binutils-gdb/gold/token.h

336 lines
7.9 KiB
C
Raw Normal View History

// token.h -- lock tokens for gold -*- C++ -*-
2014-03-05 19:46:15 +08:00
// Copyright (C) 2006-2014 Free Software Foundation, Inc.
// Written by Ian Lance Taylor <iant@google.com>.
// This file is part of gold.
// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
// MA 02110-1301, USA.
#ifndef GOLD_TOKEN_H
#define GOLD_TOKEN_H
namespace gold
{
class Condvar;
class Task;
// A list of Tasks, managed through the next_locked_ field in the
// class Task. We define this class here because we need it in
// Task_token.
class Task_list
{
public:
Task_list()
: head_(NULL), tail_(NULL)
{ }
~Task_list()
{ gold_assert(this->head_ == NULL && this->tail_ == NULL); }
// Return whether the list is empty.
bool
empty() const
{ return this->head_ == NULL; }
// Add T to the head of the list.
void
push_front(Task* t);
// Add T to the end of the list.
void
push_back(Task* t);
// Remove the first Task on the list and return it. Return NULL if
// the list is empty.
Task*
pop_front();
private:
// The start of the list. NULL if the list is empty.
Task* head_;
// The end of the list. NULL if the list is empty.
Task* tail_;
};
// We support two basic types of locks, which are both implemented
// using the single class Task_token.
// A write lock may be held by a single Task at a time. This is used
// to control access to a single shared resource such as an Object.
// A blocker is used to indicate that a Task A must be run after some
// set of Tasks B. For each of the Tasks B, we increment the blocker
// when the Task is created, and decrement it when the Task is
// completed. When the count goes to 0, the task A is ready to run.
// There are no shared read locks. We always read and write objects
// in predictable patterns. The purpose of the locks is to permit
// some flexibility for the threading system, for cases where the
// execution order does not matter.
// These tokens are only manipulated when the workqueue lock is held
// or when they are first created. They do not require any locking
// themselves.
class Task_token
{
public:
Task_token(bool is_blocker)
: is_blocker_(is_blocker), blockers_(0), writer_(NULL), waiting_()
{ }
~Task_token()
{
gold_assert(this->blockers_ == 0);
gold_assert(this->writer_ == NULL);
}
// Return whether this is a blocker.
bool
is_blocker() const
{ return this->is_blocker_; }
// A write lock token uses these methods.
// Is the token writable?
bool
is_writable() const
{
gold_assert(!this->is_blocker_);
return this->writer_ == NULL;
}
// Add the task as the token's writer (there may only be one
// writer).
void
add_writer(const Task* t)
{
gold_assert(!this->is_blocker_ && this->writer_ == NULL);
this->writer_ = t;
}
// Remove the task as the token's writer.
void
remove_writer(const Task* t)
{
gold_assert(!this->is_blocker_ && this->writer_ == t);
this->writer_ = NULL;
}
// A blocker token uses these methods.
// Add a blocker to the token.
void
add_blocker()
{
gold_assert(this->is_blocker_);
++this->blockers_;
this->writer_ = NULL;
}
// Add some number of blockers to the token.
void
add_blockers(int c)
{
gold_assert(this->is_blocker_);
this->blockers_ += c;
this->writer_ = NULL;
}
// Remove a blocker from the token. Returns true if block count
// drops to zero.
bool
remove_blocker()
{
gold_assert(this->is_blocker_ && this->blockers_ > 0);
--this->blockers_;
this->writer_ = NULL;
return this->blockers_ == 0;
}
// Is the token currently blocked?
bool
is_blocked() const
{
gold_assert(this->is_blocker_);
return this->blockers_ > 0;
}
// Both blocker and write lock tokens use these methods.
// Add T to the list of tasks waiting for this token to be released.
void
add_waiting(Task* t)
{ this->waiting_.push_back(t); }
// Add T to the front of the list of tasks waiting for this token to
// be released.
void
add_waiting_front(Task* t)
{ this->waiting_.push_front(t); }
// Remove the first Task waiting for this token to be released, and
// return it. Return NULL if no Tasks are waiting.
Task*
remove_first_waiting()
{ return this->waiting_.pop_front(); }
private:
// It makes no sense to copy these.
Task_token(const Task_token&);
Task_token& operator=(const Task_token&);
// Whether this is a blocker token.
bool is_blocker_;
// The number of blockers.
int blockers_;
// The single writer.
const Task* writer_;
// The list of Tasks waiting for this token to be released.
Task_list waiting_;
};
// In order to support tokens more reliably, we provide objects which
// handle them using RAII.
// RAII class to get a write lock on a token. This requires
// specifying the task which is doing the lock.
class Task_write_token
{
public:
Task_write_token(Task_token* token, const Task* task)
: token_(token), task_(task)
{ this->token_->add_writer(this->task_); }
~Task_write_token()
{ this->token_->remove_writer(this->task_); }
private:
Task_write_token(const Task_write_token&);
Task_write_token& operator=(const Task_write_token&);
Task_token* token_;
const Task* task_;
};
// RAII class for a blocker.
class Task_block_token
{
public:
// The blocker count must be incremented when the task is created.
// This object is created when the task is run, so we don't do
// anything in the constructor.
Task_block_token(Task_token* token)
: token_(token)
{ gold_assert(this->token_->is_blocked()); }
~Task_block_token()
{ this->token_->remove_blocker(); }
private:
Task_block_token(const Task_block_token&);
Task_block_token& operator=(const Task_block_token&);
Task_token* token_;
};
// An object which implements an RAII lock for any object which
// supports lock and unlock methods.
template<typename Obj>
class Task_lock_obj
{
public:
Task_lock_obj(const Task* task, Obj* obj)
: task_(task), obj_(obj)
{ this->obj_->lock(task); }
~Task_lock_obj()
{ this->obj_->unlock(this->task_); }
private:
Task_lock_obj(const Task_lock_obj&);
Task_lock_obj& operator=(const Task_lock_obj&);
const Task* task_;
Obj* obj_;
};
// A class which holds the set of Task_tokens which must be locked for
// a Task. No Task requires more than four Task_tokens, so we set
// that as a limit.
class Task_locker
{
public:
static const int max_task_count = 4;
Task_locker()
: count_(0)
{ }
~Task_locker()
{ }
// Clear the locker.
void
clear()
{ this->count_ = 0; }
// Add a token to the locker.
void
add(Task* t, Task_token* token)
{
gold_assert(this->count_ < max_task_count);
this->tokens_[this->count_] = token;
++this->count_;
// A blocker will have been incremented when the task is created.
// A writer we need to lock now.
if (!token->is_blocker())
token->add_writer(t);
}
// Iterate over the tokens.
typedef Task_token** iterator;
iterator
begin()
{ return &this->tokens_[0]; }
iterator
end()
{ return &this->tokens_[this->count_]; }
private:
Task_locker(const Task_locker&);
Task_locker& operator=(const Task_locker&);
// The number of tokens.
int count_;
// The tokens.
Task_token* tokens_[max_task_count];
};
} // End namespace gold.
#endif // !defined(GOLD_TOKEN_H)