ... here.
(enumcmp): Use ctf_err_warn, not ctf_dprintf, passing the err number
down as needed. Don't emit the errmsg. Gettextize.
(membcmp): Likewise.
(ctf_add_type_internal): Likewise.
(ctf_write_mem): Likewise.
(ctf_compress_write): Likewise. Report errors writing the header or
body.
(ctf_write): Likewise.
* ctf-archive.c (ctf_arc_write_fd): Use ctf_err_warn, not
ctf_dprintf, and gettextize, as above.
(ctf_arc_write): Likewise.
(ctf_arc_bufopen): Likewise.
(ctf_arc_open_internal): Likewise.
* ctf-labels.c (ctf_label_iter): Likewise.
* ctf-open-bfd.c (ctf_bfdclose): Likewise.
(ctf_bfdopen): Likewise.
(ctf_bfdopen_ctfsect): Likewise.
(ctf_fdopen): Likewise.
* ctf-string.c (ctf_str_write_strtab): Likewise.
* ctf-types.c (ctf_type_resolve): Likewise.
* ctf-open.c (get_vbytes_common): Likewise. Pass down the ctf dict.
(get_vbytes_v1): Pass down the ctf dict.
(get_vbytes_v2): Likewise.
(flip_ctf): Likewise.
(flip_types): Likewise. Use ctf_err_warn, not ctf_dprintf, and
gettextize, as above.
(upgrade_types_v1): Adjust calls.
(init_types): Use ctf_err_warn, not ctf_dprintf, as above.
(ctf_bufopen_internal): Likewise. Adjust calls. Transplant errors
emitted into individual dicts into the open errors if this turns
out to be a failed open in the end.
* ctf-dump.c (ctf_dump_format_type): Adjust ctf_err_warn for new err
argument. Gettextize. Don't emit the errmsg.
(ctf_dump_funcs): Likewise. Collapse err label into its only case.
(ctf_dump_type): Likewise.
* ctf-link.c (ctf_create_per_cu): Adjust ctf_err_warn for new err
argument. Gettextize. Don't emit the errmsg.
(ctf_link_one_type): Likewise.
(ctf_link_lazy_open): Likewise.
(ctf_link_one_input_archive): Likewise.
(ctf_link_deduplicating_count_inputs): Likewise.
(ctf_link_deduplicating_open_inputs): Likewise.
(ctf_link_deduplicating_close_inputs): Likewise.
(ctf_link_deduplicating): Likewise.
(ctf_link): Likewise.
(ctf_link_deduplicating_per_cu): Likewise. Add some missed
ctf_set_errnos to obscure error cases.
* ctf-dedup.c (ctf_dedup_rhash_type): Adjust ctf_err_warn for new
err argument. Gettextize. Don't emit the errmsg.
(ctf_dedup_populate_mappings): Likewise.
(ctf_dedup_detect_name_ambiguity): Likewise.
(ctf_dedup_init): Likewise.
(ctf_dedup_multiple_input_dicts): Likewise.
(ctf_dedup_conflictify_unshared): Likewise.
(ctf_dedup): Likewise.
(ctf_dedup_rwalk_one_output_mapping): Likewise.
(ctf_dedup_id_to_target): Likewise.
(ctf_dedup_emit_type): Likewise.
(ctf_dedup_emit_struct_members): Likewise.
(ctf_dedup_populate_type_mapping): Likewise.
(ctf_dedup_populate_type_mappings): Likewise.
(ctf_dedup_emit): Likewise.
(ctf_dedup_hash_type): Likewise. Fix a bit of messed-up error
status setting.
(ctf_dedup_rwalk_one_output_mapping): Likewise. Don't hide
unknown-type-kind messages (which signify file corruption).
2020-07-27 23:45:15 +08:00
|
|
|
"kinds differ, new: %i; old (ID %lx): %i"),
|
|
|
|
name, kind, dst_type, dst_kind);
|
2023-09-13 17:02:36 +08:00
|
|
|
return (ctf_set_typed_errno (dst_fp, ECTF_CONFLICT));
|
libctf: teach ctf_add_type how forwards work
This machinery has been broken for as long as Solaris has existed.
Forwards are meant to encode "struct foo;", "enum foo;" or "union
foo;". Obviously these all exist in distinct namespaces, so forwards
store the type kind they forward to in their ctt_type member
(which makes conceptual sense if you squint at it). The addition
machinery uses this to promote forwards to the appropriate type as
needed.
Unfortunately ctf_add_type does not: it checks the global namespace
(which is always wrong), and so fails with a spurious conflict if you
have, say, a typedef and then a forward comes along with the same name,
even if it's a forward to something like a struct. (This was observed
with <libio.h>, which has "struct _IO_FILE;" and also
"typedef struct _IO_FILE _IO_FILE"). We should look at the recorded
type kind and look in the appropriate namespace. We should also,
when creating the forward in the new container, use that type kind,
rather than just defaulting to CTF_K_STRUCT and hoping that what
eventually comes along is a struct.
This bug is as old as the first implementation of ctf_add_type in
Solaris. But we also want a new feature for the linker, closely-related
and touching the same code so we add it here: not only do we want a
forward followed by a struct/union/enum to promote the forward, but
we want want a struct/union/enum followed by a forward to act as a NOP
and return the existing type, because when we're adding many files
in succession to a target link, there will often be already-promoted
forwards (in the shape of a struct/union/enum) that want to unify
with duplicate forwards coming from other object files.
v5: fix tabdamage.
libctf/
* ctf-create.c (ctf_add_type): Look up and use the forwarded-to
type kind. Allow forwards to unify with pre-existing structs/
unions/enums.
2019-08-03 07:46:01 +08:00
|
|
|
}
|
2019-04-24 18:22:03 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
/* We take special action for an integer, float, or slice since it is
|
|
|
|
described not only by its name but also its encoding. For integers,
|
|
|
|
bit-fields exploit this degeneracy. */
|
|
|
|
|
|
|
|
if (kind == CTF_K_INTEGER || kind == CTF_K_FLOAT || kind == CTF_K_SLICE)
|
|
|
|
{
|
|
|
|
if (ctf_type_encoding (src_fp, src_type, &src_en) != 0)
|
2023-09-13 17:02:36 +08:00
|
|
|
return (ctf_set_typed_errno (dst_fp, ctf_errno (src_fp)));
|
2019-04-24 18:22:03 +08:00
|
|
|
|
|
|
|
if (dst_type != CTF_ERR)
|
|
|
|
{
|
libctf, include, binutils, gdb, ld: rename ctf_file_t to ctf_dict_t
The naming of the ctf_file_t type in libctf is a historical curiosity.
Back in the Solaris days, CTF dictionaries were originally generated as
a separate file and then (sometimes) merged into objects: hence the
datatype was named ctf_file_t, and known as a "CTF file". Nowadays, raw
CTF is essentially never written to a file on its own, and the datatype
changed name to a "CTF dictionary" years ago. So the term "CTF file"
refers to something that is never a file! This is at best confusing.
The type has also historically been known as a 'CTF container", which is
even more confusing now that we have CTF archives which are *also* a
sort of container (they contain CTF dictionaries), but which are never
referred to as containers in the source code.
So fix this by completing the renaming, renaming ctf_file_t to
ctf_dict_t throughout, and renaming those few functions that refer to
CTF files by name (keeping compatibility aliases) to refer to dicts
instead. Old users who still refer to ctf_file_t will see (harmless)
pointer-compatibility warnings at compile time, but the ABI is unchanged
(since C doesn't mangle names, and ctf_file_t was always an opaque type)
and things will still compile fine as long as -Werror is not specified.
All references to CTF containers and CTF files in the source code are
fixed to refer to CTF dicts instead.
Further (smaller) renamings of annoyingly-named functions to come, as
part of the process of souping up queries across whole archives at once
(needed for the function info and data object sections).
binutils/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* objdump.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_ctf): Likewise. Use ctf_dict_close, not ctf_file_close.
* readelf.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_section_as_ctf): Likewise. Use ctf_dict_close, not
ctf_file_close.
gdb/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctfread.c: Change uses of ctf_file_t to ctf_dict_t.
(ctf_fp_info::~ctf_fp_info): Call ctf_dict_close, not ctf_file_close.
include/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-api.h (ctf_file_t): Rename to...
(ctf_dict_t): ... this. Keep ctf_file_t around for compatibility.
(struct ctf_file): Likewise rename to...
(struct ctf_dict): ... this.
(ctf_file_close): Rename to...
(ctf_dict_close): ... this, keeping compatibility function.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this, keeping compatibility function.
All callers adjusted.
* ctf.h: Rename references to ctf_file_t to ctf_dict_t.
(struct ctf_archive) <ctfa_nfiles>: Rename to...
<ctfa_ndicts>: ... this.
ld/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ldlang.c (ctf_output): This is a ctf_dict_t now.
(lang_ctf_errs_warnings): Rename ctf_file_t to ctf_dict_t.
(ldlang_open_ctf): Adjust comment.
(lang_merge_ctf): Use ctf_dict_close, not ctf_file_close.
* ldelfgen.h (ldelf_examine_strtab_for_ctf): Rename ctf_file_t to
ctf_dict_t. Change opaque declaration accordingly.
* ldelfgen.c (ldelf_examine_strtab_for_ctf): Adjust.
* ldemul.h (examine_strtab_for_ctf): Likewise.
(ldemul_examine_strtab_for_ctf): Likewise.
* ldeuml.c (ldemul_examine_strtab_for_ctf): Likewise.
libctf/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h: Rename ctf_file_t to ctf_dict_t: all declarations
adjusted.
(ctf_fileops): Rename to...
(ctf_dictops): ... this.
(ctf_dedup_t) <cd_id_to_file_t>: Rename to...
<cd_id_to_dict_t>: ... this.
(ctf_file_t): Fix outdated comment.
<ctf_fileops>: Rename to...
<ctf_dictops>: ... this.
(struct ctf_archive_internal) <ctfi_file>: Rename to...
<ctfi_dict>: ... this.
* ctf-archive.c: Rename ctf_file_t to ctf_dict_t.
Rename ctf_archive.ctfa_nfiles to ctfa_ndicts.
Rename ctf_file_close to ctf_dict_close. All users adjusted.
* ctf-create.c: Likewise. Refer to CTF dicts, not CTF containers.
(ctf_bundle_t) <ctb_file>: Rename to...
<ctb_dict): ... this.
* ctf-decl.c: Rename ctf_file_t to ctf_dict_t.
* ctf-dedup.c: Likewise. Rename ctf_file_close to
ctf_dict_close. Refer to CTF dicts, not CTF containers.
* ctf-dump.c: Likewise.
* ctf-error.c: Likewise.
* ctf-hash.c: Likewise.
* ctf-inlines.h: Likewise.
* ctf-labels.c: Likewise.
* ctf-link.c: Likewise.
* ctf-lookup.c: Likewise.
* ctf-open-bfd.c: Likewise.
* ctf-string.c: Likewise.
* ctf-subr.c: Likewise.
* ctf-types.c: Likewise.
* ctf-util.c: Likewise.
* ctf-open.c: Likewise.
(ctf_file_close): Rename to...
(ctf_dict_close): ...this.
(ctf_file_close): New trivial wrapper around ctf_dict_close, for
compatibility.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this.
(ctf_parent_file): New trivial wrapper around ctf_parent_dict, for
compatibility.
* libctf.ver: Add ctf_dict_close and ctf_parent_dict.
2020-11-20 21:34:04 +08:00
|
|
|
ctf_dict_t *fp = dst_fp;
|
2019-04-24 18:22:03 +08:00
|
|
|
|
|
|
|
if ((dst_tp = ctf_lookup_by_id (&fp, dst_type)) == NULL)
|
|
|
|
return CTF_ERR;
|
|
|
|
|
libctf: properly handle ctf_add_type of forwards and self-reffing structs
The code to handle structures (and unions) that refer to themselves in
ctf_add_type is extremely dodgy. It works by looking through the list
of not-yet-committed types for a structure with the same name as the
structure in question and assuming, if it finds it, that this must be a
reference to the same type. This is a linear search that gets ever
slower as the dictionary grows, requiring you to call ctf_update at
intervals to keep performance tolerable: but if you do that, you run
into the problem that if a forward declared before the ctf_update is
changed to a structure afterwards, ctf_update explodes.
The last commit fixed most of this: this commit can use it, adding a new
ctf_add_processing hash that tracks source type IDs that are currently
being processed and uses it to avoid infinite recursion rather than the
dynamic type list: we split ctf_add_type into a ctf_add_type_internal,
so that ctf_add_type itself can become a wrapper that empties out this
being-processed hash once the entire recursive type addition is over.
Structure additions themselves avoid adding their dependent types
quite so much by checking the type mapping and avoiding re-adding types
we already know we have added.
We also add support for adding forwards to dictionaries that already
contain the thing they are a forward to: we just silently return the
original type.
v4: return existing struct/union/enum types properly, rather than using
an uninitialized variable: shrinks sizes of CTF sections back down
to roughly where they were in v1/v2 of this patch series.
v5: fix tabdamage.
libctf/
* ctf-impl.h (ctf_file_t) <ctf_add_processing>: New.
* ctf-open.c (ctf_file_close): Free it.
* ctf-create.c (ctf_serialize): Adjust.
(membcmp): When reporting a conflict due to an error, report the
error.
(ctf_add_type): Turn into a ctf_add_processing wrapper. Rename to...
(ctf_add_type_internal): ... this. Hand back types we are already
in the middle of adding immediately. Hand back structs/unions with
the same number of members immediately. Do not walk the dynamic
list. Call ctf_add_type_internal, not ctf_add_type. Handle
forwards promoted to other types and the inverse case identically.
Add structs to the mapping as soon as we intern them, before they
gain any members.
2019-08-08 01:01:08 +08:00
|
|
|
if (ctf_type_encoding (dst_fp, dst_type, &dst_en) != 0)
|
|
|
|
return CTF_ERR; /* errno set for us. */
|
|
|
|
|
2019-04-24 18:22:03 +08:00
|
|
|
if (LCTF_INFO_ISROOT (fp, dst_tp->ctt_info) & CTF_ADD_ROOT)
|
|
|
|
{
|
|
|
|
/* The type that we found in the hash is also root-visible. If
|
|
|
|
the two types match then use the existing one; otherwise,
|
|
|
|
declare a conflict. Note: slices are not certain to match
|
|
|
|
even if there is no conflict: we must check the contained type
|
|
|
|
too. */
|
|
|
|
|
|
|
|
if (memcmp (&src_en, &dst_en, sizeof (ctf_encoding_t)) == 0)
|
|
|
|
{
|
|
|
|
if (kind != CTF_K_SLICE)
|
2019-07-14 04:31:26 +08:00
|
|
|
{
|
|
|
|
ctf_add_type_mapping (src_fp, src_type, dst_fp, dst_type);
|
|
|
|
return dst_type;
|
|
|
|
}
|
2019-04-24 18:22:03 +08:00
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
2023-09-13 17:02:36 +08:00
|
|
|
return (ctf_set_typed_errno (dst_fp, ECTF_CONFLICT));
|
2019-04-24 18:22:03 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
libctf: properly handle ctf_add_type of forwards and self-reffing structs
The code to handle structures (and unions) that refer to themselves in
ctf_add_type is extremely dodgy. It works by looking through the list
of not-yet-committed types for a structure with the same name as the
structure in question and assuming, if it finds it, that this must be a
reference to the same type. This is a linear search that gets ever
slower as the dictionary grows, requiring you to call ctf_update at
intervals to keep performance tolerable: but if you do that, you run
into the problem that if a forward declared before the ctf_update is
changed to a structure afterwards, ctf_update explodes.
The last commit fixed most of this: this commit can use it, adding a new
ctf_add_processing hash that tracks source type IDs that are currently
being processed and uses it to avoid infinite recursion rather than the
dynamic type list: we split ctf_add_type into a ctf_add_type_internal,
so that ctf_add_type itself can become a wrapper that empties out this
being-processed hash once the entire recursive type addition is over.
Structure additions themselves avoid adding their dependent types
quite so much by checking the type mapping and avoiding re-adding types
we already know we have added.
We also add support for adding forwards to dictionaries that already
contain the thing they are a forward to: we just silently return the
original type.
v4: return existing struct/union/enum types properly, rather than using
an uninitialized variable: shrinks sizes of CTF sections back down
to roughly where they were in v1/v2 of this patch series.
v5: fix tabdamage.
libctf/
* ctf-impl.h (ctf_file_t) <ctf_add_processing>: New.
* ctf-open.c (ctf_file_close): Free it.
* ctf-create.c (ctf_serialize): Adjust.
(membcmp): When reporting a conflict due to an error, report the
error.
(ctf_add_type): Turn into a ctf_add_processing wrapper. Rename to...
(ctf_add_type_internal): ... this. Hand back types we are already
in the middle of adding immediately. Hand back structs/unions with
the same number of members immediately. Do not walk the dynamic
list. Call ctf_add_type_internal, not ctf_add_type. Handle
forwards promoted to other types and the inverse case identically.
Add structs to the mapping as soon as we intern them, before they
gain any members.
2019-08-08 01:01:08 +08:00
|
|
|
/* We found a non-root-visible type in the hash. If its encoding
|
|
|
|
is the same, we can reuse it, unless it is a slice. */
|
2019-04-24 18:22:03 +08:00
|
|
|
|
libctf: properly handle ctf_add_type of forwards and self-reffing structs
The code to handle structures (and unions) that refer to themselves in
ctf_add_type is extremely dodgy. It works by looking through the list
of not-yet-committed types for a structure with the same name as the
structure in question and assuming, if it finds it, that this must be a
reference to the same type. This is a linear search that gets ever
slower as the dictionary grows, requiring you to call ctf_update at
intervals to keep performance tolerable: but if you do that, you run
into the problem that if a forward declared before the ctf_update is
changed to a structure afterwards, ctf_update explodes.
The last commit fixed most of this: this commit can use it, adding a new
ctf_add_processing hash that tracks source type IDs that are currently
being processed and uses it to avoid infinite recursion rather than the
dynamic type list: we split ctf_add_type into a ctf_add_type_internal,
so that ctf_add_type itself can become a wrapper that empties out this
being-processed hash once the entire recursive type addition is over.
Structure additions themselves avoid adding their dependent types
quite so much by checking the type mapping and avoiding re-adding types
we already know we have added.
We also add support for adding forwards to dictionaries that already
contain the thing they are a forward to: we just silently return the
original type.
v4: return existing struct/union/enum types properly, rather than using
an uninitialized variable: shrinks sizes of CTF sections back down
to roughly where they were in v1/v2 of this patch series.
v5: fix tabdamage.
libctf/
* ctf-impl.h (ctf_file_t) <ctf_add_processing>: New.
* ctf-open.c (ctf_file_close): Free it.
* ctf-create.c (ctf_serialize): Adjust.
(membcmp): When reporting a conflict due to an error, report the
error.
(ctf_add_type): Turn into a ctf_add_processing wrapper. Rename to...
(ctf_add_type_internal): ... this. Hand back types we are already
in the middle of adding immediately. Hand back structs/unions with
the same number of members immediately. Do not walk the dynamic
list. Call ctf_add_type_internal, not ctf_add_type. Handle
forwards promoted to other types and the inverse case identically.
Add structs to the mapping as soon as we intern them, before they
gain any members.
2019-08-08 01:01:08 +08:00
|
|
|
if (memcmp (&src_en, &dst_en, sizeof (ctf_encoding_t)) == 0)
|
2019-04-24 18:22:03 +08:00
|
|
|
{
|
|
|
|
if (kind != CTF_K_SLICE)
|
2019-07-14 04:31:26 +08:00
|
|
|
{
|
libctf: properly handle ctf_add_type of forwards and self-reffing structs
The code to handle structures (and unions) that refer to themselves in
ctf_add_type is extremely dodgy. It works by looking through the list
of not-yet-committed types for a structure with the same name as the
structure in question and assuming, if it finds it, that this must be a
reference to the same type. This is a linear search that gets ever
slower as the dictionary grows, requiring you to call ctf_update at
intervals to keep performance tolerable: but if you do that, you run
into the problem that if a forward declared before the ctf_update is
changed to a structure afterwards, ctf_update explodes.
The last commit fixed most of this: this commit can use it, adding a new
ctf_add_processing hash that tracks source type IDs that are currently
being processed and uses it to avoid infinite recursion rather than the
dynamic type list: we split ctf_add_type into a ctf_add_type_internal,
so that ctf_add_type itself can become a wrapper that empties out this
being-processed hash once the entire recursive type addition is over.
Structure additions themselves avoid adding their dependent types
quite so much by checking the type mapping and avoiding re-adding types
we already know we have added.
We also add support for adding forwards to dictionaries that already
contain the thing they are a forward to: we just silently return the
original type.
v4: return existing struct/union/enum types properly, rather than using
an uninitialized variable: shrinks sizes of CTF sections back down
to roughly where they were in v1/v2 of this patch series.
v5: fix tabdamage.
libctf/
* ctf-impl.h (ctf_file_t) <ctf_add_processing>: New.
* ctf-open.c (ctf_file_close): Free it.
* ctf-create.c (ctf_serialize): Adjust.
(membcmp): When reporting a conflict due to an error, report the
error.
(ctf_add_type): Turn into a ctf_add_processing wrapper. Rename to...
(ctf_add_type_internal): ... this. Hand back types we are already
in the middle of adding immediately. Hand back structs/unions with
the same number of members immediately. Do not walk the dynamic
list. Call ctf_add_type_internal, not ctf_add_type. Handle
forwards promoted to other types and the inverse case identically.
Add structs to the mapping as soon as we intern them, before they
gain any members.
2019-08-08 01:01:08 +08:00
|
|
|
ctf_add_type_mapping (src_fp, src_type, dst_fp, dst_type);
|
|
|
|
return dst_type;
|
2019-07-14 04:31:26 +08:00
|
|
|
}
|
2019-04-24 18:22:03 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
libctf, include, binutils, gdb, ld: rename ctf_file_t to ctf_dict_t
The naming of the ctf_file_t type in libctf is a historical curiosity.
Back in the Solaris days, CTF dictionaries were originally generated as
a separate file and then (sometimes) merged into objects: hence the
datatype was named ctf_file_t, and known as a "CTF file". Nowadays, raw
CTF is essentially never written to a file on its own, and the datatype
changed name to a "CTF dictionary" years ago. So the term "CTF file"
refers to something that is never a file! This is at best confusing.
The type has also historically been known as a 'CTF container", which is
even more confusing now that we have CTF archives which are *also* a
sort of container (they contain CTF dictionaries), but which are never
referred to as containers in the source code.
So fix this by completing the renaming, renaming ctf_file_t to
ctf_dict_t throughout, and renaming those few functions that refer to
CTF files by name (keeping compatibility aliases) to refer to dicts
instead. Old users who still refer to ctf_file_t will see (harmless)
pointer-compatibility warnings at compile time, but the ABI is unchanged
(since C doesn't mangle names, and ctf_file_t was always an opaque type)
and things will still compile fine as long as -Werror is not specified.
All references to CTF containers and CTF files in the source code are
fixed to refer to CTF dicts instead.
Further (smaller) renamings of annoyingly-named functions to come, as
part of the process of souping up queries across whole archives at once
(needed for the function info and data object sections).
binutils/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* objdump.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_ctf): Likewise. Use ctf_dict_close, not ctf_file_close.
* readelf.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_section_as_ctf): Likewise. Use ctf_dict_close, not
ctf_file_close.
gdb/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctfread.c: Change uses of ctf_file_t to ctf_dict_t.
(ctf_fp_info::~ctf_fp_info): Call ctf_dict_close, not ctf_file_close.
include/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-api.h (ctf_file_t): Rename to...
(ctf_dict_t): ... this. Keep ctf_file_t around for compatibility.
(struct ctf_file): Likewise rename to...
(struct ctf_dict): ... this.
(ctf_file_close): Rename to...
(ctf_dict_close): ... this, keeping compatibility function.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this, keeping compatibility function.
All callers adjusted.
* ctf.h: Rename references to ctf_file_t to ctf_dict_t.
(struct ctf_archive) <ctfa_nfiles>: Rename to...
<ctfa_ndicts>: ... this.
ld/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ldlang.c (ctf_output): This is a ctf_dict_t now.
(lang_ctf_errs_warnings): Rename ctf_file_t to ctf_dict_t.
(ldlang_open_ctf): Adjust comment.
(lang_merge_ctf): Use ctf_dict_close, not ctf_file_close.
* ldelfgen.h (ldelf_examine_strtab_for_ctf): Rename ctf_file_t to
ctf_dict_t. Change opaque declaration accordingly.
* ldelfgen.c (ldelf_examine_strtab_for_ctf): Adjust.
* ldemul.h (examine_strtab_for_ctf): Likewise.
(ldemul_examine_strtab_for_ctf): Likewise.
* ldeuml.c (ldemul_examine_strtab_for_ctf): Likewise.
libctf/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h: Rename ctf_file_t to ctf_dict_t: all declarations
adjusted.
(ctf_fileops): Rename to...
(ctf_dictops): ... this.
(ctf_dedup_t) <cd_id_to_file_t>: Rename to...
<cd_id_to_dict_t>: ... this.
(ctf_file_t): Fix outdated comment.
<ctf_fileops>: Rename to...
<ctf_dictops>: ... this.
(struct ctf_archive_internal) <ctfi_file>: Rename to...
<ctfi_dict>: ... this.
* ctf-archive.c: Rename ctf_file_t to ctf_dict_t.
Rename ctf_archive.ctfa_nfiles to ctfa_ndicts.
Rename ctf_file_close to ctf_dict_close. All users adjusted.
* ctf-create.c: Likewise. Refer to CTF dicts, not CTF containers.
(ctf_bundle_t) <ctb_file>: Rename to...
<ctb_dict): ... this.
* ctf-decl.c: Rename ctf_file_t to ctf_dict_t.
* ctf-dedup.c: Likewise. Rename ctf_file_close to
ctf_dict_close. Refer to CTF dicts, not CTF containers.
* ctf-dump.c: Likewise.
* ctf-error.c: Likewise.
* ctf-hash.c: Likewise.
* ctf-inlines.h: Likewise.
* ctf-labels.c: Likewise.
* ctf-link.c: Likewise.
* ctf-lookup.c: Likewise.
* ctf-open-bfd.c: Likewise.
* ctf-string.c: Likewise.
* ctf-subr.c: Likewise.
* ctf-types.c: Likewise.
* ctf-util.c: Likewise.
* ctf-open.c: Likewise.
(ctf_file_close): Rename to...
(ctf_dict_close): ...this.
(ctf_file_close): New trivial wrapper around ctf_dict_close, for
compatibility.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this.
(ctf_parent_file): New trivial wrapper around ctf_parent_dict, for
compatibility.
* libctf.ver: Add ctf_dict_close and ctf_parent_dict.
2020-11-20 21:34:04 +08:00
|
|
|
src.ctb_dict = src_fp;
|
2019-04-24 18:22:03 +08:00
|
|
|
src.ctb_type = src_type;
|
|
|
|
src.ctb_dtd = NULL;
|
|
|
|
|
libctf, include, binutils, gdb, ld: rename ctf_file_t to ctf_dict_t
The naming of the ctf_file_t type in libctf is a historical curiosity.
Back in the Solaris days, CTF dictionaries were originally generated as
a separate file and then (sometimes) merged into objects: hence the
datatype was named ctf_file_t, and known as a "CTF file". Nowadays, raw
CTF is essentially never written to a file on its own, and the datatype
changed name to a "CTF dictionary" years ago. So the term "CTF file"
refers to something that is never a file! This is at best confusing.
The type has also historically been known as a 'CTF container", which is
even more confusing now that we have CTF archives which are *also* a
sort of container (they contain CTF dictionaries), but which are never
referred to as containers in the source code.
So fix this by completing the renaming, renaming ctf_file_t to
ctf_dict_t throughout, and renaming those few functions that refer to
CTF files by name (keeping compatibility aliases) to refer to dicts
instead. Old users who still refer to ctf_file_t will see (harmless)
pointer-compatibility warnings at compile time, but the ABI is unchanged
(since C doesn't mangle names, and ctf_file_t was always an opaque type)
and things will still compile fine as long as -Werror is not specified.
All references to CTF containers and CTF files in the source code are
fixed to refer to CTF dicts instead.
Further (smaller) renamings of annoyingly-named functions to come, as
part of the process of souping up queries across whole archives at once
(needed for the function info and data object sections).
binutils/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* objdump.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_ctf): Likewise. Use ctf_dict_close, not ctf_file_close.
* readelf.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_section_as_ctf): Likewise. Use ctf_dict_close, not
ctf_file_close.
gdb/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctfread.c: Change uses of ctf_file_t to ctf_dict_t.
(ctf_fp_info::~ctf_fp_info): Call ctf_dict_close, not ctf_file_close.
include/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-api.h (ctf_file_t): Rename to...
(ctf_dict_t): ... this. Keep ctf_file_t around for compatibility.
(struct ctf_file): Likewise rename to...
(struct ctf_dict): ... this.
(ctf_file_close): Rename to...
(ctf_dict_close): ... this, keeping compatibility function.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this, keeping compatibility function.
All callers adjusted.
* ctf.h: Rename references to ctf_file_t to ctf_dict_t.
(struct ctf_archive) <ctfa_nfiles>: Rename to...
<ctfa_ndicts>: ... this.
ld/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ldlang.c (ctf_output): This is a ctf_dict_t now.
(lang_ctf_errs_warnings): Rename ctf_file_t to ctf_dict_t.
(ldlang_open_ctf): Adjust comment.
(lang_merge_ctf): Use ctf_dict_close, not ctf_file_close.
* ldelfgen.h (ldelf_examine_strtab_for_ctf): Rename ctf_file_t to
ctf_dict_t. Change opaque declaration accordingly.
* ldelfgen.c (ldelf_examine_strtab_for_ctf): Adjust.
* ldemul.h (examine_strtab_for_ctf): Likewise.
(ldemul_examine_strtab_for_ctf): Likewise.
* ldeuml.c (ldemul_examine_strtab_for_ctf): Likewise.
libctf/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h: Rename ctf_file_t to ctf_dict_t: all declarations
adjusted.
(ctf_fileops): Rename to...
(ctf_dictops): ... this.
(ctf_dedup_t) <cd_id_to_file_t>: Rename to...
<cd_id_to_dict_t>: ... this.
(ctf_file_t): Fix outdated comment.
<ctf_fileops>: Rename to...
<ctf_dictops>: ... this.
(struct ctf_archive_internal) <ctfi_file>: Rename to...
<ctfi_dict>: ... this.
* ctf-archive.c: Rename ctf_file_t to ctf_dict_t.
Rename ctf_archive.ctfa_nfiles to ctfa_ndicts.
Rename ctf_file_close to ctf_dict_close. All users adjusted.
* ctf-create.c: Likewise. Refer to CTF dicts, not CTF containers.
(ctf_bundle_t) <ctb_file>: Rename to...
<ctb_dict): ... this.
* ctf-decl.c: Rename ctf_file_t to ctf_dict_t.
* ctf-dedup.c: Likewise. Rename ctf_file_close to
ctf_dict_close. Refer to CTF dicts, not CTF containers.
* ctf-dump.c: Likewise.
* ctf-error.c: Likewise.
* ctf-hash.c: Likewise.
* ctf-inlines.h: Likewise.
* ctf-labels.c: Likewise.
* ctf-link.c: Likewise.
* ctf-lookup.c: Likewise.
* ctf-open-bfd.c: Likewise.
* ctf-string.c: Likewise.
* ctf-subr.c: Likewise.
* ctf-types.c: Likewise.
* ctf-util.c: Likewise.
* ctf-open.c: Likewise.
(ctf_file_close): Rename to...
(ctf_dict_close): ...this.
(ctf_file_close): New trivial wrapper around ctf_dict_close, for
compatibility.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this.
(ctf_parent_file): New trivial wrapper around ctf_parent_dict, for
compatibility.
* libctf.ver: Add ctf_dict_close and ctf_parent_dict.
2020-11-20 21:34:04 +08:00
|
|
|
dst.ctb_dict = dst_fp;
|
2019-04-24 18:22:03 +08:00
|
|
|
dst.ctb_type = dst_type;
|
|
|
|
dst.ctb_dtd = NULL;
|
|
|
|
|
libctf: properly handle ctf_add_type of forwards and self-reffing structs
The code to handle structures (and unions) that refer to themselves in
ctf_add_type is extremely dodgy. It works by looking through the list
of not-yet-committed types for a structure with the same name as the
structure in question and assuming, if it finds it, that this must be a
reference to the same type. This is a linear search that gets ever
slower as the dictionary grows, requiring you to call ctf_update at
intervals to keep performance tolerable: but if you do that, you run
into the problem that if a forward declared before the ctf_update is
changed to a structure afterwards, ctf_update explodes.
The last commit fixed most of this: this commit can use it, adding a new
ctf_add_processing hash that tracks source type IDs that are currently
being processed and uses it to avoid infinite recursion rather than the
dynamic type list: we split ctf_add_type into a ctf_add_type_internal,
so that ctf_add_type itself can become a wrapper that empties out this
being-processed hash once the entire recursive type addition is over.
Structure additions themselves avoid adding their dependent types
quite so much by checking the type mapping and avoiding re-adding types
we already know we have added.
We also add support for adding forwards to dictionaries that already
contain the thing they are a forward to: we just silently return the
original type.
v4: return existing struct/union/enum types properly, rather than using
an uninitialized variable: shrinks sizes of CTF sections back down
to roughly where they were in v1/v2 of this patch series.
v5: fix tabdamage.
libctf/
* ctf-impl.h (ctf_file_t) <ctf_add_processing>: New.
* ctf-open.c (ctf_file_close): Free it.
* ctf-create.c (ctf_serialize): Adjust.
(membcmp): When reporting a conflict due to an error, report the
error.
(ctf_add_type): Turn into a ctf_add_processing wrapper. Rename to...
(ctf_add_type_internal): ... this. Hand back types we are already
in the middle of adding immediately. Hand back structs/unions with
the same number of members immediately. Do not walk the dynamic
list. Call ctf_add_type_internal, not ctf_add_type. Handle
forwards promoted to other types and the inverse case identically.
Add structs to the mapping as soon as we intern them, before they
gain any members.
2019-08-08 01:01:08 +08:00
|
|
|
/* Now perform kind-specific processing. If dst_type is CTF_ERR, then we add
|
|
|
|
a new type with the same properties as src_type to dst_fp. If dst_type is
|
|
|
|
not CTF_ERR, then we verify that dst_type has the same attributes as
|
|
|
|
src_type. We recurse for embedded references. Before we start, we note
|
|
|
|
that we are processing this type, to prevent infinite recursion: we do not
|
|
|
|
re-process any type that appears in this list. The list is emptied
|
|
|
|
wholesale at the end of processing everything in this recursive stack. */
|
|
|
|
|
|
|
|
if (ctf_dynhash_insert (proc_tracking_fp->ctf_add_processing,
|
|
|
|
(void *) (uintptr_t) src_type, (void *) 1) < 0)
|
2023-09-13 17:02:36 +08:00
|
|
|
return ctf_set_typed_errno (dst_fp, ENOMEM);
|
libctf: properly handle ctf_add_type of forwards and self-reffing structs
The code to handle structures (and unions) that refer to themselves in
ctf_add_type is extremely dodgy. It works by looking through the list
of not-yet-committed types for a structure with the same name as the
structure in question and assuming, if it finds it, that this must be a
reference to the same type. This is a linear search that gets ever
slower as the dictionary grows, requiring you to call ctf_update at
intervals to keep performance tolerable: but if you do that, you run
into the problem that if a forward declared before the ctf_update is
changed to a structure afterwards, ctf_update explodes.
The last commit fixed most of this: this commit can use it, adding a new
ctf_add_processing hash that tracks source type IDs that are currently
being processed and uses it to avoid infinite recursion rather than the
dynamic type list: we split ctf_add_type into a ctf_add_type_internal,
so that ctf_add_type itself can become a wrapper that empties out this
being-processed hash once the entire recursive type addition is over.
Structure additions themselves avoid adding their dependent types
quite so much by checking the type mapping and avoiding re-adding types
we already know we have added.
We also add support for adding forwards to dictionaries that already
contain the thing they are a forward to: we just silently return the
original type.
v4: return existing struct/union/enum types properly, rather than using
an uninitialized variable: shrinks sizes of CTF sections back down
to roughly where they were in v1/v2 of this patch series.
v5: fix tabdamage.
libctf/
* ctf-impl.h (ctf_file_t) <ctf_add_processing>: New.
* ctf-open.c (ctf_file_close): Free it.
* ctf-create.c (ctf_serialize): Adjust.
(membcmp): When reporting a conflict due to an error, report the
error.
(ctf_add_type): Turn into a ctf_add_processing wrapper. Rename to...
(ctf_add_type_internal): ... this. Hand back types we are already
in the middle of adding immediately. Hand back structs/unions with
the same number of members immediately. Do not walk the dynamic
list. Call ctf_add_type_internal, not ctf_add_type. Handle
forwards promoted to other types and the inverse case identically.
Add structs to the mapping as soon as we intern them, before they
gain any members.
2019-08-08 01:01:08 +08:00
|
|
|
|
2019-04-24 18:22:03 +08:00
|
|
|
switch (kind)
|
|
|
|
{
|
|
|
|
case CTF_K_INTEGER:
|
|
|
|
/* If we found a match we will have either returned it or declared a
|
|
|
|
conflict. */
|
|
|
|
dst_type = ctf_add_integer (dst_fp, flag, name, &src_en);
|
|
|
|
break;
|
|
|
|
|
|
|
|
case CTF_K_FLOAT:
|
|
|
|
/* If we found a match we will have either returned it or declared a
|
|
|
|
conflict. */
|
|
|
|
dst_type = ctf_add_float (dst_fp, flag, name, &src_en);
|
|
|
|
break;
|
|
|
|
|
|
|
|
case CTF_K_SLICE:
|
|
|
|
/* We have checked for conflicting encodings: now try to add the
|
|
|
|
contained type. */
|
|
|
|
src_type = ctf_type_reference (src_fp, src_type);
|
libctf: properly handle ctf_add_type of forwards and self-reffing structs
The code to handle structures (and unions) that refer to themselves in
ctf_add_type is extremely dodgy. It works by looking through the list
of not-yet-committed types for a structure with the same name as the
structure in question and assuming, if it finds it, that this must be a
reference to the same type. This is a linear search that gets ever
slower as the dictionary grows, requiring you to call ctf_update at
intervals to keep performance tolerable: but if you do that, you run
into the problem that if a forward declared before the ctf_update is
changed to a structure afterwards, ctf_update explodes.
The last commit fixed most of this: this commit can use it, adding a new
ctf_add_processing hash that tracks source type IDs that are currently
being processed and uses it to avoid infinite recursion rather than the
dynamic type list: we split ctf_add_type into a ctf_add_type_internal,
so that ctf_add_type itself can become a wrapper that empties out this
being-processed hash once the entire recursive type addition is over.
Structure additions themselves avoid adding their dependent types
quite so much by checking the type mapping and avoiding re-adding types
we already know we have added.
We also add support for adding forwards to dictionaries that already
contain the thing they are a forward to: we just silently return the
original type.
v4: return existing struct/union/enum types properly, rather than using
an uninitialized variable: shrinks sizes of CTF sections back down
to roughly where they were in v1/v2 of this patch series.
v5: fix tabdamage.
libctf/
* ctf-impl.h (ctf_file_t) <ctf_add_processing>: New.
* ctf-open.c (ctf_file_close): Free it.
* ctf-create.c (ctf_serialize): Adjust.
(membcmp): When reporting a conflict due to an error, report the
error.
(ctf_add_type): Turn into a ctf_add_processing wrapper. Rename to...
(ctf_add_type_internal): ... this. Hand back types we are already
in the middle of adding immediately. Hand back structs/unions with
the same number of members immediately. Do not walk the dynamic
list. Call ctf_add_type_internal, not ctf_add_type. Handle
forwards promoted to other types and the inverse case identically.
Add structs to the mapping as soon as we intern them, before they
gain any members.
2019-08-08 01:01:08 +08:00
|
|
|
src_type = ctf_add_type_internal (dst_fp, src_fp, src_type,
|
|
|
|
proc_tracking_fp);
|
2019-04-24 18:22:03 +08:00
|
|
|
|
|
|
|
if (src_type == CTF_ERR)
|
|
|
|
return CTF_ERR; /* errno is set for us. */
|
|
|
|
|
|
|
|
dst_type = ctf_add_slice (dst_fp, flag, src_type, &src_en);
|
|
|
|
break;
|
|
|
|
|
|
|
|
case CTF_K_POINTER:
|
|
|
|
case CTF_K_VOLATILE:
|
|
|
|
case CTF_K_CONST:
|
|
|
|
case CTF_K_RESTRICT:
|
|
|
|
src_type = ctf_type_reference (src_fp, src_type);
|
libctf: properly handle ctf_add_type of forwards and self-reffing structs
The code to handle structures (and unions) that refer to themselves in
ctf_add_type is extremely dodgy. It works by looking through the list
of not-yet-committed types for a structure with the same name as the
structure in question and assuming, if it finds it, that this must be a
reference to the same type. This is a linear search that gets ever
slower as the dictionary grows, requiring you to call ctf_update at
intervals to keep performance tolerable: but if you do that, you run
into the problem that if a forward declared before the ctf_update is
changed to a structure afterwards, ctf_update explodes.
The last commit fixed most of this: this commit can use it, adding a new
ctf_add_processing hash that tracks source type IDs that are currently
being processed and uses it to avoid infinite recursion rather than the
dynamic type list: we split ctf_add_type into a ctf_add_type_internal,
so that ctf_add_type itself can become a wrapper that empties out this
being-processed hash once the entire recursive type addition is over.
Structure additions themselves avoid adding their dependent types
quite so much by checking the type mapping and avoiding re-adding types
we already know we have added.
We also add support for adding forwards to dictionaries that already
contain the thing they are a forward to: we just silently return the
original type.
v4: return existing struct/union/enum types properly, rather than using
an uninitialized variable: shrinks sizes of CTF sections back down
to roughly where they were in v1/v2 of this patch series.
v5: fix tabdamage.
libctf/
* ctf-impl.h (ctf_file_t) <ctf_add_processing>: New.
* ctf-open.c (ctf_file_close): Free it.
* ctf-create.c (ctf_serialize): Adjust.
(membcmp): When reporting a conflict due to an error, report the
error.
(ctf_add_type): Turn into a ctf_add_processing wrapper. Rename to...
(ctf_add_type_internal): ... this. Hand back types we are already
in the middle of adding immediately. Hand back structs/unions with
the same number of members immediately. Do not walk the dynamic
list. Call ctf_add_type_internal, not ctf_add_type. Handle
forwards promoted to other types and the inverse case identically.
Add structs to the mapping as soon as we intern them, before they
gain any members.
2019-08-08 01:01:08 +08:00
|
|
|
src_type = ctf_add_type_internal (dst_fp, src_fp, src_type,
|
|
|
|
proc_tracking_fp);
|
2019-04-24 18:22:03 +08:00
|
|
|
|
|
|
|
if (src_type == CTF_ERR)
|
|
|
|
return CTF_ERR; /* errno is set for us. */
|
|
|
|
|
|
|
|
dst_type = ctf_add_reftype (dst_fp, flag, src_type, kind);
|
|
|
|
break;
|
|
|
|
|
|
|
|
case CTF_K_ARRAY:
|
libctf: fix a number of build problems found on Solaris and NetBSD
- Use of nonportable <endian.h>
- Use of qsort_r
- Use of zlib without appropriate magic to pull in the binutils zlib
- Use of off64_t without checking (fixed by dropping the unused fields
that need off64_t entirely)
- signedness problems due to long being too short a type on 32-bit
platforms: ctf_id_t is now 'unsigned long', and CTF_ERR must be
used only for functions that return ctf_id_t
- One lingering use of bzero() and of <sys/errno.h>
All fixed, using code from gnulib where possible.
Relatedly, set cts_size in a couple of places it was missed
(string table and symbol table loading upon ctf_bfdopen()).
binutils/
* objdump.c (make_ctfsect): Drop cts_type, cts_flags, and
cts_offset.
* readelf.c (shdr_to_ctf_sect): Likewise.
include/
* ctf-api.h (ctf_sect_t): Drop cts_type, cts_flags, and cts_offset.
(ctf_id_t): This is now an unsigned type.
(CTF_ERR): Cast it to ctf_id_t. Note that it should only be used
for ctf_id_t-returning functions.
libctf/
* Makefile.am (ZLIB): New.
(ZLIBINC): Likewise.
(AM_CFLAGS): Use them.
(libctf_a_LIBADD): New, for LIBOBJS.
* configure.ac: Check for zlib, endian.h, and qsort_r.
* ctf-endian.h: New, providing htole64 and le64toh.
* swap.h: Code style fixes.
(bswap_identity_64): New.
* qsort_r.c: New, from gnulib (with one added #include).
* ctf-decls.h: New, providing a conditional qsort_r declaration,
and unconditional definitions of MIN and MAX.
* ctf-impl.h: Use it. Do not use <sys/errno.h>.
(ctf_set_errno): Now returns unsigned long.
* ctf-util.c (ctf_set_errno): Adjust here too.
* ctf-archive.c: Use ctf-endian.h.
(ctf_arc_open_by_offset): Use memset, not bzero. Drop cts_type,
cts_flags and cts_offset.
(ctf_arc_write): Drop debugging dependent on the size of off_t.
* ctf-create.c: Provide a definition of roundup if not defined.
(ctf_create): Drop cts_type, cts_flags and cts_offset.
(ctf_add_reftype): Do not check if type IDs are below zero.
(ctf_add_slice): Likewise.
(ctf_add_typedef): Likewise.
(ctf_add_member_offset): Cast error-returning ssize_t's to size_t
when known error-free. Drop CTF_ERR usage for functions returning
int.
(ctf_add_member_encoded): Drop CTF_ERR usage for functions returning
int.
(ctf_add_variable): Likewise.
(enumcmp): Likewise.
(enumadd): Likewise.
(membcmp): Likewise.
(ctf_add_type): Likewise. Cast error-returning ssize_t's to size_t
when known error-free.
* ctf-dump.c (ctf_is_slice): Drop CTF_ERR usage for functions
returning int: use CTF_ERR for functions returning ctf_type_id.
(ctf_dump_label): Likewise.
(ctf_dump_objts): Likewise.
* ctf-labels.c (ctf_label_topmost): Likewise.
(ctf_label_iter): Likewise.
(ctf_label_info): Likewise.
* ctf-lookup.c (ctf_func_args): Likewise.
* ctf-open.c (upgrade_types): Cast to size_t where appropriate.
(ctf_bufopen): Likewise. Use zlib types as needed.
* ctf-types.c (ctf_member_iter): Drop CTF_ERR usage for functions
returning int.
(ctf_enum_iter): Likewise.
(ctf_type_size): Likewise.
(ctf_type_align): Likewise. Cast to size_t where appropriate.
(ctf_type_kind_unsliced): Likewise.
(ctf_type_kind): Likewise.
(ctf_type_encoding): Likewise.
(ctf_member_info): Likewise.
(ctf_array_info): Likewise.
(ctf_enum_value): Likewise.
(ctf_type_rvisit): Likewise.
* ctf-open-bfd.c (ctf_bfdopen): Drop cts_type, cts_flags and
cts_offset.
(ctf_simple_open): Likewise.
(ctf_bfdopen_ctfsect): Likewise. Set cts_size properly.
* Makefile.in: Regenerate.
* aclocal.m4: Likewise.
* config.h: Likewise.
* configure: Likewise.
2019-05-31 17:10:51 +08:00
|
|
|
if (ctf_array_info (src_fp, src_type, &src_ar) != 0)
|
2023-09-13 17:02:36 +08:00
|
|
|
return (ctf_set_typed_errno (dst_fp, ctf_errno (src_fp)));
|
2019-04-24 18:22:03 +08:00
|
|
|
|
|
|
|
src_ar.ctr_contents =
|
libctf: properly handle ctf_add_type of forwards and self-reffing structs
The code to handle structures (and unions) that refer to themselves in
ctf_add_type is extremely dodgy. It works by looking through the list
of not-yet-committed types for a structure with the same name as the
structure in question and assuming, if it finds it, that this must be a
reference to the same type. This is a linear search that gets ever
slower as the dictionary grows, requiring you to call ctf_update at
intervals to keep performance tolerable: but if you do that, you run
into the problem that if a forward declared before the ctf_update is
changed to a structure afterwards, ctf_update explodes.
The last commit fixed most of this: this commit can use it, adding a new
ctf_add_processing hash that tracks source type IDs that are currently
being processed and uses it to avoid infinite recursion rather than the
dynamic type list: we split ctf_add_type into a ctf_add_type_internal,
so that ctf_add_type itself can become a wrapper that empties out this
being-processed hash once the entire recursive type addition is over.
Structure additions themselves avoid adding their dependent types
quite so much by checking the type mapping and avoiding re-adding types
we already know we have added.
We also add support for adding forwards to dictionaries that already
contain the thing they are a forward to: we just silently return the
original type.
v4: return existing struct/union/enum types properly, rather than using
an uninitialized variable: shrinks sizes of CTF sections back down
to roughly where they were in v1/v2 of this patch series.
v5: fix tabdamage.
libctf/
* ctf-impl.h (ctf_file_t) <ctf_add_processing>: New.
* ctf-open.c (ctf_file_close): Free it.
* ctf-create.c (ctf_serialize): Adjust.
(membcmp): When reporting a conflict due to an error, report the
error.
(ctf_add_type): Turn into a ctf_add_processing wrapper. Rename to...
(ctf_add_type_internal): ... this. Hand back types we are already
in the middle of adding immediately. Hand back structs/unions with
the same number of members immediately. Do not walk the dynamic
list. Call ctf_add_type_internal, not ctf_add_type. Handle
forwards promoted to other types and the inverse case identically.
Add structs to the mapping as soon as we intern them, before they
gain any members.
2019-08-08 01:01:08 +08:00
|
|
|
ctf_add_type_internal (dst_fp, src_fp, src_ar.ctr_contents,
|
|
|
|
proc_tracking_fp);
|
|
|
|
src_ar.ctr_index = ctf_add_type_internal (dst_fp, src_fp,
|
|
|
|
src_ar.ctr_index,
|
|
|
|
proc_tracking_fp);
|
2019-04-24 18:22:03 +08:00
|
|
|
src_ar.ctr_nelems = src_ar.ctr_nelems;
|
|
|
|
|
|
|
|
if (src_ar.ctr_contents == CTF_ERR || src_ar.ctr_index == CTF_ERR)
|
|
|
|
return CTF_ERR; /* errno is set for us. */
|
|
|
|
|
|
|
|
if (dst_type != CTF_ERR)
|
|
|
|
{
|
|
|
|
if (ctf_array_info (dst_fp, dst_type, &dst_ar) != 0)
|
|
|
|
return CTF_ERR; /* errno is set for us. */
|
|
|
|
|
|
|
|
if (memcmp (&src_ar, &dst_ar, sizeof (ctf_arinfo_t)))
|
|
|
|
{
|
libctf, binutils, include, ld: gettextize and improve error handling
This commit follows on from the earlier commit "libctf, ld, binutils:
add textual error/warning reporting for libctf" and converts every error
in libctf that was reported using ctf_dprintf to use ctf_err_warn
instead, gettextizing them in the process, using N_() where necessary to
avoid doing gettext calls unless an error message is actually generated,
and rephrasing some error messages for ease of translation.
This requires a slight change in the ctf_errwarning_next API: this API
is public but has not been in a release yet, so can still change freely.
The problem is that many errors are emitted at open time (whether
opening of a CTF dict, or opening of a CTF archive): the former of these
throws away its incompletely-initialized ctf_file_t rather than return
it, and the latter has no ctf_file_t at all. So errors and warnings
emitted at open time cannot be stored in the ctf_file_t, and have to go
elsewhere.
We put them in a static local in ctf-subr.c (which is not very
thread-safe: a later commit will improve things here): ctf_err_warn with
a NULL fp adds to this list, and the public interface
ctf_errwarning_next with a NULL fp retrieves from it.
We need a slight exception from the usual iterator rules in this case:
with a NULL fp, there is nowhere to store the ECTF_NEXT_END "error"
which signifies the end of iteration, so we add a new err parameter to
ctf_errwarning_next which is used to report such iteration-related
errors. (If an fp is provided -- i.e., if not reporting open errors --
this is optional, but even if it's optional it's still an API change.
This is actually useful from a usability POV as well, since
ctf_errwarning_next is usually called when there's been an error, so
overwriting the error code with ECTF_NEXT_END is not very helpful!
So, unusually, ctf_errwarning_next now uses the passed fp for its
error code *only* if no errp pointer is passed in, and leaves it
untouched otherwise.)
ld, objdump and readelf are adapted to call ctf_errwarning_next with a
NULL fp to report open errors where appropriate.
The ctf_err_warn API also has to change, gaining a new error-number
parameter which is used to add the error message corresponding to that
error number into the debug stream when LIBCTF_DEBUG is enabled:
changing this API is easy at this point since we are already touching
all existing calls to gettextize them. We need this because the debug
stream should contain the errno's message, but the error reported in the
error/warning stream should *not*, because the caller will probably
report it themselves at failure time regardless, and reporting it in
every error message that leads up to it leads to a ridiculous chattering
on failure, which is likely to end up as ridiculous chattering on stderr
(trimmed a bit):
CTF error: `ld/testsuite/ld-ctf/A.c (0): lookup failure for type 3: flags 1: The parent CTF dictionary is unavailable'
CTF error: `ld/testsuite/ld-ctf/A.c (0): struct/union member type hashing error during type hashing for type 80000001, kind 6: The parent CTF dictionary is unavailable'
CTF error: `deduplicating link variable emission failed for ld/testsuite/ld-ctf/A.c: The parent CTF dictionary is unavailable'
ld/.libs/lt-ld-new: warning: CTF linking failed; output will have no CTF section: `The parent CTF dictionary is unavailable'
We only need to be told that the parent CTF dictionary is unavailable
*once*, not over and over again!
errmsgs are still emitted on warning generation, because warnings do not
usually lead to a failure propagated up to the caller and reported
there.
Debug-stream messages are not translated. If translation is turned on,
there will be a mixture of English and translated messages in the debug
stream, but rather that than burden the translators with debug-only
output.
binutils/ChangeLog
2020-08-27 Nick Alcock <nick.alcock@oracle.com>
* objdump.c (dump_ctf_archive_member): Move error-
reporting...
(dump_ctf_errs): ... into this separate function.
(dump_ctf): Call it on open errors.
* readelf.c (dump_ctf_archive_member): Move error-
reporting...
(dump_ctf_errs): ... into this separate function. Support
calls with NULL fp. Adjust for new err parameter to
ctf_errwarning_next.
(dump_section_as_ctf): Call it on open errors.
include/ChangeLog
2020-08-27 Nick Alcock <nick.alcock@oracle.com>
* ctf-api.h (ctf_errwarning_next): New err parameter.
ld/ChangeLog
2020-08-27 Nick Alcock <nick.alcock@oracle.com>
* ldlang.c (lang_ctf_errs_warnings): Support calls with NULL fp.
Adjust for new err parameter to ctf_errwarning_next. Only
check for assertion failures when fp is non-NULL.
(ldlang_open_ctf): Call it on open errors.
* testsuite/ld-ctf/ctf.exp: Always use the C locale to avoid
breaking the diags tests.
libctf/ChangeLog
2020-08-27 Nick Alcock <nick.alcock@oracle.com>
* ctf-subr.c (open_errors): New list.
(ctf_err_warn): Calls with NULL fp append to open_errors. Add err
parameter, and use it to decorate the debug stream with errmsgs.
(ctf_err_warn_to_open): Splice errors from a CTF dict into the
open_errors.
(ctf_errwarning_next): Calls with NULL fp report from open_errors.
New err param to report iteration errors (including end-of-iteration)
when fp is NULL.
(ctf_assert_fail_internal): Adjust ctf_err_warn call for new err
parameter: gettextize.
* ctf-impl.h (ctfo_get_vbytes): Add ctf_file_t parameter.
(LCTF_VBYTES): Adjust.
(ctf_err_warn_to_open): New.
(ctf_err_warn): Adjust.
(ctf_bundle): Used in only one place: move...
* ctf-create.c: ... here.
(enumcmp): Use ctf_err_warn, not ctf_dprintf, passing the err number
down as needed. Don't emit the errmsg. Gettextize.
(membcmp): Likewise.
(ctf_add_type_internal): Likewise.
(ctf_write_mem): Likewise.
(ctf_compress_write): Likewise. Report errors writing the header or
body.
(ctf_write): Likewise.
* ctf-archive.c (ctf_arc_write_fd): Use ctf_err_warn, not
ctf_dprintf, and gettextize, as above.
(ctf_arc_write): Likewise.
(ctf_arc_bufopen): Likewise.
(ctf_arc_open_internal): Likewise.
* ctf-labels.c (ctf_label_iter): Likewise.
* ctf-open-bfd.c (ctf_bfdclose): Likewise.
(ctf_bfdopen): Likewise.
(ctf_bfdopen_ctfsect): Likewise.
(ctf_fdopen): Likewise.
* ctf-string.c (ctf_str_write_strtab): Likewise.
* ctf-types.c (ctf_type_resolve): Likewise.
* ctf-open.c (get_vbytes_common): Likewise. Pass down the ctf dict.
(get_vbytes_v1): Pass down the ctf dict.
(get_vbytes_v2): Likewise.
(flip_ctf): Likewise.
(flip_types): Likewise. Use ctf_err_warn, not ctf_dprintf, and
gettextize, as above.
(upgrade_types_v1): Adjust calls.
(init_types): Use ctf_err_warn, not ctf_dprintf, as above.
(ctf_bufopen_internal): Likewise. Adjust calls. Transplant errors
emitted into individual dicts into the open errors if this turns
out to be a failed open in the end.
* ctf-dump.c (ctf_dump_format_type): Adjust ctf_err_warn for new err
argument. Gettextize. Don't emit the errmsg.
(ctf_dump_funcs): Likewise. Collapse err label into its only case.
(ctf_dump_type): Likewise.
* ctf-link.c (ctf_create_per_cu): Adjust ctf_err_warn for new err
argument. Gettextize. Don't emit the errmsg.
(ctf_link_one_type): Likewise.
(ctf_link_lazy_open): Likewise.
(ctf_link_one_input_archive): Likewise.
(ctf_link_deduplicating_count_inputs): Likewise.
(ctf_link_deduplicating_open_inputs): Likewise.
(ctf_link_deduplicating_close_inputs): Likewise.
(ctf_link_deduplicating): Likewise.
(ctf_link): Likewise.
(ctf_link_deduplicating_per_cu): Likewise. Add some missed
ctf_set_errnos to obscure error cases.
* ctf-dedup.c (ctf_dedup_rhash_type): Adjust ctf_err_warn for new
err argument. Gettextize. Don't emit the errmsg.
(ctf_dedup_populate_mappings): Likewise.
(ctf_dedup_detect_name_ambiguity): Likewise.
(ctf_dedup_init): Likewise.
(ctf_dedup_multiple_input_dicts): Likewise.
(ctf_dedup_conflictify_unshared): Likewise.
(ctf_dedup): Likewise.
(ctf_dedup_rwalk_one_output_mapping): Likewise.
(ctf_dedup_id_to_target): Likewise.
(ctf_dedup_emit_type): Likewise.
(ctf_dedup_emit_struct_members): Likewise.
(ctf_dedup_populate_type_mapping): Likewise.
(ctf_dedup_populate_type_mappings): Likewise.
(ctf_dedup_emit): Likewise.
(ctf_dedup_hash_type): Likewise. Fix a bit of messed-up error
status setting.
(ctf_dedup_rwalk_one_output_mapping): Likewise. Don't hide
unknown-type-kind messages (which signify file corruption).
2020-07-27 23:45:15 +08:00
|
|
|
ctf_err_warn (dst_fp, 1, ECTF_CONFLICT,
|
|
|
|
_("conflict for type %s against ID %lx: array info "
|
|
|
|
"differs, old %lx/%lx/%x; new: %lx/%lx/%x"),
|
|
|
|
name, dst_type, src_ar.ctr_contents,
|
|
|
|
src_ar.ctr_index, src_ar.ctr_nelems,
|
|
|
|
dst_ar.ctr_contents, dst_ar.ctr_index,
|
|
|
|
dst_ar.ctr_nelems);
|
2023-09-13 17:02:36 +08:00
|
|
|
return (ctf_set_typed_errno (dst_fp, ECTF_CONFLICT));
|
2019-04-24 18:22:03 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
else
|
|
|
|
dst_type = ctf_add_array (dst_fp, flag, &src_ar);
|
|
|
|
break;
|
|
|
|
|
|
|
|
case CTF_K_FUNCTION:
|
libctf: properly handle ctf_add_type of forwards and self-reffing structs
The code to handle structures (and unions) that refer to themselves in
ctf_add_type is extremely dodgy. It works by looking through the list
of not-yet-committed types for a structure with the same name as the
structure in question and assuming, if it finds it, that this must be a
reference to the same type. This is a linear search that gets ever
slower as the dictionary grows, requiring you to call ctf_update at
intervals to keep performance tolerable: but if you do that, you run
into the problem that if a forward declared before the ctf_update is
changed to a structure afterwards, ctf_update explodes.
The last commit fixed most of this: this commit can use it, adding a new
ctf_add_processing hash that tracks source type IDs that are currently
being processed and uses it to avoid infinite recursion rather than the
dynamic type list: we split ctf_add_type into a ctf_add_type_internal,
so that ctf_add_type itself can become a wrapper that empties out this
being-processed hash once the entire recursive type addition is over.
Structure additions themselves avoid adding their dependent types
quite so much by checking the type mapping and avoiding re-adding types
we already know we have added.
We also add support for adding forwards to dictionaries that already
contain the thing they are a forward to: we just silently return the
original type.
v4: return existing struct/union/enum types properly, rather than using
an uninitialized variable: shrinks sizes of CTF sections back down
to roughly where they were in v1/v2 of this patch series.
v5: fix tabdamage.
libctf/
* ctf-impl.h (ctf_file_t) <ctf_add_processing>: New.
* ctf-open.c (ctf_file_close): Free it.
* ctf-create.c (ctf_serialize): Adjust.
(membcmp): When reporting a conflict due to an error, report the
error.
(ctf_add_type): Turn into a ctf_add_processing wrapper. Rename to...
(ctf_add_type_internal): ... this. Hand back types we are already
in the middle of adding immediately. Hand back structs/unions with
the same number of members immediately. Do not walk the dynamic
list. Call ctf_add_type_internal, not ctf_add_type. Handle
forwards promoted to other types and the inverse case identically.
Add structs to the mapping as soon as we intern them, before they
gain any members.
2019-08-08 01:01:08 +08:00
|
|
|
ctc.ctc_return = ctf_add_type_internal (dst_fp, src_fp,
|
|
|
|
src_tp->ctt_type,
|
|
|
|
proc_tracking_fp);
|
2019-04-24 18:22:03 +08:00
|
|
|
ctc.ctc_argc = 0;
|
|
|
|
ctc.ctc_flags = 0;
|
|
|
|
|
|
|
|
if (ctc.ctc_return == CTF_ERR)
|
|
|
|
return CTF_ERR; /* errno is set for us. */
|
|
|
|
|
|
|
|
dst_type = ctf_add_function (dst_fp, flag, &ctc, NULL);
|
|
|
|
break;
|
|
|
|
|
|
|
|
case CTF_K_STRUCT:
|
|
|
|
case CTF_K_UNION:
|
|
|
|
{
|
libctf: eliminate dtd_u, part 5: structs / unions
Eliminate the dynamic member storage for structs and unions as we have
for other dynamic types. This is much like the previous enum
elimination, except that structs and unions are the only types for which
a full-sized ctf_type_t might be needed. Up to now, this decision has
been made in the individual ctf_add_{struct,union}_sized functions and
duplicated in ctf_add_member_offset. The vlen machinery lets us
simplify this, always allocating a ctf_lmember_t and setting the
dtd_data's ctt_size to CTF_LSIZE_SENT: we figure out whether this is
really justified and (almost always) repack things down into a
ctf_stype_t at ctf_serialize time.
This allows us to eliminate the dynamic member paths from the iterators and
query functions in ctf-types.c in favour of always using the large-structure
vlen stuff for dynamic types (the diff is ugly but that's just because of the
volume of reindentation this calls for). This also means the large-structure
vlen stuff gets more heavily tested, which is nice because it was an almost
totally unused code path before now (it only kicked in for structures of size
>4GiB, and how often do you see those?)
The only extra complexity here is ctf_add_type. Back in the days of the
nondeduplicating linker this was called a ridiculous number of times for
countless identical copies of structures: eschewing the repeated lookups of the
dtd in ctf_add_member_offset and adding the members directly saved an amazing
amount of time. Now the nondeduplicating linker is gone, this is extreme
overoptimization: we can rip out the direct addition and use ctf_member_next and
ctf_add_member_offset, just like ctf_dedup_emit does.
We augment a ctf_add_type test to try adding a self-referential struct, the only
thing the ctf_add_type part of this change really perturbs.
This completes the elimination of dtd_u.
libctf/ChangeLog
2021-03-18 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h (ctf_dtdef_t) <dtu_members>: Remove.
<dtd_u>: Likewise.
(ctf_dmdef_t): Remove.
(struct ctf_next) <u.ctn_dmd>: Remove.
* ctf-create.c (INITIAL_VLEN): New, more-or-less arbitrary initial
vlen size.
(ctf_add_enum): Use it.
(ctf_dtd_delete): Do not free the (removed) dmd; remove string
refs from the vlen on struct deletion.
(ctf_add_struct_sized): Populate the vlen: do it by hand if
promoting forwards. Always populate the full-size
lsizehi/lsizelo members.
(ctf_add_union_sized): Likewise.
(ctf_add_member_offset): Set up the vlen rather than the dmd.
Expand it as needed, repointing string refs via
ctf_str_move_pending. Add the member names as pending strings.
Always populate the full-size lsizehi/lsizelo members.
(membadd): Remove, folding back into...
(ctf_add_type_internal): ... here, adding via an ordinary
ctf_add_struct_sized and _next iteration rather than doing
everything by hand.
* ctf-serialize.c (ctf_copy_smembers): Remove this...
(ctf_copy_lmembers): ... and this...
(ctf_emit_type_sect): ... folding into here. Figure out if a
ctf_stype_t is needed here, not in ctf_add_*_sized.
(ctf_type_sect_size): Figure out the ctf_stype_t stuff the same
way here.
* ctf-types.c (ctf_member_next): Remove the dmd path and always
use the vlen. Force large-structure usage for dynamic types.
(ctf_type_align): Likewise.
(ctf_member_info): Likewise.
(ctf_type_rvisit): Likewise.
* testsuite/libctf-regression/type-add-unnamed-struct-ctf.c: Add a
self-referential type to this test.
* testsuite/libctf-regression/type-add-unnamed-struct.c: Adjusted
accordingly.
* testsuite/libctf-regression/type-add-unnamed-struct.lk: Likewise.
2021-03-18 20:37:52 +08:00
|
|
|
ctf_next_t *i = NULL;
|
|
|
|
ssize_t offset;
|
|
|
|
const char *membname;
|
|
|
|
ctf_id_t src_membtype;
|
2019-04-24 18:22:03 +08:00
|
|
|
|
|
|
|
/* Technically to match a struct or union we need to check both
|
|
|
|
ways (src members vs. dst, dst members vs. src) but we make
|
|
|
|
this more optimal by only checking src vs. dst and comparing
|
|
|
|
the total size of the structure (which we must do anyway)
|
|
|
|
which covers the possibility of dst members not in src.
|
|
|
|
This optimization can be defeated for unions, but is so
|
|
|
|
pathological as to render it irrelevant for our purposes. */
|
|
|
|
|
libctf: properly handle ctf_add_type of forwards and self-reffing structs
The code to handle structures (and unions) that refer to themselves in
ctf_add_type is extremely dodgy. It works by looking through the list
of not-yet-committed types for a structure with the same name as the
structure in question and assuming, if it finds it, that this must be a
reference to the same type. This is a linear search that gets ever
slower as the dictionary grows, requiring you to call ctf_update at
intervals to keep performance tolerable: but if you do that, you run
into the problem that if a forward declared before the ctf_update is
changed to a structure afterwards, ctf_update explodes.
The last commit fixed most of this: this commit can use it, adding a new
ctf_add_processing hash that tracks source type IDs that are currently
being processed and uses it to avoid infinite recursion rather than the
dynamic type list: we split ctf_add_type into a ctf_add_type_internal,
so that ctf_add_type itself can become a wrapper that empties out this
being-processed hash once the entire recursive type addition is over.
Structure additions themselves avoid adding their dependent types
quite so much by checking the type mapping and avoiding re-adding types
we already know we have added.
We also add support for adding forwards to dictionaries that already
contain the thing they are a forward to: we just silently return the
original type.
v4: return existing struct/union/enum types properly, rather than using
an uninitialized variable: shrinks sizes of CTF sections back down
to roughly where they were in v1/v2 of this patch series.
v5: fix tabdamage.
libctf/
* ctf-impl.h (ctf_file_t) <ctf_add_processing>: New.
* ctf-open.c (ctf_file_close): Free it.
* ctf-create.c (ctf_serialize): Adjust.
(membcmp): When reporting a conflict due to an error, report the
error.
(ctf_add_type): Turn into a ctf_add_processing wrapper. Rename to...
(ctf_add_type_internal): ... this. Hand back types we are already
in the middle of adding immediately. Hand back structs/unions with
the same number of members immediately. Do not walk the dynamic
list. Call ctf_add_type_internal, not ctf_add_type. Handle
forwards promoted to other types and the inverse case identically.
Add structs to the mapping as soon as we intern them, before they
gain any members.
2019-08-08 01:01:08 +08:00
|
|
|
if (dst_type != CTF_ERR && kind != CTF_K_FORWARD
|
|
|
|
&& dst_kind != CTF_K_FORWARD)
|
2019-04-24 18:22:03 +08:00
|
|
|
{
|
|
|
|
if (ctf_type_size (src_fp, src_type) !=
|
|
|
|
ctf_type_size (dst_fp, dst_type))
|
|
|
|
{
|
libctf, binutils, include, ld: gettextize and improve error handling
This commit follows on from the earlier commit "libctf, ld, binutils:
add textual error/warning reporting for libctf" and converts every error
in libctf that was reported using ctf_dprintf to use ctf_err_warn
instead, gettextizing them in the process, using N_() where necessary to
avoid doing gettext calls unless an error message is actually generated,
and rephrasing some error messages for ease of translation.
This requires a slight change in the ctf_errwarning_next API: this API
is public but has not been in a release yet, so can still change freely.
The problem is that many errors are emitted at open time (whether
opening of a CTF dict, or opening of a CTF archive): the former of these
throws away its incompletely-initialized ctf_file_t rather than return
it, and the latter has no ctf_file_t at all. So errors and warnings
emitted at open time cannot be stored in the ctf_file_t, and have to go
elsewhere.
We put them in a static local in ctf-subr.c (which is not very
thread-safe: a later commit will improve things here): ctf_err_warn with
a NULL fp adds to this list, and the public interface
ctf_errwarning_next with a NULL fp retrieves from it.
We need a slight exception from the usual iterator rules in this case:
with a NULL fp, there is nowhere to store the ECTF_NEXT_END "error"
which signifies the end of iteration, so we add a new err parameter to
ctf_errwarning_next which is used to report such iteration-related
errors. (If an fp is provided -- i.e., if not reporting open errors --
this is optional, but even if it's optional it's still an API change.
This is actually useful from a usability POV as well, since
ctf_errwarning_next is usually called when there's been an error, so
overwriting the error code with ECTF_NEXT_END is not very helpful!
So, unusually, ctf_errwarning_next now uses the passed fp for its
error code *only* if no errp pointer is passed in, and leaves it
untouched otherwise.)
ld, objdump and readelf are adapted to call ctf_errwarning_next with a
NULL fp to report open errors where appropriate.
The ctf_err_warn API also has to change, gaining a new error-number
parameter which is used to add the error message corresponding to that
error number into the debug stream when LIBCTF_DEBUG is enabled:
changing this API is easy at this point since we are already touching
all existing calls to gettextize them. We need this because the debug
stream should contain the errno's message, but the error reported in the
error/warning stream should *not*, because the caller will probably
report it themselves at failure time regardless, and reporting it in
every error message that leads up to it leads to a ridiculous chattering
on failure, which is likely to end up as ridiculous chattering on stderr
(trimmed a bit):
CTF error: `ld/testsuite/ld-ctf/A.c (0): lookup failure for type 3: flags 1: The parent CTF dictionary is unavailable'
CTF error: `ld/testsuite/ld-ctf/A.c (0): struct/union member type hashing error during type hashing for type 80000001, kind 6: The parent CTF dictionary is unavailable'
CTF error: `deduplicating link variable emission failed for ld/testsuite/ld-ctf/A.c: The parent CTF dictionary is unavailable'
ld/.libs/lt-ld-new: warning: CTF linking failed; output will have no CTF section: `The parent CTF dictionary is unavailable'
We only need to be told that the parent CTF dictionary is unavailable
*once*, not over and over again!
errmsgs are still emitted on warning generation, because warnings do not
usually lead to a failure propagated up to the caller and reported
there.
Debug-stream messages are not translated. If translation is turned on,
there will be a mixture of English and translated messages in the debug
stream, but rather that than burden the translators with debug-only
output.
binutils/ChangeLog
2020-08-27 Nick Alcock <nick.alcock@oracle.com>
* objdump.c (dump_ctf_archive_member): Move error-
reporting...
(dump_ctf_errs): ... into this separate function.
(dump_ctf): Call it on open errors.
* readelf.c (dump_ctf_archive_member): Move error-
reporting...
(dump_ctf_errs): ... into this separate function. Support
calls with NULL fp. Adjust for new err parameter to
ctf_errwarning_next.
(dump_section_as_ctf): Call it on open errors.
include/ChangeLog
2020-08-27 Nick Alcock <nick.alcock@oracle.com>
* ctf-api.h (ctf_errwarning_next): New err parameter.
ld/ChangeLog
2020-08-27 Nick Alcock <nick.alcock@oracle.com>
* ldlang.c (lang_ctf_errs_warnings): Support calls with NULL fp.
Adjust for new err parameter to ctf_errwarning_next. Only
check for assertion failures when fp is non-NULL.
(ldlang_open_ctf): Call it on open errors.
* testsuite/ld-ctf/ctf.exp: Always use the C locale to avoid
breaking the diags tests.
libctf/ChangeLog
2020-08-27 Nick Alcock <nick.alcock@oracle.com>
* ctf-subr.c (open_errors): New list.
(ctf_err_warn): Calls with NULL fp append to open_errors. Add err
parameter, and use it to decorate the debug stream with errmsgs.
(ctf_err_warn_to_open): Splice errors from a CTF dict into the
open_errors.
(ctf_errwarning_next): Calls with NULL fp report from open_errors.
New err param to report iteration errors (including end-of-iteration)
when fp is NULL.
(ctf_assert_fail_internal): Adjust ctf_err_warn call for new err
parameter: gettextize.
* ctf-impl.h (ctfo_get_vbytes): Add ctf_file_t parameter.
(LCTF_VBYTES): Adjust.
(ctf_err_warn_to_open): New.
(ctf_err_warn): Adjust.
(ctf_bundle): Used in only one place: move...
* ctf-create.c: ... here.
(enumcmp): Use ctf_err_warn, not ctf_dprintf, passing the err number
down as needed. Don't emit the errmsg. Gettextize.
(membcmp): Likewise.
(ctf_add_type_internal): Likewise.
(ctf_write_mem): Likewise.
(ctf_compress_write): Likewise. Report errors writing the header or
body.
(ctf_write): Likewise.
* ctf-archive.c (ctf_arc_write_fd): Use ctf_err_warn, not
ctf_dprintf, and gettextize, as above.
(ctf_arc_write): Likewise.
(ctf_arc_bufopen): Likewise.
(ctf_arc_open_internal): Likewise.
* ctf-labels.c (ctf_label_iter): Likewise.
* ctf-open-bfd.c (ctf_bfdclose): Likewise.
(ctf_bfdopen): Likewise.
(ctf_bfdopen_ctfsect): Likewise.
(ctf_fdopen): Likewise.
* ctf-string.c (ctf_str_write_strtab): Likewise.
* ctf-types.c (ctf_type_resolve): Likewise.
* ctf-open.c (get_vbytes_common): Likewise. Pass down the ctf dict.
(get_vbytes_v1): Pass down the ctf dict.
(get_vbytes_v2): Likewise.
(flip_ctf): Likewise.
(flip_types): Likewise. Use ctf_err_warn, not ctf_dprintf, and
gettextize, as above.
(upgrade_types_v1): Adjust calls.
(init_types): Use ctf_err_warn, not ctf_dprintf, as above.
(ctf_bufopen_internal): Likewise. Adjust calls. Transplant errors
emitted into individual dicts into the open errors if this turns
out to be a failed open in the end.
* ctf-dump.c (ctf_dump_format_type): Adjust ctf_err_warn for new err
argument. Gettextize. Don't emit the errmsg.
(ctf_dump_funcs): Likewise. Collapse err label into its only case.
(ctf_dump_type): Likewise.
* ctf-link.c (ctf_create_per_cu): Adjust ctf_err_warn for new err
argument. Gettextize. Don't emit the errmsg.
(ctf_link_one_type): Likewise.
(ctf_link_lazy_open): Likewise.
(ctf_link_one_input_archive): Likewise.
(ctf_link_deduplicating_count_inputs): Likewise.
(ctf_link_deduplicating_open_inputs): Likewise.
(ctf_link_deduplicating_close_inputs): Likewise.
(ctf_link_deduplicating): Likewise.
(ctf_link): Likewise.
(ctf_link_deduplicating_per_cu): Likewise. Add some missed
ctf_set_errnos to obscure error cases.
* ctf-dedup.c (ctf_dedup_rhash_type): Adjust ctf_err_warn for new
err argument. Gettextize. Don't emit the errmsg.
(ctf_dedup_populate_mappings): Likewise.
(ctf_dedup_detect_name_ambiguity): Likewise.
(ctf_dedup_init): Likewise.
(ctf_dedup_multiple_input_dicts): Likewise.
(ctf_dedup_conflictify_unshared): Likewise.
(ctf_dedup): Likewise.
(ctf_dedup_rwalk_one_output_mapping): Likewise.
(ctf_dedup_id_to_target): Likewise.
(ctf_dedup_emit_type): Likewise.
(ctf_dedup_emit_struct_members): Likewise.
(ctf_dedup_populate_type_mapping): Likewise.
(ctf_dedup_populate_type_mappings): Likewise.
(ctf_dedup_emit): Likewise.
(ctf_dedup_hash_type): Likewise. Fix a bit of messed-up error
status setting.
(ctf_dedup_rwalk_one_output_mapping): Likewise. Don't hide
unknown-type-kind messages (which signify file corruption).
2020-07-27 23:45:15 +08:00
|
|
|
ctf_err_warn (dst_fp, 1, ECTF_CONFLICT,
|
|
|
|
_("conflict for type %s against ID %lx: union "
|
|
|
|
"size differs, old %li, new %li"), name,
|
|
|
|
dst_type, (long) ctf_type_size (src_fp, src_type),
|
|
|
|
(long) ctf_type_size (dst_fp, dst_type));
|
2023-09-13 17:02:36 +08:00
|
|
|
return (ctf_set_typed_errno (dst_fp, ECTF_CONFLICT));
|
2019-04-24 18:22:03 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
if (ctf_member_iter (src_fp, src_type, membcmp, &dst))
|
|
|
|
{
|
libctf, binutils, include, ld: gettextize and improve error handling
This commit follows on from the earlier commit "libctf, ld, binutils:
add textual error/warning reporting for libctf" and converts every error
in libctf that was reported using ctf_dprintf to use ctf_err_warn
instead, gettextizing them in the process, using N_() where necessary to
avoid doing gettext calls unless an error message is actually generated,
and rephrasing some error messages for ease of translation.
This requires a slight change in the ctf_errwarning_next API: this API
is public but has not been in a release yet, so can still change freely.
The problem is that many errors are emitted at open time (whether
opening of a CTF dict, or opening of a CTF archive): the former of these
throws away its incompletely-initialized ctf_file_t rather than return
it, and the latter has no ctf_file_t at all. So errors and warnings
emitted at open time cannot be stored in the ctf_file_t, and have to go
elsewhere.
We put them in a static local in ctf-subr.c (which is not very
thread-safe: a later commit will improve things here): ctf_err_warn with
a NULL fp adds to this list, and the public interface
ctf_errwarning_next with a NULL fp retrieves from it.
We need a slight exception from the usual iterator rules in this case:
with a NULL fp, there is nowhere to store the ECTF_NEXT_END "error"
which signifies the end of iteration, so we add a new err parameter to
ctf_errwarning_next which is used to report such iteration-related
errors. (If an fp is provided -- i.e., if not reporting open errors --
this is optional, but even if it's optional it's still an API change.
This is actually useful from a usability POV as well, since
ctf_errwarning_next is usually called when there's been an error, so
overwriting the error code with ECTF_NEXT_END is not very helpful!
So, unusually, ctf_errwarning_next now uses the passed fp for its
error code *only* if no errp pointer is passed in, and leaves it
untouched otherwise.)
ld, objdump and readelf are adapted to call ctf_errwarning_next with a
NULL fp to report open errors where appropriate.
The ctf_err_warn API also has to change, gaining a new error-number
parameter which is used to add the error message corresponding to that
error number into the debug stream when LIBCTF_DEBUG is enabled:
changing this API is easy at this point since we are already touching
all existing calls to gettextize them. We need this because the debug
stream should contain the errno's message, but the error reported in the
error/warning stream should *not*, because the caller will probably
report it themselves at failure time regardless, and reporting it in
every error message that leads up to it leads to a ridiculous chattering
on failure, which is likely to end up as ridiculous chattering on stderr
(trimmed a bit):
CTF error: `ld/testsuite/ld-ctf/A.c (0): lookup failure for type 3: flags 1: The parent CTF dictionary is unavailable'
CTF error: `ld/testsuite/ld-ctf/A.c (0): struct/union member type hashing error during type hashing for type 80000001, kind 6: The parent CTF dictionary is unavailable'
CTF error: `deduplicating link variable emission failed for ld/testsuite/ld-ctf/A.c: The parent CTF dictionary is unavailable'
ld/.libs/lt-ld-new: warning: CTF linking failed; output will have no CTF section: `The parent CTF dictionary is unavailable'
We only need to be told that the parent CTF dictionary is unavailable
*once*, not over and over again!
errmsgs are still emitted on warning generation, because warnings do not
usually lead to a failure propagated up to the caller and reported
there.
Debug-stream messages are not translated. If translation is turned on,
there will be a mixture of English and translated messages in the debug
stream, but rather that than burden the translators with debug-only
output.
binutils/ChangeLog
2020-08-27 Nick Alcock <nick.alcock@oracle.com>
* objdump.c (dump_ctf_archive_member): Move error-
reporting...
(dump_ctf_errs): ... into this separate function.
(dump_ctf): Call it on open errors.
* readelf.c (dump_ctf_archive_member): Move error-
reporting...
(dump_ctf_errs): ... into this separate function. Support
calls with NULL fp. Adjust for new err parameter to
ctf_errwarning_next.
(dump_section_as_ctf): Call it on open errors.
include/ChangeLog
2020-08-27 Nick Alcock <nick.alcock@oracle.com>
* ctf-api.h (ctf_errwarning_next): New err parameter.
ld/ChangeLog
2020-08-27 Nick Alcock <nick.alcock@oracle.com>
* ldlang.c (lang_ctf_errs_warnings): Support calls with NULL fp.
Adjust for new err parameter to ctf_errwarning_next. Only
check for assertion failures when fp is non-NULL.
(ldlang_open_ctf): Call it on open errors.
* testsuite/ld-ctf/ctf.exp: Always use the C locale to avoid
breaking the diags tests.
libctf/ChangeLog
2020-08-27 Nick Alcock <nick.alcock@oracle.com>
* ctf-subr.c (open_errors): New list.
(ctf_err_warn): Calls with NULL fp append to open_errors. Add err
parameter, and use it to decorate the debug stream with errmsgs.
(ctf_err_warn_to_open): Splice errors from a CTF dict into the
open_errors.
(ctf_errwarning_next): Calls with NULL fp report from open_errors.
New err param to report iteration errors (including end-of-iteration)
when fp is NULL.
(ctf_assert_fail_internal): Adjust ctf_err_warn call for new err
parameter: gettextize.
* ctf-impl.h (ctfo_get_vbytes): Add ctf_file_t parameter.
(LCTF_VBYTES): Adjust.
(ctf_err_warn_to_open): New.
(ctf_err_warn): Adjust.
(ctf_bundle): Used in only one place: move...
* ctf-create.c: ... here.
(enumcmp): Use ctf_err_warn, not ctf_dprintf, passing the err number
down as needed. Don't emit the errmsg. Gettextize.
(membcmp): Likewise.
(ctf_add_type_internal): Likewise.
(ctf_write_mem): Likewise.
(ctf_compress_write): Likewise. Report errors writing the header or
body.
(ctf_write): Likewise.
* ctf-archive.c (ctf_arc_write_fd): Use ctf_err_warn, not
ctf_dprintf, and gettextize, as above.
(ctf_arc_write): Likewise.
(ctf_arc_bufopen): Likewise.
(ctf_arc_open_internal): Likewise.
* ctf-labels.c (ctf_label_iter): Likewise.
* ctf-open-bfd.c (ctf_bfdclose): Likewise.
(ctf_bfdopen): Likewise.
(ctf_bfdopen_ctfsect): Likewise.
(ctf_fdopen): Likewise.
* ctf-string.c (ctf_str_write_strtab): Likewise.
* ctf-types.c (ctf_type_resolve): Likewise.
* ctf-open.c (get_vbytes_common): Likewise. Pass down the ctf dict.
(get_vbytes_v1): Pass down the ctf dict.
(get_vbytes_v2): Likewise.
(flip_ctf): Likewise.
(flip_types): Likewise. Use ctf_err_warn, not ctf_dprintf, and
gettextize, as above.
(upgrade_types_v1): Adjust calls.
(init_types): Use ctf_err_warn, not ctf_dprintf, as above.
(ctf_bufopen_internal): Likewise. Adjust calls. Transplant errors
emitted into individual dicts into the open errors if this turns
out to be a failed open in the end.
* ctf-dump.c (ctf_dump_format_type): Adjust ctf_err_warn for new err
argument. Gettextize. Don't emit the errmsg.
(ctf_dump_funcs): Likewise. Collapse err label into its only case.
(ctf_dump_type): Likewise.
* ctf-link.c (ctf_create_per_cu): Adjust ctf_err_warn for new err
argument. Gettextize. Don't emit the errmsg.
(ctf_link_one_type): Likewise.
(ctf_link_lazy_open): Likewise.
(ctf_link_one_input_archive): Likewise.
(ctf_link_deduplicating_count_inputs): Likewise.
(ctf_link_deduplicating_open_inputs): Likewise.
(ctf_link_deduplicating_close_inputs): Likewise.
(ctf_link_deduplicating): Likewise.
(ctf_link): Likewise.
(ctf_link_deduplicating_per_cu): Likewise. Add some missed
ctf_set_errnos to obscure error cases.
* ctf-dedup.c (ctf_dedup_rhash_type): Adjust ctf_err_warn for new
err argument. Gettextize. Don't emit the errmsg.
(ctf_dedup_populate_mappings): Likewise.
(ctf_dedup_detect_name_ambiguity): Likewise.
(ctf_dedup_init): Likewise.
(ctf_dedup_multiple_input_dicts): Likewise.
(ctf_dedup_conflictify_unshared): Likewise.
(ctf_dedup): Likewise.
(ctf_dedup_rwalk_one_output_mapping): Likewise.
(ctf_dedup_id_to_target): Likewise.
(ctf_dedup_emit_type): Likewise.
(ctf_dedup_emit_struct_members): Likewise.
(ctf_dedup_populate_type_mapping): Likewise.
(ctf_dedup_populate_type_mappings): Likewise.
(ctf_dedup_emit): Likewise.
(ctf_dedup_hash_type): Likewise. Fix a bit of messed-up error
status setting.
(ctf_dedup_rwalk_one_output_mapping): Likewise. Don't hide
unknown-type-kind messages (which signify file corruption).
2020-07-27 23:45:15 +08:00
|
|
|
ctf_err_warn (dst_fp, 1, ECTF_CONFLICT,
|
|
|
|
_("conflict for type %s against ID %lx: members "
|
|
|
|
"differ, see above"), name, dst_type);
|
2023-09-13 17:02:36 +08:00
|
|
|
return (ctf_set_typed_errno (dst_fp, ECTF_CONFLICT));
|
2019-04-24 18:22:03 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
libctf: eliminate dtd_u, part 5: structs / unions
Eliminate the dynamic member storage for structs and unions as we have
for other dynamic types. This is much like the previous enum
elimination, except that structs and unions are the only types for which
a full-sized ctf_type_t might be needed. Up to now, this decision has
been made in the individual ctf_add_{struct,union}_sized functions and
duplicated in ctf_add_member_offset. The vlen machinery lets us
simplify this, always allocating a ctf_lmember_t and setting the
dtd_data's ctt_size to CTF_LSIZE_SENT: we figure out whether this is
really justified and (almost always) repack things down into a
ctf_stype_t at ctf_serialize time.
This allows us to eliminate the dynamic member paths from the iterators and
query functions in ctf-types.c in favour of always using the large-structure
vlen stuff for dynamic types (the diff is ugly but that's just because of the
volume of reindentation this calls for). This also means the large-structure
vlen stuff gets more heavily tested, which is nice because it was an almost
totally unused code path before now (it only kicked in for structures of size
>4GiB, and how often do you see those?)
The only extra complexity here is ctf_add_type. Back in the days of the
nondeduplicating linker this was called a ridiculous number of times for
countless identical copies of structures: eschewing the repeated lookups of the
dtd in ctf_add_member_offset and adding the members directly saved an amazing
amount of time. Now the nondeduplicating linker is gone, this is extreme
overoptimization: we can rip out the direct addition and use ctf_member_next and
ctf_add_member_offset, just like ctf_dedup_emit does.
We augment a ctf_add_type test to try adding a self-referential struct, the only
thing the ctf_add_type part of this change really perturbs.
This completes the elimination of dtd_u.
libctf/ChangeLog
2021-03-18 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h (ctf_dtdef_t) <dtu_members>: Remove.
<dtd_u>: Likewise.
(ctf_dmdef_t): Remove.
(struct ctf_next) <u.ctn_dmd>: Remove.
* ctf-create.c (INITIAL_VLEN): New, more-or-less arbitrary initial
vlen size.
(ctf_add_enum): Use it.
(ctf_dtd_delete): Do not free the (removed) dmd; remove string
refs from the vlen on struct deletion.
(ctf_add_struct_sized): Populate the vlen: do it by hand if
promoting forwards. Always populate the full-size
lsizehi/lsizelo members.
(ctf_add_union_sized): Likewise.
(ctf_add_member_offset): Set up the vlen rather than the dmd.
Expand it as needed, repointing string refs via
ctf_str_move_pending. Add the member names as pending strings.
Always populate the full-size lsizehi/lsizelo members.
(membadd): Remove, folding back into...
(ctf_add_type_internal): ... here, adding via an ordinary
ctf_add_struct_sized and _next iteration rather than doing
everything by hand.
* ctf-serialize.c (ctf_copy_smembers): Remove this...
(ctf_copy_lmembers): ... and this...
(ctf_emit_type_sect): ... folding into here. Figure out if a
ctf_stype_t is needed here, not in ctf_add_*_sized.
(ctf_type_sect_size): Figure out the ctf_stype_t stuff the same
way here.
* ctf-types.c (ctf_member_next): Remove the dmd path and always
use the vlen. Force large-structure usage for dynamic types.
(ctf_type_align): Likewise.
(ctf_member_info): Likewise.
(ctf_type_rvisit): Likewise.
* testsuite/libctf-regression/type-add-unnamed-struct-ctf.c: Add a
self-referential type to this test.
* testsuite/libctf-regression/type-add-unnamed-struct.c: Adjusted
accordingly.
* testsuite/libctf-regression/type-add-unnamed-struct.lk: Likewise.
2021-03-18 20:37:52 +08:00
|
|
|
dst_type = ctf_add_struct_sized (dst_fp, flag, name,
|
|
|
|
ctf_type_size (src_fp, src_type));
|
2019-04-24 18:22:03 +08:00
|
|
|
if (dst_type == CTF_ERR)
|
|
|
|
return CTF_ERR; /* errno is set for us. */
|
|
|
|
|
libctf: properly handle ctf_add_type of forwards and self-reffing structs
The code to handle structures (and unions) that refer to themselves in
ctf_add_type is extremely dodgy. It works by looking through the list
of not-yet-committed types for a structure with the same name as the
structure in question and assuming, if it finds it, that this must be a
reference to the same type. This is a linear search that gets ever
slower as the dictionary grows, requiring you to call ctf_update at
intervals to keep performance tolerable: but if you do that, you run
into the problem that if a forward declared before the ctf_update is
changed to a structure afterwards, ctf_update explodes.
The last commit fixed most of this: this commit can use it, adding a new
ctf_add_processing hash that tracks source type IDs that are currently
being processed and uses it to avoid infinite recursion rather than the
dynamic type list: we split ctf_add_type into a ctf_add_type_internal,
so that ctf_add_type itself can become a wrapper that empties out this
being-processed hash once the entire recursive type addition is over.
Structure additions themselves avoid adding their dependent types
quite so much by checking the type mapping and avoiding re-adding types
we already know we have added.
We also add support for adding forwards to dictionaries that already
contain the thing they are a forward to: we just silently return the
original type.
v4: return existing struct/union/enum types properly, rather than using
an uninitialized variable: shrinks sizes of CTF sections back down
to roughly where they were in v1/v2 of this patch series.
v5: fix tabdamage.
libctf/
* ctf-impl.h (ctf_file_t) <ctf_add_processing>: New.
* ctf-open.c (ctf_file_close): Free it.
* ctf-create.c (ctf_serialize): Adjust.
(membcmp): When reporting a conflict due to an error, report the
error.
(ctf_add_type): Turn into a ctf_add_processing wrapper. Rename to...
(ctf_add_type_internal): ... this. Hand back types we are already
in the middle of adding immediately. Hand back structs/unions with
the same number of members immediately. Do not walk the dynamic
list. Call ctf_add_type_internal, not ctf_add_type. Handle
forwards promoted to other types and the inverse case identically.
Add structs to the mapping as soon as we intern them, before they
gain any members.
2019-08-08 01:01:08 +08:00
|
|
|
/* Pre-emptively add this struct to the type mapping so that
|
|
|
|
structures that refer to themselves work. */
|
|
|
|
ctf_add_type_mapping (src_fp, src_type, dst_fp, dst_type);
|
|
|
|
|
libctf: eliminate dtd_u, part 5: structs / unions
Eliminate the dynamic member storage for structs and unions as we have
for other dynamic types. This is much like the previous enum
elimination, except that structs and unions are the only types for which
a full-sized ctf_type_t might be needed. Up to now, this decision has
been made in the individual ctf_add_{struct,union}_sized functions and
duplicated in ctf_add_member_offset. The vlen machinery lets us
simplify this, always allocating a ctf_lmember_t and setting the
dtd_data's ctt_size to CTF_LSIZE_SENT: we figure out whether this is
really justified and (almost always) repack things down into a
ctf_stype_t at ctf_serialize time.
This allows us to eliminate the dynamic member paths from the iterators and
query functions in ctf-types.c in favour of always using the large-structure
vlen stuff for dynamic types (the diff is ugly but that's just because of the
volume of reindentation this calls for). This also means the large-structure
vlen stuff gets more heavily tested, which is nice because it was an almost
totally unused code path before now (it only kicked in for structures of size
>4GiB, and how often do you see those?)
The only extra complexity here is ctf_add_type. Back in the days of the
nondeduplicating linker this was called a ridiculous number of times for
countless identical copies of structures: eschewing the repeated lookups of the
dtd in ctf_add_member_offset and adding the members directly saved an amazing
amount of time. Now the nondeduplicating linker is gone, this is extreme
overoptimization: we can rip out the direct addition and use ctf_member_next and
ctf_add_member_offset, just like ctf_dedup_emit does.
We augment a ctf_add_type test to try adding a self-referential struct, the only
thing the ctf_add_type part of this change really perturbs.
This completes the elimination of dtd_u.
libctf/ChangeLog
2021-03-18 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h (ctf_dtdef_t) <dtu_members>: Remove.
<dtd_u>: Likewise.
(ctf_dmdef_t): Remove.
(struct ctf_next) <u.ctn_dmd>: Remove.
* ctf-create.c (INITIAL_VLEN): New, more-or-less arbitrary initial
vlen size.
(ctf_add_enum): Use it.
(ctf_dtd_delete): Do not free the (removed) dmd; remove string
refs from the vlen on struct deletion.
(ctf_add_struct_sized): Populate the vlen: do it by hand if
promoting forwards. Always populate the full-size
lsizehi/lsizelo members.
(ctf_add_union_sized): Likewise.
(ctf_add_member_offset): Set up the vlen rather than the dmd.
Expand it as needed, repointing string refs via
ctf_str_move_pending. Add the member names as pending strings.
Always populate the full-size lsizehi/lsizelo members.
(membadd): Remove, folding back into...
(ctf_add_type_internal): ... here, adding via an ordinary
ctf_add_struct_sized and _next iteration rather than doing
everything by hand.
* ctf-serialize.c (ctf_copy_smembers): Remove this...
(ctf_copy_lmembers): ... and this...
(ctf_emit_type_sect): ... folding into here. Figure out if a
ctf_stype_t is needed here, not in ctf_add_*_sized.
(ctf_type_sect_size): Figure out the ctf_stype_t stuff the same
way here.
* ctf-types.c (ctf_member_next): Remove the dmd path and always
use the vlen. Force large-structure usage for dynamic types.
(ctf_type_align): Likewise.
(ctf_member_info): Likewise.
(ctf_type_rvisit): Likewise.
* testsuite/libctf-regression/type-add-unnamed-struct-ctf.c: Add a
self-referential type to this test.
* testsuite/libctf-regression/type-add-unnamed-struct.c: Adjusted
accordingly.
* testsuite/libctf-regression/type-add-unnamed-struct.lk: Likewise.
2021-03-18 20:37:52 +08:00
|
|
|
while ((offset = ctf_member_next (src_fp, src_type, &i, &membname,
|
|
|
|
&src_membtype, 0)) >= 0)
|
2019-04-24 18:22:03 +08:00
|
|
|
{
|
libctf, include, binutils, gdb, ld: rename ctf_file_t to ctf_dict_t
The naming of the ctf_file_t type in libctf is a historical curiosity.
Back in the Solaris days, CTF dictionaries were originally generated as
a separate file and then (sometimes) merged into objects: hence the
datatype was named ctf_file_t, and known as a "CTF file". Nowadays, raw
CTF is essentially never written to a file on its own, and the datatype
changed name to a "CTF dictionary" years ago. So the term "CTF file"
refers to something that is never a file! This is at best confusing.
The type has also historically been known as a 'CTF container", which is
even more confusing now that we have CTF archives which are *also* a
sort of container (they contain CTF dictionaries), but which are never
referred to as containers in the source code.
So fix this by completing the renaming, renaming ctf_file_t to
ctf_dict_t throughout, and renaming those few functions that refer to
CTF files by name (keeping compatibility aliases) to refer to dicts
instead. Old users who still refer to ctf_file_t will see (harmless)
pointer-compatibility warnings at compile time, but the ABI is unchanged
(since C doesn't mangle names, and ctf_file_t was always an opaque type)
and things will still compile fine as long as -Werror is not specified.
All references to CTF containers and CTF files in the source code are
fixed to refer to CTF dicts instead.
Further (smaller) renamings of annoyingly-named functions to come, as
part of the process of souping up queries across whole archives at once
(needed for the function info and data object sections).
binutils/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* objdump.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_ctf): Likewise. Use ctf_dict_close, not ctf_file_close.
* readelf.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_section_as_ctf): Likewise. Use ctf_dict_close, not
ctf_file_close.
gdb/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctfread.c: Change uses of ctf_file_t to ctf_dict_t.
(ctf_fp_info::~ctf_fp_info): Call ctf_dict_close, not ctf_file_close.
include/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-api.h (ctf_file_t): Rename to...
(ctf_dict_t): ... this. Keep ctf_file_t around for compatibility.
(struct ctf_file): Likewise rename to...
(struct ctf_dict): ... this.
(ctf_file_close): Rename to...
(ctf_dict_close): ... this, keeping compatibility function.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this, keeping compatibility function.
All callers adjusted.
* ctf.h: Rename references to ctf_file_t to ctf_dict_t.
(struct ctf_archive) <ctfa_nfiles>: Rename to...
<ctfa_ndicts>: ... this.
ld/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ldlang.c (ctf_output): This is a ctf_dict_t now.
(lang_ctf_errs_warnings): Rename ctf_file_t to ctf_dict_t.
(ldlang_open_ctf): Adjust comment.
(lang_merge_ctf): Use ctf_dict_close, not ctf_file_close.
* ldelfgen.h (ldelf_examine_strtab_for_ctf): Rename ctf_file_t to
ctf_dict_t. Change opaque declaration accordingly.
* ldelfgen.c (ldelf_examine_strtab_for_ctf): Adjust.
* ldemul.h (examine_strtab_for_ctf): Likewise.
(ldemul_examine_strtab_for_ctf): Likewise.
* ldeuml.c (ldemul_examine_strtab_for_ctf): Likewise.
libctf/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h: Rename ctf_file_t to ctf_dict_t: all declarations
adjusted.
(ctf_fileops): Rename to...
(ctf_dictops): ... this.
(ctf_dedup_t) <cd_id_to_file_t>: Rename to...
<cd_id_to_dict_t>: ... this.
(ctf_file_t): Fix outdated comment.
<ctf_fileops>: Rename to...
<ctf_dictops>: ... this.
(struct ctf_archive_internal) <ctfi_file>: Rename to...
<ctfi_dict>: ... this.
* ctf-archive.c: Rename ctf_file_t to ctf_dict_t.
Rename ctf_archive.ctfa_nfiles to ctfa_ndicts.
Rename ctf_file_close to ctf_dict_close. All users adjusted.
* ctf-create.c: Likewise. Refer to CTF dicts, not CTF containers.
(ctf_bundle_t) <ctb_file>: Rename to...
<ctb_dict): ... this.
* ctf-decl.c: Rename ctf_file_t to ctf_dict_t.
* ctf-dedup.c: Likewise. Rename ctf_file_close to
ctf_dict_close. Refer to CTF dicts, not CTF containers.
* ctf-dump.c: Likewise.
* ctf-error.c: Likewise.
* ctf-hash.c: Likewise.
* ctf-inlines.h: Likewise.
* ctf-labels.c: Likewise.
* ctf-link.c: Likewise.
* ctf-lookup.c: Likewise.
* ctf-open-bfd.c: Likewise.
* ctf-string.c: Likewise.
* ctf-subr.c: Likewise.
* ctf-types.c: Likewise.
* ctf-util.c: Likewise.
* ctf-open.c: Likewise.
(ctf_file_close): Rename to...
(ctf_dict_close): ...this.
(ctf_file_close): New trivial wrapper around ctf_dict_close, for
compatibility.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this.
(ctf_parent_file): New trivial wrapper around ctf_parent_dict, for
compatibility.
* libctf.ver: Add ctf_dict_close and ctf_parent_dict.
2020-11-20 21:34:04 +08:00
|
|
|
ctf_dict_t *dst = dst_fp;
|
libctf: eliminate dtd_u, part 5: structs / unions
Eliminate the dynamic member storage for structs and unions as we have
for other dynamic types. This is much like the previous enum
elimination, except that structs and unions are the only types for which
a full-sized ctf_type_t might be needed. Up to now, this decision has
been made in the individual ctf_add_{struct,union}_sized functions and
duplicated in ctf_add_member_offset. The vlen machinery lets us
simplify this, always allocating a ctf_lmember_t and setting the
dtd_data's ctt_size to CTF_LSIZE_SENT: we figure out whether this is
really justified and (almost always) repack things down into a
ctf_stype_t at ctf_serialize time.
This allows us to eliminate the dynamic member paths from the iterators and
query functions in ctf-types.c in favour of always using the large-structure
vlen stuff for dynamic types (the diff is ugly but that's just because of the
volume of reindentation this calls for). This also means the large-structure
vlen stuff gets more heavily tested, which is nice because it was an almost
totally unused code path before now (it only kicked in for structures of size
>4GiB, and how often do you see those?)
The only extra complexity here is ctf_add_type. Back in the days of the
nondeduplicating linker this was called a ridiculous number of times for
countless identical copies of structures: eschewing the repeated lookups of the
dtd in ctf_add_member_offset and adding the members directly saved an amazing
amount of time. Now the nondeduplicating linker is gone, this is extreme
overoptimization: we can rip out the direct addition and use ctf_member_next and
ctf_add_member_offset, just like ctf_dedup_emit does.
We augment a ctf_add_type test to try adding a self-referential struct, the only
thing the ctf_add_type part of this change really perturbs.
This completes the elimination of dtd_u.
libctf/ChangeLog
2021-03-18 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h (ctf_dtdef_t) <dtu_members>: Remove.
<dtd_u>: Likewise.
(ctf_dmdef_t): Remove.
(struct ctf_next) <u.ctn_dmd>: Remove.
* ctf-create.c (INITIAL_VLEN): New, more-or-less arbitrary initial
vlen size.
(ctf_add_enum): Use it.
(ctf_dtd_delete): Do not free the (removed) dmd; remove string
refs from the vlen on struct deletion.
(ctf_add_struct_sized): Populate the vlen: do it by hand if
promoting forwards. Always populate the full-size
lsizehi/lsizelo members.
(ctf_add_union_sized): Likewise.
(ctf_add_member_offset): Set up the vlen rather than the dmd.
Expand it as needed, repointing string refs via
ctf_str_move_pending. Add the member names as pending strings.
Always populate the full-size lsizehi/lsizelo members.
(membadd): Remove, folding back into...
(ctf_add_type_internal): ... here, adding via an ordinary
ctf_add_struct_sized and _next iteration rather than doing
everything by hand.
* ctf-serialize.c (ctf_copy_smembers): Remove this...
(ctf_copy_lmembers): ... and this...
(ctf_emit_type_sect): ... folding into here. Figure out if a
ctf_stype_t is needed here, not in ctf_add_*_sized.
(ctf_type_sect_size): Figure out the ctf_stype_t stuff the same
way here.
* ctf-types.c (ctf_member_next): Remove the dmd path and always
use the vlen. Force large-structure usage for dynamic types.
(ctf_type_align): Likewise.
(ctf_member_info): Likewise.
(ctf_type_rvisit): Likewise.
* testsuite/libctf-regression/type-add-unnamed-struct-ctf.c: Add a
self-referential type to this test.
* testsuite/libctf-regression/type-add-unnamed-struct.c: Adjusted
accordingly.
* testsuite/libctf-regression/type-add-unnamed-struct.lk: Likewise.
2021-03-18 20:37:52 +08:00
|
|
|
ctf_id_t dst_membtype = ctf_type_mapping (src_fp, src_membtype, &dst);
|
libctf: properly handle ctf_add_type of forwards and self-reffing structs
The code to handle structures (and unions) that refer to themselves in
ctf_add_type is extremely dodgy. It works by looking through the list
of not-yet-committed types for a structure with the same name as the
structure in question and assuming, if it finds it, that this must be a
reference to the same type. This is a linear search that gets ever
slower as the dictionary grows, requiring you to call ctf_update at
intervals to keep performance tolerable: but if you do that, you run
into the problem that if a forward declared before the ctf_update is
changed to a structure afterwards, ctf_update explodes.
The last commit fixed most of this: this commit can use it, adding a new
ctf_add_processing hash that tracks source type IDs that are currently
being processed and uses it to avoid infinite recursion rather than the
dynamic type list: we split ctf_add_type into a ctf_add_type_internal,
so that ctf_add_type itself can become a wrapper that empties out this
being-processed hash once the entire recursive type addition is over.
Structure additions themselves avoid adding their dependent types
quite so much by checking the type mapping and avoiding re-adding types
we already know we have added.
We also add support for adding forwards to dictionaries that already
contain the thing they are a forward to: we just silently return the
original type.
v4: return existing struct/union/enum types properly, rather than using
an uninitialized variable: shrinks sizes of CTF sections back down
to roughly where they were in v1/v2 of this patch series.
v5: fix tabdamage.
libctf/
* ctf-impl.h (ctf_file_t) <ctf_add_processing>: New.
* ctf-open.c (ctf_file_close): Free it.
* ctf-create.c (ctf_serialize): Adjust.
(membcmp): When reporting a conflict due to an error, report the
error.
(ctf_add_type): Turn into a ctf_add_processing wrapper. Rename to...
(ctf_add_type_internal): ... this. Hand back types we are already
in the middle of adding immediately. Hand back structs/unions with
the same number of members immediately. Do not walk the dynamic
list. Call ctf_add_type_internal, not ctf_add_type. Handle
forwards promoted to other types and the inverse case identically.
Add structs to the mapping as soon as we intern them, before they
gain any members.
2019-08-08 01:01:08 +08:00
|
|
|
|
libctf: eliminate dtd_u, part 5: structs / unions
Eliminate the dynamic member storage for structs and unions as we have
for other dynamic types. This is much like the previous enum
elimination, except that structs and unions are the only types for which
a full-sized ctf_type_t might be needed. Up to now, this decision has
been made in the individual ctf_add_{struct,union}_sized functions and
duplicated in ctf_add_member_offset. The vlen machinery lets us
simplify this, always allocating a ctf_lmember_t and setting the
dtd_data's ctt_size to CTF_LSIZE_SENT: we figure out whether this is
really justified and (almost always) repack things down into a
ctf_stype_t at ctf_serialize time.
This allows us to eliminate the dynamic member paths from the iterators and
query functions in ctf-types.c in favour of always using the large-structure
vlen stuff for dynamic types (the diff is ugly but that's just because of the
volume of reindentation this calls for). This also means the large-structure
vlen stuff gets more heavily tested, which is nice because it was an almost
totally unused code path before now (it only kicked in for structures of size
>4GiB, and how often do you see those?)
The only extra complexity here is ctf_add_type. Back in the days of the
nondeduplicating linker this was called a ridiculous number of times for
countless identical copies of structures: eschewing the repeated lookups of the
dtd in ctf_add_member_offset and adding the members directly saved an amazing
amount of time. Now the nondeduplicating linker is gone, this is extreme
overoptimization: we can rip out the direct addition and use ctf_member_next and
ctf_add_member_offset, just like ctf_dedup_emit does.
We augment a ctf_add_type test to try adding a self-referential struct, the only
thing the ctf_add_type part of this change really perturbs.
This completes the elimination of dtd_u.
libctf/ChangeLog
2021-03-18 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h (ctf_dtdef_t) <dtu_members>: Remove.
<dtd_u>: Likewise.
(ctf_dmdef_t): Remove.
(struct ctf_next) <u.ctn_dmd>: Remove.
* ctf-create.c (INITIAL_VLEN): New, more-or-less arbitrary initial
vlen size.
(ctf_add_enum): Use it.
(ctf_dtd_delete): Do not free the (removed) dmd; remove string
refs from the vlen on struct deletion.
(ctf_add_struct_sized): Populate the vlen: do it by hand if
promoting forwards. Always populate the full-size
lsizehi/lsizelo members.
(ctf_add_union_sized): Likewise.
(ctf_add_member_offset): Set up the vlen rather than the dmd.
Expand it as needed, repointing string refs via
ctf_str_move_pending. Add the member names as pending strings.
Always populate the full-size lsizehi/lsizelo members.
(membadd): Remove, folding back into...
(ctf_add_type_internal): ... here, adding via an ordinary
ctf_add_struct_sized and _next iteration rather than doing
everything by hand.
* ctf-serialize.c (ctf_copy_smembers): Remove this...
(ctf_copy_lmembers): ... and this...
(ctf_emit_type_sect): ... folding into here. Figure out if a
ctf_stype_t is needed here, not in ctf_add_*_sized.
(ctf_type_sect_size): Figure out the ctf_stype_t stuff the same
way here.
* ctf-types.c (ctf_member_next): Remove the dmd path and always
use the vlen. Force large-structure usage for dynamic types.
(ctf_type_align): Likewise.
(ctf_member_info): Likewise.
(ctf_type_rvisit): Likewise.
* testsuite/libctf-regression/type-add-unnamed-struct-ctf.c: Add a
self-referential type to this test.
* testsuite/libctf-regression/type-add-unnamed-struct.c: Adjusted
accordingly.
* testsuite/libctf-regression/type-add-unnamed-struct.lk: Likewise.
2021-03-18 20:37:52 +08:00
|
|
|
if (dst_membtype == 0)
|
libctf: handle nonrepresentable types at link time
GCC can emit references to type 0 to indicate that this type is one that
is not representable in the version of CTF it emits (for instance,
version 3 cannot encode vector types). Type 0 is already used in the
function section to indicate padding inserted to skip functions we do
not want to encode the type of, so using zero in this way is a good
extension of the format: but libctf reports such types as ECTF_BADID,
which is indistinguishable from file corruption via links to truly
nonexistent types with IDs like 0xDEADBEEF etc, which we really do want
to stop for.
In particular, this stops all traversals of types dead at this point,
preventing us from even dumping CTF files containing unrepresentable
types to see what's going on!
So add a new error, ECTF_NONREPRESENTABLE, which is returned by
recursive type resolution when a reference to a zero type is found. (No
zero type is ever emitted into the CTF file by GCC, only references to
one). We can't do much with types that are ultimately nonrepresentable,
but we can do enough to keep functioning.
Adjust ctf_add_type to ensure that top-level types of type zero and
structure and union members of ultimate type zero are simply skipped
without reporting an error, so we can copy structures and unions that
contain nonrepresentable members (skipping them and leaving a hole where
they would be, so no consumers downstream of the linker need to worry
about this): adjust the dumper so that we dump members of
nonrepresentable types in a simple form that indicates
nonrepresentability rather than terminating the dump, and do not falsely
assume all errors to be -ENOMEM: adjust the linker so that types that
fail to get added are simply skipped, so that both nonrepresentable
types and outright errors do not terminate the type addition, which
could skip many valid types and cause further errors when variables of
those types are added.
In future, when we gain the ability to call back to the linker to report
link-time type resolution errors, we should report failures to add all
but nonrepresentable types. But we can't do that yet.
v5: Fix tabdamage.
include/
* ctf-api.h (ECTF_NONREPRESENTABLE): New.
libctf/
* ctf-types.c (ctf_type_resolve): Return ECTF_NONREPRESENTABLE on
type zero.
* ctf-create.c (ctf_add_type): Detect and skip nonrepresentable
members and types.
(ctf_add_variable): Likewise for variables pointing to them.
* ctf-link.c (ctf_link_one_type): Do not warn for nonrepresentable
type link failure, but do warn for others.
* ctf-dump.c (ctf_dump_format_type): Likewise. Do not assume all
errors to be ENOMEM.
(ctf_dump_member): Likewise.
(ctf_dump_type): Likewise.
(ctf_dump_header_strfield): Do not assume all errors to be ENOMEM.
(ctf_dump_header_sectfield): Do not assume all errors to be ENOMEM.
(ctf_dump_header): Likewise.
(ctf_dump_label): likewise.
(ctf_dump_objts): likewise.
(ctf_dump_funcs): likewise.
(ctf_dump_var): likewise.
(ctf_dump_str): Likewise.
2019-08-05 18:40:33 +08:00
|
|
|
{
|
libctf: eliminate dtd_u, part 5: structs / unions
Eliminate the dynamic member storage for structs and unions as we have
for other dynamic types. This is much like the previous enum
elimination, except that structs and unions are the only types for which
a full-sized ctf_type_t might be needed. Up to now, this decision has
been made in the individual ctf_add_{struct,union}_sized functions and
duplicated in ctf_add_member_offset. The vlen machinery lets us
simplify this, always allocating a ctf_lmember_t and setting the
dtd_data's ctt_size to CTF_LSIZE_SENT: we figure out whether this is
really justified and (almost always) repack things down into a
ctf_stype_t at ctf_serialize time.
This allows us to eliminate the dynamic member paths from the iterators and
query functions in ctf-types.c in favour of always using the large-structure
vlen stuff for dynamic types (the diff is ugly but that's just because of the
volume of reindentation this calls for). This also means the large-structure
vlen stuff gets more heavily tested, which is nice because it was an almost
totally unused code path before now (it only kicked in for structures of size
>4GiB, and how often do you see those?)
The only extra complexity here is ctf_add_type. Back in the days of the
nondeduplicating linker this was called a ridiculous number of times for
countless identical copies of structures: eschewing the repeated lookups of the
dtd in ctf_add_member_offset and adding the members directly saved an amazing
amount of time. Now the nondeduplicating linker is gone, this is extreme
overoptimization: we can rip out the direct addition and use ctf_member_next and
ctf_add_member_offset, just like ctf_dedup_emit does.
We augment a ctf_add_type test to try adding a self-referential struct, the only
thing the ctf_add_type part of this change really perturbs.
This completes the elimination of dtd_u.
libctf/ChangeLog
2021-03-18 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h (ctf_dtdef_t) <dtu_members>: Remove.
<dtd_u>: Likewise.
(ctf_dmdef_t): Remove.
(struct ctf_next) <u.ctn_dmd>: Remove.
* ctf-create.c (INITIAL_VLEN): New, more-or-less arbitrary initial
vlen size.
(ctf_add_enum): Use it.
(ctf_dtd_delete): Do not free the (removed) dmd; remove string
refs from the vlen on struct deletion.
(ctf_add_struct_sized): Populate the vlen: do it by hand if
promoting forwards. Always populate the full-size
lsizehi/lsizelo members.
(ctf_add_union_sized): Likewise.
(ctf_add_member_offset): Set up the vlen rather than the dmd.
Expand it as needed, repointing string refs via
ctf_str_move_pending. Add the member names as pending strings.
Always populate the full-size lsizehi/lsizelo members.
(membadd): Remove, folding back into...
(ctf_add_type_internal): ... here, adding via an ordinary
ctf_add_struct_sized and _next iteration rather than doing
everything by hand.
* ctf-serialize.c (ctf_copy_smembers): Remove this...
(ctf_copy_lmembers): ... and this...
(ctf_emit_type_sect): ... folding into here. Figure out if a
ctf_stype_t is needed here, not in ctf_add_*_sized.
(ctf_type_sect_size): Figure out the ctf_stype_t stuff the same
way here.
* ctf-types.c (ctf_member_next): Remove the dmd path and always
use the vlen. Force large-structure usage for dynamic types.
(ctf_type_align): Likewise.
(ctf_member_info): Likewise.
(ctf_type_rvisit): Likewise.
* testsuite/libctf-regression/type-add-unnamed-struct-ctf.c: Add a
self-referential type to this test.
* testsuite/libctf-regression/type-add-unnamed-struct.c: Adjusted
accordingly.
* testsuite/libctf-regression/type-add-unnamed-struct.lk: Likewise.
2021-03-18 20:37:52 +08:00
|
|
|
dst_membtype = ctf_add_type_internal (dst_fp, src_fp,
|
|
|
|
src_membtype,
|
|
|
|
proc_tracking_fp);
|
|
|
|
if (dst_membtype == CTF_ERR)
|
libctf: properly handle ctf_add_type of forwards and self-reffing structs
The code to handle structures (and unions) that refer to themselves in
ctf_add_type is extremely dodgy. It works by looking through the list
of not-yet-committed types for a structure with the same name as the
structure in question and assuming, if it finds it, that this must be a
reference to the same type. This is a linear search that gets ever
slower as the dictionary grows, requiring you to call ctf_update at
intervals to keep performance tolerable: but if you do that, you run
into the problem that if a forward declared before the ctf_update is
changed to a structure afterwards, ctf_update explodes.
The last commit fixed most of this: this commit can use it, adding a new
ctf_add_processing hash that tracks source type IDs that are currently
being processed and uses it to avoid infinite recursion rather than the
dynamic type list: we split ctf_add_type into a ctf_add_type_internal,
so that ctf_add_type itself can become a wrapper that empties out this
being-processed hash once the entire recursive type addition is over.
Structure additions themselves avoid adding their dependent types
quite so much by checking the type mapping and avoiding re-adding types
we already know we have added.
We also add support for adding forwards to dictionaries that already
contain the thing they are a forward to: we just silently return the
original type.
v4: return existing struct/union/enum types properly, rather than using
an uninitialized variable: shrinks sizes of CTF sections back down
to roughly where they were in v1/v2 of this patch series.
v5: fix tabdamage.
libctf/
* ctf-impl.h (ctf_file_t) <ctf_add_processing>: New.
* ctf-open.c (ctf_file_close): Free it.
* ctf-create.c (ctf_serialize): Adjust.
(membcmp): When reporting a conflict due to an error, report the
error.
(ctf_add_type): Turn into a ctf_add_processing wrapper. Rename to...
(ctf_add_type_internal): ... this. Hand back types we are already
in the middle of adding immediately. Hand back structs/unions with
the same number of members immediately. Do not walk the dynamic
list. Call ctf_add_type_internal, not ctf_add_type. Handle
forwards promoted to other types and the inverse case identically.
Add structs to the mapping as soon as we intern them, before they
gain any members.
2019-08-08 01:01:08 +08:00
|
|
|
{
|
|
|
|
if (ctf_errno (dst_fp) != ECTF_NONREPRESENTABLE)
|
libctf: eliminate dtd_u, part 5: structs / unions
Eliminate the dynamic member storage for structs and unions as we have
for other dynamic types. This is much like the previous enum
elimination, except that structs and unions are the only types for which
a full-sized ctf_type_t might be needed. Up to now, this decision has
been made in the individual ctf_add_{struct,union}_sized functions and
duplicated in ctf_add_member_offset. The vlen machinery lets us
simplify this, always allocating a ctf_lmember_t and setting the
dtd_data's ctt_size to CTF_LSIZE_SENT: we figure out whether this is
really justified and (almost always) repack things down into a
ctf_stype_t at ctf_serialize time.
This allows us to eliminate the dynamic member paths from the iterators and
query functions in ctf-types.c in favour of always using the large-structure
vlen stuff for dynamic types (the diff is ugly but that's just because of the
volume of reindentation this calls for). This also means the large-structure
vlen stuff gets more heavily tested, which is nice because it was an almost
totally unused code path before now (it only kicked in for structures of size
>4GiB, and how often do you see those?)
The only extra complexity here is ctf_add_type. Back in the days of the
nondeduplicating linker this was called a ridiculous number of times for
countless identical copies of structures: eschewing the repeated lookups of the
dtd in ctf_add_member_offset and adding the members directly saved an amazing
amount of time. Now the nondeduplicating linker is gone, this is extreme
overoptimization: we can rip out the direct addition and use ctf_member_next and
ctf_add_member_offset, just like ctf_dedup_emit does.
We augment a ctf_add_type test to try adding a self-referential struct, the only
thing the ctf_add_type part of this change really perturbs.
This completes the elimination of dtd_u.
libctf/ChangeLog
2021-03-18 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h (ctf_dtdef_t) <dtu_members>: Remove.
<dtd_u>: Likewise.
(ctf_dmdef_t): Remove.
(struct ctf_next) <u.ctn_dmd>: Remove.
* ctf-create.c (INITIAL_VLEN): New, more-or-less arbitrary initial
vlen size.
(ctf_add_enum): Use it.
(ctf_dtd_delete): Do not free the (removed) dmd; remove string
refs from the vlen on struct deletion.
(ctf_add_struct_sized): Populate the vlen: do it by hand if
promoting forwards. Always populate the full-size
lsizehi/lsizelo members.
(ctf_add_union_sized): Likewise.
(ctf_add_member_offset): Set up the vlen rather than the dmd.
Expand it as needed, repointing string refs via
ctf_str_move_pending. Add the member names as pending strings.
Always populate the full-size lsizehi/lsizelo members.
(membadd): Remove, folding back into...
(ctf_add_type_internal): ... here, adding via an ordinary
ctf_add_struct_sized and _next iteration rather than doing
everything by hand.
* ctf-serialize.c (ctf_copy_smembers): Remove this...
(ctf_copy_lmembers): ... and this...
(ctf_emit_type_sect): ... folding into here. Figure out if a
ctf_stype_t is needed here, not in ctf_add_*_sized.
(ctf_type_sect_size): Figure out the ctf_stype_t stuff the same
way here.
* ctf-types.c (ctf_member_next): Remove the dmd path and always
use the vlen. Force large-structure usage for dynamic types.
(ctf_type_align): Likewise.
(ctf_member_info): Likewise.
(ctf_type_rvisit): Likewise.
* testsuite/libctf-regression/type-add-unnamed-struct-ctf.c: Add a
self-referential type to this test.
* testsuite/libctf-regression/type-add-unnamed-struct.c: Adjusted
accordingly.
* testsuite/libctf-regression/type-add-unnamed-struct.lk: Likewise.
2021-03-18 20:37:52 +08:00
|
|
|
{
|
|
|
|
ctf_next_destroy (i);
|
|
|
|
break;
|
|
|
|
}
|
libctf: properly handle ctf_add_type of forwards and self-reffing structs
The code to handle structures (and unions) that refer to themselves in
ctf_add_type is extremely dodgy. It works by looking through the list
of not-yet-committed types for a structure with the same name as the
structure in question and assuming, if it finds it, that this must be a
reference to the same type. This is a linear search that gets ever
slower as the dictionary grows, requiring you to call ctf_update at
intervals to keep performance tolerable: but if you do that, you run
into the problem that if a forward declared before the ctf_update is
changed to a structure afterwards, ctf_update explodes.
The last commit fixed most of this: this commit can use it, adding a new
ctf_add_processing hash that tracks source type IDs that are currently
being processed and uses it to avoid infinite recursion rather than the
dynamic type list: we split ctf_add_type into a ctf_add_type_internal,
so that ctf_add_type itself can become a wrapper that empties out this
being-processed hash once the entire recursive type addition is over.
Structure additions themselves avoid adding their dependent types
quite so much by checking the type mapping and avoiding re-adding types
we already know we have added.
We also add support for adding forwards to dictionaries that already
contain the thing they are a forward to: we just silently return the
original type.
v4: return existing struct/union/enum types properly, rather than using
an uninitialized variable: shrinks sizes of CTF sections back down
to roughly where they were in v1/v2 of this patch series.
v5: fix tabdamage.
libctf/
* ctf-impl.h (ctf_file_t) <ctf_add_processing>: New.
* ctf-open.c (ctf_file_close): Free it.
* ctf-create.c (ctf_serialize): Adjust.
(membcmp): When reporting a conflict due to an error, report the
error.
(ctf_add_type): Turn into a ctf_add_processing wrapper. Rename to...
(ctf_add_type_internal): ... this. Hand back types we are already
in the middle of adding immediately. Hand back structs/unions with
the same number of members immediately. Do not walk the dynamic
list. Call ctf_add_type_internal, not ctf_add_type. Handle
forwards promoted to other types and the inverse case identically.
Add structs to the mapping as soon as we intern them, before they
gain any members.
2019-08-08 01:01:08 +08:00
|
|
|
}
|
libctf: handle nonrepresentable types at link time
GCC can emit references to type 0 to indicate that this type is one that
is not representable in the version of CTF it emits (for instance,
version 3 cannot encode vector types). Type 0 is already used in the
function section to indicate padding inserted to skip functions we do
not want to encode the type of, so using zero in this way is a good
extension of the format: but libctf reports such types as ECTF_BADID,
which is indistinguishable from file corruption via links to truly
nonexistent types with IDs like 0xDEADBEEF etc, which we really do want
to stop for.
In particular, this stops all traversals of types dead at this point,
preventing us from even dumping CTF files containing unrepresentable
types to see what's going on!
So add a new error, ECTF_NONREPRESENTABLE, which is returned by
recursive type resolution when a reference to a zero type is found. (No
zero type is ever emitted into the CTF file by GCC, only references to
one). We can't do much with types that are ultimately nonrepresentable,
but we can do enough to keep functioning.
Adjust ctf_add_type to ensure that top-level types of type zero and
structure and union members of ultimate type zero are simply skipped
without reporting an error, so we can copy structures and unions that
contain nonrepresentable members (skipping them and leaving a hole where
they would be, so no consumers downstream of the linker need to worry
about this): adjust the dumper so that we dump members of
nonrepresentable types in a simple form that indicates
nonrepresentability rather than terminating the dump, and do not falsely
assume all errors to be -ENOMEM: adjust the linker so that types that
fail to get added are simply skipped, so that both nonrepresentable
types and outright errors do not terminate the type addition, which
could skip many valid types and cause further errors when variables of
those types are added.
In future, when we gain the ability to call back to the linker to report
link-time type resolution errors, we should report failures to add all
but nonrepresentable types. But we can't do that yet.
v5: Fix tabdamage.
include/
* ctf-api.h (ECTF_NONREPRESENTABLE): New.
libctf/
* ctf-types.c (ctf_type_resolve): Return ECTF_NONREPRESENTABLE on
type zero.
* ctf-create.c (ctf_add_type): Detect and skip nonrepresentable
members and types.
(ctf_add_variable): Likewise for variables pointing to them.
* ctf-link.c (ctf_link_one_type): Do not warn for nonrepresentable
type link failure, but do warn for others.
* ctf-dump.c (ctf_dump_format_type): Likewise. Do not assume all
errors to be ENOMEM.
(ctf_dump_member): Likewise.
(ctf_dump_type): Likewise.
(ctf_dump_header_strfield): Do not assume all errors to be ENOMEM.
(ctf_dump_header_sectfield): Do not assume all errors to be ENOMEM.
(ctf_dump_header): Likewise.
(ctf_dump_label): likewise.
(ctf_dump_objts): likewise.
(ctf_dump_funcs): likewise.
(ctf_dump_var): likewise.
(ctf_dump_str): Likewise.
2019-08-05 18:40:33 +08:00
|
|
|
}
|
2019-04-24 18:22:03 +08:00
|
|
|
|
libctf: eliminate dtd_u, part 5: structs / unions
Eliminate the dynamic member storage for structs and unions as we have
for other dynamic types. This is much like the previous enum
elimination, except that structs and unions are the only types for which
a full-sized ctf_type_t might be needed. Up to now, this decision has
been made in the individual ctf_add_{struct,union}_sized functions and
duplicated in ctf_add_member_offset. The vlen machinery lets us
simplify this, always allocating a ctf_lmember_t and setting the
dtd_data's ctt_size to CTF_LSIZE_SENT: we figure out whether this is
really justified and (almost always) repack things down into a
ctf_stype_t at ctf_serialize time.
This allows us to eliminate the dynamic member paths from the iterators and
query functions in ctf-types.c in favour of always using the large-structure
vlen stuff for dynamic types (the diff is ugly but that's just because of the
volume of reindentation this calls for). This also means the large-structure
vlen stuff gets more heavily tested, which is nice because it was an almost
totally unused code path before now (it only kicked in for structures of size
>4GiB, and how often do you see those?)
The only extra complexity here is ctf_add_type. Back in the days of the
nondeduplicating linker this was called a ridiculous number of times for
countless identical copies of structures: eschewing the repeated lookups of the
dtd in ctf_add_member_offset and adding the members directly saved an amazing
amount of time. Now the nondeduplicating linker is gone, this is extreme
overoptimization: we can rip out the direct addition and use ctf_member_next and
ctf_add_member_offset, just like ctf_dedup_emit does.
We augment a ctf_add_type test to try adding a self-referential struct, the only
thing the ctf_add_type part of this change really perturbs.
This completes the elimination of dtd_u.
libctf/ChangeLog
2021-03-18 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h (ctf_dtdef_t) <dtu_members>: Remove.
<dtd_u>: Likewise.
(ctf_dmdef_t): Remove.
(struct ctf_next) <u.ctn_dmd>: Remove.
* ctf-create.c (INITIAL_VLEN): New, more-or-less arbitrary initial
vlen size.
(ctf_add_enum): Use it.
(ctf_dtd_delete): Do not free the (removed) dmd; remove string
refs from the vlen on struct deletion.
(ctf_add_struct_sized): Populate the vlen: do it by hand if
promoting forwards. Always populate the full-size
lsizehi/lsizelo members.
(ctf_add_union_sized): Likewise.
(ctf_add_member_offset): Set up the vlen rather than the dmd.
Expand it as needed, repointing string refs via
ctf_str_move_pending. Add the member names as pending strings.
Always populate the full-size lsizehi/lsizelo members.
(membadd): Remove, folding back into...
(ctf_add_type_internal): ... here, adding via an ordinary
ctf_add_struct_sized and _next iteration rather than doing
everything by hand.
* ctf-serialize.c (ctf_copy_smembers): Remove this...
(ctf_copy_lmembers): ... and this...
(ctf_emit_type_sect): ... folding into here. Figure out if a
ctf_stype_t is needed here, not in ctf_add_*_sized.
(ctf_type_sect_size): Figure out the ctf_stype_t stuff the same
way here.
* ctf-types.c (ctf_member_next): Remove the dmd path and always
use the vlen. Force large-structure usage for dynamic types.
(ctf_type_align): Likewise.
(ctf_member_info): Likewise.
(ctf_type_rvisit): Likewise.
* testsuite/libctf-regression/type-add-unnamed-struct-ctf.c: Add a
self-referential type to this test.
* testsuite/libctf-regression/type-add-unnamed-struct.c: Adjusted
accordingly.
* testsuite/libctf-regression/type-add-unnamed-struct.lk: Likewise.
2021-03-18 20:37:52 +08:00
|
|
|
if (ctf_add_member_offset (dst_fp, dst_type, membname,
|
|
|
|
dst_membtype, offset) < 0)
|
|
|
|
{
|
|
|
|
ctf_next_destroy (i);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (ctf_errno (src_fp) != ECTF_NEXT_END)
|
2019-04-24 18:22:03 +08:00
|
|
|
return CTF_ERR; /* errno is set for us. */
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
case CTF_K_ENUM:
|
libctf: properly handle ctf_add_type of forwards and self-reffing structs
The code to handle structures (and unions) that refer to themselves in
ctf_add_type is extremely dodgy. It works by looking through the list
of not-yet-committed types for a structure with the same name as the
structure in question and assuming, if it finds it, that this must be a
reference to the same type. This is a linear search that gets ever
slower as the dictionary grows, requiring you to call ctf_update at
intervals to keep performance tolerable: but if you do that, you run
into the problem that if a forward declared before the ctf_update is
changed to a structure afterwards, ctf_update explodes.
The last commit fixed most of this: this commit can use it, adding a new
ctf_add_processing hash that tracks source type IDs that are currently
being processed and uses it to avoid infinite recursion rather than the
dynamic type list: we split ctf_add_type into a ctf_add_type_internal,
so that ctf_add_type itself can become a wrapper that empties out this
being-processed hash once the entire recursive type addition is over.
Structure additions themselves avoid adding their dependent types
quite so much by checking the type mapping and avoiding re-adding types
we already know we have added.
We also add support for adding forwards to dictionaries that already
contain the thing they are a forward to: we just silently return the
original type.
v4: return existing struct/union/enum types properly, rather than using
an uninitialized variable: shrinks sizes of CTF sections back down
to roughly where they were in v1/v2 of this patch series.
v5: fix tabdamage.
libctf/
* ctf-impl.h (ctf_file_t) <ctf_add_processing>: New.
* ctf-open.c (ctf_file_close): Free it.
* ctf-create.c (ctf_serialize): Adjust.
(membcmp): When reporting a conflict due to an error, report the
error.
(ctf_add_type): Turn into a ctf_add_processing wrapper. Rename to...
(ctf_add_type_internal): ... this. Hand back types we are already
in the middle of adding immediately. Hand back structs/unions with
the same number of members immediately. Do not walk the dynamic
list. Call ctf_add_type_internal, not ctf_add_type. Handle
forwards promoted to other types and the inverse case identically.
Add structs to the mapping as soon as we intern them, before they
gain any members.
2019-08-08 01:01:08 +08:00
|
|
|
if (dst_type != CTF_ERR && kind != CTF_K_FORWARD
|
|
|
|
&& dst_kind != CTF_K_FORWARD)
|
2019-04-24 18:22:03 +08:00
|
|
|
{
|
|
|
|
if (ctf_enum_iter (src_fp, src_type, enumcmp, &dst)
|
|
|
|
|| ctf_enum_iter (dst_fp, dst_type, enumcmp, &src))
|
|
|
|
{
|
libctf, binutils, include, ld: gettextize and improve error handling
This commit follows on from the earlier commit "libctf, ld, binutils:
add textual error/warning reporting for libctf" and converts every error
in libctf that was reported using ctf_dprintf to use ctf_err_warn
instead, gettextizing them in the process, using N_() where necessary to
avoid doing gettext calls unless an error message is actually generated,
and rephrasing some error messages for ease of translation.
This requires a slight change in the ctf_errwarning_next API: this API
is public but has not been in a release yet, so can still change freely.
The problem is that many errors are emitted at open time (whether
opening of a CTF dict, or opening of a CTF archive): the former of these
throws away its incompletely-initialized ctf_file_t rather than return
it, and the latter has no ctf_file_t at all. So errors and warnings
emitted at open time cannot be stored in the ctf_file_t, and have to go
elsewhere.
We put them in a static local in ctf-subr.c (which is not very
thread-safe: a later commit will improve things here): ctf_err_warn with
a NULL fp adds to this list, and the public interface
ctf_errwarning_next with a NULL fp retrieves from it.
We need a slight exception from the usual iterator rules in this case:
with a NULL fp, there is nowhere to store the ECTF_NEXT_END "error"
which signifies the end of iteration, so we add a new err parameter to
ctf_errwarning_next which is used to report such iteration-related
errors. (If an fp is provided -- i.e., if not reporting open errors --
this is optional, but even if it's optional it's still an API change.
This is actually useful from a usability POV as well, since
ctf_errwarning_next is usually called when there's been an error, so
overwriting the error code with ECTF_NEXT_END is not very helpful!
So, unusually, ctf_errwarning_next now uses the passed fp for its
error code *only* if no errp pointer is passed in, and leaves it
untouched otherwise.)
ld, objdump and readelf are adapted to call ctf_errwarning_next with a
NULL fp to report open errors where appropriate.
The ctf_err_warn API also has to change, gaining a new error-number
parameter which is used to add the error message corresponding to that
error number into the debug stream when LIBCTF_DEBUG is enabled:
changing this API is easy at this point since we are already touching
all existing calls to gettextize them. We need this because the debug
stream should contain the errno's message, but the error reported in the
error/warning stream should *not*, because the caller will probably
report it themselves at failure time regardless, and reporting it in
every error message that leads up to it leads to a ridiculous chattering
on failure, which is likely to end up as ridiculous chattering on stderr
(trimmed a bit):
CTF error: `ld/testsuite/ld-ctf/A.c (0): lookup failure for type 3: flags 1: The parent CTF dictionary is unavailable'
CTF error: `ld/testsuite/ld-ctf/A.c (0): struct/union member type hashing error during type hashing for type 80000001, kind 6: The parent CTF dictionary is unavailable'
CTF error: `deduplicating link variable emission failed for ld/testsuite/ld-ctf/A.c: The parent CTF dictionary is unavailable'
ld/.libs/lt-ld-new: warning: CTF linking failed; output will have no CTF section: `The parent CTF dictionary is unavailable'
We only need to be told that the parent CTF dictionary is unavailable
*once*, not over and over again!
errmsgs are still emitted on warning generation, because warnings do not
usually lead to a failure propagated up to the caller and reported
there.
Debug-stream messages are not translated. If translation is turned on,
there will be a mixture of English and translated messages in the debug
stream, but rather that than burden the translators with debug-only
output.
binutils/ChangeLog
2020-08-27 Nick Alcock <nick.alcock@oracle.com>
* objdump.c (dump_ctf_archive_member): Move error-
reporting...
(dump_ctf_errs): ... into this separate function.
(dump_ctf): Call it on open errors.
* readelf.c (dump_ctf_archive_member): Move error-
reporting...
(dump_ctf_errs): ... into this separate function. Support
calls with NULL fp. Adjust for new err parameter to
ctf_errwarning_next.
(dump_section_as_ctf): Call it on open errors.
include/ChangeLog
2020-08-27 Nick Alcock <nick.alcock@oracle.com>
* ctf-api.h (ctf_errwarning_next): New err parameter.
ld/ChangeLog
2020-08-27 Nick Alcock <nick.alcock@oracle.com>
* ldlang.c (lang_ctf_errs_warnings): Support calls with NULL fp.
Adjust for new err parameter to ctf_errwarning_next. Only
check for assertion failures when fp is non-NULL.
(ldlang_open_ctf): Call it on open errors.
* testsuite/ld-ctf/ctf.exp: Always use the C locale to avoid
breaking the diags tests.
libctf/ChangeLog
2020-08-27 Nick Alcock <nick.alcock@oracle.com>
* ctf-subr.c (open_errors): New list.
(ctf_err_warn): Calls with NULL fp append to open_errors. Add err
parameter, and use it to decorate the debug stream with errmsgs.
(ctf_err_warn_to_open): Splice errors from a CTF dict into the
open_errors.
(ctf_errwarning_next): Calls with NULL fp report from open_errors.
New err param to report iteration errors (including end-of-iteration)
when fp is NULL.
(ctf_assert_fail_internal): Adjust ctf_err_warn call for new err
parameter: gettextize.
* ctf-impl.h (ctfo_get_vbytes): Add ctf_file_t parameter.
(LCTF_VBYTES): Adjust.
(ctf_err_warn_to_open): New.
(ctf_err_warn): Adjust.
(ctf_bundle): Used in only one place: move...
* ctf-create.c: ... here.
(enumcmp): Use ctf_err_warn, not ctf_dprintf, passing the err number
down as needed. Don't emit the errmsg. Gettextize.
(membcmp): Likewise.
(ctf_add_type_internal): Likewise.
(ctf_write_mem): Likewise.
(ctf_compress_write): Likewise. Report errors writing the header or
body.
(ctf_write): Likewise.
* ctf-archive.c (ctf_arc_write_fd): Use ctf_err_warn, not
ctf_dprintf, and gettextize, as above.
(ctf_arc_write): Likewise.
(ctf_arc_bufopen): Likewise.
(ctf_arc_open_internal): Likewise.
* ctf-labels.c (ctf_label_iter): Likewise.
* ctf-open-bfd.c (ctf_bfdclose): Likewise.
(ctf_bfdopen): Likewise.
(ctf_bfdopen_ctfsect): Likewise.
(ctf_fdopen): Likewise.
* ctf-string.c (ctf_str_write_strtab): Likewise.
* ctf-types.c (ctf_type_resolve): Likewise.
* ctf-open.c (get_vbytes_common): Likewise. Pass down the ctf dict.
(get_vbytes_v1): Pass down the ctf dict.
(get_vbytes_v2): Likewise.
(flip_ctf): Likewise.
(flip_types): Likewise. Use ctf_err_warn, not ctf_dprintf, and
gettextize, as above.
(upgrade_types_v1): Adjust calls.
(init_types): Use ctf_err_warn, not ctf_dprintf, as above.
(ctf_bufopen_internal): Likewise. Adjust calls. Transplant errors
emitted into individual dicts into the open errors if this turns
out to be a failed open in the end.
* ctf-dump.c (ctf_dump_format_type): Adjust ctf_err_warn for new err
argument. Gettextize. Don't emit the errmsg.
(ctf_dump_funcs): Likewise. Collapse err label into its only case.
(ctf_dump_type): Likewise.
* ctf-link.c (ctf_create_per_cu): Adjust ctf_err_warn for new err
argument. Gettextize. Don't emit the errmsg.
(ctf_link_one_type): Likewise.
(ctf_link_lazy_open): Likewise.
(ctf_link_one_input_archive): Likewise.
(ctf_link_deduplicating_count_inputs): Likewise.
(ctf_link_deduplicating_open_inputs): Likewise.
(ctf_link_deduplicating_close_inputs): Likewise.
(ctf_link_deduplicating): Likewise.
(ctf_link): Likewise.
(ctf_link_deduplicating_per_cu): Likewise. Add some missed
ctf_set_errnos to obscure error cases.
* ctf-dedup.c (ctf_dedup_rhash_type): Adjust ctf_err_warn for new
err argument. Gettextize. Don't emit the errmsg.
(ctf_dedup_populate_mappings): Likewise.
(ctf_dedup_detect_name_ambiguity): Likewise.
(ctf_dedup_init): Likewise.
(ctf_dedup_multiple_input_dicts): Likewise.
(ctf_dedup_conflictify_unshared): Likewise.
(ctf_dedup): Likewise.
(ctf_dedup_rwalk_one_output_mapping): Likewise.
(ctf_dedup_id_to_target): Likewise.
(ctf_dedup_emit_type): Likewise.
(ctf_dedup_emit_struct_members): Likewise.
(ctf_dedup_populate_type_mapping): Likewise.
(ctf_dedup_populate_type_mappings): Likewise.
(ctf_dedup_emit): Likewise.
(ctf_dedup_hash_type): Likewise. Fix a bit of messed-up error
status setting.
(ctf_dedup_rwalk_one_output_mapping): Likewise. Don't hide
unknown-type-kind messages (which signify file corruption).
2020-07-27 23:45:15 +08:00
|
|
|
ctf_err_warn (dst_fp, 1, ECTF_CONFLICT,
|
|
|
|
_("conflict for enum %s against ID %lx: members "
|
|
|
|
"differ, see above"), name, dst_type);
|
2023-09-13 17:02:36 +08:00
|
|
|
return (ctf_set_typed_errno (dst_fp, ECTF_CONFLICT));
|
2019-04-24 18:22:03 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
dst_type = ctf_add_enum (dst_fp, flag, name);
|
|
|
|
if ((dst.ctb_type = dst_type) == CTF_ERR
|
|
|
|
|| ctf_enum_iter (src_fp, src_type, enumadd, &dst))
|
|
|
|
return CTF_ERR; /* errno is set for us */
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
|
|
|
|
case CTF_K_FORWARD:
|
|
|
|
if (dst_type == CTF_ERR)
|
libctf: teach ctf_add_type how forwards work
This machinery has been broken for as long as Solaris has existed.
Forwards are meant to encode "struct foo;", "enum foo;" or "union
foo;". Obviously these all exist in distinct namespaces, so forwards
store the type kind they forward to in their ctt_type member
(which makes conceptual sense if you squint at it). The addition
machinery uses this to promote forwards to the appropriate type as
needed.
Unfortunately ctf_add_type does not: it checks the global namespace
(which is always wrong), and so fails with a spurious conflict if you
have, say, a typedef and then a forward comes along with the same name,
even if it's a forward to something like a struct. (This was observed
with <libio.h>, which has "struct _IO_FILE;" and also
"typedef struct _IO_FILE _IO_FILE"). We should look at the recorded
type kind and look in the appropriate namespace. We should also,
when creating the forward in the new container, use that type kind,
rather than just defaulting to CTF_K_STRUCT and hoping that what
eventually comes along is a struct.
This bug is as old as the first implementation of ctf_add_type in
Solaris. But we also want a new feature for the linker, closely-related
and touching the same code so we add it here: not only do we want a
forward followed by a struct/union/enum to promote the forward, but
we want want a struct/union/enum followed by a forward to act as a NOP
and return the existing type, because when we're adding many files
in succession to a target link, there will often be already-promoted
forwards (in the shape of a struct/union/enum) that want to unify
with duplicate forwards coming from other object files.
v5: fix tabdamage.
libctf/
* ctf-create.c (ctf_add_type): Look up and use the forwarded-to
type kind. Allow forwards to unify with pre-existing structs/
unions/enums.
2019-08-03 07:46:01 +08:00
|
|
|
dst_type = ctf_add_forward (dst_fp, flag, name, forward_kind);
|
2019-04-24 18:22:03 +08:00
|
|
|
break;
|
|
|
|
|
|
|
|
case CTF_K_TYPEDEF:
|
|
|
|
src_type = ctf_type_reference (src_fp, src_type);
|
libctf: properly handle ctf_add_type of forwards and self-reffing structs
The code to handle structures (and unions) that refer to themselves in
ctf_add_type is extremely dodgy. It works by looking through the list
of not-yet-committed types for a structure with the same name as the
structure in question and assuming, if it finds it, that this must be a
reference to the same type. This is a linear search that gets ever
slower as the dictionary grows, requiring you to call ctf_update at
intervals to keep performance tolerable: but if you do that, you run
into the problem that if a forward declared before the ctf_update is
changed to a structure afterwards, ctf_update explodes.
The last commit fixed most of this: this commit can use it, adding a new
ctf_add_processing hash that tracks source type IDs that are currently
being processed and uses it to avoid infinite recursion rather than the
dynamic type list: we split ctf_add_type into a ctf_add_type_internal,
so that ctf_add_type itself can become a wrapper that empties out this
being-processed hash once the entire recursive type addition is over.
Structure additions themselves avoid adding their dependent types
quite so much by checking the type mapping and avoiding re-adding types
we already know we have added.
We also add support for adding forwards to dictionaries that already
contain the thing they are a forward to: we just silently return the
original type.
v4: return existing struct/union/enum types properly, rather than using
an uninitialized variable: shrinks sizes of CTF sections back down
to roughly where they were in v1/v2 of this patch series.
v5: fix tabdamage.
libctf/
* ctf-impl.h (ctf_file_t) <ctf_add_processing>: New.
* ctf-open.c (ctf_file_close): Free it.
* ctf-create.c (ctf_serialize): Adjust.
(membcmp): When reporting a conflict due to an error, report the
error.
(ctf_add_type): Turn into a ctf_add_processing wrapper. Rename to...
(ctf_add_type_internal): ... this. Hand back types we are already
in the middle of adding immediately. Hand back structs/unions with
the same number of members immediately. Do not walk the dynamic
list. Call ctf_add_type_internal, not ctf_add_type. Handle
forwards promoted to other types and the inverse case identically.
Add structs to the mapping as soon as we intern them, before they
gain any members.
2019-08-08 01:01:08 +08:00
|
|
|
src_type = ctf_add_type_internal (dst_fp, src_fp, src_type,
|
|
|
|
proc_tracking_fp);
|
2019-04-24 18:22:03 +08:00
|
|
|
|
|
|
|
if (src_type == CTF_ERR)
|
|
|
|
return CTF_ERR; /* errno is set for us. */
|
|
|
|
|
|
|
|
/* If dst_type is not CTF_ERR at this point, we should check if
|
|
|
|
ctf_type_reference(dst_fp, dst_type) != src_type and if so fail with
|
|
|
|
ECTF_CONFLICT. However, this causes problems with bitness typedefs
|
|
|
|
that vary based on things like if 32-bit then pid_t is int otherwise
|
|
|
|
long. We therefore omit this check and assume that if the identically
|
|
|
|
named typedef already exists in dst_fp, it is correct or
|
|
|
|
equivalent. */
|
|
|
|
|
|
|
|
if (dst_type == CTF_ERR)
|
|
|
|
dst_type = ctf_add_typedef (dst_fp, flag, name, src_type);
|
libctf: properly handle ctf_add_type of forwards and self-reffing structs
The code to handle structures (and unions) that refer to themselves in
ctf_add_type is extremely dodgy. It works by looking through the list
of not-yet-committed types for a structure with the same name as the
structure in question and assuming, if it finds it, that this must be a
reference to the same type. This is a linear search that gets ever
slower as the dictionary grows, requiring you to call ctf_update at
intervals to keep performance tolerable: but if you do that, you run
into the problem that if a forward declared before the ctf_update is
changed to a structure afterwards, ctf_update explodes.
The last commit fixed most of this: this commit can use it, adding a new
ctf_add_processing hash that tracks source type IDs that are currently
being processed and uses it to avoid infinite recursion rather than the
dynamic type list: we split ctf_add_type into a ctf_add_type_internal,
so that ctf_add_type itself can become a wrapper that empties out this
being-processed hash once the entire recursive type addition is over.
Structure additions themselves avoid adding their dependent types
quite so much by checking the type mapping and avoiding re-adding types
we already know we have added.
We also add support for adding forwards to dictionaries that already
contain the thing they are a forward to: we just silently return the
original type.
v4: return existing struct/union/enum types properly, rather than using
an uninitialized variable: shrinks sizes of CTF sections back down
to roughly where they were in v1/v2 of this patch series.
v5: fix tabdamage.
libctf/
* ctf-impl.h (ctf_file_t) <ctf_add_processing>: New.
* ctf-open.c (ctf_file_close): Free it.
* ctf-create.c (ctf_serialize): Adjust.
(membcmp): When reporting a conflict due to an error, report the
error.
(ctf_add_type): Turn into a ctf_add_processing wrapper. Rename to...
(ctf_add_type_internal): ... this. Hand back types we are already
in the middle of adding immediately. Hand back structs/unions with
the same number of members immediately. Do not walk the dynamic
list. Call ctf_add_type_internal, not ctf_add_type. Handle
forwards promoted to other types and the inverse case identically.
Add structs to the mapping as soon as we intern them, before they
gain any members.
2019-08-08 01:01:08 +08:00
|
|
|
|
2019-04-24 18:22:03 +08:00
|
|
|
break;
|
|
|
|
|
|
|
|
default:
|
2023-09-13 17:02:36 +08:00
|
|
|
return (ctf_set_typed_errno (dst_fp, ECTF_CORRUPT));
|
2019-04-24 18:22:03 +08:00
|
|
|
}
|
|
|
|
|
2019-07-14 04:31:26 +08:00
|
|
|
if (dst_type != CTF_ERR)
|
|
|
|
ctf_add_type_mapping (src_fp, orig_src_type, dst_fp, dst_type);
|
2019-04-24 18:22:03 +08:00
|
|
|
return dst_type;
|
|
|
|
}
|
|
|
|
|
libctf: properly handle ctf_add_type of forwards and self-reffing structs
The code to handle structures (and unions) that refer to themselves in
ctf_add_type is extremely dodgy. It works by looking through the list
of not-yet-committed types for a structure with the same name as the
structure in question and assuming, if it finds it, that this must be a
reference to the same type. This is a linear search that gets ever
slower as the dictionary grows, requiring you to call ctf_update at
intervals to keep performance tolerable: but if you do that, you run
into the problem that if a forward declared before the ctf_update is
changed to a structure afterwards, ctf_update explodes.
The last commit fixed most of this: this commit can use it, adding a new
ctf_add_processing hash that tracks source type IDs that are currently
being processed and uses it to avoid infinite recursion rather than the
dynamic type list: we split ctf_add_type into a ctf_add_type_internal,
so that ctf_add_type itself can become a wrapper that empties out this
being-processed hash once the entire recursive type addition is over.
Structure additions themselves avoid adding their dependent types
quite so much by checking the type mapping and avoiding re-adding types
we already know we have added.
We also add support for adding forwards to dictionaries that already
contain the thing they are a forward to: we just silently return the
original type.
v4: return existing struct/union/enum types properly, rather than using
an uninitialized variable: shrinks sizes of CTF sections back down
to roughly where they were in v1/v2 of this patch series.
v5: fix tabdamage.
libctf/
* ctf-impl.h (ctf_file_t) <ctf_add_processing>: New.
* ctf-open.c (ctf_file_close): Free it.
* ctf-create.c (ctf_serialize): Adjust.
(membcmp): When reporting a conflict due to an error, report the
error.
(ctf_add_type): Turn into a ctf_add_processing wrapper. Rename to...
(ctf_add_type_internal): ... this. Hand back types we are already
in the middle of adding immediately. Hand back structs/unions with
the same number of members immediately. Do not walk the dynamic
list. Call ctf_add_type_internal, not ctf_add_type. Handle
forwards promoted to other types and the inverse case identically.
Add structs to the mapping as soon as we intern them, before they
gain any members.
2019-08-08 01:01:08 +08:00
|
|
|
ctf_id_t
|
libctf, include, binutils, gdb, ld: rename ctf_file_t to ctf_dict_t
The naming of the ctf_file_t type in libctf is a historical curiosity.
Back in the Solaris days, CTF dictionaries were originally generated as
a separate file and then (sometimes) merged into objects: hence the
datatype was named ctf_file_t, and known as a "CTF file". Nowadays, raw
CTF is essentially never written to a file on its own, and the datatype
changed name to a "CTF dictionary" years ago. So the term "CTF file"
refers to something that is never a file! This is at best confusing.
The type has also historically been known as a 'CTF container", which is
even more confusing now that we have CTF archives which are *also* a
sort of container (they contain CTF dictionaries), but which are never
referred to as containers in the source code.
So fix this by completing the renaming, renaming ctf_file_t to
ctf_dict_t throughout, and renaming those few functions that refer to
CTF files by name (keeping compatibility aliases) to refer to dicts
instead. Old users who still refer to ctf_file_t will see (harmless)
pointer-compatibility warnings at compile time, but the ABI is unchanged
(since C doesn't mangle names, and ctf_file_t was always an opaque type)
and things will still compile fine as long as -Werror is not specified.
All references to CTF containers and CTF files in the source code are
fixed to refer to CTF dicts instead.
Further (smaller) renamings of annoyingly-named functions to come, as
part of the process of souping up queries across whole archives at once
(needed for the function info and data object sections).
binutils/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* objdump.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_ctf): Likewise. Use ctf_dict_close, not ctf_file_close.
* readelf.c (dump_ctf_errs): Rename ctf_file_t to ctf_dict_t.
(dump_ctf_archive_member): Likewise.
(dump_section_as_ctf): Likewise. Use ctf_dict_close, not
ctf_file_close.
gdb/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctfread.c: Change uses of ctf_file_t to ctf_dict_t.
(ctf_fp_info::~ctf_fp_info): Call ctf_dict_close, not ctf_file_close.
include/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-api.h (ctf_file_t): Rename to...
(ctf_dict_t): ... this. Keep ctf_file_t around for compatibility.
(struct ctf_file): Likewise rename to...
(struct ctf_dict): ... this.
(ctf_file_close): Rename to...
(ctf_dict_close): ... this, keeping compatibility function.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this, keeping compatibility function.
All callers adjusted.
* ctf.h: Rename references to ctf_file_t to ctf_dict_t.
(struct ctf_archive) <ctfa_nfiles>: Rename to...
<ctfa_ndicts>: ... this.
ld/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ldlang.c (ctf_output): This is a ctf_dict_t now.
(lang_ctf_errs_warnings): Rename ctf_file_t to ctf_dict_t.
(ldlang_open_ctf): Adjust comment.
(lang_merge_ctf): Use ctf_dict_close, not ctf_file_close.
* ldelfgen.h (ldelf_examine_strtab_for_ctf): Rename ctf_file_t to
ctf_dict_t. Change opaque declaration accordingly.
* ldelfgen.c (ldelf_examine_strtab_for_ctf): Adjust.
* ldemul.h (examine_strtab_for_ctf): Likewise.
(ldemul_examine_strtab_for_ctf): Likewise.
* ldeuml.c (ldemul_examine_strtab_for_ctf): Likewise.
libctf/ChangeLog
2020-11-20 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.h: Rename ctf_file_t to ctf_dict_t: all declarations
adjusted.
(ctf_fileops): Rename to...
(ctf_dictops): ... this.
(ctf_dedup_t) <cd_id_to_file_t>: Rename to...
<cd_id_to_dict_t>: ... this.
(ctf_file_t): Fix outdated comment.
<ctf_fileops>: Rename to...
<ctf_dictops>: ... this.
(struct ctf_archive_internal) <ctfi_file>: Rename to...
<ctfi_dict>: ... this.
* ctf-archive.c: Rename ctf_file_t to ctf_dict_t.
Rename ctf_archive.ctfa_nfiles to ctfa_ndicts.
Rename ctf_file_close to ctf_dict_close. All users adjusted.
* ctf-create.c: Likewise. Refer to CTF dicts, not CTF containers.
(ctf_bundle_t) <ctb_file>: Rename to...
<ctb_dict): ... this.
* ctf-decl.c: Rename ctf_file_t to ctf_dict_t.
* ctf-dedup.c: Likewise. Rename ctf_file_close to
ctf_dict_close. Refer to CTF dicts, not CTF containers.
* ctf-dump.c: Likewise.
* ctf-error.c: Likewise.
* ctf-hash.c: Likewise.
* ctf-inlines.h: Likewise.
* ctf-labels.c: Likewise.
* ctf-link.c: Likewise.
* ctf-lookup.c: Likewise.
* ctf-open-bfd.c: Likewise.
* ctf-string.c: Likewise.
* ctf-subr.c: Likewise.
* ctf-types.c: Likewise.
* ctf-util.c: Likewise.
* ctf-open.c: Likewise.
(ctf_file_close): Rename to...
(ctf_dict_close): ...this.
(ctf_file_close): New trivial wrapper around ctf_dict_close, for
compatibility.
(ctf_parent_file): Rename to...
(ctf_parent_dict): ... this.
(ctf_parent_file): New trivial wrapper around ctf_parent_dict, for
compatibility.
* libctf.ver: Add ctf_dict_close and ctf_parent_dict.
2020-11-20 21:34:04 +08:00
|
|
|
ctf_add_type (ctf_dict_t *dst_fp, ctf_dict_t *src_fp, ctf_id_t src_type)
|
libctf: properly handle ctf_add_type of forwards and self-reffing structs
The code to handle structures (and unions) that refer to themselves in
ctf_add_type is extremely dodgy. It works by looking through the list
of not-yet-committed types for a structure with the same name as the
structure in question and assuming, if it finds it, that this must be a
reference to the same type. This is a linear search that gets ever
slower as the dictionary grows, requiring you to call ctf_update at
intervals to keep performance tolerable: but if you do that, you run
into the problem that if a forward declared before the ctf_update is
changed to a structure afterwards, ctf_update explodes.
The last commit fixed most of this: this commit can use it, adding a new
ctf_add_processing hash that tracks source type IDs that are currently
being processed and uses it to avoid infinite recursion rather than the
dynamic type list: we split ctf_add_type into a ctf_add_type_internal,
so that ctf_add_type itself can become a wrapper that empties out this
being-processed hash once the entire recursive type addition is over.
Structure additions themselves avoid adding their dependent types
quite so much by checking the type mapping and avoiding re-adding types
we already know we have added.
We also add support for adding forwards to dictionaries that already
contain the thing they are a forward to: we just silently return the
original type.
v4: return existing struct/union/enum types properly, rather than using
an uninitialized variable: shrinks sizes of CTF sections back down
to roughly where they were in v1/v2 of this patch series.
v5: fix tabdamage.
libctf/
* ctf-impl.h (ctf_file_t) <ctf_add_processing>: New.
* ctf-open.c (ctf_file_close): Free it.
* ctf-create.c (ctf_serialize): Adjust.
(membcmp): When reporting a conflict due to an error, report the
error.
(ctf_add_type): Turn into a ctf_add_processing wrapper. Rename to...
(ctf_add_type_internal): ... this. Hand back types we are already
in the middle of adding immediately. Hand back structs/unions with
the same number of members immediately. Do not walk the dynamic
list. Call ctf_add_type_internal, not ctf_add_type. Handle
forwards promoted to other types and the inverse case identically.
Add structs to the mapping as soon as we intern them, before they
gain any members.
2019-08-08 01:01:08 +08:00
|
|
|
{
|
|
|
|
ctf_id_t id;
|
|
|
|
|
|
|
|
if (!src_fp->ctf_add_processing)
|
|
|
|
src_fp->ctf_add_processing = ctf_dynhash_create (ctf_hash_integer,
|
|
|
|
ctf_hash_eq_integer,
|
|
|
|
NULL, NULL);
|
|
|
|
|
|
|
|
/* We store the hash on the source, because it contains only source type IDs:
|
|
|
|
but callers will invariably expect errors to appear on the dest. */
|
|
|
|
if (!src_fp->ctf_add_processing)
|
2023-09-13 17:02:36 +08:00
|
|
|
return (ctf_set_typed_errno (dst_fp, ENOMEM));
|
libctf: properly handle ctf_add_type of forwards and self-reffing structs
The code to handle structures (and unions) that refer to themselves in
ctf_add_type is extremely dodgy. It works by looking through the list
of not-yet-committed types for a structure with the same name as the
structure in question and assuming, if it finds it, that this must be a
reference to the same type. This is a linear search that gets ever
slower as the dictionary grows, requiring you to call ctf_update at
intervals to keep performance tolerable: but if you do that, you run
into the problem that if a forward declared before the ctf_update is
changed to a structure afterwards, ctf_update explodes.
The last commit fixed most of this: this commit can use it, adding a new
ctf_add_processing hash that tracks source type IDs that are currently
being processed and uses it to avoid infinite recursion rather than the
dynamic type list: we split ctf_add_type into a ctf_add_type_internal,
so that ctf_add_type itself can become a wrapper that empties out this
being-processed hash once the entire recursive type addition is over.
Structure additions themselves avoid adding their dependent types
quite so much by checking the type mapping and avoiding re-adding types
we already know we have added.
We also add support for adding forwards to dictionaries that already
contain the thing they are a forward to: we just silently return the
original type.
v4: return existing struct/union/enum types properly, rather than using
an uninitialized variable: shrinks sizes of CTF sections back down
to roughly where they were in v1/v2 of this patch series.
v5: fix tabdamage.
libctf/
* ctf-impl.h (ctf_file_t) <ctf_add_processing>: New.
* ctf-open.c (ctf_file_close): Free it.
* ctf-create.c (ctf_serialize): Adjust.
(membcmp): When reporting a conflict due to an error, report the
error.
(ctf_add_type): Turn into a ctf_add_processing wrapper. Rename to...
(ctf_add_type_internal): ... this. Hand back types we are already
in the middle of adding immediately. Hand back structs/unions with
the same number of members immediately. Do not walk the dynamic
list. Call ctf_add_type_internal, not ctf_add_type. Handle
forwards promoted to other types and the inverse case identically.
Add structs to the mapping as soon as we intern them, before they
gain any members.
2019-08-08 01:01:08 +08:00
|
|
|
|
|
|
|
id = ctf_add_type_internal (dst_fp, src_fp, src_type, src_fp);
|
|
|
|
ctf_dynhash_empty (src_fp->ctf_add_processing);
|
|
|
|
|
|
|
|
return id;
|
|
|
|
}
|